Warning fixes and configure/makefile tweaks by Thiemo Seufer.
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
1 /* itbl-ops.c
2 Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /*======================================================================*/
22 /*
23 * Herein lies the support for dynamic specification of processor
24 * instructions and registers. Mnemonics, values, and formats for each
25 * instruction and register are specified in an ascii file consisting of
26 * table entries. The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
29 * Instructions use the gnu assembler syntax, with the addition of
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * func - opcode name
33 * $n - register n
34 * reg3 - mnemonic for processor's register defined in table
35 * 0xddd..d - immediate value
36 * symbol - address of label or external symbol
37 *
38 * First, itbl_parse reads in the table of register and instruction
39 * names and formats, and builds a list of entries for each
40 * processor/type combination. lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
46 * 2) assemble/disassemble an instruction.
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
54 *
55 * Given the table entries:
56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * "p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61 *
62 * a structure to describe the instruction might look something like:
63 * struct itbl_entry = {
64 * e_processor processor = e_p3
65 * e_type type = e_insn
66 * char *name = "pig"
67 * uint value = 0x1
68 * uint flags = 0
69 * struct itbl_range range = 24-21
70 * struct itbl_field *field = {
71 * e_type type = e_dreg
72 * struct itbl_range range = 20-16
73 * struct itbl_field *next = {
74 * e_type type = e_immed
75 * struct itbl_range range = 15-0
76 * struct itbl_field *next = 0
77 * };
78 * };
79 * struct itbl_entry *next = 0
80 * };
81 *
82 * And the assembler instructions:
83 * "pig d2,0x100"
84 * "pig $2,0x100"
85 *
86 * would both assemble to the hex value:
87 * "0x4e220100"
88 *
89 */
90
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include "itbl-ops.h"
95 #include "itbl-parse.h"
96
97 /* #define DEBUG */
98
99 #ifdef DEBUG
100 #include <assert.h>
101 #define ASSERT(x) assert(x)
102 #define DBG(x) printf x
103 #else
104 #define ASSERT(x)
105 #define DBG(x)
106 #endif
107
108 #ifndef min
109 #define min(a,b) (a<b?a:b)
110 #endif
111
112 int itbl_have_entries = 0;
113
114 /*======================================================================*/
115 /* structures for keeping itbl format entries */
116
117 struct itbl_range {
118 int sbit; /* mask starting bit position */
119 int ebit; /* mask ending bit position */
120 };
121
122 struct itbl_field {
123 e_type type; /* dreg/creg/greg/immed/symb */
124 struct itbl_range range; /* field's bitfield range within instruction */
125 unsigned long flags; /* field flags */
126 struct itbl_field *next; /* next field in list */
127 };
128
129 /* These structures define the instructions and registers for a processor.
130 * If the type is an instruction, the structure defines the format of an
131 * instruction where the fields are the list of operands.
132 * The flags field below uses the same values as those defined in the
133 * gnu assembler and are machine specific. */
134 struct itbl_entry {
135 e_processor processor; /* processor number */
136 e_type type; /* dreg/creg/greg/insn */
137 char *name; /* mnemionic name for insn/register */
138 unsigned long value; /* opcode/instruction mask/register number */
139 unsigned long flags; /* effects of the instruction */
140 struct itbl_range range; /* bit range within instruction for value */
141 struct itbl_field *fields; /* list of operand definitions (if any) */
142 struct itbl_entry *next; /* next entry */
143 };
144
145 /* local data and structures */
146
147 static int itbl_num_opcodes = 0;
148 /* Array of entries for each processor and entry type */
149 static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
150 {0, 0, 0, 0, 0, 0},
151 {0, 0, 0, 0, 0, 0},
152 {0, 0, 0, 0, 0, 0},
153 {0, 0, 0, 0, 0, 0}
154 };
155
156 /* local prototypes */
157 static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
158 static e_type get_type PARAMS ((int yytype));
159 static e_processor get_processor PARAMS ((int yyproc));
160 static struct itbl_entry **get_entries PARAMS ((e_processor processor,
161 e_type type));
162 static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
163 e_type type, char *name));
164 static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
165 e_type type, unsigned long val, struct itbl_range *r));
166 static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
167 e_type type, char *name, unsigned long value));
168 static unsigned long apply_range PARAMS ((unsigned long value,
169 struct itbl_range r));
170 static unsigned long extract_range PARAMS ((unsigned long value,
171 struct itbl_range r));
172 static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
173 int ebit, unsigned long flags));
174
175 /*======================================================================*/
176 /* Interfaces to the parser */
177
178 /* Open the table and use lex and yacc to parse the entries.
