Initialize the X_md field.
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #define min(a, b) ((a) < (b) ? (a) : (b))
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "obstack.h"
33
34 #ifdef HAVE_LIMITS_H
35 #include <limits.h>
36 #endif
37 #ifndef CHAR_BIT
38 #define CHAR_BIT 8
39 #endif
40
41 static void floating_constant (expressionS * expressionP);
42 static valueT generic_bignum_to_int32 (void);
43 #ifdef BFD64
44 static valueT generic_bignum_to_int64 (void);
45 #endif
46 static void integer_constant (int radix, expressionS * expressionP);
47 static void mri_char_constant (expressionS *);
48 static void current_location (expressionS *);
49 static void clean_up_expression (expressionS * expressionP);
50 static segT operand (expressionS *, enum expr_mode);
51 static operatorT operatorf (int *);
52
53 extern const char EXP_CHARS[], FLT_CHARS[];
54
55 /* We keep a mapping of expression symbols to file positions, so that
56 we can provide better error messages. */
57
58 struct expr_symbol_line {
59 struct expr_symbol_line *next;
60 symbolS *sym;
61 char *file;
62 unsigned int line;
63 };
64
65 static struct expr_symbol_line *expr_symbol_lines;
66 \f
67 /* Build a dummy symbol to hold a complex expression. This is how we
68 build expressions up out of other expressions. The symbol is put
69 into the fake section expr_section. */
70
71 symbolS *
72 make_expr_symbol (expressionS *expressionP)
73 {
74 expressionS zero;
75 symbolS *symbolP;
76 struct expr_symbol_line *n;
77
78 if (expressionP->X_op == O_symbol
79 && expressionP->X_add_number == 0)
80 return expressionP->X_add_symbol;
81
82 if (expressionP->X_op == O_big)
83 {
84 /* This won't work, because the actual value is stored in
85 generic_floating_point_number or generic_bignum, and we are
86 going to lose it if we haven't already. */
87 if (expressionP->X_add_number > 0)
88 as_bad (_("bignum invalid"));
89 else
90 as_bad (_("floating point number invalid"));
91 zero.X_op = O_constant;
92 zero.X_add_number = 0;
93 zero.X_unsigned = 0;
94 clean_up_expression (&zero);
95 expressionP = &zero;
96 }
97
98 /* Putting constant symbols in absolute_section rather than
99 expr_section is convenient for the old a.out code, for which
100 S_GET_SEGMENT does not always retrieve the value put in by
101 S_SET_SEGMENT. */
102 symbolP = symbol_create (FAKE_LABEL_NAME,
103 (expressionP->X_op == O_constant
104 ? absolute_section
105 : expressionP->X_op == O_register
106 ? reg_section
107 : expr_section),
108 0, &zero_address_frag);
109 symbol_set_value_expression (symbolP, expressionP);
110
111 if (expressionP->X_op == O_constant)
112 resolve_symbol_value (symbolP);
113
114 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
115 n->sym = symbolP;
116 as_where (&n->file, &n->line);
117 n->next = expr_symbol_lines;
118 expr_symbol_lines = n;
119
120 return symbolP;
121 }
122
123 /* Return the file and line number for an expr symbol. Return
124 non-zero if something was found, 0 if no information is known for
125 the symbol. */
126
127 int
128 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
129 {
130 register struct expr_symbol_line *l;
131
132 for (l = expr_symbol_lines; l != NULL; l = l->next)
133 {
134 if (l->sym == sym)
135 {
136 *pfile = l->file;
137 *pline = l->line;
138 return 1;
139 }
140 }
141
142 return 0;
143 }
144 \f
145 /* Utilities for building expressions.
146 Since complex expressions are recorded as symbols for use in other
147 expressions these return a symbolS * and not an expressionS *.
148 These explicitly do not take an "add_number" argument. */
149 /* ??? For completeness' sake one might want expr_build_symbol.
150 It would just return its argument. */
151
152 /* Build an expression for an unsigned constant.
153 The corresponding one for signed constants is missing because
154 there's currently no need for it. One could add an unsigned_p flag
155 but that seems more clumsy. */
156
157 symbolS *
158 expr_build_uconstant (offsetT value)
159 {
160 expressionS e;
161
162 e.X_op = O_constant;
163 e.X_add_number = value;
164 e.X_unsigned = 1;
165 return make_expr_symbol (&e);
166 }
167
168 /* Build an expression for the current location ('.'). */
169
170 symbolS *
171 expr_build_dot (void)
172 {
173 expressionS e;
174
175 current_location (&e);
176 return make_expr_symbol (&e);
177 }
178 \f
179 /* Build any floating-point literal here.
180 Also build any bignum literal here. */
181
182 /* Seems atof_machine can backscan through generic_bignum and hit whatever
183 happens to be loaded before it in memory. And its way too complicated
184 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
185 and never write into the early words, thus they'll always be zero.
186 I hate Dean's floating-point code. Bleh. */
187 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
188
189 FLONUM_TYPE generic_floating_point_number = {
190 &generic_bignum[6], /* low. (JF: Was 0) */
191 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
192 0, /* leader. */
193 0, /* exponent. */
194 0 /* sign. */
195 };
196
197 \f
198 static void
199 floating_constant (expressionS *expressionP)
200 {
201 /* input_line_pointer -> floating-point constant. */
202 int error_code;
203
204 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
205 &generic_floating_point_number);
206
207 if (error_code)
208 {
209 if (error_code == ERROR_EXPONENT_OVERFLOW)
210 {
211 as_bad (_("bad floating-point constant: exponent overflow"));
212 }
213 else
214 {
215 as_bad (_("bad floating-point constant: unknown error code=%d"),
216 error_code);
217 }
218 }
219 expressionP->X_op = O_big;
220 /* input_line_pointer -> just after constant, which may point to
221 whitespace. */
222 expressionP->X_add_number = -1;
223 }
224
225 static valueT
226 generic_bignum_to_int32 (void)
227 {
228 valueT number =
229 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
230 | (generic_bignum[0] & LITTLENUM_MASK);
231 number &= 0xffffffff;
232 return number;
233 }
234
235 #ifdef BFD64
236 static valueT
237 generic_bignum_to_int64 (void)
238 {
239 valueT number =
240 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
243 << LITTLENUM_NUMBER_OF_BITS)
244 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
245 << LITTLENUM_NUMBER_OF_BITS)
246 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
247 return number;
248 }
249 #endif
250
251 static void
252 integer_constant (int radix, expressionS *expressionP)
253 {
254 char *start; /* Start of number. */
255 char *suffix = NULL;
256 char c;
257 valueT number; /* Offset or (absolute) value. */
258 short int digit; /* Value of next digit in current radix. */
259 short int maxdig = 0; /* Highest permitted digit value. */
260 int too_many_digits = 0; /* If we see >= this number of. */
261 char *name; /* Points to name of symbol. */
262 symbolS *symbolP; /* Points to symbol. */
263
264 int small; /* True if fits in 32 bits. */
265
266 /* May be bignum, or may fit in 32 bits. */
267 /* Most numbers fit into 32 bits, and we want this case to be fast.
268 so we pretend it will fit into 32 bits. If, after making up a 32
269 bit number, we realise that we have scanned more digits than
270 comfortably fit into 32 bits, we re-scan the digits coding them
271 into a bignum. For decimal and octal numbers we are
272 conservative: Some numbers may be assumed bignums when in fact
273 they do fit into 32 bits. Numbers of any radix can have excess
274 leading zeros: We strive to recognise this and cast them back
275 into 32 bits. We must check that the bignum really is more than
276 32 bits, and change it back to a 32-bit number if it fits. The
277 number we are looking for is expected to be positive, but if it
278 fits into 32 bits as an unsigned number, we let it be a 32-bit
279 number. The cavalier approach is for speed in ordinary cases. */
280 /* This has been extended for 64 bits. We blindly assume that if
281 you're compiling in 64-bit mode, the target is a 64-bit machine.
