Update Copyright year range in all files maintained by GDB.
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2014 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
33
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
36
37 #include "gregset.h"
38
39 #include "features/aarch64.c"
40
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
43
44 #ifndef TRAP_HWBKPT
45 #define TRAP_HWBKPT 0x0004
46 #endif
47
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
53
54 static int
55 get_thread_id (ptid_t ptid)
56 {
57 int tid = ptid_get_lwp (ptid);
58
59 if (0 == tid)
60 tid = ptid_get_pid (ptid);
61 return tid;
62 }
63
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
67
68 hw - hardware
69 bp - breakpoint
70 wp - watchpoint */
71
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
74 measured in bits. */
75
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
78
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
81
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
86
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
90
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
93
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
96
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
98
99 /* ptrace hardware breakpoint resource info is formatted as follows:
100
101 31 24 16 8 0
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
105
106
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
110
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
113
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
117
118 static int aarch64_num_bp_regs;
119 static int aarch64_num_wp_regs;
120
121 /* Debugging of hardware breakpoint/watchpoint support. */
122
123 static int debug_hw_points;
124
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
127 the last update.
128
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
133
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
137
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
141
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
145
146 typedef unsigned LONGEST dr_changed_t;
147
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
149
150 #define DR_MARK_ALL_CHANGED(x, m) \
151 do \
152 { \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 } while (0)
156
157 #define DR_MARK_N_CHANGED(x, n) \
158 do \
159 { \
160 (x) |= ((dr_changed_t)1 << (n)); \
161 } while (0)
162
163 #define DR_CLEAR_CHANGED(x) \
164 do \
165 { \
166 (x) = 0; \
167 } while (0)
168
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
171
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
178
179 struct aarch64_debug_reg_state
180 {
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
183 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
184 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
185
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
188 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
189 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
190 };
191
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
195 checkpoints). */
196
197 struct aarch64_process_info
198 {
199 /* Linked list. */
200 struct aarch64_process_info *next;
201
202 /* The process identifier. */
203 pid_t pid;
204
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state;
207 };
208
209 static struct aarch64_process_info *aarch64_process_list = NULL;
210
211 /* Find process data for process PID. */
212
213 static struct aarch64_process_info *
214 aarch64_find_process_pid (pid_t pid)
215 {
216 struct aarch64_process_info *proc;
217
218 for (proc = aarch64_process_list; proc; proc = proc->next)
219 if (proc->pid == pid)
220 return proc;
221
222 return NULL;
223 }
224
225 /* Add process data for process PID. Returns newly allocated info
226 object. */
227
228 static struct aarch64_process_info *
229 aarch64_add_process (pid_t pid)
230 {
231 struct aarch64_process_info *proc;
232
233 proc = xcalloc (1, sizeof (*proc));
234 proc->pid = pid;
235
236 proc->next = aarch64_process_list;
237 aarch64_process_list = proc;
238
239 return proc;
240 }
241
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
244
245 static struct aarch64_process_info *
246 aarch64_process_info_get (pid_t pid)
247 {
248 struct aarch64_process_info *proc;
249
250 proc = aarch64_find_process_pid (pid);
251 if (proc == NULL)
252 proc = aarch64_add_process (pid);
253
254 return proc;
255 }
256
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
259
260 static void
261 aarch64_forget_process (pid_t pid)
262 {
263 struct aarch64_process_info *proc, **proc_link;
264
265 proc = aarch64_process_list;
266 proc_link = &aarch64_process_list;
267
268 while (proc != NULL)
269 {
270 if (proc->pid == pid)
271 {
272 *proc_link = proc->next;
273
274 xfree (proc);
275 return;
276 }
277
278 proc_link = &proc->next;
279 proc = *proc_link;
280 }
281 }
282
283 /* Get debug registers state for process PID. */
284
285 static struct aarch64_debug_reg_state *
286 aarch64_get_debug_reg_state (pid_t pid)
287 {
288 return &aarch64_process_info_get (pid)->state;
289 }
290
291 /* Per-thread arch-specific data we want to keep. */
292
293 struct arch_lwp_info
294 {
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp;
299 dr_changed_t dr_changed_wp;
300 };
301
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
304
305 static void
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
307 int tid, int watchpoint)
308 {
309 int i, count;
310 struct iovec iov;
311 struct user_hwdebug_state regs;
312 const CORE_ADDR *addr;
313 const unsigned int *ctrl;
314
315 memset (&regs, 0, sizeof (regs));
316 iov.iov_base = &regs;
317 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
318 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
319 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
320 if (count == 0)
321 return;
322 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
323 + sizeof (regs.dbg_regs [count - 1]));
324
325 for (i = 0; i < count; i++)
326 {
327 regs.dbg_regs[i].addr = addr[i];
328 regs.dbg_regs[i].ctrl = ctrl[i];
329 }
330
331 if (ptrace (PTRACE_SETREGSET, tid,
332 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
333 (void *) &iov))
334 error (_("Unexpected error setting hardware debug registers"));
335 }
336
337 struct aarch64_dr_update_callback_param
338 {
339 int is_watchpoint;
340 unsigned int idx;
341 };
342
343 /* Callback for iterate_over_lwps. Records the
344 information about the change of one hardware breakpoint/watchpoint
345 setting for the thread LWP.
