* expr.c (operand): Remove `if (0 && ..)' statement and
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <string.h>
29 #define min(a, b) ((a) < (b) ? (a) : (b))
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "obstack.h"
34
35 static void floating_constant (expressionS * expressionP);
36 static valueT generic_bignum_to_int32 (void);
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 (void);
39 #endif
40 static void integer_constant (int radix, expressionS * expressionP);
41 static void mri_char_constant (expressionS *);
42 static void current_location (expressionS *);
43 static void clean_up_expression (expressionS * expressionP);
44 static segT operand (expressionS *, enum expr_mode);
45 static operatorT operator (int *);
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 clean_up_expression (&zero);
89 expressionP = &zero;
90 }
91
92 /* Putting constant symbols in absolute_section rather than
93 expr_section is convenient for the old a.out code, for which
94 S_GET_SEGMENT does not always retrieve the value put in by
95 S_SET_SEGMENT. */
96 symbolP = symbol_create (FAKE_LABEL_NAME,
97 (expressionP->X_op == O_constant
98 ? absolute_section
99 : expr_section),
100 0, &zero_address_frag);
101 symbol_set_value_expression (symbolP, expressionP);
102
103 if (expressionP->X_op == O_constant)
104 resolve_symbol_value (symbolP);
105
106 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
107 n->sym = symbolP;
108 as_where (&n->file, &n->line);
109 n->next = expr_symbol_lines;
110 expr_symbol_lines = n;
111
112 return symbolP;
113 }
114
115 /* Return the file and line number for an expr symbol. Return
116 non-zero if something was found, 0 if no information is known for
117 the symbol. */
118
119 int
120 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
121 {
122 register struct expr_symbol_line *l;
123
124 for (l = expr_symbol_lines; l != NULL; l = l->next)
125 {
126 if (l->sym == sym)
127 {
128 *pfile = l->file;
129 *pline = l->line;
130 return 1;
131 }
132 }
133
134 return 0;
135 }
136 \f
137 /* Utilities for building expressions.
138 Since complex expressions are recorded as symbols for use in other
139 expressions these return a symbolS * and not an expressionS *.
140 These explicitly do not take an "add_number" argument. */
141 /* ??? For completeness' sake one might want expr_build_symbol.
142 It would just return its argument. */
143
144 /* Build an expression for an unsigned constant.
145 The corresponding one for signed constants is missing because
146 there's currently no need for it. One could add an unsigned_p flag
147 but that seems more clumsy. */
148
149 symbolS *
150 expr_build_uconstant (offsetT value)
151 {
152 expressionS e;
153
154 e.X_op = O_constant;
155 e.X_add_number = value;
156 e.X_unsigned = 1;
157 return make_expr_symbol (&e);
158 }
159
160 /* Build an expression for the current location ('.'). */
161
162 symbolS *
163 expr_build_dot (void)
164 {
165 expressionS e;
166
167 current_location (&e);
168 return make_expr_symbol (&e);
169 }
170 \f
171 /* Build any floating-point literal here.
172 Also build any bignum literal here. */
173
174 /* Seems atof_machine can backscan through generic_bignum and hit whatever
175 happens to be loaded before it in memory. And its way too complicated
176 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
177 and never write into the early words, thus they'll always be zero.
178 I hate Dean's floating-point code. Bleh. */
179 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
180
181 FLONUM_TYPE generic_floating_point_number = {
182 &generic_bignum[6], /* low. (JF: Was 0) */
183 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
184 0, /* leader. */
185 0, /* exponent. */
186 0 /* sign. */
187 };
188
189 \f
190 static void
191 floating_constant (expressionS *expressionP)
192 {
193 /* input_line_pointer -> floating-point constant. */
194 int error_code;
195
196 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
197 &generic_floating_point_number);
198
199 if (error_code)
200 {
201 if (error_code == ERROR_EXPONENT_OVERFLOW)
202 {
203 as_bad (_("bad floating-point constant: exponent overflow"));
204 }
205 else
206 {
207 as_bad (_("bad floating-point constant: unknown error code=%d"),
208 error_code);
209 }
210 }
211 expressionP->X_op = O_big;
212 /* input_line_pointer -> just after constant, which may point to
213 whitespace. */
214 expressionP->X_add_number = -1;
215 }
216
217 static valueT
218 generic_bignum_to_int32 (void)
219 {
220 valueT number =
221 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
222 | (generic_bignum[0] & LITTLENUM_MASK);
223 number &= 0xffffffff;
224 return number;
225 }
226
227 #ifdef BFD64
228 static valueT
229 generic_bignum_to_int64 (void)
230 {
231 valueT number =
232 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
233 << LITTLENUM_NUMBER_OF_BITS)
234 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
235 << LITTLENUM_NUMBER_OF_BITS)
236 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
237 << LITTLENUM_NUMBER_OF_BITS)
238 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
239 return number;
240 }
241 #endif
242
243 static void
244 integer_constant (int radix, expressionS *expressionP)
245 {
246 char *start; /* Start of number. */
247 char *suffix = NULL;
248 char c;
249 valueT number; /* Offset or (absolute) value. */
250 short int digit; /* Value of next digit in current radix. */
251 short int maxdig = 0; /* Highest permitted digit value. */
252 int too_many_digits = 0; /* If we see >= this number of. */
253 char *name; /* Points to name of symbol. */
254 symbolS *symbolP; /* Points to symbol. */
255
256 int small; /* True if fits in 32 bits. */
257
258 /* May be bignum, or may fit in 32 bits. */
259 /* Most numbers fit into 32 bits, and we want this case to be fast.
260 so we pretend it will fit into 32 bits. If, after making up a 32
261 bit number, we realise that we have scanned more digits than
262 comfortably fit into 32 bits, we re-scan the digits coding them
263 into a bignum. For decimal and octal numbers we are
264 conservative: Some numbers may be assumed bignums when in fact
265 they do fit into 32 bits. Numbers of any radix can have excess
266 leading zeros: We strive to recognise this and cast them back
267 into 32 bits. We must check that the bignum really is more than
268 32 bits, and change it back to a 32-bit number if it fits. The
269 number we are looking for is expected to be positive, but if it
270 fits into 32 bits as an unsigned number, we let it be a 32-bit
271 number. The cavalier approach is for speed in ordinary cases. */
272 /* This has been extended for 64 bits. We blindly assume that if
273 you're compiling in 64-bit mode, the target is a 64-bit machine.
274 This should be cleaned up. */
275
276 #ifdef BFD64
277 #define valuesize 64
278 #else /* includes non-bfd case, mostly */
279 #define valuesize 32
280 #endif
281
282 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
283 {
284 int flt = 0;
285
286 /* In MRI mode, the number may have a suffix indicating the
287 radix. For that matter, it might actually be a floating
288 point constant. */
289 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
290 {
291 if (*suffix == 'e' || *suffix == 'E')
292 flt = 1;
293 }
294
295 if (suffix == input_line_pointer)
296 {
297 radix = 10;
298 suffix = NULL;
299 }
300 else
301 {
302 c = *--suffix;
303 c = TOUPPER (c);
304 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
305 we distinguish between 'B' and 'b'. This is the case for
306 Z80. */
307 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
308 radix = 2;
309 else if (c == 'D')
310 radix = 10;
311 else if (c == 'O' || c == 'Q')
312 radix = 8;
313 else if (c == 'H')
314 radix = 16;
315 else if (suffix[1] == '.' || c == 'E' || flt)
316 {
317 floating_constant (expressionP);
318 return;
319 }
320 else
321 {
322 radix = 10;
323 suffix = NULL;
324 }
325 }
326 }
327
328 switch (radix)
329 {
330 case 2:
331 maxdig = 2;
332 too_many_digits = valuesize + 1;
333 break;
334 case 8:
335 maxdig = radix = 8;
336 too_many_digits = (valuesize + 2) / 3 + 1;
337 break;
338 case 16:
339 maxdig = radix = 16;
340 too_many_digits = (valuesize + 3) / 4 + 1;
341 break;
342 case 10:
343 maxdig = radix = 10;
344 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
345 }
346 #undef valuesize
347 start = input_line_pointer;
348 c = *input_line_pointer++;
349 for (number = 0;
350 (digit = hex_value (c)) < maxdig;
351 c = *input_line_pointer++)
352 {
353 number = number * radix + digit;
354 }
355 /* c contains character after number. */
356 /* input_line_pointer->char after c. */
357 small = (input_line_pointer - start - 1) < too_many_digits;
358
359 if (radix == 16 && c == '_')
360 {
361 /* This is literal of the form 0x333_0_12345678_1.
