aarch64 multi-arch part 6: HW breakpoint on unaligned address
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "nat/aarch64-linux.h"
34 #include "nat/aarch64-linux-hw-point.h"
35
36 #include "elf/external.h"
37 #include "elf/common.h"
38
39 #include "nat/gdb_ptrace.h"
40 #include <sys/utsname.h>
41 #include <asm/ptrace.h>
42
43 #include "gregset.h"
44
45 /* Defines ps_err_e, struct ps_prochandle. */
46 #include "gdb_proc_service.h"
47
48 #ifndef TRAP_HWBKPT
49 #define TRAP_HWBKPT 0x0004
50 #endif
51
52 /* Per-process data. We don't bind this to a per-inferior registry
53 because of targets like x86 GNU/Linux that need to keep track of
54 processes that aren't bound to any inferior (e.g., fork children,
55 checkpoints). */
56
57 struct aarch64_process_info
58 {
59 /* Linked list. */
60 struct aarch64_process_info *next;
61
62 /* The process identifier. */
63 pid_t pid;
64
65 /* Copy of aarch64 hardware debug registers. */
66 struct aarch64_debug_reg_state state;
67 };
68
69 static struct aarch64_process_info *aarch64_process_list = NULL;
70
71 /* Find process data for process PID. */
72
73 static struct aarch64_process_info *
74 aarch64_find_process_pid (pid_t pid)
75 {
76 struct aarch64_process_info *proc;
77
78 for (proc = aarch64_process_list; proc; proc = proc->next)
79 if (proc->pid == pid)
80 return proc;
81
82 return NULL;
83 }
84
85 /* Add process data for process PID. Returns newly allocated info
86 object. */
87
88 static struct aarch64_process_info *
89 aarch64_add_process (pid_t pid)
90 {
91 struct aarch64_process_info *proc;
92
93 proc = XCNEW (struct aarch64_process_info);
94 proc->pid = pid;
95
96 proc->next = aarch64_process_list;
97 aarch64_process_list = proc;
98
99 return proc;
100 }
101
102 /* Get data specific info for process PID, creating it if necessary.
103 Never returns NULL. */
104
105 static struct aarch64_process_info *
106 aarch64_process_info_get (pid_t pid)
107 {
108 struct aarch64_process_info *proc;
109
110 proc = aarch64_find_process_pid (pid);
111 if (proc == NULL)
112 proc = aarch64_add_process (pid);
113
114 return proc;
115 }
116
117 /* Called whenever GDB is no longer debugging process PID. It deletes
118 data structures that keep track of debug register state. */
119
120 static void
121 aarch64_forget_process (pid_t pid)
122 {
123 struct aarch64_process_info *proc, **proc_link;
124
125 proc = aarch64_process_list;
126 proc_link = &aarch64_process_list;
127
128 while (proc != NULL)
129 {
130 if (proc->pid == pid)
131 {
132 *proc_link = proc->next;
133
134 xfree (proc);
135 return;
136 }
137
138 proc_link = &proc->next;
139 proc = *proc_link;
140 }
141 }
142
143 /* Get debug registers state for process PID. */
144
145 struct aarch64_debug_reg_state *
146 aarch64_get_debug_reg_state (pid_t pid)
147 {
148 return &aarch64_process_info_get (pid)->state;
149 }
150
151 /* Fill GDB's register array with the general-purpose register values
152 from the current thread. */
153
154 static void
155 fetch_gregs_from_thread (struct regcache *regcache)
156 {
157 int ret, tid;
158 struct gdbarch *gdbarch = get_regcache_arch (regcache);
159 elf_gregset_t regs;
160 struct iovec iovec;
161
162 /* Make sure REGS can hold all registers contents on both aarch64
163 and arm. */
164 gdb_static_assert (sizeof (regs) >= 18 * 4);
165
166 tid = ptid_get_lwp (inferior_ptid);
167
168 iovec.iov_base = &regs;
169 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
170 iovec.iov_len = 18 * 4;
171 else
172 iovec.iov_len = sizeof (regs);
173
174 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
175 if (ret < 0)
176 perror_with_name (_("Unable to fetch general registers."));
177
178 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
179 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
180 else
181 {
182 int regno;
183
184 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
185 regcache_raw_supply (regcache, regno, &regs[regno - AARCH64_X0_REGNUM]);
186 }
187 }
188
189 /* Store to the current thread the valid general-purpose register
190 values in the GDB's register array. */
191
192 static void
193 store_gregs_to_thread (const struct regcache *regcache)
194 {
195 int ret, tid;
196 elf_gregset_t regs;
197 struct iovec iovec;
198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
199
200 /* Make sure REGS can hold all registers contents on both aarch64
201 and arm. */
202 gdb_static_assert (sizeof (regs) >= 18 * 4);
203 tid = ptid_get_lwp (inferior_ptid);
204
205 iovec.iov_base = &regs;
206 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
207 iovec.iov_len = 18 * 4;
208 else
209 iovec.iov_len = sizeof (regs);
210
211 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
212 if (ret < 0)
213 perror_with_name (_("Unable to fetch general registers."));
