PR 997
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <string.h>
29 #define min(a, b) ((a) < (b) ? (a) : (b))
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "obstack.h"
34
35 static void floating_constant (expressionS * expressionP);
36 static valueT generic_bignum_to_int32 (void);
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 (void);
39 #endif
40 static void integer_constant (int radix, expressionS * expressionP);
41 static void mri_char_constant (expressionS *);
42 static void current_location (expressionS *);
43 static void clean_up_expression (expressionS * expressionP);
44 static segT operand (expressionS *, enum expr_mode);
45 static operatorT operator (int *);
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 clean_up_expression (&zero);
89 expressionP = &zero;
90 }
91
92 /* Putting constant symbols in absolute_section rather than
93 expr_section is convenient for the old a.out code, for which
94 S_GET_SEGMENT does not always retrieve the value put in by
95 S_SET_SEGMENT. */
96 symbolP = symbol_create (FAKE_LABEL_NAME,
97 (expressionP->X_op == O_constant
98 ? absolute_section
99 : expr_section),
100 0, &zero_address_frag);
101 symbol_set_value_expression (symbolP, expressionP);
102
103 if (expressionP->X_op == O_constant)
104 resolve_symbol_value (symbolP);
105
106 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
107 n->sym = symbolP;
108 as_where (&n->file, &n->line);
109 n->next = expr_symbol_lines;
110 expr_symbol_lines = n;
111
112 return symbolP;
113 }
114
115 /* Return the file and line number for an expr symbol. Return
116 non-zero if something was found, 0 if no information is known for
117 the symbol. */
118
119 int
120 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
121 {
122 register struct expr_symbol_line *l;
123
124 for (l = expr_symbol_lines; l != NULL; l = l->next)
125 {
126 if (l->sym == sym)
127 {
128 *pfile = l->file;
129 *pline = l->line;
130 return 1;
131 }
132 }
133
134 return 0;
135 }
136 \f
137 /* Utilities for building expressions.
138 Since complex expressions are recorded as symbols for use in other
139 expressions these return a symbolS * and not an expressionS *.
140 These explicitly do not take an "add_number" argument. */
141 /* ??? For completeness' sake one might want expr_build_symbol.
142 It would just return its argument. */
143
144 /* Build an expression for an unsigned constant.
145 The corresponding one for signed constants is missing because
146 there's currently no need for it. One could add an unsigned_p flag
147 but that seems more clumsy. */
148
149 symbolS *
150 expr_build_uconstant (offsetT value)
151 {
152 expressionS e;
153
154 e.X_op = O_constant;
155 e.X_add_number = value;
156 e.X_unsigned = 1;
157 return make_expr_symbol (&e);
158 }
159
160 /* Build an expression for the current location ('.'). */
161
162 symbolS *
163 expr_build_dot (void)
164 {
165 expressionS e;
166
167 current_location (&e);
168 return make_expr_symbol (&e);
169 }
170 \f
171 /* Build any floating-point literal here.
172 Also build any bignum literal here. */
173
174 /* Seems atof_machine can backscan through generic_bignum and hit whatever
175 happens to be loaded before it in memory. And its way too complicated
176 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
177 and never write into the early words, thus they'll always be zero.
178 I hate Dean's floating-point code. Bleh. */
179 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
180
181 FLONUM_TYPE generic_floating_point_number = {
182 &generic_bignum[6], /* low. (JF: Was 0) */
183 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
184 0, /* leader. */
185 0, /* exponent. */
186 0 /* sign. */
187 };
188
189 \f
190 static void
191 floating_constant (expressionS *expressionP)
192 {
193 /* input_line_pointer -> floating-point constant. */
194 int error_code;
195
196 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
197 &generic_floating_point_number);
198
199 if (error_code)
200 {
201 if (error_code == ERROR_EXPONENT_OVERFLOW)
202 {
203 as_bad (_("bad floating-point constant: exponent overflow"));
204 }
205 else
206 {
207 as_bad (_("bad floating-point constant: unknown error code=%d"),
208 error_code);
209 }
210 }
211 expressionP->X_op = O_big;
212 /* input_line_pointer -> just after constant, which may point to
213 whitespace. */
214 expressionP->X_add_number = -1;
215 }
216
217 static valueT
218 generic_bignum_to_int32 (void)
219 {
220 valueT number =
221 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
222 | (generic_bignum[0] & LITTLENUM_MASK);
223 number &= 0xffffffff;
224 return number;
225 }
226
227 #ifdef BFD64
228 static valueT
229 generic_bignum_to_int64 (void)
230 {
231 valueT number =
232 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
233 << LITTLENUM_NUMBER_OF_BITS)
234 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
235 << LITTLENUM_NUMBER_OF_BITS)
236 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
237 << LITTLENUM_NUMBER_OF_BITS)
238 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
239 return number;
240 }
241 #endif
242
243 static void
244 integer_constant (int radix, expressionS *expressionP)
245 {
246 char *start; /* Start of number. */
247 char *suffix = NULL;
248 char c;
249 valueT number; /* Offset or (absolute) value. */
250 short int digit; /* Value of next digit in current radix. */
251 short int maxdig = 0; /* Highest permitted digit value. */
252 int too_many_digits = 0; /* If we see >= this number of. */
253 char *name; /* Points to name of symbol. */
254 symbolS *symbolP; /* Points to symbol. */
255
256 int small; /* True if fits in 32 bits. */
257
258 /* May be bignum, or may fit in 32 bits. */
259 /* Most numbers fit into 32 bits, and we want this case to be fast.
260 so we pretend it will fit into 32 bits. If, after making up a 32
261 bit number, we realise that we have scanned more digits than
262 comfortably fit into 32 bits, we re-scan the digits coding them
263 into a bignum. For decimal and octal numbers we are
264 conservative: Some numbers may be assumed bignums when in fact
265 they do fit into 32 bits. Numbers of any radix can have excess
266 leading zeros: We strive to recognise this and cast them back
267 into 32 bits. We must check that the bignum really is more than
268 32 bits, and change it back to a 32-bit number if it fits. The
269 number we are looking for is expected to be positive, but if it
270 fits into 32 bits as an unsigned number, we let it be a 32-bit
271 number. The cavalier approach is for speed in ordinary cases. */
272 /* This has been extended for 64 bits. We blindly assume that if
273 you're compiling in 64-bit mode, the target is a 64-bit machine.
274 This should be cleaned up. */
275
276 #ifdef BFD64
277 #define valuesize 64
278 #else /* includes non-bfd case, mostly */
279 #define valuesize 32
280 #endif
281
282 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
283 {
284 int flt = 0;
285
286 /* In MRI mode, the number may have a suffix indicating the
287 radix. For that matter, it might actually be a floating
288 point constant. */
289 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
290 {
291 if (*suffix == 'e' || *suffix == 'E')
292 flt = 1;
293 }
294
295 if (suffix == input_line_pointer)
296 {
297 radix = 10;
298 suffix = NULL;
299 }
300 else
301 {
302 c = *--suffix;
303 c = TOUPPER (c);
304 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
305 we distinguish between 'B' and 'b'. This is the case for
306 Z80. */
307 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
308 radix = 2;
309 else if (c == 'D')
310 radix = 10;
311 else if (c == 'O' || c == 'Q')
312 radix = 8;
313 else if (c == 'H')
314 radix = 16;
315 else if (suffix[1] == '.' || c == 'E' || flt)
316 {
317 floating_constant (expressionP);
318 return;
319 }
320 else
321 {
322 radix = 10;
323 suffix = NULL;
324 }
325 }
326 }
327
328 switch (radix)
329 {
330 case 2:
331 maxdig = 2;
332 too_many_digits = valuesize + 1;
333 break;
334 case 8:
335 maxdig = radix = 8;
336 too_many_digits = (valuesize + 2) / 3 + 1;
337 break;
338 case 16:
339 maxdig = radix = 16;
340 too_many_digits = (valuesize + 3) / 4 + 1;
341 break;
342 case 10:
343 maxdig = radix = 10;
344 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
345 }
346 #undef valuesize
347 start = input_line_pointer;
348 c = *input_line_pointer++;
349 for (number = 0;
350 (digit = hex_value (c)) < maxdig;
351 c = *input_line_pointer++)
352 {
353 number = number * radix + digit;
354 }
355 /* c contains character after number. */
356 /* input_line_pointer->char after c. */
357 small = (input_line_pointer - start - 1) < too_many_digits;
358
359 if (radix == 16 && c == '_')
360 {
361 /* This is literal of the form 0x333_0_12345678_1.