362 This example is equivalent to 0x00000333000000001234567800000001. */
363
364 int num_little_digits = 0;
365 int i;
366 input_line_pointer = start; /* -> 1st digit. */
367
368 know (LITTLENUM_NUMBER_OF_BITS == 16);
369
370 for (c = '_'; c == '_'; num_little_digits += 2)
371 {
372
373 /* Convert one 64-bit word. */
374 int ndigit = 0;
375 number = 0;
376 for (c = *input_line_pointer++;
377 (digit = hex_value (c)) < maxdig;
378 c = *(input_line_pointer++))
379 {
380 number = number * radix + digit;
381 ndigit++;
382 }
383
384 /* Check for 8 digit per word max. */
385 if (ndigit > 8)
386 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
387
388 /* Add this chunk to the bignum.
389 Shift things down 2 little digits. */
390 know (LITTLENUM_NUMBER_OF_BITS == 16);
391 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
392 i >= 2;
393 i--)
394 generic_bignum[i] = generic_bignum[i - 2];
395
396 /* Add the new digits as the least significant new ones. */
397 generic_bignum[0] = number & 0xffffffff;
398 generic_bignum[1] = number >> 16;
399 }
400
401 /* Again, c is char after number, input_line_pointer->after c. */
402
403 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
404 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
405
406 assert (num_little_digits >= 4);
407
408 if (num_little_digits != 8)
409 as_bad (_("a bignum with underscores must have exactly 4 words"));
410
411 /* We might have some leading zeros. These can be trimmed to give
412 us a change to fit this constant into a small number. */
413 while (generic_bignum[num_little_digits - 1] == 0
414 && num_little_digits > 1)
415 num_little_digits--;
416
417 if (num_little_digits <= 2)
418 {
419 /* will fit into 32 bits. */
420 number = generic_bignum_to_int32 ();
421 small = 1;
422 }
423 #ifdef BFD64
424 else if (num_little_digits <= 4)
425 {
426 /* Will fit into 64 bits. */
427 number = generic_bignum_to_int64 ();
428 small = 1;
429 }
430 #endif
431 else
432 {
433 small = 0;
434
435 /* Number of littlenums in the bignum. */
436 number = num_little_digits;
437 }
438 }
439 else if (!small)
440 {
441 /* We saw a lot of digits. manufacture a bignum the hard way. */
442 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
443 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
444 long carry;
445
446 leader = generic_bignum;
447 generic_bignum[0] = 0;
448 generic_bignum[1] = 0;
449 generic_bignum[2] = 0;
450 generic_bignum[3] = 0;
451 input_line_pointer = start; /* -> 1st digit. */
452 c = *input_line_pointer++;
453 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
454 {
455 for (pointer = generic_bignum; pointer <= leader; pointer++)
456 {
457 long work;
458
459 work = carry + radix * *pointer;
460 *pointer = work & LITTLENUM_MASK;
461 carry = work >> LITTLENUM_NUMBER_OF_BITS;
462 }
463 if (carry)
464 {
465 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
466 {
467 /* Room to grow a longer bignum. */
468 *++leader = carry;
469 }
470 }
471 }
472 /* Again, c is char after number. */
473 /* input_line_pointer -> after c. */
474 know (LITTLENUM_NUMBER_OF_BITS == 16);
475 if (leader < generic_bignum + 2)
476 {
477 /* Will fit into 32 bits. */
478 number = generic_bignum_to_int32 ();
479 small = 1;
480 }
481 #ifdef BFD64
482 else if (leader < generic_bignum + 4)
483 {
484 /* Will fit into 64 bits. */
485 number = generic_bignum_to_int64 ();
486 small = 1;
487 }
488 #endif
489 else
490 {
491 /* Number of littlenums in the bignum. */
492 number = leader - generic_bignum + 1;
493 }
494 }
495
496 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
497 && suffix != NULL
498 && input_line_pointer - 1 == suffix)
499 c = *input_line_pointer++;
500
501 if (small)
502 {
503 /* Here with number, in correct radix. c is the next char.
504 Note that unlike un*x, we allow "011f" "0x9f" to both mean
505 the same as the (conventional) "9f".
506 This is simply easier than checking for strict canonical
507 form. Syntax sux! */
508
509 if (LOCAL_LABELS_FB && c == 'b')
510 {
511 /* Backward ref to local label.
512 Because it is backward, expect it to be defined. */
513 /* Construct a local label. */
514 name = fb_label_name ((int) number, 0);
515
516 /* Seen before, or symbol is defined: OK. */
517 symbolP = symbol_find (name);
518 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
519 {
520 /* Local labels are never absolute. Don't waste time
521 checking absoluteness. */
522 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
523
524 expressionP->X_op = O_symbol;
525 expressionP->X_add_symbol = symbolP;
526 }
527 else
528 {
529 /* Either not seen or not defined. */
530 /* @@ Should print out the original string instead of
531 the parsed number. */
532 as_bad (_("backward ref to unknown label \"%d:\""),
533 (int) number);
534 expressionP->X_op = O_constant;
535 }
536
537 expressionP->X_add_number = 0;
538 } /* case 'b' */
539 else if (LOCAL_LABELS_FB && c == 'f')
540 {
541 /* Forward reference. Expect symbol to be undefined or
542 unknown. undefined: seen it before. unknown: never seen
543 it before.
