Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / ada-exp.y
1 /* YACC parser for Ada expressions, for GDB.
2 Copyright (C) 1986-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse an Ada expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "ada-lang.h"
45 #include "bfd.h" /* Required by objfiles.h. */
46 #include "symfile.h" /* Required by objfiles.h. */
47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
48 #include "frame.h"
49 #include "block.h"
50
51 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
52
53 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
54 as well as gratuitiously global symbol names, so we can have multiple
55 yacc generated parsers in gdb. These are only the variables
56 produced by yacc. If other parser generators (bison, byacc, etc) produce
57 additional global names that conflict at link time, then those parser
58 generators need to be fixed instead of adding those names to this list. */
59
60 /* NOTE: This is clumsy, especially since BISON and FLEX provide --prefix
61 options. I presume we are maintaining it to accommodate systems
62 without BISON? (PNH) */
63
64 #define yymaxdepth ada_maxdepth
65 /* ada_parse calls this after initialization */
66 #define yyparse ada_parse_internal
67 #define yylex ada_lex
68 #define yyerror ada_error
69 #define yylval ada_lval
70 #define yychar ada_char
71 #define yydebug ada_debug
72 #define yypact ada_pact
73 #define yyr1 ada_r1
74 #define yyr2 ada_r2
75 #define yydef ada_def
76 #define yychk ada_chk
77 #define yypgo ada_pgo
78 #define yyact ada_act
79 #define yyexca ada_exca
80 #define yyerrflag ada_errflag
81 #define yynerrs ada_nerrs
82 #define yyps ada_ps
83 #define yypv ada_pv
84 #define yys ada_s
85 #define yy_yys ada_yys
86 #define yystate ada_state
87 #define yytmp ada_tmp
88 #define yyv ada_v
89 #define yy_yyv ada_yyv
90 #define yyval ada_val
91 #define yylloc ada_lloc
92 #define yyreds ada_reds /* With YYDEBUG defined */
93 #define yytoks ada_toks /* With YYDEBUG defined */
94 #define yyname ada_name /* With YYDEBUG defined */
95 #define yyrule ada_rule /* With YYDEBUG defined */
96 #define yyss ada_yyss
97 #define yysslim ada_yysslim
98 #define yyssp ada_yyssp
99 #define yystacksize ada_yystacksize
100 #define yyvs ada_yyvs
101 #define yyvsp ada_yyvsp
102
103 #ifndef YYDEBUG
104 #define YYDEBUG 1 /* Default to yydebug support */
105 #endif
106
107 #define YYFPRINTF parser_fprintf
108
109 struct name_info {
110 struct symbol *sym;
111 struct minimal_symbol *msym;
112 const struct block *block;
113 struct stoken stoken;
114 };
115
116 /* The state of the parser, used internally when we are parsing the
117 expression. */
118
119 static struct parser_state *pstate = NULL;
120
121 static struct stoken empty_stoken = { "", 0 };
122
123 /* If expression is in the context of TYPE'(...), then TYPE, else
124 * NULL. */
125 static struct type *type_qualifier;
126
127 int yyparse (void);
128
129 static int yylex (void);
130
131 void yyerror (char *);
132
133 static void write_int (struct parser_state *, LONGEST, struct type *);
134
135 static void write_object_renaming (struct parser_state *,
136 const struct block *, const char *, int,
137 const char *, int);
138
139 static struct type* write_var_or_type (struct parser_state *,
140 const struct block *, struct stoken);
141
142 static void write_name_assoc (struct parser_state *, struct stoken);
143
144 static void write_exp_op_with_string (struct parser_state *, enum exp_opcode,
145 struct stoken);
146
147 static const struct block *block_lookup (const struct block *, const char *);
148
149 static LONGEST convert_char_literal (struct type *, LONGEST);
150
151 static void write_ambiguous_var (struct parser_state *,
152 const struct block *, char *, int);
153
154 static struct type *type_int (struct parser_state *);
155
156 static struct type *type_long (struct parser_state *);
157
158 static struct type *type_long_long (struct parser_state *);
159
160 static struct type *type_float (struct parser_state *);
161
162 static struct type *type_double (struct parser_state *);
163
164 static struct type *type_long_double (struct parser_state *);
165
166 static struct type *type_char (struct parser_state *);
167
168 static struct type *type_boolean (struct parser_state *);
169
170 static struct type *type_system_address (struct parser_state *);
171
172 %}
173
174 %union
175 {
176 LONGEST lval;
177 struct {
178 LONGEST val;
179 struct type *type;
180 } typed_val;
181 struct {
182 DOUBLEST dval;
183 struct type *type;
184 } typed_val_float;
185 struct type *tval;
186 struct stoken sval;
187 const struct block *bval;
188 struct internalvar *ivar;
189 }
190
191 %type <lval> positional_list component_groups component_associations
192 %type <lval> aggregate_component_list
193 %type <tval> var_or_type
194
195 %token <typed_val> INT NULL_PTR CHARLIT
196 %token <typed_val_float> FLOAT
197 %token TRUEKEYWORD FALSEKEYWORD
198 %token COLONCOLON
199 %token <sval> STRING NAME DOT_ID
200 %type <bval> block
201 %type <lval> arglist tick_arglist
202
203 %type <tval> save_qualifier
204
205 %token DOT_ALL
206
207 /* Special type cases, put in to allow the parser to distinguish different
