This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <string.h>
29 #define min(a, b) ((a) < (b) ? (a) : (b))
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "obstack.h"
34
35 static void floating_constant PARAMS ((expressionS * expressionP));
36 static valueT generic_bignum_to_int32 PARAMS ((void));
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 PARAMS ((void));
39 #endif
40 static void integer_constant PARAMS ((int radix, expressionS * expressionP));
41 static void mri_char_constant PARAMS ((expressionS *));
42 static void current_location PARAMS ((expressionS *));
43 static void clean_up_expression PARAMS ((expressionS * expressionP));
44 static segT operand PARAMS ((expressionS *));
45 static operatorT operator PARAMS ((int *));
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionP)
67 expressionS *expressionP;
68 {
69 expressionS zero;
70 const char *fake;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 clean_up_expression (&zero);
91 expressionP = &zero;
92 }
93
94 fake = FAKE_LABEL_NAME;
95
96 /* Putting constant symbols in absolute_section rather than
97 expr_section is convenient for the old a.out code, for which
98 S_GET_SEGMENT does not always retrieve the value put in by
99 S_SET_SEGMENT. */
100 symbolP = symbol_create (fake,
101 (expressionP->X_op == O_constant
102 ? absolute_section
103 : expr_section),
104 0, &zero_address_frag);
105 symbol_set_value_expression (symbolP, expressionP);
106
107 if (expressionP->X_op == O_constant)
108 resolve_symbol_value (symbolP);
109
110 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
111 n->sym = symbolP;
112 as_where (&n->file, &n->line);
113 n->next = expr_symbol_lines;
114 expr_symbol_lines = n;
115
116 return symbolP;
117 }
118
119 /* Return the file and line number for an expr symbol. Return
120 non-zero if something was found, 0 if no information is known for
121 the symbol. */
122
123 int
124 expr_symbol_where (sym, pfile, pline)
125 symbolS *sym;
126 char **pfile;
127 unsigned int *pline;
128 {
129 register struct expr_symbol_line *l;
130
131 for (l = expr_symbol_lines; l != NULL; l = l->next)
132 {
133 if (l->sym == sym)
134 {
135 *pfile = l->file;
136 *pline = l->line;
137 return 1;
138 }
139 }
140
141 return 0;
142 }
143 \f
144 /* Utilities for building expressions.
145 Since complex expressions are recorded as symbols for use in other
146 expressions these return a symbolS * and not an expressionS *.
147 These explicitly do not take an "add_number" argument. */
148 /* ??? For completeness' sake one might want expr_build_symbol.
149 It would just return its argument. */
150
151 /* Build an expression for an unsigned constant.
152 The corresponding one for signed constants is missing because
153 there's currently no need for it. One could add an unsigned_p flag
154 but that seems more clumsy. */
155
156 symbolS *
157 expr_build_uconstant (value)
158 offsetT value;
159 {
160 expressionS e;
161
162 e.X_op = O_constant;
163 e.X_add_number = value;
164 e.X_unsigned = 1;
165 return make_expr_symbol (&e);
166 }
167
168 /* Build an expression for OP s1. */
169
170 symbolS *
171 expr_build_unary (op, s1)
172 operatorT op;
173 symbolS *s1;
174 {
175 expressionS e;
176
177 e.X_op = op;
178 e.X_add_symbol = s1;
179 e.X_add_number = 0;
180 return make_expr_symbol (&e);
181 }
182
183 /* Build an expression for s1 OP s2. */
184
185 symbolS *
186 expr_build_binary (op, s1, s2)
187 operatorT op;
188 symbolS *s1;
189 symbolS *s2;
190 {
191 expressionS e;
192
193 e.X_op = op;
194 e.X_add_symbol = s1;
195 e.X_op_symbol = s2;
196 e.X_add_number = 0;
197 return make_expr_symbol (&e);
198 }
199
200 /* Build an expression for the current location ('.'). */
201
202 symbolS *
203 expr_build_dot ()
204 {
205 expressionS e;
206
207 current_location (&e);
208 return make_expr_symbol (&e);
209 }
210 \f
211 /* Build any floating-point literal here.
212 Also build any bignum literal here. */
213
214 /* Seems atof_machine can backscan through generic_bignum and hit whatever
215 happens to be loaded before it in memory. And its way too complicated
216 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
217 and never write into the early words, thus they'll always be zero.
218 I hate Dean's floating-point code. Bleh. */
219 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
220
221 FLONUM_TYPE generic_floating_point_number = {
222 &generic_bignum[6], /* low. (JF: Was 0) */
223 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
224 0, /* leader. */
225 0, /* exponent. */
226 0 /* sign. */
227 };
228
229 /* If nonzero, we've been asked to assemble nan, +inf or -inf. */
230 int generic_floating_point_magic;
231 \f
232 static void
233 floating_constant (expressionP)
234 expressionS *expressionP;
235 {
236 /* input_line_pointer -> floating-point constant. */
237 int error_code;
238
239 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
240 &generic_floating_point_number);
241
242 if (error_code)
243 {
244 if (error_code == ERROR_EXPONENT_OVERFLOW)
245 {
246 as_bad (_("bad floating-point constant: exponent overflow"));
247 }
248 else
249 {
250 as_bad (_("bad floating-point constant: unknown error code=%d"),
251 error_code);
252 }
253 }
254 expressionP->X_op = O_big;
255 /* input_line_pointer -> just after constant, which may point to
256 whitespace. */
257 expressionP->X_add_number = -1;
258 }
259
260 static valueT
261 generic_bignum_to_int32 ()
262 {
263 valueT number =
264 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
265 | (generic_bignum[0] & LITTLENUM_MASK);
266 number &= 0xffffffff;
267 return number;
268 }
269
270 #ifdef BFD64
271 static valueT
272 generic_bignum_to_int64 ()
273 {
274 valueT number =
275 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
276 << LITTLENUM_NUMBER_OF_BITS)
277 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
278 << LITTLENUM_NUMBER_OF_BITS)
279 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
280 << LITTLENUM_NUMBER_OF_BITS)
281 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
282 return number;
283 }
284 #endif
285
286 static void
287 integer_constant (radix, expressionP)
288 int radix;
289 expressionS *expressionP;
290 {
291 char *start; /* Start of number. */
292 char *suffix = NULL;
293 char c;
294 valueT number; /* Offset or (absolute) value. */
295 short int digit; /* Value of next digit in current radix. */
296 short int maxdig = 0; /* Highest permitted digit value. */
297 int too_many_digits = 0; /* If we see >= this number of. */
298 char *name; /* Points to name of symbol. */
299 symbolS *symbolP; /* Points to symbol. */
300
301 int small; /* True if fits in 32 bits. */
302
303 /* May be bignum, or may fit in 32 bits. */
304 /* Most numbers fit into 32 bits, and we want this case to be fast.