544
545 Construct a local label name, then an undefined symbol.
546 Don't create a xseg frag for it: caller may do that.
547 Just return it as never seen before. */
548 name = fb_label_name ((int) number, 1);
549 symbolP = symbol_find_or_make (name);
550 /* We have no need to check symbol properties. */
551 #ifndef many_segments
552 /* Since "know" puts its arg into a "string", we
553 can't have newlines in the argument. */
554 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
555 #endif
556 expressionP->X_op = O_symbol;
557 expressionP->X_add_symbol = symbolP;
558 expressionP->X_add_number = 0;
559 } /* case 'f' */
560 else if (LOCAL_LABELS_DOLLAR && c == '$')
561 {
562 /* If the dollar label is *currently* defined, then this is just
563 another reference to it. If it is not *currently* defined,
564 then this is a fresh instantiation of that number, so create
565 it. */
566
567 if (dollar_label_defined ((long) number))
568 {
569 name = dollar_label_name ((long) number, 0);
570 symbolP = symbol_find (name);
571 know (symbolP != NULL);
572 }
573 else
574 {
575 name = dollar_label_name ((long) number, 1);
576 symbolP = symbol_find_or_make (name);
577 }
578
579 expressionP->X_op = O_symbol;
580 expressionP->X_add_symbol = symbolP;
581 expressionP->X_add_number = 0;
582 } /* case '$' */
583 else
584 {
585 expressionP->X_op = O_constant;
586 expressionP->X_add_number = number;
587 input_line_pointer--; /* Restore following character. */
588 } /* Really just a number. */
589 }
590 else
591 {
592 /* Not a small number. */
593 expressionP->X_op = O_big;
594 expressionP->X_add_number = number; /* Number of littlenums. */
595 input_line_pointer--; /* -> char following number. */
596 }
597 }
598
599 /* Parse an MRI multi character constant. */
600
601 static void
602 mri_char_constant (expressionS *expressionP)
603 {
604 int i;
605
606 if (*input_line_pointer == '\''
607 && input_line_pointer[1] != '\'')
608 {
609 expressionP->X_op = O_constant;
610 expressionP->X_add_number = 0;
611 return;
612 }
613
614 /* In order to get the correct byte ordering, we must build the
615 number in reverse. */
616 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
617 {
618 int j;
619
620 generic_bignum[i] = 0;
621 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
622 {
623 if (*input_line_pointer == '\'')
624 {
625 if (input_line_pointer[1] != '\'')
626 break;
627 ++input_line_pointer;
628 }
629 generic_bignum[i] <<= 8;
630 generic_bignum[i] += *input_line_pointer;
631 ++input_line_pointer;
632 }
633
634 if (i < SIZE_OF_LARGE_NUMBER - 1)
635 {
636 /* If there is more than one littlenum, left justify the
637 last one to make it match the earlier ones. If there is
638 only one, we can just use the value directly. */
639 for (; j < CHARS_PER_LITTLENUM; j++)
640 generic_bignum[i] <<= 8;
641 }
642
643 if (*input_line_pointer == '\''
644 && input_line_pointer[1] != '\'')
645 break;
646 }
647
648 if (i < 0)
649 {
650 as_bad (_("character constant too large"));
651 i = 0;
652 }
653
654 if (i > 0)
655 {
656 int c;
657 int j;
658
659 c = SIZE_OF_LARGE_NUMBER - i;
660 for (j = 0; j < c; j++)
661 generic_bignum[j] = generic_bignum[i + j];
662 i = c;
663 }
664
665 know (LITTLENUM_NUMBER_OF_BITS == 16);
666 if (i > 2)
667 {
668 expressionP->X_op = O_big;
669 expressionP->X_add_number = i;
670 }
671 else
672 {
673 expressionP->X_op = O_constant;
674 if (i < 2)
675 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
676 else
677 expressionP->X_add_number =
678 (((generic_bignum[1] & LITTLENUM_MASK)
679 << LITTLENUM_NUMBER_OF_BITS)
680 | (generic_bignum[0] & LITTLENUM_MASK));
681 }
682
683 /* Skip the final closing quote. */
684 ++input_line_pointer;
685 }
686
687 /* Return an expression representing the current location. This
688 handles the magic symbol `.'. */
689
690 static void
691 current_location (expressionS *expressionp)
692 {
693 if (now_seg == absolute_section)
694 {
695 expressionp->X_op = O_constant;
696 expressionp->X_add_number = abs_section_offset;
697 }
698 else
699 {
700 expressionp->X_op = O_symbol;
701 expressionp->X_add_symbol = symbol_temp_new_now ();
702 expressionp->X_add_number = 0;
703 }
704 }
705
706 /* In: Input_line_pointer points to 1st char of operand, which may
707 be a space.
708
709 Out: An expressionS.
710 The operand may have been empty: in this case X_op == O_absent.
711 Input_line_pointer->(next non-blank) char after operand. */
712
713 static segT
714 operand (expressionS *expressionP, enum expr_mode mode)
715 {
716 char c;
717 symbolS *symbolP; /* Points to symbol. */
718 char *name; /* Points to name of symbol. */
719 segT segment;
720
721 /* All integers are regarded as unsigned unless they are negated.
722 This is because the only thing which cares whether a number is
723 unsigned is the code in emit_expr which extends constants into
724 bignums. It should only sign extend negative numbers, so that
725 something like ``.quad 0x80000000'' is not sign extended even
726 though it appears negative if valueT is 32 bits. */
727 expressionP->X_unsigned = 1;
728
729 /* Digits, assume it is a bignum. */
730
731 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
732 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
733
734 if (is_end_of_line[(unsigned char) c])
735 goto eol;
736
737 switch (c)
738 {
739 case '1':
740 case '2':
741 case '3':
742 case '4':
743 case '5':
744 case '6':
745 case '7':
746 case '8':
747 case '9':
748 input_line_pointer--;
749
750 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
751 ? 0 : 10,
752 expressionP);
753 break;
754
755 #ifdef LITERAL_PREFIXDOLLAR_HEX
756 case '$':
757 /* $L is the start of a local label, not a hex constant. */
758 if (* input_line_pointer == 'L')
759 goto isname;
760 integer_constant (16, expressionP);
761 break;
762 #endif
763
764 #ifdef LITERAL_PREFIXPERCENT_BIN
765 case '%':
766 integer_constant (2, expressionP);
767 break;
768 #endif
769
770 case '0':
771 /* Non-decimal radix. */
772
773 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
774 {
775 char *s;
776
777 /* Check for a hex or float constant. */
778 for (s = input_line_pointer; hex_p (*s); s++)
779 ;
780 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
781 {
782 --input_line_pointer;
783 integer_constant (0, expressionP);
784 break;
785 }
786 }
787 c = *input_line_pointer;
788 switch (c)
789 {
790 case 'o':
791 case 'O':
792 case 'q':
793 case 'Q':
794 case '8':
795 case '9':
796 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
797 {
798 integer_constant (0, expressionP);
799 break;
800 }
801 /* Fall through. */
802 default:
803 default_case:
804 if (c && strchr (FLT_CHARS, c))
805 {
806 input_line_pointer++;
807 floating_constant (expressionP);
808 expressionP->X_add_number = - TOLOWER (c);
809 }
810 else
811 {
812 /* The string was only zero. */
813 expressionP->X_op = O_constant;
814 expressionP->X_add_number = 0;
815 }
816
817 break;
818
819 case 'x':
820 case 'X':
821 if (flag_m68k_mri)
822 goto default_case;
823 input_line_pointer++;
824 integer_constant (16, expressionP);
825 break;
826
827 case 'b':
828 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
829 {
830 /* This code used to check for '+' and '-' here, and, in
831 some conditions, fall through to call
832 integer_constant. However, that didn't make sense,
833 as integer_constant only accepts digits. */
834 /* Some of our code elsewhere does permit digits greater
835 than the expected base; for consistency, do the same
836 here. */
837 if (input_line_pointer[1] < '0'
838 || input_line_pointer[1] > '9')
839 {
840 /* Parse this as a back reference to label 0. */
841 input_line_pointer--;
842 integer_constant (10, expressionP);
843 break;
844 }
845 /* Otherwise, parse this as a binary number. */
846 }
847 /* Fall through. */
848 case 'B':
849 input_line_pointer++;
850 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
851 goto default_case;
852 integer_constant (2, expressionP);
853 break;
854
855 case '0':
856 case '1':
857 case '2':
858 case '3':
859 case '4':
860 case '5':
861 case '6':
862 case '7':
863 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
864 ? 0 : 8,
865 expressionP);
866 break;
867
868 case 'f':
869 if (LOCAL_LABELS_FB)
870 {
871 /* If it says "0f" and it could possibly be a floating point
872 number, make it one. Otherwise, make it a local label,
873 and try to deal with parsing the rest later. */