346 The information is passed in via PTR.
347 N.B. The actual updating of hardware debug registers is not
348 carried out until the moment the thread is resumed. */
349
350 static int
351 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
352 {
353 struct aarch64_dr_update_callback_param *param_p
354 = (struct aarch64_dr_update_callback_param *) ptr;
355 int pid = get_thread_id (lwp->ptid);
356 int idx = param_p->idx;
357 int is_watchpoint = param_p->is_watchpoint;
358 struct arch_lwp_info *info = lwp->arch_private;
359 dr_changed_t *dr_changed_ptr;
360 dr_changed_t dr_changed;
361
362 if (info == NULL)
363 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
364
365 if (debug_hw_points)
366 {
367 fprintf_unfiltered (gdb_stdlog,
368 "debug_reg_change_callback: \n\tOn entry:\n");
369 fprintf_unfiltered (gdb_stdlog,
370 "\tpid%d, dr_changed_bp=0x%s, "
371 "dr_changed_wp=0x%s\n",
372 pid, phex (info->dr_changed_bp, 8),
373 phex (info->dr_changed_wp, 8));
374 }
375
376 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
377 : &info->dr_changed_bp;
378 dr_changed = *dr_changed_ptr;
379
380 gdb_assert (idx >= 0
381 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
382 : aarch64_num_bp_regs)));
383
384 /* The actual update is done later just before resuming the lwp,
385 we just mark that one register pair needs updating. */
386 DR_MARK_N_CHANGED (dr_changed, idx);
387 *dr_changed_ptr = dr_changed;
388
389 /* If the lwp isn't stopped, force it to momentarily pause, so
390 we can update its debug registers. */
391 if (!lwp->stopped)
392 linux_stop_lwp (lwp);
393
394 if (debug_hw_points)
395 {
396 fprintf_unfiltered (gdb_stdlog,
397 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
398 "dr_changed_wp=0x%s\n",
399 pid, phex (info->dr_changed_bp, 8),
400 phex (info->dr_changed_wp, 8));
401 }
402
403 /* Continue the iteration. */
404 return 0;
405 }
406
407 /* Notify each thread that their IDXth breakpoint/watchpoint register
408 pair needs to be updated. The message will be recorded in each
409 thread's arch-specific data area, the actual updating will be done
410 when the thread is resumed. */
411
412 static void
413 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
414 int is_watchpoint, unsigned int idx)
415 {
416 struct aarch64_dr_update_callback_param param;
417 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
418
419 param.is_watchpoint = is_watchpoint;
420 param.idx = idx;
421
422 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
423 }
424
425 /* Print the values of the cached breakpoint/watchpoint registers. */
426
427 static void
428 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
429 const char *func, CORE_ADDR addr,
430 int len, int type)
431 {
432 int i;
433
434 fprintf_unfiltered (gdb_stdlog, "%s", func);
435 if (addr || len)
436 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
437 (unsigned long) addr, len,
438 type == hw_write ? "hw-write-watchpoint"
439 : (type == hw_read ? "hw-read-watchpoint"
440 : (type == hw_access ? "hw-access-watchpoint"
441 : (type == hw_execute ? "hw-breakpoint"
442 : "??unknown??"))));
443 fprintf_unfiltered (gdb_stdlog, ":\n");
444
445 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
446 for (i = 0; i < aarch64_num_bp_regs; i++)
447 fprintf_unfiltered (gdb_stdlog,
448 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
449 i, state->dr_addr_bp[i],
450 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
451
452 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
453 for (i = 0; i < aarch64_num_wp_regs; i++)
454 fprintf_unfiltered (gdb_stdlog,
455 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
456 i, state->dr_addr_wp[i],
457 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
458 }
459
460 /* Fill GDB's register array with the general-purpose register values
461 from the current thread. */
462
463 static void
464 fetch_gregs_from_thread (struct regcache *regcache)
465 {
466 int ret, regno, tid;
467 elf_gregset_t regs;
468 struct iovec iovec;
469
470 tid = get_thread_id (inferior_ptid);
471
472 iovec.iov_base = &regs;
473 iovec.iov_len = sizeof (regs);
474
475 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
476 if (ret < 0)
477 perror_with_name (_("Unable to fetch general registers."));
478
479 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
480 regcache_raw_supply (regcache, regno,
481 (char *) &regs[regno - AARCH64_X0_REGNUM]);
482 }
483
484 /* Store to the current thread the valid general-purpose register
485 values in the GDB's register array. */
486
487 static void
488 store_gregs_to_thread (const struct regcache *regcache)
489 {
490 int ret, regno, tid;
491 elf_gregset_t regs;
492 struct iovec iovec;
493
494 tid = get_thread_id (inferior_ptid);
495
496 iovec.iov_base = &regs;
497 iovec.iov_len = sizeof (regs);
498
499 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
500 if (ret < 0)
501 perror_with_name (_("Unable to fetch general registers."));
502
503 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
504 if (REG_VALID == regcache_register_status (regcache, regno))