282 This should be cleaned up. */
283
284 #ifdef BFD64
285 #define valuesize 64
286 #else /* includes non-bfd case, mostly */
287 #define valuesize 32
288 #endif
289
290 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
291 {
292 int flt = 0;
293
294 /* In MRI mode, the number may have a suffix indicating the
295 radix. For that matter, it might actually be a floating
296 point constant. */
297 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
298 {
299 if (*suffix == 'e' || *suffix == 'E')
300 flt = 1;
301 }
302
303 if (suffix == input_line_pointer)
304 {
305 radix = 10;
306 suffix = NULL;
307 }
308 else
309 {
310 c = *--suffix;
311 c = TOUPPER (c);
312 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
313 we distinguish between 'B' and 'b'. This is the case for
314 Z80. */
315 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
316 radix = 2;
317 else if (c == 'D')
318 radix = 10;
319 else if (c == 'O' || c == 'Q')
320 radix = 8;
321 else if (c == 'H')
322 radix = 16;
323 else if (suffix[1] == '.' || c == 'E' || flt)
324 {
325 floating_constant (expressionP);
326 return;
327 }
328 else
329 {
330 radix = 10;
331 suffix = NULL;
332 }
333 }
334 }
335
336 switch (radix)
337 {
338 case 2:
339 maxdig = 2;
340 too_many_digits = valuesize + 1;
341 break;
342 case 8:
343 maxdig = radix = 8;
344 too_many_digits = (valuesize + 2) / 3 + 1;
345 break;
346 case 16:
347 maxdig = radix = 16;
348 too_many_digits = (valuesize + 3) / 4 + 1;
349 break;
350 case 10:
351 maxdig = radix = 10;
352 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
353 }
354 #undef valuesize
355 start = input_line_pointer;
356 c = *input_line_pointer++;
357 for (number = 0;
358 (digit = hex_value (c)) < maxdig;
359 c = *input_line_pointer++)
360 {
361 number = number * radix + digit;
362 }
363 /* c contains character after number. */
364 /* input_line_pointer->char after c. */
365 small = (input_line_pointer - start - 1) < too_many_digits;
366
367 if (radix == 16 && c == '_')
368 {
369 /* This is literal of the form 0x333_0_12345678_1.
370 This example is equivalent to 0x00000333000000001234567800000001. */
371
372 int num_little_digits = 0;
373 int i;
374 input_line_pointer = start; /* -> 1st digit. */
375
376 know (LITTLENUM_NUMBER_OF_BITS == 16);
377
378 for (c = '_'; c == '_'; num_little_digits += 2)
379 {
380
381 /* Convert one 64-bit word. */
382 int ndigit = 0;
383 number = 0;
384 for (c = *input_line_pointer++;
385 (digit = hex_value (c)) < maxdig;
386 c = *(input_line_pointer++))
387 {
388 number = number * radix + digit;
389 ndigit++;
390 }
391
392 /* Check for 8 digit per word max. */
393 if (ndigit > 8)
394 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
395
396 /* Add this chunk to the bignum.
397 Shift things down 2 little digits. */
398 know (LITTLENUM_NUMBER_OF_BITS == 16);
399 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
400 i >= 2;
401 i--)
402 generic_bignum[i] = generic_bignum[i - 2];
403
404 /* Add the new digits as the least significant new ones. */
405 generic_bignum[0] = number & 0xffffffff;
406 generic_bignum[1] = number >> 16;
407 }
408
409 /* Again, c is char after number, input_line_pointer->after c. */
410
411 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
412 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
413
414 gas_assert (num_little_digits >= 4);
415
416 if (num_little_digits != 8)
417 as_bad (_("a bignum with underscores must have exactly 4 words"));
418
419 /* We might have some leading zeros. These can be trimmed to give
420 us a change to fit this constant into a small number. */
421 while (generic_bignum[num_little_digits - 1] == 0
422 && num_little_digits > 1)
423 num_little_digits--;
424
425 if (num_little_digits <= 2)
426 {
427 /* will fit into 32 bits. */
428 number = generic_bignum_to_int32 ();
429 small = 1;
430 }
431 #ifdef BFD64
432 else if (num_little_digits <= 4)
433 {
434 /* Will fit into 64 bits. */
435 number = generic_bignum_to_int64 ();
436 small = 1;
437 }
438 #endif
439 else
440 {
441 small = 0;
442
443 /* Number of littlenums in the bignum. */
444 number = num_little_digits;
445 }
446 }
447 else if (!small)
448 {
449 /* We saw a lot of digits. manufacture a bignum the hard way. */
450 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
451 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
452 long carry;
453
454 leader = generic_bignum;
455 generic_bignum[0] = 0;
456 generic_bignum[1] = 0;
457 generic_bignum[2] = 0;
458 generic_bignum[3] = 0;
459 input_line_pointer = start; /* -> 1st digit. */
460 c = *input_line_pointer++;
461 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
462 {
463 for (pointer = generic_bignum; pointer <= leader; pointer++)
464 {
465 long work;
466
467 work = carry + radix * *pointer;
468 *pointer = work & LITTLENUM_MASK;
469 carry = work >> LITTLENUM_NUMBER_OF_BITS;
470 }
471 if (carry)
472 {
473 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
474 {
475 /* Room to grow a longer bignum. */
476 *++leader = carry;
477 }
478 }
479 }
480 /* Again, c is char after number. */
481 /* input_line_pointer -> after c. */
482 know (LITTLENUM_NUMBER_OF_BITS == 16);
483 if (leader < generic_bignum + 2)
484 {
485 /* Will fit into 32 bits. */
486 number = generic_bignum_to_int32 ();
487 small = 1;
488 }
489 #ifdef BFD64
490 else if (leader < generic_bignum + 4)
491 {
492 /* Will fit into 64 bits. */
493 number = generic_bignum_to_int64 ();
494 small = 1;
495 }
496 #endif
497 else
498 {
499 /* Number of littlenums in the bignum. */
500 number = leader - generic_bignum + 1;
501 }
502 }
503
504 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
505 && suffix != NULL
506 && input_line_pointer - 1 == suffix)
507 c = *input_line_pointer++;
508
509 if (small)
510 {
511 /* Here with number, in correct radix. c is the next char.
512 Note that unlike un*x, we allow "011f" "0x9f" to both mean
513 the same as the (conventional) "9f".
514 This is simply easier than checking for strict canonical
515 form. Syntax sux! */
516
517 if (LOCAL_LABELS_FB && c == 'b')
518 {
519 /* Backward ref to local label.
520 Because it is backward, expect it to be defined. */
521 /* Construct a local label. */
522 name = fb_label_name ((int) number, 0);
523
524 /* Seen before, or symbol is defined: OK. */
525 symbolP = symbol_find (name);
526 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
527 {
528 /* Local labels are never absolute. Don't waste time
529 checking absoluteness. */
530 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
531
532 expressionP->X_op = O_symbol;
533 expressionP->X_add_symbol = symbolP;
534 }
535 else
536 {
537 /* Either not seen or not defined. */
538 /* @@ Should print out the original string instead of
539 the parsed number. */
540 as_bad (_("backward ref to unknown label \"%d:\""),
541 (int) number);
542 expressionP->X_op = O_constant;
543 }
544
545 expressionP->X_add_number = 0;
546 } /* case 'b' */
547 else if (LOCAL_LABELS_FB && c == 'f')
548 {
549 /* Forward reference. Expect symbol to be undefined or
550 unknown. undefined: seen it before. unknown: never seen
551 it before.