179 * Return 1 for failure; 0 for success. */
180
181 int
182 itbl_parse (char *insntbl)
183 {
184 extern FILE *yyin;
185 extern int yyparse (void);
186 yyin = fopen (insntbl, "r");
187 if (yyin == 0)
188 {
189 printf ("Can't open processor instruction specification file \"%s\"\n",
190 insntbl);
191 return 1;
192 }
193 else
194 {
195 while (yyparse ());
196 }
197 fclose (yyin);
198 itbl_have_entries = 1;
199 return 0;
200 }
201
202 /* Add a register entry */
203
204 struct itbl_entry *
205 itbl_add_reg (int yyprocessor, int yytype, char *regname,
206 int regnum)
207 {
208 #if 0
209 #include "as.h"
210 #include "symbols.h"
211 /* Since register names don't have a prefix, we put them in the symbol table so
212 they can't be used as symbols. This also simplifies argument parsing as
213 we can let gas parse registers for us. The recorded register number is
214 regnum. */
215 /* Use symbol_create here instead of symbol_new so we don't try to
216 output registers into the object file's symbol table. */
217 symbol_table_insert (symbol_create (regname, reg_section,
218 regnum, &zero_address_frag));
219 #endif
220 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
221 (unsigned long) regnum);
222 }
223
224 /* Add an instruction entry */
225
226 struct itbl_entry *
227 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
228 int sbit, int ebit, unsigned long flags)
229 {
230 struct itbl_entry *e;
231 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
232 if (e)
233 {
234 e->range.sbit = sbit;
235 e->range.ebit = ebit;
236 e->flags = flags;
237 itbl_num_opcodes++;
238 }
239 return e;
240 }
241
242 /* Add an operand to an instruction entry */
243
244 struct itbl_field *
245 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
246 int ebit, unsigned long flags)
247 {
248 struct itbl_field *f, **last_f;
249 if (!e)
250 return 0;
251 /* Add to end of fields' list. */
252 f = alloc_field (get_type (yytype), sbit, ebit, flags);
253 if (f)
254 {
255 last_f = &e->fields;
256 while (*last_f)
257 last_f = &(*last_f)->next;
258 *last_f = f;
259 f->next = 0;
260 }
261 return f;
262 }
263
264 /*======================================================================*/
265 /* Interfaces for assembler and disassembler */
266
267 #ifndef STAND_ALONE
268 #include "as.h"
269 #include "symbols.h"
270 static void append_insns_as_macros (void);
271
272 /* Initialize for gas. */
273
274 void
275 itbl_init (void)
276 {
277 struct itbl_entry *e, **es;
278 e_processor procn;
279 e_type type;
280
281 if (!itbl_have_entries)
282 return;
283
284 /* Since register names don't have a prefix, put them in the symbol table so
285 they can't be used as symbols. This simplifies argument parsing as
286 we can let gas parse registers for us. */
287 /* Use symbol_create instead of symbol_new so we don't try to
288 output registers into the object file's symbol table. */
289
290 for (type = e_regtype0; type < e_nregtypes; type++)
291 for (procn = e_p0; procn < e_nprocs; procn++)
292 {
293 es = get_entries (procn, type);
294 for (e = *es; e; e = e->next)
295 {
296 symbol_table_insert (symbol_create (e->name, reg_section,
297 e->value, &zero_address_frag));
298 }
299 }
300 append_insns_as_macros ();
301 }
302
303 /* Append insns to opcodes table and increase number of opcodes
304 * Structure of opcodes table:
305 * struct itbl_opcode
306 * {
307 * const char *name;
308 * const char *args; - string describing the arguments.