362 This example is equivalent to 0x00000333000000001234567800000001. */
363
364 int num_little_digits = 0;
365 int i;
366 input_line_pointer = start; /* -> 1st digit. */
367
368 know (LITTLENUM_NUMBER_OF_BITS == 16);
369
370 for (c = '_'; c == '_'; num_little_digits += 2)
371 {
372
373 /* Convert one 64-bit word. */
374 int ndigit = 0;
375 number = 0;
376 for (c = *input_line_pointer++;
377 (digit = hex_value (c)) < maxdig;
378 c = *(input_line_pointer++))
379 {
380 number = number * radix + digit;
381 ndigit++;
382 }
383
384 /* Check for 8 digit per word max. */
385 if (ndigit > 8)
386 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
387
388 /* Add this chunk to the bignum.
389 Shift things down 2 little digits. */
390 know (LITTLENUM_NUMBER_OF_BITS == 16);
391 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
392 i >= 2;
393 i--)
394 generic_bignum[i] = generic_bignum[i - 2];
395
396 /* Add the new digits as the least significant new ones. */
397 generic_bignum[0] = number & 0xffffffff;
398 generic_bignum[1] = number >> 16;
399 }
400
401 /* Again, c is char after number, input_line_pointer->after c. */
402
403 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
404 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
405
406 assert (num_little_digits >= 4);
407
408 if (num_little_digits != 8)
409 as_bad (_("a bignum with underscores must have exactly 4 words"));
410
411 /* We might have some leading zeros. These can be trimmed to give
412 us a change to fit this constant into a small number. */
413 while (generic_bignum[num_little_digits - 1] == 0
414 && num_little_digits > 1)
415 num_little_digits--;
416
417 if (num_little_digits <= 2)
418 {
419 /* will fit into 32 bits. */
420 number = generic_bignum_to_int32 ();
421 small = 1;
422 }
423 #ifdef BFD64
424 else if (num_little_digits <= 4)
425 {
426 /* Will fit into 64 bits. */
427 number = generic_bignum_to_int64 ();
428 small = 1;
429 }
430 #endif
431 else
432 {
433 small = 0;
434
435 /* Number of littlenums in the bignum. */
436 number = num_little_digits;
437 }
438 }
439 else if (!small)
440 {
441 /* We saw a lot of digits. manufacture a bignum the hard way. */
442 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
443 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
444 long carry;
445
446 leader = generic_bignum;
447 generic_bignum[0] = 0;
448 generic_bignum[1] = 0;
449 generic_bignum[2] = 0;
450 generic_bignum[3] = 0;
451 input_line_pointer = start; /* -> 1st digit. */
452 c = *input_line_pointer++;
453 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
454 {
455 for (pointer = generic_bignum; pointer <= leader; pointer++)
456 {
457 long work;
458
459 work = carry + radix * *pointer;
460 *pointer = work & LITTLENUM_MASK;
461 carry = work >> LITTLENUM_NUMBER_OF_BITS;
462 }
463 if (carry)
464 {
465 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
466 {
467 /* Room to grow a longer bignum. */
468 *++leader = carry;
469 }
470 }
471 }
472 /* Again, c is char after number. */
473 /* input_line_pointer -> after c. */
474 know (LITTLENUM_NUMBER_OF_BITS == 16);
475 if (leader < generic_bignum + 2)
476 {
477 /* Will fit into 32 bits. */
478 number = generic_bignum_to_int32 ();
479 small = 1;
480 }
481 #ifdef BFD64
482 else if (leader < generic_bignum + 4)
483 {
484 /* Will fit into 64 bits. */
485 number = generic_bignum_to_int64 ();
486 small = 1;
487 }
488 #endif
489 else
490 {
491 /* Number of littlenums in the bignum. */
492 number = leader - generic_bignum + 1;
493 }
494 }
495
496 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
497 && suffix != NULL
498 && input_line_pointer - 1 == suffix)
499 c = *input_line_pointer++;
500
501 if (small)
502 {
503 /* Here with number, in correct radix. c is the next char.
504 Note that unlike un*x, we allow "011f" "0x9f" to both mean
505 the same as the (conventional) "9f".
506 This is simply easier than checking for strict canonical
507 form. Syntax sux! */
508
509 if (LOCAL_LABELS_FB && c == 'b')
510 {
511 /* Backward ref to local label.
512 Because it is backward, expect it to be defined. */
513 /* Construct a local label. */
514 name = fb_label_name ((int) number, 0);
515
516 /* Seen before, or symbol is defined: OK. */
517 symbolP = symbol_find (name);
518 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
519 {
520 /* Local labels are never absolute. Don't waste time
521 checking absoluteness. */
522 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
523
524 expressionP->X_op = O_symbol;
525 expressionP->X_add_symbol = symbolP;
526 }
527 else
528 {
529 /* Either not seen or not defined. */
530 /* @@ Should print out the original string instead of
531 the parsed number. */
532 as_bad (_("backward ref to unknown label \"%d:\""),
533 (int) number);
534 expressionP->X_op = O_constant;
535 }
536
537 expressionP->X_add_number = 0;
538 } /* case 'b' */
539 else if (LOCAL_LABELS_FB && c == 'f')
540 {
541 /* Forward reference. Expect symbol to be undefined or
542 unknown. undefined: seen it before. unknown: never seen
543 it before.