208 legal basetypes. */
209 %token <sval> SPECIAL_VARIABLE
210
211 %nonassoc ASSIGN
212 %left _AND_ OR XOR THEN ELSE
213 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
214 %left '@'
215 %left '+' '-' '&'
216 %left UNARY
217 %left '*' '/' MOD REM
218 %right STARSTAR ABS NOT
219
220 /* Artificial token to give NAME => ... and NAME | priority over reducing
221 NAME to <primary> and to give <primary>' priority over reducing <primary>
222 to <simple_exp>. */
223 %nonassoc VAR
224
225 %nonassoc ARROW '|'
226
227 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
228 %right TICK_MAX TICK_MIN TICK_MODULUS
229 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
230 /* The following are right-associative only so that reductions at this
231 precedence have lower precedence than '.' and '('. The syntax still
232 forces a.b.c, e.g., to be LEFT-associated. */
233 %right '.' '(' '[' DOT_ID DOT_ALL
234
235 %token NEW OTHERS
236
237 \f
238 %%
239
240 start : exp1
241 ;
242
243 /* Expressions, including the sequencing operator. */
244 exp1 : exp
245 | exp1 ';' exp
246 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
247 | primary ASSIGN exp /* Extension for convenience */
248 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
249 ;
250
251 /* Expressions, not including the sequencing operator. */
252 primary : primary DOT_ALL
253 { write_exp_elt_opcode (pstate, UNOP_IND); }
254 ;
255
256 primary : primary DOT_ID
257 { write_exp_op_with_string (pstate, STRUCTOP_STRUCT,
258 $2); }
259 ;
260
261 primary : primary '(' arglist ')'
262 {
263 write_exp_elt_opcode (pstate, OP_FUNCALL);
264 write_exp_elt_longcst (pstate, $3);
265 write_exp_elt_opcode (pstate, OP_FUNCALL);
266 }
267 | var_or_type '(' arglist ')'
268 {
269 if ($1 != NULL)
270 {
271 if ($3 != 1)
272 error (_("Invalid conversion"));
273 write_exp_elt_opcode (pstate, UNOP_CAST);
274 write_exp_elt_type (pstate, $1);
275 write_exp_elt_opcode (pstate, UNOP_CAST);
276 }
277 else
278 {
279 write_exp_elt_opcode (pstate, OP_FUNCALL);
280 write_exp_elt_longcst (pstate, $3);
281 write_exp_elt_opcode (pstate, OP_FUNCALL);
282 }
283 }
284 ;
285
286 primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
287 '(' exp ')'
288 {
289 if ($1 == NULL)
290 error (_("Type required for qualification"));
291 write_exp_elt_opcode (pstate, UNOP_QUAL);
292 write_exp_elt_type (pstate, $1);
293 write_exp_elt_opcode (pstate, UNOP_QUAL);
294 type_qualifier = $3;
295 }
296 ;
297
298 save_qualifier : { $$ = type_qualifier; }
299 ;
300
301 primary :
302 primary '(' simple_exp DOTDOT simple_exp ')'
303 { write_exp_elt_opcode (pstate, TERNOP_SLICE); }
304 | var_or_type '(' simple_exp DOTDOT simple_exp ')'
305 { if ($1 == NULL)
306 write_exp_elt_opcode (pstate, TERNOP_SLICE);
307 else
308 error (_("Cannot slice a type"));
309 }
310 ;
311
312 primary : '(' exp1 ')' { }
313 ;
314
315 /* The following rule causes a conflict with the type conversion
316 var_or_type (exp)
317 To get around it, we give '(' higher priority and add bridge rules for
318 var_or_type (exp, exp, ...)
319 var_or_type (exp .. exp)
320 We also have the action for var_or_type(exp) generate a function call
321 when the first symbol does not denote a type. */
322
323 primary : var_or_type %prec VAR
324 { if ($1 != NULL)
325 {
326 write_exp_elt_opcode (pstate, OP_TYPE);
327 write_exp_elt_type (pstate, $1);
328 write_exp_elt_opcode (pstate, OP_TYPE);
329 }
330 }
331 ;
332
333 primary : SPECIAL_VARIABLE /* Various GDB extensions */
334 { write_dollar_variable (pstate, $1); }
335 ;
336
337 primary : aggregate
338 ;
339
340 simple_exp : primary
341 ;
342
343 simple_exp : '-' simple_exp %prec UNARY
344 { write_exp_elt_opcode (pstate, UNOP_NEG); }
345 ;
346
347 simple_exp : '+' simple_exp %prec UNARY
348 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
349 ;
350
351 simple_exp : NOT simple_exp %prec UNARY
352 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
353 ;
354
355 simple_exp : ABS simple_exp %prec UNARY
356 { write_exp_elt_opcode (pstate, UNOP_ABS); }
357 ;
358
359 arglist : { $$ = 0; }
360 ;
361
362 arglist : exp
363 { $$ = 1; }
364 | NAME ARROW exp
365 { $$ = 1; }
366 | arglist ',' exp
367 { $$ = $1 + 1; }
368 | arglist ',' NAME ARROW exp
369 { $$ = $1 + 1; }
370 ;
371
372 primary : '{' var_or_type '}' primary %prec '.'
373 /* GDB extension */
374 {
375 if ($2 == NULL)
376 error (_("Type required within braces in coercion"));
377 write_exp_elt_opcode (pstate, UNOP_MEMVAL);
378 write_exp_elt_type (pstate, $2);
379 write_exp_elt_opcode (pstate, UNOP_MEMVAL);
380 }
381 ;
382
383 /* Binary operators in order of decreasing precedence. */
384
385 simple_exp : simple_exp STARSTAR simple_exp
386 { write_exp_elt_opcode (pstate, BINOP_EXP); }
387 ;
388
389 simple_exp : simple_exp '*' simple_exp
390 { write_exp_elt_opcode (pstate, BINOP_MUL); }
391 ;
392
393 simple_exp : simple_exp '/' simple_exp
394 { write_exp_elt_opcode (pstate, BINOP_DIV); }
395 ;
396
397 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
398 { write_exp_elt_opcode (pstate, BINOP_REM); }
399 ;
400
401 simple_exp : simple_exp MOD simple_exp
402 { write_exp_elt_opcode (pstate, BINOP_MOD); }
403 ;
404