309 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
310 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
311 * unsigned long pinfo; - insn flags, or INSN_MACRO
312 * };
313 * examples:
314 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
315 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
316 */
317
318 static char *form_args (struct itbl_entry *e);
319 static void
320 append_insns_as_macros (void)
321 {
322 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
323 struct itbl_entry *e, **es;
324 int n, id, size, new_size, new_num_opcodes;
325
326 if (!itbl_have_entries)
327 return;
328
329 if (!itbl_num_opcodes) /* no new instructions to add! */
330 {
331 return;
332 }
333 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
334
335 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
336 ASSERT (new_num_opcodes >= itbl_num_opcodes);
337
338 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
339 ASSERT (size >= 0);
340 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
341
342 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
343 ASSERT (new_size > size);
344
345 /* FIXME since ITBL_OPCODES culd be a static table,
346 we can't realloc or delete the old memory. */
347 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
348 if (!new_opcodes)
349 {
350 printf (_("Unable to allocate memory for new instructions\n"));
351 return;
352 }
353 if (size) /* copy prexisting opcodes table */
354 memcpy (new_opcodes, ITBL_OPCODES, size);
355
356 /* FIXME! some NUMOPCODES are calculated expressions.
357 These need to be changed before itbls can be supported. */
358
359 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
360 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
361 for (n = e_p0; n < e_nprocs; n++)
362 {
363 es = get_entries (n, e_insn);
364 for (e = *es; e; e = e->next)
365 {
366 /* name, args, mask, match, pinfo
367 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
368 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
369 * Construct args from itbl_fields.
370 */
371 o->name = e->name;
372 o->args = strdup (form_args (e));
373 o->mask = apply_range (e->value, e->range);
374 /* FIXME how to catch durring assembly? */
375 /* mask to identify this insn */
376 o->match = apply_range (e->value, e->range);
377 o->pinfo = 0;
378
379 #ifdef USE_MACROS
380 o->mask = id++; /* FIXME how to catch durring assembly? */
381 o->match = 0; /* for macros, the insn_isa number */
382 o->pinfo = INSN_MACRO;
383 #endif
384
385 /* Don't add instructions which caused an error */
386 if (o->args)
387 o++;
388 else
389 new_num_opcodes--;
390 }
391 }
392 ITBL_OPCODES = new_opcodes;
393 ITBL_NUM_OPCODES = new_num_opcodes;
394
395 /* FIXME
396 At this point, we can free the entries, as they should have
397 been added to the assembler's tables.
398 Don't free name though, since name is being used by the new
399 opcodes table.
400
401 Eventually, we should also free the new opcodes table itself
402 on exit.
403 */
404 }
405
406 static char *
407 form_args (struct itbl_entry *e)
408 {
409 static char s[31];
410 char c = 0, *p = s;
411 struct itbl_field *f;
412
413 ASSERT (e);
414 for (f = e->fields; f; f = f->next)
415 {
416 switch (f->type)
417 {
418 case e_dreg:
419 c = 'd';
420 break;
421 case e_creg:
422 c = 't';
423 break;
424 case e_greg:
425 c = 's';
426 break;
427 case e_immed:
428 c = 'i';
429 break;
430 case e_addr:
431 c = 'a';
432 break;
433 default:
434 c = 0; /* ignore; unknown field type */
435 }
436 if (c)
437 {
438 if (p != s)
439 *p++ = ',';
440 *p++ = c;
441 }
442 }
443 *p = 0;
444 return s;
445 }
446 #endif /* !STAND_ALONE */
447
448 /* Get processor's register name from val */
449
450 int
451 itbl_get_reg_val (char *name, unsigned long *pval)
452 {
453 e_type t;
454 e_processor p;
455
456 for (p = e_p0; p < e_nprocs; p++)
457 {
458 for (t = e_regtype0; t < e_nregtypes; t++)
459 {
460 if (itbl_get_val (p, t, name, pval))
461 return 1;
462 }
463 }
464 return 0;
465 }
466
467 char *
468 itbl_get_name (e_processor processor, e_type type, unsigned long val)
469 {
470 struct itbl_entry *r;
471 /* type depends on instruction passed */
472 r = find_entry_byval (processor, type, val, 0);
473 if (r)
474 return r->name;
475 else
476 return 0; /* error; invalid operand */
477 }
478
479 /* Get processor's register value from name */
480
481 int
482 itbl_get_val (e_processor processor, e_type type, char *name,
483 unsigned long *pval)
484 {
485 struct itbl_entry *r;
486 /* type depends on instruction passed */
487 r = find_entry_byname (processor, type, name);
488 if (r == NULL)
489 return 0;
490 *pval = r->value;
491 return 1;
492 }
493
494 /* Assemble instruction "name" with operands "s".