505 regcache_raw_collect (regcache, regno,
506 (char *) &regs[regno - AARCH64_X0_REGNUM]);
507
508 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
509 if (ret < 0)
510 perror_with_name (_("Unable to store general registers."));
511 }
512
513 /* Fill GDB's register array with the fp/simd register values
514 from the current thread. */
515
516 static void
517 fetch_fpregs_from_thread (struct regcache *regcache)
518 {
519 int ret, regno, tid;
520 elf_fpregset_t regs;
521 struct iovec iovec;
522
523 tid = get_thread_id (inferior_ptid);
524
525 iovec.iov_base = &regs;
526 iovec.iov_len = sizeof (regs);
527
528 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
529 if (ret < 0)
530 perror_with_name (_("Unable to fetch FP/SIMD registers."));
531
532 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
533 regcache_raw_supply (regcache, regno,
534 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
535
536 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
537 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
538 }
539
540 /* Store to the current thread the valid fp/simd register
541 values in the GDB's register array. */
542
543 static void
544 store_fpregs_to_thread (const struct regcache *regcache)
545 {
546 int ret, regno, tid;
547 elf_fpregset_t regs;
548 struct iovec iovec;
549
550 tid = get_thread_id (inferior_ptid);
551
552 iovec.iov_base = &regs;
553 iovec.iov_len = sizeof (regs);
554
555 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
556 if (ret < 0)
557 perror_with_name (_("Unable to fetch FP/SIMD registers."));
558
559 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
560 if (REG_VALID == regcache_register_status (regcache, regno))
561 regcache_raw_collect (regcache, regno,
562 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
563
564 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
565 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
566 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
567 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
568
569 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
570 if (ret < 0)
571 perror_with_name (_("Unable to store FP/SIMD registers."));
572 }
573
574 /* Implement the "to_fetch_register" target_ops method. */
575
576 static void
577 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
578 struct regcache *regcache,
579 int regno)
580 {
581 if (regno == -1)
582 {
583 fetch_gregs_from_thread (regcache);
584 fetch_fpregs_from_thread (regcache);
585 }
586 else if (regno < AARCH64_V0_REGNUM)
587 fetch_gregs_from_thread (regcache);
588 else
589 fetch_fpregs_from_thread (regcache);
590 }
591
592 /* Implement the "to_store_register" target_ops method. */
593
594 static void
595 aarch64_linux_store_inferior_registers (struct target_ops *ops,
596 struct regcache *regcache,
597 int regno)
598 {
599 if (regno == -1)
600 {
601 store_gregs_to_thread (regcache);
602 store_fpregs_to_thread (regcache);
603 }
604 else if (regno < AARCH64_V0_REGNUM)
605 store_gregs_to_thread (regcache);
606 else
607 store_fpregs_to_thread (regcache);
608 }
609
610 /* Fill register REGNO (if it is a general-purpose register) in
611 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
612 do this for all registers. */
613
614 void
615 fill_gregset (const struct regcache *regcache,
616 gdb_gregset_t *gregsetp, int regno)
617 {
618 gdb_byte *gregs_buf = (gdb_byte *) gregsetp;
619 int i;
620
621 for (i = AARCH64_X0_REGNUM; i <= AARCH64_CPSR_REGNUM; i++)
622 if (regno == -1 || regno == i)
623 regcache_raw_collect (regcache, i,
624 gregs_buf + X_REGISTER_SIZE
625 * (i - AARCH64_X0_REGNUM));
626 }
627
628 /* Fill GDB's register array with the general-purpose register values
629 in *GREGSETP. */
630
631 void
632 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
633 {
634 aarch64_linux_supply_gregset (regcache, (const gdb_byte *) gregsetp);
635 }
636
637 /* Fill register REGNO (if it is a floating-point register) in
638 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
639 do this for all registers. */
640
641 void
642 fill_fpregset (const struct regcache *regcache,
643 gdb_fpregset_t *fpregsetp, int regno)
644 {
645 gdb_byte *fpregs_buf = (gdb_byte *) fpregsetp;
646 int i;
647
648 for (i = AARCH64_V0_REGNUM; i <= AARCH64_V31_REGNUM; i++)
649 if (regno == -1 || regno == i)
650 regcache_raw_collect (regcache, i,
651 fpregs_buf + V_REGISTER_SIZE
652 * (i - AARCH64_V0_REGNUM));
653
654 if (regno == -1 || regno == AARCH64_FPSR_REGNUM)
655 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
656 fpregs_buf + V_REGISTER_SIZE * 32);
657
658 if (regno == -1 || regno == AARCH64_FPCR_REGNUM)
659 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
660 fpregs_buf + V_REGISTER_SIZE * 32 + 4);
661 }
662
663 /* Fill GDB's register array with the floating-point register values
664 in *FPREGSETP. */
665
666 void
667 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
668 {
669 aarch64_linux_supply_fpregset (regcache, (const gdb_byte *) fpregsetp);
670 }
671
672 /* Called when resuming a thread.