552
553 Construct a local label name, then an undefined symbol.
554 Don't create a xseg frag for it: caller may do that.
555 Just return it as never seen before. */
556 name = fb_label_name ((int) number, 1);
557 symbolP = symbol_find_or_make (name);
558 /* We have no need to check symbol properties. */
559 #ifndef many_segments
560 /* Since "know" puts its arg into a "string", we
561 can't have newlines in the argument. */
562 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
563 #endif
564 expressionP->X_op = O_symbol;
565 expressionP->X_add_symbol = symbolP;
566 expressionP->X_add_number = 0;
567 } /* case 'f' */
568 else if (LOCAL_LABELS_DOLLAR && c == '$')
569 {
570 /* If the dollar label is *currently* defined, then this is just
571 another reference to it. If it is not *currently* defined,
572 then this is a fresh instantiation of that number, so create
573 it. */
574
575 if (dollar_label_defined ((long) number))
576 {
577 name = dollar_label_name ((long) number, 0);
578 symbolP = symbol_find (name);
579 know (symbolP != NULL);
580 }
581 else
582 {
583 name = dollar_label_name ((long) number, 1);
584 symbolP = symbol_find_or_make (name);
585 }
586
587 expressionP->X_op = O_symbol;
588 expressionP->X_add_symbol = symbolP;
589 expressionP->X_add_number = 0;
590 } /* case '$' */
591 else
592 {
593 expressionP->X_op = O_constant;
594 expressionP->X_add_number = number;
595 input_line_pointer--; /* Restore following character. */
596 } /* Really just a number. */
597 }
598 else
599 {
600 /* Not a small number. */
601 expressionP->X_op = O_big;
602 expressionP->X_add_number = number; /* Number of littlenums. */
603 input_line_pointer--; /* -> char following number. */
604 }
605 }
606
607 /* Parse an MRI multi character constant. */
608
609 static void
610 mri_char_constant (expressionS *expressionP)
611 {
612 int i;
613
614 if (*input_line_pointer == '\''
615 && input_line_pointer[1] != '\'')
616 {
617 expressionP->X_op = O_constant;
618 expressionP->X_add_number = 0;
619 return;
620 }
621
622 /* In order to get the correct byte ordering, we must build the
623 number in reverse. */
624 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
625 {
626 int j;
627
628 generic_bignum[i] = 0;
629 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
630 {
631 if (*input_line_pointer == '\'')
632 {
633 if (input_line_pointer[1] != '\'')
634 break;
635 ++input_line_pointer;
636 }
637 generic_bignum[i] <<= 8;
638 generic_bignum[i] += *input_line_pointer;
639 ++input_line_pointer;
640 }
641
642 if (i < SIZE_OF_LARGE_NUMBER - 1)
643 {
644 /* If there is more than one littlenum, left justify the
645 last one to make it match the earlier ones. If there is
646 only one, we can just use the value directly. */
647 for (; j < CHARS_PER_LITTLENUM; j++)
648 generic_bignum[i] <<= 8;
649 }
650
651 if (*input_line_pointer == '\''
652 && input_line_pointer[1] != '\'')
653 break;
654 }
655
656 if (i < 0)
657 {
658 as_bad (_("character constant too large"));
659 i = 0;
660 }
661
662 if (i > 0)
663 {
664 int c;
665 int j;
666
667 c = SIZE_OF_LARGE_NUMBER - i;
668 for (j = 0; j < c; j++)
669 generic_bignum[j] = generic_bignum[i + j];
670 i = c;
671 }
672
673 know (LITTLENUM_NUMBER_OF_BITS == 16);
674 if (i > 2)
675 {
676 expressionP->X_op = O_big;
677 expressionP->X_add_number = i;
678 }
679 else
680 {
681 expressionP->X_op = O_constant;
682 if (i < 2)
683 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
684 else
685 expressionP->X_add_number =
686 (((generic_bignum[1] & LITTLENUM_MASK)
687 << LITTLENUM_NUMBER_OF_BITS)
688 | (generic_bignum[0] & LITTLENUM_MASK));
689 }
690
691 /* Skip the final closing quote. */
692 ++input_line_pointer;
693 }
694
695 /* Return an expression representing the current location. This
696 handles the magic symbol `.'. */
697
698 static void
699 current_location (expressionS *expressionp)
700 {
701 if (now_seg == absolute_section)
702 {
703 expressionp->X_op = O_constant;
704 expressionp->X_add_number = abs_section_offset;
705 }
706 else
707 {
708 expressionp->X_op = O_symbol;
709 expressionp->X_add_symbol = symbol_temp_new_now ();
710 expressionp->X_add_number = 0;
711 }
712 }
713
714 /* In: Input_line_pointer points to 1st char of operand, which may
715 be a space.
716
717 Out: An expressionS.
718 The operand may have been empty: in this case X_op == O_absent.
719 Input_line_pointer->(next non-blank) char after operand. */
720
721 static segT
722 operand (expressionS *expressionP, enum expr_mode mode)
723 {
724 char c;
725 symbolS *symbolP; /* Points to symbol. */
726 char *name; /* Points to name of symbol. */
727 segT segment;
728
729 /* All integers are regarded as unsigned unless they are negated.
730 This is because the only thing which cares whether a number is
731 unsigned is the code in emit_expr which extends constants into
732 bignums. It should only sign extend negative numbers, so that
733 something like ``.quad 0x80000000'' is not sign extended even
734 though it appears negative if valueT is 32 bits. */
735 expressionP->X_unsigned = 1;
736
737 /* Digits, assume it is a bignum. */
738
739 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
740 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
741
742 if (is_end_of_line[(unsigned char) c])
743 goto eol;
744
745 switch (c)
746 {
747 case '1':
748 case '2':
749 case '3':
750 case '4':
751 case '5':
752 case '6':
753 case '7':
754 case '8':
755 case '9':
756 input_line_pointer--;
757
758 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
759 ? 0 : 10,
760 expressionP);
761 break;
762
763 #ifdef LITERAL_PREFIXDOLLAR_HEX
764 case '$':
765 /* $L is the start of a local label, not a hex constant. */
766 if (* input_line_pointer == 'L')
767 goto isname;
768 integer_constant (16, expressionP);
769 break;
770 #endif
771
772 #ifdef LITERAL_PREFIXPERCENT_BIN
773 case '%':
774 integer_constant (2, expressionP);
775 break;
776 #endif
777
778 case '0':
779 /* Non-decimal radix. */
780
781 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
782 {
783 char *s;
784
785 /* Check for a hex or float constant. */
786 for (s = input_line_pointer; hex_p (*s); s++)
787 ;
788 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
789 {
790 --input_line_pointer;
791 integer_constant (0, expressionP);
792 break;
793 }
794 }
795 c = *input_line_pointer;
796 switch (c)
797 {
798 case 'o':
799 case 'O':
800 case 'q':
801 case 'Q':
802 case '8':
803 case '9':
804 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
805 {
806 integer_constant (0, expressionP);
807 break;
808 }
809 /* Fall through. */
810 default:
811 default_case:
812 if (c && strchr (FLT_CHARS, c))
813 {
814 input_line_pointer++;
815 floating_constant (expressionP);
816 expressionP->X_add_number = - TOLOWER (c);
817 }
818 else
819 {
820 /* The string was only zero. */
821 expressionP->X_op = O_constant;
822 expressionP->X_add_number = 0;
823 }
824
825 break;
826
827 case 'x':
828 case 'X':
829 if (flag_m68k_mri)
830 goto default_case;
831 input_line_pointer++;
832 integer_constant (16, expressionP);
833 break;
834
835 case 'b':
836 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
837 {
838 /* This code used to check for '+' and '-' here, and, in
839 some conditions, fall through to call
840 integer_constant. However, that didn't make sense,
841 as integer_constant only accepts digits. */
842 /* Some of our code elsewhere does permit digits greater
843 than the expected base; for consistency, do the same
844 here. */
845 if (input_line_pointer[1] < '0'
846 || input_line_pointer[1] > '9')
847 {
848 /* Parse this as a back reference to label 0. */
849 input_line_pointer--;
850 integer_constant (10, expressionP);
851 break;
852 }
853 /* Otherwise, parse this as a binary number. */
854 }
855 /* Fall through. */
856 case 'B':
857 input_line_pointer++;
858 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
859 goto default_case;
860 integer_constant (2, expressionP);
861 break;
862
863 case '0':
864 case '1':
865 case '2':
866 case '3':
867 case '4':
868 case '5':
869 case '6':
870 case '7':
871 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
872 ? 0 : 8,
873 expressionP);
874 break;
875
876 case 'f':
877 if (LOCAL_LABELS_FB)
878 {
879 /* If it says "0f" and it could possibly be a floating point
880 number, make it one. Otherwise, make it a local label,
881 and try to deal with parsing the rest later. */
882 if (!input_line_pointer[1]
883 || (is_end_of_line[0xff & input_line_pointer[1]])
884 || strchr (FLT_CHARS, 'f') == NULL)