305 so we pretend it will fit into 32 bits. If, after making up a 32
306 bit number, we realise that we have scanned more digits than
307 comfortably fit into 32 bits, we re-scan the digits coding them
308 into a bignum. For decimal and octal numbers we are
309 conservative: Some numbers may be assumed bignums when in fact
310 they do fit into 32 bits. Numbers of any radix can have excess
311 leading zeros: We strive to recognise this and cast them back
312 into 32 bits. We must check that the bignum really is more than
313 32 bits, and change it back to a 32-bit number if it fits. The
314 number we are looking for is expected to be positive, but if it
315 fits into 32 bits as an unsigned number, we let it be a 32-bit
316 number. The cavalier approach is for speed in ordinary cases. */
317 /* This has been extended for 64 bits. We blindly assume that if
318 you're compiling in 64-bit mode, the target is a 64-bit machine.
319 This should be cleaned up. */
320
321 #ifdef BFD64
322 #define valuesize 64
323 #else /* includes non-bfd case, mostly */
324 #define valuesize 32
325 #endif
326
327 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
328 {
329 int flt = 0;
330
331 /* In MRI mode, the number may have a suffix indicating the
332 radix. For that matter, it might actually be a floating
333 point constant. */
334 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
335 {
336 if (*suffix == 'e' || *suffix == 'E')
337 flt = 1;
338 }
339
340 if (suffix == input_line_pointer)
341 {
342 radix = 10;
343 suffix = NULL;
344 }
345 else
346 {
347 c = *--suffix;
348 c = TOUPPER (c);
349 if (c == 'B')
350 radix = 2;
351 else if (c == 'D')
352 radix = 10;
353 else if (c == 'O' || c == 'Q')
354 radix = 8;
355 else if (c == 'H')
356 radix = 16;
357 else if (suffix[1] == '.' || c == 'E' || flt)
358 {
359 floating_constant (expressionP);
360 return;
361 }
362 else
363 {
364 radix = 10;
365 suffix = NULL;
366 }
367 }
368 }
369
370 switch (radix)
371 {
372 case 2:
373 maxdig = 2;
374 too_many_digits = valuesize + 1;
375 break;
376 case 8:
377 maxdig = radix = 8;
378 too_many_digits = (valuesize + 2) / 3 + 1;
379 break;
380 case 16:
381 maxdig = radix = 16;
382 too_many_digits = (valuesize + 3) / 4 + 1;
383 break;
384 case 10:
385 maxdig = radix = 10;
386 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
387 }
388 #undef valuesize
389 start = input_line_pointer;
390 c = *input_line_pointer++;
391 for (number = 0;
392 (digit = hex_value (c)) < maxdig;
393 c = *input_line_pointer++)
394 {
395 number = number * radix + digit;
396 }
397 /* c contains character after number. */
398 /* input_line_pointer->char after c. */
399 small = (input_line_pointer - start - 1) < too_many_digits;
400
401 if (radix == 16 && c == '_')
402 {
403 /* This is literal of the form 0x333_0_12345678_1.
404 This example is equivalent to 0x00000333000000001234567800000001. */
405
406 int num_little_digits = 0;
407 int i;
408 input_line_pointer = start; /* -> 1st digit. */
409
410 know (LITTLENUM_NUMBER_OF_BITS == 16);
411
412 for (c = '_'; c == '_'; num_little_digits += 2)
413 {
414
415 /* Convert one 64-bit word. */
416 int ndigit = 0;
417 number = 0;
418 for (c = *input_line_pointer++;
419 (digit = hex_value (c)) < maxdig;
420 c = *(input_line_pointer++))
421 {
422 number = number * radix + digit;
423 ndigit++;
424 }
425
426 /* Check for 8 digit per word max. */
427 if (ndigit > 8)
428 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
429
430 /* Add this chunk to the bignum.
431 Shift things down 2 little digits. */
432 know (LITTLENUM_NUMBER_OF_BITS == 16);
433 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
434 i >= 2;
435 i--)
436 generic_bignum[i] = generic_bignum[i - 2];
437
438 /* Add the new digits as the least significant new ones. */
439 generic_bignum[0] = number & 0xffffffff;
440 generic_bignum[1] = number >> 16;
441 }
442
443 /* Again, c is char after number, input_line_pointer->after c. */
444
445 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
446 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
447
448 assert (num_little_digits >= 4);
449
450 if (num_little_digits != 8)
451 as_bad (_("a bignum with underscores must have exactly 4 words"));
452
453 /* We might have some leading zeros. These can be trimmed to give
454 us a change to fit this constant into a small number. */
455 while (generic_bignum[num_little_digits - 1] == 0
456 && num_little_digits > 1)
457 num_little_digits--;
458
459 if (num_little_digits <= 2)
460 {
461 /* will fit into 32 bits. */
462 number = generic_bignum_to_int32 ();
463 small = 1;
464 }
465 #ifdef BFD64
466 else if (num_little_digits <= 4)
467 {
468 /* Will fit into 64 bits. */
469 number = generic_bignum_to_int64 ();
470 small = 1;
471 }
472 #endif
473 else
474 {
475 small = 0;
476
477 /* Number of littlenums in the bignum. */
478 number = num_little_digits;
479 }
480 }
481 else if (!small)
482 {
483 /* We saw a lot of digits. manufacture a bignum the hard way. */
484 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
485 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
486 long carry;
487
488 leader = generic_bignum;
489 generic_bignum[0] = 0;
490 generic_bignum[1] = 0;
491 generic_bignum[2] = 0;
492 generic_bignum[3] = 0;
493 input_line_pointer = start; /* -> 1st digit. */
494 c = *input_line_pointer++;
495 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
496 {
497 for (pointer = generic_bignum; pointer <= leader; pointer++)
498 {
499 long work;
500
501 work = carry + radix * *pointer;
502 *pointer = work & LITTLENUM_MASK;
503 carry = work >> LITTLENUM_NUMBER_OF_BITS;
504 }
505 if (carry)
506 {
507 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
508 {
509 /* Room to grow a longer bignum. */
510 *++leader = carry;
511 }
512 }
513 }
514 /* Again, c is char after number. */
515 /* input_line_pointer -> after c. */
516 know (LITTLENUM_NUMBER_OF_BITS == 16);
517 if (leader < generic_bignum + 2)
518 {
519 /* Will fit into 32 bits. */
520 number = generic_bignum_to_int32 ();
521 small = 1;
522 }
523 #ifdef BFD64
524 else if (leader < generic_bignum + 4)
525 {
526 /* Will fit into 64 bits. */
527 number = generic_bignum_to_int64 ();
528 small = 1;
529 }
530 #endif
531 else
532 {
533 /* Number of littlenums in the bignum. */
534 number = leader - generic_bignum + 1;
535 }
536 }
537
538 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
539 && suffix != NULL
540 && input_line_pointer - 1 == suffix)
541 c = *input_line_pointer++;
542
543 if (small)
544 {
545 /* Here with number, in correct radix. c is the next char.
