154f9850e27e7fe373706ef2f0da1dbeb5f83ac8
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 #include "cli/cli-style.h"
58
59 #include "psymtab.h"
60 #include "value.h"
61 #include "mi/mi-common.h"
62 #include "arch-utils.h"
63 #include "cli/cli-utils.h"
64 #include "gdbsupport/function-view.h"
65 #include "gdbsupport/byte-vector.h"
66 #include <algorithm>
67 #include <map>
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
115
116 static void ada_add_all_symbols (struct obstack *, const struct block *,
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
119
120 static int is_nonfunction (struct block_symbol *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 const struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct block_symbol *defns_collected (struct obstack *, int);
128
129 static struct value *resolve_subexp (expression_up *, int *, int,
130 struct type *, int,
131 innermost_block_tracker *);
132
133 static void replace_operator_with_call (expression_up *, int, int, int,
134 struct symbol *, const struct block *);
135
136 static int possible_user_operator_p (enum exp_opcode, struct value **);
137
138 static const char *ada_op_name (enum exp_opcode);
139
140 static const char *ada_decoded_op_name (enum exp_opcode);
141
142 static int numeric_type_p (struct type *);
143
144 static int integer_type_p (struct type *);
145
146 static int scalar_type_p (struct type *);
147
148 static int discrete_type_p (struct type *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
151 int, int);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static int lesseq_defined_than (struct symbol *, struct symbol *);
192
193 static int equiv_types (struct type *, struct type *);
194
195 static int is_name_suffix (const char *);
196
197 static int advance_wild_match (const char **, const char *, int);
198
199 static bool wild_match (const char *name, const char *patn);
200
201 static struct value *ada_coerce_ref (struct value *);
202
203 static LONGEST pos_atr (struct value *);
204
205 static struct value *value_pos_atr (struct type *, struct value *);
206
207 static struct value *value_val_atr (struct type *, struct value *);
208
209 static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
211
212 static struct value *ada_search_struct_field (const char *, struct value *, int,
213 struct type *);
214
215 static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
218 static int find_struct_field (const char *, struct type *, int,
219 struct type **, int *, int *, int *, int *);
220
221 static int ada_resolve_function (struct block_symbol *, int,
222 struct value **, int, const char *,
223 struct type *, int);
224
225 static int ada_is_direct_array_type (struct type *);
226
227 static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
229
230 static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233 static struct value *assign_aggregate (struct value *, struct value *,
234 struct expression *,
235 int *, enum noside);
236
237 static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242 static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248 static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259 static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
261
262 static struct type *ada_find_any_type (const char *name);
263
264 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
267 \f
268
269 /* The result of a symbol lookup to be stored in our symbol cache. */
270
271 struct cache_entry
272 {
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
276 domain_enum domain;
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285 };
286
287 /* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296 #define HASH_SIZE 1009
297
298 struct ada_symbol_cache
299 {
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305 };
306
307 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
308
309 /* Maximum-sized dynamic type. */
310 static unsigned int varsize_limit;
311
312 static const char ada_completer_word_break_characters[] =
313 #ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315 #else
316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
317 #endif
318
319 /* The name of the symbol to use to get the name of the main subprogram. */
320 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
321 = "__gnat_ada_main_program_name";
322
323 /* Limit on the number of warnings to raise per expression evaluation. */
324 static int warning_limit = 2;
325
326 /* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328 static int warnings_issued = 0;
329
330 static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332 };
333
334 static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336 };
337
338 /* Maintenance-related settings for this module. */
339
340 static struct cmd_list_element *maint_set_ada_cmdlist;
341 static struct cmd_list_element *maint_show_ada_cmdlist;
342
343 /* Implement the "maintenance set ada" (prefix) command. */
344
345 static void
346 maint_set_ada_cmd (const char *args, int from_tty)
347 {
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
350 }
351
352 /* Implement the "maintenance show ada" (prefix) command. */
353
354 static void
355 maint_show_ada_cmd (const char *args, int from_tty)
356 {
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358 }
359
360 /* The "maintenance ada set/show ignore-descriptive-type" value. */
361
362 static bool ada_ignore_descriptive_types_p = false;
363
364 /* Inferior-specific data. */
365
366 /* Per-inferior data for this module. */
367
368 struct ada_inferior_data
369 {
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
374 struct type *tsd_type = nullptr;
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
379 const struct exception_support_info *exception_info = nullptr;
380 };
381
382 /* Our key to this module's inferior data. */
383 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
384
385 /* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393 static struct ada_inferior_data *
394 get_ada_inferior_data (struct inferior *inf)
395 {
396 struct ada_inferior_data *data;
397
398 data = ada_inferior_data.get (inf);
399 if (data == NULL)
400 data = ada_inferior_data.emplace (inf);
401
402 return data;
403 }
404
405 /* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408 static void
409 ada_inferior_exit (struct inferior *inf)
410 {
411 ada_inferior_data.clear (inf);
412 }
413
414
415 /* program-space-specific data. */
416
417 /* This module's per-program-space data. */
418 struct ada_pspace_data
419 {
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
426 /* The Ada symbol cache. */
427 struct ada_symbol_cache *sym_cache = nullptr;
428 };
429
430 /* Key to our per-program-space data. */
431 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
432
433 /* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438 static struct ada_pspace_data *
439 get_ada_pspace_data (struct program_space *pspace)
440 {
441 struct ada_pspace_data *data;
442
443 data = ada_pspace_data_handle.get (pspace);
444 if (data == NULL)
445 data = ada_pspace_data_handle.emplace (pspace);
446
447 return data;
448 }
449
450 /* Utilities */
451
452 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
453 all typedef layers have been peeled. Otherwise, return TYPE.
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479 static struct type *
480 ada_typedef_target_type (struct type *type)
481 {
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485 }
486
487 /* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491 static const char *
492 ada_unqualified_name (const char *decoded_name)
493 {
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510 }
511
512 /* Return a string starting with '<', followed by STR, and '>'. */
513
514 static std::string
515 add_angle_brackets (const char *str)
516 {
517 return string_printf ("<%s>", str);
518 }
519
520 static const char *
521 ada_get_gdb_completer_word_break_characters (void)
522 {
523 return ada_completer_word_break_characters;
524 }
525
526 /* Print an array element index using the Ada syntax. */
527
528 static void
529 ada_print_array_index (struct value *index_value, struct ui_file *stream,
530 const struct value_print_options *options)
531 {
532 LA_VALUE_PRINT (index_value, stream, options);
533 fprintf_filtered (stream, " => ");
534 }
535
536 /* la_watch_location_expression for Ada. */
537
538 gdb::unique_xmalloc_ptr<char>
539 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540 {
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545 }
546
547 /* Assuming VECT points to an array of *SIZE objects of size
548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
549 updating *SIZE as necessary and returning the (new) array. */
550
551 void *
552 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
553 {
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
558 *size = min_size;
559 vect = xrealloc (vect, *size * element_size);
560 }
561 return vect;
562 }
563
564 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
565 suffix of FIELD_NAME beginning "___". */
566
567 static int
568 field_name_match (const char *field_name, const char *target)
569 {
570 int len = strlen (target);
571
572 return
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
575 || (startswith (field_name + len, "___")
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
578 }
579
580
581 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
588
589 int
590 ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592 {
593 int fieldno;
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
598 return fieldno;
599
600 if (!maybe_missing)
601 error (_("Unable to find field %s in struct %s. Aborting"),
602 field_name, TYPE_NAME (struct_type));
603
604 return -1;
605 }
606
607 /* The length of the prefix of NAME prior to any "___" suffix. */
608
609 int
610 ada_name_prefix_len (const char *name)
611 {
612 if (name == NULL)
613 return 0;
614 else
615 {
616 const char *p = strstr (name, "___");
617
618 if (p == NULL)
619 return strlen (name);
620 else
621 return p - name;
622 }
623 }
624
625 /* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
628 static int
629 is_suffix (const char *str, const char *suffix)
630 {
631 int len1, len2;
632
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
638 }
639
640 /* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
642
643 static struct value *
644 coerce_unspec_val_to_type (struct value *val, struct type *type)
645 {
646 type = ada_check_typedef (type);
647 if (value_type (val) == type)
648 return val;
649 else
650 {
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
655 ada_ensure_varsize_limit (type);
656
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
664 }
665 set_value_component_location (result, val);
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
670 return result;
671 }
672 }
673
674 static const gdb_byte *
675 cond_offset_host (const gdb_byte *valaddr, long offset)
676 {
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681 }
682
683 static CORE_ADDR
684 cond_offset_target (CORE_ADDR address, long offset)
685 {
686 if (address == 0)
687 return 0;
688 else
689 return address + offset;
690 }
691
692 /* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
696
697 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
699 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
700
701 static void
702 lim_warning (const char *format, ...)
703 {
704 va_list args;
705
706 va_start (args, format);
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
709 vwarning (format, args);
710
711 va_end (args);
712 }
713
714 /* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
718 void
719 ada_ensure_varsize_limit (const struct type *type)
720 {
721 if (TYPE_LENGTH (type) > varsize_limit)
722 error (_("object size is larger than varsize-limit"));
723 }
724
725 /* Maximum value of a SIZE-byte signed integer type. */
726 static LONGEST
727 max_of_size (int size)
728 {
729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
730
731 return top_bit | (top_bit - 1);
732 }
733
734 /* Minimum value of a SIZE-byte signed integer type. */
735 static LONGEST
736 min_of_size (int size)
737 {
738 return -max_of_size (size) - 1;
739 }
740
741 /* Maximum value of a SIZE-byte unsigned integer type. */
742 static ULONGEST
743 umax_of_size (int size)
744 {
745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
746
747 return top_bit | (top_bit - 1);
748 }
749
750 /* Maximum value of integral type T, as a signed quantity. */
751 static LONGEST
752 max_of_type (struct type *t)
753 {
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758 }
759
760 /* Minimum value of integral type T, as a signed quantity. */
761 static LONGEST
762 min_of_type (struct type *t)
763 {
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
768 }
769
770 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
771 LONGEST
772 ada_discrete_type_high_bound (struct type *type)
773 {
774 type = resolve_dynamic_type (type, NULL, 0);
775 switch (TYPE_CODE (type))
776 {
777 case TYPE_CODE_RANGE:
778 return TYPE_HIGH_BOUND (type);
779 case TYPE_CODE_ENUM:
780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
784 case TYPE_CODE_INT:
785 return max_of_type (type);
786 default:
787 error (_("Unexpected type in ada_discrete_type_high_bound."));
788 }
789 }
790
791 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
792 LONGEST
793 ada_discrete_type_low_bound (struct type *type)
794 {
795 type = resolve_dynamic_type (type, NULL, 0);
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_LOW_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, 0);
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return min_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_low_bound."));
809 }
810 }
811
812 /* The identity on non-range types. For range types, the underlying
813 non-range scalar type. */
814
815 static struct type *
816 get_base_type (struct type *type)
817 {
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
825 }
826
827 /* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832 struct value *
833 ada_get_decoded_value (struct value *value)
834 {
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850 }
851
852 /* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857 struct type *
858 ada_get_decoded_type (struct type *type)
859 {
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864 }
865
866 \f
867
868 /* Language Selection */
869
870 /* If the main program is in Ada, return language_ada, otherwise return LANG
871 (the main program is in Ada iif the adainit symbol is found). */
872
873 enum language
874 ada_update_initial_language (enum language lang)
875 {
876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
877 return language_ada;
878
879 return lang;
880 }
881
882 /* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886 char *
887 ada_main_name (void)
888 {
889 struct bound_minimal_symbol msym;
890 static gdb::unique_xmalloc_ptr<char> main_program_name;
891
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
899 if (msym.minsym != NULL)
900 {
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
905 if (main_program_name_addr == 0)
906 error (_("Invalid address for Ada main program name."));
907
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
913 return main_program_name.get ();
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918 }
919 \f
920 /* Symbols */
921
922 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
924
925 const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
948 };
949
950 /* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
954
955 static char *
956 ada_encode_1 (const char *decoded, bool throw_errors)
957 {
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
960 const char *p;
961 int k;
962
963 if (decoded == NULL)
964 return NULL;
965
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
968
969 k = 0;
970 for (p = decoded; *p != '\0'; p += 1)
971 {
972 if (*p == '.')
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
977 else if (*p == '"')
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
982 mapping->encoded != NULL
983 && !startswith (p, mapping->decoded); mapping += 1)
984 ;
985 if (mapping->encoded == NULL)
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
996 else
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
1001 }
1002
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
1005 }
1006
1007 /* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010 char *
1011 ada_encode (const char *decoded)
1012 {
1013 return ada_encode_1 (decoded, true);
1014 }
1015
1016 /* Return NAME folded to lower case, or, if surrounded by single
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
1020 char *
1021 ada_fold_name (const char *name)
1022 {
1023 static char *fold_buffer = NULL;
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1028
1029 if (name[0] == '\'')
1030 {
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
1033 }
1034 else
1035 {
1036 int i;
1037
1038 for (i = 0; i <= len; i += 1)
1039 fold_buffer[i] = tolower (name[i]);
1040 }
1041
1042 return fold_buffer;
1043 }
1044
1045 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047 static int
1048 is_lower_alphanum (const char c)
1049 {
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051 }
1052
1053 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
1060
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065 static void
1066 ada_remove_trailing_digits (const char *encoded, int *len)
1067 {
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
1071
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1079 *len = i - 2;
1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1081 *len = i - 1;
1082 }
1083 }
1084
1085 /* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088 static void
1089 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090 {
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
1096 the 'P' suffix. The second calls the first one after handling
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105 }
1106
1107 /* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1109 replaced by ENCODED. */
1110
1111 std::string
1112 ada_decode (const char *encoded)
1113 {
1114 int i, j;
1115 int len0;
1116 const char *p;
1117 int at_start_name;
1118 std::string decoded;
1119
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
1128 if (startswith (encoded, "_ada_"))
1129 encoded += 5;
1130
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
1134 if (encoded[0] == '_' || encoded[0] == '<')
1135 goto Suppress;
1136
1137 len0 = strlen (encoded);
1138
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
1141
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
1148 {
1149 if (p[3] == 'X')
1150 len0 = p - encoded;
1151 else
1152 goto Suppress;
1153 }
1154
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1160 len0 -= 3;
1161
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1167 len0 -= 2;
1168
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1173 len0 -= 1;
1174
1175 /* Make decoded big enough for possible expansion by operator name. */
1176
1177 decoded.resize (2 * len0 + 1, 'X');
1178
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1182 {
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
1191 }
1192
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
1202 /* Is this a symbol function? */
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
1206
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
1213 {
1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
1224 at_start_name = 0;
1225
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1230 i += 2;
1231
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
1254 of subprograms created by the compiler for each entry. The first
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1319 {
1320 /* Replace '__' by '.'. */
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
1326 else
1327 {
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
1334 }
1335 decoded.resize (j);
1336
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
1340 for (i = 0; i < decoded.length(); ++i)
1341 if (isupper (decoded[i]) || decoded[i] == ' ')
1342 goto Suppress;
1343
1344 return decoded;
1345
1346 Suppress:
1347 if (encoded[0] == '<')
1348 decoded = encoded;
1349 else
1350 decoded = '<' + std::string(encoded) + '>';
1351 return decoded;
1352
1353 }
1354
1355 /* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360 static struct htab *decoded_names_store;
1361
1362 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
1367 GSYMBOL).
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
1370 when a decoded name is cached in it. */
1371
1372 const char *
1373 ada_decode_symbol (const struct general_symbol_info *arg)
1374 {
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
1377 &gsymbol->language_specific.demangled_name;
1378
1379 if (!gsymbol->ada_mangled)
1380 {
1381 std::string decoded = ada_decode (gsymbol->name);
1382 struct obstack *obstack = gsymbol->language_specific.obstack;
1383
1384 gsymbol->ada_mangled = 1;
1385
1386 if (obstack != NULL)
1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
1388 else
1389 {
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
1395 char **slot = (char **) htab_find_slot (decoded_names_store,
1396 decoded.c_str (), INSERT);
1397
1398 if (*slot == NULL)
1399 *slot = xstrdup (decoded.c_str ());
1400 *resultp = *slot;
1401 }
1402 }
1403
1404 return *resultp;
1405 }
1406
1407 static char *
1408 ada_la_decode (const char *encoded, int options)
1409 {
1410 return xstrdup (ada_decode (encoded).c_str ());
1411 }
1412
1413 /* Implement la_sniff_from_mangled_name for Ada. */
1414
1415 static int
1416 ada_sniff_from_mangled_name (const char *mangled, char **out)
1417 {
1418 std::string demangled = ada_decode (mangled);
1419
1420 *out = NULL;
1421
1422 if (demangled != mangled && demangled[0] != '<')
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 \f
1453
1454 /* Arrays */
1455
1456 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479 void
1480 ada_fixup_array_indexes_type (struct type *index_desc_type)
1481 {
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509 }
1510
1511 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1512
1513 static const char *bound_name[] = {
1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516 };
1517
1518 /* Maximum number of array dimensions we are prepared to handle. */
1519
1520 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1521
1522
1523 /* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
1525
1526 /* The descriptor or array type, if any, indicated by TYPE; removes
1527 level of indirection, if needed. */
1528
1529 static struct type *
1530 desc_base_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return NULL;
1534 type = ada_check_typedef (type);
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1542 else
1543 return type;
1544 }
1545
1546 /* True iff TYPE indicates a "thin" array pointer type. */
1547
1548 static int
1549 is_thin_pntr (struct type *type)
1550 {
1551 return
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554 }
1555
1556 /* The descriptor type for thin pointer type TYPE. */
1557
1558 static struct type *
1559 thin_descriptor_type (struct type *type)
1560 {
1561 struct type *base_type = desc_base_type (type);
1562
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
1567 else
1568 {
1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1570
1571 if (alt_type == NULL)
1572 return base_type;
1573 else
1574 return alt_type;
1575 }
1576 }
1577
1578 /* A pointer to the array data for thin-pointer value VAL. */
1579
1580 static struct value *
1581 thin_data_pntr (struct value *val)
1582 {
1583 struct type *type = ada_check_typedef (value_type (val));
1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1585
1586 data_type = lookup_pointer_type (data_type);
1587
1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1589 return value_cast (data_type, value_copy (val));
1590 else
1591 return value_from_longest (data_type, value_address (val));
1592 }
1593
1594 /* True iff TYPE indicates a "thick" array pointer type. */
1595
1596 static int
1597 is_thick_pntr (struct type *type)
1598 {
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
1606
1607 static struct type *
1608 desc_bounds_type (struct type *type)
1609 {
1610 struct type *r;
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
1620 return NULL;
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
1623 return ada_check_typedef (r);
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1630 }
1631 return NULL;
1632 }
1633
1634 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
1637 static struct value *
1638 desc_bounds (struct value *arr)
1639 {
1640 struct type *type = ada_check_typedef (value_type (arr));
1641
1642 if (is_thin_pntr (type))
1643 {
1644 struct type *bounds_type =
1645 desc_bounds_type (thin_descriptor_type (type));
1646 LONGEST addr;
1647
1648 if (bounds_type == NULL)
1649 error (_("Bad GNAT array descriptor"));
1650
1651 /* NOTE: The following calculation is not really kosher, but
1652 since desc_type is an XVE-encoded type (and shouldn't be),
1653 the correct calculation is a real pain. FIXME (and fix GCC). */
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 addr = value_as_long (arr);
1656 else
1657 addr = value_address (arr);
1658
1659 return
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
1662 }
1663
1664 else if (is_thick_pntr (type))
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
1685 else
1686 return NULL;
1687 }
1688
1689 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
1692 static int
1693 fat_pntr_bounds_bitpos (struct type *type)
1694 {
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696 }
1697
1698 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1699 size of the field containing the address of the bounds data. */
1700
1701 static int
1702 fat_pntr_bounds_bitsize (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1710 }
1711
1712 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
1716
1717 static struct type *
1718 desc_data_target_type (struct type *type)
1719 {
1720 type = desc_base_type (type);
1721
1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
1723 if (is_thin_pntr (type))
1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1725 else if (is_thick_pntr (type))
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1732 }
1733
1734 return NULL;
1735 }
1736
1737 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
1739
1740 static struct value *
1741 desc_data (struct value *arr)
1742 {
1743 struct type *type = value_type (arr);
1744
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1749 _("Bad GNAT array descriptor"));
1750 else
1751 return NULL;
1752 }
1753
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the data. */
1757
1758 static int
1759 fat_pntr_data_bitpos (struct type *type)
1760 {
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the data. */
1766
1767 static int
1768 fat_pntr_data_bitsize (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
1774 else
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776 }
1777
1778 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
1782 static struct value *
1783 desc_one_bound (struct value *bounds, int i, int which)
1784 {
1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1786 _("Bad GNAT array descriptor bounds"));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static int
1794 desc_bound_bitpos (struct type *type, int i, int which)
1795 {
1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1797 }
1798
1799 /* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
1803 static int
1804 desc_bound_bitsize (struct type *type, int i, int which)
1805 {
1806 type = desc_base_type (type);
1807
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1812 }
1813
1814 /* If TYPE is the type of an array-bounds structure, the type of its
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
1817 static struct type *
1818 desc_index_type (struct type *type, int i)
1819 {
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
1825 return NULL;
1826 }
1827
1828 /* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
1831 static int
1832 desc_arity (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839 }
1840
1841 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
1845 static int
1846 ada_is_direct_array_type (struct type *type)
1847 {
1848 if (type == NULL)
1849 return 0;
1850 type = ada_check_typedef (type);
1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1852 || ada_is_array_descriptor_type (type));
1853 }
1854
1855 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1856 * to one. */
1857
1858 static int
1859 ada_is_array_type (struct type *type)
1860 {
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866 }
1867
1868 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1869
1870 int
1871 ada_is_simple_array_type (struct type *type)
1872 {
1873 if (type == NULL)
1874 return 0;
1875 type = ada_check_typedef (type);
1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
1880 }
1881
1882 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
1884 int
1885 ada_is_array_descriptor_type (struct type *type)
1886 {
1887 struct type *data_type = desc_data_target_type (type);
1888
1889 if (type == NULL)
1890 return 0;
1891 type = ada_check_typedef (type);
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
1895 }
1896
1897 /* Non-zero iff type is a partially mal-formed GNAT array
1898 descriptor. FIXME: This is to compensate for some problems with
1899 debugging output from GNAT. Re-examine periodically to see if it
1900 is still needed. */
1901
1902 int
1903 ada_is_bogus_array_descriptor (struct type *type)
1904 {
1905 return
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
1911 }
1912
1913
1914 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1915 (fat pointer) returns the type of the array data described---specifically,
1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1917 in from the descriptor; otherwise, they are left unspecified. If
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
1920 a descriptor. */
1921 struct type *
1922 ada_type_of_array (struct value *arr, int bounds)
1923 {
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
1926
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
1929
1930 if (!bounds)
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
1941 else
1942 {
1943 struct type *elt_type;
1944 int arity;
1945 struct value *descriptor;
1946
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
1949
1950 if (elt_type == NULL || arity == 0)
1951 return ada_check_typedef (value_type (arr));
1952
1953 descriptor = desc_bounds (arr);
1954 if (value_as_long (descriptor) == 0)
1955 return NULL;
1956 while (arity > 0)
1957 {
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
1962
1963 arity -= 1;
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
1967 elt_type = create_array_type (array_type, elt_type, range_type);
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
1989 }
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993 }
1994
1995 /* If ARR does not represent an array, returns ARR unchanged.
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
2000 struct value *
2001 ada_coerce_to_simple_array_ptr (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct type *arrType = ada_type_of_array (arr, 1);
2006
2007 if (arrType == NULL)
2008 return NULL;
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
2013 else
2014 return arr;
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
2019 be ARR itself if it already is in the proper form). */
2020
2021 struct value *
2022 ada_coerce_to_simple_array (struct value *arr)
2023 {
2024 if (ada_is_array_descriptor_type (value_type (arr)))
2025 {
2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2027
2028 if (arrVal == NULL)
2029 error (_("Bounds unavailable for null array pointer."));
2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2031 return value_ind (arrVal);
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
2041 packing). For other types, is the identity. */
2042
2043 struct type *
2044 ada_coerce_to_simple_array_type (struct type *type)
2045 {
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
2048
2049 if (ada_is_array_descriptor_type (type))
2050 return ada_check_typedef (desc_data_target_type (type));
2051
2052 return type;
2053 }
2054
2055 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
2057 static int
2058 ada_is_packed_array_type (struct type *type)
2059 {
2060 if (type == NULL)
2061 return 0;
2062 type = desc_base_type (type);
2063 type = ada_check_typedef (type);
2064 return
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067 }
2068
2069 /* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072 int
2073 ada_is_constrained_packed_array_type (struct type *type)
2074 {
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077 }
2078
2079 /* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082 static int
2083 ada_is_unconstrained_packed_array_type (struct type *type)
2084 {
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087 }
2088
2089 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092 static long
2093 decode_packed_array_bitsize (struct type *type)
2094 {
2095 const char *raw_name;
2096 const char *tail;
2097 long bits;
2098
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
2113 gdb_assert (tail != NULL);
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123 }
2124
2125 /* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
2141
2142 static struct type *
2143 constrained_packed_array_type (struct type *type, long *elt_bits)
2144 {
2145 struct type *new_elt_type;
2146 struct type *new_type;
2147 struct type *index_type_desc;
2148 struct type *index_type;
2149 LONGEST low_bound, high_bound;
2150
2151 type = ada_check_typedef (type);
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
2162 new_type = alloc_type_copy (type);
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
2166 create_array_type (new_type, new_elt_type, index_type);
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
2176 else
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
2179 TYPE_LENGTH (new_type) =
2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2181 }
2182
2183 TYPE_FIXED_INSTANCE (new_type) = 1;
2184 return new_type;
2185 }
2186
2187 /* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
2189
2190 static struct type *
2191 decode_constrained_packed_array_type (struct type *type)
2192 {
2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
2194 char *name;
2195 const char *tail;
2196 struct type *shadow_type;
2197 long bits;
2198
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
2207 type = desc_base_type (type);
2208
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
2215 {
2216 lim_warning (_("could not find bounds information on packed array"));
2217 return NULL;
2218 }
2219 shadow_type = check_typedef (shadow_type);
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
2225 return NULL;
2226 }
2227
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
2230 }
2231
2232 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
2236 type length is set appropriately. */
2237
2238 static struct value *
2239 decode_constrained_packed_array (struct value *arr)
2240 {
2241 struct type *type;
2242
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2252 arr = value_ind (arr);
2253
2254 type = decode_constrained_packed_array_type (value_type (arr));
2255 if (type == NULL)
2256 {
2257 error (_("can't unpack array"));
2258 return NULL;
2259 }
2260
2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2262 && ada_is_modular_type (value_type (arr)))
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
2271 mod = ada_modulus (value_type (arr)) - 1;
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
2286 return coerce_unspec_val_to_type (arr, type);
2287 }
2288
2289
2290 /* The value of the element of packed array ARR at the ARITY indices
2291 given in IND. ARR must be a simple array. */
2292
2293 static struct value *
2294 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2295 {
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
2299 struct type *elt_type;
2300 struct value *v;
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
2304 elt_type = ada_check_typedef (value_type (arr));
2305 for (i = 0; i < arity; i += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
2312 else
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
2320 lim_warning (_("don't know bounds of array"));
2321 lowerbound = upperbound = 0;
2322 }
2323
2324 idx = pos_atr (ind[i]);
2325 if (idx < lowerbound || idx > upperbound)
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2331 }
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2337 bits, elt_type);
2338 return v;
2339 }
2340
2341 /* Non-zero iff TYPE includes negative integer values. */
2342
2343 static int
2344 has_negatives (struct type *type)
2345 {
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2354 }
2355 }
2356
2357 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2359 the unpacked buffer.