214
215 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
216 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
217 else
218 {
219 int regno;
220
221 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
222 if (REG_VALID == regcache_register_status (regcache, regno))
223 regcache_raw_collect (regcache, regno,
224 &regs[regno - AARCH64_X0_REGNUM]);
225 }
226
227 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
228 if (ret < 0)
229 perror_with_name (_("Unable to store general registers."));
230 }
231
232 /* Fill GDB's register array with the fp/simd register values
233 from the current thread. */
234
235 static void
236 fetch_fpregs_from_thread (struct regcache *regcache)
237 {
238 int ret, tid;
239 elf_fpregset_t regs;
240 struct iovec iovec;
241 struct gdbarch *gdbarch = get_regcache_arch (regcache);
242
243 /* Make sure REGS can hold all VFP registers contents on both aarch64
244 and arm. */
245 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
246
247 tid = ptid_get_lwp (inferior_ptid);
248
249 iovec.iov_base = &regs;
250
251 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
252 {
253 iovec.iov_len = VFP_REGS_SIZE;
254
255 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
256 if (ret < 0)
257 perror_with_name (_("Unable to fetch VFP registers."));
258
259 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
260 }
261 else
262 {
263 int regno;
264
265 iovec.iov_len = sizeof (regs);
266
267 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
268 if (ret < 0)
269 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
270
271 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
272 regcache_raw_supply (regcache, regno,
273 &regs.vregs[regno - AARCH64_V0_REGNUM]);
274
275 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, &regs.fpsr);
276 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, &regs.fpcr);
277 }
278 }
279
280 /* Store to the current thread the valid fp/simd register
281 values in the GDB's register array. */
282
283 static void
284 store_fpregs_to_thread (const struct regcache *regcache)
285 {
286 int ret, tid;
287 elf_fpregset_t regs;
288 struct iovec iovec;
289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
290
291 /* Make sure REGS can hold all VFP registers contents on both aarch64
292 and arm. */
293 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
294 tid = ptid_get_lwp (inferior_ptid);
295
296 iovec.iov_base = &regs;
297
298 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
299 {
300 iovec.iov_len = VFP_REGS_SIZE;
301
302 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
303 if (ret < 0)
304 perror_with_name (_("Unable to fetch VFP registers."));
305
306 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
307 }
308 else
309 {
310 int regno;
311
312 iovec.iov_len = sizeof (regs);
313
314 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch FP/SIMD registers."));
317
318 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
319 if (REG_VALID == regcache_register_status (regcache, regno))
320 regcache_raw_collect (regcache, regno,
321 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
322
323 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
324 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
325 (char *) &regs.fpsr);
326 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
327 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
328 (char *) &regs.fpcr);
329 }
330
331 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
332 {
333 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
334 if (ret < 0)
335 perror_with_name (_("Unable to store VFP registers."));
336 }
337 else
338 {
339 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
340 if (ret < 0)
341 perror_with_name (_("Unable to store FP/SIMD registers."));
342 }
343 }
344
345 /* Implement the "to_fetch_register" target_ops method. */
346
347 static void
348 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
349 struct regcache *regcache,
350 int regno)
351 {
352 if (regno == -1)
353 {
354 fetch_gregs_from_thread (regcache);
355 fetch_fpregs_from_thread (regcache);
356 }
357 else if (regno < AARCH64_V0_REGNUM)
358 fetch_gregs_from_thread (regcache);
359 else
360 fetch_fpregs_from_thread (regcache);
361 }
362
363 /* Implement the "to_store_register" target_ops method. */
364
365 static void
366 aarch64_linux_store_inferior_registers (struct target_ops *ops,
367 struct regcache *regcache,
368 int regno)
369 {
370 if (regno == -1)
371 {
372 store_gregs_to_thread (regcache);
373 store_fpregs_to_thread (regcache);
374 }
375 else if (regno < AARCH64_V0_REGNUM)
376 store_gregs_to_thread (regcache);
377 else
378 store_fpregs_to_thread (regcache);
379 }
380
381 /* Fill register REGNO (if it is a general-purpose register) in