405 simple_exp : simple_exp '@' simple_exp /* GDB extension */
406 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
407 ;
408
409 simple_exp : simple_exp '+' simple_exp
410 { write_exp_elt_opcode (pstate, BINOP_ADD); }
411 ;
412
413 simple_exp : simple_exp '&' simple_exp
414 { write_exp_elt_opcode (pstate, BINOP_CONCAT); }
415 ;
416
417 simple_exp : simple_exp '-' simple_exp
418 { write_exp_elt_opcode (pstate, BINOP_SUB); }
419 ;
420
421 relation : simple_exp
422 ;
423
424 relation : simple_exp '=' simple_exp
425 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
426 ;
427
428 relation : simple_exp NOTEQUAL simple_exp
429 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
430 ;
431
432 relation : simple_exp LEQ simple_exp
433 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
434 ;
435
436 relation : simple_exp IN simple_exp DOTDOT simple_exp
437 { write_exp_elt_opcode (pstate, TERNOP_IN_RANGE); }
438 | simple_exp IN primary TICK_RANGE tick_arglist
439 { write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
440 write_exp_elt_longcst (pstate, (LONGEST) $5);
441 write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
442 }
443 | simple_exp IN var_or_type %prec TICK_ACCESS
444 {
445 if ($3 == NULL)
446 error (_("Right operand of 'in' must be type"));
447 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
448 write_exp_elt_type (pstate, $3);
449 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
450 }
451 | simple_exp NOT IN simple_exp DOTDOT simple_exp
452 { write_exp_elt_opcode (pstate, TERNOP_IN_RANGE);
453 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
454 }
455 | simple_exp NOT IN primary TICK_RANGE tick_arglist
456 { write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
457 write_exp_elt_longcst (pstate, (LONGEST) $6);
458 write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
459 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
460 }
461 | simple_exp NOT IN var_or_type %prec TICK_ACCESS
462 {
463 if ($4 == NULL)
464 error (_("Right operand of 'in' must be type"));
465 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
466 write_exp_elt_type (pstate, $4);
467 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
468 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
469 }
470 ;
471
472 relation : simple_exp GEQ simple_exp
473 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
474 ;
475
476 relation : simple_exp '<' simple_exp
477 { write_exp_elt_opcode (pstate, BINOP_LESS); }
478 ;
479
480 relation : simple_exp '>' simple_exp
481 { write_exp_elt_opcode (pstate, BINOP_GTR); }
482 ;
483
484 exp : relation
485 | and_exp
486 | and_then_exp
487 | or_exp
488 | or_else_exp
489 | xor_exp
490 ;
491
492 and_exp :
493 relation _AND_ relation
494 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
495 | and_exp _AND_ relation
496 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
497 ;
498
499 and_then_exp :
500 relation _AND_ THEN relation
501 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
502 | and_then_exp _AND_ THEN relation
503 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
504 ;
505
506 or_exp :
507 relation OR relation
508 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
509 | or_exp OR relation
510 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
511 ;
512
513 or_else_exp :
514 relation OR ELSE relation
515 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
516 | or_else_exp OR ELSE relation
517 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
518 ;
519
520 xor_exp : relation XOR relation
521 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
522 | xor_exp XOR relation
523 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
524 ;
525
526 /* Primaries can denote types (OP_TYPE). In cases such as
527 primary TICK_ADDRESS, where a type would be invalid, it will be
528 caught when evaluate_subexp in ada-lang.c tries to evaluate the
529 primary, expecting a value. Precedence rules resolve the ambiguity
530 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
531 construct such as aType'access'access will again cause an error when
532 aType'access evaluates to a type that evaluate_subexp attempts to
533 evaluate. */
534 primary : primary TICK_ACCESS
535 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
536 | primary TICK_ADDRESS
537 { write_exp_elt_opcode (pstate, UNOP_ADDR);
538 write_exp_elt_opcode (pstate, UNOP_CAST);
539 write_exp_elt_type (pstate,
540 type_system_address (pstate));
541 write_exp_elt_opcode (pstate, UNOP_CAST);
542 }
543 | primary TICK_FIRST tick_arglist
544 { write_int (pstate, $3, type_int (pstate));
545 write_exp_elt_opcode (pstate, OP_ATR_FIRST); }
546 | primary TICK_LAST tick_arglist
547 { write_int (pstate, $3, type_int (pstate));
548 write_exp_elt_opcode (pstate, OP_ATR_LAST); }
549 | primary TICK_LENGTH tick_arglist
550 { write_int (pstate, $3, type_int (pstate));
551 write_exp_elt_opcode (pstate, OP_ATR_LENGTH); }
552 | primary TICK_SIZE
553 { write_exp_elt_opcode (pstate, OP_ATR_SIZE); }
554 | primary TICK_TAG
555 { write_exp_elt_opcode (pstate, OP_ATR_TAG); }
556 | opt_type_prefix TICK_MIN '(' exp ',' exp ')'
557 { write_exp_elt_opcode (pstate, OP_ATR_MIN); }