544
545 Construct a local label name, then an undefined symbol.
546 Don't create a xseg frag for it: caller may do that.
547 Just return it as never seen before. */
548 name = fb_label_name ((int) number, 1);
549 symbolP = symbol_find_or_make (name);
550 /* We have no need to check symbol properties. */
551 #ifndef many_segments
552 /* Since "know" puts its arg into a "string", we
553 can't have newlines in the argument. */
554 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
555 #endif
556 expressionP->X_op = O_symbol;
557 expressionP->X_add_symbol = symbolP;
558 expressionP->X_add_number = 0;
559 } /* case 'f' */
560 else if (LOCAL_LABELS_DOLLAR && c == '$')
561 {
562 /* If the dollar label is *currently* defined, then this is just
563 another reference to it. If it is not *currently* defined,
564 then this is a fresh instantiation of that number, so create
565 it. */
566
567 if (dollar_label_defined ((long) number))
568 {
569 name = dollar_label_name ((long) number, 0);
570 symbolP = symbol_find (name);
571 know (symbolP != NULL);
572 }
573 else
574 {
575 name = dollar_label_name ((long) number, 1);
576 symbolP = symbol_find_or_make (name);
577 }
578
579 expressionP->X_op = O_symbol;
580 expressionP->X_add_symbol = symbolP;
581 expressionP->X_add_number = 0;
582 } /* case '$' */
583 else
584 {
585 expressionP->X_op = O_constant;
586 expressionP->X_add_number = number;
587 input_line_pointer--; /* Restore following character. */
588 } /* Really just a number. */
589 }
590 else
591 {
592 /* Not a small number. */
593 expressionP->X_op = O_big;
594 expressionP->X_add_number = number; /* Number of littlenums. */
595 input_line_pointer--; /* -> char following number. */
596 }
597 }
598
599 /* Parse an MRI multi character constant. */
600
601 static void
602 mri_char_constant (expressionS *expressionP)
603 {
604 int i;
605
606 if (*input_line_pointer == '\''
607 && input_line_pointer[1] != '\'')
608 {
609 expressionP->X_op = O_constant;
610 expressionP->X_add_number = 0;
611 return;
612 }
613
614 /* In order to get the correct byte ordering, we must build the
615 number in reverse. */
616 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
617 {
618 int j;
619
620 generic_bignum[i] = 0;
621 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
622 {
623 if (*input_line_pointer == '\'')
624 {
625 if (input_line_pointer[1] != '\'')
626 break;
627 ++input_line_pointer;
628 }
629 generic_bignum[i] <<= 8;
630 generic_bignum[i] += *input_line_pointer;
631 ++input_line_pointer;
632 }
633
634 if (i < SIZE_OF_LARGE_NUMBER - 1)
635 {
636 /* If there is more than one littlenum, left justify the
637 last one to make it match the earlier ones. If there is
638 only one, we can just use the value directly. */
639 for (; j < CHARS_PER_LITTLENUM; j++)
640 generic_bignum[i] <<= 8;
641 }
642
643 if (*input_line_pointer == '\''
644 && input_line_pointer[1] != '\'')
645 break;
646 }
647
648 if (i < 0)
649 {
650 as_bad (_("character constant too large"));
651 i = 0;
652 }
653
654 if (i > 0)
655 {
656 int c;
657 int j;
658
659 c = SIZE_OF_LARGE_NUMBER - i;
660 for (j = 0; j < c; j++)
661 generic_bignum[j] = generic_bignum[i + j];
662 i = c;
663 }
664
665 know (LITTLENUM_NUMBER_OF_BITS == 16);
666 if (i > 2)
667 {
668 expressionP->X_op = O_big;
669 expressionP->X_add_number = i;
670 }
671 else
672 {
673 expressionP->X_op = O_constant;
674 if (i < 2)
675 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
676 else
677 expressionP->X_add_number =
678 (((generic_bignum[1] & LITTLENUM_MASK)
679 << LITTLENUM_NUMBER_OF_BITS)
680 | (generic_bignum[0] & LITTLENUM_MASK));
681 }
682
683 /* Skip the final closing quote. */
684 ++input_line_pointer;
685 }
686
687 /* Return an expression representing the current location. This
688 handles the magic symbol `.'. */
689
690 static void
691 current_location (expressionS *expressionp)
692 {
693 if (now_seg == absolute_section)
694 {
695 expressionp->X_op = O_constant;
696 expressionp->X_add_number = abs_section_offset;
697 }
698 else
699 {
700 expressionp->X_op = O_symbol;
701 expressionp->X_add_symbol = symbol_temp_new_now ();
702 expressionp->X_add_number = 0;
703 }
704 }
705
706 /* In: Input_line_pointer points to 1st char of operand, which may
707 be a space.
708
709 Out: An expressionS.
710 The operand may have been empty: in this case X_op == O_absent.
711 Input_line_pointer->(next non-blank) char after operand. */
712
713 static segT
714 operand (expressionS *expressionP, enum expr_mode mode)
715 {
716 char c;
717 symbolS *symbolP; /* Points to symbol. */
718 char *name; /* Points to name of symbol. */
719 segT segment;
720
721 /* All integers are regarded as unsigned unless they are negated.
722 This is because the only thing which cares whether a number is
723 unsigned is the code in emit_expr which extends constants into
724 bignums. It should only sign extend negative numbers, so that
725 something like ``.quad 0x80000000'' is not sign extended even
726 though it appears negative if valueT is 32 bits. */
727 expressionP->X_unsigned = 1;
728
729 /* Digits, assume it is a bignum. */
730
731 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
732 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
733
734 if (is_end_of_line[(unsigned char) c])
735 goto eol;
736
737 switch (c)
738 {
739 case '1':
740 case '2':
741 case '3':
742 case '4':
743 case '5':
744 case '6':
745 case '7':
746 case '8':
747 case '9':
748 input_line_pointer--;
749
750 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
751 ? 0 : 10,
752 expressionP);
753 break;
754
755 #ifdef LITERAL_PREFIXDOLLAR_HEX
756 case '$':
757 /* $L is the start of a local label, not a hex constant. */
758 if (* input_line_pointer == 'L')
759 goto isname;
760 integer_constant (16, expressionP);
761 break;
762 #endif
763
764 #ifdef LITERAL_PREFIXPERCENT_BIN
765 case '%':
766 integer_constant (2, expressionP);
767 break;
768 #endif
769
770 case '0':
771 /* Non-decimal radix. */
772
773 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
774 {
775 char *s;
776
777 /* Check for a hex or float constant. */
778 for (s = input_line_pointer; hex_p (*s); s++)
779 ;
780 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
781 {
782 --input_line_pointer;
783 integer_constant (0, expressionP);
784 break;
785 }
786 }
787 c = *input_line_pointer;
788 switch (c)
789 {
790 case 'o':
791 case 'O':
792 case 'q':
793 case 'Q':
794 case '8':
795 case '9':
796 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
797 {
798 integer_constant (0, expressionP);
799 break;
800 }
801 /* Fall through. */
802 default:
803 default_case:
804 if (c && strchr (FLT_CHARS, c))
805 {
806 input_line_pointer++;
807 floating_constant (expressionP);
808 expressionP->X_add_number = - TOLOWER (c);
809 }
810 else
811 {
812 /* The string was only zero. */
813 expressionP->X_op = O_constant;
814 expressionP->X_add_number = 0;
815 }
816
817 break;
818
819 case 'x':
820 case 'X':
821 if (flag_m68k_mri)
822 goto default_case;
823 input_line_pointer++;
824 integer_constant (16, expressionP);
825 break;
826
827 case 'b':
828 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
829 {
830 /* This code used to check for '+' and '-' here, and, in
831 some conditions, fall through to call
832 integer_constant. However, that didn't make sense,
833 as integer_constant only accepts digits. */
834 /* Some of our code elsewhere does permit digits greater
835 than the expected base; for consistency, do the same
836 here. */
837 if (input_line_pointer[1] < '0'
838 || input_line_pointer[1] > '9')
839 {
840 /* Parse this as a back reference to label 0. */
841 input_line_pointer--;
842 integer_constant (10, expressionP);
843 break;
844 }
845 /* Otherwise, parse this as a binary number. */
846 }
847 /* Fall through. */
848 case 'B':
849 input_line_pointer++;
850 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
851 goto default_case;
852 integer_constant (2, expressionP);
853 break;
854
855 case '0':
856 case '1':
857 case '2':
858 case '3':
859 case '4':
860 case '5':
861 case '6':
862 case '7':
863 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
864 ? 0 : 8,
865 expressionP);
866 break;
867
868 case 'f':
869 if (LOCAL_LABELS_FB)
870 {
871 /* If it says "0f" and it could possibly be a floating point
872 number, make it one. Otherwise, make it a local label,
873 and try to deal with parsing the rest later. */
874 if (!input_line_pointer[1]
875 || (is_end_of_line[0xff & input_line_pointer[1]])