885 goto is_0f_label;
886 {
887 char *cp = input_line_pointer + 1;
888 int r = atof_generic (&cp, ".", EXP_CHARS,
889 &generic_floating_point_number);
890 switch (r)
891 {
892 case 0:
893 case ERROR_EXPONENT_OVERFLOW:
894 if (*cp == 'f' || *cp == 'b')
895 /* Looks like a difference expression. */
896 goto is_0f_label;
897 else if (cp == input_line_pointer + 1)
898 /* No characters has been accepted -- looks like
899 end of operand. */
900 goto is_0f_label;
901 else
902 goto is_0f_float;
903 default:
904 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
905 r);
906 }
907 }
908
909 /* Okay, now we've sorted it out. We resume at one of these
910 two labels, depending on what we've decided we're probably
911 looking at. */
912 is_0f_label:
913 input_line_pointer--;
914 integer_constant (10, expressionP);
915 break;
916
917 is_0f_float:
918 /* Fall through. */
919 ;
920 }
921
922 case 'd':
923 case 'D':
924 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
925 {
926 integer_constant (0, expressionP);
927 break;
928 }
929 /* Fall through. */
930 case 'F':
931 case 'r':
932 case 'e':
933 case 'E':
934 case 'g':
935 case 'G':
936 input_line_pointer++;
937 floating_constant (expressionP);
938 expressionP->X_add_number = - TOLOWER (c);
939 break;
940
941 case '$':
942 if (LOCAL_LABELS_DOLLAR)
943 {
944 integer_constant (10, expressionP);
945 break;
946 }
947 else
948 goto default_case;
949 }
950
951 break;
952
953 #ifndef NEED_INDEX_OPERATOR
954 case '[':
955 # ifdef md_need_index_operator
956 if (md_need_index_operator())
957 goto de_fault;
958 # endif
959 /* FALLTHROUGH */
960 #endif
961 case '(':
962 /* Didn't begin with digit & not a name. */
963 if (mode != expr_defer)
964 segment = expression (expressionP);
965 else
966 segment = deferred_expression (expressionP);
967 /* expression () will pass trailing whitespace. */
968 if ((c == '(' && *input_line_pointer != ')')
969 || (c == '[' && *input_line_pointer != ']'))
970 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
971 else
972 input_line_pointer++;
973 SKIP_WHITESPACE ();
974 /* Here with input_line_pointer -> char after "(...)". */
975 return segment;
976
977 #ifdef TC_M68K
978 case 'E':
979 if (! flag_m68k_mri || *input_line_pointer != '\'')
980 goto de_fault;
981 as_bad (_("EBCDIC constants are not supported"));
982 /* Fall through. */
983 case 'A':
984 if (! flag_m68k_mri || *input_line_pointer != '\'')
985 goto de_fault;
986 ++input_line_pointer;
987 /* Fall through. */
988 #endif
989 case '\'':
990 if (! flag_m68k_mri)
991 {
992 /* Warning: to conform to other people's assemblers NO
993 ESCAPEMENT is permitted for a single quote. The next
994 character, parity errors and all, is taken as the value
995 of the operand. VERY KINKY. */
996 expressionP->X_op = O_constant;
997 expressionP->X_add_number = *input_line_pointer++;
998 break;
999 }
1000
1001 mri_char_constant (expressionP);
1002 break;
1003
1004 #ifdef TC_M68K
1005 case '"':
1006 /* Double quote is the bitwise not operator in MRI mode. */
1007 if (! flag_m68k_mri)
1008 goto de_fault;
1009 /* Fall through. */
1010 #endif
1011 case '~':
1012 /* '~' is permitted to start a label on the Delta. */
1013 if (is_name_beginner (c))
1014 goto isname;
1015 case '!':
1016 case '-':
1017 case '+':
1018 {
1019 #ifdef md_operator
1020 unary:
1021 #endif
1022 operand (expressionP, mode);
1023 if (expressionP->X_op == O_constant)
1024 {
1025 /* input_line_pointer -> char after operand. */
1026 if (c == '-')
1027 {
1028 expressionP->X_add_number = - expressionP->X_add_number;
1029 /* Notice: '-' may overflow: no warning is given.
1030 This is compatible with other people's
1031 assemblers. Sigh. */
1032 expressionP->X_unsigned = 0;
1033 }
1034 else if (c == '~' || c == '"')
1035 expressionP->X_add_number = ~ expressionP->X_add_number;
1036 else if (c == '!')
1037 expressionP->X_add_number = ! expressionP->X_add_number;
1038 }
1039 else if (expressionP->X_op == O_big
1040 && expressionP->X_add_number <= 0
1041 && c == '-'
1042 && (generic_floating_point_number.sign == '+'
1043 || generic_floating_point_number.sign == 'P'))
1044 {
1045 /* Negative flonum (eg, -1.000e0). */
1046 if (generic_floating_point_number.sign == '+')
1047 generic_floating_point_number.sign = '-';
1048 else
1049 generic_floating_point_number.sign = 'N';
1050 }
1051 else if (expressionP->X_op == O_big
1052 && expressionP->X_add_number > 0)
1053 {
1054 int i;
1055
1056 if (c == '~' || c == '-')
1057 {
1058 for (i = 0; i < expressionP->X_add_number; ++i)
1059 generic_bignum[i] = ~generic_bignum[i];
1060 if (c == '-')
1061 for (i = 0; i < expressionP->X_add_number; ++i)
1062 {
1063 generic_bignum[i] += 1;
1064 if (generic_bignum[i])
1065 break;
1066 }
1067 }
1068 else if (c == '!')
1069 {
1070 int nonzero = 0;
1071 for (i = 0; i < expressionP->X_add_number; ++i)
1072 {
1073 if (generic_bignum[i])
1074 nonzero = 1;
1075 generic_bignum[i] = 0;
1076 }
1077 generic_bignum[0] = nonzero;
1078 }
1079 }
1080 else if (expressionP->X_op != O_illegal
1081 && expressionP->X_op != O_absent)
1082 {
1083 if (c != '+')
1084 {
1085 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1086 if (c == '-')
1087 expressionP->X_op = O_uminus;
1088 else if (c == '~' || c == '"')
1089 expressionP->X_op = O_bit_not;
1090 else
1091 expressionP->X_op = O_logical_not;
1092 expressionP->X_add_number = 0;
1093 }
1094 }
1095 else
1096 as_warn (_("Unary operator %c ignored because bad operand follows"),
1097 c);
1098 }
1099 break;
1100
1101 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1102 case '$':
1103 /* '$' is the program counter when in MRI mode, or when
1104 DOLLAR_DOT is defined. */
1105 #ifndef DOLLAR_DOT
1106 if (! flag_m68k_mri)
1107 goto de_fault;
1108 #endif
1109 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1110 {
1111 /* In MRI mode and on Z80, '$' is also used as the prefix
1112 for a hexadecimal constant. */
1113 integer_constant (16, expressionP);
1114 break;
1115 }
1116
1117 if (is_part_of_name (*input_line_pointer))
1118 goto isname;
1119
1120 current_location (expressionP);
1121 break;
1122 #endif
1123
1124 case '.':
1125 if (!is_part_of_name (*input_line_pointer))
1126 {
1127 current_location (expressionP);
1128 break;
1129 }
1130 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1131 && ! is_part_of_name (input_line_pointer[8]))
1132 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1133 && ! is_part_of_name (input_line_pointer[7])))
1134 {
1135 int start;
1136
1137 start = (input_line_pointer[1] == 't'
1138 || input_line_pointer[1] == 'T');
1139 input_line_pointer += start ? 8 : 7;
1140 SKIP_WHITESPACE ();
1141 if (*input_line_pointer != '(')
1142 as_bad (_("syntax error in .startof. or .sizeof."));
1143 else
1144 {
1145 char *buf;
1146
1147 ++input_line_pointer;
1148 SKIP_WHITESPACE ();
1149 name = input_line_pointer;
1150 c = get_symbol_end ();
1151
1152 buf = (char *) xmalloc (strlen (name) + 10);
1153 if (start)
1154 sprintf (buf, ".startof.%s", name);
1155 else
1156 sprintf (buf, ".sizeof.%s", name);
1157 symbolP = symbol_make (buf);
1158 free (buf);
1159
1160 expressionP->X_op = O_symbol;
1161 expressionP->X_add_symbol = symbolP;
1162 expressionP->X_add_number = 0;
1163
1164 *input_line_pointer = c;
1165 SKIP_WHITESPACE ();
1166 if (*input_line_pointer != ')')
1167 as_bad (_("syntax error in .startof. or .sizeof."));
1168 else
1169 ++input_line_pointer;
1170 }
1171 break;
1172 }
1173 else
1174 {
1175 goto isname;
1176 }
1177
1178 case ',':
1179 eol:
1180 /* Can't imagine any other kind of operand. */
1181 expressionP->X_op = O_absent;
1182 input_line_pointer--;
1183 break;
1184
1185 #ifdef TC_M68K
1186 case '%':
1187 if (! flag_m68k_mri)
1188 goto de_fault;
1189 integer_constant (2, expressionP);
1190 break;
1191
1192 case '@':
1193 if (! flag_m68k_mri)
1194 goto de_fault;
1195 integer_constant (8, expressionP);
1196 break;
1197
1198 case ':':
1199 if (! flag_m68k_mri)
1200 goto de_fault;
1201
1202 /* In MRI mode, this is a floating point constant represented
1203 using hexadecimal digits. */
1204
1205 ++input_line_pointer;
1206 integer_constant (16, expressionP);
1207 break;
1208
1209 case '*':
1210 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1211 goto de_fault;
1212
1213 current_location (expressionP);
1214 break;
1215 #endif
1216
1217 default:
1218 #if defined(md_need_index_operator) || defined(TC_M68K)
1219 de_fault:
1220 #endif
1221 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1222 {
1223 /* Identifier begins here.