495 * name - name of instruction
496 * s - operands
497 * returns - long word for assembled instruction */
498
499 unsigned long
500 itbl_assemble (char *name, char *s)
501 {
502 unsigned long opcode;
503 struct itbl_entry *e = NULL;
504 struct itbl_field *f;
505 char *n;
506 int processor;
507
508 if (!name || !*name)
509 return 0; /* error! must have a opcode name/expr */
510
511 /* find entry in list of instructions for all processors */
512 for (processor = 0; processor < e_nprocs; processor++)
513 {
514 e = find_entry_byname (processor, e_insn, name);
515 if (e)
516 break;
517 }
518 if (!e)
519 return 0; /* opcode not in table; invalid instruction */
520 opcode = build_opcode (e);
521
522 /* parse opcode's args (if any) */
523 for (f = e->fields; f; f = f->next) /* for each arg, ... */
524 {
525 struct itbl_entry *r;
526 unsigned long value;
527 if (!s || !*s)
528 return 0; /* error - not enough operands */
529 n = itbl_get_field (&s);
530 /* n should be in form $n or 0xhhh (are symbol names valid?? */
531 switch (f->type)
532 {
533 case e_dreg:
534 case e_creg:
535 case e_greg:
536 /* Accept either a string name
537 * or '$' followed by the register number */
538 if (*n == '$')
539 {
540 n++;
541 value = strtol (n, 0, 10);
542 /* FIXME! could have "0l"... then what?? */
543 if (value == 0 && *n != '0')
544 return 0; /* error; invalid operand */
545 }
546 else
547 {
548 r = find_entry_byname (e->processor, f->type, n);
549 if (r)
550 value = r->value;
551 else
552 return 0; /* error; invalid operand */
553 }
554 break;
555 case e_addr:
556 /* use assembler's symbol table to find symbol */
557 /* FIXME!! Do we need this?
558 if so, what about relocs??
559 my_getExpression (&imm_expr, s);
560 return 0; /-* error; invalid operand *-/
561 break;
562 */
563 /* If not a symbol, fall thru to IMMED */
564 case e_immed:
565 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
566 {
567 n += 2;
568 value = strtol (n, 0, 16);
569 /* FIXME! could have "0xl"... then what?? */
570 }
571 else
572 {
573 value = strtol (n, 0, 10);
574 /* FIXME! could have "0l"... then what?? */
575 if (value == 0 && *n != '0')
576 return 0; /* error; invalid operand */
577 }
578 break;
579 default:
580 return 0; /* error; invalid field spec */
581 }
582 opcode |= apply_range (value, f->range);
583 }
584 if (s && *s)
585 return 0; /* error - too many operands */
586 return opcode; /* done! */
587 }
588
589 /* Disassemble instruction "insn".