2360
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
2366
2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2368
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371 static void
2372 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376 {
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
2387 unsigned long accum; /* Staging area for bits being transferred */
2388 int accumSize; /* Number of meaningful bits in accum */
2389 unsigned char sign;
2390
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
2393 int delta = is_big_endian ? -1 : 1;
2394
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
2401 srcBitsLeft = bit_size;
2402 src_bytes_left = src_len;
2403 unpacked_bytes_left = unpacked_len;
2404 sign = 0;
2405
2406 if (is_big_endian)
2407 {
2408 src_idx = src_len - 1;
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2411 sign = ~0;
2412
2413 unusedLS =
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
2416
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
2431 }
2432 }
2433 else
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
2437 src_idx = unpacked_idx = 0;
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2442 sign = ~0;
2443 }
2444
2445 accum = 0;
2446 while (src_bytes_left > 0)
2447 {
2448 /* Mask for removing bits of the next source byte that are not
2449 part of the value. */
2450 unsigned int unusedMSMask =
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
2454 unsigned int signMask = sign & ~unusedMSMask;
2455
2456 accum |=
2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2458 accumSize += HOST_CHAR_BIT - unusedLS;
2459 if (accumSize >= HOST_CHAR_BIT)
2460 {
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
2466 }
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
2469 src_bytes_left -= 1;
2470 src_idx += delta;
2471 }
2472 while (unpacked_bytes_left > 0)
2473 {
2474 accum |= sign << accumSize;
2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2476 accumSize -= HOST_CHAR_BIT;
2477 if (accumSize < 0)
2478 accumSize = 0;
2479 accum >>= HOST_CHAR_BIT;
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
2482 }
2483 }
2484
2485 /* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494 struct value *
2495 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498 {
2499 struct value *v;
2500 const gdb_byte *src; /* First byte containing data to unpack */
2501 gdb_byte *unpacked;
2502 const int is_scalar = is_scalar_type (type);
2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2504 gdb::byte_vector staging;
2505
2506 type = ada_check_typedef (type);
2507
2508 if (obj == NULL)
2509 src = valaddr + offset;
2510 else
2511 src = value_contents (obj) + offset;
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
2526 staging.data (), staging.size (),
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
2529 type = resolve_dynamic_type (type, staging.data (), 0);
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
2541 }
2542
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
2546 src = valaddr + offset;
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2551 gdb_byte *buf;
2552
2553 v = value_at (type, value_address (obj) + offset);
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
2561 src = value_contents (obj) + offset;
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
2584 unpacked = value_contents_writeable (v);
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
2592 if (staging.size () == TYPE_LENGTH (type))
2593 {
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
2597 memcpy (unpacked, staging.data (), staging.size ());
2598 }
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
2603
2604 return v;
2605 }
2606
2607 /* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
2610 floating-point or non-scalar types. */
2611
2612 static struct value *
2613 ada_value_assign (struct value *toval, struct value *fromval)
2614 {
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
2617
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
2626 if (!deprecated_value_modifiable (toval))
2627 error (_("Left operand of assignment is not a modifiable lvalue."));
2628
2629 if (VALUE_LVAL (toval) == lval_memory
2630 && bits > 0
2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2633 {
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2636 int from_size;
2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
2638 struct value *val;
2639 CORE_ADDR to_addr = value_address (toval);
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2642 fromval = value_cast (type, fromval);
2643
2644 read_memory (to_addr, buffer, len);
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
2656 write_memory_with_notification (to_addr, buffer, len);
2657
2658 val = value_copy (toval);
2659 memcpy (value_contents_raw (val), value_contents (fromval),
2660 TYPE_LENGTH (type));
2661 deprecated_set_value_type (val, type);
2662
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667 }
2668
2669
2670 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
2681 static void
2682 value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684 {
2685 LONGEST offset_in_container =
2686 (LONGEST) (value_address (component) - value_address (container));
2687 int bit_offset_in_container =
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
2690
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2710 }
2711 else
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
2715 }
2716
2717 /* Determine if TYPE is an access to an unconstrained array. */
2718
2719 bool
2720 ada_is_access_to_unconstrained_array (struct type *type)
2721 {
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724 }
2725
2726 /* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
2728 thereto. */
2729
2730 struct value *
2731 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2732 {
2733 int k;
2734 struct value *elt;
2735 struct type *elt_type;
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
2739 elt_type = ada_check_typedef (value_type (elt));
2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750
2751 elt = value_subscript (elt, pos_atr (ind[k]));
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
2772 }
2773
2774 return elt;
2775 }
2776
2777 /* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
2788
2789 static struct value *
2790 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2791 {
2792 int k;
2793 struct value *array_ind = ada_value_ind (arr);
2794 struct type *type
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
2804 struct value *lwb_value;
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2807 error (_("too many subscripts (%d expected)"), k);
2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2809 value_copy (arr));
2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817 }
2818
2819 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
2823 static struct value *
2824 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
2826 {
2827 struct type *type0 = ada_check_typedef (type);
2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2829 struct type *index_type
2830 = create_static_range_type (NULL, base_index_type, low, high);
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
2846
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2850 return value_at_lazy (slice_type, base);
2851 }
2852
2853
2854 static struct value *
2855 ada_value_slice (struct value *array, int low, int high)
2856 {
2857 struct type *type = ada_check_typedef (value_type (array));
2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
2865 LONGEST low_pos, high_pos;
2866
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
2877 }
2878
2879 /* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
2882 type designation. Otherwise, returns 0. */
2883
2884 int
2885 ada_array_arity (struct type *type)
2886 {
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2896 return desc_arity (desc_bounds_type (type));
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2899 {
2900 arity += 1;
2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2902 }
2903
2904 return arity;
2905 }
2906
2907 /* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
2910 NINDICES is -1. Otherwise, returns NULL. */
2911
2912 struct type *
2913 ada_array_element_type (struct type *type, int nindices)
2914 {
2915 type = desc_base_type (type);
2916
2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2918 {
2919 int k;
2920 struct type *p_array_type;
2921
2922 p_array_type = desc_data_target_type (type);
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
2926 return NULL;
2927
2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2929 if (nindices >= 0 && k > nindices)
2930 k = nindices;
2931 while (k > 0 && p_array_type != NULL)
2932 {
2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2934 k -= 1;
2935 }
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
2945 return type;
2946 }
2947
2948 return NULL;
2949 }
2950
2951 /* The type of nth index in arrays of given type (n numbering from 1).
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
2956
2957 static struct type *
2958 ada_index_type (struct type *type, int n, const char *name)
2959 {
2960 struct type *result_type;
2961
2962 type = desc_base_type (type);
2963
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
2966
2967 if (ada_is_simple_array_type (type))
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
2972 type = TYPE_TARGET_TYPE (type);
2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2976 perhaps stabsread.c would make more sense. */
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
2979 }
2980 else
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
2988 }
2989
2990 /* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
2995
2996 static LONGEST
2997 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2998 {
2999 struct type *type, *index_type_desc, *index_type;
3000 int i;
3001
3002 gdb_assert (which == 0 || which == 1);
3003
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
3006
3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3008 return (LONGEST) - which;
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
3028 if (index_type_desc != NULL)
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
3031 else
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
3040
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
3045 }
3046
3047 /* Given that arr is an array value, returns the lower bound of the
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants. */
3051
3052 static LONGEST
3053 ada_array_bound (struct value *arr, int n, int which)
3054 {
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
3060
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3063 else if (ada_is_simple_array_type (arr_type))
3064 return ada_array_bound_from_type (arr_type, n, which);
3065 else
3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3067 }
3068
3069 /* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
3074
3075 static LONGEST
3076 ada_array_length (struct value *arr, int n)
3077 {
3078 struct type *arr_type, *index_type;
3079 int low, high;
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
3087
3088 if (ada_is_simple_array_type (arr_type))
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
3093 else
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
3099 arr_type = check_typedef (arr_type);
3100 index_type = ada_index_type (arr_type, n, "length");
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
3113 }
3114
3115 /* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
3118
3119 static struct value *
3120 empty_array (struct type *arr_type, int low, int high)
3121 {
3122 struct type *arr_type0 = ada_check_typedef (arr_type);
3123 struct type *index_type
3124 = create_static_range_type
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3128
3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
3130 }
3131 \f
3132
3133 /* Name resolution */
3134
3135 /* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
3137
3138 static const char *
3139 ada_decoded_op_name (enum exp_opcode op)
3140 {
3141 int i;
3142
3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3144 {
3145 if (ada_opname_table[i].op == op)
3146 return ada_opname_table[i].decoded;
3147 }
3148 error (_("Could not find operator name for opcode"));
3149 }
3150
3151
3152 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3159 return type is preferred. May change (expand) *EXP. */
3160
3161 static void
3162 resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
3164 {
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3172 }
3173
3174 /* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
3182
3183 static struct value *
3184 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
3187 {
3188 int pc = *pos;
3189 int i;
3190 struct expression *exp; /* Convenience: == *expp. */
3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
3194 int oplen;
3195
3196 argvec = NULL;
3197 nargs = 0;
3198 exp = expp->get ();
3199
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
3202 switch (op)
3203 {
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
3208 else
3209 {
3210 *pos += 3;
3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3214 break;
3215
3216 case UNOP_ADDR:
3217 *pos += 1;
3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3219 break;
3220
3221 case UNOP_QUAL:
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3224 parse_completion, tracker);
3225 break;
3226
3227 case OP_ATR_MODULUS:
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
3252 struct value *arg1;
3253
3254 *pos += 1;
3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3256 if (arg1 == NULL)
3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3258 else
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
3261 break;
3262 }
3263
3264 case UNOP_CAST:
3265 *pos += 3;
3266 nargs = 1;
3267 break;
3268
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
3282
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
3289
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
3293 *pos += 1;
3294 nargs = 2;
3295 break;
3296
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
3305
3306 case OP_LONG:
3307 case OP_FLOAT:
3308 case OP_VAR_VALUE:
3309 case OP_VAR_MSYM_VALUE:
3310 *pos += 4;
3311 break;
3312
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
3319
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
3334 case TERNOP_SLICE:
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
3339 case OP_STRING:
3340 break;
3341
3342 default:
3343 error (_("Unexpected operator during name resolution"));
3344 }
3345
3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
3347 for (i = 0; i < nargs; i += 1)
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
3350 argvec[i] = NULL;
3351 exp = expp->get ();
3352
3353 /* Pass two: perform any resolution on principal operator. */
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
3359 case OP_VAR_VALUE:
3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3361 {
3362 std::vector<struct block_symbol> candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
3369 &candidates);
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
3378 switch (SYMBOL_CLASS (candidates[j].symbol))
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
3385 case LOC_COMPUTED:
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
3408 error (_("No definition found for %s"),
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
3413 && !is_nonfunction (candidates.data (), n_candidates))
3414 {
3415 i = ada_resolve_function
3416 (candidates.data (), n_candidates, NULL, 0,
3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3418 context_type, parse_completion);
3419 if (i < 0)
3420 error (_("Could not find a match for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
3425 printf_filtered (_("Multiple matches for %s\n"),
3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3427 user_select_syms (candidates.data (), n_candidates, 1);
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
3433 tracker->update (candidates[i]);
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
3440 replace_operator_with_call (expp, pc, 0, 4,
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
3443 exp = expp->get ();
3444 }
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3451 {
3452 std::vector<struct block_symbol> candidates;
3453 int n_candidates;
3454
3455 n_candidates =
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
3459 &candidates);
3460
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
3465 i = ada_resolve_function
3466 (candidates.data (), n_candidates,
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3469 context_type, parse_completion);
3470 if (i < 0)
3471 error (_("Could not find a match for %s"),
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
3477 tracker->update (candidates[i]);
3478 }
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
3503 {
3504 std::vector<struct block_symbol> candidates;
3505 int n_candidates;
3506
3507 n_candidates =
3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
3509 NULL, VAR_DOMAIN,
3510 &candidates);
3511
3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
3515 if (i < 0)
3516 break;
3517
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
3521 exp = expp->get ();
3522 }
3523 break;
3524
3525 case OP_TYPE:
3526 case OP_REGISTER:
3527 return NULL;
3528 }
3529
3530 *pos = pc;
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
3537 }
3538
3539 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3541 a non-pointer. */
3542 /* The term "match" here is rather loose. The match is heuristic and
3543 liberal. */
3544
3545 static int
3546 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3547 {
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
3556 switch (TYPE_CODE (ftype))
3557 {
3558 default:
3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
3564 else
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
3579
3580 case TYPE_CODE_ARRAY:
3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3582 || ada_is_array_descriptor_type (atype));
3583
3584 case TYPE_CODE_STRUCT:
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
3588 else
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596 }
3597
3598 /* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
3601 argument function. */
3602
3603 static int
3604 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3605 {
3606 int i;
3607 struct type *func_type = SYMBOL_TYPE (func);
3608
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
3620 if (actuals[i] == NULL)
3621 return 0;
3622 else
3623 {
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3627
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
3631 }
3632 return 1;
3633 }
3634
3635 /* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640 static int
3641 return_match (struct type *func_type, struct type *context_type)
3642 {
3643 struct type *return_type;
3644
3645 if (func_type == NULL)
3646 return 1;
3647
3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3650 else
3651 return_type = get_base_type (func_type);
3652 if (return_type == NULL)
3653 return 1;
3654
3655 context_type = get_base_type (context_type);
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663 }
3664
3665
3666 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3667 function (if any) that matches the types of the NARGS arguments in
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
3677
3678 static int
3679 ada_resolve_function (struct block_symbol syms[],
3680 int nsyms, struct value **args, int nargs,
3681 const char *name, struct type *context_type,
3682 int parse_completion)
3683 {
3684 int fallback;
3685 int k;
3686 int m; /* Number of hits */
3687
3688 m = 0;
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3693 {
3694 for (k = 0; k < nsyms; k += 1)
3695 {
3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3697
3698 if (ada_args_match (syms[k].symbol, args, nargs)
3699 && (fallback || return_match (type, context_type)))
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
3705 }
3706
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
3711 if (m == 0)
3712 return -1;
3713 else if (m > 1 && !parse_completion)
3714 {
3715 printf_filtered (_("Multiple matches for %s\n"), name);
3716 user_select_syms (syms, m, 1);
3717 return 0;
3718 }
3719 return 0;
3720 }
3721
3722 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
3728 static int
3729 encoded_ordered_before (const char *N0, const char *N1)
3730 {
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
3738
3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3740 ;
3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3742 ;
3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
3747
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
3757 return (strcmp (N0, N1) < 0);
3758 }
3759 }
3760
3761 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
3764 static void
3765 sort_choices (struct block_symbol syms[], int nsyms)
3766 {
3767 int i;
3768
3769 for (i = 1; i < nsyms; i += 1)
3770 {
3771 struct block_symbol sym = syms[i];
3772 int j;
3773
3774 for (j = i - 1; j >= 0; j -= 1)
3775 {
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
3781 syms[j + 1] = sym;
3782 }
3783 }
3784
3785 /* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
3787 static bool print_signatures = true;
3788
3789 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794 static void
3795 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797 {
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826 }
3827
3828 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
3832
3833 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3834 to be re-integrated one of these days. */
3835
3836 int
3837 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3838 {
3839 int i;
3840 int *chosen = XALLOCAVEC (int , nsyms);
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
3843 const char *select_mode = multiple_symbols_select_mode ();
3844
3845 if (max_results < 1)
3846 error (_("Request to select 0 symbols!"));
3847 if (nsyms <= 1)
3848 return nsyms;
3849
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852 canceled because the command is ambiguous\n\
3853 See set/show multiple-symbol."));
3854
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
3861 printf_filtered (_("[0] cancel\n"));
3862 if (max_results > 1)
3863 printf_filtered (_("[1] all\n"));
3864
3865 sort_choices (syms, nsyms);
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
3869 if (syms[i].symbol == NULL)
3870 continue;
3871
3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3873 {
3874 struct symtab_and_line sal =
3875 find_function_start_sal (syms[i].symbol, 1);
3876
3877 printf_filtered ("[%d] ", i + first_choice);
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
3880 if (sal.symtab == NULL)
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
3883 else
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
3889 continue;
3890 }
3891 else
3892 {
3893 int is_enumeral =
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3897 struct symtab *symtab = NULL;
3898
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
3901
3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3903 {
3904 printf_filtered ("[%d] ", i + first_choice);
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
3910 }
3911 else if (is_enumeral
3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3913 {
3914 printf_filtered (("[%d] "), i + first_choice);
3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3916 gdb_stdout, -1, 0, &type_print_raw_options);
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
3919 }
3920 else
3921 {
3922 printf_filtered ("[%d] ", i + first_choice);
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
3931 else
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
3935 }
3936 }
3937 }
3938
3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3940 "overload-choice");
3941
3942 for (i = 0; i < n_chosen; i += 1)
3943 syms[i] = syms[chosen[i]];
3944
3945 return n_chosen;
3946 }
3947
3948 /* Read and validate a set of numeric choices from the user in the
3949 range 0 .. N_CHOICES-1. Place the results in increasing
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
3955 + A choice of 0 means to cancel the selection, throwing an error.
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
3959 The user is not allowed to choose more than MAX_RESULTS values.
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
3962 prompts (for use with the -f switch). */
3963
3964 int
3965 get_selections (int *choices, int n_choices, int max_results,
3966 int is_all_choice, const char *annotation_suffix)
3967 {
3968 char *args;
3969 const char *prompt;
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
3972
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
3975 prompt = "> ";
3976
3977 args = command_line_input (prompt, annotation_suffix);
3978
3979 if (args == NULL)
3980 error_no_arg (_("one or more choice numbers"));
3981
3982 n_chosen = 0;
3983
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
3986 while (1)
3987 {
3988 char *args2;
3989 int choice, j;
3990
3991 args = skip_spaces (args);
3992 if (*args == '\0' && n_chosen == 0)
3993 error_no_arg (_("one or more choice numbers"));
3994 else if (*args == '\0')
3995 break;
3996
3997 choice = strtol (args, &args2, 10);
3998 if (args == args2 || choice < 0
3999 || choice > n_choices + first_choice - 1)
4000 error (_("Argument must be choice number"));
4001 args = args2;
4002
4003 if (choice == 0)
4004 error (_("cancelled"));
4005
4006 if (choice < first_choice)
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
4013 choice -= first_choice;
4014
4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4016 {
4017 }
4018
4019 if (j < 0 || choice != choices[j])
4020 {
4021 int k;
4022
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
4028 }
4029
4030 if (n_chosen > max_results)
4031 error (_("Select no more than %d of the above"), max_results);
4032
4033 return n_chosen;
4034 }
4035
4036 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
4039
4040 static void
4041 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4042 int oplen, struct symbol *sym,
4043 const struct block *block)
4044 {
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4046 symbol, -oplen for operator being replaced). */
4047 struct expression *newexp = (struct expression *)
4048 xzalloc (sizeof (struct expression)
4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4050 struct expression *exp = expp->get ();
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
4054 newexp->gdbarch = exp->gdbarch;
4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
4066 expp->reset (newexp);
4067 }
4068
4069 /* Type-class predicates */
4070
4071 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
4073
4074 static int
4075 numeric_type_p (struct type *type)
4076 {
4077 if (type == NULL)
4078 return 0;
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
4092 }
4093 }
4094
4095 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4096
4097 static int
4098 integer_type_p (struct type *type)
4099 {
4100 if (type == NULL)
4101 return 0;
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
4114 }
4115 }
4116
4117 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4118
4119 static int
4120 scalar_type_p (struct type *type)
4121 {
4122 if (type == NULL)
4123 return 0;
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
4136 }
4137 }
4138
4139 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4140
4141 static int
4142 discrete_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
4153 case TYPE_CODE_BOOL:
4154 return 1;
4155 default:
4156 return 0;
4157 }
4158 }
4159 }
4160
4161 /* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
4164
4165 static int
4166 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4167 {
4168 struct type *type0 =
4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4170 struct type *type1 =
4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4172
4173 if (type0 == NULL)
4174 return 0;
4175
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4201
4202 case BINOP_CONCAT:
4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4204
4205 case BINOP_EXP:
4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
4213
4214 }
4215 }
4216 \f
4217 /* Renaming */
4218
4219 /* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231 /* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250 enum ada_renaming_category
4251 ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254 {
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
4262 {
4263 default:
4264 return ADA_NOT_RENAMING;
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
4293 }
4294
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306 }
4307
4308 /* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
4311
4312 static struct value *
4313 ada_read_renaming_var_value (struct symbol *renaming_sym,
4314 const struct block *block)
4315 {
4316 const char *sym_name;
4317
4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
4321 }
4322 \f
4323
4324 /* Evaluation: Function Calls */
4325
4326 /* Return an lvalue containing the value VAL. This is the identity on
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
4329
4330 static struct value *
4331 ensure_lval (struct value *val)
4332 {
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
4335 {
4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
4339
4340 VALUE_LVAL (val) = lval_memory;
4341 set_value_address (val, addr);
4342 write_memory (addr, value_contents (val), len);
4343 }
4344
4345 return val;
4346 }
4347
4348 /* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4351 values not residing in memory, updating it as needed. */
4352
4353 struct value *
4354 ada_convert_actual (struct value *actual, struct type *formal_type0)
4355 {
4356 struct type *actual_type = ada_check_typedef (value_type (actual));
4357 struct type *formal_type = ada_check_typedef (formal_type0);
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4364
4365 if (ada_is_array_descriptor_type (formal_target)
4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4367 return make_array_descriptor (formal_type, actual);
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4370 {
4371 struct value *result;
4372
4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4374 && ada_is_array_descriptor_type (actual_target))
4375 result = desc_data (actual);
4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
4381
4382 actual_type = ada_check_typedef (value_type (actual));
4383 val = allocate_value (actual_type);
4384 memcpy ((char *) value_contents_raw (val),
4385 (char *) value_contents (actual),
4386 TYPE_LENGTH (actual_type));
4387 actual = ensure_lval (val);
4388 }
4389 result = value_addr (actual);
4390 }
4391 else
4392 return actual;
4393 return value_cast_pointers (formal_type, result, 0);
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
4407
4408 return actual;
4409 }
4410
4411 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416 static CORE_ADDR
4417 value_pointer (struct value *value, struct type *type)
4418 {
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
4421 gdb_byte *buf = (gdb_byte *) alloca (len);
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428 }
4429
4430
4431 /* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
4436
4437 static struct value *
4438 make_array_descriptor (struct type *type, struct value *arr)
4439 {
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
4444 int i;
4445
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
4448 {
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
4457 }
4458
4459 bounds = ensure_lval (bounds);
4460
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
4474
4475 descriptor = ensure_lval (descriptor);
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481 }
4482 \f
4483 /* Symbol Cache Module */
4484
4485 /* Performance measurements made as of 2010-01-15 indicate that
4486 this cache does bring some noticeable improvements. Depending
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
4495 /* Initialize the contents of SYM_CACHE. */
4496
4497 static void
4498 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499 {
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502 }
4503
4504 /* Free the memory used by SYM_CACHE. */
4505
4506 static void
4507 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511 }
4512
4513 /* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
4515
4516 static struct ada_symbol_cache *
4517 ada_get_symbol_cache (struct program_space *pspace)
4518 {
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4520
4521 if (pspace_data->sym_cache == NULL)
4522 {
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
4525 }
4526
4527 return pspace_data->sym_cache;
4528 }
4529
4530 /* Clear all entries from the symbol cache. */
4531
4532 static void
4533 ada_clear_symbol_cache (void)
4534 {
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
4540 }
4541
4542 /* Search our cache for an entry matching NAME and DOMAIN.
4543 Return it if found, or NULL otherwise. */
4544
4545 static struct cache_entry **
4546 find_entry (const char *name, domain_enum domain)
4547 {
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4554 {
4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4556 return e;
4557 }
4558 return NULL;
4559 }
4560
4561 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
4566
4567 static int
4568 lookup_cached_symbol (const char *name, domain_enum domain,
4569 struct symbol **sym, const struct block **block)
4570 {
4571 struct cache_entry **e = find_entry (name, domain);
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
4580 }
4581
4582 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4583 in domain DOMAIN, save this result in our symbol cache. */
4584
4585 static void
4586 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4587 const struct block *block)
4588 {
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4606 GLOBAL_BLOCK) != block
4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4608 STATIC_BLOCK) != block)
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4617 strcpy (copy, name);
4618 e->sym = sym;
4619 e->domain = domain;
4620 e->block = block;
4621 }
4622 \f
4623 /* Symbol Lookup */
4624
4625 /* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
4629 for Ada lookups. */
4630
4631 static symbol_name_match_type
4632 name_match_type_from_name (const char *lookup_name)
4633 {
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
4637 }
4638
4639 /* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642 static struct symbol *
4643 standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645 {
4646 /* Initialize it just to avoid a GCC false warning. */
4647 struct block_symbol sym = {};
4648
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4654 }
4655
4656
4657 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660 static int
4661 is_nonfunction (struct block_symbol syms[], int n)
4662 {
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4669 return 1;
4670
4671 return 0;
4672 }
4673
4674 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4675 struct types. Otherwise, they may not. */
4676
4677 static int
4678 equiv_types (struct type *type0, struct type *type1)
4679 {
4680 if (type0 == type1)
4681 return 1;
4682 if (type0 == NULL || type1 == NULL
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4689 return 1;
4690
4691 return 0;
4692 }
4693
4694 /* True iff SYM0 represents the same entity as SYM1, or one that is
4695 no more defined than that of SYM1. */
4696
4697 static int
4698 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4699 {
4700 if (sym0 == sym1)
4701 return 1;
4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
4706 switch (SYMBOL_CLASS (sym0))
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4716 int len0 = strlen (name0);
4717
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4722 && startswith (name1 + len0, "___XV")));
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4727
4728 case LOC_STATIC:
4729 {
4730 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4731 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4732 return (strcmp (name0, name1) == 0
4733 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4734 }
4735
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* For all subprograms that statically enclose the subprogram of the
4840 selected frame, add symbols matching identifier NAME in DOMAIN
4841 and their blocks to the list of data in OBSTACKP, as for
4842 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4843 with a wildcard prefix. */
4844
4845 static void
4846 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4847 const lookup_name_info &lookup_name,
4848 domain_enum domain)
4849 {
4850 }
4851
4852 /* True if TYPE is definitely an artificial type supplied to a symbol
4853 for which no debugging information was given in the symbol file. */
4854
4855 static int
4856 is_nondebugging_type (struct type *type)
4857 {
4858 const char *name = ada_type_name (type);
4859
4860 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4861 }
4862
4863 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4864 that are deemed "identical" for practical purposes.
4865
4866 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4867 types and that their number of enumerals is identical (in other
4868 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4869
4870 static int
4871 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4872 {
4873 int i;
4874
4875 /* The heuristic we use here is fairly conservative. We consider
4876 that 2 enumerate types are identical if they have the same
4877 number of enumerals and that all enumerals have the same
4878 underlying value and name. */
4879
4880 /* All enums in the type should have an identical underlying value. */
4881 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4882 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4883 return 0;
4884
4885 /* All enumerals should also have the same name (modulo any numerical
4886 suffix). */
4887 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4888 {
4889 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4890 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4891 int len_1 = strlen (name_1);
4892 int len_2 = strlen (name_2);
4893
4894 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4895 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4896 if (len_1 != len_2
4897 || strncmp (TYPE_FIELD_NAME (type1, i),
4898 TYPE_FIELD_NAME (type2, i),
4899 len_1) != 0)
4900 return 0;
4901 }
4902
4903 return 1;
4904 }
4905
4906 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4907 that are deemed "identical" for practical purposes. Sometimes,
4908 enumerals are not strictly identical, but their types are so similar
4909 that they can be considered identical.
4910
4911 For instance, consider the following code:
4912
4913 type Color is (Black, Red, Green, Blue, White);
4914 type RGB_Color is new Color range Red .. Blue;
4915
4916 Type RGB_Color is a subrange of an implicit type which is a copy
4917 of type Color. If we call that implicit type RGB_ColorB ("B" is
4918 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4919 As a result, when an expression references any of the enumeral
4920 by name (Eg. "print green"), the expression is technically
4921 ambiguous and the user should be asked to disambiguate. But
4922 doing so would only hinder the user, since it wouldn't matter
4923 what choice he makes, the outcome would always be the same.
4924 So, for practical purposes, we consider them as the same. */
4925
4926 static int
4927 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4928 {
4929 int i;
4930
4931 /* Before performing a thorough comparison check of each type,
4932 we perform a series of inexpensive checks. We expect that these
4933 checks will quickly fail in the vast majority of cases, and thus
4934 help prevent the unnecessary use of a more expensive comparison.
4935 Said comparison also expects us to make some of these checks
4936 (see ada_identical_enum_types_p). */
4937
4938 /* Quick check: All symbols should have an enum type. */
4939 for (i = 0; i < syms.size (); i++)
4940 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4941 return 0;
4942
4943 /* Quick check: They should all have the same value. */
4944 for (i = 1; i < syms.size (); i++)
4945 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4946 return 0;
4947
4948 /* Quick check: They should all have the same number of enumerals. */
4949 for (i = 1; i < syms.size (); i++)
4950 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4951 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4952 return 0;
4953
4954 /* All the sanity checks passed, so we might have a set of
4955 identical enumeration types. Perform a more complete
4956 comparison of the type of each symbol. */
4957 for (i = 1; i < syms.size (); i++)
4958 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4959 SYMBOL_TYPE (syms[0].symbol)))
4960 return 0;
4961
4962 return 1;
4963 }
4964
4965 /* Remove any non-debugging symbols in SYMS that definitely
4966 duplicate other symbols in the list (The only case I know of where
4967 this happens is when object files containing stabs-in-ecoff are
4968 linked with files containing ordinary ecoff debugging symbols (or no
4969 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4970 Returns the number of items in the modified list. */
4971
4972 static int
4973 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4974 {
4975 int i, j;
4976
4977 /* We should never be called with less than 2 symbols, as there
4978 cannot be any extra symbol in that case. But it's easy to
4979 handle, since we have nothing to do in that case. */
4980 if (syms->size () < 2)
4981 return syms->size ();
4982
4983 i = 0;
4984 while (i < syms->size ())
4985 {
4986 int remove_p = 0;
4987
4988 /* If two symbols have the same name and one of them is a stub type,
4989 the get rid of the stub. */
4990
4991 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
4992 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
4993 {
4994 for (j = 0; j < syms->size (); j++)
4995 {
4996 if (j != i
4997 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
4998 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
4999 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5000 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5001 remove_p = 1;
5002 }
5003 }
5004
5005 /* Two symbols with the same name, same class and same address
5006 should be identical. */
5007
5008 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5009 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5010 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5011 {
5012 for (j = 0; j < syms->size (); j += 1)
5013 {
5014 if (i != j
5015 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5016 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5017 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5018 && SYMBOL_CLASS ((*syms)[i].symbol)
5019 == SYMBOL_CLASS ((*syms)[j].symbol)
5020 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5021 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5022 remove_p = 1;
5023 }
5024 }
5025
5026 if (remove_p)
5027 syms->erase (syms->begin () + i);
5028
5029 i += 1;
5030 }
5031
5032 /* If all the remaining symbols are identical enumerals, then
5033 just keep the first one and discard the rest.
5034
5035 Unlike what we did previously, we do not discard any entry
5036 unless they are ALL identical. This is because the symbol
5037 comparison is not a strict comparison, but rather a practical
5038 comparison. If all symbols are considered identical, then
5039 we can just go ahead and use the first one and discard the rest.
5040 But if we cannot reduce the list to a single element, we have
5041 to ask the user to disambiguate anyways. And if we have to
5042 present a multiple-choice menu, it's less confusing if the list
5043 isn't missing some choices that were identical and yet distinct. */
5044 if (symbols_are_identical_enums (*syms))
5045 syms->resize (1);
5046
5047 return syms->size ();
5048 }
5049
5050 /* Given a type that corresponds to a renaming entity, use the type name
5051 to extract the scope (package name or function name, fully qualified,
5052 and following the GNAT encoding convention) where this renaming has been
5053 defined. */
5054
5055 static std::string
5056 xget_renaming_scope (struct type *renaming_type)
5057 {
5058 /* The renaming types adhere to the following convention:
5059 <scope>__<rename>___<XR extension>.