546 Note that unlike un*x, we allow "011f" "0x9f" to both mean
547 the same as the (conventional) "9f".
548 This is simply easier than checking for strict canonical
549 form. Syntax sux! */
550
551 if (LOCAL_LABELS_FB && c == 'b')
552 {
553 /* Backward ref to local label.
554 Because it is backward, expect it to be defined. */
555 /* Construct a local label. */
556 name = fb_label_name ((int) number, 0);
557
558 /* Seen before, or symbol is defined: OK. */
559 symbolP = symbol_find (name);
560 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
561 {
562 /* Local labels are never absolute. Don't waste time
563 checking absoluteness. */
564 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
565
566 expressionP->X_op = O_symbol;
567 expressionP->X_add_symbol = symbolP;
568 }
569 else
570 {
571 /* Either not seen or not defined. */
572 /* @@ Should print out the original string instead of
573 the parsed number. */
574 as_bad (_("backward ref to unknown label \"%d:\""),
575 (int) number);
576 expressionP->X_op = O_constant;
577 }
578
579 expressionP->X_add_number = 0;
580 } /* case 'b' */
581 else if (LOCAL_LABELS_FB && c == 'f')
582 {
583 /* Forward reference. Expect symbol to be undefined or
584 unknown. undefined: seen it before. unknown: never seen
585 it before.
586
587 Construct a local label name, then an undefined symbol.
588 Don't create a xseg frag for it: caller may do that.
589 Just return it as never seen before. */
590 name = fb_label_name ((int) number, 1);
591 symbolP = symbol_find_or_make (name);
592 /* We have no need to check symbol properties. */
593 #ifndef many_segments
594 /* Since "know" puts its arg into a "string", we
595 can't have newlines in the argument. */
596 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
597 #endif
598 expressionP->X_op = O_symbol;
599 expressionP->X_add_symbol = symbolP;
600 expressionP->X_add_number = 0;
601 } /* case 'f' */
602 else if (LOCAL_LABELS_DOLLAR && c == '$')
603 {
604 /* If the dollar label is *currently* defined, then this is just
605 another reference to it. If it is not *currently* defined,
606 then this is a fresh instantiation of that number, so create
607 it. */
608
609 if (dollar_label_defined ((long) number))
610 {
611 name = dollar_label_name ((long) number, 0);
612 symbolP = symbol_find (name);
613 know (symbolP != NULL);
614 }
615 else
616 {
617 name = dollar_label_name ((long) number, 1);
618 symbolP = symbol_find_or_make (name);
619 }
620
621 expressionP->X_op = O_symbol;
622 expressionP->X_add_symbol = symbolP;
623 expressionP->X_add_number = 0;
624 } /* case '$' */
625 else
626 {
627 expressionP->X_op = O_constant;
628 #ifdef TARGET_WORD_SIZE
629 /* Sign extend NUMBER. */
630 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
631 #endif
632 expressionP->X_add_number = number;
633 input_line_pointer--; /* Restore following character. */
634 } /* Really just a number. */
635 }
636 else
637 {
638 /* Not a small number. */
639 expressionP->X_op = O_big;
640 expressionP->X_add_number = number; /* Number of littlenums. */
641 input_line_pointer--; /* -> char following number. */
642 }
643 }
644
645 /* Parse an MRI multi character constant. */
646
647 static void
648 mri_char_constant (expressionP)
649 expressionS *expressionP;
650 {
651 int i;
652
653 if (*input_line_pointer == '\''
654 && input_line_pointer[1] != '\'')
655 {
656 expressionP->X_op = O_constant;
657 expressionP->X_add_number = 0;
658 return;
659 }
660
661 /* In order to get the correct byte ordering, we must build the
662 number in reverse. */
663 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
664 {
665 int j;
666
667 generic_bignum[i] = 0;
668 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
669 {
670 if (*input_line_pointer == '\'')
671 {
672 if (input_line_pointer[1] != '\'')
673 break;
674 ++input_line_pointer;
675 }
676 generic_bignum[i] <<= 8;
677 generic_bignum[i] += *input_line_pointer;
678 ++input_line_pointer;
679 }
680
681 if (i < SIZE_OF_LARGE_NUMBER - 1)
682 {
683 /* If there is more than one littlenum, left justify the
684 last one to make it match the earlier ones. If there is
685 only one, we can just use the value directly. */
686 for (; j < CHARS_PER_LITTLENUM; j++)
687 generic_bignum[i] <<= 8;
688 }
689
690 if (*input_line_pointer == '\''
691 && input_line_pointer[1] != '\'')
692 break;
693 }
694
695 if (i < 0)
696 {
697 as_bad (_("character constant too large"));
698 i = 0;
699 }
700
701 if (i > 0)
702 {
703 int c;
704 int j;
705
706 c = SIZE_OF_LARGE_NUMBER - i;
707 for (j = 0; j < c; j++)
708 generic_bignum[j] = generic_bignum[i + j];
709 i = c;
710 }
711
712 know (LITTLENUM_NUMBER_OF_BITS == 16);
713 if (i > 2)
714 {
715 expressionP->X_op = O_big;
716 expressionP->X_add_number = i;
717 }
718 else
719 {
720 expressionP->X_op = O_constant;
721 if (i < 2)
722 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
723 else
724 expressionP->X_add_number =
725 (((generic_bignum[1] & LITTLENUM_MASK)
726 << LITTLENUM_NUMBER_OF_BITS)
727 | (generic_bignum[0] & LITTLENUM_MASK));
728 }
729
730 /* Skip the final closing quote. */
731 ++input_line_pointer;
732 }
733
734 /* Return an expression representing the current location. This
735 handles the magic symbol `.'. */
736
737 static void
738 current_location (expressionp)
739 expressionS *expressionp;
740 {
741 if (now_seg == absolute_section)
742 {
743 expressionp->X_op = O_constant;
744 expressionp->X_add_number = abs_section_offset;
745 }
746 else
747 {
748 symbolS *symbolp;
749
750 symbolp = symbol_new (FAKE_LABEL_NAME, now_seg,
751 (valueT) frag_now_fix (),
752 frag_now);
753 expressionp->X_op = O_symbol;
754 expressionp->X_add_symbol = symbolp;
755 expressionp->X_add_number = 0;
756 }
757 }
758
759 /* In: Input_line_pointer points to 1st char of operand, which may
760 be a space.
761
762 Out: An expressionS.
763 The operand may have been empty: in this case X_op == O_absent.
764 Input_line_pointer->(next non-blank) char after operand. */
765
766 static segT
767 operand (expressionP)
768 expressionS *expressionP;
769 {
770 char c;
771 symbolS *symbolP; /* Points to symbol. */
772 char *name; /* Points to name of symbol. */
773 segT segment;
774
775 /* All integers are regarded as unsigned unless they are negated.