558 | opt_type_prefix TICK_MAX '(' exp ',' exp ')'
559 { write_exp_elt_opcode (pstate, OP_ATR_MAX); }
560 | opt_type_prefix TICK_POS '(' exp ')'
561 { write_exp_elt_opcode (pstate, OP_ATR_POS); }
562 | type_prefix TICK_VAL '(' exp ')'
563 { write_exp_elt_opcode (pstate, OP_ATR_VAL); }
564 | type_prefix TICK_MODULUS
565 { write_exp_elt_opcode (pstate, OP_ATR_MODULUS); }
566 ;
567
568 tick_arglist : %prec '('
569 { $$ = 1; }
570 | '(' INT ')'
571 { $$ = $2.val; }
572 ;
573
574 type_prefix :
575 var_or_type
576 {
577 if ($1 == NULL)
578 error (_("Prefix must be type"));
579 write_exp_elt_opcode (pstate, OP_TYPE);
580 write_exp_elt_type (pstate, $1);
581 write_exp_elt_opcode (pstate, OP_TYPE); }
582 ;
583
584 opt_type_prefix :
585 type_prefix
586 | /* EMPTY */
587 { write_exp_elt_opcode (pstate, OP_TYPE);
588 write_exp_elt_type (pstate,
589 parse_type (pstate)->builtin_void);
590 write_exp_elt_opcode (pstate, OP_TYPE); }
591 ;
592
593
594 primary : INT
595 { write_int (pstate, (LONGEST) $1.val, $1.type); }
596 ;
597
598 primary : CHARLIT
599 { write_int (pstate,
600 convert_char_literal (type_qualifier, $1.val),
601 (type_qualifier == NULL)
602 ? $1.type : type_qualifier);
603 }
604 ;
605
606 primary : FLOAT
607 { write_exp_elt_opcode (pstate, OP_DOUBLE);
608 write_exp_elt_type (pstate, $1.type);
609 write_exp_elt_dblcst (pstate, $1.dval);
610 write_exp_elt_opcode (pstate, OP_DOUBLE);
611 }
612 ;
613
614 primary : NULL_PTR
615 { write_int (pstate, 0, type_int (pstate)); }
616 ;
617
618 primary : STRING
619 {
620 write_exp_op_with_string (pstate, OP_STRING, $1);
621 }
622 ;
623
624 primary : TRUEKEYWORD
625 { write_int (pstate, 1, type_boolean (pstate)); }
626 | FALSEKEYWORD
627 { write_int (pstate, 0, type_boolean (pstate)); }
628 ;
629
630 primary : NEW NAME
631 { error (_("NEW not implemented.")); }
632 ;
633
634 var_or_type: NAME %prec VAR
635 { $$ = write_var_or_type (pstate, NULL, $1); }
636 | block NAME %prec VAR
637 { $$ = write_var_or_type (pstate, $1, $2); }
638 | NAME TICK_ACCESS
639 {
640 $$ = write_var_or_type (pstate, NULL, $1);
641 if ($$ == NULL)
642 write_exp_elt_opcode (pstate, UNOP_ADDR);
643 else
644 $$ = lookup_pointer_type ($$);
645 }
646 | block NAME TICK_ACCESS
647 {
648 $$ = write_var_or_type (pstate, $1, $2);
649 if ($$ == NULL)
650 write_exp_elt_opcode (pstate, UNOP_ADDR);
651 else
652 $$ = lookup_pointer_type ($$);
653 }
654 ;
655
656 /* GDB extension */
657 block : NAME COLONCOLON
658 { $$ = block_lookup (NULL, $1.ptr); }
659 | block NAME COLONCOLON
660 { $$ = block_lookup ($1, $2.ptr); }
661 ;
662
663 aggregate :
664 '(' aggregate_component_list ')'
665 {
666 write_exp_elt_opcode (pstate, OP_AGGREGATE);
667 write_exp_elt_longcst (pstate, $2);
668 write_exp_elt_opcode (pstate, OP_AGGREGATE);
669 }
670 ;
671
672 aggregate_component_list :
673 component_groups { $$ = $1; }
674 | positional_list exp
675 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
676 write_exp_elt_longcst (pstate, $1);
677 write_exp_elt_opcode (pstate, OP_POSITIONAL);
678 $$ = $1 + 1;
679 }
680 | positional_list component_groups
681 { $$ = $1 + $2; }
682 ;
683
684 positional_list :
685 exp ','
686 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
687 write_exp_elt_longcst (pstate, 0);
688 write_exp_elt_opcode (pstate, OP_POSITIONAL);
689 $$ = 1;
690 }
691 | positional_list exp ','
692 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
693 write_exp_elt_longcst (pstate, $1);
694 write_exp_elt_opcode (pstate, OP_POSITIONAL);
695 $$ = $1 + 1;
696 }
697 ;
698
699 component_groups:
700 others { $$ = 1; }
701 | component_group { $$ = 1; }
702 | component_group ',' component_groups
703 { $$ = $3 + 1; }
704 ;
705
706 others : OTHERS ARROW exp
707 { write_exp_elt_opcode (pstate, OP_OTHERS); }
708 ;
709
710 component_group :
711 component_associations
712 {
713 write_exp_elt_opcode (pstate, OP_CHOICES);
714 write_exp_elt_longcst (pstate, $1);
715 write_exp_elt_opcode (pstate, OP_CHOICES);
716 }
717 ;
718
719 /* We use this somewhat obscure definition in order to handle NAME => and
720 NAME | differently from exp => and exp |. ARROW and '|' have a precedence
721 above that of the reduction of NAME to var_or_type. By delaying
722 decisions until after the => or '|', we convert the ambiguity to a
723 resolved shift/reduce conflict. */
724 component_associations :
725 NAME ARROW
726 { write_name_assoc (pstate, $1); }
727 exp { $$ = 1; }
728 | simple_exp ARROW exp
729 { $$ = 1; }
730 | simple_exp DOTDOT simple_exp ARROW
731 { write_exp_elt_opcode (pstate, OP_DISCRETE_RANGE);
732 write_exp_op_with_string (pstate, OP_NAME,
733 empty_stoken);
734 }
735 exp { $$ = 1; }
736 | NAME '|'
737 { write_name_assoc (pstate, $1); }
738 component_associations { $$ = $4 + 1; }
739 | simple_exp '|'
740 component_associations { $$ = $3 + 1; }
741 | simple_exp DOTDOT simple_exp '|'
742 { write_exp_elt_opcode (pstate, OP_DISCRETE_RANGE); }
743 component_associations { $$ = $6 + 1; }
744 ;
745
746 /* Some extensions borrowed from C, for the benefit of those who find they
747 can't get used to Ada notation in GDB. */
748
749 primary : '*' primary %prec '.'
750 { write_exp_elt_opcode (pstate, UNOP_IND); }
751 | '&' primary %prec '.'