382 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
383 do this for all registers. */
384
385 void
386 fill_gregset (const struct regcache *regcache,
387 gdb_gregset_t *gregsetp, int regno)
388 {
389 regcache_collect_regset (&aarch64_linux_gregset, regcache,
390 regno, (gdb_byte *) gregsetp,
391 AARCH64_LINUX_SIZEOF_GREGSET);
392 }
393
394 /* Fill GDB's register array with the general-purpose register values
395 in *GREGSETP. */
396
397 void
398 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
399 {
400 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
401 (const gdb_byte *) gregsetp,
402 AARCH64_LINUX_SIZEOF_GREGSET);
403 }
404
405 /* Fill register REGNO (if it is a floating-point register) in
406 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
407 do this for all registers. */
408
409 void
410 fill_fpregset (const struct regcache *regcache,
411 gdb_fpregset_t *fpregsetp, int regno)
412 {
413 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
414 regno, (gdb_byte *) fpregsetp,
415 AARCH64_LINUX_SIZEOF_FPREGSET);
416 }
417
418 /* Fill GDB's register array with the floating-point register values
419 in *FPREGSETP. */
420
421 void
422 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
423 {
424 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
425 (const gdb_byte *) fpregsetp,
426 AARCH64_LINUX_SIZEOF_FPREGSET);
427 }
428
429 /* linux_nat_new_fork hook. */
430
431 static void
432 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
433 {
434 pid_t parent_pid;
435 struct aarch64_debug_reg_state *parent_state;
436 struct aarch64_debug_reg_state *child_state;
437
438 /* NULL means no watchpoint has ever been set in the parent. In
439 that case, there's nothing to do. */
440 if (parent->arch_private == NULL)
441 return;
442
443 /* GDB core assumes the child inherits the watchpoints/hw
444 breakpoints of the parent, and will remove them all from the
445 forked off process. Copy the debug registers mirrors into the
446 new process so that all breakpoints and watchpoints can be
447 removed together. */
448
449 parent_pid = ptid_get_pid (parent->ptid);
450 parent_state = aarch64_get_debug_reg_state (parent_pid);
451 child_state = aarch64_get_debug_reg_state (child_pid);
452 *child_state = *parent_state;
453 }
454 \f
455
456 /* Called by libthread_db. Returns a pointer to the thread local
457 storage (or its descriptor). */
458
459 ps_err_e
460 ps_get_thread_area (const struct ps_prochandle *ph,
461 lwpid_t lwpid, int idx, void **base)
462 {
463 int is_64bit_p
464 = (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 64);
465
466 return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
467 }
468 \f
469
470 static void (*super_post_startup_inferior) (struct target_ops *self,
471 ptid_t ptid);
472
473 /* Implement the "to_post_startup_inferior" target_ops method. */
474
475 static void
476 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
477 ptid_t ptid)
478 {
479 aarch64_forget_process (ptid_get_pid (ptid));
480 aarch64_linux_get_debug_reg_capacity (ptid_get_pid (ptid));
481 super_post_startup_inferior (self, ptid);
482 }
483
484 extern struct target_desc *tdesc_arm_with_vfpv3;
485 extern struct target_desc *tdesc_arm_with_neon;
486
487 /* Implement the "to_read_description" target_ops method. */
488
489 static const struct target_desc *
490 aarch64_linux_read_description (struct target_ops *ops)
491 {
492 CORE_ADDR at_phent;
493
494 if (target_auxv_search (ops, AT_PHENT, &at_phent) == 1)
495 {
496 if (at_phent == sizeof (Elf64_External_Phdr))
497 return tdesc_aarch64;
498 else
499 {
500 CORE_ADDR arm_hwcap = 0;
501
502 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
503 return ops->beneath->to_read_description (ops->beneath);
504
505 #ifndef COMPAT_HWCAP_VFP
506 #define COMPAT_HWCAP_VFP (1 << 6)
507 #endif
508 #ifndef COMPAT_HWCAP_NEON
509 #define COMPAT_HWCAP_NEON (1 << 12)
510 #endif
511 #ifndef COMPAT_HWCAP_VFPv3
512 #define COMPAT_HWCAP_VFPv3 (1 << 13)
513 #endif
514
515 if (arm_hwcap & COMPAT_HWCAP_VFP)
516 {
517 char *buf;
518 const struct target_desc *result = NULL;
519
520 if (arm_hwcap & COMPAT_HWCAP_NEON)
521 result = tdesc_arm_with_neon;
522 else if (arm_hwcap & COMPAT_HWCAP_VFPv3)
523 result = tdesc_arm_with_vfpv3;
524
525 return result;
526 }
527
528 return NULL;
529 }
530 }
531
532 return tdesc_aarch64;
533 }
534
535 /* Convert a native/host siginfo object, into/from the siginfo in the
536 layout of the inferiors' architecture. Returns true if any
537 conversion was done; false otherwise. If DIRECTION is 1, then copy
538 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
539 INF. */
540
541 static int
542 aarch64_linux_siginfo_fixup (siginfo_t *native, gdb_byte *inf, int direction)
543 {