776 This is because the only thing which cares whether a number is
777 unsigned is the code in emit_expr which extends constants into
778 bignums. It should only sign extend negative numbers, so that
779 something like ``.quad 0x80000000'' is not sign extended even
780 though it appears negative if valueT is 32 bits. */
781 expressionP->X_unsigned = 1;
782
783 /* Digits, assume it is a bignum. */
784
785 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
786 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
787
788 if (is_end_of_line[(unsigned char) c])
789 goto eol;
790
791 switch (c)
792 {
793 case '1':
794 case '2':
795 case '3':
796 case '4':
797 case '5':
798 case '6':
799 case '7':
800 case '8':
801 case '9':
802 input_line_pointer--;
803
804 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
805 ? 0 : 10,
806 expressionP);
807 break;
808
809 #ifdef LITERAL_PREFIXDOLLAR_HEX
810 case '$':
811 /* $L is the start of a local label, not a hex constant. */
812 if (* input_line_pointer == 'L')
813 goto isname;
814 integer_constant (16, expressionP);
815 break;
816 #endif
817
818 #ifdef LITERAL_PREFIXPERCENT_BIN
819 case '%':
820 integer_constant (2, expressionP);
821 break;
822 #endif
823
824 case '0':
825 /* Non-decimal radix. */
826
827 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
828 {
829 char *s;
830
831 /* Check for a hex constant. */
832 for (s = input_line_pointer; hex_p (*s); s++)
833 ;
834 if (*s == 'h' || *s == 'H')
835 {
836 --input_line_pointer;
837 integer_constant (0, expressionP);
838 break;
839 }
840 }
841 c = *input_line_pointer;
842 switch (c)
843 {
844 case 'o':
845 case 'O':
846 case 'q':
847 case 'Q':
848 case '8':
849 case '9':
850 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
851 {
852 integer_constant (0, expressionP);
853 break;
854 }
855 /* Fall through. */
856 default:
857 default_case:
858 if (c && strchr (FLT_CHARS, c))
859 {
860 input_line_pointer++;
861 floating_constant (expressionP);
862 expressionP->X_add_number = - TOLOWER (c);
863 }
864 else
865 {
866 /* The string was only zero. */
867 expressionP->X_op = O_constant;
868 expressionP->X_add_number = 0;
869 }
870
871 break;
872
873 case 'x':
874 case 'X':
875 if (flag_m68k_mri)
876 goto default_case;
877 input_line_pointer++;
878 integer_constant (16, expressionP);
879 break;
880
881 case 'b':
882 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
883 {
884 /* This code used to check for '+' and '-' here, and, in
885 some conditions, fall through to call
886 integer_constant. However, that didn't make sense,
887 as integer_constant only accepts digits. */
888 /* Some of our code elsewhere does permit digits greater
889 than the expected base; for consistency, do the same
890 here. */
891 if (input_line_pointer[1] < '0'
892 || input_line_pointer[1] > '9')
893 {
894 /* Parse this as a back reference to label 0. */
895 input_line_pointer--;
896 integer_constant (10, expressionP);
897 break;
898 }
899 /* Otherwise, parse this as a binary number. */
900 }
901 /* Fall through. */
902 case 'B':
903 input_line_pointer++;
904 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
905 goto default_case;
906 integer_constant (2, expressionP);
907 break;
908
909 case '0':
910 case '1':
911 case '2':
912 case '3':
913 case '4':
914 case '5':
915 case '6':
916 case '7':
917 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
918 ? 0 : 8,
919 expressionP);
920 break;
921
922 case 'f':
923 if (LOCAL_LABELS_FB)
924 {
925 /* If it says "0f" and it could possibly be a floating point
926 number, make it one. Otherwise, make it a local label,
927 and try to deal with parsing the rest later. */
928 if (!input_line_pointer[1]
929 || (is_end_of_line[0xff & input_line_pointer[1]])
930 || strchr (FLT_CHARS, 'f') == NULL)
931 goto is_0f_label;
932 {
933 char *cp = input_line_pointer + 1;
934 int r = atof_generic (&cp, ".", EXP_CHARS,
935 &generic_floating_point_number);
936 switch (r)
937 {
938 case 0:
939 case ERROR_EXPONENT_OVERFLOW:
940 if (*cp == 'f' || *cp == 'b')
941 /* Looks like a difference expression. */
942 goto is_0f_label;
943 else if (cp == input_line_pointer + 1)
944 /* No characters has been accepted -- looks like
945 end of operand. */
946 goto is_0f_label;
947 else
948 goto is_0f_float;
949 default:
950 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
951 r);
952 }
953 }
954
955 /* Okay, now we've sorted it out. We resume at one of these
956 two labels, depending on what we've decided we're probably
957 looking at. */
958 is_0f_label:
959 input_line_pointer--;
960 integer_constant (10, expressionP);
961 break;
962
963 is_0f_float:
964 /* Fall through. */
965 ;
966 }
967
968 case 'd':
969 case 'D':
970 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
971 {
972 integer_constant (0, expressionP);
973 break;
974 }
975 /* Fall through. */
976 case 'F':
977 case 'r':
978 case 'e':
979 case 'E':
980 case 'g':
981 case 'G':
982 input_line_pointer++;
983 floating_constant (expressionP);
984 expressionP->X_add_number = - TOLOWER (c);
985 break;
986
987 case '$':
988 if (LOCAL_LABELS_DOLLAR)
989 {
990 integer_constant (10, expressionP);
991 break;
992 }
993 else
994 goto default_case;
995 }
996
997 break;
998
999 case '(':
1000 #ifndef NEED_INDEX_OPERATOR
1001 case '[':
1002 #endif
1003 /* Didn't begin with digit & not a name. */
1004 segment = expression (expressionP);
1005 /* expression () will pass trailing whitespace. */
1006 if ((c == '(' && *input_line_pointer != ')')
1007 || (c == '[' && *input_line_pointer != ']'))
1008 {
1009 #ifdef RELAX_PAREN_GROUPING
1010 if (c != '(')
1011 #endif
1012 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
1013 }
1014 else
1015 input_line_pointer++;
1016 SKIP_WHITESPACE ();
1017 /* Here with input_line_pointer -> char after "(...)". */
1018 return segment;
1019
1020 #ifdef TC_M68K
1021 case 'E':
1022 if (! flag_m68k_mri || *input_line_pointer != '\'')
1023 goto de_fault;
1024 as_bad (_("EBCDIC constants are not supported"));
1025 /* Fall through. */
1026 case 'A':
1027 if (! flag_m68k_mri || *input_line_pointer != '\'')
1028 goto de_fault;
1029 ++input_line_pointer;
1030 /* Fall through. */
1031 #endif
1032 case '\'':
1033 if (! flag_m68k_mri)
1034 {
1035 /* Warning: to conform to other people's assemblers NO
1036 ESCAPEMENT is permitted for a single quote. The next
1037 character, parity errors and all, is taken as the value
1038 of the operand. VERY KINKY. */
1039 expressionP->X_op = O_constant;
1040 expressionP->X_add_number = *input_line_pointer++;
1041 break;
1042 }
1043
1044 mri_char_constant (expressionP);
1045 break;
1046
1047 case '+':
1048 (void) operand (expressionP);
1049 break;
1050
1051 #ifdef TC_M68K
1052 case '"':
1053 /* Double quote is the bitwise not operator in MRI mode. */
1054 if (! flag_m68k_mri)
1055 goto de_fault;
1056 /* Fall through. */
1057 #endif
1058 case '~':
1059 /* '~' is permitted to start a label on the Delta. */
1060 if (is_name_beginner (c))
1061 goto isname;
1062 case '!':
1063 case '-':
1064 {
1065 operand (expressionP);
1066 if (expressionP->X_op == O_constant)
1067 {
1068 /* input_line_pointer -> char after operand. */
1069 if (c == '-')
1070 {
1071 expressionP->X_add_number = - expressionP->X_add_number;
1072 /* Notice: '-' may overflow: no warning is given.