5060 So, to extract the scope, we search for the "___XR" extension,
5061 and then backtrack until we find the first "__". */
5062
5063 const char *name = TYPE_NAME (renaming_type);
5064 const char *suffix = strstr (name, "___XR");
5065 const char *last;
5066
5067 /* Now, backtrack a bit until we find the first "__". Start looking
5068 at suffix - 3, as the <rename> part is at least one character long. */
5069
5070 for (last = suffix - 3; last > name; last--)
5071 if (last[0] == '_' && last[1] == '_')
5072 break;
5073
5074 /* Make a copy of scope and return it. */
5075 return std::string (name, last);
5076 }
5077
5078 /* Return nonzero if NAME corresponds to a package name. */
5079
5080 static int
5081 is_package_name (const char *name)
5082 {
5083 /* Here, We take advantage of the fact that no symbols are generated
5084 for packages, while symbols are generated for each function.
5085 So the condition for NAME represent a package becomes equivalent
5086 to NAME not existing in our list of symbols. There is only one
5087 small complication with library-level functions (see below). */
5088
5089 /* If it is a function that has not been defined at library level,
5090 then we should be able to look it up in the symbols. */
5091 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5092 return 0;
5093
5094 /* Library-level function names start with "_ada_". See if function
5095 "_ada_" followed by NAME can be found. */
5096
5097 /* Do a quick check that NAME does not contain "__", since library-level
5098 functions names cannot contain "__" in them. */
5099 if (strstr (name, "__") != NULL)
5100 return 0;
5101
5102 std::string fun_name = string_printf ("_ada_%s", name);
5103
5104 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5105 }
5106
5107 /* Return nonzero if SYM corresponds to a renaming entity that is
5108 not visible from FUNCTION_NAME. */
5109
5110 static int
5111 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5112 {
5113 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5114 return 0;
5115
5116 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5117
5118 /* If the rename has been defined in a package, then it is visible. */
5119 if (is_package_name (scope.c_str ()))
5120 return 0;
5121
5122 /* Check that the rename is in the current function scope by checking
5123 that its name starts with SCOPE. */
5124
5125 /* If the function name starts with "_ada_", it means that it is
5126 a library-level function. Strip this prefix before doing the
5127 comparison, as the encoding for the renaming does not contain
5128 this prefix. */
5129 if (startswith (function_name, "_ada_"))
5130 function_name += 5;
5131
5132 return !startswith (function_name, scope.c_str ());
5133 }
5134
5135 /* Remove entries from SYMS that corresponds to a renaming entity that
5136 is not visible from the function associated with CURRENT_BLOCK or
5137 that is superfluous due to the presence of more specific renaming
5138 information. Places surviving symbols in the initial entries of
5139 SYMS and returns the number of surviving symbols.
5140
5141 Rationale:
5142 First, in cases where an object renaming is implemented as a
5143 reference variable, GNAT may produce both the actual reference
5144 variable and the renaming encoding. In this case, we discard the
5145 latter.
5146
5147 Second, GNAT emits a type following a specified encoding for each renaming
5148 entity. Unfortunately, STABS currently does not support the definition
5149 of types that are local to a given lexical block, so all renamings types
5150 are emitted at library level. As a consequence, if an application
5151 contains two renaming entities using the same name, and a user tries to
5152 print the value of one of these entities, the result of the ada symbol
5153 lookup will also contain the wrong renaming type.
5154
5155 This function partially covers for this limitation by attempting to
5156 remove from the SYMS list renaming symbols that should be visible
5157 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5158 method with the current information available. The implementation
5159 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5160
5161 - When the user tries to print a rename in a function while there
5162 is another rename entity defined in a package: Normally, the
5163 rename in the function has precedence over the rename in the
5164 package, so the latter should be removed from the list. This is
5165 currently not the case.
5166
5167 - This function will incorrectly remove valid renames if
5168 the CURRENT_BLOCK corresponds to a function which symbol name
5169 has been changed by an "Export" pragma. As a consequence,
5170 the user will be unable to print such rename entities. */
5171
5172 static int
5173 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5174 const struct block *current_block)
5175 {
5176 struct symbol *current_function;
5177 const char *current_function_name;
5178 int i;
5179 int is_new_style_renaming;
5180
5181 /* If there is both a renaming foo___XR... encoded as a variable and
5182 a simple variable foo in the same block, discard the latter.
5183 First, zero out such symbols, then compress. */
5184 is_new_style_renaming = 0;
5185 for (i = 0; i < syms->size (); i += 1)
5186 {
5187 struct symbol *sym = (*syms)[i].symbol;
5188 const struct block *block = (*syms)[i].block;
5189 const char *name;
5190 const char *suffix;
5191
5192 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5193 continue;
5194 name = SYMBOL_LINKAGE_NAME (sym);
5195 suffix = strstr (name, "___XR");
5196
5197 if (suffix != NULL)
5198 {
5199 int name_len = suffix - name;
5200 int j;
5201
5202 is_new_style_renaming = 1;
5203 for (j = 0; j < syms->size (); j += 1)
5204 if (i != j && (*syms)[j].symbol != NULL
5205 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5206 name_len) == 0
5207 && block == (*syms)[j].block)
5208 (*syms)[j].symbol = NULL;
5209 }
5210 }
5211 if (is_new_style_renaming)
5212 {
5213 int j, k;
5214
5215 for (j = k = 0; j < syms->size (); j += 1)
5216 if ((*syms)[j].symbol != NULL)
5217 {
5218 (*syms)[k] = (*syms)[j];
5219 k += 1;
5220 }
5221 return k;
5222 }
5223
5224 /* Extract the function name associated to CURRENT_BLOCK.
5225 Abort if unable to do so. */
5226
5227 if (current_block == NULL)
5228 return syms->size ();
5229
5230 current_function = block_linkage_function (current_block);
5231 if (current_function == NULL)
5232 return syms->size ();
5233
5234 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5235 if (current_function_name == NULL)
5236 return syms->size ();
5237
5238 /* Check each of the symbols, and remove it from the list if it is
5239 a type corresponding to a renaming that is out of the scope of
5240 the current block. */
5241
5242 i = 0;
5243 while (i < syms->size ())
5244 {
5245 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5246 == ADA_OBJECT_RENAMING
5247 && old_renaming_is_invisible ((*syms)[i].symbol,
5248 current_function_name))
5249 syms->erase (syms->begin () + i);
5250 else
5251 i += 1;
5252 }
5253
5254 return syms->size ();
5255 }
5256
5257 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5258 whose name and domain match NAME and DOMAIN respectively.
5259 If no match was found, then extend the search to "enclosing"
5260 routines (in other words, if we're inside a nested function,
5261 search the symbols defined inside the enclosing functions).
5262 If WILD_MATCH_P is nonzero, perform the naming matching in
5263 "wild" mode (see function "wild_match" for more info).
5264
5265 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5266
5267 static void
5268 ada_add_local_symbols (struct obstack *obstackp,
5269 const lookup_name_info &lookup_name,
5270 const struct block *block, domain_enum domain)
5271 {
5272 int block_depth = 0;
5273
5274 while (block != NULL)
5275 {
5276 block_depth += 1;
5277 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5278
5279 /* If we found a non-function match, assume that's the one. */
5280 if (is_nonfunction (defns_collected (obstackp, 0),
5281 num_defns_collected (obstackp)))
5282 return;
5283
5284 block = BLOCK_SUPERBLOCK (block);
5285 }
5286
5287 /* If no luck so far, try to find NAME as a local symbol in some lexically
5288 enclosing subprogram. */
5289 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5290 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5291 }
5292
5293 /* An object of this type is used as the user_data argument when
5294 calling the map_matching_symbols method. */
5295
5296 struct match_data
5297 {
5298 struct objfile *objfile;
5299 struct obstack *obstackp;
5300 struct symbol *arg_sym;
5301 int found_sym;
5302 };
5303
5304 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5305 to a list of symbols. DATA is a pointer to a struct match_data *
5306 containing the obstack that collects the symbol list, the file that SYM
5307 must come from, a flag indicating whether a non-argument symbol has
5308 been found in the current block, and the last argument symbol
5309 passed in SYM within the current block (if any). When SYM is null,
5310 marking the end of a block, the argument symbol is added if no
5311 other has been found. */
5312
5313 static bool
5314 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5315 struct match_data *data)
5316 {
5317 const struct block *block = bsym->block;
5318 struct symbol *sym = bsym->symbol;
5319
5320 if (sym == NULL)
5321 {
5322 if (!data->found_sym && data->arg_sym != NULL)
5323 add_defn_to_vec (data->obstackp,
5324 fixup_symbol_section (data->arg_sym, data->objfile),
5325 block);
5326 data->found_sym = 0;
5327 data->arg_sym = NULL;
5328 }
5329 else
5330 {
5331 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5332 return true;
5333 else if (SYMBOL_IS_ARGUMENT (sym))
5334 data->arg_sym = sym;
5335 else
5336 {
5337 data->found_sym = 1;
5338 add_defn_to_vec (data->obstackp,
5339 fixup_symbol_section (sym, data->objfile),
5340 block);
5341 }
5342 }
5343 return true;
5344 }
5345
5346 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5347 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5348 symbols to OBSTACKP. Return whether we found such symbols. */
5349
5350 static int
5351 ada_add_block_renamings (struct obstack *obstackp,
5352 const struct block *block,
5353 const lookup_name_info &lookup_name,
5354 domain_enum domain)
5355 {
5356 struct using_direct *renaming;
5357 int defns_mark = num_defns_collected (obstackp);
5358
5359 symbol_name_matcher_ftype *name_match
5360 = ada_get_symbol_name_matcher (lookup_name);
5361
5362 for (renaming = block_using (block);
5363 renaming != NULL;
5364 renaming = renaming->next)
5365 {
5366 const char *r_name;
5367
5368 /* Avoid infinite recursions: skip this renaming if we are actually
5369 already traversing it.
5370
5371 Currently, symbol lookup in Ada don't use the namespace machinery from
5372 C++/Fortran support: skip namespace imports that use them. */
5373 if (renaming->searched
5374 || (renaming->import_src != NULL
5375 && renaming->import_src[0] != '\0')
5376 || (renaming->import_dest != NULL
5377 && renaming->import_dest[0] != '\0'))
5378 continue;
5379 renaming->searched = 1;
5380
5381 /* TODO: here, we perform another name-based symbol lookup, which can
5382 pull its own multiple overloads. In theory, we should be able to do
5383 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5384 not a simple name. But in order to do this, we would need to enhance
5385 the DWARF reader to associate a symbol to this renaming, instead of a
5386 name. So, for now, we do something simpler: re-use the C++/Fortran
5387 namespace machinery. */
5388 r_name = (renaming->alias != NULL
5389 ? renaming->alias
5390 : renaming->declaration);
5391 if (name_match (r_name, lookup_name, NULL))
5392 {
5393 lookup_name_info decl_lookup_name (renaming->declaration,
5394 lookup_name.match_type ());
5395 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5396 1, NULL);
5397 }
5398 renaming->searched = 0;
5399 }
5400 return num_defns_collected (obstackp) != defns_mark;
5401 }
5402
5403 /* Implements compare_names, but only applying the comparision using
5404 the given CASING. */
5405
5406 static int
5407 compare_names_with_case (const char *string1, const char *string2,
5408 enum case_sensitivity casing)
5409 {
5410 while (*string1 != '\0' && *string2 != '\0')
5411 {
5412 char c1, c2;
5413
5414 if (isspace (*string1) || isspace (*string2))
5415 return strcmp_iw_ordered (string1, string2);
5416
5417 if (casing == case_sensitive_off)
5418 {
5419 c1 = tolower (*string1);
5420 c2 = tolower (*string2);
5421 }
5422 else
5423 {
5424 c1 = *string1;
5425 c2 = *string2;
5426 }
5427 if (c1 != c2)
5428 break;
5429
5430 string1 += 1;
5431 string2 += 1;
5432 }
5433
5434 switch (*string1)
5435 {
5436 case '(':
5437 return strcmp_iw_ordered (string1, string2);
5438 case '_':
5439 if (*string2 == '\0')
5440 {
5441 if (is_name_suffix (string1))
5442 return 0;
5443 else
5444 return 1;
5445 }
5446 /* FALLTHROUGH */
5447 default:
5448 if (*string2 == '(')
5449 return strcmp_iw_ordered (string1, string2);
5450 else
5451 {
5452 if (casing == case_sensitive_off)
5453 return tolower (*string1) - tolower (*string2);
5454 else
5455 return *string1 - *string2;
5456 }
5457 }
5458 }
5459
5460 /* Compare STRING1 to STRING2, with results as for strcmp.
5461 Compatible with strcmp_iw_ordered in that...
5462
5463 strcmp_iw_ordered (STRING1, STRING2) <= 0
5464
5465 ... implies...
5466
5467 compare_names (STRING1, STRING2) <= 0
5468
5469 (they may differ as to what symbols compare equal). */
5470
5471 static int
5472 compare_names (const char *string1, const char *string2)
5473 {
5474 int result;
5475
5476 /* Similar to what strcmp_iw_ordered does, we need to perform
5477 a case-insensitive comparison first, and only resort to
5478 a second, case-sensitive, comparison if the first one was
5479 not sufficient to differentiate the two strings. */
5480
5481 result = compare_names_with_case (string1, string2, case_sensitive_off);
5482 if (result == 0)
5483 result = compare_names_with_case (string1, string2, case_sensitive_on);
5484
5485 return result;
5486 }
5487
5488 /* Convenience function to get at the Ada encoded lookup name for
5489 LOOKUP_NAME, as a C string. */
5490
5491 static const char *
5492 ada_lookup_name (const lookup_name_info &lookup_name)
5493 {
5494 return lookup_name.ada ().lookup_name ().c_str ();
5495 }
5496
5497 /* Add to OBSTACKP all non-local symbols whose name and domain match
5498 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5499 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5500 symbols otherwise. */
5501
5502 static void
5503 add_nonlocal_symbols (struct obstack *obstackp,
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain, int global)
5506 {
5507 struct match_data data;
5508
5509 memset (&data, 0, sizeof data);
5510 data.obstackp = obstackp;
5511
5512 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5513
5514 auto callback = [&] (struct block_symbol *bsym)
5515 {
5516 return aux_add_nonlocal_symbols (bsym, &data);
5517 };
5518
5519 for (objfile *objfile : current_program_space->objfiles ())
5520 {
5521 data.objfile = objfile;
5522
5523 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5524 domain, global, callback,
5525 (is_wild_match
5526 ? NULL : compare_names));
5527
5528 for (compunit_symtab *cu : objfile->compunits ())
5529 {
5530 const struct block *global_block
5531 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5532
5533 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5534 domain))
5535 data.found_sym = 1;
5536 }
5537 }
5538
5539 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5540 {
5541 const char *name = ada_lookup_name (lookup_name);
5542 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5543 symbol_name_match_type::FULL);
5544
5545 for (objfile *objfile : current_program_space->objfiles ())
5546 {
5547 data.objfile = objfile;
5548 objfile->sf->qf->map_matching_symbols (objfile, name1,
5549 domain, global, callback,
5550 compare_names);
5551 }
5552 }
5553 }
5554
5555 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5556 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5557 returning the number of matches. Add these to OBSTACKP.
5558
5559 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5560 symbol match within the nest of blocks whose innermost member is BLOCK,
5561 is the one match returned (no other matches in that or
5562 enclosing blocks is returned). If there are any matches in or
5563 surrounding BLOCK, then these alone are returned.
5564
5565 Names prefixed with "standard__" are handled specially:
5566 "standard__" is first stripped off (by the lookup_name
5567 constructor), and only static and global symbols are searched.
5568
5569 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5570 to lookup global symbols. */
5571
5572 static void
5573 ada_add_all_symbols (struct obstack *obstackp,
5574 const struct block *block,
5575 const lookup_name_info &lookup_name,
5576 domain_enum domain,
5577 int full_search,
5578 int *made_global_lookup_p)
5579 {
5580 struct symbol *sym;
5581
5582 if (made_global_lookup_p)
5583 *made_global_lookup_p = 0;
5584
5585 /* Special case: If the user specifies a symbol name inside package
5586 Standard, do a non-wild matching of the symbol name without
5587 the "standard__" prefix. This was primarily introduced in order
5588 to allow the user to specifically access the standard exceptions
5589 using, for instance, Standard.Constraint_Error when Constraint_Error
5590 is ambiguous (due to the user defining its own Constraint_Error
5591 entity inside its program). */
5592 if (lookup_name.ada ().standard_p ())
5593 block = NULL;
5594
5595 /* Check the non-global symbols. If we have ANY match, then we're done. */
5596
5597 if (block != NULL)
5598 {
5599 if (full_search)
5600 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5601 else
5602 {
5603 /* In the !full_search case we're are being called by
5604 ada_iterate_over_symbols, and we don't want to search
5605 superblocks. */
5606 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5607 }
5608 if (num_defns_collected (obstackp) > 0 || !full_search)
5609 return;
5610 }
5611
5612 /* No non-global symbols found. Check our cache to see if we have
5613 already performed this search before. If we have, then return
5614 the same result. */
5615
5616 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5617 domain, &sym, &block))
5618 {
5619 if (sym != NULL)
5620 add_defn_to_vec (obstackp, sym, block);
5621 return;
5622 }
5623
5624 if (made_global_lookup_p)
5625 *made_global_lookup_p = 1;
5626
5627 /* Search symbols from all global blocks. */
5628
5629 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5630
5631 /* Now add symbols from all per-file blocks if we've gotten no hits
5632 (not strictly correct, but perhaps better than an error). */
5633
5634 if (num_defns_collected (obstackp) == 0)
5635 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5636 }
5637
5638 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5639 is non-zero, enclosing scope and in global scopes, returning the number of
5640 matches.
5641 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5642 found and the blocks and symbol tables (if any) in which they were
5643 found.
5644
5645 When full_search is non-zero, any non-function/non-enumeral
5646 symbol match within the nest of blocks whose innermost member is BLOCK,
5647 is the one match returned (no other matches in that or
5648 enclosing blocks is returned). If there are any matches in or
5649 surrounding BLOCK, then these alone are returned.
5650
5651 Names prefixed with "standard__" are handled specially: "standard__"
5652 is first stripped off, and only static and global symbols are searched. */
5653
5654 static int
5655 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5656 const struct block *block,
5657 domain_enum domain,
5658 std::vector<struct block_symbol> *results,
5659 int full_search)
5660 {
5661 int syms_from_global_search;
5662 int ndefns;
5663 auto_obstack obstack;
5664
5665 ada_add_all_symbols (&obstack, block, lookup_name,
5666 domain, full_search, &syms_from_global_search);
5667
5668 ndefns = num_defns_collected (&obstack);
5669
5670 struct block_symbol *base = defns_collected (&obstack, 1);
5671 for (int i = 0; i < ndefns; ++i)
5672 results->push_back (base[i]);
5673
5674 ndefns = remove_extra_symbols (results);
5675
5676 if (ndefns == 0 && full_search && syms_from_global_search)
5677 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5678
5679 if (ndefns == 1 && full_search && syms_from_global_search)
5680 cache_symbol (ada_lookup_name (lookup_name), domain,
5681 (*results)[0].symbol, (*results)[0].block);
5682
5683 ndefns = remove_irrelevant_renamings (results, block);
5684
5685 return ndefns;
5686 }
5687
5688 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5689 in global scopes, returning the number of matches, and filling *RESULTS
5690 with (SYM,BLOCK) tuples.
5691
5692 See ada_lookup_symbol_list_worker for further details. */
5693
5694 int
5695 ada_lookup_symbol_list (const char *name, const struct block *block,
5696 domain_enum domain,
5697 std::vector<struct block_symbol> *results)
5698 {
5699 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5700 lookup_name_info lookup_name (name, name_match_type);
5701
5702 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5703 }
5704
5705 /* Implementation of the la_iterate_over_symbols method. */
5706
5707 static bool
5708 ada_iterate_over_symbols
5709 (const struct block *block, const lookup_name_info &name,
5710 domain_enum domain,
5711 gdb::function_view<symbol_found_callback_ftype> callback)
5712 {
5713 int ndefs, i;
5714 std::vector<struct block_symbol> results;
5715
5716 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5717
5718 for (i = 0; i < ndefs; ++i)
5719 {
5720 if (!callback (&results[i]))
5721 return false;
5722 }
5723
5724 return true;
5725 }
5726
5727 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5728 to 1, but choosing the first symbol found if there are multiple
5729 choices.
5730
5731 The result is stored in *INFO, which must be non-NULL.
5732 If no match is found, INFO->SYM is set to NULL. */
5733
5734 void
5735 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5736 domain_enum domain,
5737 struct block_symbol *info)
5738 {
5739 /* Since we already have an encoded name, wrap it in '<>' to force a
5740 verbatim match. Otherwise, if the name happens to not look like
5741 an encoded name (because it doesn't include a "__"),
5742 ada_lookup_name_info would re-encode/fold it again, and that
5743 would e.g., incorrectly lowercase object renaming names like
5744 "R28b" -> "r28b". */
5745 std::string verbatim = std::string ("<") + name + '>';
5746
5747 gdb_assert (info != NULL);
5748 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5749 }
5750
5751 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5752 scope and in global scopes, or NULL if none. NAME is folded and
5753 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5754 choosing the first symbol if there are multiple choices. */
5755
5756 struct block_symbol
5757 ada_lookup_symbol (const char *name, const struct block *block0,
5758 domain_enum domain)
5759 {
5760 std::vector<struct block_symbol> candidates;
5761 int n_candidates;
5762
5763 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5764
5765 if (n_candidates == 0)
5766 return {};
5767
5768 block_symbol info = candidates[0];
5769 info.symbol = fixup_symbol_section (info.symbol, NULL);
5770 return info;
5771 }
5772
5773 static struct block_symbol
5774 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5775 const char *name,
5776 const struct block *block,
5777 const domain_enum domain)
5778 {
5779 struct block_symbol sym;
5780
5781 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5782 if (sym.symbol != NULL)
5783 return sym;
5784
5785 /* If we haven't found a match at this point, try the primitive
5786 types. In other languages, this search is performed before
5787 searching for global symbols in order to short-circuit that
5788 global-symbol search if it happens that the name corresponds
5789 to a primitive type. But we cannot do the same in Ada, because
5790 it is perfectly legitimate for a program to declare a type which
5791 has the same name as a standard type. If looking up a type in
5792 that situation, we have traditionally ignored the primitive type
5793 in favor of user-defined types. This is why, unlike most other
5794 languages, we search the primitive types this late and only after
5795 having searched the global symbols without success. */
5796
5797 if (domain == VAR_DOMAIN)
5798 {
5799 struct gdbarch *gdbarch;
5800
5801 if (block == NULL)
5802 gdbarch = target_gdbarch ();
5803 else
5804 gdbarch = block_gdbarch (block);
5805 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5806 if (sym.symbol != NULL)
5807 return sym;
5808 }
5809
5810 return {};
5811 }
5812
5813
5814 /* True iff STR is a possible encoded suffix of a normal Ada name
5815 that is to be ignored for matching purposes. Suffixes of parallel
5816 names (e.g., XVE) are not included here. Currently, the possible suffixes
5817 are given by any of the regular expressions:
5818
5819 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5820 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5821 TKB [subprogram suffix for task bodies]
5822 _E[0-9]+[bs]$ [protected object entry suffixes]
5823 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5824
5825 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5826 match is performed. This sequence is used to differentiate homonyms,
5827 is an optional part of a valid name suffix. */
5828
5829 static int
5830 is_name_suffix (const char *str)
5831 {
5832 int k;
5833 const char *matching;
5834 const int len = strlen (str);
5835
5836 /* Skip optional leading __[0-9]+. */
5837
5838 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5839 {
5840 str += 3;
5841 while (isdigit (str[0]))
5842 str += 1;
5843 }
5844
5845 /* [.$][0-9]+ */
5846
5847 if (str[0] == '.' || str[0] == '$')
5848 {
5849 matching = str + 1;
5850 while (isdigit (matching[0]))
5851 matching += 1;
5852 if (matching[0] == '\0')
5853 return 1;
5854 }
5855
5856 /* ___[0-9]+ */
5857
5858 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5859 {
5860 matching = str + 3;
5861 while (isdigit (matching[0]))
5862 matching += 1;
5863 if (matching[0] == '\0')
5864 return 1;
5865 }
5866
5867 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5868
5869 if (strcmp (str, "TKB") == 0)
5870 return 1;
5871
5872 #if 0
5873 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5874 with a N at the end. Unfortunately, the compiler uses the same
5875 convention for other internal types it creates. So treating
5876 all entity names that end with an "N" as a name suffix causes
5877 some regressions. For instance, consider the case of an enumerated
5878 type. To support the 'Image attribute, it creates an array whose
5879 name ends with N.
5880 Having a single character like this as a suffix carrying some
5881 information is a bit risky. Perhaps we should change the encoding
5882 to be something like "_N" instead. In the meantime, do not do
5883 the following check. */
5884 /* Protected Object Subprograms */
5885 if (len == 1 && str [0] == 'N')
5886 return 1;
5887 #endif
5888
5889 /* _E[0-9]+[bs]$ */
5890 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5891 {
5892 matching = str + 3;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if ((matching[0] == 'b' || matching[0] == 's')
5896 && matching [1] == '\0')
5897 return 1;
5898 }
5899
5900 /* ??? We should not modify STR directly, as we are doing below. This
5901 is fine in this case, but may become problematic later if we find
5902 that this alternative did not work, and want to try matching
5903 another one from the begining of STR. Since we modified it, we
5904 won't be able to find the begining of the string anymore! */
5905 if (str[0] == 'X')
5906 {
5907 str += 1;
5908 while (str[0] != '_' && str[0] != '\0')
5909 {
5910 if (str[0] != 'n' && str[0] != 'b')
5911 return 0;
5912 str += 1;
5913 }
5914 }
5915
5916 if (str[0] == '\000')
5917 return 1;
5918
5919 if (str[0] == '_')
5920 {
5921 if (str[1] != '_' || str[2] == '\000')
5922 return 0;
5923 if (str[2] == '_')
5924 {
5925 if (strcmp (str + 3, "JM") == 0)
5926 return 1;
5927 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5928 the LJM suffix in favor of the JM one. But we will
5929 still accept LJM as a valid suffix for a reasonable
5930 amount of time, just to allow ourselves to debug programs
5931 compiled using an older version of GNAT. */
5932 if (strcmp (str + 3, "LJM") == 0)
5933 return 1;
5934 if (str[3] != 'X')
5935 return 0;
5936 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5937 || str[4] == 'U' || str[4] == 'P')
5938 return 1;
5939 if (str[4] == 'R' && str[5] != 'T')
5940 return 1;
5941 return 0;
5942 }
5943 if (!isdigit (str[2]))
5944 return 0;
5945 for (k = 3; str[k] != '\0'; k += 1)
5946 if (!isdigit (str[k]) && str[k] != '_')
5947 return 0;
5948 return 1;
5949 }
5950 if (str[0] == '$' && isdigit (str[1]))
5951 {
5952 for (k = 2; str[k] != '\0'; k += 1)
5953 if (!isdigit (str[k]) && str[k] != '_')
5954 return 0;
5955 return 1;
5956 }
5957 return 0;
5958 }
5959
5960 /* Return non-zero if the string starting at NAME and ending before
5961 NAME_END contains no capital letters. */
5962
5963 static int
5964 is_valid_name_for_wild_match (const char *name0)
5965 {
5966 std::string decoded_name = ada_decode (name0);
5967 int i;
5968
5969 /* If the decoded name starts with an angle bracket, it means that
5970 NAME0 does not follow the GNAT encoding format. It should then
5971 not be allowed as a possible wild match. */
5972 if (decoded_name[0] == '<')
5973 return 0;
5974
5975 for (i=0; decoded_name[i] != '\0'; i++)
5976 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5977 return 0;
5978
5979 return 1;
5980 }
5981
5982 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5983 that could start a simple name. Assumes that *NAMEP points into
5984 the string beginning at NAME0. */
5985
5986 static int
5987 advance_wild_match (const char **namep, const char *name0, int target0)
5988 {
5989 const char *name = *namep;
5990
5991 while (1)
5992 {
5993 int t0, t1;
5994
5995 t0 = *name;
5996 if (t0 == '_')
5997 {
5998 t1 = name[1];
5999 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6000 {
6001 name += 1;
6002 if (name == name0 + 5 && startswith (name0, "_ada"))
6003 break;
6004 else
6005 name += 1;
6006 }
6007 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6008 || name[2] == target0))
6009 {
6010 name += 2;
6011 break;
6012 }
6013 else
6014 return 0;
6015 }
6016 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6017 name += 1;
6018 else
6019 return 0;
6020 }
6021
6022 *namep = name;
6023 return 1;
6024 }
6025
6026 /* Return true iff NAME encodes a name of the form prefix.PATN.