874 if (!input_line_pointer[1]
875 || (is_end_of_line[0xff & input_line_pointer[1]])
876 || strchr (FLT_CHARS, 'f') == NULL)
877 goto is_0f_label;
878 {
879 char *cp = input_line_pointer + 1;
880 int r = atof_generic (&cp, ".", EXP_CHARS,
881 &generic_floating_point_number);
882 switch (r)
883 {
884 case 0:
885 case ERROR_EXPONENT_OVERFLOW:
886 if (*cp == 'f' || *cp == 'b')
887 /* Looks like a difference expression. */
888 goto is_0f_label;
889 else if (cp == input_line_pointer + 1)
890 /* No characters has been accepted -- looks like
891 end of operand. */
892 goto is_0f_label;
893 else
894 goto is_0f_float;
895 default:
896 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
897 r);
898 }
899 }
900
901 /* Okay, now we've sorted it out. We resume at one of these
902 two labels, depending on what we've decided we're probably
903 looking at. */
904 is_0f_label:
905 input_line_pointer--;
906 integer_constant (10, expressionP);
907 break;
908
909 is_0f_float:
910 /* Fall through. */
911 ;
912 }
913
914 case 'd':
915 case 'D':
916 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
917 {
918 integer_constant (0, expressionP);
919 break;
920 }
921 /* Fall through. */
922 case 'F':
923 case 'r':
924 case 'e':
925 case 'E':
926 case 'g':
927 case 'G':
928 input_line_pointer++;
929 floating_constant (expressionP);
930 expressionP->X_add_number = - TOLOWER (c);
931 break;
932
933 case '$':
934 if (LOCAL_LABELS_DOLLAR)
935 {
936 integer_constant (10, expressionP);
937 break;
938 }
939 else
940 goto default_case;
941 }
942
943 break;
944
945 case '(':
946 #ifndef NEED_INDEX_OPERATOR
947 case '[':
948 #endif
949 /* Didn't begin with digit & not a name. */
950 if (mode != expr_defer)
951 segment = expression (expressionP);
952 else
953 segment = deferred_expression (expressionP);
954 /* expression () will pass trailing whitespace. */
955 if ((c == '(' && *input_line_pointer != ')')
956 || (c == '[' && *input_line_pointer != ']'))
957 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
958 else
959 input_line_pointer++;
960 SKIP_WHITESPACE ();
961 /* Here with input_line_pointer -> char after "(...)". */
962 return segment;
963
964 #ifdef TC_M68K
965 case 'E':
966 if (! flag_m68k_mri || *input_line_pointer != '\'')
967 goto de_fault;
968 as_bad (_("EBCDIC constants are not supported"));
969 /* Fall through. */
970 case 'A':
971 if (! flag_m68k_mri || *input_line_pointer != '\'')
972 goto de_fault;
973 ++input_line_pointer;
974 /* Fall through. */
975 #endif
976 case '\'':
977 if (! flag_m68k_mri)
978 {
979 /* Warning: to conform to other people's assemblers NO
980 ESCAPEMENT is permitted for a single quote. The next
981 character, parity errors and all, is taken as the value
982 of the operand. VERY KINKY. */
983 expressionP->X_op = O_constant;
984 expressionP->X_add_number = *input_line_pointer++;
985 break;
986 }
987
988 mri_char_constant (expressionP);
989 break;
990
991 #ifdef TC_M68K
992 case '"':
993 /* Double quote is the bitwise not operator in MRI mode. */
994 if (! flag_m68k_mri)
995 goto de_fault;
996 /* Fall through. */
997 #endif
998 case '~':
999 /* '~' is permitted to start a label on the Delta. */
1000 if (is_name_beginner (c))
1001 goto isname;
1002 case '!':
1003 case '-':
1004 case '+':
1005 {
1006 operand (expressionP, mode);
1007 if (expressionP->X_op == O_constant)
1008 {
1009 /* input_line_pointer -> char after operand. */
1010 if (c == '-')
1011 {
1012 expressionP->X_add_number = - expressionP->X_add_number;
1013 /* Notice: '-' may overflow: no warning is given.
1014 This is compatible with other people's
1015 assemblers. Sigh. */
1016 expressionP->X_unsigned = 0;
1017 }
1018 else if (c == '~' || c == '"')
1019 expressionP->X_add_number = ~ expressionP->X_add_number;
1020 else if (c == '!')
1021 expressionP->X_add_number = ! expressionP->X_add_number;
1022 }
1023 else if (expressionP->X_op == O_big
1024 && expressionP->X_add_number <= 0
1025 && c == '-'
1026 && (generic_floating_point_number.sign == '+'
1027 || generic_floating_point_number.sign == 'P'))
1028 {
1029 /* Negative flonum (eg, -1.000e0). */
1030 if (generic_floating_point_number.sign == '+')
1031 generic_floating_point_number.sign = '-';
1032 else
1033 generic_floating_point_number.sign = 'N';
1034 }
1035 else if (expressionP->X_op == O_big
1036 && expressionP->X_add_number > 0)
1037 {
1038 int i;
1039
1040 if (c == '~' || c == '-')
1041 {
1042 for (i = 0; i < expressionP->X_add_number; ++i)
1043 generic_bignum[i] = ~generic_bignum[i];
1044 if (c == '-')
1045 for (i = 0; i < expressionP->X_add_number; ++i)
1046 {
1047 generic_bignum[i] += 1;
1048 if (generic_bignum[i])
1049 break;
1050 }
1051 }
1052 else if (c == '!')
1053 {
1054 int nonzero = 0;
1055 for (i = 0; i < expressionP->X_add_number; ++i)
1056 {
1057 if (generic_bignum[i])
1058 nonzero = 1;
1059 generic_bignum[i] = 0;
1060 }
1061 generic_bignum[0] = nonzero;
1062 }
1063 }
1064 else if (expressionP->X_op != O_illegal
1065 && expressionP->X_op != O_absent)
1066 {
1067 if (c != '+')
1068 {
1069 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1070 if (c == '-')
1071 expressionP->X_op = O_uminus;
1072 else if (c == '~' || c == '"')
1073 expressionP->X_op = O_bit_not;
1074 else
1075 expressionP->X_op = O_logical_not;
1076 expressionP->X_add_number = 0;
1077 }
1078 }
1079 else
1080 as_warn (_("Unary operator %c ignored because bad operand follows"),
1081 c);
1082 }
1083 break;
1084
1085 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1086 case '$':
1087 /* '$' is the program counter when in MRI mode, or when
1088 DOLLAR_DOT is defined. */
1089 #ifndef DOLLAR_DOT
1090 if (! flag_m68k_mri)
1091 goto de_fault;
1092 #endif
1093 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1094 {
1095 /* In MRI mode and on Z80, '$' is also used as the prefix
1096 for a hexadecimal constant. */
1097 integer_constant (16, expressionP);
1098 break;
1099 }
1100
1101 if (is_part_of_name (*input_line_pointer))
1102 goto isname;
1103
1104 current_location (expressionP);
1105 break;
1106 #endif
1107
1108 case '.':
1109 if (!is_part_of_name (*input_line_pointer))
1110 {
1111 current_location (expressionP);
1112 break;
1113 }
1114 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1115 && ! is_part_of_name (input_line_pointer[8]))
1116 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1117 && ! is_part_of_name (input_line_pointer[7])))
1118 {
1119 int start;
1120
1121 start = (input_line_pointer[1] == 't'
1122 || input_line_pointer[1] == 'T');
1123 input_line_pointer += start ? 8 : 7;
1124 SKIP_WHITESPACE ();
1125 if (*input_line_pointer != '(')
1126 as_bad (_("syntax error in .startof. or .sizeof."));
1127 else
1128 {
1129 char *buf;
1130
1131 ++input_line_pointer;
1132 SKIP_WHITESPACE ();
1133 name = input_line_pointer;
1134 c = get_symbol_end ();
1135
1136 buf = (char *) xmalloc (strlen (name) + 10);
1137 if (start)
1138 sprintf (buf, ".startof.%s", name);
1139 else
1140 sprintf (buf, ".sizeof.%s", name);
1141 symbolP = symbol_make (buf);
1142 free (buf);
1143
1144 expressionP->X_op = O_symbol;
1145 expressionP->X_add_symbol = symbolP;
1146 expressionP->X_add_number = 0;
1147
1148 *input_line_pointer = c;
1149 SKIP_WHITESPACE ();
1150 if (*input_line_pointer != ')')
1151 as_bad (_("syntax error in .startof. or .sizeof."));
1152 else
1153 ++input_line_pointer;
1154 }
1155 break;
1156 }
1157 else
1158 {
1159 goto isname;
1160 }
1161
1162 case ',':
1163 eol:
1164 /* Can't imagine any other kind of operand. */
1165 expressionP->X_op = O_absent;
1166 input_line_pointer--;
1167 break;
1168
1169 #ifdef TC_M68K
1170 case '%':
1171 if (! flag_m68k_mri)
1172 goto de_fault;
1173 integer_constant (2, expressionP);
1174 break;
1175
1176 case '@':
1177 if (! flag_m68k_mri)
1178 goto de_fault;
1179 integer_constant (8, expressionP);
1180 break;
1181
1182 case ':':
1183 if (! flag_m68k_mri)
1184 goto de_fault;
1185
1186 /* In MRI mode, this is a floating point constant represented
1187 using hexadecimal digits. */
1188
1189 ++input_line_pointer;
1190 integer_constant (16, expressionP);
1191 break;
1192
1193 case '*':
1194 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1195 goto de_fault;
1196
1197 current_location (expressionP);
1198 break;
1199 #endif
1200
1201 default:
1202 #ifdef TC_M68K
1203 de_fault:
1204 #endif
1205 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1206 {
1207 /* Identifier begins here.