1073 This is compatible with other people's
1074 assemblers. Sigh. */
1075 expressionP->X_unsigned = 0;
1076 }
1077 else if (c == '~' || c == '"')
1078 expressionP->X_add_number = ~ expressionP->X_add_number;
1079 else
1080 expressionP->X_add_number = ! expressionP->X_add_number;
1081 }
1082 else if (expressionP->X_op != O_illegal
1083 && expressionP->X_op != O_absent)
1084 {
1085 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1086 if (c == '-')
1087 expressionP->X_op = O_uminus;
1088 else if (c == '~' || c == '"')
1089 expressionP->X_op = O_bit_not;
1090 else
1091 expressionP->X_op = O_logical_not;
1092 expressionP->X_add_number = 0;
1093 }
1094 else
1095 as_warn (_("Unary operator %c ignored because bad operand follows"),
1096 c);
1097 }
1098 break;
1099
1100 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1101 case '$':
1102 /* '$' is the program counter when in MRI mode, or when
1103 DOLLAR_DOT is defined. */
1104 #ifndef DOLLAR_DOT
1105 if (! flag_m68k_mri)
1106 goto de_fault;
1107 #endif
1108 if (flag_m68k_mri && hex_p (*input_line_pointer))
1109 {
1110 /* In MRI mode, '$' is also used as the prefix for a
1111 hexadecimal constant. */
1112 integer_constant (16, expressionP);
1113 break;
1114 }
1115
1116 if (is_part_of_name (*input_line_pointer))
1117 goto isname;
1118
1119 current_location (expressionP);
1120 break;
1121 #endif
1122
1123 case '.':
1124 if (!is_part_of_name (*input_line_pointer))
1125 {
1126 current_location (expressionP);
1127 break;
1128 }
1129 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1130 && ! is_part_of_name (input_line_pointer[8]))
1131 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1132 && ! is_part_of_name (input_line_pointer[7])))
1133 {
1134 int start;
1135
1136 start = (input_line_pointer[1] == 't'
1137 || input_line_pointer[1] == 'T');
1138 input_line_pointer += start ? 8 : 7;
1139 SKIP_WHITESPACE ();
1140 if (*input_line_pointer != '(')
1141 as_bad (_("syntax error in .startof. or .sizeof."));
1142 else
1143 {
1144 char *buf;
1145
1146 ++input_line_pointer;
1147 SKIP_WHITESPACE ();
1148 name = input_line_pointer;
1149 c = get_symbol_end ();
1150
1151 buf = (char *) xmalloc (strlen (name) + 10);
1152 if (start)
1153 sprintf (buf, ".startof.%s", name);
1154 else
1155 sprintf (buf, ".sizeof.%s", name);
1156 symbolP = symbol_make (buf);
1157 free (buf);
1158
1159 expressionP->X_op = O_symbol;
1160 expressionP->X_add_symbol = symbolP;
1161 expressionP->X_add_number = 0;
1162
1163 *input_line_pointer = c;
1164 SKIP_WHITESPACE ();
1165 if (*input_line_pointer != ')')
1166 as_bad (_("syntax error in .startof. or .sizeof."));
1167 else
1168 ++input_line_pointer;
1169 }
1170 break;
1171 }
1172 else
1173 {
1174 goto isname;
1175 }
1176
1177 case ',':
1178 eol:
1179 /* Can't imagine any other kind of operand. */
1180 expressionP->X_op = O_absent;
1181 input_line_pointer--;
1182 break;
1183
1184 #ifdef TC_M68K
1185 case '%':
1186 if (! flag_m68k_mri)
1187 goto de_fault;
1188 integer_constant (2, expressionP);
1189 break;
1190
1191 case '@':
1192 if (! flag_m68k_mri)
1193 goto de_fault;
1194 integer_constant (8, expressionP);
1195 break;
1196
1197 case ':':
1198 if (! flag_m68k_mri)
1199 goto de_fault;
1200
1201 /* In MRI mode, this is a floating point constant represented
1202 using hexadecimal digits. */
1203
1204 ++input_line_pointer;
1205 integer_constant (16, expressionP);
1206 break;
1207
1208 case '*':
1209 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1210 goto de_fault;
1211
1212 current_location (expressionP);
1213 break;
1214 #endif
1215
1216 default:
1217 #ifdef TC_M68K
1218 de_fault:
1219 #endif
1220 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1221 {
1222 /* Identifier begins here.