752 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
753 | primary '[' exp ']'
754 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
755 ;
756
757 %%
758
759 /* yylex defined in ada-lex.c: Reads one token, getting characters */
760 /* through lexptr. */
761
762 /* Remap normal flex interface names (yylex) as well as gratuitiously */
763 /* global symbol names, so we can have multiple flex-generated parsers */
764 /* in gdb. */
765
766 /* (See note above on previous definitions for YACC.) */
767
768 #define yy_create_buffer ada_yy_create_buffer
769 #define yy_delete_buffer ada_yy_delete_buffer
770 #define yy_init_buffer ada_yy_init_buffer
771 #define yy_load_buffer_state ada_yy_load_buffer_state
772 #define yy_switch_to_buffer ada_yy_switch_to_buffer
773 #define yyrestart ada_yyrestart
774 #define yytext ada_yytext
775 #define yywrap ada_yywrap
776
777 static struct obstack temp_parse_space;
778
779 /* The following kludge was found necessary to prevent conflicts between */
780 /* defs.h and non-standard stdlib.h files. */
781 #define qsort __qsort__dummy
782 #include "ada-lex.c"
783
784 int
785 ada_parse (struct parser_state *par_state)
786 {
787 int result;
788 struct cleanup *c = make_cleanup_clear_parser_state (&pstate);
789
790 /* Setting up the parser state. */
791 gdb_assert (par_state != NULL);
792 pstate = par_state;
793
794 lexer_init (yyin); /* (Re-)initialize lexer. */
795 type_qualifier = NULL;
796 obstack_free (&temp_parse_space, NULL);
797 obstack_init (&temp_parse_space);
798
799 result = yyparse ();
800 do_cleanups (c);
801 return result;
802 }
803
804 void
805 yyerror (char *msg)
806 {
807 error (_("Error in expression, near `%s'."), lexptr);
808 }
809
810 /* Emit expression to access an instance of SYM, in block BLOCK (if
811 * non-NULL), and with :: qualification ORIG_LEFT_CONTEXT. */
812 static void
813 write_var_from_sym (struct parser_state *par_state,
814 const struct block *orig_left_context,
815 const struct block *block,
816 struct symbol *sym)
817 {
818 if (orig_left_context == NULL && symbol_read_needs_frame (sym))
819 {
820 if (innermost_block == 0
821 || contained_in (block, innermost_block))
822 innermost_block = block;
823 }
824
825 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
826 write_exp_elt_block (par_state, block);
827 write_exp_elt_sym (par_state, sym);
828 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
829 }
830
831 /* Write integer or boolean constant ARG of type TYPE. */
832
833 static void
834 write_int (struct parser_state *par_state, LONGEST arg, struct type *type)
835 {
836 write_exp_elt_opcode (par_state, OP_LONG);
837 write_exp_elt_type (par_state, type);
838 write_exp_elt_longcst (par_state, arg);
839 write_exp_elt_opcode (par_state, OP_LONG);
840 }
841
842 /* Write an OPCODE, string, OPCODE sequence to the current expression. */
843 static void
844 write_exp_op_with_string (struct parser_state *par_state,
845 enum exp_opcode opcode, struct stoken token)
846 {
847 write_exp_elt_opcode (par_state, opcode);
848 write_exp_string (par_state, token);
849 write_exp_elt_opcode (par_state, opcode);
850 }
851
852 /* Emit expression corresponding to the renamed object named
853 * designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
854 * context of ORIG_LEFT_CONTEXT, to which is applied the operations
855 * encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
856 * cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
857 * defaults to the currently selected block. ORIG_SYMBOL is the
858 * symbol that originally encoded the renaming. It is needed only
859 * because its prefix also qualifies any index variables used to index
860 * or slice an array. It should not be necessary once we go to the
861 * new encoding entirely (FIXME pnh 7/20/2007). */
862
863 static void
864 write_object_renaming (struct parser_state *par_state,
865 const struct block *orig_left_context,
866 const char *renamed_entity, int renamed_entity_len,
867 const char *renaming_expr, int max_depth)
868 {
869 char *name;
870 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
871 struct ada_symbol_info sym_info;
872
873 if (max_depth <= 0)
874 error (_("Could not find renamed symbol"));
875
876 if (orig_left_context == NULL)
877 orig_left_context = get_selected_block (NULL);
878
879 name = obstack_copy0 (&temp_parse_space, renamed_entity, renamed_entity_len);
880 ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info);
881 if (sym_info.sym == NULL)
882 error (_("Could not find renamed variable: %s"), ada_decode (name));
883 else if (SYMBOL_CLASS (sym_info.sym) == LOC_TYPEDEF)
884 /* We have a renaming of an old-style renaming symbol. Don't
885 trust the block information. */
886 sym_info.block = orig_left_context;
887
888 {
889 const char *inner_renamed_entity;
890 int inner_renamed_entity_len;
891 const char *inner_renaming_expr;
892
893 switch (ada_parse_renaming (sym_info.sym, &inner_renamed_entity,
894 &inner_renamed_entity_len,
895 &inner_renaming_expr))
896 {
897 case ADA_NOT_RENAMING:
898 write_var_from_sym (par_state, orig_left_context, sym_info.block,
899 sym_info.sym);
900 break;
901 case ADA_OBJECT_RENAMING:
902 write_object_renaming (par_state, sym_info.block,
903 inner_renamed_entity, inner_renamed_entity_len,
904 inner_renaming_expr, max_depth - 1);
905 break;
906 default:
907 goto BadEncoding;
908 }
909 }
910
911 slice_state = SIMPLE_INDEX;
912 while (*renaming_expr == 'X')
913 {
914 renaming_expr += 1;
915
916 switch (*renaming_expr) {
917 case 'A':
918 renaming_expr += 1;
919 write_exp_elt_opcode (par_state, UNOP_IND);
920 break;
921 case 'L':
922 slice_state = LOWER_BOUND;
923 /* FALLTHROUGH */
924 case 'S':
925 renaming_expr += 1;
926 if (isdigit (*renaming_expr))
927 {
928 char *next;
929 long val = strtol (renaming_expr, &next, 10);
930 if (next == renaming_expr)
931 goto BadEncoding;
932 renaming_expr = next;
933 write_exp_elt_opcode (par_state, OP_LONG);
934 write_exp_elt_type (par_state, type_int (par_state));
935 write_exp_elt_longcst (par_state, (LONGEST) val);
936 write_exp_elt_opcode (par_state, OP_LONG);
937 }
938 else
939 {
940 const char *end;
941 char *index_name;
942 struct ada_symbol_info index_sym_info;
943
944 end = strchr (renaming_expr, 'X');
945 if (end == NULL)
946 end = renaming_expr + strlen (renaming_expr);
947
948 index_name =
949 obstack_copy0 (&temp_parse_space, renaming_expr,
950 end - renaming_expr);
951 renaming_expr = end;
952
953 ada_lookup_encoded_symbol (index_name, NULL, VAR_DOMAIN,
954 &index_sym_info);
955 if (index_sym_info.sym == NULL)
956 error (_("Could not find %s"), index_name);
957 else if (SYMBOL_CLASS (index_sym_info.sym) == LOC_TYPEDEF)
958 /* Index is an old-style renaming symbol. */
959 index_sym_info.block = orig_left_context;
960 write_var_from_sym (par_state, NULL, index_sym_info.block,
961 index_sym_info.sym);