1208 This is kludged for speed, so code is repeated. */
1209 isname:
1210 name = --input_line_pointer;
1211 c = get_symbol_end ();
1212
1213 #ifdef md_parse_name
1214 /* This is a hook for the backend to parse certain names
1215 specially in certain contexts. If a name always has a
1216 specific value, it can often be handled by simply
1217 entering it in the symbol table. */
1218 if (md_parse_name (name, expressionP, mode, &c))
1219 {
1220 *input_line_pointer = c;
1221 break;
1222 }
1223 #endif
1224
1225 #ifdef TC_I960
1226 /* The MRI i960 assembler permits
1227 lda sizeof code,g13
1228 FIXME: This should use md_parse_name. */
1229 if (flag_mri
1230 && (strcasecmp (name, "sizeof") == 0
1231 || strcasecmp (name, "startof") == 0))
1232 {
1233 int start;
1234 char *buf;
1235
1236 start = (name[1] == 't'
1237 || name[1] == 'T');
1238
1239 *input_line_pointer = c;
1240 SKIP_WHITESPACE ();
1241
1242 name = input_line_pointer;
1243 c = get_symbol_end ();
1244
1245 buf = (char *) xmalloc (strlen (name) + 10);
1246 if (start)
1247 sprintf (buf, ".startof.%s", name);
1248 else
1249 sprintf (buf, ".sizeof.%s", name);
1250 symbolP = symbol_make (buf);
1251 free (buf);
1252
1253 expressionP->X_op = O_symbol;
1254 expressionP->X_add_symbol = symbolP;
1255 expressionP->X_add_number = 0;
1256
1257 *input_line_pointer = c;
1258 SKIP_WHITESPACE ();
1259
1260 break;
1261 }
1262 #endif
1263
1264 symbolP = symbol_find_or_make (name);
1265
1266 /* If we have an absolute symbol or a reg, then we know its
1267 value now. */
1268 segment = S_GET_SEGMENT (symbolP);
1269 if (mode != expr_defer && segment == absolute_section)
1270 {
1271 expressionP->X_op = O_constant;
1272 expressionP->X_add_number = S_GET_VALUE (symbolP);
1273 }
1274 else if (mode != expr_defer && segment == reg_section)
1275 {
1276 expressionP->X_op = O_register;
1277 expressionP->X_add_number = S_GET_VALUE (symbolP);
1278 }
1279 else
1280 {
1281 expressionP->X_op = O_symbol;
1282 expressionP->X_add_symbol = symbolP;
1283 expressionP->X_add_number = 0;
1284 }
1285 *input_line_pointer = c;
1286 }
1287 else
1288 {
1289 /* Let the target try to parse it. Success is indicated by changing
1290 the X_op field to something other than O_absent and pointing
1291 input_line_pointer past the expression. If it can't parse the
1292 expression, X_op and input_line_pointer should be unchanged. */
1293 expressionP->X_op = O_absent;
1294 --input_line_pointer;
1295 md_operand (expressionP);
1296 if (expressionP->X_op == O_absent)
1297 {
1298 ++input_line_pointer;
1299 as_bad (_("bad expression"));
1300 expressionP->X_op = O_constant;
1301 expressionP->X_add_number = 0;
1302 }
1303 }
1304 break;
1305 }
1306
1307 /* It is more 'efficient' to clean up the expressionS when they are
1308 created. Doing it here saves lines of code. */
1309 clean_up_expression (expressionP);
1310 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1311 know (*input_line_pointer != ' ');
1312
1313 /* The PA port needs this information. */
1314 if (expressionP->X_add_symbol)
1315 symbol_mark_used (expressionP->X_add_symbol);
1316
1317 expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1318 expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1319
1320 switch (expressionP->X_op)
1321 {
1322 default:
1323 return absolute_section;
1324 case O_symbol:
1325 return S_GET_SEGMENT (expressionP->X_add_symbol);
1326 case O_register:
1327 return reg_section;
1328 }
1329 }
1330 \f
1331 /* Internal. Simplify a struct expression for use by expr (). */
1332
1333 /* In: address of an expressionS.
1334 The X_op field of the expressionS may only take certain values.
1335 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1336
1337 Out: expressionS may have been modified:
1338 Unused fields zeroed to help expr (). */
1339
1340 static void
1341 clean_up_expression (expressionS *expressionP)
1342 {
1343 switch (expressionP->X_op)
1344 {
1345 case O_illegal:
1346 case O_absent:
1347 expressionP->X_add_number = 0;
1348 /* Fall through. */
1349 case O_big:
1350 case O_constant:
1351 case O_register:
1352 expressionP->X_add_symbol = NULL;
1353 /* Fall through. */
1354 case O_symbol:
1355 case O_uminus:
1356 case O_bit_not:
1357 expressionP->X_op_symbol = NULL;
1358 break;
1359 default:
1360 break;
1361 }
1362 }
1363 \f
1364 /* Expression parser. */
1365
1366 /* We allow an empty expression, and just assume (absolute,0) silently.
1367 Unary operators and parenthetical expressions are treated as operands.
1368 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1369
1370 We used to do an aho/ullman shift-reduce parser, but the logic got so
1371 warped that I flushed it and wrote a recursive-descent parser instead.
1372 Now things are stable, would anybody like to write a fast parser?
1373 Most expressions are either register (which does not even reach here)
1374 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1375 So I guess it doesn't really matter how inefficient more complex expressions
1376 are parsed.
1377
1378 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1379 Also, we have consumed any leading or trailing spaces (operand does that)
1380 and done all intervening operators.