876 || strchr (FLT_CHARS, 'f') == NULL)
877 goto is_0f_label;
878 {
879 char *cp = input_line_pointer + 1;
880 int r = atof_generic (&cp, ".", EXP_CHARS,
881 &generic_floating_point_number);
882 switch (r)
883 {
884 case 0:
885 case ERROR_EXPONENT_OVERFLOW:
886 if (*cp == 'f' || *cp == 'b')
887 /* Looks like a difference expression. */
888 goto is_0f_label;
889 else if (cp == input_line_pointer + 1)
890 /* No characters has been accepted -- looks like
891 end of operand. */
892 goto is_0f_label;
893 else
894 goto is_0f_float;
895 default:
896 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
897 r);
898 }
899 }
900
901 /* Okay, now we've sorted it out. We resume at one of these
902 two labels, depending on what we've decided we're probably
903 looking at. */
904 is_0f_label:
905 input_line_pointer--;
906 integer_constant (10, expressionP);
907 break;
908
909 is_0f_float:
910 /* Fall through. */
911 ;
912 }
913
914 case 'd':
915 case 'D':
916 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
917 {
918 integer_constant (0, expressionP);
919 break;
920 }
921 /* Fall through. */
922 case 'F':
923 case 'r':
924 case 'e':
925 case 'E':
926 case 'g':
927 case 'G':
928 input_line_pointer++;
929 floating_constant (expressionP);
930 expressionP->X_add_number = - TOLOWER (c);
931 break;
932
933 case '$':
934 if (LOCAL_LABELS_DOLLAR)
935 {
936 integer_constant (10, expressionP);
937 break;
938 }
939 else
940 goto default_case;
941 }
942
943 break;
944
945 case '(':
946 #ifndef NEED_INDEX_OPERATOR
947 case '[':
948 #endif
949 /* Didn't begin with digit & not a name. */
950 if (mode != expr_defer)
951 segment = expression (expressionP);
952 else
953 segment = deferred_expression (expressionP);
954 /* expression () will pass trailing whitespace. */
955 if ((c == '(' && *input_line_pointer != ')')
956 || (c == '[' && *input_line_pointer != ']'))
957 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
958 else
959 input_line_pointer++;
960 SKIP_WHITESPACE ();
961 /* Here with input_line_pointer -> char after "(...)". */
962 return segment;
963
964 #ifdef TC_M68K
965 case 'E':
966 if (! flag_m68k_mri || *input_line_pointer != '\'')
967 goto de_fault;
968 as_bad (_("EBCDIC constants are not supported"));
969 /* Fall through. */
970 case 'A':
971 if (! flag_m68k_mri || *input_line_pointer != '\'')
972 goto de_fault;
973 ++input_line_pointer;
974 /* Fall through. */
975 #endif
976 case '\'':
977 if (! flag_m68k_mri)
978 {
979 /* Warning: to conform to other people's assemblers NO
980 ESCAPEMENT is permitted for a single quote. The next
981 character, parity errors and all, is taken as the value
982 of the operand. VERY KINKY. */
983 expressionP->X_op = O_constant;
984 expressionP->X_add_number = *input_line_pointer++;
985 break;
986 }
987
988 mri_char_constant (expressionP);
989 break;
990
991 #ifdef TC_M68K
992 case '"':
993 /* Double quote is the bitwise not operator in MRI mode. */
994 if (! flag_m68k_mri)
995 goto de_fault;
996 /* Fall through. */
997 #endif
998 case '~':
999 /* '~' is permitted to start a label on the Delta. */
1000 if (is_name_beginner (c))
1001 goto isname;
1002 case '!':
1003 case '-':
1004 case '+':
1005 {
1006 /* Do not accept ++e or --e as +(+e) or -(-e)
1007 Disabled, since the preprocessor removes whitespace. */
1008 if (0 && (c == '-' || c == '+') && *input_line_pointer == c)
1009 goto target_op;
1010
1011 operand (expressionP, mode);
1012 if (expressionP->X_op == O_constant)
1013 {
1014 /* input_line_pointer -> char after operand. */
1015 if (c == '-')
1016 {
1017 expressionP->X_add_number = - expressionP->X_add_number;
1018 /* Notice: '-' may overflow: no warning is given.
1019 This is compatible with other people's
1020 assemblers. Sigh. */
1021 expressionP->X_unsigned = 0;
1022 }
1023 else if (c == '~' || c == '"')
1024 expressionP->X_add_number = ~ expressionP->X_add_number;
1025 else if (c == '!')
1026 expressionP->X_add_number = ! expressionP->X_add_number;
1027 }
1028 else if (expressionP->X_op == O_big
1029 && expressionP->X_add_number <= 0
1030 && c == '-'
1031 && (generic_floating_point_number.sign == '+'
1032 || generic_floating_point_number.sign == 'P'))
1033 {
1034 /* Negative flonum (eg, -1.000e0). */
1035 if (generic_floating_point_number.sign == '+')
1036 generic_floating_point_number.sign = '-';
1037 else
1038 generic_floating_point_number.sign = 'N';
1039 }
1040 else if (expressionP->X_op == O_big
1041 && expressionP->X_add_number > 0)
1042 {
1043 int i;
1044
1045 if (c == '~' || c == '-')
1046 {
1047 for (i = 0; i < expressionP->X_add_number; ++i)
1048 generic_bignum[i] = ~generic_bignum[i];
1049 if (c == '-')
1050 for (i = 0; i < expressionP->X_add_number; ++i)
1051 {
1052 generic_bignum[i] += 1;
1053 if (generic_bignum[i])
1054 break;
1055 }
1056 }
1057 else if (c == '!')
1058 {
1059 int nonzero = 0;
1060 for (i = 0; i < expressionP->X_add_number; ++i)
1061 {
1062 if (generic_bignum[i])
1063 nonzero = 1;
1064 generic_bignum[i] = 0;
1065 }
1066 generic_bignum[0] = nonzero;
1067 }
1068 }
1069 else if (expressionP->X_op != O_illegal
1070 && expressionP->X_op != O_absent)
1071 {
1072 if (c != '+')
1073 {
1074 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1075 if (c == '-')
1076 expressionP->X_op = O_uminus;
1077 else if (c == '~' || c == '"')
1078 expressionP->X_op = O_bit_not;
1079 else
1080 expressionP->X_op = O_logical_not;
1081 expressionP->X_add_number = 0;
1082 }
1083 }
1084 else
1085 as_warn (_("Unary operator %c ignored because bad operand follows"),
1086 c);
1087 }
1088 break;
1089
1090 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1091 case '$':
1092 /* '$' is the program counter when in MRI mode, or when
1093 DOLLAR_DOT is defined. */
1094 #ifndef DOLLAR_DOT
1095 if (! flag_m68k_mri)
1096 goto de_fault;
1097 #endif
1098 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1099 {
1100 /* In MRI mode and on Z80, '$' is also used as the prefix
1101 for a hexadecimal constant. */
1102 integer_constant (16, expressionP);
1103 break;
1104 }
1105
1106 if (is_part_of_name (*input_line_pointer))
1107 goto isname;
1108
1109 current_location (expressionP);
1110 break;
1111 #endif
1112
1113 case '.':
1114 if (!is_part_of_name (*input_line_pointer))
1115 {
1116 current_location (expressionP);
1117 break;
1118 }
1119 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1120 && ! is_part_of_name (input_line_pointer[8]))
1121 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1122 && ! is_part_of_name (input_line_pointer[7])))
1123 {
1124 int start;
1125
1126 start = (input_line_pointer[1] == 't'
1127 || input_line_pointer[1] == 'T');
1128 input_line_pointer += start ? 8 : 7;
1129 SKIP_WHITESPACE ();
1130 if (*input_line_pointer != '(')
1131 as_bad (_("syntax error in .startof. or .sizeof."));
1132 else
1133 {
1134 char *buf;
1135
1136 ++input_line_pointer;
1137 SKIP_WHITESPACE ();
1138 name = input_line_pointer;
1139 c = get_symbol_end ();
1140
1141 buf = (char *) xmalloc (strlen (name) + 10);
1142 if (start)
1143 sprintf (buf, ".startof.%s", name);
1144 else
1145 sprintf (buf, ".sizeof.%s", name);
1146 symbolP = symbol_make (buf);
1147 free (buf);
1148
1149 expressionP->X_op = O_symbol;
1150 expressionP->X_add_symbol = symbolP;
1151 expressionP->X_add_number = 0;
1152
1153 *input_line_pointer = c;
1154 SKIP_WHITESPACE ();
1155 if (*input_line_pointer != ')')
1156 as_bad (_("syntax error in .startof. or .sizeof."));
1157 else
1158 ++input_line_pointer;
1159 }
1160 break;
1161 }
1162 else
1163 {
1164 goto isname;
1165 }
1166
1167 case ',':
1168 eol:
1169 /* Can't imagine any other kind of operand. */
1170 expressionP->X_op = O_absent;
1171 input_line_pointer--;
1172 break;
1173
1174 #ifdef TC_M68K
1175 case '%':
1176 if (! flag_m68k_mri)
1177 goto de_fault;
1178 integer_constant (2, expressionP);
1179 break;
1180
1181 case '@':
1182 if (! flag_m68k_mri)
1183 goto de_fault;
1184 integer_constant (8, expressionP);
1185 break;
1186
1187 case ':':
1188 if (! flag_m68k_mri)
1189 goto de_fault;
1190
1191 /* In MRI mode, this is a floating point constant represented
1192 using hexadecimal digits. */
1193
1194 ++input_line_pointer;
1195 integer_constant (16, expressionP);
1196 break;
1197
1198 case '*':
1199 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1200 goto de_fault;
1201
1202 current_location (expressionP);
1203 break;
1204 #endif
1205
1206 default:
1207 #ifdef TC_M68K
1208 de_fault:
1209 #endif
1210 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1211 {
1212 /* Identifier begins here.