6027 Ignores any informational suffixes of NAME (i.e., for which
6028 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6029 simple name. */
6030
6031 static bool
6032 wild_match (const char *name, const char *patn)
6033 {
6034 const char *p;
6035 const char *name0 = name;
6036
6037 while (1)
6038 {
6039 const char *match = name;
6040
6041 if (*name == *patn)
6042 {
6043 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6044 if (*p != *name)
6045 break;
6046 if (*p == '\0' && is_name_suffix (name))
6047 return match == name0 || is_valid_name_for_wild_match (name0);
6048
6049 if (name[-1] == '_')
6050 name -= 1;
6051 }
6052 if (!advance_wild_match (&name, name0, *patn))
6053 return false;
6054 }
6055 }
6056
6057 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6058 any trailing suffixes that encode debugging information or leading
6059 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6060 information that is ignored). */
6061
6062 static bool
6063 full_match (const char *sym_name, const char *search_name)
6064 {
6065 size_t search_name_len = strlen (search_name);
6066
6067 if (strncmp (sym_name, search_name, search_name_len) == 0
6068 && is_name_suffix (sym_name + search_name_len))
6069 return true;
6070
6071 if (startswith (sym_name, "_ada_")
6072 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6073 && is_name_suffix (sym_name + search_name_len + 5))
6074 return true;
6075
6076 return false;
6077 }
6078
6079 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6080 *defn_symbols, updating the list of symbols in OBSTACKP (if
6081 necessary). OBJFILE is the section containing BLOCK. */
6082
6083 static void
6084 ada_add_block_symbols (struct obstack *obstackp,
6085 const struct block *block,
6086 const lookup_name_info &lookup_name,
6087 domain_enum domain, struct objfile *objfile)
6088 {
6089 struct block_iterator iter;
6090 /* A matching argument symbol, if any. */
6091 struct symbol *arg_sym;
6092 /* Set true when we find a matching non-argument symbol. */
6093 int found_sym;
6094 struct symbol *sym;
6095
6096 arg_sym = NULL;
6097 found_sym = 0;
6098 for (sym = block_iter_match_first (block, lookup_name, &iter);
6099 sym != NULL;
6100 sym = block_iter_match_next (lookup_name, &iter))
6101 {
6102 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6103 SYMBOL_DOMAIN (sym), domain))
6104 {
6105 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6106 {
6107 if (SYMBOL_IS_ARGUMENT (sym))
6108 arg_sym = sym;
6109 else
6110 {
6111 found_sym = 1;
6112 add_defn_to_vec (obstackp,
6113 fixup_symbol_section (sym, objfile),
6114 block);
6115 }
6116 }
6117 }
6118 }
6119
6120 /* Handle renamings. */
6121
6122 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6123 found_sym = 1;
6124
6125 if (!found_sym && arg_sym != NULL)
6126 {
6127 add_defn_to_vec (obstackp,
6128 fixup_symbol_section (arg_sym, objfile),
6129 block);
6130 }
6131
6132 if (!lookup_name.ada ().wild_match_p ())
6133 {
6134 arg_sym = NULL;
6135 found_sym = 0;
6136 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6137 const char *name = ada_lookup_name.c_str ();
6138 size_t name_len = ada_lookup_name.size ();
6139
6140 ALL_BLOCK_SYMBOLS (block, iter, sym)
6141 {
6142 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6143 SYMBOL_DOMAIN (sym), domain))
6144 {
6145 int cmp;
6146
6147 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6148 if (cmp == 0)
6149 {
6150 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6151 if (cmp == 0)
6152 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6153 name_len);
6154 }
6155
6156 if (cmp == 0
6157 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6158 {
6159 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6160 {
6161 if (SYMBOL_IS_ARGUMENT (sym))
6162 arg_sym = sym;
6163 else
6164 {
6165 found_sym = 1;
6166 add_defn_to_vec (obstackp,
6167 fixup_symbol_section (sym, objfile),
6168 block);
6169 }
6170 }
6171 }
6172 }
6173 }
6174
6175 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6176 They aren't parameters, right? */
6177 if (!found_sym && arg_sym != NULL)
6178 {
6179 add_defn_to_vec (obstackp,
6180 fixup_symbol_section (arg_sym, objfile),
6181 block);
6182 }
6183 }
6184 }
6185 \f
6186
6187 /* Symbol Completion */
6188
6189 /* See symtab.h. */
6190
6191 bool
6192 ada_lookup_name_info::matches
6193 (const char *sym_name,
6194 symbol_name_match_type match_type,
6195 completion_match_result *comp_match_res) const
6196 {
6197 bool match = false;
6198 const char *text = m_encoded_name.c_str ();
6199 size_t text_len = m_encoded_name.size ();
6200
6201 /* First, test against the fully qualified name of the symbol. */
6202
6203 if (strncmp (sym_name, text, text_len) == 0)
6204 match = true;
6205
6206 std::string decoded_name = ada_decode (sym_name);
6207 if (match && !m_encoded_p)
6208 {
6209 /* One needed check before declaring a positive match is to verify
6210 that iff we are doing a verbatim match, the decoded version
6211 of the symbol name starts with '<'. Otherwise, this symbol name
6212 is not a suitable completion. */
6213
6214 bool has_angle_bracket = (decoded_name[0] == '<');
6215 match = (has_angle_bracket == m_verbatim_p);
6216 }
6217
6218 if (match && !m_verbatim_p)
6219 {
6220 /* When doing non-verbatim match, another check that needs to
6221 be done is to verify that the potentially matching symbol name
6222 does not include capital letters, because the ada-mode would
6223 not be able to understand these symbol names without the
6224 angle bracket notation. */
6225 const char *tmp;
6226
6227 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6228 if (*tmp != '\0')
6229 match = false;
6230 }
6231
6232 /* Second: Try wild matching... */
6233
6234 if (!match && m_wild_match_p)
6235 {
6236 /* Since we are doing wild matching, this means that TEXT
6237 may represent an unqualified symbol name. We therefore must
6238 also compare TEXT against the unqualified name of the symbol. */
6239 sym_name = ada_unqualified_name (decoded_name.c_str ());
6240
6241 if (strncmp (sym_name, text, text_len) == 0)
6242 match = true;
6243 }
6244
6245 /* Finally: If we found a match, prepare the result to return. */
6246
6247 if (!match)
6248 return false;
6249
6250 if (comp_match_res != NULL)
6251 {
6252 std::string &match_str = comp_match_res->match.storage ();
6253
6254 if (!m_encoded_p)
6255 match_str = ada_decode (sym_name);
6256 else
6257 {
6258 if (m_verbatim_p)
6259 match_str = add_angle_brackets (sym_name);
6260 else
6261 match_str = sym_name;
6262
6263 }
6264
6265 comp_match_res->set_match (match_str.c_str ());
6266 }
6267
6268 return true;
6269 }
6270
6271 /* Add the list of possible symbol names completing TEXT to TRACKER.
6272 WORD is the entire command on which completion is made. */
6273
6274 static void
6275 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6276 complete_symbol_mode mode,
6277 symbol_name_match_type name_match_type,
6278 const char *text, const char *word,
6279 enum type_code code)
6280 {
6281 struct symbol *sym;
6282 const struct block *b, *surrounding_static_block = 0;
6283 struct block_iterator iter;
6284
6285 gdb_assert (code == TYPE_CODE_UNDEF);
6286
6287 lookup_name_info lookup_name (text, name_match_type, true);
6288
6289 /* First, look at the partial symtab symbols. */
6290 expand_symtabs_matching (NULL,
6291 lookup_name,
6292 NULL,
6293 NULL,
6294 ALL_DOMAIN);
6295
6296 /* At this point scan through the misc symbol vectors and add each
6297 symbol you find to the list. Eventually we want to ignore
6298 anything that isn't a text symbol (everything else will be
6299 handled by the psymtab code above). */
6300
6301 for (objfile *objfile : current_program_space->objfiles ())
6302 {
6303 for (minimal_symbol *msymbol : objfile->msymbols ())
6304 {
6305 QUIT;
6306
6307 if (completion_skip_symbol (mode, msymbol))
6308 continue;
6309
6310 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6311
6312 /* Ada minimal symbols won't have their language set to Ada. If
6313 we let completion_list_add_name compare using the
6314 default/C-like matcher, then when completing e.g., symbols in a
6315 package named "pck", we'd match internal Ada symbols like
6316 "pckS", which are invalid in an Ada expression, unless you wrap
6317 them in '<' '>' to request a verbatim match.
6318
6319 Unfortunately, some Ada encoded names successfully demangle as
6320 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6321 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6322 with the wrong language set. Paper over that issue here. */
6323 if (symbol_language == language_auto
6324 || symbol_language == language_cplus)
6325 symbol_language = language_ada;
6326
6327 completion_list_add_name (tracker,
6328 symbol_language,
6329 MSYMBOL_LINKAGE_NAME (msymbol),
6330 lookup_name, text, word);
6331 }
6332 }
6333
6334 /* Search upwards from currently selected frame (so that we can
6335 complete on local vars. */
6336
6337 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6338 {
6339 if (!BLOCK_SUPERBLOCK (b))
6340 surrounding_static_block = b; /* For elmin of dups */
6341
6342 ALL_BLOCK_SYMBOLS (b, iter, sym)
6343 {
6344 if (completion_skip_symbol (mode, sym))
6345 continue;
6346
6347 completion_list_add_name (tracker,
6348 SYMBOL_LANGUAGE (sym),
6349 SYMBOL_LINKAGE_NAME (sym),
6350 lookup_name, text, word);
6351 }
6352 }
6353
6354 /* Go through the symtabs and check the externs and statics for
6355 symbols which match. */
6356
6357 for (objfile *objfile : current_program_space->objfiles ())
6358 {
6359 for (compunit_symtab *s : objfile->compunits ())
6360 {
6361 QUIT;
6362 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6363 ALL_BLOCK_SYMBOLS (b, iter, sym)
6364 {
6365 if (completion_skip_symbol (mode, sym))
6366 continue;
6367
6368 completion_list_add_name (tracker,
6369 SYMBOL_LANGUAGE (sym),
6370 SYMBOL_LINKAGE_NAME (sym),
6371 lookup_name, text, word);
6372 }
6373 }
6374 }
6375
6376 for (objfile *objfile : current_program_space->objfiles ())
6377 {
6378 for (compunit_symtab *s : objfile->compunits ())
6379 {
6380 QUIT;
6381 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6382 /* Don't do this block twice. */
6383 if (b == surrounding_static_block)
6384 continue;
6385 ALL_BLOCK_SYMBOLS (b, iter, sym)
6386 {
6387 if (completion_skip_symbol (mode, sym))
6388 continue;
6389
6390 completion_list_add_name (tracker,
6391 SYMBOL_LANGUAGE (sym),
6392 SYMBOL_LINKAGE_NAME (sym),
6393 lookup_name, text, word);
6394 }
6395 }
6396 }
6397 }
6398
6399 /* Field Access */
6400
6401 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6402 for tagged types. */
6403
6404 static int
6405 ada_is_dispatch_table_ptr_type (struct type *type)
6406 {
6407 const char *name;
6408
6409 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6410 return 0;
6411
6412 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6413 if (name == NULL)
6414 return 0;
6415
6416 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6417 }
6418
6419 /* Return non-zero if TYPE is an interface tag. */
6420
6421 static int
6422 ada_is_interface_tag (struct type *type)
6423 {
6424 const char *name = TYPE_NAME (type);
6425
6426 if (name == NULL)
6427 return 0;
6428
6429 return (strcmp (name, "ada__tags__interface_tag") == 0);
6430 }
6431
6432 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6433 to be invisible to users. */
6434
6435 int
6436 ada_is_ignored_field (struct type *type, int field_num)
6437 {
6438 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6439 return 1;
6440
6441 /* Check the name of that field. */
6442 {
6443 const char *name = TYPE_FIELD_NAME (type, field_num);
6444
6445 /* Anonymous field names should not be printed.
6446 brobecker/2007-02-20: I don't think this can actually happen
6447 but we don't want to print the value of annonymous fields anyway. */
6448 if (name == NULL)
6449 return 1;
6450
6451 /* Normally, fields whose name start with an underscore ("_")
6452 are fields that have been internally generated by the compiler,
6453 and thus should not be printed. The "_parent" field is special,
6454 however: This is a field internally generated by the compiler
6455 for tagged types, and it contains the components inherited from
6456 the parent type. This field should not be printed as is, but
6457 should not be ignored either. */
6458 if (name[0] == '_' && !startswith (name, "_parent"))
6459 return 1;
6460 }
6461
6462 /* If this is the dispatch table of a tagged type or an interface tag,
6463 then ignore. */
6464 if (ada_is_tagged_type (type, 1)
6465 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6466 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6467 return 1;
6468
6469 /* Not a special field, so it should not be ignored. */
6470 return 0;
6471 }
6472
6473 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6474 pointer or reference type whose ultimate target has a tag field. */
6475
6476 int
6477 ada_is_tagged_type (struct type *type, int refok)
6478 {
6479 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6480 }
6481
6482 /* True iff TYPE represents the type of X'Tag */
6483
6484 int
6485 ada_is_tag_type (struct type *type)
6486 {
6487 type = ada_check_typedef (type);
6488
6489 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6490 return 0;
6491 else
6492 {
6493 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6494
6495 return (name != NULL
6496 && strcmp (name, "ada__tags__dispatch_table") == 0);
6497 }
6498 }
6499
6500 /* The type of the tag on VAL. */
6501
6502 struct type *
6503 ada_tag_type (struct value *val)
6504 {
6505 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6506 }
6507
6508 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6509 retired at Ada 05). */
6510
6511 static int
6512 is_ada95_tag (struct value *tag)
6513 {
6514 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6515 }
6516
6517 /* The value of the tag on VAL. */
6518
6519 struct value *
6520 ada_value_tag (struct value *val)
6521 {
6522 return ada_value_struct_elt (val, "_tag", 0);
6523 }
6524
6525 /* The value of the tag on the object of type TYPE whose contents are
6526 saved at VALADDR, if it is non-null, or is at memory address
6527 ADDRESS. */
6528
6529 static struct value *
6530 value_tag_from_contents_and_address (struct type *type,
6531 const gdb_byte *valaddr,
6532 CORE_ADDR address)
6533 {
6534 int tag_byte_offset;
6535 struct type *tag_type;
6536
6537 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6538 NULL, NULL, NULL))
6539 {
6540 const gdb_byte *valaddr1 = ((valaddr == NULL)
6541 ? NULL
6542 : valaddr + tag_byte_offset);
6543 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6544
6545 return value_from_contents_and_address (tag_type, valaddr1, address1);
6546 }
6547 return NULL;
6548 }
6549
6550 static struct type *
6551 type_from_tag (struct value *tag)
6552 {
6553 const char *type_name = ada_tag_name (tag);
6554
6555 if (type_name != NULL)
6556 return ada_find_any_type (ada_encode (type_name));
6557 return NULL;
6558 }
6559
6560 /* Given a value OBJ of a tagged type, return a value of this
6561 type at the base address of the object. The base address, as
6562 defined in Ada.Tags, it is the address of the primary tag of
6563 the object, and therefore where the field values of its full
6564 view can be fetched. */
6565
6566 struct value *
6567 ada_tag_value_at_base_address (struct value *obj)
6568 {
6569 struct value *val;
6570 LONGEST offset_to_top = 0;
6571 struct type *ptr_type, *obj_type;
6572 struct value *tag;
6573 CORE_ADDR base_address;
6574
6575 obj_type = value_type (obj);
6576
6577 /* It is the responsability of the caller to deref pointers. */
6578
6579 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6580 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6581 return obj;
6582
6583 tag = ada_value_tag (obj);
6584 if (!tag)
6585 return obj;
6586
6587 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6588
6589 if (is_ada95_tag (tag))
6590 return obj;
6591
6592 ptr_type = language_lookup_primitive_type
6593 (language_def (language_ada), target_gdbarch(), "storage_offset");
6594 ptr_type = lookup_pointer_type (ptr_type);
6595 val = value_cast (ptr_type, tag);
6596 if (!val)
6597 return obj;
6598
6599 /* It is perfectly possible that an exception be raised while
6600 trying to determine the base address, just like for the tag;
6601 see ada_tag_name for more details. We do not print the error
6602 message for the same reason. */
6603
6604 try
6605 {
6606 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6607 }
6608
6609 catch (const gdb_exception_error &e)
6610 {
6611 return obj;
6612 }
6613
6614 /* If offset is null, nothing to do. */
6615
6616 if (offset_to_top == 0)
6617 return obj;
6618
6619 /* -1 is a special case in Ada.Tags; however, what should be done
6620 is not quite clear from the documentation. So do nothing for
6621 now. */
6622
6623 if (offset_to_top == -1)
6624 return obj;
6625
6626 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6627 from the base address. This was however incompatible with
6628 C++ dispatch table: C++ uses a *negative* value to *add*
6629 to the base address. Ada's convention has therefore been
6630 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6631 use the same convention. Here, we support both cases by
6632 checking the sign of OFFSET_TO_TOP. */
6633
6634 if (offset_to_top > 0)
6635 offset_to_top = -offset_to_top;
6636
6637 base_address = value_address (obj) + offset_to_top;
6638 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6639
6640 /* Make sure that we have a proper tag at the new address.
6641 Otherwise, offset_to_top is bogus (which can happen when
6642 the object is not initialized yet). */
6643
6644 if (!tag)
6645 return obj;
6646
6647 obj_type = type_from_tag (tag);
6648
6649 if (!obj_type)
6650 return obj;
6651
6652 return value_from_contents_and_address (obj_type, NULL, base_address);
6653 }
6654
6655 /* Return the "ada__tags__type_specific_data" type. */
6656
6657 static struct type *
6658 ada_get_tsd_type (struct inferior *inf)
6659 {
6660 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6661
6662 if (data->tsd_type == 0)
6663 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6664 return data->tsd_type;
6665 }
6666
6667 /* Return the TSD (type-specific data) associated to the given TAG.
6668 TAG is assumed to be the tag of a tagged-type entity.
6669
6670 May return NULL if we are unable to get the TSD. */
6671
6672 static struct value *
6673 ada_get_tsd_from_tag (struct value *tag)
6674 {
6675 struct value *val;
6676 struct type *type;
6677
6678 /* First option: The TSD is simply stored as a field of our TAG.
6679 Only older versions of GNAT would use this format, but we have
6680 to test it first, because there are no visible markers for
6681 the current approach except the absence of that field. */
6682
6683 val = ada_value_struct_elt (tag, "tsd", 1);
6684 if (val)
6685 return val;
6686
6687 /* Try the second representation for the dispatch table (in which
6688 there is no explicit 'tsd' field in the referent of the tag pointer,
6689 and instead the tsd pointer is stored just before the dispatch
6690 table. */
6691
6692 type = ada_get_tsd_type (current_inferior());
6693 if (type == NULL)
6694 return NULL;
6695 type = lookup_pointer_type (lookup_pointer_type (type));
6696 val = value_cast (type, tag);
6697 if (val == NULL)
6698 return NULL;
6699 return value_ind (value_ptradd (val, -1));
6700 }
6701
6702 /* Given the TSD of a tag (type-specific data), return a string
6703 containing the name of the associated type.
6704
6705 The returned value is good until the next call. May return NULL
6706 if we are unable to determine the tag name. */
6707
6708 static char *
6709 ada_tag_name_from_tsd (struct value *tsd)
6710 {
6711 static char name[1024];
6712 char *p;
6713 struct value *val;
6714
6715 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6716 if (val == NULL)
6717 return NULL;
6718 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6719 for (p = name; *p != '\0'; p += 1)
6720 if (isalpha (*p))
6721 *p = tolower (*p);
6722 return name;
6723 }
6724
6725 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6726 a C string.
6727
6728 Return NULL if the TAG is not an Ada tag, or if we were unable to
6729 determine the name of that tag. The result is good until the next
6730 call. */
6731
6732 const char *
6733 ada_tag_name (struct value *tag)
6734 {
6735 char *name = NULL;
6736
6737 if (!ada_is_tag_type (value_type (tag)))
6738 return NULL;
6739
6740 /* It is perfectly possible that an exception be raised while trying
6741 to determine the TAG's name, even under normal circumstances:
6742 The associated variable may be uninitialized or corrupted, for
6743 instance. We do not let any exception propagate past this point.
6744 instead we return NULL.
6745
6746 We also do not print the error message either (which often is very
6747 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6748 the caller print a more meaningful message if necessary. */
6749 try
6750 {
6751 struct value *tsd = ada_get_tsd_from_tag (tag);
6752
6753 if (tsd != NULL)
6754 name = ada_tag_name_from_tsd (tsd);
6755 }
6756 catch (const gdb_exception_error &e)
6757 {
6758 }
6759
6760 return name;
6761 }
6762
6763 /* The parent type of TYPE, or NULL if none. */
6764
6765 struct type *
6766 ada_parent_type (struct type *type)
6767 {
6768 int i;
6769
6770 type = ada_check_typedef (type);
6771
6772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6773 return NULL;
6774
6775 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6776 if (ada_is_parent_field (type, i))
6777 {
6778 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6779
6780 /* If the _parent field is a pointer, then dereference it. */
6781 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6782 parent_type = TYPE_TARGET_TYPE (parent_type);
6783 /* If there is a parallel XVS type, get the actual base type. */
6784 parent_type = ada_get_base_type (parent_type);
6785
6786 return ada_check_typedef (parent_type);
6787 }
6788
6789 return NULL;
6790 }
6791
6792 /* True iff field number FIELD_NUM of structure type TYPE contains the
6793 parent-type (inherited) fields of a derived type. Assumes TYPE is
6794 a structure type with at least FIELD_NUM+1 fields. */
6795
6796 int
6797 ada_is_parent_field (struct type *type, int field_num)
6798 {
6799 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6800
6801 return (name != NULL
6802 && (startswith (name, "PARENT")
6803 || startswith (name, "_parent")));
6804 }
6805
6806 /* True iff field number FIELD_NUM of structure type TYPE is a
6807 transparent wrapper field (which should be silently traversed when doing
6808 field selection and flattened when printing). Assumes TYPE is a
6809 structure type with at least FIELD_NUM+1 fields. Such fields are always
6810 structures. */
6811
6812 int
6813 ada_is_wrapper_field (struct type *type, int field_num)
6814 {
6815 const char *name = TYPE_FIELD_NAME (type, field_num);
6816
6817 if (name != NULL && strcmp (name, "RETVAL") == 0)
6818 {
6819 /* This happens in functions with "out" or "in out" parameters
6820 which are passed by copy. For such functions, GNAT describes
6821 the function's return type as being a struct where the return
6822 value is in a field called RETVAL, and where the other "out"
6823 or "in out" parameters are fields of that struct. This is not
6824 a wrapper. */
6825 return 0;
6826 }
6827
6828 return (name != NULL
6829 && (startswith (name, "PARENT")
6830 || strcmp (name, "REP") == 0
6831 || startswith (name, "_parent")
6832 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6833 }
6834
6835 /* True iff field number FIELD_NUM of structure or union type TYPE
6836 is a variant wrapper. Assumes TYPE is a structure type with at least
6837 FIELD_NUM+1 fields. */
6838
6839 int
6840 ada_is_variant_part (struct type *type, int field_num)
6841 {
6842 /* Only Ada types are eligible. */
6843 if (!ADA_TYPE_P (type))
6844 return 0;
6845
6846 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6847
6848 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6849 || (is_dynamic_field (type, field_num)
6850 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6851 == TYPE_CODE_UNION)));
6852 }
6853
6854 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6855 whose discriminants are contained in the record type OUTER_TYPE,
6856 returns the type of the controlling discriminant for the variant.
6857 May return NULL if the type could not be found. */
6858
6859 struct type *
6860 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6861 {
6862 const char *name = ada_variant_discrim_name (var_type);
6863
6864 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6865 }
6866
6867 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6868 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6869 represents a 'when others' clause; otherwise 0. */
6870
6871 int
6872 ada_is_others_clause (struct type *type, int field_num)
6873 {
6874 const char *name = TYPE_FIELD_NAME (type, field_num);
6875
6876 return (name != NULL && name[0] == 'O');
6877 }
6878
6879 /* Assuming that TYPE0 is the type of the variant part of a record,
6880 returns the name of the discriminant controlling the variant.
6881 The value is valid until the next call to ada_variant_discrim_name. */
6882
6883 const char *
6884 ada_variant_discrim_name (struct type *type0)
6885 {
6886 static char *result = NULL;
6887 static size_t result_len = 0;
6888 struct type *type;
6889 const char *name;
6890 const char *discrim_end;
6891 const char *discrim_start;
6892
6893 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6894 type = TYPE_TARGET_TYPE (type0);
6895 else
6896 type = type0;
6897
6898 name = ada_type_name (type);
6899
6900 if (name == NULL || name[0] == '\000')
6901 return "";
6902
6903 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6904 discrim_end -= 1)
6905 {
6906 if (startswith (discrim_end, "___XVN"))
6907 break;
6908 }
6909 if (discrim_end == name)
6910 return "";
6911
6912 for (discrim_start = discrim_end; discrim_start != name + 3;
6913 discrim_start -= 1)
6914 {
6915 if (discrim_start == name + 1)
6916 return "";
6917 if ((discrim_start > name + 3
6918 && startswith (discrim_start - 3, "___"))
6919 || discrim_start[-1] == '.')
6920 break;
6921 }
6922
6923 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6924 strncpy (result, discrim_start, discrim_end - discrim_start);
6925 result[discrim_end - discrim_start] = '\0';
6926 return result;
6927 }
6928
6929 /* Scan STR for a subtype-encoded number, beginning at position K.
6930 Put the position of the character just past the number scanned in
6931 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6932 Return 1 if there was a valid number at the given position, and 0
6933 otherwise. A "subtype-encoded" number consists of the absolute value
6934 in decimal, followed by the letter 'm' to indicate a negative number.
6935 Assumes 0m does not occur. */
6936
6937 int
6938 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6939 {
6940 ULONGEST RU;
6941
6942 if (!isdigit (str[k]))
6943 return 0;
6944
6945 /* Do it the hard way so as not to make any assumption about
6946 the relationship of unsigned long (%lu scan format code) and
6947 LONGEST. */
6948 RU = 0;
6949 while (isdigit (str[k]))
6950 {
6951 RU = RU * 10 + (str[k] - '0');
6952 k += 1;
6953 }
6954
6955 if (str[k] == 'm')
6956 {
6957 if (R != NULL)
6958 *R = (-(LONGEST) (RU - 1)) - 1;
6959 k += 1;
6960 }
6961 else if (R != NULL)
6962 *R = (LONGEST) RU;
6963
6964 /* NOTE on the above: Technically, C does not say what the results of
6965 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6966 number representable as a LONGEST (although either would probably work
6967 in most implementations). When RU>0, the locution in the then branch
6968 above is always equivalent to the negative of RU. */
6969
6970 if (new_k != NULL)
6971 *new_k = k;
6972 return 1;
6973 }
6974
6975 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6976 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6977 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6978
6979 int
6980 ada_in_variant (LONGEST val, struct type *type, int field_num)
6981 {
6982 const char *name = TYPE_FIELD_NAME (type, field_num);
6983 int p;
6984
6985 p = 0;
6986 while (1)
6987 {
6988 switch (name[p])
6989 {
6990 case '\0':
6991 return 0;
6992 case 'S':
6993 {
6994 LONGEST W;
6995
6996 if (!ada_scan_number (name, p + 1, &W, &p))
6997 return 0;
6998 if (val == W)
6999 return 1;
7000 break;
7001 }
7002 case 'R':
7003 {
7004 LONGEST L, U;
7005
7006 if (!ada_scan_number (name, p + 1, &L, &p)
7007 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7008 return 0;
7009 if (val >= L && val <= U)
7010 return 1;
7011 break;
7012 }
7013 case 'O':
7014 return 1;
7015 default:
7016 return 0;
7017 }
7018 }
7019 }
7020
7021 /* FIXME: Lots of redundancy below. Try to consolidate. */
7022
7023 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7024 ARG_TYPE, extract and return the value of one of its (non-static)
7025 fields. FIELDNO says which field. Differs from value_primitive_field
7026 only in that it can handle packed values of arbitrary type. */
7027
7028 static struct value *
7029 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7030 struct type *arg_type)
7031 {
7032 struct type *type;
7033
7034 arg_type = ada_check_typedef (arg_type);
7035 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7036
7037 /* Handle packed fields. It might be that the field is not packed
7038 relative to its containing structure, but the structure itself is
7039 packed; in this case we must take the bit-field path. */
7040 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7041 {
7042 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7043 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7044
7045 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7046 offset + bit_pos / 8,
7047 bit_pos % 8, bit_size, type);
7048 }
7049 else
7050 return value_primitive_field (arg1, offset, fieldno, arg_type);
7051 }
7052
7053 /* Find field with name NAME in object of type TYPE. If found,
7054 set the following for each argument that is non-null:
7055 - *FIELD_TYPE_P to the field's type;
7056 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7057 an object of that type;
7058 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7059 - *BIT_SIZE_P to its size in bits if the field is packed, and
7060 0 otherwise;
7061 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7062 fields up to but not including the desired field, or by the total
7063 number of fields if not found. A NULL value of NAME never
7064 matches; the function just counts visible fields in this case.
7065
7066 Notice that we need to handle when a tagged record hierarchy
7067 has some components with the same name, like in this scenario:
7068
7069 type Top_T is tagged record
7070 N : Integer := 1;
7071 U : Integer := 974;
7072 A : Integer := 48;
7073 end record;
7074
7075 type Middle_T is new Top.Top_T with record
7076 N : Character := 'a';
7077 C : Integer := 3;
7078 end record;
7079
7080 type Bottom_T is new Middle.Middle_T with record
7081 N : Float := 4.0;
7082 C : Character := '5';
7083 X : Integer := 6;
7084 A : Character := 'J';
7085 end record;
7086
7087 Let's say we now have a variable declared and initialized as follow:
7088
7089 TC : Top_A := new Bottom_T;
7090
7091 And then we use this variable to call this function
7092
7093 procedure Assign (Obj: in out Top_T; TV : Integer);
7094
7095 as follow:
7096
7097 Assign (Top_T (B), 12);
7098
7099 Now, we're in the debugger, and we're inside that procedure
7100 then and we want to print the value of obj.c:
7101
7102 Usually, the tagged record or one of the parent type owns the
7103 component to print and there's no issue but in this particular
7104 case, what does it mean to ask for Obj.C? Since the actual
7105 type for object is type Bottom_T, it could mean two things: type
7106 component C from the Middle_T view, but also component C from
7107 Bottom_T. So in that "undefined" case, when the component is
7108 not found in the non-resolved type (which includes all the
7109 components of the parent type), then resolve it and see if we
7110 get better luck once expanded.
7111
7112 In the case of homonyms in the derived tagged type, we don't
7113 guaranty anything, and pick the one that's easiest for us
7114 to program.