1381
1382 This returns the segment of the result, which will be
1383 absolute_section or the segment of a symbol. */
1384
1385 #undef __
1386 #define __ O_illegal
1387 #ifndef O_SINGLE_EQ
1388 #define O_SINGLE_EQ O_illegal
1389 #endif
1390
1391 /* Maps ASCII -> operators. */
1392 static const operatorT op_encoding[256] = {
1393 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1394 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1395
1396 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1397 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1398 __, __, __, __, __, __, __, __,
1399 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1400 __, __, __, __, __, __, __, __,
1401 __, __, __, __, __, __, __, __,
1402 __, __, __, __, __, __, __, __,
1403 __, __, __,
1404 #ifdef NEED_INDEX_OPERATOR
1405 O_index,
1406 #else
1407 __,
1408 #endif
1409 __, __, O_bit_exclusive_or, __,
1410 __, __, __, __, __, __, __, __,
1411 __, __, __, __, __, __, __, __,
1412 __, __, __, __, __, __, __, __,
1413 __, __, __, __, O_bit_inclusive_or, __, __, __,
1414
1415 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1416 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1417 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1418 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1419 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1420 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1421 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1423 };
1424
1425 /* Rank Examples
1426 0 operand, (expression)
1427 1 ||
1428 2 &&
1429 3 == <> < <= >= >
1430 4 + -
1431 5 used for * / % in MRI mode
1432 6 & ^ ! |
1433 7 * / % << >>
1434 8 unary - unary ~
1435 */
1436 static operator_rankT op_rank[] = {
1437 0, /* O_illegal */
1438 0, /* O_absent */
1439 0, /* O_constant */
1440 0, /* O_symbol */
1441 0, /* O_symbol_rva */
1442 0, /* O_register */
1443 0, /* O_big */
1444 9, /* O_uminus */
1445 9, /* O_bit_not */
1446 9, /* O_logical_not */
1447 8, /* O_multiply */
1448 8, /* O_divide */
1449 8, /* O_modulus */
1450 8, /* O_left_shift */
1451 8, /* O_right_shift */
1452 7, /* O_bit_inclusive_or */
1453 7, /* O_bit_or_not */
1454 7, /* O_bit_exclusive_or */
1455 7, /* O_bit_and */
1456 5, /* O_add */
1457 5, /* O_subtract */
1458 4, /* O_eq */
1459 4, /* O_ne */
1460 4, /* O_lt */
1461 4, /* O_le */
1462 4, /* O_ge */
1463 4, /* O_gt */
1464 3, /* O_logical_and */
1465 2, /* O_logical_or */
1466 1, /* O_index */
1467 0, /* O_md1 */
1468 0, /* O_md2 */
1469 0, /* O_md3 */
1470 0, /* O_md4 */
1471 0, /* O_md5 */
1472 0, /* O_md6 */
1473 0, /* O_md7 */
1474 0, /* O_md8 */
1475 0, /* O_md9 */
1476 0, /* O_md10 */
1477 0, /* O_md11 */
1478 0, /* O_md12 */
1479 0, /* O_md13 */
1480 0, /* O_md14 */
1481 0, /* O_md15 */
1482 0, /* O_md16 */
1483 };
1484
1485 /* Unfortunately, in MRI mode for the m68k, multiplication and
1486 division have lower precedence than the bit wise operators. This
1487 function sets the operator precedences correctly for the current
1488 mode. Also, MRI uses a different bit_not operator, and this fixes
1489 that as well. */
1490
1491 #define STANDARD_MUL_PRECEDENCE 8
1492 #define MRI_MUL_PRECEDENCE 6
1493
1494 void
1495 expr_set_precedence (void)
1496 {
1497 if (flag_m68k_mri)
1498 {
1499 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1500 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1501 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1502 }
1503 else
1504 {
1505 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1506 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1507 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1508 }
1509 }
1510
1511 /* Initialize the expression parser. */
1512
1513 void
1514 expr_begin (void)
1515 {
1516 expr_set_precedence ();
1517
1518 /* Verify that X_op field is wide enough. */
1519 {
1520 expressionS e;
1521 e.X_op = O_max;
1522 assert (e.X_op == O_max);
1523 }
1524 }
1525 \f
1526 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1527 sets NUM_CHARS to the number of characters in the operator.
1528 Does not advance INPUT_LINE_POINTER. */
1529
1530 static inline operatorT
1531 operator (int *num_chars)
1532 {
1533 int c;
1534 operatorT ret;
1535
1536 c = *input_line_pointer & 0xff;
1537 *num_chars = 1;
1538
1539 if (is_end_of_line[c])
1540 return O_illegal;
1541
1542 switch (c)
1543 {
1544 default:
1545 return op_encoding[c];
1546
1547 case '+':
1548 case '-':
1549 return op_encoding[c];
1550
1551 case '<':
1552 switch (input_line_pointer[1])
1553 {
1554 default:
1555 return op_encoding[c];
1556 case '<':
1557 ret = O_left_shift;
1558 break;
1559 case '>':
1560 ret = O_ne;
1561 break;
1562 case '=':
1563 ret = O_le;
1564 break;
1565 }
1566 *num_chars = 2;
1567 return ret;
1568
1569 case '=':
1570 if (input_line_pointer[1] != '=')
1571 return op_encoding[c];
1572
1573 *num_chars = 2;
1574 return O_eq;
1575
1576 case '>':
1577 switch (input_line_pointer[1])
1578 {
1579 default:
1580 return op_encoding[c];
1581 case '>':
1582 ret = O_right_shift;
1583 break;
1584 case '=':
1585 ret = O_ge;
1586 break;
1587 }
1588 *num_chars = 2;
1589 return ret;
1590
1591 case '!':
1592 switch (input_line_pointer[1])
1593 {
1594 case '!':
1595 /* We accept !! as equivalent to ^ for MRI compatibility. */
1596 *num_chars = 2;
1597 return O_bit_exclusive_or;
1598 case '=':
1599 /* We accept != as equivalent to <>. */
1600 *num_chars = 2;
1601 return O_ne;
1602 default:
1603 if (flag_m68k_mri)
1604 return O_bit_inclusive_or;
1605 return op_encoding[c];
1606 }
1607
1608 case '|':
1609 if (input_line_pointer[1] != '|')
1610 return op_encoding[c];
1611
1612 *num_chars = 2;
1613 return O_logical_or;
1614
1615 case '&':
1616 if (input_line_pointer[1] != '&')
1617 return op_encoding[c];
1618
1619 *num_chars = 2;
1620 return O_logical_and;
1621 }
1622
1623 /* NOTREACHED */
1624 }
1625
1626 /* Parse an expression. */
1627
1628 segT
1629 expr (int rankarg, /* Larger # is higher rank. */
1630 expressionS *resultP, /* Deliver result here. */
1631 enum expr_mode mode /* Controls behavior. */)
1632 {
1633 operator_rankT rank = (operator_rankT) rankarg;
1634 segT retval;
1635 expressionS right;
1636 operatorT op_left;
1637 operatorT op_right;
1638 int op_chars;
1639
1640 know (rank >= 0);
1641
1642 /* Save the value of dot for the fixup code. */
1643 if (rank == 0)
1644 dot_value = frag_now_fix ();
1645
1646 retval = operand (resultP, mode);
1647
1648 /* operand () gobbles spaces. */
1649 know (*input_line_pointer != ' ');
1650
1651 op_left = operator (&op_chars);
1652 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1653 {
1654 segT rightseg;
1655 bfd_vma frag_off;
1656
1657 input_line_pointer += op_chars; /* -> after operator. */
1658
1659 rightseg = expr (op_rank[(int) op_left], &right, mode);
1660 if (right.X_op == O_absent)
1661 {
1662 as_warn (_("missing operand; zero assumed"));
1663 right.X_op = O_constant;
1664 right.X_add_number = 0;
1665 right.X_add_symbol = NULL;
1666 right.X_op_symbol = NULL;
1667 }
1668
1669 know (*input_line_pointer != ' ');
1670
1671 if (op_left == O_index)
1672 {
1673 if (*input_line_pointer != ']')
1674 as_bad ("missing right bracket");
1675 else
1676 {
1677 ++input_line_pointer;
1678 SKIP_WHITESPACE ();
1679 }
1680 }
1681
1682 op_right = operator (&op_chars);
1683
1684 know (op_right == O_illegal
1685 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1686 know ((int) op_left >= (int) O_multiply
1687 && (int) op_left <= (int) O_index);
1688
1689 /* input_line_pointer->after right-hand quantity. */
1690 /* left-hand quantity in resultP. */
1691 /* right-hand quantity in right. */
1692 /* operator in op_left. */
1693
1694 if (resultP->X_op == O_big)
1695 {
1696 if (resultP->X_add_number > 0)
1697 as_warn (_("left operand is a bignum; integer 0 assumed"));
1698 else
1699 as_warn (_("left operand is a float; integer 0 assumed"));
1700 resultP->X_op = O_constant;