673 The hardware debug registers are updated when there is any change. */
674
675 static void
676 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
677 {
678 struct arch_lwp_info *info = lwp->arch_private;
679
680 /* NULL means this is the main thread still going through the shell,
681 or, no watchpoint has been set yet. In that case, there's
682 nothing to do. */
683 if (info == NULL)
684 return;
685
686 if (DR_HAS_CHANGED (info->dr_changed_bp)
687 || DR_HAS_CHANGED (info->dr_changed_wp))
688 {
689 int tid = ptid_get_lwp (lwp->ptid);
690 struct aarch64_debug_reg_state *state
691 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
692
693 if (debug_hw_points)
694 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
695
696 /* Watchpoints. */
697 if (DR_HAS_CHANGED (info->dr_changed_wp))
698 {
699 aarch64_linux_set_debug_regs (state, tid, 1);
700 DR_CLEAR_CHANGED (info->dr_changed_wp);
701 }
702
703 /* Breakpoints. */
704 if (DR_HAS_CHANGED (info->dr_changed_bp))
705 {
706 aarch64_linux_set_debug_regs (state, tid, 0);
707 DR_CLEAR_CHANGED (info->dr_changed_bp);
708 }
709 }
710 }
711
712 static void
713 aarch64_linux_new_thread (struct lwp_info *lp)
714 {
715 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
716
717 /* Mark that all the hardware breakpoint/watchpoint register pairs
718 for this thread need to be initialized. */
719 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
720 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
721
722 lp->arch_private = info;
723 }
724
725 /* linux_nat_new_fork hook. */
726
727 static void
728 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
729 {
730 pid_t parent_pid;
731 struct aarch64_debug_reg_state *parent_state;
732 struct aarch64_debug_reg_state *child_state;
733
734 /* NULL means no watchpoint has ever been set in the parent. In
735 that case, there's nothing to do. */
736 if (parent->arch_private == NULL)
737 return;
738
739 /* GDB core assumes the child inherits the watchpoints/hw
740 breakpoints of the parent, and will remove them all from the
741 forked off process. Copy the debug registers mirrors into the
742 new process so that all breakpoints and watchpoints can be
743 removed together. */
744
745 parent_pid = ptid_get_pid (parent->ptid);
746 parent_state = aarch64_get_debug_reg_state (parent_pid);
747 child_state = aarch64_get_debug_reg_state (child_pid);
748 *child_state = *parent_state;
749 }
750 \f
751
752 /* Called by libthread_db. Returns a pointer to the thread local
753 storage (or its descriptor). */
754
755 ps_err_e
756 ps_get_thread_area (const struct ps_prochandle *ph,
757 lwpid_t lwpid, int idx, void **base)
758 {
759 struct iovec iovec;
760 uint64_t reg;
761
762 iovec.iov_base = &reg;
763 iovec.iov_len = sizeof (reg);
764
765 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
766 return PS_ERR;
767
768 /* IDX is the bias from the thread pointer to the beginning of the
769 thread descriptor. It has to be subtracted due to implementation
770 quirks in libthread_db. */
771 *base = (void *) (reg - idx);
772
773 return PS_OK;
774 }
775 \f
776
777 /* Get the hardware debug register capacity information. */
778
779 static void
780 aarch64_linux_get_debug_reg_capacity (void)
781 {
782 int tid;
783 struct iovec iov;
784 struct user_hwdebug_state dreg_state;
785
786 tid = get_thread_id (inferior_ptid);
787 iov.iov_base = &dreg_state;
788 iov.iov_len = sizeof (dreg_state);
789
790 /* Get hardware watchpoint register info. */
791 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
792 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
793 {
794 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
795 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
796 {
797 warning (_("Unexpected number of hardware watchpoint registers"
798 " reported by ptrace, got %d, expected %d."),
799 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
800 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
801 }
802 }
803 else
804 {
805 warning (_("Unable to determine the number of hardware watchpoints"
806 " available."));
807 aarch64_num_wp_regs = 0;
808 }
809
810 /* Get hardware breakpoint register info. */
811 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
812 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
813 {
814 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
815 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
816 {
817 warning (_("Unexpected number of hardware breakpoint registers"
818 " reported by ptrace, got %d, expected %d."),
819 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
820 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
821 }
822 }
823 else
824 {
825 warning (_("Unable to determine the number of hardware breakpoints"
826 " available."));
827 aarch64_num_bp_regs = 0;
828 }
829 }
830
831 static void (*super_post_startup_inferior) (ptid_t ptid);
832
833 /* Implement the "to_post_startup_inferior" target_ops method. */
834
835 static void
836 aarch64_linux_child_post_startup_inferior (ptid_t ptid)
837 {
838 aarch64_forget_process (ptid_get_pid (ptid));
839 aarch64_linux_get_debug_reg_capacity ();
840 super_post_startup_inferior (ptid);
841 }
842
843 /* Implement the "to_read_description" target_ops method. */
844
845 static const struct target_desc *
846 aarch64_linux_read_description (struct target_ops *ops)
847 {
848 initialize_tdesc_aarch64 ();
849 return tdesc_aarch64;
850 }
851
852 /* Given the (potentially unaligned) watchpoint address in ADDR and
853 length in LEN, return the aligned address and aligned length in
854 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
855 aligned address and length will be valid values to write to the
856 hardware watchpoint value and control registers.