1224 This is kludged for speed, so code is repeated. */
1225 isname:
1226 name = --input_line_pointer;
1227 c = get_symbol_end ();
1228
1229 #ifdef md_operator
1230 {
1231 operatorT op = md_operator (name, 1, &c);
1232
1233 switch (op)
1234 {
1235 case O_uminus:
1236 *input_line_pointer = c;
1237 c = '-';
1238 goto unary;
1239 case O_bit_not:
1240 *input_line_pointer = c;
1241 c = '~';
1242 goto unary;
1243 case O_logical_not:
1244 *input_line_pointer = c;
1245 c = '!';
1246 goto unary;
1247 case O_illegal:
1248 as_bad (_("invalid use of operator \"%s\""), name);
1249 break;
1250 default:
1251 break;
1252 }
1253 if (op != O_absent && op != O_illegal)
1254 {
1255 *input_line_pointer = c;
1256 expr (9, expressionP, mode);
1257 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1258 expressionP->X_op_symbol = NULL;
1259 expressionP->X_add_number = 0;
1260 expressionP->X_op = op;
1261 break;
1262 }
1263 }
1264 #endif
1265
1266 #ifdef md_parse_name
1267 /* This is a hook for the backend to parse certain names
1268 specially in certain contexts. If a name always has a
1269 specific value, it can often be handled by simply
1270 entering it in the symbol table. */
1271 if (md_parse_name (name, expressionP, mode, &c))
1272 {
1273 *input_line_pointer = c;
1274 break;
1275 }
1276 #endif
1277
1278 #ifdef TC_I960
1279 /* The MRI i960 assembler permits
1280 lda sizeof code,g13
1281 FIXME: This should use md_parse_name. */
1282 if (flag_mri
1283 && (strcasecmp (name, "sizeof") == 0
1284 || strcasecmp (name, "startof") == 0))
1285 {
1286 int start;
1287 char *buf;
1288
1289 start = (name[1] == 't'
1290 || name[1] == 'T');
1291
1292 *input_line_pointer = c;
1293 SKIP_WHITESPACE ();
1294
1295 name = input_line_pointer;
1296 c = get_symbol_end ();
1297
1298 buf = (char *) xmalloc (strlen (name) + 10);
1299 if (start)
1300 sprintf (buf, ".startof.%s", name);
1301 else
1302 sprintf (buf, ".sizeof.%s", name);
1303 symbolP = symbol_make (buf);
1304 free (buf);
1305
1306 expressionP->X_op = O_symbol;
1307 expressionP->X_add_symbol = symbolP;
1308 expressionP->X_add_number = 0;
1309
1310 *input_line_pointer = c;
1311 SKIP_WHITESPACE ();
1312
1313 break;
1314 }
1315 #endif
1316
1317 symbolP = symbol_find_or_make (name);
1318
1319 /* If we have an absolute symbol or a reg, then we know its
1320 value now. */
1321 segment = S_GET_SEGMENT (symbolP);
1322 if (mode != expr_defer && segment == absolute_section)
1323 {
1324 expressionP->X_op = O_constant;
1325 expressionP->X_add_number = S_GET_VALUE (symbolP);
1326 }
1327 else if (mode != expr_defer && segment == reg_section)
1328 {
1329 expressionP->X_op = O_register;
1330 expressionP->X_add_number = S_GET_VALUE (symbolP);
1331 }
1332 else
1333 {
1334 expressionP->X_op = O_symbol;
1335 expressionP->X_add_symbol = symbolP;
1336 expressionP->X_add_number = 0;
1337 }
1338 *input_line_pointer = c;
1339 }
1340 else
1341 {
1342 /* Let the target try to parse it. Success is indicated by changing
1343 the X_op field to something other than O_absent and pointing
1344 input_line_pointer past the expression. If it can't parse the
1345 expression, X_op and input_line_pointer should be unchanged. */
1346 expressionP->X_op = O_absent;
1347 --input_line_pointer;
1348 md_operand (expressionP);
1349 if (expressionP->X_op == O_absent)
1350 {
1351 ++input_line_pointer;
1352 as_bad (_("bad expression"));
1353 expressionP->X_op = O_constant;
1354 expressionP->X_add_number = 0;
1355 }
1356 }
1357 break;
1358 }
1359
1360 /* It is more 'efficient' to clean up the expressionS when they are
1361 created. Doing it here saves lines of code. */
1362 clean_up_expression (expressionP);
1363 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1364 know (*input_line_pointer != ' ');
1365
1366 /* The PA port needs this information. */
1367 if (expressionP->X_add_symbol)
1368 symbol_mark_used (expressionP->X_add_symbol);
1369
1370 expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1371 expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1372
1373 switch (expressionP->X_op)
1374 {
1375 default:
1376 return absolute_section;
1377 case O_symbol:
1378 return S_GET_SEGMENT (expressionP->X_add_symbol);
1379 case O_register:
1380 return reg_section;
1381 }
1382 }
1383 \f
1384 /* Internal. Simplify a struct expression for use by expr (). */
1385
1386 /* In: address of an expressionS.
1387 The X_op field of the expressionS may only take certain values.
1388 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1389
1390 Out: expressionS may have been modified:
1391 Unused fields zeroed to help expr (). */
1392
1393 static void
1394 clean_up_expression (expressionS *expressionP)
1395 {
1396 switch (expressionP->X_op)
1397 {
1398 case O_illegal:
1399 case O_absent:
1400 expressionP->X_add_number = 0;
1401 /* Fall through. */
1402 case O_big:
1403 case O_constant:
1404 case O_register:
1405 expressionP->X_add_symbol = NULL;
1406 /* Fall through. */
1407 case O_symbol:
1408 case O_uminus:
1409 case O_bit_not:
1410 expressionP->X_op_symbol = NULL;
1411 break;
1412 default:
1413 break;
1414 }
1415 }
1416 \f
1417 /* Expression parser. */
1418
1419 /* We allow an empty expression, and just assume (absolute,0) silently.
1420 Unary operators and parenthetical expressions are treated as operands.
1421 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1422
1423 We used to do an aho/ullman shift-reduce parser, but the logic got so
1424 warped that I flushed it and wrote a recursive-descent parser instead.
1425 Now things are stable, would anybody like to write a fast parser?
1426 Most expressions are either register (which does not even reach here)
1427 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1428 So I guess it doesn't really matter how inefficient more complex expressions
1429 are parsed.
1430
1431 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1432 Also, we have consumed any leading or trailing spaces (operand does that)
1433 and done all intervening operators.