1223 This is kludged for speed, so code is repeated. */
1224 isname:
1225 name = --input_line_pointer;
1226 c = get_symbol_end ();
1227
1228 #ifdef md_parse_name
1229 /* This is a hook for the backend to parse certain names
1230 specially in certain contexts. If a name always has a
1231 specific value, it can often be handled by simply
1232 entering it in the symbol table. */
1233 if (md_parse_name (name, expressionP, &c))
1234 {
1235 *input_line_pointer = c;
1236 break;
1237 }
1238 #endif
1239
1240 #ifdef TC_I960
1241 /* The MRI i960 assembler permits
1242 lda sizeof code,g13
1243 FIXME: This should use md_parse_name. */
1244 if (flag_mri
1245 && (strcasecmp (name, "sizeof") == 0
1246 || strcasecmp (name, "startof") == 0))
1247 {
1248 int start;
1249 char *buf;
1250
1251 start = (name[1] == 't'
1252 || name[1] == 'T');
1253
1254 *input_line_pointer = c;
1255 SKIP_WHITESPACE ();
1256
1257 name = input_line_pointer;
1258 c = get_symbol_end ();
1259
1260 buf = (char *) xmalloc (strlen (name) + 10);
1261 if (start)
1262 sprintf (buf, ".startof.%s", name);
1263 else
1264 sprintf (buf, ".sizeof.%s", name);
1265 symbolP = symbol_make (buf);
1266 free (buf);
1267
1268 expressionP->X_op = O_symbol;
1269 expressionP->X_add_symbol = symbolP;
1270 expressionP->X_add_number = 0;
1271
1272 *input_line_pointer = c;
1273 SKIP_WHITESPACE ();
1274
1275 break;
1276 }
1277 #endif
1278
1279 symbolP = symbol_find_or_make (name);
1280
1281 /* If we have an absolute symbol or a reg, then we know its
1282 value now. */
1283 segment = S_GET_SEGMENT (symbolP);
1284 if (segment == absolute_section)
1285 {
1286 expressionP->X_op = O_constant;
1287 expressionP->X_add_number = S_GET_VALUE (symbolP);
1288 }
1289 else if (segment == reg_section)
1290 {
1291 expressionP->X_op = O_register;
1292 expressionP->X_add_number = S_GET_VALUE (symbolP);
1293 }
1294 else
1295 {
1296 expressionP->X_op = O_symbol;
1297 expressionP->X_add_symbol = symbolP;
1298 expressionP->X_add_number = 0;
1299 }
1300 *input_line_pointer = c;
1301 }
1302 else
1303 {
1304 /* Let the target try to parse it. Success is indicated by changing
1305 the X_op field to something other than O_absent and pointing
1306 input_line_pointer past the expression. If it can't parse the
1307 expression, X_op and input_line_pointer should be unchanged. */
1308 expressionP->X_op = O_absent;
1309 --input_line_pointer;
1310 md_operand (expressionP);
1311 if (expressionP->X_op == O_absent)
1312 {
1313 ++input_line_pointer;
1314 as_bad (_("bad expression"));
1315 expressionP->X_op = O_constant;
1316 expressionP->X_add_number = 0;
1317 }
1318 }
1319 break;
1320 }
1321
1322 /* It is more 'efficient' to clean up the expressionS when they are
1323 created. Doing it here saves lines of code. */
1324 clean_up_expression (expressionP);
1325 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1326 know (*input_line_pointer != ' ');
1327
1328 /* The PA port needs this information. */
1329 if (expressionP->X_add_symbol)
1330 symbol_mark_used (expressionP->X_add_symbol);
1331
1332 switch (expressionP->X_op)
1333 {
1334 default:
1335 return absolute_section;
1336 case O_symbol:
1337 return S_GET_SEGMENT (expressionP->X_add_symbol);
1338 case O_register:
1339 return reg_section;
1340 }
1341 }
1342 \f
1343 /* Internal. Simplify a struct expression for use by expr (). */
1344
1345 /* In: address of an expressionS.
1346 The X_op field of the expressionS may only take certain values.
1347 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1348
1349 Out: expressionS may have been modified:
1350 'foo-foo' symbol references cancelled to 0, which changes X_op
1351 from O_subtract to O_constant.
1352 Unused fields zeroed to help expr (). */
1353
1354 static void
1355 clean_up_expression (expressionP)
1356 expressionS *expressionP;
1357 {
1358 switch (expressionP->X_op)
1359 {
1360 case O_illegal:
1361 case O_absent:
1362 expressionP->X_add_number = 0;
1363 /* Fall through. */
1364 case O_big:
1365 case O_constant:
1366 case O_register:
1367 expressionP->X_add_symbol = NULL;
1368 /* Fall through. */
1369 case O_symbol:
1370 case O_uminus:
1371 case O_bit_not:
1372 expressionP->X_op_symbol = NULL;
1373 break;
1374 case O_subtract:
1375 if (expressionP->X_op_symbol == expressionP->X_add_symbol
1376 || ((symbol_get_frag (expressionP->X_op_symbol)
1377 == symbol_get_frag (expressionP->X_add_symbol))
1378 && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
1379 && (S_GET_VALUE (expressionP->X_op_symbol)
1380 == S_GET_VALUE (expressionP->X_add_symbol))))
1381 {
1382 addressT diff = (S_GET_VALUE (expressionP->X_add_symbol)
1383 - S_GET_VALUE (expressionP->X_op_symbol));
1384
1385 expressionP->X_op = O_constant;
1386 expressionP->X_add_symbol = NULL;
1387 expressionP->X_op_symbol = NULL;
1388 expressionP->X_add_number += diff;
1389 }
1390 break;
1391 default:
1392 break;
1393 }
1394 }
1395 \f
1396 /* Expression parser. */
1397
1398 /* We allow an empty expression, and just assume (absolute,0) silently.
1399 Unary operators and parenthetical expressions are treated as operands.
1400 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1401
1402 We used to do an aho/ullman shift-reduce parser, but the logic got so
1403 warped that I flushed it and wrote a recursive-descent parser instead.
1404 Now things are stable, would anybody like to write a fast parser?
1405 Most expressions are either register (which does not even reach here)
1406 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1407 So I guess it doesn't really matter how inefficient more complex expressions
1408 are parsed.
1409
1410 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1411 Also, we have consumed any leading or trailing spaces (operand does that)
1412 and done all intervening operators.