857
858 The given watchpoint may get truncated if more than one hardware
859 register is needed to cover the watched region. *NEXT_ADDR_P
860 and *NEXT_LEN_P, if non-NULL, will return the address and length
861 of the remaining part of the watchpoint (which can be processed
862 by calling this routine again to generate another aligned address
863 and length pair.
864
865 See the comment above the function of the same name in
866 gdbserver/linux-aarch64-low.c for more information. */
867
868 static void
869 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
870 int *aligned_len_p, CORE_ADDR *next_addr_p,
871 int *next_len_p)
872 {
873 int aligned_len;
874 unsigned int offset;
875 CORE_ADDR aligned_addr;
876 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
877 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
878
879 /* As assumed by the algorithm. */
880 gdb_assert (alignment == max_wp_len);
881
882 if (len <= 0)
883 return;
884
885 /* Address to be put into the hardware watchpoint value register
886 must be aligned. */
887 offset = addr & (alignment - 1);
888 aligned_addr = addr - offset;
889
890 gdb_assert (offset >= 0 && offset < alignment);
891 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
892 gdb_assert (offset + len > 0);
893
894 if (offset + len >= max_wp_len)
895 {
896 /* Need more than one watchpoint registers; truncate it at the
897 alignment boundary. */
898 aligned_len = max_wp_len;
899 len -= (max_wp_len - offset);
900 addr += (max_wp_len - offset);
901 gdb_assert ((addr & (alignment - 1)) == 0);
902 }
903 else
904 {
905 /* Find the smallest valid length that is large enough to
906 accommodate this watchpoint. */
907 static const unsigned char
908 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
909 { 1, 2, 4, 4, 8, 8, 8, 8 };
910
911 aligned_len = aligned_len_array[offset + len - 1];
912 addr += len;
913 len = 0;
914 }
915
916 if (aligned_addr_p)
917 *aligned_addr_p = aligned_addr;
918 if (aligned_len_p)
919 *aligned_len_p = aligned_len;
920 if (next_addr_p)
921 *next_addr_p = addr;
922 if (next_len_p)
923 *next_len_p = len;
924 }
925
926 /* Returns the number of hardware watchpoints of type TYPE that we can
927 set. Value is positive if we can set CNT watchpoints, zero if
928 setting watchpoints of type TYPE is not supported, and negative if
929 CNT is more than the maximum number of watchpoints of type TYPE
930 that we can support. TYPE is one of bp_hardware_watchpoint,
931 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
932 CNT is the number of such watchpoints used so far (including this
933 one). OTHERTYPE is non-zero if other types of watchpoints are
934 currently enabled.
935
936 We always return 1 here because we don't have enough information
937 about possible overlap of addresses that they want to watch. As an
938 extreme example, consider the case where all the watchpoints watch
939 the same address and the same region length: then we can handle a
940 virtually unlimited number of watchpoints, due to debug register
941 sharing implemented via reference counts. */
942
943 static int
944 aarch64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
945 {
946 return 1;
947 }
948
949 /* ptrace expects control registers to be formatted as follows:
950
951 31 13 5 3 1 0
952 +--------------------------------+----------+------+------+----+
953 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
954 +--------------------------------+----------+------+------+----+
955
956 The TYPE field is ignored for breakpoints. */
957
958 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
959 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
960
961 /* Utility function that returns the length in bytes of a watchpoint
962 according to the content of a hardware debug control register CTRL.
963 Note that the kernel currently only supports the following Byte
964 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
965 that for a hardware watchpoint, its valid length can only be 1
966 byte, 2 bytes, 4 bytes or 8 bytes. */
967
968 static inline unsigned int
969 aarch64_watchpoint_length (unsigned int ctrl)
970 {
971 switch (DR_CONTROL_LENGTH (ctrl))
972 {
973 case 0x01:
974 return 1;
975 case 0x03:
976 return 2;
977 case 0x0f:
978 return 4;
979 case 0xff:
980 return 8;
981 default:
982 return 0;
983 }
984 }
985
986 /* Given the hardware breakpoint or watchpoint type TYPE and its
987 length LEN, return the expected encoding for a hardware
988 breakpoint/watchpoint control register. */
989
990 static unsigned int
991 aarch64_point_encode_ctrl_reg (int type, int len)
992 {
993 unsigned int ctrl, ttype;
994
995 /* type */
996 switch (type)
997 {
998 case hw_write:
999 ttype = 2;
1000 break;
1001 case hw_read:
1002 ttype = 1;
1003 break;
1004 case hw_access:
1005 ttype = 3;
1006 break;
1007 case hw_execute:
1008 ttype = 0;
1009 break;
1010 default:
1011 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1012 }
1013 ctrl = ttype << 3;
1014
1015 /* length bitmask */
1016 ctrl |= ((1 << len) - 1) << 5;
1017 /* enabled at el0 */
1018 ctrl |= (2 << 1) | 1;
1019
1020 return ctrl;
1021 }
1022
1023 /* Addresses to be written to the hardware breakpoint and watchpoint
1024 value registers need to be aligned; the alignment is 4-byte and
1025 8-type respectively. Linux kernel rejects any non-aligned address
1026 it receives from the related ptrace call. Furthermore, the kernel
1027 currently only supports the following Byte Address Select (BAS)
1028 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1029 watchpoint to be accepted by the kernel (via ptrace call), its
1030 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1031 Despite these limitations, the unaligned watchpoint is supported in
1032 this port.