1434
1435 This returns the segment of the result, which will be
1436 absolute_section or the segment of a symbol. */
1437
1438 #undef __
1439 #define __ O_illegal
1440 #ifndef O_SINGLE_EQ
1441 #define O_SINGLE_EQ O_illegal
1442 #endif
1443
1444 /* Maps ASCII -> operators. */
1445 static const operatorT op_encoding[256] = {
1446 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1447 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1448
1449 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1450 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1451 __, __, __, __, __, __, __, __,
1452 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1453 __, __, __, __, __, __, __, __,
1454 __, __, __, __, __, __, __, __,
1455 __, __, __, __, __, __, __, __,
1456 __, __, __,
1457 #ifdef NEED_INDEX_OPERATOR
1458 O_index,
1459 #else
1460 __,
1461 #endif
1462 __, __, O_bit_exclusive_or, __,
1463 __, __, __, __, __, __, __, __,
1464 __, __, __, __, __, __, __, __,
1465 __, __, __, __, __, __, __, __,
1466 __, __, __, __, O_bit_inclusive_or, __, __, __,
1467
1468 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1469 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1470 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1471 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1472 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1473 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1474 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1475 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1476 };
1477
1478 /* Rank Examples
1479 0 operand, (expression)
1480 1 ||
1481 2 &&
1482 3 == <> < <= >= >
1483 4 + -
1484 5 used for * / % in MRI mode
1485 6 & ^ ! |
1486 7 * / % << >>
1487 8 unary - unary ~
1488 */
1489 static operator_rankT op_rank[O_max] = {
1490 0, /* O_illegal */
1491 0, /* O_absent */
1492 0, /* O_constant */
1493 0, /* O_symbol */
1494 0, /* O_symbol_rva */
1495 0, /* O_register */
1496 0, /* O_big */
1497 9, /* O_uminus */
1498 9, /* O_bit_not */
1499 9, /* O_logical_not */
1500 8, /* O_multiply */
1501 8, /* O_divide */
1502 8, /* O_modulus */
1503 8, /* O_left_shift */
1504 8, /* O_right_shift */
1505 7, /* O_bit_inclusive_or */
1506 7, /* O_bit_or_not */
1507 7, /* O_bit_exclusive_or */
1508 7, /* O_bit_and */
1509 5, /* O_add */
1510 5, /* O_subtract */
1511 4, /* O_eq */
1512 4, /* O_ne */
1513 4, /* O_lt */
1514 4, /* O_le */
1515 4, /* O_ge */
1516 4, /* O_gt */
1517 3, /* O_logical_and */
1518 2, /* O_logical_or */
1519 1, /* O_index */
1520 };
1521
1522 /* Unfortunately, in MRI mode for the m68k, multiplication and
1523 division have lower precedence than the bit wise operators. This
1524 function sets the operator precedences correctly for the current
1525 mode. Also, MRI uses a different bit_not operator, and this fixes
1526 that as well. */
1527
1528 #define STANDARD_MUL_PRECEDENCE 8
1529 #define MRI_MUL_PRECEDENCE 6
1530
1531 void
1532 expr_set_precedence (void)
1533 {
1534 if (flag_m68k_mri)
1535 {
1536 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1537 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1538 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1539 }
1540 else
1541 {
1542 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1543 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1544 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1545 }
1546 }
1547
1548 void
1549 expr_set_rank (operatorT op, operator_rankT rank)
1550 {
1551 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1552 op_rank[op] = rank;
1553 }
1554
1555 /* Initialize the expression parser. */
1556
1557 void
1558 expr_begin (void)
1559 {
1560 expr_set_precedence ();
1561
1562 /* Verify that X_op field is wide enough. */
1563 {
1564 expressionS e;
1565 e.X_op = O_max;
1566 gas_assert (e.X_op == O_max);
1567 }
1568 }
1569 \f
1570 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1571 sets NUM_CHARS to the number of characters in the operator.
1572 Does not advance INPUT_LINE_POINTER. */
1573
1574 static inline operatorT
1575 operatorf (int *num_chars)
1576 {
1577 int c;
1578 operatorT ret;
1579
1580 c = *input_line_pointer & 0xff;
1581 *num_chars = 1;
1582
1583 if (is_end_of_line[c])
1584 return O_illegal;
1585
1586 #ifdef md_operator
1587 if (is_name_beginner (c))
1588 {
1589 char *name = input_line_pointer;
1590 char ec = get_symbol_end ();
1591
1592 ret = md_operator (name, 2, &ec);
1593 switch (ret)
1594 {
1595 case O_absent:
1596 *input_line_pointer = ec;
1597 input_line_pointer = name;
1598 break;
1599 case O_uminus:
1600 case O_bit_not:
1601 case O_logical_not:
1602 as_bad (_("invalid use of operator \"%s\""), name);
1603 ret = O_illegal;
1604 /* FALLTHROUGH */
1605 default:
1606 *input_line_pointer = ec;
1607 *num_chars = input_line_pointer - name;
1608 input_line_pointer = name;
1609 return ret;
1610 }
1611 }
1612 #endif
1613
1614 switch (c)
1615 {
1616 default:
1617 ret = op_encoding[c];
1618 #ifdef md_operator
1619 if (ret == O_illegal)
1620 {
1621 char *start = input_line_pointer;
1622
1623 ret = md_operator (NULL, 2, NULL);
1624 if (ret != O_illegal)
1625 *num_chars = input_line_pointer - start;
1626 input_line_pointer = start;
1627 }
1628 #endif
1629 return ret;
1630
1631 case '+':
1632 case '-':
1633 return op_encoding[c];
1634
1635 case '<':
1636 switch (input_line_pointer[1])
1637 {
1638 default:
1639 return op_encoding[c];
1640 case '<':
1641 ret = O_left_shift;
1642 break;
1643 case '>':
1644 ret = O_ne;
1645 break;
1646 case '=':
1647 ret = O_le;
1648 break;
1649 }
1650 *num_chars = 2;
1651 return ret;
1652
1653 case '=':
1654 if (input_line_pointer[1] != '=')
1655 return op_encoding[c];
1656
1657 *num_chars = 2;
1658 return O_eq;
1659
1660 case '>':
1661 switch (input_line_pointer[1])
1662 {
1663 default:
1664 return op_encoding[c];
1665 case '>':
1666 ret = O_right_shift;
1667 break;
1668 case '=':
1669 ret = O_ge;
1670 break;
1671 }
1672 *num_chars = 2;
1673 return ret;
1674
1675 case '!':
1676 switch (input_line_pointer[1])
1677 {
1678 case '!':
1679 /* We accept !! as equivalent to ^ for MRI compatibility. */
1680 *num_chars = 2;
1681 return O_bit_exclusive_or;
1682 case '=':
1683 /* We accept != as equivalent to <>. */
1684 *num_chars = 2;
1685 return O_ne;
1686 default:
1687 if (flag_m68k_mri)
1688 return O_bit_inclusive_or;
1689 return op_encoding[c];
1690 }
1691
1692 case '|':
1693 if (input_line_pointer[1] != '|')
1694 return op_encoding[c];
1695
1696 *num_chars = 2;
1697 return O_logical_or;
1698
1699 case '&':
1700 if (input_line_pointer[1] != '&')
1701 return op_encoding[c];
1702
1703 *num_chars = 2;
1704 return O_logical_and;
1705 }
1706
1707 /* NOTREACHED */
1708 }
1709
1710 /* Parse an expression. */
1711
1712 segT
1713 expr (int rankarg, /* Larger # is higher rank. */
1714 expressionS *resultP, /* Deliver result here. */
1715 enum expr_mode mode /* Controls behavior. */)
1716 {
1717 operator_rankT rank = (operator_rankT) rankarg;
1718 segT retval;
1719 expressionS right;
1720 operatorT op_left;
1721 operatorT op_right;
1722 int op_chars;
1723
1724 know (rankarg >= 0);
1725
1726 /* Save the value of dot for the fixup code. */
1727 if (rank == 0)
1728 dot_value = frag_now_fix ();
1729
1730 retval = operand (resultP, mode);
1731
1732 /* operand () gobbles spaces. */
1733 know (*input_line_pointer != ' ');
1734
1735 op_left = operatorf (&op_chars);
1736 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1737 {
1738 segT rightseg;
1739 bfd_vma frag_off;
1740
1741 input_line_pointer += op_chars; /* -> after operator. */
1742
1743 right.X_md = 0;
1744 rightseg = expr (op_rank[(int) op_left], &right, mode);
1745 if (right.X_op == O_absent)
1746 {
1747 as_warn (_("missing operand; zero assumed"));
1748 right.X_op = O_constant;
1749 right.X_add_number = 0;
1750 right.X_add_symbol = NULL;
1751 right.X_op_symbol = NULL;
1752 }
1753
1754 know (*input_line_pointer != ' ');
1755
1756 if (op_left == O_index)
1757 {
1758 if (*input_line_pointer != ']')
1759 as_bad ("missing right bracket");
1760 else
1761 {
1762 ++input_line_pointer;
1763 SKIP_WHITESPACE ();
1764 }
1765 }
1766
1767 op_right = operatorf (&op_chars);
1768
1769 know (op_right == O_illegal || op_left == O_index
1770 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1771 know ((int) op_left >= (int) O_multiply);
1772 #ifndef md_operator
1773 know ((int) op_left <= (int) O_index);
1774 #else
1775 know ((int) op_left < (int) O_max);
1776 #endif
1777
1778 /* input_line_pointer->after right-hand quantity. */
1779 /* left-hand quantity in resultP. */
1780 /* right-hand quantity in right. */
1781 /* operator in op_left. */
1782
1783 if (resultP->X_op == O_big)
1784 {
1785 if (resultP->X_add_number > 0)
1786 as_warn (_("left operand is a bignum; integer 0 assumed"));
1787 else
1788 as_warn (_("left operand is a float; integer 0 assumed"));