962 }
963 if (slice_state == SIMPLE_INDEX)
964 {
965 write_exp_elt_opcode (par_state, OP_FUNCALL);
966 write_exp_elt_longcst (par_state, (LONGEST) 1);
967 write_exp_elt_opcode (par_state, OP_FUNCALL);
968 }
969 else if (slice_state == LOWER_BOUND)
970 slice_state = UPPER_BOUND;
971 else if (slice_state == UPPER_BOUND)
972 {
973 write_exp_elt_opcode (par_state, TERNOP_SLICE);
974 slice_state = SIMPLE_INDEX;
975 }
976 break;
977
978 case 'R':
979 {
980 struct stoken field_name;
981 const char *end;
982 char *buf;
983
984 renaming_expr += 1;
985
986 if (slice_state != SIMPLE_INDEX)
987 goto BadEncoding;
988 end = strchr (renaming_expr, 'X');
989 if (end == NULL)
990 end = renaming_expr + strlen (renaming_expr);
991 field_name.length = end - renaming_expr;
992 buf = malloc (end - renaming_expr + 1);
993 field_name.ptr = buf;
994 strncpy (buf, renaming_expr, end - renaming_expr);
995 buf[end - renaming_expr] = '\000';
996 renaming_expr = end;
997 write_exp_op_with_string (par_state, STRUCTOP_STRUCT, field_name);
998 break;
999 }
1000
1001 default:
1002 goto BadEncoding;
1003 }
1004 }
1005 if (slice_state == SIMPLE_INDEX)
1006 return;
1007
1008 BadEncoding:
1009 error (_("Internal error in encoding of renaming declaration"));
1010 }
1011
1012 static const struct block*
1013 block_lookup (const struct block *context, const char *raw_name)
1014 {
1015 const char *name;
1016 struct ada_symbol_info *syms;
1017 int nsyms;
1018 struct symtab *symtab;
1019
1020 if (raw_name[0] == '\'')
1021 {
1022 raw_name += 1;
1023 name = raw_name;
1024 }
1025 else
1026 name = ada_encode (raw_name);
1027
1028 nsyms = ada_lookup_symbol_list (name, context, VAR_DOMAIN, &syms);
1029 if (context == NULL
1030 && (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK))
1031 symtab = lookup_symtab (name);
1032 else
1033 symtab = NULL;
1034
1035 if (symtab != NULL)
1036 return BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1037 else if (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK)
1038 {
1039 if (context == NULL)
1040 error (_("No file or function \"%s\"."), raw_name);
1041 else
1042 error (_("No function \"%s\" in specified context."), raw_name);
1043 }
1044 else
1045 {
1046 if (nsyms > 1)
1047 warning (_("Function name \"%s\" ambiguous here"), raw_name);
1048 return SYMBOL_BLOCK_VALUE (syms[0].sym);
1049 }
1050 }
1051
1052 static struct symbol*
1053 select_possible_type_sym (struct ada_symbol_info *syms, int nsyms)
1054 {
1055 int i;
1056 int preferred_index;
1057 struct type *preferred_type;
1058
1059 preferred_index = -1; preferred_type = NULL;
1060 for (i = 0; i < nsyms; i += 1)
1061 switch (SYMBOL_CLASS (syms[i].sym))
1062 {
1063 case LOC_TYPEDEF:
1064 if (ada_prefer_type (SYMBOL_TYPE (syms[i].sym), preferred_type))
1065 {
1066 preferred_index = i;
1067 preferred_type = SYMBOL_TYPE (syms[i].sym);
1068 }
1069 break;
1070 case LOC_REGISTER:
1071 case LOC_ARG:
1072 case LOC_REF_ARG:
1073 case LOC_REGPARM_ADDR:
1074 case LOC_LOCAL:
1075 case LOC_COMPUTED:
1076 return NULL;
1077 default:
1078 break;
1079 }
1080 if (preferred_type == NULL)
1081 return NULL;
1082 return syms[preferred_index].sym;
1083 }
1084
1085 static struct type*
1086 find_primitive_type (struct parser_state *par_state, char *name)
1087 {
1088 struct type *type;
1089 type = language_lookup_primitive_type_by_name (parse_language (par_state),
1090 parse_gdbarch (par_state),
1091 name);
1092 if (type == NULL && strcmp ("system__address", name) == 0)
1093 type = type_system_address (par_state);
1094
1095 if (type != NULL)
1096 {
1097 /* Check to see if we have a regular definition of this
1098 type that just didn't happen to have been read yet. */
1099 struct symbol *sym;
1100 char *expanded_name =
1101 (char *) alloca (strlen (name) + sizeof ("standard__"));
1102 strcpy (expanded_name, "standard__");
1103 strcat (expanded_name, name);
1104 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN, NULL);
1105 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1106 type = SYMBOL_TYPE (sym);
1107 }
1108
1109 return type;
1110 }
1111
1112 static int
1113 chop_selector (char *name, int end)
1114 {
1115 int i;
1116 for (i = end - 1; i > 0; i -= 1)
1117 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
1118 return i;
1119 return -1;
1120 }
1121
1122 /* If NAME is a string beginning with a separator (either '__', or
1123 '.'), chop this separator and return the result; else, return
1124 NAME. */
1125
1126 static char *
1127 chop_separator (char *name)
1128 {
1129 if (*name == '.')
1130 return name + 1;
1131
1132 if (name[0] == '_' && name[1] == '_')
1133 return name + 2;
1134
1135 return name;
1136 }
1137
1138 /* Given that SELS is a string of the form (<sep><identifier>)*, where
1139 <sep> is '__' or '.', write the indicated sequence of
1140 STRUCTOP_STRUCT expression operators. */
1141 static void
1142 write_selectors (struct parser_state *par_state, char *sels)
1143 {
1144 while (*sels != '\0')
1145 {
1146 struct stoken field_name;
1147 char *p = chop_separator (sels);
1148 sels = p;
1149 while (*sels != '\0' && *sels != '.'
1150 && (sels[0] != '_' || sels[1] != '_'))
1151 sels += 1;
1152 field_name.length = sels - p;
1153 field_name.ptr = p;
1154 write_exp_op_with_string (par_state, STRUCTOP_STRUCT, field_name);
1155 }
1156 }
1157
1158 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
1159 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
1160 a temporary symbol that is valid until the next call to ada_parse.
1161 */
1162 static void
1163 write_ambiguous_var (struct parser_state *par_state,
1164 const struct block *block, char *name, int len)
1165 {
1166 struct symbol *sym =
1167 obstack_alloc (&temp_parse_space, sizeof (struct symbol));
1168 memset (sym, 0, sizeof (struct symbol));
1169 SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
1170 SYMBOL_LINKAGE_NAME (sym) = obstack_copy0 (&temp_parse_space, name, len);
1171 SYMBOL_LANGUAGE (sym) = language_ada;
1172
1173 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
1174 write_exp_elt_block (par_state, block);
1175 write_exp_elt_sym (par_state, sym);
1176 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
1177 }
1178
1179 /* A convenient wrapper around ada_get_field_index that takes
1180 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
1181 of a NUL-terminated field name. */
1182
1183 static int
1184 ada_nget_field_index (const struct type *type, const char *field_name0,
1185 int field_name_len, int maybe_missing)
1186 {
1187 char *field_name = alloca ((field_name_len + 1) * sizeof (char));
1188
1189 strncpy (field_name, field_name0, field_name_len);
1190 field_name[field_name_len] = '\0';
1191 return ada_get_field_index (type, field_name, maybe_missing);
1192 }
1193
1194 /* If encoded_field_name is the name of a field inside symbol SYM,
1195 then return the type of that field. Otherwise, return NULL.