1033
1034 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1035
1036 static int
1037 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1038 {
1039 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1040 : AARCH64_HBP_ALIGNMENT;
1041
1042 if (addr & (alignment - 1))
1043 return 0;
1044
1045 if (len != 8 && len != 4 && len != 2 && len != 1)
1046 return 0;
1047
1048 return 1;
1049 }
1050
1051 /* Record the insertion of one breakpoint/watchpoint, as represented
1052 by ADDR and CTRL, in the cached debug register state area *STATE. */
1053
1054 static int
1055 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1056 int type, CORE_ADDR addr, int len)
1057 {
1058 int i, idx, num_regs, is_watchpoint;
1059 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1060 CORE_ADDR *dr_addr_p;
1061
1062 /* Set up state pointers. */
1063 is_watchpoint = (type != hw_execute);
1064 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1065 if (is_watchpoint)
1066 {
1067 num_regs = aarch64_num_wp_regs;
1068 dr_addr_p = state->dr_addr_wp;
1069 dr_ctrl_p = state->dr_ctrl_wp;
1070 dr_ref_count = state->dr_ref_count_wp;
1071 }
1072 else
1073 {
1074 num_regs = aarch64_num_bp_regs;
1075 dr_addr_p = state->dr_addr_bp;
1076 dr_ctrl_p = state->dr_ctrl_bp;
1077 dr_ref_count = state->dr_ref_count_bp;
1078 }
1079
1080 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1081
1082 /* Find an existing or free register in our cache. */
1083 idx = -1;
1084 for (i = 0; i < num_regs; ++i)
1085 {
1086 if ((dr_ctrl_p[i] & 1) == 0)
1087 {
1088 gdb_assert (dr_ref_count[i] == 0);
1089 idx = i;
1090 /* no break; continue hunting for an existing one. */
1091 }
1092 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1093 {
1094 gdb_assert (dr_ref_count[i] != 0);
1095 idx = i;
1096 break;
1097 }
1098 }
1099
1100 /* No space. */
1101 if (idx == -1)
1102 return -1;
1103
1104 /* Update our cache. */
1105 if ((dr_ctrl_p[idx] & 1) == 0)
1106 {
1107 /* new entry */
1108 dr_addr_p[idx] = addr;
1109 dr_ctrl_p[idx] = ctrl;
1110 dr_ref_count[idx] = 1;
1111 /* Notify the change. */
1112 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1113 }
1114 else
1115 {
1116 /* existing entry */
1117 dr_ref_count[idx]++;
1118 }
1119
1120 return 0;
1121 }
1122
1123 /* Record the removal of one breakpoint/watchpoint, as represented by
1124 ADDR and CTRL, in the cached debug register state area *STATE. */
1125
1126 static int
1127 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1128 int type, CORE_ADDR addr, int len)
1129 {
1130 int i, num_regs, is_watchpoint;
1131 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1132 CORE_ADDR *dr_addr_p;
1133
1134 /* Set up state pointers. */
1135 is_watchpoint = (type != hw_execute);
1136 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1137 if (is_watchpoint)
1138 {
1139 num_regs = aarch64_num_wp_regs;
1140 dr_addr_p = state->dr_addr_wp;
1141 dr_ctrl_p = state->dr_ctrl_wp;
1142 dr_ref_count = state->dr_ref_count_wp;
1143 }
1144 else
1145 {
1146 num_regs = aarch64_num_bp_regs;
1147 dr_addr_p = state->dr_addr_bp;
1148 dr_ctrl_p = state->dr_ctrl_bp;
1149 dr_ref_count = state->dr_ref_count_bp;
1150 }
1151
1152 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1153
1154 /* Find the entry that matches the ADDR and CTRL. */
1155 for (i = 0; i < num_regs; ++i)
1156 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1157 {
1158 gdb_assert (dr_ref_count[i] != 0);
1159 break;
1160 }
1161
1162 /* Not found. */
1163 if (i == num_regs)
1164 return -1;
1165
1166 /* Clear our cache. */
1167 if (--dr_ref_count[i] == 0)
1168 {
1169 /* Clear the enable bit. */
1170 ctrl &= ~1;
1171 dr_addr_p[i] = 0;
1172 dr_ctrl_p[i] = ctrl;
1173 /* Notify the change. */
1174 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1175 }
1176
1177 return 0;
1178 }
1179
1180 /* Implement insertion and removal of a single breakpoint. */
1181
1182 static int
1183 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1184 {
1185 struct aarch64_debug_reg_state *state;
1186
1187 /* The hardware breakpoint on AArch64 should always be 4-byte
1188 aligned. */
1189 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1190 return -1;
1191
1192 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1193
1194 if (is_insert)
1195 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1196 else
1197 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1198 }
1199
1200 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1201 Return 0 on success, -1 on failure. */
1202
1203 static int
1204 aarch64_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1205 struct bp_target_info *bp_tgt)