1213 This is kludged for speed, so code is repeated. */
1214 isname:
1215 name = --input_line_pointer;
1216 c = get_symbol_end ();
1217
1218 #ifdef md_parse_name
1219 /* This is a hook for the backend to parse certain names
1220 specially in certain contexts. If a name always has a
1221 specific value, it can often be handled by simply
1222 entering it in the symbol table. */
1223 if (md_parse_name (name, expressionP, mode, &c))
1224 {
1225 *input_line_pointer = c;
1226 break;
1227 }
1228 #endif
1229
1230 #ifdef TC_I960
1231 /* The MRI i960 assembler permits
1232 lda sizeof code,g13
1233 FIXME: This should use md_parse_name. */
1234 if (flag_mri
1235 && (strcasecmp (name, "sizeof") == 0
1236 || strcasecmp (name, "startof") == 0))
1237 {
1238 int start;
1239 char *buf;
1240
1241 start = (name[1] == 't'
1242 || name[1] == 'T');
1243
1244 *input_line_pointer = c;
1245 SKIP_WHITESPACE ();
1246
1247 name = input_line_pointer;
1248 c = get_symbol_end ();
1249
1250 buf = (char *) xmalloc (strlen (name) + 10);
1251 if (start)
1252 sprintf (buf, ".startof.%s", name);
1253 else
1254 sprintf (buf, ".sizeof.%s", name);
1255 symbolP = symbol_make (buf);
1256 free (buf);
1257
1258 expressionP->X_op = O_symbol;
1259 expressionP->X_add_symbol = symbolP;
1260 expressionP->X_add_number = 0;
1261
1262 *input_line_pointer = c;
1263 SKIP_WHITESPACE ();
1264
1265 break;
1266 }
1267 #endif
1268
1269 symbolP = symbol_find_or_make (name);
1270
1271 /* If we have an absolute symbol or a reg, then we know its
1272 value now. */
1273 segment = S_GET_SEGMENT (symbolP);
1274 if (mode != expr_defer && segment == absolute_section)
1275 {
1276 expressionP->X_op = O_constant;
1277 expressionP->X_add_number = S_GET_VALUE (symbolP);
1278 }
1279 else if (mode != expr_defer && segment == reg_section)
1280 {
1281 expressionP->X_op = O_register;
1282 expressionP->X_add_number = S_GET_VALUE (symbolP);
1283 }
1284 else
1285 {
1286 expressionP->X_op = O_symbol;
1287 expressionP->X_add_symbol = symbolP;
1288 expressionP->X_add_number = 0;
1289 }
1290 *input_line_pointer = c;
1291 }
1292 else
1293 {
1294 target_op:
1295 /* Let the target try to parse it. Success is indicated by changing
1296 the X_op field to something other than O_absent and pointing
1297 input_line_pointer past the expression. If it can't parse the
1298 expression, X_op and input_line_pointer should be unchanged. */
1299 expressionP->X_op = O_absent;
1300 --input_line_pointer;
1301 md_operand (expressionP);
1302 if (expressionP->X_op == O_absent)
1303 {
1304 ++input_line_pointer;
1305 as_bad (_("bad expression"));
1306 expressionP->X_op = O_constant;
1307 expressionP->X_add_number = 0;
1308 }
1309 }
1310 break;
1311 }
1312
1313 /* It is more 'efficient' to clean up the expressionS when they are
1314 created. Doing it here saves lines of code. */
1315 clean_up_expression (expressionP);
1316 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1317 know (*input_line_pointer != ' ');
1318
1319 /* The PA port needs this information. */
1320 if (expressionP->X_add_symbol)
1321 symbol_mark_used (expressionP->X_add_symbol);
1322
1323 expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1324 expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1325
1326 switch (expressionP->X_op)
1327 {
1328 default:
1329 return absolute_section;
1330 case O_symbol:
1331 return S_GET_SEGMENT (expressionP->X_add_symbol);
1332 case O_register:
1333 return reg_section;
1334 }
1335 }
1336 \f
1337 /* Internal. Simplify a struct expression for use by expr (). */
1338
1339 /* In: address of an expressionS.
1340 The X_op field of the expressionS may only take certain values.
1341 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1342
1343 Out: expressionS may have been modified:
1344 Unused fields zeroed to help expr (). */
1345
1346 static void
1347 clean_up_expression (expressionS *expressionP)
1348 {
1349 switch (expressionP->X_op)
1350 {
1351 case O_illegal:
1352 case O_absent:
1353 expressionP->X_add_number = 0;
1354 /* Fall through. */
1355 case O_big:
1356 case O_constant:
1357 case O_register:
1358 expressionP->X_add_symbol = NULL;
1359 /* Fall through. */
1360 case O_symbol:
1361 case O_uminus:
1362 case O_bit_not:
1363 expressionP->X_op_symbol = NULL;
1364 break;
1365 default:
1366 break;
1367 }
1368 }
1369 \f
1370 /* Expression parser. */
1371
1372 /* We allow an empty expression, and just assume (absolute,0) silently.
1373 Unary operators and parenthetical expressions are treated as operands.
1374 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1375
1376 We used to do an aho/ullman shift-reduce parser, but the logic got so
1377 warped that I flushed it and wrote a recursive-descent parser instead.
1378 Now things are stable, would anybody like to write a fast parser?
1379 Most expressions are either register (which does not even reach here)
1380 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1381 So I guess it doesn't really matter how inefficient more complex expressions
1382 are parsed.
1383
1384 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1385 Also, we have consumed any leading or trailing spaces (operand does that)
1386 and done all intervening operators.