590 * insn - instruction
591 * s - buffer to hold disassembled instruction
592 * returns - 1 if succeeded; 0 if failed
593 */
594
595 int
596 itbl_disassemble (char *s, unsigned long insn)
597 {
598 e_processor processor;
599 struct itbl_entry *e;
600 struct itbl_field *f;
601
602 if (!ITBL_IS_INSN (insn))
603 return 0; /* error */
604 processor = get_processor (ITBL_DECODE_PNUM (insn));
605
606 /* find entry in list */
607 e = find_entry_byval (processor, e_insn, insn, 0);
608 if (!e)
609 return 0; /* opcode not in table; invalid instruction */
610 strcpy (s, e->name);
611
612 /* Parse insn's args (if any). */
613 for (f = e->fields; f; f = f->next) /* for each arg, ... */
614 {
615 struct itbl_entry *r;
616 unsigned long value;
617
618 if (f == e->fields) /* First operand is preceeded by tab. */
619 strcat (s, "\t");
620 else /* ','s separate following operands. */
621 strcat (s, ",");
622 value = extract_range (insn, f->range);
623 /* n should be in form $n or 0xhhh (are symbol names valid?? */
624 switch (f->type)
625 {
626 case e_dreg:
627 case e_creg:
628 case e_greg:
629 /* Accept either a string name
630 or '$' followed by the register number. */
631 r = find_entry_byval (e->processor, f->type, value, &f->range);
632 if (r)
633 strcat (s, r->name);
634 else
635 sprintf (s, "%s$%lu", s, value);
636 break;
637 case e_addr:
638 /* Use assembler's symbol table to find symbol. */
639 /* FIXME!! Do we need this? If so, what about relocs?? */
640 /* If not a symbol, fall through to IMMED. */
641 case e_immed:
642 sprintf (s, "%s0x%lx", s, value);
643 break;
644 default:
645 return 0; /* error; invalid field spec */
646 }
647 }
648 return 1; /* Done! */
649 }
650
651 /*======================================================================*/
652 /*
653 * Local functions for manipulating private structures containing
654 * the names and format for the new instructions and registers
655 * for each processor.
656 */
657
658 /* Calculate instruction's opcode and function values from entry */
659
660 static unsigned long
661 build_opcode (struct itbl_entry *e)
662 {
663 unsigned long opcode;
664
665 opcode = apply_range (e->value, e->range);
666 opcode |= ITBL_ENCODE_PNUM (e->processor);
667 return opcode;
668 }
669
670 /* Calculate absolute value given the relative value and bit position range
671 * within the instruction.
672 * The range is inclusive where 0 is least significant bit.
673 * A range of { 24, 20 } will have a mask of
674 * bit 3 2 1
675 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
676 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
677 * hex: 0 1 f 0 0 0 0 0
678 * mask: 0x01f00000.
679 */
680
681 static unsigned long
682 apply_range (unsigned long rval, struct itbl_range r)
683 {
684 unsigned long mask;
685 unsigned long aval;
686 int len = MAX_BITPOS - r.sbit;
687
688 ASSERT (r.sbit >= r.ebit);
689 ASSERT (MAX_BITPOS >= r.sbit);
690 ASSERT (r.ebit >= 0);
691
692 /* create mask by truncating 1s by shifting */
693 mask = 0xffffffff << len;
694 mask = mask >> len;
695 mask = mask >> r.ebit;
696 mask = mask << r.ebit;
697
698 aval = (rval << r.ebit) & mask;
699 return aval;
700 }
701
702 /* Calculate relative value given the absolute value and bit position range
703 * within the instruction. */
704
705 static unsigned long
706 extract_range (unsigned long aval, struct itbl_range r)
707 {
708 unsigned long mask;
709 unsigned long rval;
710 int len = MAX_BITPOS - r.sbit;
711
712 /* create mask by truncating 1s by shifting */
713 mask = 0xffffffff << len;
714 mask = mask >> len;
715 mask = mask >> r.ebit;
716 mask = mask << r.ebit;
717
718 rval = (aval & mask) >> r.ebit;
719 return rval;
720 }
721
722 /* Extract processor's assembly instruction field name from s;
723 * forms are "n args" "n,args" or "n" */
724 /* Return next argument from string pointer "s" and advance s.
725 * delimiters are " ,()" */
726
727 char *
728 itbl_get_field (char **S)
729 {
730 static char n[128];
731 char *s;
732 int len;
733
734 s = *S;
735 if (!s || !*s)
736 return 0;
737 /* FIXME: This is a weird set of delimiters. */
738 len = strcspn (s, " \t,()");
739 ASSERT (128 > len + 1);
740 strncpy (n, s, len);
741 n[len] = 0;
742 if (s[len] == '\0')
743 s = 0; /* no more args */
744 else
745 s += len + 1; /* advance to next arg */
746
747 *S = s;
748 return n;
749 }
750
751 /* Search entries for a given processor and type
752 * to find one matching the name "n".