1701 resultP->X_add_number = 0;
1702 resultP->X_add_symbol = NULL;
1703 resultP->X_op_symbol = NULL;
1704 }
1705 if (right.X_op == O_big)
1706 {
1707 if (right.X_add_number > 0)
1708 as_warn (_("right operand is a bignum; integer 0 assumed"));
1709 else
1710 as_warn (_("right operand is a float; integer 0 assumed"));
1711 right.X_op = O_constant;
1712 right.X_add_number = 0;
1713 right.X_add_symbol = NULL;
1714 right.X_op_symbol = NULL;
1715 }
1716
1717 /* Optimize common cases. */
1718 #ifdef md_optimize_expr
1719 if (md_optimize_expr (resultP, op_left, &right))
1720 {
1721 /* Skip. */
1722 ;
1723 }
1724 else
1725 #endif
1726 if (op_left == O_add && right.X_op == O_constant)
1727 {
1728 /* X + constant. */
1729 resultP->X_add_number += right.X_add_number;
1730 }
1731 /* This case comes up in PIC code. */
1732 else if (op_left == O_subtract
1733 && right.X_op == O_symbol
1734 && resultP->X_op == O_symbol
1735 && retval == rightseg
1736 && (SEG_NORMAL (rightseg)
1737 || right.X_add_symbol == resultP->X_add_symbol)
1738 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1739 symbol_get_frag (right.X_add_symbol),
1740 &frag_off))
1741 {
1742 resultP->X_add_number -= right.X_add_number;
1743 resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
1744 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1745 - S_GET_VALUE (right.X_add_symbol));
1746 resultP->X_op = O_constant;
1747 resultP->X_add_symbol = 0;
1748 }
1749 else if (op_left == O_subtract && right.X_op == O_constant)
1750 {
1751 /* X - constant. */
1752 resultP->X_add_number -= right.X_add_number;
1753 }
1754 else if (op_left == O_add && resultP->X_op == O_constant)
1755 {
1756 /* Constant + X. */
1757 resultP->X_op = right.X_op;
1758 resultP->X_add_symbol = right.X_add_symbol;
1759 resultP->X_op_symbol = right.X_op_symbol;
1760 resultP->X_add_number += right.X_add_number;
1761 retval = rightseg;
1762 }
1763 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1764 {
1765 /* Constant OP constant. */
1766 offsetT v = right.X_add_number;
1767 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1768 {
1769 as_warn (_("division by zero"));
1770 v = 1;
1771 }
1772 switch (op_left)
1773 {
1774 default: abort ();
1775 case O_multiply: resultP->X_add_number *= v; break;
1776 case O_divide: resultP->X_add_number /= v; break;
1777 case O_modulus: resultP->X_add_number %= v; break;
1778 case O_left_shift: resultP->X_add_number <<= v; break;
1779 case O_right_shift:
1780 /* We always use unsigned shifts, to avoid relying on
1781 characteristics of the compiler used to compile gas. */
1782 resultP->X_add_number =
1783 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1784 break;
1785 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1786 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1787 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1788 case O_bit_and: resultP->X_add_number &= v; break;
1789 case O_add: resultP->X_add_number += v; break;
1790 case O_subtract: resultP->X_add_number -= v; break;
1791 case O_eq:
1792 resultP->X_add_number =
1793 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1794 break;
1795 case O_ne:
1796 resultP->X_add_number =
1797 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1798 break;
1799 case O_lt:
1800 resultP->X_add_number =
1801 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1802 break;
1803 case O_le:
1804 resultP->X_add_number =
1805 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1806 break;
1807 case O_ge:
1808 resultP->X_add_number =
1809 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1810 break;
1811 case O_gt:
1812 resultP->X_add_number =
1813 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1814 break;
1815 case O_logical_and:
1816 resultP->X_add_number = resultP->X_add_number && v;
1817 break;
1818 case O_logical_or:
1819 resultP->X_add_number = resultP->X_add_number || v;
1820 break;
1821 }
1822 }
1823 else if (resultP->X_op == O_symbol
1824 && right.X_op == O_symbol
1825 && (op_left == O_add
1826 || op_left == O_subtract
1827 || (resultP->X_add_number == 0
1828 && right.X_add_number == 0)))
1829 {
1830 /* Symbol OP symbol. */
1831 resultP->X_op = op_left;
1832 resultP->X_op_symbol = right.X_add_symbol;
1833 if (op_left == O_add)
1834 resultP->X_add_number += right.X_add_number;
1835 else if (op_left == O_subtract)
1836 {
1837 resultP->X_add_number -= right.X_add_number;
1838 if (retval == rightseg && SEG_NORMAL (retval))
1839 {
1840 retval = absolute_section;
1841 rightseg = absolute_section;
1842 }
1843 }
1844 }
1845 else
1846 {
1847 /* The general case. */
1848 resultP->X_add_symbol = make_expr_symbol (resultP);
1849 resultP->X_op_symbol = make_expr_symbol (&right);
1850 resultP->X_op = op_left;
1851 resultP->X_add_number = 0;
1852 resultP->X_unsigned = 1;
1853 }
1854
1855 if (retval != rightseg)
1856 {
1857 if (! SEG_NORMAL (retval))
1858 {
1859 if (retval != undefined_section || SEG_NORMAL (rightseg))
1860 retval = rightseg;
1861 }
1862 else if (SEG_NORMAL (rightseg)
1863 #ifdef DIFF_EXPR_OK
1864 && op_left != O_subtract
1865 #endif
1866 )
1867 as_bad (_("operation combines symbols in different segments"));
1868 }
1869
1870 op_left = op_right;
1871 } /* While next operator is >= this rank. */
1872
1873 /* The PA port needs this information. */
1874 if (resultP->X_add_symbol)
1875 symbol_mark_used (resultP->X_add_symbol);
1876
1877 if (rank == 0 && mode == expr_evaluate)
1878 resolve_expression (resultP);
1879
1880 return resultP->X_op == O_constant ? absolute_section : retval;
1881 }
1882
1883 /* Resolve an expression without changing any symbols/sub-expressions
1884 used. */
1885
1886 int
1887 resolve_expression (expressionS *expressionP)
1888 {
1889 /* Help out with CSE. */
1890 valueT final_val = expressionP->X_add_number;
1891 symbolS *add_symbol = expressionP->X_add_symbol;
1892 symbolS *op_symbol = expressionP->X_op_symbol;
1893 operatorT op = expressionP->X_op;
1894 valueT left, right;
1895 segT seg_left, seg_right;
1896 fragS *frag_left, *frag_right;
1897 bfd_vma frag_off;
1898
1899 switch (op)
1900 {
1901 default:
1902 return 0;
1903
1904 case O_constant:
1905 case O_register:
1906 left = 0;
1907 break;
1908
1909 case O_symbol:
1910 case O_symbol_rva:
1911 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
1912 return 0;
1913
1914 break;
1915
1916 case O_uminus:
1917 case O_bit_not:
1918 case O_logical_not:
1919 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
1920 return 0;
1921
1922 if (seg_left != absolute_section)
1923 return 0;
1924
1925 if (op == O_logical_not)
1926 left = !left;
1927 else if (op == O_uminus)
1928 left = -left;
1929 else
1930 left = ~left;
1931 op = O_constant;
1932 break;
1933
1934 case O_multiply:
1935 case O_divide:
1936 case O_modulus:
1937 case O_left_shift:
1938 case O_right_shift:
1939 case O_bit_inclusive_or:
1940 case O_bit_or_not:
1941 case O_bit_exclusive_or:
1942 case O_bit_and:
1943 case O_add:
1944 case O_subtract:
1945 case O_eq:
1946 case O_ne:
1947 case O_lt:
1948 case O_le:
1949 case O_ge:
1950 case O_gt:
1951 case O_logical_and:
1952 case O_logical_or:
1953 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
1954 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
1955 return 0;
1956
1957 /* Simplify addition or subtraction of a constant by folding the
1958 constant into X_add_number. */
1959 if (op == O_add)
1960 {
1961 if (seg_right == absolute_section)
1962 {
1963 final_val += right;
1964 op = O_symbol;
1965 break;
1966 }
1967 else if (seg_left == absolute_section)
1968 {
1969 final_val += left;
1970 left = right;
1971 seg_left = seg_right;
1972 add_symbol = op_symbol;
1973 op = O_symbol;
1974 break;
1975 }
1976 }
1977 else if (op == O_subtract)
1978 {
1979 if (seg_right == absolute_section)
1980 {
1981 final_val -= right;
1982 op = O_symbol;
1983 break;
1984 }
1985 }
1986
1987 /* Equality and non-equality tests are permitted on anything.