1789 resultP->X_op = O_constant;
1790 resultP->X_add_number = 0;
1791 resultP->X_add_symbol = NULL;
1792 resultP->X_op_symbol = NULL;
1793 }
1794 if (right.X_op == O_big)
1795 {
1796 if (right.X_add_number > 0)
1797 as_warn (_("right operand is a bignum; integer 0 assumed"));
1798 else
1799 as_warn (_("right operand is a float; integer 0 assumed"));
1800 right.X_op = O_constant;
1801 right.X_add_number = 0;
1802 right.X_add_symbol = NULL;
1803 right.X_op_symbol = NULL;
1804 }
1805
1806 /* Optimize common cases. */
1807 #ifdef md_optimize_expr
1808 if (md_optimize_expr (resultP, op_left, &right))
1809 {
1810 /* Skip. */
1811 ;
1812 }
1813 else
1814 #endif
1815 #ifndef md_register_arithmetic
1816 # define md_register_arithmetic 1
1817 #endif
1818 if (op_left == O_add && right.X_op == O_constant
1819 && (md_register_arithmetic || resultP->X_op != O_register))
1820 {
1821 /* X + constant. */
1822 resultP->X_add_number += right.X_add_number;
1823 }
1824 /* This case comes up in PIC code. */
1825 else if (op_left == O_subtract
1826 && right.X_op == O_symbol
1827 && resultP->X_op == O_symbol
1828 && retval == rightseg
1829 #ifdef md_allow_local_subtract
1830 && md_allow_local_subtract (resultP, & right, rightseg)
1831 #endif
1832 && (SEG_NORMAL (rightseg)
1833 || right.X_add_symbol == resultP->X_add_symbol)
1834 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1835 symbol_get_frag (right.X_add_symbol),
1836 &frag_off))
1837 {
1838 resultP->X_add_number -= right.X_add_number;
1839 resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
1840 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1841 - S_GET_VALUE (right.X_add_symbol));
1842 resultP->X_op = O_constant;
1843 resultP->X_add_symbol = 0;
1844 }
1845 else if (op_left == O_subtract && right.X_op == O_constant
1846 && (md_register_arithmetic || resultP->X_op != O_register))
1847 {
1848 /* X - constant. */
1849 resultP->X_add_number -= right.X_add_number;
1850 }
1851 else if (op_left == O_add && resultP->X_op == O_constant
1852 && (md_register_arithmetic || right.X_op != O_register))
1853 {
1854 /* Constant + X. */
1855 resultP->X_op = right.X_op;
1856 resultP->X_add_symbol = right.X_add_symbol;
1857 resultP->X_op_symbol = right.X_op_symbol;
1858 resultP->X_add_number += right.X_add_number;
1859 retval = rightseg;
1860 }
1861 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1862 {
1863 /* Constant OP constant. */
1864 offsetT v = right.X_add_number;
1865 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1866 {
1867 as_warn (_("division by zero"));
1868 v = 1;
1869 }
1870 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1871 && (op_left == O_left_shift || op_left == O_right_shift))
1872 {
1873 as_warn_value_out_of_range (_("shift count"), v, 0,
1874 sizeof(valueT) * CHAR_BIT - 1,
1875 NULL, 0);
1876 resultP->X_add_number = v = 0;
1877 }
1878 switch (op_left)
1879 {
1880 default: goto general;
1881 case O_multiply: resultP->X_add_number *= v; break;
1882 case O_divide: resultP->X_add_number /= v; break;
1883 case O_modulus: resultP->X_add_number %= v; break;
1884 case O_left_shift: resultP->X_add_number <<= v; break;
1885 case O_right_shift:
1886 /* We always use unsigned shifts, to avoid relying on
1887 characteristics of the compiler used to compile gas. */
1888 resultP->X_add_number =
1889 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1890 break;
1891 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1892 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1893 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1894 case O_bit_and: resultP->X_add_number &= v; break;
1895 /* Constant + constant (O_add) is handled by the
1896 previous if statement for constant + X, so is omitted
1897 here. */
1898 case O_subtract: resultP->X_add_number -= v; break;
1899 case O_eq:
1900 resultP->X_add_number =
1901 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1902 break;
1903 case O_ne:
1904 resultP->X_add_number =
1905 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1906 break;
1907 case O_lt:
1908 resultP->X_add_number =
1909 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1910 break;
1911 case O_le:
1912 resultP->X_add_number =
1913 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1914 break;
1915 case O_ge:
1916 resultP->X_add_number =
1917 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1918 break;
1919 case O_gt:
1920 resultP->X_add_number =
1921 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1922 break;
1923 case O_logical_and:
1924 resultP->X_add_number = resultP->X_add_number && v;
1925 break;
1926 case O_logical_or:
1927 resultP->X_add_number = resultP->X_add_number || v;
1928 break;
1929 }
1930 }
1931 else if (resultP->X_op == O_symbol
1932 && right.X_op == O_symbol
1933 && (op_left == O_add
1934 || op_left == O_subtract
1935 || (resultP->X_add_number == 0
1936 && right.X_add_number == 0)))
1937 {
1938 /* Symbol OP symbol. */
1939 resultP->X_op = op_left;
1940 resultP->X_op_symbol = right.X_add_symbol;
1941 if (op_left == O_add)
1942 resultP->X_add_number += right.X_add_number;
1943 else if (op_left == O_subtract)
1944 {
1945 resultP->X_add_number -= right.X_add_number;
1946 if (retval == rightseg && SEG_NORMAL (retval))
1947 {
1948 retval = absolute_section;
1949 rightseg = absolute_section;
1950 }
1951 }
1952 }
1953 else
1954 {
1955 general:
1956 /* The general case. */
1957 resultP->X_add_symbol = make_expr_symbol (resultP);
1958 resultP->X_op_symbol = make_expr_symbol (&right);
1959 resultP->X_op = op_left;
1960 resultP->X_add_number = 0;
1961 resultP->X_unsigned = 1;
1962 }
1963
1964 if (retval != rightseg)
1965 {
1966 if (! SEG_NORMAL (retval))
1967 {
1968 if (retval != undefined_section || SEG_NORMAL (rightseg))
1969 retval = rightseg;
1970 }
1971 else if (SEG_NORMAL (rightseg)
1972 #ifdef DIFF_EXPR_OK
1973 && op_left != O_subtract
1974 #endif
1975 )
1976 as_bad (_("operation combines symbols in different segments"));
1977 }
1978
1979 op_left = op_right;
1980 } /* While next operator is >= this rank. */
1981
1982 /* The PA port needs this information. */
1983 if (resultP->X_add_symbol)
1984 symbol_mark_used (resultP->X_add_symbol);
1985
1986 if (rank == 0 && mode == expr_evaluate)
1987 resolve_expression (resultP);
1988
1989 return resultP->X_op == O_constant ? absolute_section : retval;
1990 }
1991
1992 /* Resolve an expression without changing any symbols/sub-expressions
1993 used. */
1994
1995 int
1996 resolve_expression (expressionS *expressionP)
1997 {
1998 /* Help out with CSE. */
1999 valueT final_val = expressionP->X_add_number;
2000 symbolS *add_symbol = expressionP->X_add_symbol;
2001 symbolS *orig_add_symbol = add_symbol;
2002 symbolS *op_symbol = expressionP->X_op_symbol;
2003 operatorT op = expressionP->X_op;
2004 valueT left, right;
2005 segT seg_left, seg_right;
2006 fragS *frag_left, *frag_right;
2007 bfd_vma frag_off;
2008
2009 switch (op)
2010 {
2011 default:
2012 return 0;
2013
2014 case O_constant:
2015 case O_register:
2016 left = 0;
2017 break;
2018
2019 case O_symbol:
2020 case O_symbol_rva:
2021 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2022 return 0;
2023
2024 break;
2025
2026 case O_uminus:
2027 case O_bit_not:
2028 case O_logical_not:
2029 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2030 return 0;
2031
2032 if (seg_left != absolute_section)
2033 return 0;
2034
2035 if (op == O_logical_not)
2036 left = !left;
2037 else if (op == O_uminus)
2038 left = -left;
2039 else
2040 left = ~left;
2041 op = O_constant;
2042 break;
2043
2044 case O_multiply:
2045 case O_divide:
2046 case O_modulus:
2047 case O_left_shift:
2048 case O_right_shift:
2049 case O_bit_inclusive_or:
2050 case O_bit_or_not:
2051 case O_bit_exclusive_or:
2052 case O_bit_and:
2053 case O_add:
2054 case O_subtract:
2055 case O_eq:
2056 case O_ne:
2057 case O_lt:
2058 case O_le:
2059 case O_ge:
2060 case O_gt:
2061 case O_logical_and:
2062 case O_logical_or:
2063 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2064 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2065 return 0;
2066
2067 /* Simplify addition or subtraction of a constant by folding the
2068 constant into X_add_number. */
2069 if (op == O_add)
2070 {
2071 if (seg_right == absolute_section)
2072 {
2073 final_val += right;
2074 op = O_symbol;
2075 break;
2076 }
2077 else if (seg_left == absolute_section)
2078 {
2079 final_val += left;
2080 left = right;
2081 seg_left = seg_right;
2082 add_symbol = op_symbol;
2083 orig_add_symbol = expressionP->X_op_symbol;
2084 op = O_symbol;
2085 break;
2086 }
2087 }
2088 else if (op == O_subtract)
2089 {
2090 if (seg_right == absolute_section)
2091 {
2092 final_val -= right;
2093 op = O_symbol;
2094 break;
2095 }
2096 }
2097
2098 /* Equality and non-equality tests are permitted on anything.