7115
7116 Returns 1 if found, 0 otherwise. */
7117
7118 static int
7119 find_struct_field (const char *name, struct type *type, int offset,
7120 struct type **field_type_p,
7121 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7122 int *index_p)
7123 {
7124 int i;
7125 int parent_offset = -1;
7126
7127 type = ada_check_typedef (type);
7128
7129 if (field_type_p != NULL)
7130 *field_type_p = NULL;
7131 if (byte_offset_p != NULL)
7132 *byte_offset_p = 0;
7133 if (bit_offset_p != NULL)
7134 *bit_offset_p = 0;
7135 if (bit_size_p != NULL)
7136 *bit_size_p = 0;
7137
7138 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7139 {
7140 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7141 int fld_offset = offset + bit_pos / 8;
7142 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7143
7144 if (t_field_name == NULL)
7145 continue;
7146
7147 else if (ada_is_parent_field (type, i))
7148 {
7149 /* This is a field pointing us to the parent type of a tagged
7150 type. As hinted in this function's documentation, we give
7151 preference to fields in the current record first, so what
7152 we do here is just record the index of this field before
7153 we skip it. If it turns out we couldn't find our field
7154 in the current record, then we'll get back to it and search
7155 inside it whether the field might exist in the parent. */
7156
7157 parent_offset = i;
7158 continue;
7159 }
7160
7161 else if (name != NULL && field_name_match (t_field_name, name))
7162 {
7163 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7164
7165 if (field_type_p != NULL)
7166 *field_type_p = TYPE_FIELD_TYPE (type, i);
7167 if (byte_offset_p != NULL)
7168 *byte_offset_p = fld_offset;
7169 if (bit_offset_p != NULL)
7170 *bit_offset_p = bit_pos % 8;
7171 if (bit_size_p != NULL)
7172 *bit_size_p = bit_size;
7173 return 1;
7174 }
7175 else if (ada_is_wrapper_field (type, i))
7176 {
7177 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7178 field_type_p, byte_offset_p, bit_offset_p,
7179 bit_size_p, index_p))
7180 return 1;
7181 }
7182 else if (ada_is_variant_part (type, i))
7183 {
7184 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7185 fixed type?? */
7186 int j;
7187 struct type *field_type
7188 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7189
7190 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7191 {
7192 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7193 fld_offset
7194 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7195 field_type_p, byte_offset_p,
7196 bit_offset_p, bit_size_p, index_p))
7197 return 1;
7198 }
7199 }
7200 else if (index_p != NULL)
7201 *index_p += 1;
7202 }
7203
7204 /* Field not found so far. If this is a tagged type which
7205 has a parent, try finding that field in the parent now. */
7206
7207 if (parent_offset != -1)
7208 {
7209 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7210 int fld_offset = offset + bit_pos / 8;
7211
7212 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7213 fld_offset, field_type_p, byte_offset_p,
7214 bit_offset_p, bit_size_p, index_p))
7215 return 1;
7216 }
7217
7218 return 0;
7219 }
7220
7221 /* Number of user-visible fields in record type TYPE. */
7222
7223 static int
7224 num_visible_fields (struct type *type)
7225 {
7226 int n;
7227
7228 n = 0;
7229 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7230 return n;
7231 }
7232
7233 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7234 and search in it assuming it has (class) type TYPE.
7235 If found, return value, else return NULL.
7236
7237 Searches recursively through wrapper fields (e.g., '_parent').
7238
7239 In the case of homonyms in the tagged types, please refer to the
7240 long explanation in find_struct_field's function documentation. */
7241
7242 static struct value *
7243 ada_search_struct_field (const char *name, struct value *arg, int offset,
7244 struct type *type)
7245 {
7246 int i;
7247 int parent_offset = -1;
7248
7249 type = ada_check_typedef (type);
7250 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7251 {
7252 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7253
7254 if (t_field_name == NULL)
7255 continue;
7256
7257 else if (ada_is_parent_field (type, i))
7258 {
7259 /* This is a field pointing us to the parent type of a tagged
7260 type. As hinted in this function's documentation, we give
7261 preference to fields in the current record first, so what
7262 we do here is just record the index of this field before
7263 we skip it. If it turns out we couldn't find our field
7264 in the current record, then we'll get back to it and search
7265 inside it whether the field might exist in the parent. */
7266
7267 parent_offset = i;
7268 continue;
7269 }
7270
7271 else if (field_name_match (t_field_name, name))
7272 return ada_value_primitive_field (arg, offset, i, type);
7273
7274 else if (ada_is_wrapper_field (type, i))
7275 {
7276 struct value *v = /* Do not let indent join lines here. */
7277 ada_search_struct_field (name, arg,
7278 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7279 TYPE_FIELD_TYPE (type, i));
7280
7281 if (v != NULL)
7282 return v;
7283 }
7284
7285 else if (ada_is_variant_part (type, i))
7286 {
7287 /* PNH: Do we ever get here? See find_struct_field. */
7288 int j;
7289 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7290 i));
7291 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7292
7293 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7294 {
7295 struct value *v = ada_search_struct_field /* Force line
7296 break. */
7297 (name, arg,
7298 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7299 TYPE_FIELD_TYPE (field_type, j));
7300
7301 if (v != NULL)
7302 return v;
7303 }
7304 }
7305 }
7306
7307 /* Field not found so far. If this is a tagged type which
7308 has a parent, try finding that field in the parent now. */
7309
7310 if (parent_offset != -1)
7311 {
7312 struct value *v = ada_search_struct_field (
7313 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7314 TYPE_FIELD_TYPE (type, parent_offset));
7315
7316 if (v != NULL)
7317 return v;
7318 }
7319
7320 return NULL;
7321 }
7322
7323 static struct value *ada_index_struct_field_1 (int *, struct value *,
7324 int, struct type *);
7325
7326
7327 /* Return field #INDEX in ARG, where the index is that returned by
7328 * find_struct_field through its INDEX_P argument. Adjust the address
7329 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7330 * If found, return value, else return NULL. */
7331
7332 static struct value *
7333 ada_index_struct_field (int index, struct value *arg, int offset,
7334 struct type *type)
7335 {
7336 return ada_index_struct_field_1 (&index, arg, offset, type);
7337 }
7338
7339
7340 /* Auxiliary function for ada_index_struct_field. Like
7341 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7342 * *INDEX_P. */
7343
7344 static struct value *
7345 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7346 struct type *type)
7347 {
7348 int i;
7349 type = ada_check_typedef (type);
7350
7351 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7352 {
7353 if (TYPE_FIELD_NAME (type, i) == NULL)
7354 continue;
7355 else if (ada_is_wrapper_field (type, i))
7356 {
7357 struct value *v = /* Do not let indent join lines here. */
7358 ada_index_struct_field_1 (index_p, arg,
7359 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7360 TYPE_FIELD_TYPE (type, i));
7361
7362 if (v != NULL)
7363 return v;
7364 }
7365
7366 else if (ada_is_variant_part (type, i))
7367 {
7368 /* PNH: Do we ever get here? See ada_search_struct_field,
7369 find_struct_field. */
7370 error (_("Cannot assign this kind of variant record"));
7371 }
7372 else if (*index_p == 0)
7373 return ada_value_primitive_field (arg, offset, i, type);
7374 else
7375 *index_p -= 1;
7376 }
7377 return NULL;
7378 }
7379
7380 /* Given ARG, a value of type (pointer or reference to a)*
7381 structure/union, extract the component named NAME from the ultimate
7382 target structure/union and return it as a value with its
7383 appropriate type.
7384
7385 The routine searches for NAME among all members of the structure itself
7386 and (recursively) among all members of any wrapper members
7387 (e.g., '_parent').
7388
7389 If NO_ERR, then simply return NULL in case of error, rather than
7390 calling error. */
7391
7392 struct value *
7393 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7394 {
7395 struct type *t, *t1;
7396 struct value *v;
7397 int check_tag;
7398
7399 v = NULL;
7400 t1 = t = ada_check_typedef (value_type (arg));
7401 if (TYPE_CODE (t) == TYPE_CODE_REF)
7402 {
7403 t1 = TYPE_TARGET_TYPE (t);
7404 if (t1 == NULL)
7405 goto BadValue;
7406 t1 = ada_check_typedef (t1);
7407 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7408 {
7409 arg = coerce_ref (arg);
7410 t = t1;
7411 }
7412 }
7413
7414 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7415 {
7416 t1 = TYPE_TARGET_TYPE (t);
7417 if (t1 == NULL)
7418 goto BadValue;
7419 t1 = ada_check_typedef (t1);
7420 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7421 {
7422 arg = value_ind (arg);
7423 t = t1;
7424 }
7425 else
7426 break;
7427 }
7428
7429 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7430 goto BadValue;
7431
7432 if (t1 == t)
7433 v = ada_search_struct_field (name, arg, 0, t);
7434 else
7435 {
7436 int bit_offset, bit_size, byte_offset;
7437 struct type *field_type;
7438 CORE_ADDR address;
7439
7440 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7441 address = value_address (ada_value_ind (arg));
7442 else
7443 address = value_address (ada_coerce_ref (arg));
7444
7445 /* Check to see if this is a tagged type. We also need to handle
7446 the case where the type is a reference to a tagged type, but
7447 we have to be careful to exclude pointers to tagged types.
7448 The latter should be shown as usual (as a pointer), whereas
7449 a reference should mostly be transparent to the user. */
7450
7451 if (ada_is_tagged_type (t1, 0)
7452 || (TYPE_CODE (t1) == TYPE_CODE_REF
7453 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7454 {
7455 /* We first try to find the searched field in the current type.
7456 If not found then let's look in the fixed type. */
7457
7458 if (!find_struct_field (name, t1, 0,
7459 &field_type, &byte_offset, &bit_offset,
7460 &bit_size, NULL))
7461 check_tag = 1;
7462 else
7463 check_tag = 0;
7464 }
7465 else
7466 check_tag = 0;
7467
7468 /* Convert to fixed type in all cases, so that we have proper
7469 offsets to each field in unconstrained record types. */
7470 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7471 address, NULL, check_tag);
7472
7473 if (find_struct_field (name, t1, 0,
7474 &field_type, &byte_offset, &bit_offset,
7475 &bit_size, NULL))
7476 {
7477 if (bit_size != 0)
7478 {
7479 if (TYPE_CODE (t) == TYPE_CODE_REF)
7480 arg = ada_coerce_ref (arg);
7481 else
7482 arg = ada_value_ind (arg);
7483 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7484 bit_offset, bit_size,
7485 field_type);
7486 }
7487 else
7488 v = value_at_lazy (field_type, address + byte_offset);
7489 }
7490 }
7491
7492 if (v != NULL || no_err)
7493 return v;
7494 else
7495 error (_("There is no member named %s."), name);
7496
7497 BadValue:
7498 if (no_err)
7499 return NULL;
7500 else
7501 error (_("Attempt to extract a component of "
7502 "a value that is not a record."));
7503 }
7504
7505 /* Return a string representation of type TYPE. */
7506
7507 static std::string
7508 type_as_string (struct type *type)
7509 {
7510 string_file tmp_stream;
7511
7512 type_print (type, "", &tmp_stream, -1);
7513
7514 return std::move (tmp_stream.string ());
7515 }
7516
7517 /* Given a type TYPE, look up the type of the component of type named NAME.
7518 If DISPP is non-null, add its byte displacement from the beginning of a
7519 structure (pointed to by a value) of type TYPE to *DISPP (does not
7520 work for packed fields).
7521
7522 Matches any field whose name has NAME as a prefix, possibly
7523 followed by "___".
7524
7525 TYPE can be either a struct or union. If REFOK, TYPE may also
7526 be a (pointer or reference)+ to a struct or union, and the
7527 ultimate target type will be searched.
7528
7529 Looks recursively into variant clauses and parent types.
7530
7531 In the case of homonyms in the tagged types, please refer to the
7532 long explanation in find_struct_field's function documentation.
7533
7534 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7535 TYPE is not a type of the right kind. */
7536
7537 static struct type *
7538 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7539 int noerr)
7540 {
7541 int i;
7542 int parent_offset = -1;
7543
7544 if (name == NULL)
7545 goto BadName;
7546
7547 if (refok && type != NULL)
7548 while (1)
7549 {
7550 type = ada_check_typedef (type);
7551 if (TYPE_CODE (type) != TYPE_CODE_PTR
7552 && TYPE_CODE (type) != TYPE_CODE_REF)
7553 break;
7554 type = TYPE_TARGET_TYPE (type);
7555 }
7556
7557 if (type == NULL
7558 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7559 && TYPE_CODE (type) != TYPE_CODE_UNION))
7560 {
7561 if (noerr)
7562 return NULL;
7563
7564 error (_("Type %s is not a structure or union type"),
7565 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7566 }
7567
7568 type = to_static_fixed_type (type);
7569
7570 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7571 {
7572 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7573 struct type *t;
7574
7575 if (t_field_name == NULL)
7576 continue;
7577
7578 else if (ada_is_parent_field (type, i))
7579 {
7580 /* This is a field pointing us to the parent type of a tagged
7581 type. As hinted in this function's documentation, we give
7582 preference to fields in the current record first, so what
7583 we do here is just record the index of this field before
7584 we skip it. If it turns out we couldn't find our field
7585 in the current record, then we'll get back to it and search
7586 inside it whether the field might exist in the parent. */
7587
7588 parent_offset = i;
7589 continue;
7590 }
7591
7592 else if (field_name_match (t_field_name, name))
7593 return TYPE_FIELD_TYPE (type, i);
7594
7595 else if (ada_is_wrapper_field (type, i))
7596 {
7597 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7598 0, 1);
7599 if (t != NULL)
7600 return t;
7601 }
7602
7603 else if (ada_is_variant_part (type, i))
7604 {
7605 int j;
7606 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7607 i));
7608
7609 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7610 {
7611 /* FIXME pnh 2008/01/26: We check for a field that is
7612 NOT wrapped in a struct, since the compiler sometimes
7613 generates these for unchecked variant types. Revisit
7614 if the compiler changes this practice. */
7615 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7616
7617 if (v_field_name != NULL
7618 && field_name_match (v_field_name, name))
7619 t = TYPE_FIELD_TYPE (field_type, j);
7620 else
7621 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7622 j),
7623 name, 0, 1);
7624
7625 if (t != NULL)
7626 return t;
7627 }
7628 }
7629
7630 }
7631
7632 /* Field not found so far. If this is a tagged type which
7633 has a parent, try finding that field in the parent now. */
7634
7635 if (parent_offset != -1)
7636 {
7637 struct type *t;
7638
7639 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7640 name, 0, 1);
7641 if (t != NULL)
7642 return t;
7643 }
7644
7645 BadName:
7646 if (!noerr)
7647 {
7648 const char *name_str = name != NULL ? name : _("<null>");
7649
7650 error (_("Type %s has no component named %s"),
7651 type_as_string (type).c_str (), name_str);
7652 }
7653
7654 return NULL;
7655 }
7656
7657 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7658 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7659 represents an unchecked union (that is, the variant part of a
7660 record that is named in an Unchecked_Union pragma). */
7661
7662 static int
7663 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7664 {
7665 const char *discrim_name = ada_variant_discrim_name (var_type);
7666
7667 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7668 }
7669
7670
7671 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7672 within a value of type OUTER_TYPE that is stored in GDB at
7673 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7674 numbering from 0) is applicable. Returns -1 if none are. */
7675
7676 int
7677 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7678 const gdb_byte *outer_valaddr)
7679 {
7680 int others_clause;
7681 int i;
7682 const char *discrim_name = ada_variant_discrim_name (var_type);
7683 struct value *outer;
7684 struct value *discrim;
7685 LONGEST discrim_val;
7686
7687 /* Using plain value_from_contents_and_address here causes problems
7688 because we will end up trying to resolve a type that is currently
7689 being constructed. */
7690 outer = value_from_contents_and_address_unresolved (outer_type,
7691 outer_valaddr, 0);
7692 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7693 if (discrim == NULL)
7694 return -1;
7695 discrim_val = value_as_long (discrim);
7696
7697 others_clause = -1;
7698 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7699 {
7700 if (ada_is_others_clause (var_type, i))
7701 others_clause = i;
7702 else if (ada_in_variant (discrim_val, var_type, i))
7703 return i;
7704 }
7705
7706 return others_clause;
7707 }
7708 \f
7709
7710
7711 /* Dynamic-Sized Records */
7712
7713 /* Strategy: The type ostensibly attached to a value with dynamic size
7714 (i.e., a size that is not statically recorded in the debugging
7715 data) does not accurately reflect the size or layout of the value.
7716 Our strategy is to convert these values to values with accurate,
7717 conventional types that are constructed on the fly. */
7718
7719 /* There is a subtle and tricky problem here. In general, we cannot
7720 determine the size of dynamic records without its data. However,
7721 the 'struct value' data structure, which GDB uses to represent
7722 quantities in the inferior process (the target), requires the size
7723 of the type at the time of its allocation in order to reserve space
7724 for GDB's internal copy of the data. That's why the
7725 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7726 rather than struct value*s.
7727
7728 However, GDB's internal history variables ($1, $2, etc.) are
7729 struct value*s containing internal copies of the data that are not, in
7730 general, the same as the data at their corresponding addresses in
7731 the target. Fortunately, the types we give to these values are all
7732 conventional, fixed-size types (as per the strategy described
7733 above), so that we don't usually have to perform the
7734 'to_fixed_xxx_type' conversions to look at their values.
7735 Unfortunately, there is one exception: if one of the internal
7736 history variables is an array whose elements are unconstrained
7737 records, then we will need to create distinct fixed types for each
7738 element selected. */
7739
7740 /* The upshot of all of this is that many routines take a (type, host
7741 address, target address) triple as arguments to represent a value.
7742 The host address, if non-null, is supposed to contain an internal
7743 copy of the relevant data; otherwise, the program is to consult the
7744 target at the target address. */
7745
7746 /* Assuming that VAL0 represents a pointer value, the result of
7747 dereferencing it. Differs from value_ind in its treatment of
7748 dynamic-sized types. */
7749
7750 struct value *
7751 ada_value_ind (struct value *val0)
7752 {
7753 struct value *val = value_ind (val0);
7754
7755 if (ada_is_tagged_type (value_type (val), 0))
7756 val = ada_tag_value_at_base_address (val);
7757
7758 return ada_to_fixed_value (val);
7759 }
7760
7761 /* The value resulting from dereferencing any "reference to"
7762 qualifiers on VAL0. */
7763
7764 static struct value *
7765 ada_coerce_ref (struct value *val0)
7766 {
7767 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7768 {
7769 struct value *val = val0;
7770
7771 val = coerce_ref (val);
7772
7773 if (ada_is_tagged_type (value_type (val), 0))
7774 val = ada_tag_value_at_base_address (val);
7775
7776 return ada_to_fixed_value (val);
7777 }
7778 else
7779 return val0;
7780 }
7781
7782 /* Return OFF rounded upward if necessary to a multiple of
7783 ALIGNMENT (a power of 2). */
7784
7785 static unsigned int
7786 align_value (unsigned int off, unsigned int alignment)
7787 {
7788 return (off + alignment - 1) & ~(alignment - 1);
7789 }
7790
7791 /* Return the bit alignment required for field #F of template type TYPE. */
7792
7793 static unsigned int
7794 field_alignment (struct type *type, int f)
7795 {
7796 const char *name = TYPE_FIELD_NAME (type, f);
7797 int len;
7798 int align_offset;
7799
7800 /* The field name should never be null, unless the debugging information
7801 is somehow malformed. In this case, we assume the field does not
7802 require any alignment. */
7803 if (name == NULL)
7804 return 1;
7805
7806 len = strlen (name);
7807
7808 if (!isdigit (name[len - 1]))
7809 return 1;
7810
7811 if (isdigit (name[len - 2]))
7812 align_offset = len - 2;
7813 else
7814 align_offset = len - 1;
7815
7816 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7817 return TARGET_CHAR_BIT;
7818
7819 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7820 }
7821
7822 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7823
7824 static struct symbol *
7825 ada_find_any_type_symbol (const char *name)
7826 {
7827 struct symbol *sym;
7828
7829 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7830 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7831 return sym;
7832
7833 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7834 return sym;
7835 }
7836
7837 /* Find a type named NAME. Ignores ambiguity. This routine will look
7838 solely for types defined by debug info, it will not search the GDB
7839 primitive types. */
7840
7841 static struct type *
7842 ada_find_any_type (const char *name)
7843 {
7844 struct symbol *sym = ada_find_any_type_symbol (name);
7845
7846 if (sym != NULL)
7847 return SYMBOL_TYPE (sym);
7848
7849 return NULL;
7850 }
7851
7852 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7853 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7854 symbol, in which case it is returned. Otherwise, this looks for
7855 symbols whose name is that of NAME_SYM suffixed with "___XR".
7856 Return symbol if found, and NULL otherwise. */
7857
7858 static bool
7859 ada_is_renaming_symbol (struct symbol *name_sym)
7860 {
7861 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7862 return strstr (name, "___XR") != NULL;
7863 }
7864
7865 /* Because of GNAT encoding conventions, several GDB symbols may match a
7866 given type name. If the type denoted by TYPE0 is to be preferred to
7867 that of TYPE1 for purposes of type printing, return non-zero;
7868 otherwise return 0. */
7869
7870 int
7871 ada_prefer_type (struct type *type0, struct type *type1)
7872 {
7873 if (type1 == NULL)
7874 return 1;
7875 else if (type0 == NULL)
7876 return 0;
7877 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7878 return 1;
7879 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7880 return 0;
7881 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7882 return 1;
7883 else if (ada_is_constrained_packed_array_type (type0))
7884 return 1;
7885 else if (ada_is_array_descriptor_type (type0)
7886 && !ada_is_array_descriptor_type (type1))
7887 return 1;
7888 else
7889 {
7890 const char *type0_name = TYPE_NAME (type0);
7891 const char *type1_name = TYPE_NAME (type1);
7892
7893 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7894 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7895 return 1;
7896 }
7897 return 0;
7898 }
7899
7900 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7901 null. */
7902
7903 const char *
7904 ada_type_name (struct type *type)
7905 {
7906 if (type == NULL)
7907 return NULL;
7908 return TYPE_NAME (type);
7909 }
7910
7911 /* Search the list of "descriptive" types associated to TYPE for a type
7912 whose name is NAME. */
7913
7914 static struct type *
7915 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7916 {
7917 struct type *result, *tmp;
7918
7919 if (ada_ignore_descriptive_types_p)
7920 return NULL;
7921
7922 /* If there no descriptive-type info, then there is no parallel type
7923 to be found. */
7924 if (!HAVE_GNAT_AUX_INFO (type))
7925 return NULL;
7926
7927 result = TYPE_DESCRIPTIVE_TYPE (type);
7928 while (result != NULL)
7929 {
7930 const char *result_name = ada_type_name (result);
7931
7932 if (result_name == NULL)
7933 {
7934 warning (_("unexpected null name on descriptive type"));
7935 return NULL;
7936 }
7937
7938 /* If the names match, stop. */
7939 if (strcmp (result_name, name) == 0)
7940 break;
7941
7942 /* Otherwise, look at the next item on the list, if any. */
7943 if (HAVE_GNAT_AUX_INFO (result))
7944 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7945 else
7946 tmp = NULL;
7947
7948 /* If not found either, try after having resolved the typedef. */
7949 if (tmp != NULL)
7950 result = tmp;
7951 else
7952 {
7953 result = check_typedef (result);
7954 if (HAVE_GNAT_AUX_INFO (result))
7955 result = TYPE_DESCRIPTIVE_TYPE (result);
7956 else
7957 result = NULL;
7958 }
7959 }
7960
7961 /* If we didn't find a match, see whether this is a packed array. With
7962 older compilers, the descriptive type information is either absent or
7963 irrelevant when it comes to packed arrays so the above lookup fails.
7964 Fall back to using a parallel lookup by name in this case. */
7965 if (result == NULL && ada_is_constrained_packed_array_type (type))
7966 return ada_find_any_type (name);
7967
7968 return result;
7969 }
7970
7971 /* Find a parallel type to TYPE with the specified NAME, using the
7972 descriptive type taken from the debugging information, if available,
7973 and otherwise using the (slower) name-based method. */
7974
7975 static struct type *
7976 ada_find_parallel_type_with_name (struct type *type, const char *name)
7977 {
7978 struct type *result = NULL;
7979
7980 if (HAVE_GNAT_AUX_INFO (type))
7981 result = find_parallel_type_by_descriptive_type (type, name);
7982 else
7983 result = ada_find_any_type (name);
7984
7985 return result;
7986 }
7987
7988 /* Same as above, but specify the name of the parallel type by appending
7989 SUFFIX to the name of TYPE. */
7990
7991 struct type *
7992 ada_find_parallel_type (struct type *type, const char *suffix)
7993 {
7994 char *name;
7995 const char *type_name = ada_type_name (type);
7996 int len;
7997
7998 if (type_name == NULL)
7999 return NULL;
8000
8001 len = strlen (type_name);
8002
8003 name = (char *) alloca (len + strlen (suffix) + 1);
8004
8005 strcpy (name, type_name);
8006 strcpy (name + len, suffix);
8007
8008 return ada_find_parallel_type_with_name (type, name);
8009 }
8010
8011 /* If TYPE is a variable-size record type, return the corresponding template
8012 type describing its fields. Otherwise, return NULL. */
8013
8014 static struct type *
8015 dynamic_template_type (struct type *type)
8016 {
8017 type = ada_check_typedef (type);
8018
8019 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8020 || ada_type_name (type) == NULL)
8021 return NULL;
8022 else
8023 {
8024 int len = strlen (ada_type_name (type));
8025
8026 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8027 return type;
8028 else
8029 return ada_find_parallel_type (type, "___XVE");
8030 }
8031 }
8032
8033 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8034 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8035
8036 static int
8037 is_dynamic_field (struct type *templ_type, int field_num)
8038 {
8039 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8040
8041 return name != NULL
8042 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8043 && strstr (name, "___XVL") != NULL;
8044 }
8045
8046 /* The index of the variant field of TYPE, or -1 if TYPE does not
8047 represent a variant record type. */
8048
8049 static int
8050 variant_field_index (struct type *type)
8051 {
8052 int f;
8053
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8055 return -1;
8056
8057 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8058 {
8059 if (ada_is_variant_part (type, f))
8060 return f;
8061 }
8062 return -1;
8063 }
8064
8065 /* A record type with no fields. */
8066
8067 static struct type *
8068 empty_record (struct type *templ)
8069 {
8070 struct type *type = alloc_type_copy (templ);
8071
8072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8073 TYPE_NFIELDS (type) = 0;
8074 TYPE_FIELDS (type) = NULL;
8075 INIT_NONE_SPECIFIC (type);
8076 TYPE_NAME (type) = "<empty>";
8077 TYPE_LENGTH (type) = 0;
8078 return type;
8079 }
8080
8081 /* An ordinary record type (with fixed-length fields) that describes
8082 the value of type TYPE at VALADDR or ADDRESS (see comments at
8083 the beginning of this section) VAL according to GNAT conventions.
8084 DVAL0 should describe the (portion of a) record that contains any
8085 necessary discriminants. It should be NULL if value_type (VAL) is
8086 an outer-level type (i.e., as opposed to a branch of a variant.) A
8087 variant field (unless unchecked) is replaced by a particular branch
8088 of the variant.
8089
8090 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8091 length are not statically known are discarded. As a consequence,
8092 VALADDR, ADDRESS and DVAL0 are ignored.
8093
8094 NOTE: Limitations: For now, we assume that dynamic fields and
8095 variants occupy whole numbers of bytes. However, they need not be
8096 byte-aligned. */
8097
8098 struct type *
8099 ada_template_to_fixed_record_type_1 (struct type *type,
8100 const gdb_byte *valaddr,
8101 CORE_ADDR address, struct value *dval0,
8102 int keep_dynamic_fields)
8103 {
8104 struct value *mark = value_mark ();
8105 struct value *dval;
8106 struct type *rtype;
8107 int nfields, bit_len;
8108 int variant_field;
8109 long off;
8110 int fld_bit_len;
8111 int f;
8112
8113 /* Compute the number of fields in this record type that are going
8114 to be processed: unless keep_dynamic_fields, this includes only
8115 fields whose position and length are static will be processed. */
8116 if (keep_dynamic_fields)
8117 nfields = TYPE_NFIELDS (type);
8118 else
8119 {
8120 nfields = 0;
8121 while (nfields < TYPE_NFIELDS (type)
8122 && !ada_is_variant_part (type, nfields)
8123 && !is_dynamic_field (type, nfields))
8124 nfields++;
8125 }
8126
8127 rtype = alloc_type_copy (type);
8128 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8129 INIT_NONE_SPECIFIC (rtype);
8130 TYPE_NFIELDS (rtype) = nfields;
8131 TYPE_FIELDS (rtype) = (struct field *)
8132 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8133 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8134 TYPE_NAME (rtype) = ada_type_name (type);
8135 TYPE_FIXED_INSTANCE (rtype) = 1;
8136
8137 off = 0;
8138 bit_len = 0;
8139 variant_field = -1;
8140
8141 for (f = 0; f < nfields; f += 1)
8142 {
8143 off = align_value (off, field_alignment (type, f))
8144 + TYPE_FIELD_BITPOS (type, f);
8145 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8146 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8147
8148 if (ada_is_variant_part (type, f))
8149 {
8150 variant_field = f;
8151 fld_bit_len = 0;
8152 }
8153 else if (is_dynamic_field (type, f))
8154 {
8155 const gdb_byte *field_valaddr = valaddr;
8156 CORE_ADDR field_address = address;
8157 struct type *field_type =
8158 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8159
8160 if (dval0 == NULL)
8161 {
8162 /* rtype's length is computed based on the run-time
8163 value of discriminants. If the discriminants are not
8164 initialized, the type size may be completely bogus and
8165 GDB may fail to allocate a value for it. So check the
8166 size first before creating the value. */
8167 ada_ensure_varsize_limit (rtype);
8168 /* Using plain value_from_contents_and_address here
8169 causes problems because we will end up trying to
8170 resolve a type that is currently being
8171 constructed. */
8172 dval = value_from_contents_and_address_unresolved (rtype,
8173 valaddr,
8174 address);
8175 rtype = value_type (dval);
8176 }
8177 else
8178 dval = dval0;
8179
8180 /* If the type referenced by this field is an aligner type, we need
8181 to unwrap that aligner type, because its size might not be set.