1413
1414 This returns the segment of the result, which will be
1415 absolute_section or the segment of a symbol. */
1416
1417 #undef __
1418 #define __ O_illegal
1419
1420 /* Maps ASCII -> operators. */
1421 static const operatorT op_encoding[256] = {
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1423 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1424
1425 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1426 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1427 __, __, __, __, __, __, __, __,
1428 __, __, __, __, O_lt, __, O_gt, __,
1429 __, __, __, __, __, __, __, __,
1430 __, __, __, __, __, __, __, __,
1431 __, __, __, __, __, __, __, __,
1432 __, __, __,
1433 #ifdef NEED_INDEX_OPERATOR
1434 O_index,
1435 #else
1436 __,
1437 #endif
1438 __, __, O_bit_exclusive_or, __,
1439 __, __, __, __, __, __, __, __,
1440 __, __, __, __, __, __, __, __,
1441 __, __, __, __, __, __, __, __,
1442 __, __, __, __, O_bit_inclusive_or, __, __, __,
1443
1444 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1445 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1446 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1447 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1448 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1449 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1450 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1451 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1452 };
1453
1454 /* Rank Examples
1455 0 operand, (expression)
1456 1 ||
1457 2 &&
1458 3 == <> < <= >= >
1459 4 + -
1460 5 used for * / % in MRI mode
1461 6 & ^ ! |
1462 7 * / % << >>
1463 8 unary - unary ~
1464 */
1465 static operator_rankT op_rank[] = {
1466 0, /* O_illegal */
1467 0, /* O_absent */
1468 0, /* O_constant */
1469 0, /* O_symbol */
1470 0, /* O_symbol_rva */
1471 0, /* O_register */
1472 0, /* O_big */
1473 9, /* O_uminus */
1474 9, /* O_bit_not */
1475 9, /* O_logical_not */
1476 8, /* O_multiply */
1477 8, /* O_divide */
1478 8, /* O_modulus */
1479 8, /* O_left_shift */
1480 8, /* O_right_shift */
1481 7, /* O_bit_inclusive_or */
1482 7, /* O_bit_or_not */
1483 7, /* O_bit_exclusive_or */
1484 7, /* O_bit_and */
1485 5, /* O_add */
1486 5, /* O_subtract */
1487 4, /* O_eq */
1488 4, /* O_ne */
1489 4, /* O_lt */
1490 4, /* O_le */
1491 4, /* O_ge */
1492 4, /* O_gt */
1493 3, /* O_logical_and */
1494 2, /* O_logical_or */
1495 1, /* O_index */
1496 0, /* O_md1 */
1497 0, /* O_md2 */
1498 0, /* O_md3 */
1499 0, /* O_md4 */
1500 0, /* O_md5 */
1501 0, /* O_md6 */
1502 0, /* O_md7 */
1503 0, /* O_md8 */
1504 0, /* O_md9 */
1505 0, /* O_md10 */
1506 0, /* O_md11 */
1507 0, /* O_md12 */
1508 0, /* O_md13 */
1509 0, /* O_md14 */
1510 0, /* O_md15 */
1511 0, /* O_md16 */
1512 };
1513
1514 /* Unfortunately, in MRI mode for the m68k, multiplication and
1515 division have lower precedence than the bit wise operators. This
1516 function sets the operator precedences correctly for the current
1517 mode. Also, MRI uses a different bit_not operator, and this fixes
1518 that as well. */
1519
1520 #define STANDARD_MUL_PRECEDENCE 8
1521 #define MRI_MUL_PRECEDENCE 6
1522
1523 void
1524 expr_set_precedence ()
1525 {
1526 if (flag_m68k_mri)
1527 {
1528 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1529 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1530 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1531 }
1532 else
1533 {
1534 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1535 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1536 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1537 }
1538 }
1539
1540 /* Initialize the expression parser. */
1541
1542 void
1543 expr_begin ()
1544 {
1545 expr_set_precedence ();
1546
1547 /* Verify that X_op field is wide enough. */
1548 {
1549 expressionS e;
1550 e.X_op = O_max;
1551 assert (e.X_op == O_max);
1552 }
1553 }
1554 \f
1555 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1556 sets NUM_CHARS to the number of characters in the operator.
1557 Does not advance INPUT_LINE_POINTER. */
1558
1559 static inline operatorT
1560 operator (num_chars)
1561 int *num_chars;
1562 {
1563 int c;
1564 operatorT ret;
1565
1566 c = *input_line_pointer & 0xff;
1567 *num_chars = 1;
1568
1569 if (is_end_of_line[c])
1570 return O_illegal;
1571
1572 switch (c)
1573 {
1574 default:
1575 return op_encoding[c];
1576
1577 case '<':
1578 switch (input_line_pointer[1])
1579 {
1580 default:
1581 return op_encoding[c];
1582 case '<':
1583 ret = O_left_shift;
1584 break;
1585 case '>':
1586 ret = O_ne;
1587 break;
1588 case '=':
1589 ret = O_le;
1590 break;
1591 }
1592 *num_chars = 2;
1593 return ret;
1594
1595 case '=':
1596 if (input_line_pointer[1] != '=')
1597 return op_encoding[c];
1598
1599 *num_chars = 2;
1600 return O_eq;
1601
1602 case '>':
1603 switch (input_line_pointer[1])
1604 {
1605 default:
1606 return op_encoding[c];
1607 case '>':
1608 ret = O_right_shift;
1609 break;
1610 case '=':
1611 ret = O_ge;
1612 break;
1613 }
1614 *num_chars = 2;
1615 return ret;
1616
1617 case '!':
1618 /* We accept !! as equivalent to ^ for MRI compatibility. */
1619 if (input_line_pointer[1] != '!')
1620 {
1621 if (flag_m68k_mri)
1622 return O_bit_inclusive_or;
1623 return op_encoding[c];
1624 }
1625 *num_chars = 2;
1626 return O_bit_exclusive_or;
1627
1628 case '|':
1629 if (input_line_pointer[1] != '|')
1630 return op_encoding[c];
1631
1632 *num_chars = 2;
1633 return O_logical_or;
1634
1635 case '&':
1636 if (input_line_pointer[1] != '&')
1637 return op_encoding[c];
1638
1639 *num_chars = 2;
1640 return O_logical_and;
1641 }
1642
1643 /* NOTREACHED */
1644 }
1645
1646 /* Parse an expression. */
1647
1648 segT
1649 expr (rankarg, resultP)
1650 int rankarg; /* Larger # is higher rank. */
1651 expressionS *resultP; /* Deliver result here. */
1652 {
1653 operator_rankT rank = (operator_rankT) rankarg;
1654 segT retval;
1655 expressionS right;
1656 operatorT op_left;
1657 operatorT op_right;
1658 int op_chars;
1659
1660 know (rank >= 0);
1661
1662 retval = operand (resultP);
1663
1664 /* operand () gobbles spaces. */
1665 know (*input_line_pointer != ' ');
1666
1667 op_left = operator (&op_chars);
1668 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1669 {
1670 segT rightseg;
1671
1672 input_line_pointer += op_chars; /* -> after operator. */
1673
1674 rightseg = expr (op_rank[(int) op_left], &right);
1675 if (right.X_op == O_absent)
1676 {
1677 as_warn (_("missing operand; zero assumed"));
1678 right.X_op = O_constant;
1679 right.X_add_number = 0;
1680 right.X_add_symbol = NULL;
1681 right.X_op_symbol = NULL;
1682 }
1683
1684 know (*input_line_pointer != ' ');
1685
1686 if (op_left == O_index)
1687 {
1688 if (*input_line_pointer != ']')
1689 as_bad ("missing right bracket");
1690 else
1691 {
1692 ++input_line_pointer;
1693 SKIP_WHITESPACE ();
1694 }
1695 }
1696
1697 op_right = operator (&op_chars);
1698
1699 know (op_right == O_illegal
1700 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1701 know ((int) op_left >= (int) O_multiply