2099 Subtraction, and other comparison operators are permitted if
2100 both operands are in the same section.
2101 Shifts by constant zero are permitted on anything.
2102 Multiplies, bit-ors, and bit-ands with constant zero are
2103 permitted on anything.
2104 Multiplies and divides by constant one are permitted on
2105 anything.
2106 Binary operations with both operands being the same register
2107 or undefined symbol are permitted if the result doesn't depend
2108 on the input value.
2109 Otherwise, both operands must be absolute. We already handled
2110 the case of addition or subtraction of a constant above. */
2111 frag_off = 0;
2112 if (!(seg_left == absolute_section
2113 && seg_right == absolute_section)
2114 && !(op == O_eq || op == O_ne)
2115 && !((op == O_subtract
2116 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2117 && seg_left == seg_right
2118 && (finalize_syms
2119 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2120 && (seg_left != reg_section || left == right)
2121 && (seg_left != undefined_section || add_symbol == op_symbol)))
2122 {
2123 if ((seg_left == absolute_section && left == 0)
2124 || (seg_right == absolute_section && right == 0))
2125 {
2126 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2127 {
2128 if (!(seg_right == absolute_section && right == 0))
2129 {
2130 seg_left = seg_right;
2131 left = right;
2132 add_symbol = op_symbol;
2133 orig_add_symbol = expressionP->X_op_symbol;
2134 }
2135 op = O_symbol;
2136 break;
2137 }
2138 else if (op == O_left_shift || op == O_right_shift)
2139 {
2140 if (!(seg_left == absolute_section && left == 0))
2141 {
2142 op = O_symbol;
2143 break;
2144 }
2145 }
2146 else if (op != O_multiply
2147 && op != O_bit_or_not && op != O_bit_and)
2148 return 0;
2149 }
2150 else if (op == O_multiply
2151 && seg_left == absolute_section && left == 1)
2152 {
2153 seg_left = seg_right;
2154 left = right;
2155 add_symbol = op_symbol;
2156 orig_add_symbol = expressionP->X_op_symbol;
2157 op = O_symbol;
2158 break;
2159 }
2160 else if ((op == O_multiply || op == O_divide)
2161 && seg_right == absolute_section && right == 1)
2162 {
2163 op = O_symbol;
2164 break;
2165 }
2166 else if (!(left == right
2167 && ((seg_left == reg_section && seg_right == reg_section)
2168 || (seg_left == undefined_section
2169 && seg_right == undefined_section
2170 && add_symbol == op_symbol))))
2171 return 0;
2172 else if (op == O_bit_and || op == O_bit_inclusive_or)
2173 {
2174 op = O_symbol;
2175 break;
2176 }
2177 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2178 return 0;
2179 }
2180
2181 right += frag_off / OCTETS_PER_BYTE;
2182 switch (op)
2183 {
2184 case O_add: left += right; break;
2185 case O_subtract: left -= right; break;
2186 case O_multiply: left *= right; break;
2187 case O_divide:
2188 if (right == 0)
2189 return 0;
2190 left = (offsetT) left / (offsetT) right;
2191 break;
2192 case O_modulus:
2193 if (right == 0)
2194 return 0;
2195 left = (offsetT) left % (offsetT) right;
2196 break;
2197 case O_left_shift: left <<= right; break;
2198 case O_right_shift: left >>= right; break;
2199 case O_bit_inclusive_or: left |= right; break;
2200 case O_bit_or_not: left |= ~right; break;
2201 case O_bit_exclusive_or: left ^= right; break;
2202 case O_bit_and: left &= right; break;
2203 case O_eq:
2204 case O_ne:
2205 left = (left == right
2206 && seg_left == seg_right
2207 && (finalize_syms || frag_left == frag_right)
2208 && (seg_left != undefined_section
2209 || add_symbol == op_symbol)
2210 ? ~ (valueT) 0 : 0);
2211 if (op == O_ne)
2212 left = ~left;
2213 break;
2214 case O_lt:
2215 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2216 break;
2217 case O_le:
2218 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2219 break;
2220 case O_ge:
2221 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2222 break;
2223 case O_gt:
2224 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2225 break;
2226 case O_logical_and: left = left && right; break;
2227 case O_logical_or: left = left || right; break;
2228 default: abort ();
2229 }
2230
2231 op = O_constant;
2232 break;
2233 }
2234
2235 if (op == O_symbol)
2236 {
2237 if (seg_left == absolute_section)
2238 op = O_constant;
2239 else if (seg_left == reg_section && final_val == 0)
2240 op = O_register;
2241 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2242 final_val += left;
2243 expressionP->X_add_symbol = add_symbol;
2244 }
2245 expressionP->X_op = op;
2246
2247 if (op == O_constant || op == O_register)
2248 final_val += left;
2249 expressionP->X_add_number = final_val;
2250
2251 return 1;
2252 }
2253 \f
2254 /* This lives here because it belongs equally in expr.c & read.c.
2255 expr.c is just a branch office read.c anyway, and putting it
2256 here lessens the crowd at read.c.
2257
2258 Assume input_line_pointer is at start of symbol name.
2259 Advance input_line_pointer past symbol name.
2260 Turn that character into a '\0', returning its former value.
2261 This allows a string compare (RMS wants symbol names to be strings)
2262 of the symbol name.
2263 There will always be a char following symbol name, because all good
2264 lines end in end-of-line. */
2265
2266 char
2267 get_symbol_end (void)
2268 {
2269 char c;
2270
2271 /* We accept \001 in a name in case this is being called with a
2272 constructed string. */
2273 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2274 {
2275 while (is_part_of_name (c = *input_line_pointer++)
2276 || c == '\001')
2277 ;
2278 if (is_name_ender (c))
2279 c = *input_line_pointer++;
2280 }
2281 *--input_line_pointer = 0;
2282 return (c);
2283 }
2284
2285 unsigned int
2286 get_single_number (void)
2287 {
2288 expressionS exp;
2289 operand (&exp, expr_normal);
2290 return exp.X_add_number;
2291 }
This page took 0.116228 seconds and 5 git commands to generate.