1196
1197 This function is actually recursive, so if ENCODED_FIELD_NAME
1198 doesn't match one of the fields of our symbol, then try to see
1199 if ENCODED_FIELD_NAME could not be a succession of field names
1200 (in other words, the user entered an expression of the form
1201 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
1202 each field name sequentially to obtain the desired field type.
1203 In case of failure, we return NULL. */
1204
1205 static struct type *
1206 get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
1207 {
1208 char *field_name = encoded_field_name;
1209 char *subfield_name;
1210 struct type *type = SYMBOL_TYPE (sym);
1211 int fieldno;
1212
1213 if (type == NULL || field_name == NULL)
1214 return NULL;
1215 type = check_typedef (type);
1216
1217 while (field_name[0] != '\0')
1218 {
1219 field_name = chop_separator (field_name);
1220
1221 fieldno = ada_get_field_index (type, field_name, 1);
1222 if (fieldno >= 0)
1223 return TYPE_FIELD_TYPE (type, fieldno);
1224
1225 subfield_name = field_name;
1226 while (*subfield_name != '\0' && *subfield_name != '.'
1227 && (subfield_name[0] != '_' || subfield_name[1] != '_'))
1228 subfield_name += 1;
1229
1230 if (subfield_name[0] == '\0')
1231 return NULL;
1232
1233 fieldno = ada_nget_field_index (type, field_name,
1234 subfield_name - field_name, 1);
1235 if (fieldno < 0)
1236 return NULL;
1237
1238 type = TYPE_FIELD_TYPE (type, fieldno);
1239 field_name = subfield_name;
1240 }
1241
1242 return NULL;
1243 }
1244
1245 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
1246 expression_block_context if NULL). If it denotes a type, return
1247 that type. Otherwise, write expression code to evaluate it as an
1248 object and return NULL. In this second case, NAME0 will, in general,
1249 have the form <name>(.<selector_name>)*, where <name> is an object
1250 or renaming encoded in the debugging data. Calls error if no
1251 prefix <name> matches a name in the debugging data (i.e., matches
1252 either a complete name or, as a wild-card match, the final
1253 identifier). */
1254
1255 static struct type*
1256 write_var_or_type (struct parser_state *par_state,
1257 const struct block *block, struct stoken name0)
1258 {
1259 int depth;
1260 char *encoded_name;
1261 int name_len;
1262
1263 if (block == NULL)
1264 block = expression_context_block;
1265
1266 encoded_name = ada_encode (name0.ptr);
1267 name_len = strlen (encoded_name);
1268 encoded_name = obstack_copy0 (&temp_parse_space, encoded_name, name_len);
1269 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
1270 {
1271 int tail_index;
1272
1273 tail_index = name_len;
1274 while (tail_index > 0)
1275 {
1276 int nsyms;
1277 struct ada_symbol_info *syms;
1278 struct symbol *type_sym;
1279 struct symbol *renaming_sym;
1280 const char* renaming;
1281 int renaming_len;
1282 const char* renaming_expr;
1283 int terminator = encoded_name[tail_index];
1284
1285 encoded_name[tail_index] = '\0';
1286 nsyms = ada_lookup_symbol_list (encoded_name, block,
1287 VAR_DOMAIN, &syms);
1288 encoded_name[tail_index] = terminator;
1289
1290 /* A single symbol may rename a package or object. */
1291
1292 /* This should go away when we move entirely to new version.
1293 FIXME pnh 7/20/2007. */
1294 if (nsyms == 1)
1295 {
1296 struct symbol *ren_sym =
1297 ada_find_renaming_symbol (syms[0].sym, syms[0].block);
1298
1299 if (ren_sym != NULL)
1300 syms[0].sym = ren_sym;
1301 }
1302
1303 type_sym = select_possible_type_sym (syms, nsyms);
1304
1305 if (type_sym != NULL)
1306 renaming_sym = type_sym;
1307 else if (nsyms == 1)
1308 renaming_sym = syms[0].sym;
1309 else
1310 renaming_sym = NULL;
1311
1312 switch (ada_parse_renaming (renaming_sym, &renaming,
1313 &renaming_len, &renaming_expr))
1314 {
1315 case ADA_NOT_RENAMING:
1316 break;
1317 case ADA_PACKAGE_RENAMING:
1318 case ADA_EXCEPTION_RENAMING:
1319 case ADA_SUBPROGRAM_RENAMING:
1320 {
1321 char *new_name
1322 = obstack_alloc (&temp_parse_space,
1323 renaming_len + name_len - tail_index + 1);
1324 strncpy (new_name, renaming, renaming_len);
1325 strcpy (new_name + renaming_len, encoded_name + tail_index);
1326 encoded_name = new_name;
1327 name_len = renaming_len + name_len - tail_index;
1328 goto TryAfterRenaming;
1329 }
1330 case ADA_OBJECT_RENAMING:
1331 write_object_renaming (par_state, block, renaming, renaming_len,
1332 renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
1333 write_selectors (par_state, encoded_name + tail_index);
1334 return NULL;
1335 default:
1336 internal_error (__FILE__, __LINE__,
1337 _("impossible value from ada_parse_renaming"));
1338 }
1339
1340 if (type_sym != NULL)
1341 {
1342 struct type *field_type;
1343
1344 if (tail_index == name_len)
1345 return SYMBOL_TYPE (type_sym);
1346
1347 /* We have some extraneous characters after the type name.