1387
1388 This returns the segment of the result, which will be
1389 absolute_section or the segment of a symbol. */
1390
1391 #undef __
1392 #define __ O_illegal
1393 #ifndef O_SINGLE_EQ
1394 #define O_SINGLE_EQ O_illegal
1395 #endif
1396
1397 /* Maps ASCII -> operators. */
1398 static const operatorT op_encoding[256] = {
1399 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1400 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1401
1402 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1403 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1404 __, __, __, __, __, __, __, __,
1405 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1406 __, __, __, __, __, __, __, __,
1407 __, __, __, __, __, __, __, __,
1408 __, __, __, __, __, __, __, __,
1409 __, __, __,
1410 #ifdef NEED_INDEX_OPERATOR
1411 O_index,
1412 #else
1413 __,
1414 #endif
1415 __, __, O_bit_exclusive_or, __,
1416 __, __, __, __, __, __, __, __,
1417 __, __, __, __, __, __, __, __,
1418 __, __, __, __, __, __, __, __,
1419 __, __, __, __, O_bit_inclusive_or, __, __, __,
1420
1421 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1423 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1424 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1425 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1426 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1427 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1428 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1429 };
1430
1431 /* Rank Examples
1432 0 operand, (expression)
1433 1 ||
1434 2 &&
1435 3 == <> < <= >= >
1436 4 + -
1437 5 used for * / % in MRI mode
1438 6 & ^ ! |
1439 7 * / % << >>
1440 8 unary - unary ~
1441 */
1442 static operator_rankT op_rank[] = {
1443 0, /* O_illegal */
1444 0, /* O_absent */
1445 0, /* O_constant */
1446 0, /* O_symbol */
1447 0, /* O_symbol_rva */
1448 0, /* O_register */
1449 0, /* O_big */
1450 9, /* O_uminus */
1451 9, /* O_bit_not */
1452 9, /* O_logical_not */
1453 8, /* O_multiply */
1454 8, /* O_divide */
1455 8, /* O_modulus */
1456 8, /* O_left_shift */
1457 8, /* O_right_shift */
1458 7, /* O_bit_inclusive_or */
1459 7, /* O_bit_or_not */
1460 7, /* O_bit_exclusive_or */
1461 7, /* O_bit_and */
1462 5, /* O_add */
1463 5, /* O_subtract */
1464 4, /* O_eq */
1465 4, /* O_ne */
1466 4, /* O_lt */
1467 4, /* O_le */
1468 4, /* O_ge */
1469 4, /* O_gt */
1470 3, /* O_logical_and */
1471 2, /* O_logical_or */
1472 1, /* O_index */
1473 0, /* O_md1 */
1474 0, /* O_md2 */
1475 0, /* O_md3 */
1476 0, /* O_md4 */
1477 0, /* O_md5 */
1478 0, /* O_md6 */
1479 0, /* O_md7 */
1480 0, /* O_md8 */
1481 0, /* O_md9 */
1482 0, /* O_md10 */
1483 0, /* O_md11 */
1484 0, /* O_md12 */
1485 0, /* O_md13 */
1486 0, /* O_md14 */
1487 0, /* O_md15 */
1488 0, /* O_md16 */
1489 };
1490
1491 /* Unfortunately, in MRI mode for the m68k, multiplication and
1492 division have lower precedence than the bit wise operators. This
1493 function sets the operator precedences correctly for the current
1494 mode. Also, MRI uses a different bit_not operator, and this fixes
1495 that as well. */
1496
1497 #define STANDARD_MUL_PRECEDENCE 8
1498 #define MRI_MUL_PRECEDENCE 6
1499
1500 void
1501 expr_set_precedence (void)
1502 {
1503 if (flag_m68k_mri)
1504 {
1505 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1506 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1507 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1508 }
1509 else
1510 {
1511 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1512 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1513 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1514 }
1515 }
1516
1517 /* Initialize the expression parser. */
1518
1519 void
1520 expr_begin (void)
1521 {
1522 expr_set_precedence ();
1523
1524 /* Verify that X_op field is wide enough. */
1525 {
1526 expressionS e;
1527 e.X_op = O_max;
1528 assert (e.X_op == O_max);
1529 }
1530 }
1531 \f
1532 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1533 sets NUM_CHARS to the number of characters in the operator.
1534 Does not advance INPUT_LINE_POINTER. */
1535
1536 static inline operatorT
1537 operator (int *num_chars)
1538 {
1539 int c;
1540 operatorT ret;
1541
1542 c = *input_line_pointer & 0xff;
1543 *num_chars = 1;
1544
1545 if (is_end_of_line[c])
1546 return O_illegal;
1547
1548 switch (c)
1549 {
1550 default:
1551 return op_encoding[c];
1552
1553 case '+':
1554 case '-':
1555 /* Do not allow a++b and a--b to be a + (+b) and a - (-b)
1556 Disabled, since the preprocessor removes whitespace. */
1557 if (1 || input_line_pointer[1] != c)
1558 return op_encoding[c];
1559 return O_illegal;
1560
1561 case '<':
1562 switch (input_line_pointer[1])
1563 {
1564 default:
1565 return op_encoding[c];
1566 case '<':
1567 ret = O_left_shift;
1568 break;
1569 case '>':
1570 ret = O_ne;
1571 break;
1572 case '=':
1573 ret = O_le;
1574 break;
1575 }
1576 *num_chars = 2;
1577 return ret;
1578
1579 case '=':
1580 if (input_line_pointer[1] != '=')
1581 return op_encoding[c];
1582
1583 *num_chars = 2;
1584 return O_eq;
1585
1586 case '>':
1587 switch (input_line_pointer[1])
1588 {
1589 default:
1590 return op_encoding[c];
1591 case '>':
1592 ret = O_right_shift;
1593 break;
1594 case '=':
1595 ret = O_ge;
1596 break;
1597 }
1598 *num_chars = 2;
1599 return ret;
1600
1601 case '!':
1602 switch (input_line_pointer[1])
1603 {
1604 case '!':
1605 /* We accept !! as equivalent to ^ for MRI compatibility. */
1606 *num_chars = 2;
1607 return O_bit_exclusive_or;
1608 case '=':
1609 /* We accept != as equivalent to <>. */
1610 *num_chars = 2;
1611 return O_ne;
1612 default:
1613 if (flag_m68k_mri)
1614 return O_bit_inclusive_or;
1615 return op_encoding[c];
1616 }
1617
1618 case '|':
1619 if (input_line_pointer[1] != '|')
1620 return op_encoding[c];
1621
1622 *num_chars = 2;
1623 return O_logical_or;
1624
1625 case '&':
1626 if (input_line_pointer[1] != '&')
1627 return op_encoding[c];
1628
1629 *num_chars = 2;
1630 return O_logical_and;
1631 }
1632
1633 /* NOTREACHED */
1634 }
1635
1636 /* Parse an expression. */
1637
1638 segT
1639 expr (int rankarg, /* Larger # is higher rank. */
1640 expressionS *resultP, /* Deliver result here. */
1641 enum expr_mode mode /* Controls behavior. */)
1642 {
1643 operator_rankT rank = (operator_rankT) rankarg;
1644 segT retval;
1645 expressionS right;
1646 operatorT op_left;
1647 operatorT op_right;
1648 int op_chars;
1649
1650 know (rank >= 0);
1651
1652 /* Save the value of dot for the fixup code. */
1653 if (rank == 0)
1654 dot_value = frag_now_fix ();
1655
1656 retval = operand (resultP, mode);
1657
1658 /* operand () gobbles spaces. */
1659 know (*input_line_pointer != ' ');
1660
1661 op_left = operator (&op_chars);
1662 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1663 {
1664 segT rightseg;
1665 bfd_vma frag_off;
1666
1667 input_line_pointer += op_chars; /* -> after operator. */
1668
1669 rightseg = expr (op_rank[(int) op_left], &right, mode);
1670 if (right.X_op == O_absent)
1671 {
1672 as_warn (_("missing operand; zero assumed"));
1673 right.X_op = O_constant;
1674 right.X_add_number = 0;
1675 right.X_add_symbol = NULL;
1676 right.X_op_symbol = NULL;
1677 }
1678
1679 know (*input_line_pointer != ' ');
1680
1681 if (op_left == O_index)
1682 {
1683 if (*input_line_pointer != ']')
1684 as_bad ("missing right bracket");
1685 else
1686 {
1687 ++input_line_pointer;
1688 SKIP_WHITESPACE ();
1689 }
1690 }
1691
1692 op_right = operator (&op_chars);
1693
1694 know (op_right == O_illegal
1695 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1696 know ((int) op_left >= (int) O_multiply
1697 && (int) op_left <= (int) O_index);
1698
1699 /* input_line_pointer->after right-hand quantity. */
1700 /* left-hand quantity in resultP. */
1701 /* right-hand quantity in right. */
1702 /* operator in op_left. */
1703
1704 if (resultP->X_op == O_big)
1705 {
1706 if (resultP->X_add_number > 0)
1707 as_warn (_("left operand is a bignum; integer 0 assumed"));
1708 else