8182 Keeping the aligner type would cause us to compute the wrong
8183 size for this field, impacting the offset of the all the fields
8184 that follow this one. */
8185 if (ada_is_aligner_type (field_type))
8186 {
8187 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8188
8189 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8190 field_address = cond_offset_target (field_address, field_offset);
8191 field_type = ada_aligned_type (field_type);
8192 }
8193
8194 field_valaddr = cond_offset_host (field_valaddr,
8195 off / TARGET_CHAR_BIT);
8196 field_address = cond_offset_target (field_address,
8197 off / TARGET_CHAR_BIT);
8198
8199 /* Get the fixed type of the field. Note that, in this case,
8200 we do not want to get the real type out of the tag: if
8201 the current field is the parent part of a tagged record,
8202 we will get the tag of the object. Clearly wrong: the real
8203 type of the parent is not the real type of the child. We
8204 would end up in an infinite loop. */
8205 field_type = ada_get_base_type (field_type);
8206 field_type = ada_to_fixed_type (field_type, field_valaddr,
8207 field_address, dval, 0);
8208 /* If the field size is already larger than the maximum
8209 object size, then the record itself will necessarily
8210 be larger than the maximum object size. We need to make
8211 this check now, because the size might be so ridiculously
8212 large (due to an uninitialized variable in the inferior)
8213 that it would cause an overflow when adding it to the
8214 record size. */
8215 ada_ensure_varsize_limit (field_type);
8216
8217 TYPE_FIELD_TYPE (rtype, f) = field_type;
8218 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8219 /* The multiplication can potentially overflow. But because
8220 the field length has been size-checked just above, and
8221 assuming that the maximum size is a reasonable value,
8222 an overflow should not happen in practice. So rather than
8223 adding overflow recovery code to this already complex code,
8224 we just assume that it's not going to happen. */
8225 fld_bit_len =
8226 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8227 }
8228 else
8229 {
8230 /* Note: If this field's type is a typedef, it is important
8231 to preserve the typedef layer.
8232
8233 Otherwise, we might be transforming a typedef to a fat
8234 pointer (encoding a pointer to an unconstrained array),
8235 into a basic fat pointer (encoding an unconstrained
8236 array). As both types are implemented using the same
8237 structure, the typedef is the only clue which allows us
8238 to distinguish between the two options. Stripping it
8239 would prevent us from printing this field appropriately. */
8240 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8241 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8242 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8243 fld_bit_len =
8244 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8245 else
8246 {
8247 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8248
8249 /* We need to be careful of typedefs when computing
8250 the length of our field. If this is a typedef,
8251 get the length of the target type, not the length
8252 of the typedef. */
8253 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8254 field_type = ada_typedef_target_type (field_type);
8255
8256 fld_bit_len =
8257 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8258 }
8259 }
8260 if (off + fld_bit_len > bit_len)
8261 bit_len = off + fld_bit_len;
8262 off += fld_bit_len;
8263 TYPE_LENGTH (rtype) =
8264 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8265 }
8266
8267 /* We handle the variant part, if any, at the end because of certain
8268 odd cases in which it is re-ordered so as NOT to be the last field of
8269 the record. This can happen in the presence of representation
8270 clauses. */
8271 if (variant_field >= 0)
8272 {
8273 struct type *branch_type;
8274
8275 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8276
8277 if (dval0 == NULL)
8278 {
8279 /* Using plain value_from_contents_and_address here causes
8280 problems because we will end up trying to resolve a type
8281 that is currently being constructed. */
8282 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8283 address);
8284 rtype = value_type (dval);
8285 }
8286 else
8287 dval = dval0;
8288
8289 branch_type =
8290 to_fixed_variant_branch_type
8291 (TYPE_FIELD_TYPE (type, variant_field),
8292 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8293 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8294 if (branch_type == NULL)
8295 {
8296 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8297 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8298 TYPE_NFIELDS (rtype) -= 1;
8299 }
8300 else
8301 {
8302 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8303 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8304 fld_bit_len =
8305 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8306 TARGET_CHAR_BIT;
8307 if (off + fld_bit_len > bit_len)
8308 bit_len = off + fld_bit_len;
8309 TYPE_LENGTH (rtype) =
8310 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8311 }
8312 }
8313
8314 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8315 should contain the alignment of that record, which should be a strictly
8316 positive value. If null or negative, then something is wrong, most
8317 probably in the debug info. In that case, we don't round up the size
8318 of the resulting type. If this record is not part of another structure,
8319 the current RTYPE length might be good enough for our purposes. */
8320 if (TYPE_LENGTH (type) <= 0)
8321 {
8322 if (TYPE_NAME (rtype))
8323 warning (_("Invalid type size for `%s' detected: %s."),
8324 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8325 else
8326 warning (_("Invalid type size for <unnamed> detected: %s."),
8327 pulongest (TYPE_LENGTH (type)));
8328 }
8329 else
8330 {
8331 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8332 TYPE_LENGTH (type));
8333 }
8334
8335 value_free_to_mark (mark);
8336 if (TYPE_LENGTH (rtype) > varsize_limit)
8337 error (_("record type with dynamic size is larger than varsize-limit"));
8338 return rtype;
8339 }
8340
8341 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8342 of 1. */
8343
8344 static struct type *
8345 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8346 CORE_ADDR address, struct value *dval0)
8347 {
8348 return ada_template_to_fixed_record_type_1 (type, valaddr,
8349 address, dval0, 1);
8350 }
8351
8352 /* An ordinary record type in which ___XVL-convention fields and
8353 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8354 static approximations, containing all possible fields. Uses
8355 no runtime values. Useless for use in values, but that's OK,
8356 since the results are used only for type determinations. Works on both
8357 structs and unions. Representation note: to save space, we memorize
8358 the result of this function in the TYPE_TARGET_TYPE of the
8359 template type. */
8360
8361 static struct type *
8362 template_to_static_fixed_type (struct type *type0)
8363 {
8364 struct type *type;
8365 int nfields;
8366 int f;
8367
8368 /* No need no do anything if the input type is already fixed. */
8369 if (TYPE_FIXED_INSTANCE (type0))
8370 return type0;
8371
8372 /* Likewise if we already have computed the static approximation. */
8373 if (TYPE_TARGET_TYPE (type0) != NULL)
8374 return TYPE_TARGET_TYPE (type0);
8375
8376 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8377 type = type0;
8378 nfields = TYPE_NFIELDS (type0);
8379
8380 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8381 recompute all over next time. */
8382 TYPE_TARGET_TYPE (type0) = type;
8383
8384 for (f = 0; f < nfields; f += 1)
8385 {
8386 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8387 struct type *new_type;
8388
8389 if (is_dynamic_field (type0, f))
8390 {
8391 field_type = ada_check_typedef (field_type);
8392 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8393 }
8394 else
8395 new_type = static_unwrap_type (field_type);
8396
8397 if (new_type != field_type)
8398 {
8399 /* Clone TYPE0 only the first time we get a new field type. */
8400 if (type == type0)
8401 {
8402 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8403 TYPE_CODE (type) = TYPE_CODE (type0);
8404 INIT_NONE_SPECIFIC (type);
8405 TYPE_NFIELDS (type) = nfields;
8406 TYPE_FIELDS (type) = (struct field *)
8407 TYPE_ALLOC (type, nfields * sizeof (struct field));
8408 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8409 sizeof (struct field) * nfields);
8410 TYPE_NAME (type) = ada_type_name (type0);
8411 TYPE_FIXED_INSTANCE (type) = 1;
8412 TYPE_LENGTH (type) = 0;
8413 }
8414 TYPE_FIELD_TYPE (type, f) = new_type;
8415 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8416 }
8417 }
8418
8419 return type;
8420 }
8421
8422 /* Given an object of type TYPE whose contents are at VALADDR and
8423 whose address in memory is ADDRESS, returns a revision of TYPE,
8424 which should be a non-dynamic-sized record, in which the variant
8425 part, if any, is replaced with the appropriate branch. Looks
8426 for discriminant values in DVAL0, which can be NULL if the record
8427 contains the necessary discriminant values. */
8428
8429 static struct type *
8430 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8431 CORE_ADDR address, struct value *dval0)
8432 {
8433 struct value *mark = value_mark ();
8434 struct value *dval;
8435 struct type *rtype;
8436 struct type *branch_type;
8437 int nfields = TYPE_NFIELDS (type);
8438 int variant_field = variant_field_index (type);
8439
8440 if (variant_field == -1)
8441 return type;
8442
8443 if (dval0 == NULL)
8444 {
8445 dval = value_from_contents_and_address (type, valaddr, address);
8446 type = value_type (dval);
8447 }
8448 else
8449 dval = dval0;
8450
8451 rtype = alloc_type_copy (type);
8452 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8453 INIT_NONE_SPECIFIC (rtype);
8454 TYPE_NFIELDS (rtype) = nfields;
8455 TYPE_FIELDS (rtype) =
8456 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8457 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8458 sizeof (struct field) * nfields);
8459 TYPE_NAME (rtype) = ada_type_name (type);
8460 TYPE_FIXED_INSTANCE (rtype) = 1;
8461 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8462
8463 branch_type = to_fixed_variant_branch_type
8464 (TYPE_FIELD_TYPE (type, variant_field),
8465 cond_offset_host (valaddr,
8466 TYPE_FIELD_BITPOS (type, variant_field)
8467 / TARGET_CHAR_BIT),
8468 cond_offset_target (address,
8469 TYPE_FIELD_BITPOS (type, variant_field)
8470 / TARGET_CHAR_BIT), dval);
8471 if (branch_type == NULL)
8472 {
8473 int f;
8474
8475 for (f = variant_field + 1; f < nfields; f += 1)
8476 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8477 TYPE_NFIELDS (rtype) -= 1;
8478 }
8479 else
8480 {
8481 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8482 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8483 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8484 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8485 }
8486 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8487
8488 value_free_to_mark (mark);
8489 return rtype;
8490 }
8491
8492 /* An ordinary record type (with fixed-length fields) that describes
8493 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8494 beginning of this section]. Any necessary discriminants' values
8495 should be in DVAL, a record value; it may be NULL if the object
8496 at ADDR itself contains any necessary discriminant values.
8497 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8498 values from the record are needed. Except in the case that DVAL,
8499 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8500 unchecked) is replaced by a particular branch of the variant.
8501
8502 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8503 is questionable and may be removed. It can arise during the
8504 processing of an unconstrained-array-of-record type where all the
8505 variant branches have exactly the same size. This is because in
8506 such cases, the compiler does not bother to use the XVS convention
8507 when encoding the record. I am currently dubious of this
8508 shortcut and suspect the compiler should be altered. FIXME. */
8509
8510 static struct type *
8511 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8512 CORE_ADDR address, struct value *dval)
8513 {
8514 struct type *templ_type;
8515
8516 if (TYPE_FIXED_INSTANCE (type0))
8517 return type0;
8518
8519 templ_type = dynamic_template_type (type0);
8520
8521 if (templ_type != NULL)
8522 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8523 else if (variant_field_index (type0) >= 0)
8524 {
8525 if (dval == NULL && valaddr == NULL && address == 0)
8526 return type0;
8527 return to_record_with_fixed_variant_part (type0, valaddr, address,
8528 dval);
8529 }
8530 else
8531 {
8532 TYPE_FIXED_INSTANCE (type0) = 1;
8533 return type0;
8534 }
8535
8536 }
8537
8538 /* An ordinary record type (with fixed-length fields) that describes
8539 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8540 union type. Any necessary discriminants' values should be in DVAL,
8541 a record value. That is, this routine selects the appropriate
8542 branch of the union at ADDR according to the discriminant value
8543 indicated in the union's type name. Returns VAR_TYPE0 itself if
8544 it represents a variant subject to a pragma Unchecked_Union. */
8545
8546 static struct type *
8547 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8548 CORE_ADDR address, struct value *dval)
8549 {
8550 int which;
8551 struct type *templ_type;
8552 struct type *var_type;
8553
8554 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8555 var_type = TYPE_TARGET_TYPE (var_type0);
8556 else
8557 var_type = var_type0;
8558
8559 templ_type = ada_find_parallel_type (var_type, "___XVU");
8560
8561 if (templ_type != NULL)
8562 var_type = templ_type;
8563
8564 if (is_unchecked_variant (var_type, value_type (dval)))
8565 return var_type0;
8566 which =
8567 ada_which_variant_applies (var_type,
8568 value_type (dval), value_contents (dval));
8569
8570 if (which < 0)
8571 return empty_record (var_type);
8572 else if (is_dynamic_field (var_type, which))
8573 return to_fixed_record_type
8574 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8575 valaddr, address, dval);
8576 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8577 return
8578 to_fixed_record_type
8579 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8580 else
8581 return TYPE_FIELD_TYPE (var_type, which);
8582 }
8583
8584 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8585 ENCODING_TYPE, a type following the GNAT conventions for discrete
8586 type encodings, only carries redundant information. */
8587
8588 static int
8589 ada_is_redundant_range_encoding (struct type *range_type,
8590 struct type *encoding_type)
8591 {
8592 const char *bounds_str;
8593 int n;
8594 LONGEST lo, hi;
8595
8596 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8597
8598 if (TYPE_CODE (get_base_type (range_type))
8599 != TYPE_CODE (get_base_type (encoding_type)))
8600 {
8601 /* The compiler probably used a simple base type to describe
8602 the range type instead of the range's actual base type,
8603 expecting us to get the real base type from the encoding
8604 anyway. In this situation, the encoding cannot be ignored
8605 as redundant. */
8606 return 0;
8607 }
8608
8609 if (is_dynamic_type (range_type))
8610 return 0;
8611
8612 if (TYPE_NAME (encoding_type) == NULL)
8613 return 0;
8614
8615 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8616 if (bounds_str == NULL)
8617 return 0;
8618
8619 n = 8; /* Skip "___XDLU_". */
8620 if (!ada_scan_number (bounds_str, n, &lo, &n))
8621 return 0;
8622 if (TYPE_LOW_BOUND (range_type) != lo)
8623 return 0;
8624
8625 n += 2; /* Skip the "__" separator between the two bounds. */
8626 if (!ada_scan_number (bounds_str, n, &hi, &n))
8627 return 0;
8628 if (TYPE_HIGH_BOUND (range_type) != hi)
8629 return 0;
8630
8631 return 1;
8632 }
8633
8634 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8635 a type following the GNAT encoding for describing array type
8636 indices, only carries redundant information. */
8637
8638 static int
8639 ada_is_redundant_index_type_desc (struct type *array_type,
8640 struct type *desc_type)
8641 {
8642 struct type *this_layer = check_typedef (array_type);
8643 int i;
8644
8645 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8646 {
8647 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8648 TYPE_FIELD_TYPE (desc_type, i)))
8649 return 0;
8650 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8651 }
8652
8653 return 1;
8654 }
8655
8656 /* Assuming that TYPE0 is an array type describing the type of a value
8657 at ADDR, and that DVAL describes a record containing any
8658 discriminants used in TYPE0, returns a type for the value that
8659 contains no dynamic components (that is, no components whose sizes
8660 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8661 true, gives an error message if the resulting type's size is over
8662 varsize_limit. */
8663
8664 static struct type *
8665 to_fixed_array_type (struct type *type0, struct value *dval,
8666 int ignore_too_big)
8667 {
8668 struct type *index_type_desc;
8669 struct type *result;
8670 int constrained_packed_array_p;
8671 static const char *xa_suffix = "___XA";
8672
8673 type0 = ada_check_typedef (type0);
8674 if (TYPE_FIXED_INSTANCE (type0))
8675 return type0;
8676
8677 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8678 if (constrained_packed_array_p)
8679 type0 = decode_constrained_packed_array_type (type0);
8680
8681 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8682
8683 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8684 encoding suffixed with 'P' may still be generated. If so,
8685 it should be used to find the XA type. */
8686
8687 if (index_type_desc == NULL)
8688 {
8689 const char *type_name = ada_type_name (type0);
8690
8691 if (type_name != NULL)
8692 {
8693 const int len = strlen (type_name);
8694 char *name = (char *) alloca (len + strlen (xa_suffix));
8695
8696 if (type_name[len - 1] == 'P')
8697 {
8698 strcpy (name, type_name);
8699 strcpy (name + len - 1, xa_suffix);
8700 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8701 }
8702 }
8703 }
8704
8705 ada_fixup_array_indexes_type (index_type_desc);
8706 if (index_type_desc != NULL
8707 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8708 {
8709 /* Ignore this ___XA parallel type, as it does not bring any
8710 useful information. This allows us to avoid creating fixed
8711 versions of the array's index types, which would be identical
8712 to the original ones. This, in turn, can also help avoid
8713 the creation of fixed versions of the array itself. */
8714 index_type_desc = NULL;
8715 }
8716
8717 if (index_type_desc == NULL)
8718 {
8719 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8720
8721 /* NOTE: elt_type---the fixed version of elt_type0---should never
8722 depend on the contents of the array in properly constructed
8723 debugging data. */
8724 /* Create a fixed version of the array element type.
8725 We're not providing the address of an element here,
8726 and thus the actual object value cannot be inspected to do
8727 the conversion. This should not be a problem, since arrays of
8728 unconstrained objects are not allowed. In particular, all
8729 the elements of an array of a tagged type should all be of
8730 the same type specified in the debugging info. No need to
8731 consult the object tag. */
8732 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8733
8734 /* Make sure we always create a new array type when dealing with
8735 packed array types, since we're going to fix-up the array
8736 type length and element bitsize a little further down. */
8737 if (elt_type0 == elt_type && !constrained_packed_array_p)
8738 result = type0;
8739 else
8740 result = create_array_type (alloc_type_copy (type0),
8741 elt_type, TYPE_INDEX_TYPE (type0));
8742 }
8743 else
8744 {
8745 int i;
8746 struct type *elt_type0;
8747
8748 elt_type0 = type0;
8749 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8750 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8751
8752 /* NOTE: result---the fixed version of elt_type0---should never
8753 depend on the contents of the array in properly constructed
8754 debugging data. */
8755 /* Create a fixed version of the array element type.
8756 We're not providing the address of an element here,
8757 and thus the actual object value cannot be inspected to do
8758 the conversion. This should not be a problem, since arrays of
8759 unconstrained objects are not allowed. In particular, all
8760 the elements of an array of a tagged type should all be of
8761 the same type specified in the debugging info. No need to
8762 consult the object tag. */
8763 result =
8764 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8765
8766 elt_type0 = type0;
8767 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8768 {
8769 struct type *range_type =
8770 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8771
8772 result = create_array_type (alloc_type_copy (elt_type0),
8773 result, range_type);
8774 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8775 }
8776 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8777 error (_("array type with dynamic size is larger than varsize-limit"));
8778 }
8779
8780 /* We want to preserve the type name. This can be useful when
8781 trying to get the type name of a value that has already been
8782 printed (for instance, if the user did "print VAR; whatis $". */
8783 TYPE_NAME (result) = TYPE_NAME (type0);
8784
8785 if (constrained_packed_array_p)
8786 {
8787 /* So far, the resulting type has been created as if the original
8788 type was a regular (non-packed) array type. As a result, the
8789 bitsize of the array elements needs to be set again, and the array
8790 length needs to be recomputed based on that bitsize. */
8791 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8792 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8793
8794 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8795 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8796 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8797 TYPE_LENGTH (result)++;
8798 }
8799
8800 TYPE_FIXED_INSTANCE (result) = 1;
8801 return result;
8802 }
8803
8804
8805 /* A standard type (containing no dynamically sized components)
8806 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8807 DVAL describes a record containing any discriminants used in TYPE0,
8808 and may be NULL if there are none, or if the object of type TYPE at
8809 ADDRESS or in VALADDR contains these discriminants.
8810
8811 If CHECK_TAG is not null, in the case of tagged types, this function
8812 attempts to locate the object's tag and use it to compute the actual
8813 type. However, when ADDRESS is null, we cannot use it to determine the
8814 location of the tag, and therefore compute the tagged type's actual type.
8815 So we return the tagged type without consulting the tag. */
8816
8817 static struct type *
8818 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8819 CORE_ADDR address, struct value *dval, int check_tag)
8820 {
8821 type = ada_check_typedef (type);
8822
8823 /* Only un-fixed types need to be handled here. */
8824 if (!HAVE_GNAT_AUX_INFO (type))
8825 return type;
8826
8827 switch (TYPE_CODE (type))
8828 {
8829 default:
8830 return type;
8831 case TYPE_CODE_STRUCT:
8832 {
8833 struct type *static_type = to_static_fixed_type (type);
8834 struct type *fixed_record_type =
8835 to_fixed_record_type (type, valaddr, address, NULL);
8836
8837 /* If STATIC_TYPE is a tagged type and we know the object's address,
8838 then we can determine its tag, and compute the object's actual
8839 type from there. Note that we have to use the fixed record
8840 type (the parent part of the record may have dynamic fields
8841 and the way the location of _tag is expressed may depend on
8842 them). */
8843
8844 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8845 {
8846 struct value *tag =
8847 value_tag_from_contents_and_address
8848 (fixed_record_type,
8849 valaddr,
8850 address);
8851 struct type *real_type = type_from_tag (tag);
8852 struct value *obj =
8853 value_from_contents_and_address (fixed_record_type,
8854 valaddr,
8855 address);
8856 fixed_record_type = value_type (obj);
8857 if (real_type != NULL)
8858 return to_fixed_record_type
8859 (real_type, NULL,
8860 value_address (ada_tag_value_at_base_address (obj)), NULL);
8861 }
8862
8863 /* Check to see if there is a parallel ___XVZ variable.
8864 If there is, then it provides the actual size of our type. */
8865 else if (ada_type_name (fixed_record_type) != NULL)
8866 {
8867 const char *name = ada_type_name (fixed_record_type);
8868 char *xvz_name
8869 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8870 bool xvz_found = false;
8871 LONGEST size;
8872
8873 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8874 try
8875 {
8876 xvz_found = get_int_var_value (xvz_name, size);
8877 }
8878 catch (const gdb_exception_error &except)
8879 {
8880 /* We found the variable, but somehow failed to read
8881 its value. Rethrow the same error, but with a little
8882 bit more information, to help the user understand
8883 what went wrong (Eg: the variable might have been
8884 optimized out). */
8885 throw_error (except.error,
8886 _("unable to read value of %s (%s)"),
8887 xvz_name, except.what ());
8888 }
8889
8890 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8891 {
8892 fixed_record_type = copy_type (fixed_record_type);
8893 TYPE_LENGTH (fixed_record_type) = size;
8894
8895 /* The FIXED_RECORD_TYPE may have be a stub. We have
8896 observed this when the debugging info is STABS, and
8897 apparently it is something that is hard to fix.
8898
8899 In practice, we don't need the actual type definition
8900 at all, because the presence of the XVZ variable allows us
8901 to assume that there must be a XVS type as well, which we
8902 should be able to use later, when we need the actual type
8903 definition.
8904
8905 In the meantime, pretend that the "fixed" type we are
8906 returning is NOT a stub, because this can cause trouble
8907 when using this type to create new types targeting it.
8908 Indeed, the associated creation routines often check
8909 whether the target type is a stub and will try to replace
8910 it, thus using a type with the wrong size. This, in turn,
8911 might cause the new type to have the wrong size too.
8912 Consider the case of an array, for instance, where the size
8913 of the array is computed from the number of elements in
8914 our array multiplied by the size of its element. */
8915 TYPE_STUB (fixed_record_type) = 0;
8916 }
8917 }
8918 return fixed_record_type;
8919 }
8920 case TYPE_CODE_ARRAY:
8921 return to_fixed_array_type (type, dval, 1);
8922 case TYPE_CODE_UNION:
8923 if (dval == NULL)
8924 return type;
8925 else
8926 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8927 }
8928 }
8929
8930 /* The same as ada_to_fixed_type_1, except that it preserves the type
8931 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8932
8933 The typedef layer needs be preserved in order to differentiate between
8934 arrays and array pointers when both types are implemented using the same
8935 fat pointer. In the array pointer case, the pointer is encoded as
8936 a typedef of the pointer type. For instance, considering:
8937
8938 type String_Access is access String;
8939 S1 : String_Access := null;
8940
8941 To the debugger, S1 is defined as a typedef of type String. But
8942 to the user, it is a pointer. So if the user tries to print S1,
8943 we should not dereference the array, but print the array address
8944 instead.
8945
8946 If we didn't preserve the typedef layer, we would lose the fact that
8947 the type is to be presented as a pointer (needs de-reference before
8948 being printed). And we would also use the source-level type name. */
8949
8950 struct type *
8951 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8952 CORE_ADDR address, struct value *dval, int check_tag)
8953
8954 {
8955 struct type *fixed_type =
8956 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8957
8958 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8959 then preserve the typedef layer.
8960
8961 Implementation note: We can only check the main-type portion of
8962 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8963 from TYPE now returns a type that has the same instance flags
8964 as TYPE. For instance, if TYPE is a "typedef const", and its
8965 target type is a "struct", then the typedef elimination will return
8966 a "const" version of the target type. See check_typedef for more
8967 details about how the typedef layer elimination is done.
8968
8969 brobecker/2010-11-19: It seems to me that the only case where it is
8970 useful to preserve the typedef layer is when dealing with fat pointers.
8971 Perhaps, we could add a check for that and preserve the typedef layer
8972 only in that situation. But this seems unecessary so far, probably
8973 because we call check_typedef/ada_check_typedef pretty much everywhere.
8974 */
8975 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8976 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8977 == TYPE_MAIN_TYPE (fixed_type)))
8978 return type;
8979
8980 return fixed_type;
8981 }
8982
8983 /* A standard (static-sized) type corresponding as well as possible to
8984 TYPE0, but based on no runtime data. */
8985
8986 static struct type *
8987 to_static_fixed_type (struct type *type0)
8988 {
8989 struct type *type;
8990
8991 if (type0 == NULL)
8992 return NULL;
8993
8994 if (TYPE_FIXED_INSTANCE (type0))
8995 return type0;
8996
8997 type0 = ada_check_typedef (type0);
8998
8999 switch (TYPE_CODE (type0))
9000 {
9001 default:
9002 return type0;
9003 case TYPE_CODE_STRUCT:
9004 type = dynamic_template_type (type0);
9005 if (type != NULL)
9006 return template_to_static_fixed_type (type);
9007 else
9008 return template_to_static_fixed_type (type0);
9009 case TYPE_CODE_UNION:
9010 type = ada_find_parallel_type (type0, "___XVU");
9011 if (type != NULL)
9012 return template_to_static_fixed_type (type);
9013 else
9014 return template_to_static_fixed_type (type0);
9015 }
9016 }
9017
9018 /* A static approximation of TYPE with all type wrappers removed. */
9019
9020 static struct type *
9021 static_unwrap_type (struct type *type)
9022 {
9023 if (ada_is_aligner_type (type))
9024 {
9025 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9026 if (ada_type_name (type1) == NULL)
9027 TYPE_NAME (type1) = ada_type_name (type);
9028
9029 return static_unwrap_type (type1);
9030 }
9031 else
9032 {
9033 struct type *raw_real_type = ada_get_base_type (type);
9034
9035 if (raw_real_type == type)
9036 return type;
9037 else
9038 return to_static_fixed_type (raw_real_type);
9039 }
9040 }
9041
9042 /* In some cases, incomplete and private types require
9043 cross-references that are not resolved as records (for example,
9044 type Foo;
9045 type FooP is access Foo;
9046 V: FooP;
9047 type Foo is array ...;
9048 ). In these cases, since there is no mechanism for producing
9049 cross-references to such types, we instead substitute for FooP a
9050 stub enumeration type that is nowhere resolved, and whose tag is
9051 the name of the actual type. Call these types "non-record stubs". */
9052
9053 /* A type equivalent to TYPE that is not a non-record stub, if one
9054 exists, otherwise TYPE. */
9055
9056 struct type *
9057 ada_check_typedef (struct type *type)
9058 {
9059 if (type == NULL)
9060 return NULL;
9061
9062 /* If our type is an access to an unconstrained array, which is encoded
9063 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9064 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9065 what allows us to distinguish between fat pointers that represent
9066 array types, and fat pointers that represent array access types
9067 (in both cases, the compiler implements them as fat pointers). */
9068 if (ada_is_access_to_unconstrained_array (type))
9069 return type;
9070
9071 type = check_typedef (type);
9072 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9073 || !TYPE_STUB (type)
9074 || TYPE_NAME (type) == NULL)
9075 return type;
9076 else
9077 {
9078 const char *name = TYPE_NAME (type);
9079 struct type *type1 = ada_find_any_type (name);
9080
9081 if (type1 == NULL)
9082 return type;
9083
9084 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9085 stubs pointing to arrays, as we don't create symbols for array
9086 types, only for the typedef-to-array types). If that's the case,
9087 strip the typedef layer. */
9088 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9089 type1 = ada_check_typedef (type1);
9090
9091 return type1;
9092 }
9093 }
9094
9095 /* A value representing the data at VALADDR/ADDRESS as described by
9096 type TYPE0, but with a standard (static-sized) type that correctly
9097 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9098 type, then return VAL0 [this feature is simply to avoid redundant
9099 creation of struct values]. */
9100
9101 static struct value *
9102 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9103 struct value *val0)
9104 {
9105 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9106
9107 if (type == type0 && val0 != NULL)
9108 return val0;
9109
9110 if (VALUE_LVAL (val0) != lval_memory)
9111 {
9112 /* Our value does not live in memory; it could be a convenience
9113 variable, for instance. Create a not_lval value using val0's
9114 contents. */
9115 return value_from_contents (type, value_contents (val0));
9116 }
9117
9118 return value_from_contents_and_address (type, 0, address);
9119 }
9120
9121 /* A value representing VAL, but with a standard (static-sized) type
9122 that correctly describes it. Does not necessarily create a new
9123 value. */
9124
9125 struct value *
9126 ada_to_fixed_value (struct value *val)
9127 {
9128 val = unwrap_value (val);
9129 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9130 return val;
9131 }
9132 \f
9133
9134 /* Attributes */
9135
9136 /* Table mapping attribute numbers to names.