544 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
545
546 /* Is the inferior 32-bit? If so, then do fixup the siginfo
547 object. */
548 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
549 {
550 if (direction == 0)
551 aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
552 native);
553 else
554 aarch64_siginfo_from_compat_siginfo (native,
555 (struct compat_siginfo *) inf);
556
557 return 1;
558 }
559
560 return 0;
561 }
562
563 /* Returns the number of hardware watchpoints of type TYPE that we can
564 set. Value is positive if we can set CNT watchpoints, zero if
565 setting watchpoints of type TYPE is not supported, and negative if
566 CNT is more than the maximum number of watchpoints of type TYPE
567 that we can support. TYPE is one of bp_hardware_watchpoint,
568 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
569 CNT is the number of such watchpoints used so far (including this
570 one). OTHERTYPE is non-zero if other types of watchpoints are
571 currently enabled. */
572
573 static int
574 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
575 enum bptype type,
576 int cnt, int othertype)
577 {
578 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
579 || type == bp_access_watchpoint || type == bp_watchpoint)
580 {
581 if (aarch64_num_wp_regs == 0)
582 return 0;
583 }
584 else if (type == bp_hardware_breakpoint)
585 {
586 if (aarch64_num_bp_regs == 0)
587 return 0;
588 }
589 else
590 gdb_assert_not_reached ("unexpected breakpoint type");
591
592 /* We always return 1 here because we don't have enough information
593 about possible overlap of addresses that they want to watch. As an
594 extreme example, consider the case where all the watchpoints watch
595 the same address and the same region length: then we can handle a
596 virtually unlimited number of watchpoints, due to debug register
597 sharing implemented via reference counts. */
598 return 1;
599 }
600
601 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
602 Return 0 on success, -1 on failure. */
603
604 static int
605 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
606 struct gdbarch *gdbarch,
607 struct bp_target_info *bp_tgt)
608 {
609 int ret;
610 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
611 int len;
612 const enum target_hw_bp_type type = hw_execute;
613 struct aarch64_debug_reg_state *state
614 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
615
616 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
617
618 if (show_debug_regs)
619 fprintf_unfiltered
620 (gdb_stdlog,
621 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
622 (unsigned long) addr, len);
623
624 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
625
626 if (show_debug_regs)
627 {
628 aarch64_show_debug_reg_state (state,
629 "insert_hw_breakpoint", addr, len, type);
630 }
631
632 return ret;
633 }
634
635 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
636 Return 0 on success, -1 on failure. */
637
638 static int
639 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
640 struct gdbarch *gdbarch,
641 struct bp_target_info *bp_tgt)
642 {
643 int ret;
644 CORE_ADDR addr = bp_tgt->placed_address;
645 int len = 4;
646 const enum target_hw_bp_type type = hw_execute;
647 struct aarch64_debug_reg_state *state
648 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
649
650 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
651
652 if (show_debug_regs)
653 fprintf_unfiltered
654 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
655 (unsigned long) addr, len);
656
657 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
658
659 if (show_debug_regs)
660 {
661 aarch64_show_debug_reg_state (state,
662 "remove_hw_watchpoint", addr, len, type);
663 }
664
665 return ret;
666 }
667
668 /* Implement the "to_insert_watchpoint" target_ops method.
669
670 Insert a watchpoint to watch a memory region which starts at
671 address ADDR and whose length is LEN bytes. Watch memory accesses
672 of the type TYPE. Return 0 on success, -1 on failure. */
673
674 static int
675 aarch64_linux_insert_watchpoint (struct target_ops *self,
676 CORE_ADDR addr, int len,
677 enum target_hw_bp_type type,
678 struct expression *cond)
679 {
680 int ret;
681 struct aarch64_debug_reg_state *state
682 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
683
684 if (show_debug_regs)
685 fprintf_unfiltered (gdb_stdlog,
686 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
687 (unsigned long) addr, len);
688
689 gdb_assert (type != hw_execute);
690
691 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
692
693 if (show_debug_regs)
694 {
695 aarch64_show_debug_reg_state (state,
696 "insert_watchpoint", addr, len, type);
697 }
698
699 return ret;
700 }
701
702 /* Implement the "to_remove_watchpoint" target_ops method.