1348 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
1349 then try to get the type of FIELDN. */
1350 field_type
1351 = get_symbol_field_type (type_sym, encoded_name + tail_index);
1352 if (field_type != NULL)
1353 return field_type;
1354 else
1355 error (_("Invalid attempt to select from type: \"%s\"."),
1356 name0.ptr);
1357 }
1358 else if (tail_index == name_len && nsyms == 0)
1359 {
1360 struct type *type = find_primitive_type (par_state,
1361 encoded_name);
1362
1363 if (type != NULL)
1364 return type;
1365 }
1366
1367 if (nsyms == 1)
1368 {
1369 write_var_from_sym (par_state, block, syms[0].block,
1370 syms[0].sym);
1371 write_selectors (par_state, encoded_name + tail_index);
1372 return NULL;
1373 }
1374 else if (nsyms == 0)
1375 {
1376 struct bound_minimal_symbol msym
1377 = ada_lookup_simple_minsym (encoded_name);
1378 if (msym.minsym != NULL)
1379 {
1380 write_exp_msymbol (par_state, msym);
1381 /* Maybe cause error here rather than later? FIXME? */
1382 write_selectors (par_state, encoded_name + tail_index);
1383 return NULL;
1384 }
1385
1386 if (tail_index == name_len
1387 && strncmp (encoded_name, "standard__",
1388 sizeof ("standard__") - 1) == 0)
1389 error (_("No definition of \"%s\" found."), name0.ptr);
1390
1391 tail_index = chop_selector (encoded_name, tail_index);
1392 }
1393 else
1394 {
1395 write_ambiguous_var (par_state, block, encoded_name,
1396 tail_index);
1397 write_selectors (par_state, encoded_name + tail_index);
1398 return NULL;
1399 }
1400 }
1401
1402 if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
1403 error (_("No symbol table is loaded. Use the \"file\" command."));
1404 if (block == expression_context_block)
1405 error (_("No definition of \"%s\" in current context."), name0.ptr);
1406 else
1407 error (_("No definition of \"%s\" in specified context."), name0.ptr);
1408
1409 TryAfterRenaming: ;
1410 }
1411
1412 error (_("Could not find renamed symbol \"%s\""), name0.ptr);
1413
1414 }
1415
1416 /* Write a left side of a component association (e.g., NAME in NAME =>
1417 exp). If NAME has the form of a selected component, write it as an
1418 ordinary expression. If it is a simple variable that unambiguously
1419 corresponds to exactly one symbol that does not denote a type or an
1420 object renaming, also write it normally as an OP_VAR_VALUE.
1421 Otherwise, write it as an OP_NAME.
1422
1423 Unfortunately, we don't know at this point whether NAME is supposed
1424 to denote a record component name or the value of an array index.
1425 Therefore, it is not appropriate to disambiguate an ambiguous name
1426 as we normally would, nor to replace a renaming with its referent.
1427 As a result, in the (one hopes) rare case that one writes an
1428 aggregate such as (R => 42) where R renames an object or is an
1429 ambiguous name, one must write instead ((R) => 42). */
1430
1431 static void
1432 write_name_assoc (struct parser_state *par_state, struct stoken name)
1433 {
1434 if (strchr (name.ptr, '.') == NULL)
1435 {
1436 struct ada_symbol_info *syms;
1437 int nsyms = ada_lookup_symbol_list (name.ptr, expression_context_block,
1438 VAR_DOMAIN, &syms);
1439 if (nsyms != 1 || SYMBOL_CLASS (syms[0].sym) == LOC_TYPEDEF)
1440 write_exp_op_with_string (par_state, OP_NAME, name);
1441 else
1442 write_var_from_sym (par_state, NULL, syms[0].block, syms[0].sym);
1443 }
1444 else
1445 if (write_var_or_type (par_state, NULL, name) != NULL)
1446 error (_("Invalid use of type."));
1447 }
1448
1449 /* Convert the character literal whose ASCII value would be VAL to the
1450 appropriate value of type TYPE, if there is a translation.
1451 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
1452 the literal 'A' (VAL == 65), returns 0. */
1453
1454 static LONGEST
1455 convert_char_literal (struct type *type, LONGEST val)
1456 {
1457 char name[7];
1458 int f;
1459
1460 if (type == NULL)
1461 return val;
1462 type = check_typedef (type);
1463 if (TYPE_CODE (type) != TYPE_CODE_ENUM)
1464 return val;
1465
1466 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
1467 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
1468 {
1469 if (strcmp (name, TYPE_FIELD_NAME (type, f)) == 0)
1470 return TYPE_FIELD_ENUMVAL (type, f);
1471 }
1472 return val;
1473 }
1474
1475 static struct type *
1476 type_int (struct parser_state *par_state)
1477 {
1478 return parse_type (par_state)->builtin_int;
1479 }
1480
1481 static struct type *
1482 type_long (struct parser_state *par_state)
1483 {
1484 return parse_type (par_state)->builtin_long;
1485 }
1486
1487 static struct type *
1488 type_long_long (struct parser_state *par_state)
1489 {
1490 return parse_type (par_state)->builtin_long_long;
1491 }
1492
1493 static struct type *
1494 type_float (struct parser_state *par_state)
1495 {
1496 return parse_type (par_state)->builtin_float;
1497 }
1498
1499 static struct type *
1500 type_double (struct parser_state *par_state)
1501 {
1502 return parse_type (par_state)->builtin_double;
1503 }
1504
1505 static struct type *
1506 type_long_double (struct parser_state *par_state)
1507 {
1508 return parse_type (par_state)->builtin_long_double;
1509 }
1510
1511 static struct type *
1512 type_char (struct parser_state *par_state)
1513 {
1514 return language_string_char_type (parse_language (par_state),
1515 parse_gdbarch (par_state));
1516 }
1517
1518 static struct type *
1519 type_boolean (struct parser_state *par_state)
1520 {
1521 return parse_type (par_state)->builtin_bool;
1522 }
1523
1524 static struct type *
1525 type_system_address (struct parser_state *par_state)
1526 {
1527 struct type *type
1528 = language_lookup_primitive_type_by_name (parse_language (par_state),
1529 parse_gdbarch (par_state),
1530 "system__address");
1531 return type != NULL ? type : parse_type (par_state)->builtin_data_ptr;
1532 }
1533
1534 /* Provide a prototype to silence -Wmissing-prototypes. */
1535 extern initialize_file_ftype _initialize_ada_exp;
1536
1537 void
1538 _initialize_ada_exp (void)
1539 {
1540 obstack_init (&temp_parse_space);
1541 }
This page took 0.145952 seconds and 5 git commands to generate.