1709 as_warn (_("left operand is a float; integer 0 assumed"));
1710 resultP->X_op = O_constant;
1711 resultP->X_add_number = 0;
1712 resultP->X_add_symbol = NULL;
1713 resultP->X_op_symbol = NULL;
1714 }
1715 if (right.X_op == O_big)
1716 {
1717 if (right.X_add_number > 0)
1718 as_warn (_("right operand is a bignum; integer 0 assumed"));
1719 else
1720 as_warn (_("right operand is a float; integer 0 assumed"));
1721 right.X_op = O_constant;
1722 right.X_add_number = 0;
1723 right.X_add_symbol = NULL;
1724 right.X_op_symbol = NULL;
1725 }
1726
1727 /* Optimize common cases. */
1728 #ifdef md_optimize_expr
1729 if (md_optimize_expr (resultP, op_left, &right))
1730 {
1731 /* Skip. */
1732 ;
1733 }
1734 else
1735 #endif
1736 if (op_left == O_add && right.X_op == O_constant)
1737 {
1738 /* X + constant. */
1739 resultP->X_add_number += right.X_add_number;
1740 }
1741 /* This case comes up in PIC code. */
1742 else if (op_left == O_subtract
1743 && right.X_op == O_symbol
1744 && resultP->X_op == O_symbol
1745 && retval == rightseg
1746 && (SEG_NORMAL (rightseg)
1747 || right.X_add_symbol == resultP->X_add_symbol)
1748 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1749 symbol_get_frag (right.X_add_symbol),
1750 &frag_off))
1751 {
1752 resultP->X_add_number -= right.X_add_number;
1753 resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
1754 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1755 - S_GET_VALUE (right.X_add_symbol));
1756 resultP->X_op = O_constant;
1757 resultP->X_add_symbol = 0;
1758 }
1759 else if (op_left == O_subtract && right.X_op == O_constant)
1760 {
1761 /* X - constant. */
1762 resultP->X_add_number -= right.X_add_number;
1763 }
1764 else if (op_left == O_add && resultP->X_op == O_constant)
1765 {
1766 /* Constant + X. */
1767 resultP->X_op = right.X_op;
1768 resultP->X_add_symbol = right.X_add_symbol;
1769 resultP->X_op_symbol = right.X_op_symbol;
1770 resultP->X_add_number += right.X_add_number;
1771 retval = rightseg;
1772 }
1773 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1774 {
1775 /* Constant OP constant. */
1776 offsetT v = right.X_add_number;
1777 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1778 {
1779 as_warn (_("division by zero"));
1780 v = 1;
1781 }
1782 switch (op_left)
1783 {
1784 default: abort ();
1785 case O_multiply: resultP->X_add_number *= v; break;
1786 case O_divide: resultP->X_add_number /= v; break;
1787 case O_modulus: resultP->X_add_number %= v; break;
1788 case O_left_shift: resultP->X_add_number <<= v; break;
1789 case O_right_shift:
1790 /* We always use unsigned shifts, to avoid relying on
1791 characteristics of the compiler used to compile gas. */
1792 resultP->X_add_number =
1793 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1794 break;
1795 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1796 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1797 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1798 case O_bit_and: resultP->X_add_number &= v; break;
1799 case O_add: resultP->X_add_number += v; break;
1800 case O_subtract: resultP->X_add_number -= v; break;
1801 case O_eq:
1802 resultP->X_add_number =
1803 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1804 break;
1805 case O_ne:
1806 resultP->X_add_number =
1807 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1808 break;
1809 case O_lt:
1810 resultP->X_add_number =
1811 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1812 break;
1813 case O_le:
1814 resultP->X_add_number =
1815 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1816 break;
1817 case O_ge:
1818 resultP->X_add_number =
1819 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1820 break;
1821 case O_gt:
1822 resultP->X_add_number =
1823 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1824 break;
1825 case O_logical_and:
1826 resultP->X_add_number = resultP->X_add_number && v;
1827 break;
1828 case O_logical_or:
1829 resultP->X_add_number = resultP->X_add_number || v;
1830 break;
1831 }
1832 }
1833 else if (resultP->X_op == O_symbol
1834 && right.X_op == O_symbol
1835 && (op_left == O_add
1836 || op_left == O_subtract
1837 || (resultP->X_add_number == 0
1838 && right.X_add_number == 0)))
1839 {
1840 /* Symbol OP symbol. */
1841 resultP->X_op = op_left;
1842 resultP->X_op_symbol = right.X_add_symbol;
1843 if (op_left == O_add)
1844 resultP->X_add_number += right.X_add_number;
1845 else if (op_left == O_subtract)
1846 {
1847 resultP->X_add_number -= right.X_add_number;
1848 if (retval == rightseg && SEG_NORMAL (retval))
1849 {
1850 retval = absolute_section;
1851 rightseg = absolute_section;
1852 }
1853 }
1854 }
1855 else
1856 {
1857 /* The general case. */
1858 resultP->X_add_symbol = make_expr_symbol (resultP);
1859 resultP->X_op_symbol = make_expr_symbol (&right);
1860 resultP->X_op = op_left;
1861 resultP->X_add_number = 0;
1862 resultP->X_unsigned = 1;
1863 }
1864
1865 if (retval != rightseg)
1866 {
1867 if (! SEG_NORMAL (retval))
1868 {
1869 if (retval != undefined_section || SEG_NORMAL (rightseg))
1870 retval = rightseg;
1871 }
1872 else if (SEG_NORMAL (rightseg)
1873 #ifdef DIFF_EXPR_OK
1874 && op_left != O_subtract
1875 #endif
1876 )
1877 as_bad (_("operation combines symbols in different segments"));
1878 }
1879
1880 op_left = op_right;
1881 } /* While next operator is >= this rank. */
1882
1883 /* The PA port needs this information. */
1884 if (resultP->X_add_symbol)
1885 symbol_mark_used (resultP->X_add_symbol);
1886
1887 if (rank == 0 && mode == expr_evaluate)
1888 resolve_expression (resultP);
1889
1890 return resultP->X_op == O_constant ? absolute_section : retval;
1891 }
1892
1893 /* Resolve an expression without changing any symbols/sub-expressions
1894 used. */
1895
1896 int
1897 resolve_expression (expressionS *expressionP)
1898 {
1899 /* Help out with CSE. */
1900 valueT final_val = expressionP->X_add_number;
1901 symbolS *add_symbol = expressionP->X_add_symbol;
1902 symbolS *op_symbol = expressionP->X_op_symbol;
1903 operatorT op = expressionP->X_op;
1904 valueT left, right;
1905 segT seg_left, seg_right;
1906 fragS *frag_left, *frag_right;
1907 bfd_vma frag_off;
1908
1909 switch (op)
1910 {
1911 default:
1912 return 0;
1913
1914 case O_constant:
1915 case O_register:
1916 left = 0;
1917 break;
1918
1919 case O_symbol:
1920 case O_symbol_rva:
1921 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
1922 return 0;
1923
1924 break;
1925
1926 case O_uminus:
1927 case O_bit_not:
1928 case O_logical_not:
1929 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
1930 return 0;
1931
1932 if (seg_left != absolute_section)
1933 return 0;
1934
1935 if (op == O_logical_not)
1936 left = !left;
1937 else if (op == O_uminus)
1938 left = -left;
1939 else
1940 left = ~left;
1941 op = O_constant;
1942 break;
1943
1944 case O_multiply:
1945 case O_divide:
1946 case O_modulus:
1947 case O_left_shift:
1948 case O_right_shift:
1949 case O_bit_inclusive_or:
1950 case O_bit_or_not:
1951 case O_bit_exclusive_or:
1952 case O_bit_and:
1953 case O_add:
1954 case O_subtract:
1955 case O_eq:
1956 case O_ne:
1957 case O_lt:
1958 case O_le:
1959 case O_ge:
1960 case O_gt:
1961 case O_logical_and:
1962 case O_logical_or:
1963 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
1964 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
1965 return 0;
1966
1967 /* Simplify addition or subtraction of a constant by folding the
1968 constant into X_add_number. */
1969 if (op == O_add)
1970 {
1971 if (seg_right == absolute_section)
1972 {
1973 final_val += right;
1974 op = O_symbol;
1975 break;
1976 }
1977 else if (seg_left == absolute_section)
1978 {
1979 final_val += left;
1980 left = right;
1981 seg_left = seg_right;
1982 add_symbol = op_symbol;
1983 op = O_symbol;
1984 break;
1985 }
1986 }
1987 else if (op == O_subtract)
1988 {
1989 if (seg_right == absolute_section)
1990 {
1991 final_val -= right;
1992 op = O_symbol;
1993 break;
1994 }
1995 }
1996
1997 /* Equality and non-equality tests are permitted on anything.