1206 {
1207 int ret;
1208 CORE_ADDR addr = bp_tgt->placed_address;
1209 const int len = 4;
1210 const int type = hw_execute;
1211
1212 if (debug_hw_points)
1213 fprintf_unfiltered
1214 (gdb_stdlog,
1215 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1216 (unsigned long) addr, len);
1217
1218 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1219
1220 if (debug_hw_points > 1)
1221 {
1222 struct aarch64_debug_reg_state *state
1223 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1224
1225 aarch64_show_debug_reg_state (state,
1226 "insert_hw_watchpoint", addr, len, type);
1227 }
1228
1229 return ret;
1230 }
1231
1232 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1233 Return 0 on success, -1 on failure. */
1234
1235 static int
1236 aarch64_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1237 struct bp_target_info *bp_tgt)
1238 {
1239 int ret;
1240 CORE_ADDR addr = bp_tgt->placed_address;
1241 const int len = 4;
1242 const int type = hw_execute;
1243
1244 if (debug_hw_points)
1245 fprintf_unfiltered
1246 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1247 (unsigned long) addr, len);
1248
1249 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1250
1251 if (debug_hw_points > 1)
1252 {
1253 struct aarch64_debug_reg_state *state
1254 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1255
1256 aarch64_show_debug_reg_state (state,
1257 "remove_hw_watchpoint", addr, len, type);
1258 }
1259
1260 return ret;
1261 }
1262
1263 /* This is essentially the same as aarch64_handle_breakpoint, apart
1264 from that it is an aligned watchpoint to be handled. */
1265
1266 static int
1267 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1268 int is_insert)
1269 {
1270 struct aarch64_debug_reg_state *state
1271 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1272
1273 if (is_insert)
1274 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1275 else
1276 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1277 }
1278
1279 /* Insert/remove unaligned watchpoint by calling
1280 aarch64_align_watchpoint repeatedly until the whole watched region,
1281 as represented by ADDR and LEN, has been properly aligned and ready
1282 to be written to one or more hardware watchpoint registers.
1283 IS_INSERT indicates whether this is an insertion or a deletion.
1284 Return 0 if succeed. */
1285
1286 static int
1287 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1288 int is_insert)
1289 {
1290 struct aarch64_debug_reg_state *state
1291 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1292
1293 while (len > 0)
1294 {
1295 CORE_ADDR aligned_addr;
1296 int aligned_len, ret;
1297
1298 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1299 &addr, &len);
1300
1301 if (is_insert)
1302 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1303 aligned_len);
1304 else
1305 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1306 aligned_len);
1307
1308 if (debug_hw_points)
1309 fprintf_unfiltered (gdb_stdlog,
1310 "handle_unaligned_watchpoint: is_insert: %d\n"
1311 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1312 " next_addr: 0x%08lx, next_len: %d\n",
1313 is_insert, aligned_addr, aligned_len, addr, len);
1314
1315 if (ret != 0)
1316 return ret;
1317 }
1318
1319 return 0;
1320 }
1321
1322 /* Implements insertion and removal of a single watchpoint. */
1323
1324 static int
1325 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1326 {
1327 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1328 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1329 else
1330 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1331 }
1332
1333 /* Implement the "to_insert_watchpoint" target_ops method.
1334
1335 Insert a watchpoint to watch a memory region which starts at
1336 address ADDR and whose length is LEN bytes. Watch memory accesses
1337 of the type TYPE. Return 0 on success, -1 on failure. */
1338
1339 static int
1340 aarch64_linux_insert_watchpoint (CORE_ADDR addr, int len, int type,
1341 struct expression *cond)
1342 {
1343 int ret;
1344
1345 if (debug_hw_points)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1348 (unsigned long) addr, len);
1349
1350 gdb_assert (type != hw_execute);
1351
1352 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1353
1354 if (debug_hw_points > 1)
1355 {
1356 struct aarch64_debug_reg_state *state
1357 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1358
1359 aarch64_show_debug_reg_state (state,
1360 "insert_watchpoint", addr, len, type);
1361 }
1362
1363 return ret;
1364 }
1365
1366 /* Implement the "to_remove_watchpoint" target_ops method.