703 Remove a watchpoint that watched the memory region which starts at
704 address ADDR, whose length is LEN bytes, and for accesses of the
705 type TYPE. Return 0 on success, -1 on failure. */
706
707 static int
708 aarch64_linux_remove_watchpoint (struct target_ops *self,
709 CORE_ADDR addr, int len,
710 enum target_hw_bp_type type,
711 struct expression *cond)
712 {
713 int ret;
714 struct aarch64_debug_reg_state *state
715 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
716
717 if (show_debug_regs)
718 fprintf_unfiltered (gdb_stdlog,
719 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
720 (unsigned long) addr, len);
721
722 gdb_assert (type != hw_execute);
723
724 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
725
726 if (show_debug_regs)
727 {
728 aarch64_show_debug_reg_state (state,
729 "remove_watchpoint", addr, len, type);
730 }
731
732 return ret;
733 }
734
735 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
736
737 static int
738 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
739 CORE_ADDR addr, int len)
740 {
741 return aarch64_linux_region_ok_for_watchpoint (addr, len);
742 }
743
744 /* Implement the "to_stopped_data_address" target_ops method. */
745
746 static int
747 aarch64_linux_stopped_data_address (struct target_ops *target,
748 CORE_ADDR *addr_p)
749 {
750 siginfo_t siginfo;
751 int i, tid;
752 struct aarch64_debug_reg_state *state;
753
754 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
755 return 0;
756
757 /* This must be a hardware breakpoint. */
758 if (siginfo.si_signo != SIGTRAP
759 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
760 return 0;
761
762 /* Check if the address matches any watched address. */
763 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
764 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
765 {
766 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
767 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
768 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
769
770 if (state->dr_ref_count_wp[i]
771 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
772 && addr_trap >= addr_watch
773 && addr_trap < addr_watch + len)
774 {
775 *addr_p = addr_trap;
776 return 1;
777 }
778 }
779
780 return 0;
781 }
782
783 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
784
785 static int
786 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
787 {
788 CORE_ADDR addr;
789
790 return aarch64_linux_stopped_data_address (ops, &addr);
791 }
792
793 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
794
795 static int
796 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
797 CORE_ADDR addr,
798 CORE_ADDR start, int length)
799 {
800 return start <= addr && start + length - 1 >= addr;
801 }
802
803 /* Implement the "to_can_do_single_step" target_ops method. */
804
805 static int
806 aarch64_linux_can_do_single_step (struct target_ops *target)
807 {
808 return 1;
809 }
810
811 /* Define AArch64 maintenance commands. */
812
813 static void
814 add_show_debug_regs_command (void)
815 {
816 /* A maintenance command to enable printing the internal DRi mirror
817 variables. */
818 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
819 &show_debug_regs, _("\
820 Set whether to show variables that mirror the AArch64 debug registers."), _("\
821 Show whether to show variables that mirror the AArch64 debug registers."), _("\
822 Use \"on\" to enable, \"off\" to disable.\n\
823 If enabled, the debug registers values are shown when GDB inserts\n\
824 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
825 triggers a breakpoint or watchpoint."),
826 NULL,
827 NULL,
828 &maintenance_set_cmdlist,
829 &maintenance_show_cmdlist);
830 }
831
832 /* -Wmissing-prototypes. */
833 void _initialize_aarch64_linux_nat (void);
834
835 void
836 _initialize_aarch64_linux_nat (void)
837 {
838 struct target_ops *t;
839
840 /* Fill in the generic GNU/Linux methods. */
841 t = linux_target ();
842
843 add_show_debug_regs_command ();
844
845 /* Add our register access methods. */
846 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
847 t->to_store_registers = aarch64_linux_store_inferior_registers;
848
849 t->to_read_description = aarch64_linux_read_description;
850
851 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
852 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
853 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
854 t->to_region_ok_for_hw_watchpoint =
855 aarch64_linux_region_ok_for_hw_watchpoint;
856 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
857 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
858 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
859 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
860 t->to_watchpoint_addr_within_range =
861 aarch64_linux_watchpoint_addr_within_range;
862 t->to_can_do_single_step = aarch64_linux_can_do_single_step;
863
864 /* Override the GNU/Linux inferior startup hook. */
865 super_post_startup_inferior = t->to_post_startup_inferior;
866 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
867
868 /* Register the target. */
869 linux_nat_add_target (t);
870 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
871 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
872 linux_nat_set_forget_process (t, aarch64_forget_process);
873 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
874
875 /* Add our siginfo layout converter. */
876 linux_nat_set_siginfo_fixup (t, aarch64_linux_siginfo_fixup);
877 }
This page took 0.092506 seconds and 5 git commands to generate.