1702 && (int) op_left <= (int) O_logical_or);
1703
1704 /* input_line_pointer->after right-hand quantity. */
1705 /* left-hand quantity in resultP. */
1706 /* right-hand quantity in right. */
1707 /* operator in op_left. */
1708
1709 if (resultP->X_op == O_big)
1710 {
1711 if (resultP->X_add_number > 0)
1712 as_warn (_("left operand is a bignum; integer 0 assumed"));
1713 else
1714 as_warn (_("left operand is a float; integer 0 assumed"));
1715 resultP->X_op = O_constant;
1716 resultP->X_add_number = 0;
1717 resultP->X_add_symbol = NULL;
1718 resultP->X_op_symbol = NULL;
1719 }
1720 if (right.X_op == O_big)
1721 {
1722 if (right.X_add_number > 0)
1723 as_warn (_("right operand is a bignum; integer 0 assumed"));
1724 else
1725 as_warn (_("right operand is a float; integer 0 assumed"));
1726 right.X_op = O_constant;
1727 right.X_add_number = 0;
1728 right.X_add_symbol = NULL;
1729 right.X_op_symbol = NULL;
1730 }
1731
1732 /* Optimize common cases. */
1733 #ifdef md_optimize_expr
1734 if (md_optimize_expr (resultP, op_left, &right))
1735 {
1736 /* Skip. */
1737 ;
1738 }
1739 else
1740 #endif
1741 if (op_left == O_add && right.X_op == O_constant)
1742 {
1743 /* X + constant. */
1744 resultP->X_add_number += right.X_add_number;
1745 }
1746 /* This case comes up in PIC code. */
1747 else if (op_left == O_subtract
1748 && right.X_op == O_symbol
1749 && resultP->X_op == O_symbol
1750 && (symbol_get_frag (right.X_add_symbol)
1751 == symbol_get_frag (resultP->X_add_symbol))
1752 && SEG_NORMAL (rightseg))
1753 {
1754 resultP->X_add_number -= right.X_add_number;
1755 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1756 - S_GET_VALUE (right.X_add_symbol));
1757 resultP->X_op = O_constant;
1758 resultP->X_add_symbol = 0;
1759 }
1760 else if (op_left == O_subtract && right.X_op == O_constant)
1761 {
1762 /* X - constant. */
1763 resultP->X_add_number -= right.X_add_number;
1764 }
1765 else if (op_left == O_add && resultP->X_op == O_constant)
1766 {
1767 /* Constant + X. */
1768 resultP->X_op = right.X_op;
1769 resultP->X_add_symbol = right.X_add_symbol;
1770 resultP->X_op_symbol = right.X_op_symbol;
1771 resultP->X_add_number += right.X_add_number;
1772 retval = rightseg;
1773 }
1774 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1775 {
1776 /* Constant OP constant. */
1777 offsetT v = right.X_add_number;
1778 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1779 {
1780 as_warn (_("division by zero"));
1781 v = 1;
1782 }
1783 switch (op_left)
1784 {
1785 default: abort ();
1786 case O_multiply: resultP->X_add_number *= v; break;
1787 case O_divide: resultP->X_add_number /= v; break;
1788 case O_modulus: resultP->X_add_number %= v; break;
1789 case O_left_shift: resultP->X_add_number <<= v; break;
1790 case O_right_shift:
1791 /* We always use unsigned shifts, to avoid relying on
1792 characteristics of the compiler used to compile gas. */
1793 resultP->X_add_number =
1794 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1795 break;
1796 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1797 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1798 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1799 case O_bit_and: resultP->X_add_number &= v; break;
1800 case O_add: resultP->X_add_number += v; break;
1801 case O_subtract: resultP->X_add_number -= v; break;
1802 case O_eq:
1803 resultP->X_add_number =
1804 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1805 break;
1806 case O_ne:
1807 resultP->X_add_number =
1808 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1809 break;
1810 case O_lt:
1811 resultP->X_add_number =
1812 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1813 break;
1814 case O_le:
1815 resultP->X_add_number =
1816 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1817 break;
1818 case O_ge:
1819 resultP->X_add_number =
1820 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1821 break;
1822 case O_gt:
1823 resultP->X_add_number =
1824 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1825 break;
1826 case O_logical_and:
1827 resultP->X_add_number = resultP->X_add_number && v;
1828 break;
1829 case O_logical_or:
1830 resultP->X_add_number = resultP->X_add_number || v;
1831 break;
1832 }
1833 }
1834 else if (resultP->X_op == O_symbol
1835 && right.X_op == O_symbol
1836 && (op_left == O_add
1837 || op_left == O_subtract
1838 || (resultP->X_add_number == 0
1839 && right.X_add_number == 0)))
1840 {
1841 /* Symbol OP symbol. */
1842 resultP->X_op = op_left;
1843 resultP->X_op_symbol = right.X_add_symbol;
1844 if (op_left == O_add)
1845 resultP->X_add_number += right.X_add_number;
1846 else if (op_left == O_subtract)
1847 {
1848 resultP->X_add_number -= right.X_add_number;
1849 if (retval == rightseg && SEG_NORMAL (retval))
1850 {
1851 retval = absolute_section;
1852 rightseg = absolute_section;
1853 }
1854 }
1855 }
1856 else
1857 {
1858 /* The general case. */
1859 resultP->X_add_symbol = make_expr_symbol (resultP);
1860 resultP->X_op_symbol = make_expr_symbol (&right);
1861 resultP->X_op = op_left;
1862 resultP->X_add_number = 0;
1863 resultP->X_unsigned = 1;
1864 }
1865
1866 if (retval != rightseg)
1867 {
1868 if (! SEG_NORMAL (retval))
1869 {
1870 if (retval != undefined_section || SEG_NORMAL (rightseg))
1871 retval = rightseg;
1872 }
1873 else if (SEG_NORMAL (rightseg)
1874 #ifdef DIFF_EXPR_OK
1875 && op_left != O_subtract
1876 #endif
1877 )
1878 as_bad (_("operation combines symbols in different segments"));
1879 }
1880
1881 op_left = op_right;
1882 } /* While next operator is >= this rank. */
1883
1884 /* The PA port needs this information. */
1885 if (resultP->X_add_symbol)
1886 symbol_mark_used (resultP->X_add_symbol);
1887
1888 return resultP->X_op == O_constant ? absolute_section : retval;
1889 }
1890 \f
1891 /* This lives here because it belongs equally in expr.c & read.c.
1892 expr.c is just a branch office read.c anyway, and putting it
1893 here lessens the crowd at read.c.
1894
1895 Assume input_line_pointer is at start of symbol name.
1896 Advance input_line_pointer past symbol name.
1897 Turn that character into a '\0', returning its former value.
1898 This allows a string compare (RMS wants symbol names to be strings)
1899 of the symbol name.
1900 There will always be a char following symbol name, because all good
1901 lines end in end-of-line. */
1902
1903 char
1904 get_symbol_end ()
1905 {
1906 char c;
1907
1908 /* We accept \001 in a name in case this is being called with a
1909 constructed string. */
1910 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1911 {
1912 while (is_part_of_name (c = *input_line_pointer++)
1913 || c == '\001')
1914 ;
1915 if (is_name_ender (c))
1916 c = *input_line_pointer++;
1917 }
1918 *--input_line_pointer = 0;
1919 return (c);
1920 }
1921
1922 unsigned int
1923 get_single_number ()
1924 {
1925 expressionS exp;
1926 operand (&exp);
1927 return exp.X_add_number;
1928 }
This page took 0.10211 seconds and 5 git commands to generate.