1367 Remove a watchpoint that watched the memory region which starts at
1368 address ADDR, whose length is LEN bytes, and for accesses of the
1369 type TYPE. Return 0 on success, -1 on failure. */
1370
1371 static int
1372 aarch64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
1373 struct expression *cond)
1374 {
1375 int ret;
1376
1377 if (debug_hw_points)
1378 fprintf_unfiltered (gdb_stdlog,
1379 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1380 (unsigned long) addr, len);
1381
1382 gdb_assert (type != hw_execute);
1383
1384 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1385
1386 if (debug_hw_points > 1)
1387 {
1388 struct aarch64_debug_reg_state *state
1389 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1390
1391 aarch64_show_debug_reg_state (state,
1392 "remove_watchpoint", addr, len, type);
1393 }
1394
1395 return ret;
1396 }
1397
1398 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1399
1400 static int
1401 aarch64_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1402 {
1403 CORE_ADDR aligned_addr;
1404
1405 /* Can not set watchpoints for zero or negative lengths. */
1406 if (len <= 0)
1407 return 0;
1408
1409 /* Must have hardware watchpoint debug register(s). */
1410 if (aarch64_num_wp_regs == 0)
1411 return 0;
1412
1413 /* We support unaligned watchpoint address and arbitrary length,
1414 as long as the size of the whole watched area after alignment
1415 doesn't exceed size of the total area that all watchpoint debug
1416 registers can watch cooperatively.
1417
1418 This is a very relaxed rule, but unfortunately there are
1419 limitations, e.g. false-positive hits, due to limited support of
1420 hardware debug registers in the kernel. See comment above
1421 aarch64_align_watchpoint for more information. */
1422
1423 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1424 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1425 < addr + len)
1426 return 0;
1427
1428 /* All tests passed so we are likely to be able to set the watchpoint.
1429 The reason that it is 'likely' rather than 'must' is because
1430 we don't check the current usage of the watchpoint registers, and
1431 there may not be enough registers available for this watchpoint.
1432 Ideally we should check the cached debug register state, however
1433 the checking is costly. */
1434 return 1;
1435 }
1436
1437 /* Implement the "to_stopped_data_address" target_ops method. */
1438
1439 static int
1440 aarch64_linux_stopped_data_address (struct target_ops *target,
1441 CORE_ADDR *addr_p)
1442 {
1443 siginfo_t siginfo;
1444 int i, tid;
1445 struct aarch64_debug_reg_state *state;
1446
1447 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1448 return 0;
1449
1450 /* This must be a hardware breakpoint. */
1451 if (siginfo.si_signo != SIGTRAP
1452 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1453 return 0;
1454
1455 /* Check if the address matches any watched address. */
1456 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1457 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1458 {
1459 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1460 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1461 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1462
1463 if (state->dr_ref_count_wp[i]
1464 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1465 && addr_trap >= addr_watch
1466 && addr_trap < addr_watch + len)
1467 {
1468 *addr_p = addr_trap;
1469 return 1;
1470 }
1471 }
1472
1473 return 0;
1474 }
1475
1476 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1477
1478 static int
1479 aarch64_linux_stopped_by_watchpoint (void)
1480 {
1481 CORE_ADDR addr;
1482
1483 return aarch64_linux_stopped_data_address (&current_target, &addr);
1484 }
1485
1486 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1487
1488 static int
1489 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1490 CORE_ADDR addr,
1491 CORE_ADDR start, int length)
1492 {
1493 return start <= addr && start + length - 1 >= addr;
1494 }
1495
1496 /* Define AArch64 maintenance commands. */
1497
1498 static void
1499 add_show_debug_regs_command (void)
1500 {
1501 /* A maintenance command to enable printing the internal DRi mirror
1502 variables. */
1503 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1504 &debug_hw_points, _("\
1505 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1506 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1507 Use \"on\" to enable, \"off\" to disable.\n\
1508 If enabled, the debug registers values are shown when GDB inserts\n\
1509 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1510 triggers a breakpoint or watchpoint."),
1511 NULL,
1512 NULL,
1513 &maintenance_set_cmdlist,
1514 &maintenance_show_cmdlist);
1515 }
1516
1517 /* -Wmissing-prototypes. */
1518 void _initialize_aarch64_linux_nat (void);
1519
1520 void
1521 _initialize_aarch64_linux_nat (void)
1522 {
1523 struct target_ops *t;
1524
1525 /* Fill in the generic GNU/Linux methods. */
1526 t = linux_target ();
1527
1528 add_show_debug_regs_command ();
1529
1530 /* Add our register access methods. */
1531 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1532 t->to_store_registers = aarch64_linux_store_inferior_registers;
1533
1534 t->to_read_description = aarch64_linux_read_description;
1535
1536 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1537 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1538 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1539 t->to_region_ok_for_hw_watchpoint =
1540 aarch64_linux_region_ok_for_hw_watchpoint;
1541 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1542 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1543 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1544 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1545 t->to_watchpoint_addr_within_range =
1546 aarch64_linux_watchpoint_addr_within_range;
1547
1548 /* Override the GNU/Linux inferior startup hook. */
1549 super_post_startup_inferior = t->to_post_startup_inferior;
1550 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1551
1552 /* Register the target. */
1553 linux_nat_add_target (t);
1554 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1555 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1556 linux_nat_set_forget_process (t, aarch64_forget_process);
1557 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1558 }
This page took 0.059852 seconds and 5 git commands to generate.