753 * Return a pointer to the entry */
754
755 static struct itbl_entry *
756 find_entry_byname (e_processor processor,
757 e_type type, char *n)
758 {
759 struct itbl_entry *e, **es;
760
761 es = get_entries (processor, type);
762 for (e = *es; e; e = e->next) /* for each entry, ... */
763 {
764 if (!strcmp (e->name, n))
765 return e;
766 }
767 return 0;
768 }
769
770 /* Search entries for a given processor and type
771 * to find one matching the value "val" for the range "r".
772 * Return a pointer to the entry.
773 * This function is used for disassembling fields of an instruction.
774 */
775
776 static struct itbl_entry *
777 find_entry_byval (e_processor processor, e_type type,
778 unsigned long val, struct itbl_range *r)
779 {
780 struct itbl_entry *e, **es;
781 unsigned long eval;
782
783 es = get_entries (processor, type);
784 for (e = *es; e; e = e->next) /* for each entry, ... */
785 {
786 if (processor != e->processor)
787 continue;
788 /* For insns, we might not know the range of the opcode,
789 * so a range of 0 will allow this routine to match against
790 * the range of the entry to be compared with.
791 * This could cause ambiguities.
792 * For operands, we get an extracted value and a range.
793 */
794 /* if range is 0, mask val against the range of the compared entry. */
795 if (r == 0) /* if no range passed, must be whole 32-bits
796 * so create 32-bit value from entry's range */
797 {
798 eval = apply_range (e->value, e->range);
799 val &= apply_range (0xffffffff, e->range);
800 }
801 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
802 || (e->range.sbit == 0 && e->range.ebit == 0))
803 {
804 eval = apply_range (e->value, *r);
805 val = apply_range (val, *r);
806 }
807 else
808 continue;
809 if (val == eval)
810 return e;
811 }
812 return 0;
813 }
814
815 /* Return a pointer to the list of entries for a given processor and type. */
816
817 static struct itbl_entry **
818 get_entries (e_processor processor, e_type type)
819 {
820 return &entries[processor][type];
821 }
822
823 /* Return an integral value for the processor passed from yyparse. */
824
825 static e_processor
826 get_processor (int yyproc)
827 {
828 /* translate from yacc's processor to enum */
829 if (yyproc >= e_p0 && yyproc < e_nprocs)
830 return (e_processor) yyproc;
831 return e_invproc; /* error; invalid processor */
832 }
833
834 /* Return an integral value for the entry type passed from yyparse. */
835
836 static e_type
837 get_type (int yytype)
838 {
839 switch (yytype)
840 {
841 /* translate from yacc's type to enum */
842 case INSN:
843 return e_insn;
844 case DREG:
845 return e_dreg;
846 case CREG:
847 return e_creg;
848 case GREG:
849 return e_greg;
850 case ADDR:
851 return e_addr;
852 case IMMED:
853 return e_immed;
854 default:
855 return e_invtype; /* error; invalid type */
856 }
857 }
858
859 /* Allocate and initialize an entry */
860
861 static struct itbl_entry *
862 alloc_entry (e_processor processor, e_type type,
863 char *name, unsigned long value)
864 {
865 struct itbl_entry *e, **es;
866 if (!name)
867 return 0;
868 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
869 if (e)
870 {
871 memset (e, 0, sizeof (struct itbl_entry));
872 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
873 if (e->name)
874 strcpy (e->name, name);
875 e->processor = processor;
876 e->type = type;
877 e->value = value;
878 es = get_entries (e->processor, e->type);
879 e->next = *es;
880 *es = e;
881 }
882 return e;
883 }
884
885 /* Allocate and initialize an entry's field */
886
887 static struct itbl_field *
888 alloc_field (e_type type, int sbit, int ebit,
889 unsigned long flags)
890 {
891 struct itbl_field *f;
892 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
893 if (f)
894 {
895 memset (f, 0, sizeof (struct itbl_field));
896 f->type = type;
897 f->range.sbit = sbit;
898 f->range.ebit = ebit;
899 f->flags = flags;
900 }
901 return f;
902 }
This page took 0.056739 seconds and 5 git commands to generate.