1988 Subtraction, and other comparison operators are permitted if
1989 both operands are in the same section.
1990 Shifts by constant zero are permitted on anything.
1991 Multiplies, bit-ors, and bit-ands with constant zero are
1992 permitted on anything.
1993 Multiplies and divides by constant one are permitted on
1994 anything.
1995 Binary operations with both operands being the same register
1996 or undefined symbol are permitted if the result doesn't depend
1997 on the input value.
1998 Otherwise, both operands must be absolute. We already handled
1999 the case of addition or subtraction of a constant above. */
2000 frag_off = 0;
2001 if (!(seg_left == absolute_section
2002 && seg_right == absolute_section)
2003 && !(op == O_eq || op == O_ne)
2004 && !((op == O_subtract
2005 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2006 && seg_left == seg_right
2007 && (finalize_syms
2008 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2009 && (seg_left != reg_section || left == right)
2010 && (seg_left != undefined_section || add_symbol == op_symbol)))
2011 {
2012 if ((seg_left == absolute_section && left == 0)
2013 || (seg_right == absolute_section && right == 0))
2014 {
2015 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2016 {
2017 if (seg_right != absolute_section || right != 0)
2018 {
2019 seg_left = seg_right;
2020 left = right;
2021 add_symbol = op_symbol;
2022 }
2023 op = O_symbol;
2024 break;
2025 }
2026 else if (op == O_left_shift || op == O_right_shift)
2027 {
2028 if (seg_left != absolute_section || left != 0)
2029 {
2030 op = O_symbol;
2031 break;
2032 }
2033 }
2034 else if (op != O_multiply
2035 && op != O_bit_or_not && op != O_bit_and)
2036 return 0;
2037 }
2038 else if (op == O_multiply
2039 && seg_left == absolute_section && left == 1)
2040 {
2041 seg_left = seg_right;
2042 left = right;
2043 add_symbol = op_symbol;
2044 op = O_symbol;
2045 break;
2046 }
2047 else if ((op == O_multiply || op == O_divide)
2048 && seg_right == absolute_section && right == 1)
2049 {
2050 op = O_symbol;
2051 break;
2052 }
2053 else if (left != right
2054 || ((seg_left != reg_section || seg_right != reg_section)
2055 && (seg_left != undefined_section
2056 || seg_right != undefined_section
2057 || add_symbol != op_symbol)))
2058 return 0;
2059 else if (op == O_bit_and || op == O_bit_inclusive_or)
2060 {
2061 op = O_symbol;
2062 break;
2063 }
2064 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2065 return 0;
2066 }
2067
2068 right += frag_off / OCTETS_PER_BYTE;
2069 switch (op)
2070 {
2071 case O_add: left += right; break;
2072 case O_subtract: left -= right; break;
2073 case O_multiply: left *= right; break;
2074 case O_divide:
2075 if (right == 0)
2076 return 0;
2077 left = (offsetT) left / (offsetT) right;
2078 break;
2079 case O_modulus:
2080 if (right == 0)
2081 return 0;
2082 left = (offsetT) left % (offsetT) right;
2083 break;
2084 case O_left_shift: left <<= right; break;
2085 case O_right_shift: left >>= right; break;
2086 case O_bit_inclusive_or: left |= right; break;
2087 case O_bit_or_not: left |= ~right; break;
2088 case O_bit_exclusive_or: left ^= right; break;
2089 case O_bit_and: left &= right; break;
2090 case O_eq:
2091 case O_ne:
2092 left = (left == right
2093 && seg_left == seg_right
2094 && (finalize_syms || frag_left == frag_right)
2095 && (seg_left != undefined_section
2096 || add_symbol == op_symbol)
2097 ? ~ (valueT) 0 : 0);
2098 if (op == O_ne)
2099 left = ~left;
2100 break;
2101 case O_lt:
2102 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2103 break;
2104 case O_le:
2105 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2106 break;
2107 case O_ge:
2108 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2109 break;
2110 case O_gt:
2111 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2112 break;
2113 case O_logical_and: left = left && right; break;
2114 case O_logical_or: left = left || right; break;
2115 default: abort ();
2116 }
2117
2118 op = O_constant;
2119 break;
2120 }
2121
2122 if (op == O_symbol)
2123 {
2124 if (seg_left == absolute_section)
2125 op = O_constant;
2126 else if (seg_left == reg_section && final_val == 0)
2127 op = O_register;
2128 else if (add_symbol != expressionP->X_add_symbol)
2129 final_val += left;
2130 expressionP->X_add_symbol = add_symbol;
2131 }
2132 expressionP->X_op = op;
2133
2134 if (op == O_constant || op == O_register)
2135 final_val += left;
2136 expressionP->X_add_number = final_val;
2137
2138 return 1;
2139 }
2140 \f
2141 /* This lives here because it belongs equally in expr.c & read.c.
2142 expr.c is just a branch office read.c anyway, and putting it
2143 here lessens the crowd at read.c.
2144
2145 Assume input_line_pointer is at start of symbol name.
2146 Advance input_line_pointer past symbol name.
2147 Turn that character into a '\0', returning its former value.
2148 This allows a string compare (RMS wants symbol names to be strings)
2149 of the symbol name.
2150 There will always be a char following symbol name, because all good
2151 lines end in end-of-line. */
2152
2153 char
2154 get_symbol_end (void)
2155 {
2156 char c;
2157
2158 /* We accept \001 in a name in case this is being called with a
2159 constructed string. */
2160 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2161 {
2162 while (is_part_of_name (c = *input_line_pointer++)
2163 || c == '\001')
2164 ;
2165 if (is_name_ender (c))
2166 c = *input_line_pointer++;
2167 }
2168 *--input_line_pointer = 0;
2169 return (c);
2170 }
2171
2172 unsigned int
2173 get_single_number (void)
2174 {
2175 expressionS exp;
2176 operand (&exp, expr_normal);
2177 return exp.X_add_number;
2178 }
This page took 0.103415 seconds and 5 git commands to generate.