9137 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9138
9139 static const char *attribute_names[] = {
9140 "<?>",
9141
9142 "first",
9143 "last",
9144 "length",
9145 "image",
9146 "max",
9147 "min",
9148 "modulus",
9149 "pos",
9150 "size",
9151 "tag",
9152 "val",
9153 0
9154 };
9155
9156 const char *
9157 ada_attribute_name (enum exp_opcode n)
9158 {
9159 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9160 return attribute_names[n - OP_ATR_FIRST + 1];
9161 else
9162 return attribute_names[0];
9163 }
9164
9165 /* Evaluate the 'POS attribute applied to ARG. */
9166
9167 static LONGEST
9168 pos_atr (struct value *arg)
9169 {
9170 struct value *val = coerce_ref (arg);
9171 struct type *type = value_type (val);
9172 LONGEST result;
9173
9174 if (!discrete_type_p (type))
9175 error (_("'POS only defined on discrete types"));
9176
9177 if (!discrete_position (type, value_as_long (val), &result))
9178 error (_("enumeration value is invalid: can't find 'POS"));
9179
9180 return result;
9181 }
9182
9183 static struct value *
9184 value_pos_atr (struct type *type, struct value *arg)
9185 {
9186 return value_from_longest (type, pos_atr (arg));
9187 }
9188
9189 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9190
9191 static struct value *
9192 value_val_atr (struct type *type, struct value *arg)
9193 {
9194 if (!discrete_type_p (type))
9195 error (_("'VAL only defined on discrete types"));
9196 if (!integer_type_p (value_type (arg)))
9197 error (_("'VAL requires integral argument"));
9198
9199 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9200 {
9201 long pos = value_as_long (arg);
9202
9203 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9204 error (_("argument to 'VAL out of range"));
9205 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9206 }
9207 else
9208 return value_from_longest (type, value_as_long (arg));
9209 }
9210 \f
9211
9212 /* Evaluation */
9213
9214 /* True if TYPE appears to be an Ada character type.
9215 [At the moment, this is true only for Character and Wide_Character;
9216 It is a heuristic test that could stand improvement]. */
9217
9218 bool
9219 ada_is_character_type (struct type *type)
9220 {
9221 const char *name;
9222
9223 /* If the type code says it's a character, then assume it really is,
9224 and don't check any further. */
9225 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9226 return true;
9227
9228 /* Otherwise, assume it's a character type iff it is a discrete type
9229 with a known character type name. */
9230 name = ada_type_name (type);
9231 return (name != NULL
9232 && (TYPE_CODE (type) == TYPE_CODE_INT
9233 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9234 && (strcmp (name, "character") == 0
9235 || strcmp (name, "wide_character") == 0
9236 || strcmp (name, "wide_wide_character") == 0
9237 || strcmp (name, "unsigned char") == 0));
9238 }
9239
9240 /* True if TYPE appears to be an Ada string type. */
9241
9242 bool
9243 ada_is_string_type (struct type *type)
9244 {
9245 type = ada_check_typedef (type);
9246 if (type != NULL
9247 && TYPE_CODE (type) != TYPE_CODE_PTR
9248 && (ada_is_simple_array_type (type)
9249 || ada_is_array_descriptor_type (type))
9250 && ada_array_arity (type) == 1)
9251 {
9252 struct type *elttype = ada_array_element_type (type, 1);
9253
9254 return ada_is_character_type (elttype);
9255 }
9256 else
9257 return false;
9258 }
9259
9260 /* The compiler sometimes provides a parallel XVS type for a given
9261 PAD type. Normally, it is safe to follow the PAD type directly,
9262 but older versions of the compiler have a bug that causes the offset
9263 of its "F" field to be wrong. Following that field in that case
9264 would lead to incorrect results, but this can be worked around
9265 by ignoring the PAD type and using the associated XVS type instead.
9266
9267 Set to True if the debugger should trust the contents of PAD types.
9268 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9269 static bool trust_pad_over_xvs = true;
9270
9271 /* True if TYPE is a struct type introduced by the compiler to force the
9272 alignment of a value. Such types have a single field with a
9273 distinctive name. */
9274
9275 int
9276 ada_is_aligner_type (struct type *type)
9277 {
9278 type = ada_check_typedef (type);
9279
9280 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9281 return 0;
9282
9283 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9284 && TYPE_NFIELDS (type) == 1
9285 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9286 }
9287
9288 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9289 the parallel type. */
9290
9291 struct type *
9292 ada_get_base_type (struct type *raw_type)
9293 {
9294 struct type *real_type_namer;
9295 struct type *raw_real_type;
9296
9297 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9298 return raw_type;
9299
9300 if (ada_is_aligner_type (raw_type))
9301 /* The encoding specifies that we should always use the aligner type.
9302 So, even if this aligner type has an associated XVS type, we should
9303 simply ignore it.
9304
9305 According to the compiler gurus, an XVS type parallel to an aligner
9306 type may exist because of a stabs limitation. In stabs, aligner
9307 types are empty because the field has a variable-sized type, and
9308 thus cannot actually be used as an aligner type. As a result,
9309 we need the associated parallel XVS type to decode the type.
9310 Since the policy in the compiler is to not change the internal
9311 representation based on the debugging info format, we sometimes
9312 end up having a redundant XVS type parallel to the aligner type. */
9313 return raw_type;
9314
9315 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9316 if (real_type_namer == NULL
9317 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9318 || TYPE_NFIELDS (real_type_namer) != 1)
9319 return raw_type;
9320
9321 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9322 {
9323 /* This is an older encoding form where the base type needs to be
9324 looked up by name. We prefer the newer enconding because it is
9325 more efficient. */
9326 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9327 if (raw_real_type == NULL)
9328 return raw_type;
9329 else
9330 return raw_real_type;
9331 }
9332
9333 /* The field in our XVS type is a reference to the base type. */
9334 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9335 }
9336
9337 /* The type of value designated by TYPE, with all aligners removed. */
9338
9339 struct type *
9340 ada_aligned_type (struct type *type)
9341 {
9342 if (ada_is_aligner_type (type))
9343 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9344 else
9345 return ada_get_base_type (type);
9346 }
9347
9348
9349 /* The address of the aligned value in an object at address VALADDR
9350 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9351
9352 const gdb_byte *
9353 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9354 {
9355 if (ada_is_aligner_type (type))
9356 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9357 valaddr +
9358 TYPE_FIELD_BITPOS (type,
9359 0) / TARGET_CHAR_BIT);
9360 else
9361 return valaddr;
9362 }
9363
9364
9365
9366 /* The printed representation of an enumeration literal with encoded
9367 name NAME. The value is good to the next call of ada_enum_name. */
9368 const char *
9369 ada_enum_name (const char *name)
9370 {
9371 static char *result;
9372 static size_t result_len = 0;
9373 const char *tmp;
9374
9375 /* First, unqualify the enumeration name:
9376 1. Search for the last '.' character. If we find one, then skip
9377 all the preceding characters, the unqualified name starts
9378 right after that dot.
9379 2. Otherwise, we may be debugging on a target where the compiler
9380 translates dots into "__". Search forward for double underscores,
9381 but stop searching when we hit an overloading suffix, which is
9382 of the form "__" followed by digits. */
9383
9384 tmp = strrchr (name, '.');
9385 if (tmp != NULL)
9386 name = tmp + 1;
9387 else
9388 {
9389 while ((tmp = strstr (name, "__")) != NULL)
9390 {
9391 if (isdigit (tmp[2]))
9392 break;
9393 else
9394 name = tmp + 2;
9395 }
9396 }
9397
9398 if (name[0] == 'Q')
9399 {
9400 int v;
9401
9402 if (name[1] == 'U' || name[1] == 'W')
9403 {
9404 if (sscanf (name + 2, "%x", &v) != 1)
9405 return name;
9406 }
9407 else if (((name[1] >= '0' && name[1] <= '9')
9408 || (name[1] >= 'a' && name[1] <= 'z'))
9409 && name[2] == '\0')
9410 {
9411 GROW_VECT (result, result_len, 4);
9412 xsnprintf (result, result_len, "'%c'", name[1]);
9413 return result;
9414 }
9415 else
9416 return name;
9417
9418 GROW_VECT (result, result_len, 16);
9419 if (isascii (v) && isprint (v))
9420 xsnprintf (result, result_len, "'%c'", v);
9421 else if (name[1] == 'U')
9422 xsnprintf (result, result_len, "[\"%02x\"]", v);
9423 else
9424 xsnprintf (result, result_len, "[\"%04x\"]", v);
9425
9426 return result;
9427 }
9428 else
9429 {
9430 tmp = strstr (name, "__");
9431 if (tmp == NULL)
9432 tmp = strstr (name, "$");
9433 if (tmp != NULL)
9434 {
9435 GROW_VECT (result, result_len, tmp - name + 1);
9436 strncpy (result, name, tmp - name);
9437 result[tmp - name] = '\0';
9438 return result;
9439 }
9440
9441 return name;
9442 }
9443 }
9444
9445 /* Evaluate the subexpression of EXP starting at *POS as for
9446 evaluate_type, updating *POS to point just past the evaluated
9447 expression. */
9448
9449 static struct value *
9450 evaluate_subexp_type (struct expression *exp, int *pos)
9451 {
9452 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9453 }
9454
9455 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9456 value it wraps. */
9457
9458 static struct value *
9459 unwrap_value (struct value *val)
9460 {
9461 struct type *type = ada_check_typedef (value_type (val));
9462
9463 if (ada_is_aligner_type (type))
9464 {
9465 struct value *v = ada_value_struct_elt (val, "F", 0);
9466 struct type *val_type = ada_check_typedef (value_type (v));
9467
9468 if (ada_type_name (val_type) == NULL)
9469 TYPE_NAME (val_type) = ada_type_name (type);
9470
9471 return unwrap_value (v);
9472 }
9473 else
9474 {
9475 struct type *raw_real_type =
9476 ada_check_typedef (ada_get_base_type (type));
9477
9478 /* If there is no parallel XVS or XVE type, then the value is
9479 already unwrapped. Return it without further modification. */
9480 if ((type == raw_real_type)
9481 && ada_find_parallel_type (type, "___XVE") == NULL)
9482 return val;
9483
9484 return
9485 coerce_unspec_val_to_type
9486 (val, ada_to_fixed_type (raw_real_type, 0,
9487 value_address (val),
9488 NULL, 1));
9489 }
9490 }
9491
9492 static struct value *
9493 cast_from_fixed (struct type *type, struct value *arg)
9494 {
9495 struct value *scale = ada_scaling_factor (value_type (arg));
9496 arg = value_cast (value_type (scale), arg);
9497
9498 arg = value_binop (arg, scale, BINOP_MUL);
9499 return value_cast (type, arg);
9500 }
9501
9502 static struct value *
9503 cast_to_fixed (struct type *type, struct value *arg)
9504 {
9505 if (type == value_type (arg))
9506 return arg;
9507
9508 struct value *scale = ada_scaling_factor (type);
9509 if (ada_is_fixed_point_type (value_type (arg)))
9510 arg = cast_from_fixed (value_type (scale), arg);
9511 else
9512 arg = value_cast (value_type (scale), arg);
9513
9514 arg = value_binop (arg, scale, BINOP_DIV);
9515 return value_cast (type, arg);
9516 }
9517
9518 /* Given two array types T1 and T2, return nonzero iff both arrays
9519 contain the same number of elements. */
9520
9521 static int
9522 ada_same_array_size_p (struct type *t1, struct type *t2)
9523 {
9524 LONGEST lo1, hi1, lo2, hi2;
9525
9526 /* Get the array bounds in order to verify that the size of
9527 the two arrays match. */
9528 if (!get_array_bounds (t1, &lo1, &hi1)
9529 || !get_array_bounds (t2, &lo2, &hi2))
9530 error (_("unable to determine array bounds"));
9531
9532 /* To make things easier for size comparison, normalize a bit
9533 the case of empty arrays by making sure that the difference
9534 between upper bound and lower bound is always -1. */
9535 if (lo1 > hi1)
9536 hi1 = lo1 - 1;
9537 if (lo2 > hi2)
9538 hi2 = lo2 - 1;
9539
9540 return (hi1 - lo1 == hi2 - lo2);
9541 }
9542
9543 /* Assuming that VAL is an array of integrals, and TYPE represents
9544 an array with the same number of elements, but with wider integral
9545 elements, return an array "casted" to TYPE. In practice, this
9546 means that the returned array is built by casting each element
9547 of the original array into TYPE's (wider) element type. */
9548
9549 static struct value *
9550 ada_promote_array_of_integrals (struct type *type, struct value *val)
9551 {
9552 struct type *elt_type = TYPE_TARGET_TYPE (type);
9553 LONGEST lo, hi;
9554 struct value *res;
9555 LONGEST i;
9556
9557 /* Verify that both val and type are arrays of scalars, and
9558 that the size of val's elements is smaller than the size
9559 of type's element. */
9560 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9561 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9562 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9563 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9564 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9565 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9566
9567 if (!get_array_bounds (type, &lo, &hi))
9568 error (_("unable to determine array bounds"));
9569
9570 res = allocate_value (type);
9571
9572 /* Promote each array element. */
9573 for (i = 0; i < hi - lo + 1; i++)
9574 {
9575 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9576
9577 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9578 value_contents_all (elt), TYPE_LENGTH (elt_type));
9579 }
9580
9581 return res;
9582 }
9583
9584 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9585 return the converted value. */
9586
9587 static struct value *
9588 coerce_for_assign (struct type *type, struct value *val)
9589 {
9590 struct type *type2 = value_type (val);
9591
9592 if (type == type2)
9593 return val;
9594
9595 type2 = ada_check_typedef (type2);
9596 type = ada_check_typedef (type);
9597
9598 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9599 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9600 {
9601 val = ada_value_ind (val);
9602 type2 = value_type (val);
9603 }
9604
9605 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9606 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9607 {
9608 if (!ada_same_array_size_p (type, type2))
9609 error (_("cannot assign arrays of different length"));
9610
9611 if (is_integral_type (TYPE_TARGET_TYPE (type))
9612 && is_integral_type (TYPE_TARGET_TYPE (type2))
9613 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9614 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9615 {
9616 /* Allow implicit promotion of the array elements to
9617 a wider type. */
9618 return ada_promote_array_of_integrals (type, val);
9619 }
9620
9621 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9622 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9623 error (_("Incompatible types in assignment"));
9624 deprecated_set_value_type (val, type);
9625 }
9626 return val;
9627 }
9628
9629 static struct value *
9630 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9631 {
9632 struct value *val;
9633 struct type *type1, *type2;
9634 LONGEST v, v1, v2;
9635
9636 arg1 = coerce_ref (arg1);
9637 arg2 = coerce_ref (arg2);
9638 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9639 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9640
9641 if (TYPE_CODE (type1) != TYPE_CODE_INT
9642 || TYPE_CODE (type2) != TYPE_CODE_INT)
9643 return value_binop (arg1, arg2, op);
9644
9645 switch (op)
9646 {
9647 case BINOP_MOD:
9648 case BINOP_DIV:
9649 case BINOP_REM:
9650 break;
9651 default:
9652 return value_binop (arg1, arg2, op);
9653 }
9654
9655 v2 = value_as_long (arg2);
9656 if (v2 == 0)
9657 error (_("second operand of %s must not be zero."), op_string (op));
9658
9659 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9660 return value_binop (arg1, arg2, op);
9661
9662 v1 = value_as_long (arg1);
9663 switch (op)
9664 {
9665 case BINOP_DIV:
9666 v = v1 / v2;
9667 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9668 v += v > 0 ? -1 : 1;
9669 break;
9670 case BINOP_REM:
9671 v = v1 % v2;
9672 if (v * v1 < 0)
9673 v -= v2;
9674 break;
9675 default:
9676 /* Should not reach this point. */
9677 v = 0;
9678 }
9679
9680 val = allocate_value (type1);
9681 store_unsigned_integer (value_contents_raw (val),
9682 TYPE_LENGTH (value_type (val)),
9683 gdbarch_byte_order (get_type_arch (type1)), v);
9684 return val;
9685 }
9686
9687 static int
9688 ada_value_equal (struct value *arg1, struct value *arg2)
9689 {
9690 if (ada_is_direct_array_type (value_type (arg1))
9691 || ada_is_direct_array_type (value_type (arg2)))
9692 {
9693 struct type *arg1_type, *arg2_type;
9694
9695 /* Automatically dereference any array reference before
9696 we attempt to perform the comparison. */
9697 arg1 = ada_coerce_ref (arg1);
9698 arg2 = ada_coerce_ref (arg2);
9699
9700 arg1 = ada_coerce_to_simple_array (arg1);
9701 arg2 = ada_coerce_to_simple_array (arg2);
9702
9703 arg1_type = ada_check_typedef (value_type (arg1));
9704 arg2_type = ada_check_typedef (value_type (arg2));
9705
9706 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9707 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9708 error (_("Attempt to compare array with non-array"));
9709 /* FIXME: The following works only for types whose
9710 representations use all bits (no padding or undefined bits)
9711 and do not have user-defined equality. */
9712 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9713 && memcmp (value_contents (arg1), value_contents (arg2),
9714 TYPE_LENGTH (arg1_type)) == 0);
9715 }
9716 return value_equal (arg1, arg2);
9717 }
9718
9719 /* Total number of component associations in the aggregate starting at
9720 index PC in EXP. Assumes that index PC is the start of an
9721 OP_AGGREGATE. */
9722
9723 static int
9724 num_component_specs (struct expression *exp, int pc)
9725 {
9726 int n, m, i;
9727
9728 m = exp->elts[pc + 1].longconst;
9729 pc += 3;
9730 n = 0;
9731 for (i = 0; i < m; i += 1)
9732 {
9733 switch (exp->elts[pc].opcode)
9734 {
9735 default:
9736 n += 1;
9737 break;
9738 case OP_CHOICES:
9739 n += exp->elts[pc + 1].longconst;
9740 break;
9741 }
9742 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9743 }
9744 return n;
9745 }
9746
9747 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9748 component of LHS (a simple array or a record), updating *POS past
9749 the expression, assuming that LHS is contained in CONTAINER. Does
9750 not modify the inferior's memory, nor does it modify LHS (unless
9751 LHS == CONTAINER). */
9752
9753 static void
9754 assign_component (struct value *container, struct value *lhs, LONGEST index,
9755 struct expression *exp, int *pos)
9756 {
9757 struct value *mark = value_mark ();
9758 struct value *elt;
9759 struct type *lhs_type = check_typedef (value_type (lhs));
9760
9761 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9762 {
9763 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9764 struct value *index_val = value_from_longest (index_type, index);
9765
9766 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9767 }
9768 else
9769 {
9770 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9771 elt = ada_to_fixed_value (elt);
9772 }
9773
9774 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9775 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9776 else
9777 value_assign_to_component (container, elt,
9778 ada_evaluate_subexp (NULL, exp, pos,
9779 EVAL_NORMAL));
9780
9781 value_free_to_mark (mark);
9782 }
9783
9784 /* Assuming that LHS represents an lvalue having a record or array
9785 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9786 of that aggregate's value to LHS, advancing *POS past the
9787 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9788 lvalue containing LHS (possibly LHS itself). Does not modify
9789 the inferior's memory, nor does it modify the contents of
9790 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9791
9792 static struct value *
9793 assign_aggregate (struct value *container,
9794 struct value *lhs, struct expression *exp,
9795 int *pos, enum noside noside)
9796 {
9797 struct type *lhs_type;
9798 int n = exp->elts[*pos+1].longconst;
9799 LONGEST low_index, high_index;
9800 int num_specs;
9801 LONGEST *indices;
9802 int max_indices, num_indices;
9803 int i;
9804
9805 *pos += 3;
9806 if (noside != EVAL_NORMAL)
9807 {
9808 for (i = 0; i < n; i += 1)
9809 ada_evaluate_subexp (NULL, exp, pos, noside);
9810 return container;
9811 }
9812
9813 container = ada_coerce_ref (container);
9814 if (ada_is_direct_array_type (value_type (container)))
9815 container = ada_coerce_to_simple_array (container);
9816 lhs = ada_coerce_ref (lhs);
9817 if (!deprecated_value_modifiable (lhs))
9818 error (_("Left operand of assignment is not a modifiable lvalue."));
9819
9820 lhs_type = check_typedef (value_type (lhs));
9821 if (ada_is_direct_array_type (lhs_type))
9822 {
9823 lhs = ada_coerce_to_simple_array (lhs);
9824 lhs_type = check_typedef (value_type (lhs));
9825 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9826 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9827 }
9828 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9829 {
9830 low_index = 0;
9831 high_index = num_visible_fields (lhs_type) - 1;
9832 }
9833 else
9834 error (_("Left-hand side must be array or record."));
9835
9836 num_specs = num_component_specs (exp, *pos - 3);
9837 max_indices = 4 * num_specs + 4;
9838 indices = XALLOCAVEC (LONGEST, max_indices);
9839 indices[0] = indices[1] = low_index - 1;
9840 indices[2] = indices[3] = high_index + 1;
9841 num_indices = 4;
9842
9843 for (i = 0; i < n; i += 1)
9844 {
9845 switch (exp->elts[*pos].opcode)
9846 {
9847 case OP_CHOICES:
9848 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9849 &num_indices, max_indices,
9850 low_index, high_index);
9851 break;
9852 case OP_POSITIONAL:
9853 aggregate_assign_positional (container, lhs, exp, pos, indices,
9854 &num_indices, max_indices,
9855 low_index, high_index);
9856 break;
9857 case OP_OTHERS:
9858 if (i != n-1)
9859 error (_("Misplaced 'others' clause"));
9860 aggregate_assign_others (container, lhs, exp, pos, indices,
9861 num_indices, low_index, high_index);
9862 break;
9863 default:
9864 error (_("Internal error: bad aggregate clause"));
9865 }
9866 }
9867
9868 return container;
9869 }
9870
9871 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9872 construct at *POS, updating *POS past the construct, given that
9873 the positions are relative to lower bound LOW, where HIGH is the
9874 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9875 updating *NUM_INDICES as needed. CONTAINER is as for
9876 assign_aggregate. */
9877 static void
9878 aggregate_assign_positional (struct value *container,
9879 struct value *lhs, struct expression *exp,
9880 int *pos, LONGEST *indices, int *num_indices,
9881 int max_indices, LONGEST low, LONGEST high)
9882 {
9883 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9884
9885 if (ind - 1 == high)
9886 warning (_("Extra components in aggregate ignored."));
9887 if (ind <= high)
9888 {
9889 add_component_interval (ind, ind, indices, num_indices, max_indices);
9890 *pos += 3;
9891 assign_component (container, lhs, ind, exp, pos);
9892 }
9893 else
9894 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9895 }
9896
9897 /* Assign into the components of LHS indexed by the OP_CHOICES
9898 construct at *POS, updating *POS past the construct, given that
9899 the allowable indices are LOW..HIGH. Record the indices assigned
9900 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9901 needed. CONTAINER is as for assign_aggregate. */
9902 static void
9903 aggregate_assign_from_choices (struct value *container,
9904 struct value *lhs, struct expression *exp,
9905 int *pos, LONGEST *indices, int *num_indices,
9906 int max_indices, LONGEST low, LONGEST high)
9907 {
9908 int j;
9909 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9910 int choice_pos, expr_pc;
9911 int is_array = ada_is_direct_array_type (value_type (lhs));
9912
9913 choice_pos = *pos += 3;
9914
9915 for (j = 0; j < n_choices; j += 1)
9916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9917 expr_pc = *pos;
9918 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9919
9920 for (j = 0; j < n_choices; j += 1)
9921 {
9922 LONGEST lower, upper;
9923 enum exp_opcode op = exp->elts[choice_pos].opcode;
9924
9925 if (op == OP_DISCRETE_RANGE)
9926 {
9927 choice_pos += 1;
9928 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9929 EVAL_NORMAL));
9930 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9931 EVAL_NORMAL));
9932 }
9933 else if (is_array)
9934 {
9935 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9936 EVAL_NORMAL));
9937 upper = lower;
9938 }
9939 else
9940 {
9941 int ind;
9942 const char *name;
9943
9944 switch (op)
9945 {
9946 case OP_NAME:
9947 name = &exp->elts[choice_pos + 2].string;
9948 break;
9949 case OP_VAR_VALUE:
9950 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9951 break;
9952 default:
9953 error (_("Invalid record component association."));
9954 }
9955 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9956 ind = 0;
9957 if (! find_struct_field (name, value_type (lhs), 0,
9958 NULL, NULL, NULL, NULL, &ind))
9959 error (_("Unknown component name: %s."), name);
9960 lower = upper = ind;
9961 }
9962
9963 if (lower <= upper && (lower < low || upper > high))
9964 error (_("Index in component association out of bounds."));
9965
9966 add_component_interval (lower, upper, indices, num_indices,
9967 max_indices);
9968 while (lower <= upper)
9969 {
9970 int pos1;
9971
9972 pos1 = expr_pc;
9973 assign_component (container, lhs, lower, exp, &pos1);
9974 lower += 1;
9975 }
9976 }
9977 }
9978
9979 /* Assign the value of the expression in the OP_OTHERS construct in
9980 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9981 have not been previously assigned. The index intervals already assigned
9982 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9983 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9984 static void
9985 aggregate_assign_others (struct value *container,
9986 struct value *lhs, struct expression *exp,
9987 int *pos, LONGEST *indices, int num_indices,
9988 LONGEST low, LONGEST high)
9989 {
9990 int i;
9991 int expr_pc = *pos + 1;
9992
9993 for (i = 0; i < num_indices - 2; i += 2)
9994 {
9995 LONGEST ind;
9996
9997 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9998 {
9999 int localpos;
10000
10001 localpos = expr_pc;
10002 assign_component (container, lhs, ind, exp, &localpos);
10003 }
10004 }
10005 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10006 }
10007
10008 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10009 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10010 modifying *SIZE as needed. It is an error if *SIZE exceeds
10011 MAX_SIZE. The resulting intervals do not overlap. */
10012 static void
10013 add_component_interval (LONGEST low, LONGEST high,
10014 LONGEST* indices, int *size, int max_size)
10015 {
10016 int i, j;
10017
10018 for (i = 0; i < *size; i += 2) {
10019 if (high >= indices[i] && low <= indices[i + 1])
10020 {
10021 int kh;
10022
10023 for (kh = i + 2; kh < *size; kh += 2)
10024 if (high < indices[kh])
10025 break;
10026 if (low < indices[i])
10027 indices[i] = low;
10028 indices[i + 1] = indices[kh - 1];
10029 if (high > indices[i + 1])
10030 indices[i + 1] = high;
10031 memcpy (indices + i + 2, indices + kh, *size - kh);
10032 *size -= kh - i - 2;
10033 return;
10034 }
10035 else if (high < indices[i])
10036 break;
10037 }
10038
10039 if (*size == max_size)
10040 error (_("Internal error: miscounted aggregate components."));
10041 *size += 2;
10042 for (j = *size-1; j >= i+2; j -= 1)
10043 indices[j] = indices[j - 2];
10044 indices[i] = low;
10045 indices[i + 1] = high;
10046 }
10047
10048 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10049 is different. */
10050
10051 static struct value *
10052 ada_value_cast (struct type *type, struct value *arg2)
10053 {
10054 if (type == ada_check_typedef (value_type (arg2)))
10055 return arg2;
10056
10057 if (ada_is_fixed_point_type (type))
10058 return cast_to_fixed (type, arg2);
10059
10060 if (ada_is_fixed_point_type (value_type (arg2)))
10061 return cast_from_fixed (type, arg2);
10062
10063 return value_cast (type, arg2);
10064 }
10065
10066 /* Evaluating Ada expressions, and printing their result.
10067 ------------------------------------------------------
10068
10069 1. Introduction:
10070 ----------------
10071
10072 We usually evaluate an Ada expression in order to print its value.
10073 We also evaluate an expression in order to print its type, which
10074 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10075 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10076 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10077 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10078 similar.
10079
10080 Evaluating expressions is a little more complicated for Ada entities
10081 than it is for entities in languages such as C. The main reason for
10082 this is that Ada provides types whose definition might be dynamic.
10083 One example of such types is variant records. Or another example
10084 would be an array whose bounds can only be known at run time.
10085
10086 The following description is a general guide as to what should be
10087 done (and what should NOT be done) in order to evaluate an expression
10088 involving such types, and when. This does not cover how the semantic
10089 information is encoded by GNAT as this is covered separatly. For the
10090 document used as the reference for the GNAT encoding, see exp_dbug.ads
10091 in the GNAT sources.
10092
10093 Ideally, we should embed each part of this description next to its
10094 associated code. Unfortunately, the amount of code is so vast right
10095 now that it's hard to see whether the code handling a particular
10096 situation might be duplicated or not. One day, when the code is
10097 cleaned up, this guide might become redundant with the comments
10098 inserted in the code, and we might want to remove it.
10099
10100 2. ``Fixing'' an Entity, the Simple Case:
10101 -----------------------------------------
10102
10103 When evaluating Ada expressions, the tricky issue is that they may
10104 reference entities whose type contents and size are not statically
10105 known. Consider for instance a variant record:
10106
10107 type Rec (Empty : Boolean := True) is record
10108 case Empty is
10109 when True => null;
10110 when False => Value : Integer;
10111 end case;
10112 end record;
10113 Yes : Rec := (Empty => False, Value => 1);
10114 No : Rec := (empty => True);
10115
10116 The size and contents of that record depends on the value of the
10117 descriminant (Rec.Empty). At this point, neither the debugging
10118 information nor the associated type structure in GDB are able to
10119 express such dynamic types. So what the debugger does is to create
10120 "fixed" versions of the type that applies to the specific object.
10121 We also informally refer to this opperation as "fixing" an object,
10122 which means creating its associated fixed type.
10123
10124 Example: when printing the value of variable "Yes" above, its fixed
10125 type would look like this:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 Value : Integer;
10130 end record;
10131
10132 On the other hand, if we printed the value of "No", its fixed type
10133 would become:
10134
10135 type Rec is record
10136 Empty : Boolean;
10137 end record;
10138
10139 Things become a little more complicated when trying to fix an entity
10140 with a dynamic type that directly contains another dynamic type,
10141 such as an array of variant records, for instance. There are
10142 two possible cases: Arrays, and records.
10143
10144 3. ``Fixing'' Arrays:
10145 ---------------------
10146
10147 The type structure in GDB describes an array in terms of its bounds,
10148 and the type of its elements. By design, all elements in the array
10149 have the same type and we cannot represent an array of variant elements
10150 using the current type structure in GDB. When fixing an array,
10151 we cannot fix the array element, as we would potentially need one
10152 fixed type per element of the array. As a result, the best we can do
10153 when fixing an array is to produce an array whose bounds and size
10154 are correct (allowing us to read it from memory), but without having
10155 touched its element type. Fixing each element will be done later,
10156 when (if) necessary.
10157
10158 Arrays are a little simpler to handle than records, because the same
10159 amount of memory is allocated for each element of the array, even if
10160 the amount of space actually used by each element differs from element
10161 to element. Consider for instance the following array of type Rec:
10162
10163 type Rec_Array is array (1 .. 2) of Rec;
10164
10165 The actual amount of memory occupied by each element might be different
10166 from element to element, depending on the value of their discriminant.