1998 Subtraction, and other comparison operators are permitted if
1999 both operands are in the same section.
2000 Shifts by constant zero are permitted on anything.
2001 Multiplies, bit-ors, and bit-ands with constant zero are
2002 permitted on anything.
2003 Multiplies and divides by constant one are permitted on
2004 anything.
2005 Binary operations with both operands being the same register
2006 or undefined symbol are permitted if the result doesn't depend
2007 on the input value.
2008 Otherwise, both operands must be absolute. We already handled
2009 the case of addition or subtraction of a constant above. */
2010 frag_off = 0;
2011 if (!(seg_left == absolute_section
2012 && seg_right == absolute_section)
2013 && !(op == O_eq || op == O_ne)
2014 && !((op == O_subtract
2015 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2016 && seg_left == seg_right
2017 && (finalize_syms
2018 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2019 && (seg_left != reg_section || left == right)
2020 && (seg_left != undefined_section || add_symbol == op_symbol)))
2021 {
2022 if ((seg_left == absolute_section && left == 0)
2023 || (seg_right == absolute_section && right == 0))
2024 {
2025 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2026 {
2027 if (seg_right != absolute_section || right != 0)
2028 {
2029 seg_left = seg_right;
2030 left = right;
2031 add_symbol = op_symbol;
2032 }
2033 op = O_symbol;
2034 break;
2035 }
2036 else if (op == O_left_shift || op == O_right_shift)
2037 {
2038 if (seg_left != absolute_section || left != 0)
2039 {
2040 op = O_symbol;
2041 break;
2042 }
2043 }
2044 else if (op != O_multiply
2045 && op != O_bit_or_not && op != O_bit_and)
2046 return 0;
2047 }
2048 else if (op == O_multiply
2049 && seg_left == absolute_section && left == 1)
2050 {
2051 seg_left = seg_right;
2052 left = right;
2053 add_symbol = op_symbol;
2054 op = O_symbol;
2055 break;
2056 }
2057 else if ((op == O_multiply || op == O_divide)
2058 && seg_right == absolute_section && right == 1)
2059 {
2060 op = O_symbol;
2061 break;
2062 }
2063 else if (left != right
2064 || ((seg_left != reg_section || seg_right != reg_section)
2065 && (seg_left != undefined_section
2066 || seg_right != undefined_section
2067 || add_symbol != op_symbol)))
2068 return 0;
2069 else if (op == O_bit_and || op == O_bit_inclusive_or)
2070 {
2071 op = O_symbol;
2072 break;
2073 }
2074 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2075 return 0;
2076 }
2077
2078 right += frag_off / OCTETS_PER_BYTE;
2079 switch (op)
2080 {
2081 case O_add: left += right; break;
2082 case O_subtract: left -= right; break;
2083 case O_multiply: left *= right; break;
2084 case O_divide:
2085 if (right == 0)
2086 return 0;
2087 left = (offsetT) left / (offsetT) right;
2088 break;
2089 case O_modulus:
2090 if (right == 0)
2091 return 0;
2092 left = (offsetT) left % (offsetT) right;
2093 break;
2094 case O_left_shift: left <<= right; break;
2095 case O_right_shift: left >>= right; break;
2096 case O_bit_inclusive_or: left |= right; break;
2097 case O_bit_or_not: left |= ~right; break;
2098 case O_bit_exclusive_or: left ^= right; break;
2099 case O_bit_and: left &= right; break;
2100 case O_eq:
2101 case O_ne:
2102 left = (left == right
2103 && seg_left == seg_right
2104 && (finalize_syms || frag_left == frag_right)
2105 && (seg_left != undefined_section
2106 || add_symbol == op_symbol)
2107 ? ~ (valueT) 0 : 0);
2108 if (op == O_ne)
2109 left = ~left;
2110 break;
2111 case O_lt:
2112 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2113 break;
2114 case O_le:
2115 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2116 break;
2117 case O_ge:
2118 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2119 break;
2120 case O_gt:
2121 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2122 break;
2123 case O_logical_and: left = left && right; break;
2124 case O_logical_or: left = left || right; break;
2125 default: abort ();
2126 }
2127
2128 op = O_constant;
2129 break;
2130 }
2131
2132 if (op == O_symbol)
2133 {
2134 if (seg_left == absolute_section)
2135 op = O_constant;
2136 else if (seg_left == reg_section && final_val == 0)
2137 op = O_register;
2138 else if (add_symbol != expressionP->X_add_symbol)
2139 final_val += left;
2140 expressionP->X_add_symbol = add_symbol;
2141 }
2142 expressionP->X_op = op;
2143
2144 if (op == O_constant || op == O_register)
2145 final_val += left;
2146 expressionP->X_add_number = final_val;
2147
2148 return 1;
2149 }
2150 \f
2151 /* This lives here because it belongs equally in expr.c & read.c.
2152 expr.c is just a branch office read.c anyway, and putting it
2153 here lessens the crowd at read.c.
2154
2155 Assume input_line_pointer is at start of symbol name.
2156 Advance input_line_pointer past symbol name.
2157 Turn that character into a '\0', returning its former value.
2158 This allows a string compare (RMS wants symbol names to be strings)
2159 of the symbol name.
2160 There will always be a char following symbol name, because all good
2161 lines end in end-of-line. */
2162
2163 char
2164 get_symbol_end (void)
2165 {
2166 char c;
2167
2168 /* We accept \001 in a name in case this is being called with a
2169 constructed string. */
2170 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2171 {
2172 while (is_part_of_name (c = *input_line_pointer++)
2173 || c == '\001')
2174 ;
2175 if (is_name_ender (c))
2176 c = *input_line_pointer++;
2177 }
2178 *--input_line_pointer = 0;
2179 return (c);
2180 }
2181
2182 unsigned int
2183 get_single_number (void)
2184 {
2185 expressionS exp;
2186 operand (&exp, expr_normal);
2187 return exp.X_add_number;
2188 }
This page took 0.07367 seconds and 5 git commands to generate.