10167 But the amount of space reserved for each element in the array remains
10168 fixed regardless. So we simply need to compute that size using
10169 the debugging information available, from which we can then determine
10170 the array size (we multiply the number of elements of the array by
10171 the size of each element).
10172
10173 The simplest case is when we have an array of a constrained element
10174 type. For instance, consider the following type declarations:
10175
10176 type Bounded_String (Max_Size : Integer) is
10177 Length : Integer;
10178 Buffer : String (1 .. Max_Size);
10179 end record;
10180 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10181
10182 In this case, the compiler describes the array as an array of
10183 variable-size elements (identified by its XVS suffix) for which
10184 the size can be read in the parallel XVZ variable.
10185
10186 In the case of an array of an unconstrained element type, the compiler
10187 wraps the array element inside a private PAD type. This type should not
10188 be shown to the user, and must be "unwrap"'ed before printing. Note
10189 that we also use the adjective "aligner" in our code to designate
10190 these wrapper types.
10191
10192 In some cases, the size allocated for each element is statically
10193 known. In that case, the PAD type already has the correct size,
10194 and the array element should remain unfixed.
10195
10196 But there are cases when this size is not statically known.
10197 For instance, assuming that "Five" is an integer variable:
10198
10199 type Dynamic is array (1 .. Five) of Integer;
10200 type Wrapper (Has_Length : Boolean := False) is record
10201 Data : Dynamic;
10202 case Has_Length is
10203 when True => Length : Integer;
10204 when False => null;
10205 end case;
10206 end record;
10207 type Wrapper_Array is array (1 .. 2) of Wrapper;
10208
10209 Hello : Wrapper_Array := (others => (Has_Length => True,
10210 Data => (others => 17),
10211 Length => 1));
10212
10213
10214 The debugging info would describe variable Hello as being an
10215 array of a PAD type. The size of that PAD type is not statically
10216 known, but can be determined using a parallel XVZ variable.
10217 In that case, a copy of the PAD type with the correct size should
10218 be used for the fixed array.
10219
10220 3. ``Fixing'' record type objects:
10221 ----------------------------------
10222
10223 Things are slightly different from arrays in the case of dynamic
10224 record types. In this case, in order to compute the associated
10225 fixed type, we need to determine the size and offset of each of
10226 its components. This, in turn, requires us to compute the fixed
10227 type of each of these components.
10228
10229 Consider for instance the example:
10230
10231 type Bounded_String (Max_Size : Natural) is record
10232 Str : String (1 .. Max_Size);
10233 Length : Natural;
10234 end record;
10235 My_String : Bounded_String (Max_Size => 10);
10236
10237 In that case, the position of field "Length" depends on the size
10238 of field Str, which itself depends on the value of the Max_Size
10239 discriminant. In order to fix the type of variable My_String,
10240 we need to fix the type of field Str. Therefore, fixing a variant
10241 record requires us to fix each of its components.
10242
10243 However, if a component does not have a dynamic size, the component
10244 should not be fixed. In particular, fields that use a PAD type
10245 should not fixed. Here is an example where this might happen
10246 (assuming type Rec above):
10247
10248 type Container (Big : Boolean) is record
10249 First : Rec;
10250 After : Integer;
10251 case Big is
10252 when True => Another : Integer;
10253 when False => null;
10254 end case;
10255 end record;
10256 My_Container : Container := (Big => False,
10257 First => (Empty => True),
10258 After => 42);
10259
10260 In that example, the compiler creates a PAD type for component First,
10261 whose size is constant, and then positions the component After just
10262 right after it. The offset of component After is therefore constant
10263 in this case.
10264
10265 The debugger computes the position of each field based on an algorithm
10266 that uses, among other things, the actual position and size of the field
10267 preceding it. Let's now imagine that the user is trying to print
10268 the value of My_Container. If the type fixing was recursive, we would
10269 end up computing the offset of field After based on the size of the
10270 fixed version of field First. And since in our example First has
10271 only one actual field, the size of the fixed type is actually smaller
10272 than the amount of space allocated to that field, and thus we would
10273 compute the wrong offset of field After.
10274
10275 To make things more complicated, we need to watch out for dynamic
10276 components of variant records (identified by the ___XVL suffix in
10277 the component name). Even if the target type is a PAD type, the size
10278 of that type might not be statically known. So the PAD type needs
10279 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10280 we might end up with the wrong size for our component. This can be
10281 observed with the following type declarations:
10282
10283 type Octal is new Integer range 0 .. 7;
10284 type Octal_Array is array (Positive range <>) of Octal;
10285 pragma Pack (Octal_Array);
10286
10287 type Octal_Buffer (Size : Positive) is record
10288 Buffer : Octal_Array (1 .. Size);
10289 Length : Integer;
10290 end record;
10291
10292 In that case, Buffer is a PAD type whose size is unset and needs
10293 to be computed by fixing the unwrapped type.
10294
10295 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10296 ----------------------------------------------------------
10297
10298 Lastly, when should the sub-elements of an entity that remained unfixed
10299 thus far, be actually fixed?
10300
10301 The answer is: Only when referencing that element. For instance
10302 when selecting one component of a record, this specific component
10303 should be fixed at that point in time. Or when printing the value
10304 of a record, each component should be fixed before its value gets
10305 printed. Similarly for arrays, the element of the array should be
10306 fixed when printing each element of the array, or when extracting
10307 one element out of that array. On the other hand, fixing should
10308 not be performed on the elements when taking a slice of an array!
10309
10310 Note that one of the side effects of miscomputing the offset and
10311 size of each field is that we end up also miscomputing the size
10312 of the containing type. This can have adverse results when computing
10313 the value of an entity. GDB fetches the value of an entity based
10314 on the size of its type, and thus a wrong size causes GDB to fetch
10315 the wrong amount of memory. In the case where the computed size is
10316 too small, GDB fetches too little data to print the value of our
10317 entity. Results in this case are unpredictable, as we usually read
10318 past the buffer containing the data =:-o. */
10319
10320 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10321 for that subexpression cast to TO_TYPE. Advance *POS over the
10322 subexpression. */
10323
10324 static value *
10325 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10326 enum noside noside, struct type *to_type)
10327 {
10328 int pc = *pos;
10329
10330 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10331 || exp->elts[pc].opcode == OP_VAR_VALUE)
10332 {
10333 (*pos) += 4;
10334
10335 value *val;
10336 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10337 {
10338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339 return value_zero (to_type, not_lval);
10340
10341 val = evaluate_var_msym_value (noside,
10342 exp->elts[pc + 1].objfile,
10343 exp->elts[pc + 2].msymbol);
10344 }
10345 else
10346 val = evaluate_var_value (noside,
10347 exp->elts[pc + 1].block,
10348 exp->elts[pc + 2].symbol);
10349
10350 if (noside == EVAL_SKIP)
10351 return eval_skip_value (exp);
10352
10353 val = ada_value_cast (to_type, val);
10354
10355 /* Follow the Ada language semantics that do not allow taking
10356 an address of the result of a cast (view conversion in Ada). */
10357 if (VALUE_LVAL (val) == lval_memory)
10358 {
10359 if (value_lazy (val))
10360 value_fetch_lazy (val);
10361 VALUE_LVAL (val) = not_lval;
10362 }
10363 return val;
10364 }
10365
10366 value *val = evaluate_subexp (to_type, exp, pos, noside);
10367 if (noside == EVAL_SKIP)
10368 return eval_skip_value (exp);
10369 return ada_value_cast (to_type, val);
10370 }
10371
10372 /* Implement the evaluate_exp routine in the exp_descriptor structure
10373 for the Ada language. */
10374
10375 static struct value *
10376 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10377 int *pos, enum noside noside)
10378 {
10379 enum exp_opcode op;
10380 int tem;
10381 int pc;
10382 int preeval_pos;
10383 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10384 struct type *type;
10385 int nargs, oplen;
10386 struct value **argvec;
10387
10388 pc = *pos;
10389 *pos += 1;
10390 op = exp->elts[pc].opcode;
10391
10392 switch (op)
10393 {
10394 default:
10395 *pos -= 1;
10396 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10397
10398 if (noside == EVAL_NORMAL)
10399 arg1 = unwrap_value (arg1);
10400
10401 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10402 then we need to perform the conversion manually, because
10403 evaluate_subexp_standard doesn't do it. This conversion is
10404 necessary in Ada because the different kinds of float/fixed
10405 types in Ada have different representations.
10406
10407 Similarly, we need to perform the conversion from OP_LONG
10408 ourselves. */
10409 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10410 arg1 = ada_value_cast (expect_type, arg1);
10411
10412 return arg1;
10413
10414 case OP_STRING:
10415 {
10416 struct value *result;
10417
10418 *pos -= 1;
10419 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10420 /* The result type will have code OP_STRING, bashed there from
10421 OP_ARRAY. Bash it back. */
10422 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10423 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10424 return result;
10425 }
10426
10427 case UNOP_CAST:
10428 (*pos) += 2;
10429 type = exp->elts[pc + 1].type;
10430 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10431
10432 case UNOP_QUAL:
10433 (*pos) += 2;
10434 type = exp->elts[pc + 1].type;
10435 return ada_evaluate_subexp (type, exp, pos, noside);
10436
10437 case BINOP_ASSIGN:
10438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10439 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10440 {
10441 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10442 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10443 return arg1;
10444 return ada_value_assign (arg1, arg1);
10445 }
10446 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10447 except if the lhs of our assignment is a convenience variable.
10448 In the case of assigning to a convenience variable, the lhs
10449 should be exactly the result of the evaluation of the rhs. */
10450 type = value_type (arg1);
10451 if (VALUE_LVAL (arg1) == lval_internalvar)
10452 type = NULL;
10453 arg2 = evaluate_subexp (type, exp, pos, noside);
10454 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10455 return arg1;
10456 if (VALUE_LVAL (arg1) == lval_internalvar)
10457 {
10458 /* Nothing. */
10459 }
10460 else if (ada_is_fixed_point_type (value_type (arg1)))
10461 arg2 = cast_to_fixed (value_type (arg1), arg2);
10462 else if (ada_is_fixed_point_type (value_type (arg2)))
10463 error
10464 (_("Fixed-point values must be assigned to fixed-point variables"));
10465 else
10466 arg2 = coerce_for_assign (value_type (arg1), arg2);
10467 return ada_value_assign (arg1, arg2);
10468
10469 case BINOP_ADD:
10470 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10471 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10472 if (noside == EVAL_SKIP)
10473 goto nosideret;
10474 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10475 return (value_from_longest
10476 (value_type (arg1),
10477 value_as_long (arg1) + value_as_long (arg2)));
10478 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10479 return (value_from_longest
10480 (value_type (arg2),
10481 value_as_long (arg1) + value_as_long (arg2)));
10482 if ((ada_is_fixed_point_type (value_type (arg1))
10483 || ada_is_fixed_point_type (value_type (arg2)))
10484 && value_type (arg1) != value_type (arg2))
10485 error (_("Operands of fixed-point addition must have the same type"));
10486 /* Do the addition, and cast the result to the type of the first
10487 argument. We cannot cast the result to a reference type, so if
10488 ARG1 is a reference type, find its underlying type. */
10489 type = value_type (arg1);
10490 while (TYPE_CODE (type) == TYPE_CODE_REF)
10491 type = TYPE_TARGET_TYPE (type);
10492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10493 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10494
10495 case BINOP_SUB:
10496 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10497 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10498 if (noside == EVAL_SKIP)
10499 goto nosideret;
10500 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg1),
10503 value_as_long (arg1) - value_as_long (arg2)));
10504 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10505 return (value_from_longest
10506 (value_type (arg2),
10507 value_as_long (arg1) - value_as_long (arg2)));
10508 if ((ada_is_fixed_point_type (value_type (arg1))
10509 || ada_is_fixed_point_type (value_type (arg2)))
10510 && value_type (arg1) != value_type (arg2))
10511 error (_("Operands of fixed-point subtraction "
10512 "must have the same type"));
10513 /* Do the substraction, and cast the result to the type of the first
10514 argument. We cannot cast the result to a reference type, so if
10515 ARG1 is a reference type, find its underlying type. */
10516 type = value_type (arg1);
10517 while (TYPE_CODE (type) == TYPE_CODE_REF)
10518 type = TYPE_TARGET_TYPE (type);
10519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10520 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10521
10522 case BINOP_MUL:
10523 case BINOP_DIV:
10524 case BINOP_REM:
10525 case BINOP_MOD:
10526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10527 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10528 if (noside == EVAL_SKIP)
10529 goto nosideret;
10530 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10531 {
10532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10533 return value_zero (value_type (arg1), not_lval);
10534 }
10535 else
10536 {
10537 type = builtin_type (exp->gdbarch)->builtin_double;
10538 if (ada_is_fixed_point_type (value_type (arg1)))
10539 arg1 = cast_from_fixed (type, arg1);
10540 if (ada_is_fixed_point_type (value_type (arg2)))
10541 arg2 = cast_from_fixed (type, arg2);
10542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10543 return ada_value_binop (arg1, arg2, op);
10544 }
10545
10546 case BINOP_EQUAL:
10547 case BINOP_NOTEQUAL:
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10550 if (noside == EVAL_SKIP)
10551 goto nosideret;
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 tem = 0;
10554 else
10555 {
10556 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10557 tem = ada_value_equal (arg1, arg2);
10558 }
10559 if (op == BINOP_NOTEQUAL)
10560 tem = !tem;
10561 type = language_bool_type (exp->language_defn, exp->gdbarch);
10562 return value_from_longest (type, (LONGEST) tem);
10563
10564 case UNOP_NEG:
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 if (noside == EVAL_SKIP)
10567 goto nosideret;
10568 else if (ada_is_fixed_point_type (value_type (arg1)))
10569 return value_cast (value_type (arg1), value_neg (arg1));
10570 else
10571 {
10572 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10573 return value_neg (arg1);
10574 }
10575
10576 case BINOP_LOGICAL_AND:
10577 case BINOP_LOGICAL_OR:
10578 case UNOP_LOGICAL_NOT:
10579 {
10580 struct value *val;
10581
10582 *pos -= 1;
10583 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10584 type = language_bool_type (exp->language_defn, exp->gdbarch);
10585 return value_cast (type, val);
10586 }
10587
10588 case BINOP_BITWISE_AND:
10589 case BINOP_BITWISE_IOR:
10590 case BINOP_BITWISE_XOR:
10591 {
10592 struct value *val;
10593
10594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10595 *pos = pc;
10596 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10597
10598 return value_cast (value_type (arg1), val);
10599 }
10600
10601 case OP_VAR_VALUE:
10602 *pos -= 1;
10603
10604 if (noside == EVAL_SKIP)
10605 {
10606 *pos += 4;
10607 goto nosideret;
10608 }
10609
10610 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10611 /* Only encountered when an unresolved symbol occurs in a
10612 context other than a function call, in which case, it is
10613 invalid. */
10614 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10615 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10616
10617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10618 {
10619 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10620 /* Check to see if this is a tagged type. We also need to handle
10621 the case where the type is a reference to a tagged type, but
10622 we have to be careful to exclude pointers to tagged types.
10623 The latter should be shown as usual (as a pointer), whereas
10624 a reference should mostly be transparent to the user. */
10625 if (ada_is_tagged_type (type, 0)
10626 || (TYPE_CODE (type) == TYPE_CODE_REF
10627 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10628 {
10629 /* Tagged types are a little special in the fact that the real
10630 type is dynamic and can only be determined by inspecting the
10631 object's tag. This means that we need to get the object's
10632 value first (EVAL_NORMAL) and then extract the actual object
10633 type from its tag.
10634
10635 Note that we cannot skip the final step where we extract
10636 the object type from its tag, because the EVAL_NORMAL phase
10637 results in dynamic components being resolved into fixed ones.
10638 This can cause problems when trying to print the type
10639 description of tagged types whose parent has a dynamic size:
10640 We use the type name of the "_parent" component in order
10641 to print the name of the ancestor type in the type description.
10642 If that component had a dynamic size, the resolution into
10643 a fixed type would result in the loss of that type name,
10644 thus preventing us from printing the name of the ancestor
10645 type in the type description. */
10646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10647
10648 if (TYPE_CODE (type) != TYPE_CODE_REF)
10649 {
10650 struct type *actual_type;
10651
10652 actual_type = type_from_tag (ada_value_tag (arg1));
10653 if (actual_type == NULL)
10654 /* If, for some reason, we were unable to determine
10655 the actual type from the tag, then use the static
10656 approximation that we just computed as a fallback.
10657 This can happen if the debugging information is
10658 incomplete, for instance. */
10659 actual_type = type;
10660 return value_zero (actual_type, not_lval);
10661 }
10662 else
10663 {
10664 /* In the case of a ref, ada_coerce_ref takes care
10665 of determining the actual type. But the evaluation
10666 should return a ref as it should be valid to ask
10667 for its address; so rebuild a ref after coerce. */
10668 arg1 = ada_coerce_ref (arg1);
10669 return value_ref (arg1, TYPE_CODE_REF);
10670 }
10671 }
10672
10673 /* Records and unions for which GNAT encodings have been
10674 generated need to be statically fixed as well.
10675 Otherwise, non-static fixing produces a type where
10676 all dynamic properties are removed, which prevents "ptype"
10677 from being able to completely describe the type.
10678 For instance, a case statement in a variant record would be
10679 replaced by the relevant components based on the actual
10680 value of the discriminants. */
10681 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10682 && dynamic_template_type (type) != NULL)
10683 || (TYPE_CODE (type) == TYPE_CODE_UNION
10684 && ada_find_parallel_type (type, "___XVU") != NULL))
10685 {
10686 *pos += 4;
10687 return value_zero (to_static_fixed_type (type), not_lval);
10688 }
10689 }
10690
10691 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10692 return ada_to_fixed_value (arg1);
10693
10694 case OP_FUNCALL:
10695 (*pos) += 2;
10696
10697 /* Allocate arg vector, including space for the function to be
10698 called in argvec[0] and a terminating NULL. */
10699 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10700 argvec = XALLOCAVEC (struct value *, nargs + 2);
10701
10702 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10703 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10704 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10705 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10706 else
10707 {
10708 for (tem = 0; tem <= nargs; tem += 1)
10709 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10710 argvec[tem] = 0;
10711
10712 if (noside == EVAL_SKIP)
10713 goto nosideret;
10714 }
10715
10716 if (ada_is_constrained_packed_array_type
10717 (desc_base_type (value_type (argvec[0]))))
10718 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10719 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10720 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10721 /* This is a packed array that has already been fixed, and
10722 therefore already coerced to a simple array. Nothing further
10723 to do. */
10724 ;
10725 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10726 {
10727 /* Make sure we dereference references so that all the code below
10728 feels like it's really handling the referenced value. Wrapping
10729 types (for alignment) may be there, so make sure we strip them as
10730 well. */
10731 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10732 }
10733 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10734 && VALUE_LVAL (argvec[0]) == lval_memory)
10735 argvec[0] = value_addr (argvec[0]);
10736
10737 type = ada_check_typedef (value_type (argvec[0]));
10738
10739 /* Ada allows us to implicitly dereference arrays when subscripting
10740 them. So, if this is an array typedef (encoding use for array
10741 access types encoded as fat pointers), strip it now. */
10742 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10743 type = ada_typedef_target_type (type);
10744
10745 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10746 {
10747 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10748 {
10749 case TYPE_CODE_FUNC:
10750 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10751 break;
10752 case TYPE_CODE_ARRAY:
10753 break;
10754 case TYPE_CODE_STRUCT:
10755 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10756 argvec[0] = ada_value_ind (argvec[0]);
10757 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10758 break;
10759 default:
10760 error (_("cannot subscript or call something of type `%s'"),
10761 ada_type_name (value_type (argvec[0])));
10762 break;
10763 }
10764 }
10765
10766 switch (TYPE_CODE (type))
10767 {
10768 case TYPE_CODE_FUNC:
10769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10770 {
10771 if (TYPE_TARGET_TYPE (type) == NULL)
10772 error_call_unknown_return_type (NULL);
10773 return allocate_value (TYPE_TARGET_TYPE (type));
10774 }
10775 return call_function_by_hand (argvec[0], NULL,
10776 gdb::make_array_view (argvec + 1,
10777 nargs));
10778 case TYPE_CODE_INTERNAL_FUNCTION:
10779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 /* We don't know anything about what the internal
10781 function might return, but we have to return
10782 something. */
10783 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10784 not_lval);
10785 else
10786 return call_internal_function (exp->gdbarch, exp->language_defn,
10787 argvec[0], nargs, argvec + 1);
10788
10789 case TYPE_CODE_STRUCT:
10790 {
10791 int arity;
10792
10793 arity = ada_array_arity (type);
10794 type = ada_array_element_type (type, nargs);
10795 if (type == NULL)
10796 error (_("cannot subscript or call a record"));
10797 if (arity != nargs)
10798 error (_("wrong number of subscripts; expecting %d"), arity);
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 return value_zero (ada_aligned_type (type), lval_memory);
10801 return
10802 unwrap_value (ada_value_subscript
10803 (argvec[0], nargs, argvec + 1));
10804 }
10805 case TYPE_CODE_ARRAY:
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
10808 type = ada_array_element_type (type, nargs);
10809 if (type == NULL)
10810 error (_("element type of array unknown"));
10811 else
10812 return value_zero (ada_aligned_type (type), lval_memory);
10813 }
10814 return
10815 unwrap_value (ada_value_subscript
10816 (ada_coerce_to_simple_array (argvec[0]),
10817 nargs, argvec + 1));
10818 case TYPE_CODE_PTR: /* Pointer to array */
10819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10820 {
10821 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10822 type = ada_array_element_type (type, nargs);
10823 if (type == NULL)
10824 error (_("element type of array unknown"));
10825 else
10826 return value_zero (ada_aligned_type (type), lval_memory);
10827 }
10828 return
10829 unwrap_value (ada_value_ptr_subscript (argvec[0],
10830 nargs, argvec + 1));
10831
10832 default:
10833 error (_("Attempt to index or call something other than an "
10834 "array or function"));
10835 }
10836
10837 case TERNOP_SLICE:
10838 {
10839 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 struct value *low_bound_val =
10841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 struct value *high_bound_val =
10843 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10844 LONGEST low_bound;
10845 LONGEST high_bound;
10846
10847 low_bound_val = coerce_ref (low_bound_val);
10848 high_bound_val = coerce_ref (high_bound_val);
10849 low_bound = value_as_long (low_bound_val);
10850 high_bound = value_as_long (high_bound_val);
10851
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854
10855 /* If this is a reference to an aligner type, then remove all
10856 the aligners. */
10857 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10858 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10859 TYPE_TARGET_TYPE (value_type (array)) =
10860 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10861
10862 if (ada_is_constrained_packed_array_type (value_type (array)))
10863 error (_("cannot slice a packed array"));
10864
10865 /* If this is a reference to an array or an array lvalue,
10866 convert to a pointer. */
10867 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10868 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10869 && VALUE_LVAL (array) == lval_memory))
10870 array = value_addr (array);
10871
10872 if (noside == EVAL_AVOID_SIDE_EFFECTS
10873 && ada_is_array_descriptor_type (ada_check_typedef
10874 (value_type (array))))
10875 return empty_array (ada_type_of_array (array, 0), low_bound,
10876 high_bound);
10877
10878 array = ada_coerce_to_simple_array_ptr (array);
10879
10880 /* If we have more than one level of pointer indirection,
10881 dereference the value until we get only one level. */
10882 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10883 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10884 == TYPE_CODE_PTR))
10885 array = value_ind (array);
10886
10887 /* Make sure we really do have an array type before going further,
10888 to avoid a SEGV when trying to get the index type or the target
10889 type later down the road if the debug info generated by
10890 the compiler is incorrect or incomplete. */
10891 if (!ada_is_simple_array_type (value_type (array)))
10892 error (_("cannot take slice of non-array"));
10893
10894 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10895 == TYPE_CODE_PTR)
10896 {
10897 struct type *type0 = ada_check_typedef (value_type (array));
10898
10899 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10900 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10901 else
10902 {
10903 struct type *arr_type0 =
10904 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10905
10906 return ada_value_slice_from_ptr (array, arr_type0,
10907 longest_to_int (low_bound),
10908 longest_to_int (high_bound));
10909 }
10910 }
10911 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10912 return array;
10913 else if (high_bound < low_bound)
10914 return empty_array (value_type (array), low_bound, high_bound);
10915 else
10916 return ada_value_slice (array, longest_to_int (low_bound),
10917 longest_to_int (high_bound));
10918 }
10919
10920 case UNOP_IN_RANGE:
10921 (*pos) += 2;
10922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10923 type = check_typedef (exp->elts[pc + 1].type);
10924
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
10927
10928 switch (TYPE_CODE (type))
10929 {
10930 default:
10931 lim_warning (_("Membership test incompletely implemented; "
10932 "always returns true"));
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return value_from_longest (type, (LONGEST) 1);
10935
10936 case TYPE_CODE_RANGE:
10937 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10938 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10940 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10941 type = language_bool_type (exp->language_defn, exp->gdbarch);
10942 return
10943 value_from_longest (type,
10944 (value_less (arg1, arg3)
10945 || value_equal (arg1, arg3))
10946 && (value_less (arg2, arg1)
10947 || value_equal (arg2, arg1)));
10948 }
10949
10950 case BINOP_IN_BOUNDS:
10951 (*pos) += 2;
10952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10954
10955 if (noside == EVAL_SKIP)
10956 goto nosideret;
10957
10958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10959 {
10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
10961 return value_zero (type, not_lval);
10962 }
10963
10964 tem = longest_to_int (exp->elts[pc + 1].longconst);
10965
10966 type = ada_index_type (value_type (arg2), tem, "range");
10967 if (!type)
10968 type = value_type (arg1);
10969
10970 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10971 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10972
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10974 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10975 type = language_bool_type (exp->language_defn, exp->gdbarch);
10976 return
10977 value_from_longest (type,
10978 (value_less (arg1, arg3)
10979 || value_equal (arg1, arg3))
10980 && (value_less (arg2, arg1)
10981 || value_equal (arg2, arg1)));
10982
10983 case TERNOP_IN_RANGE:
10984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10987
10988 if (noside == EVAL_SKIP)
10989 goto nosideret;
10990
10991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
10994 return
10995 value_from_longest (type,
10996 (value_less (arg1, arg3)
10997 || value_equal (arg1, arg3))
10998 && (value_less (arg2, arg1)
10999 || value_equal (arg2, arg1)));
11000
11001 case OP_ATR_FIRST:
11002 case OP_ATR_LAST:
11003 case OP_ATR_LENGTH:
11004 {
11005 struct type *type_arg;
11006
11007 if (exp->elts[*pos].opcode == OP_TYPE)
11008 {
11009 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11010 arg1 = NULL;
11011 type_arg = check_typedef (exp->elts[pc + 2].type);
11012 }
11013 else
11014 {
11015 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 type_arg = NULL;
11017 }
11018
11019 if (exp->elts[*pos].opcode != OP_LONG)
11020 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11021 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11022 *pos += 4;
11023
11024 if (noside == EVAL_SKIP)
11025 goto nosideret;
11026 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11027 {
11028 if (type_arg == NULL)
11029 type_arg = value_type (arg1);
11030
11031 if (ada_is_constrained_packed_array_type (type_arg))
11032 type_arg = decode_constrained_packed_array_type (type_arg);
11033
11034 if (!discrete_type_p (type_arg))
11035 {
11036 switch (op)
11037 {
11038 default: /* Should never happen. */
11039 error (_("unexpected attribute encountered"));
11040 case OP_ATR_FIRST:
11041 case OP_ATR_LAST:
11042 type_arg = ada_index_type (type_arg, tem,
11043 ada_attribute_name (op));
11044 break;
11045 case OP_ATR_LENGTH:
11046 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11047 break;
11048 }
11049 }
11050
11051 return value_zero (type_arg, not_lval);
11052 }
11053 else if (type_arg == NULL)
11054 {
11055 arg1 = ada_coerce_ref (arg1);
11056
11057 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11058 arg1 = ada_coerce_to_simple_array (arg1);
11059
11060 if (op == OP_ATR_LENGTH)
11061 type = builtin_type (exp->gdbarch)->builtin_int;
11062 else
11063 {
11064 type = ada_index_type (value_type (arg1), tem,
11065 ada_attribute_name (op));
11066 if (type == NULL)
11067 type = builtin_type (exp->gdbarch)->builtin_int;
11068 }
11069
11070 switch (op)
11071 {
11072 default: /* Should never happen. */
11073 error (_("unexpected attribute encountered"));
11074 case OP_ATR_FIRST:
11075 return value_from_longest
11076 (type, ada_array_bound (arg1, tem, 0));
11077 case OP_ATR_LAST:
11078 return value_from_longest
11079 (type, ada_array_bound (arg1, tem, 1));
11080 case OP_ATR_LENGTH:
11081 return value_from_longest
11082 (type, ada_array_length (arg1, tem));
11083 }
11084 }
11085 else if (discrete_type_p (type_arg))
11086 {
11087 struct type *range_type;
11088 const char *name = ada_type_name (type_arg);
11089
11090 range_type = NULL;
11091 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11092 range_type = to_fixed_range_type (type_arg, NULL);
11093 if (range_type == NULL)
11094 range_type = type_arg;
11095 switch (op)
11096 {
11097 default:
11098 error (_("unexpected attribute encountered"));
11099 case OP_ATR_FIRST:
11100 return value_from_longest
11101 (range_type, ada_discrete_type_low_bound (range_type));
11102 case OP_ATR_LAST:
11103 return value_from_longest
11104 (range_type, ada_discrete_type_high_bound (range_type));
11105 case OP_ATR_LENGTH:
11106 error (_("the 'length attribute applies only to array types"));
11107 }
11108 }
11109 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11110 error (_("unimplemented type attribute"));
11111 else
11112 {
11113 LONGEST low, high;
11114
11115 if (ada_is_constrained_packed_array_type (type_arg))
11116 type_arg = decode_constrained_packed_array_type (type_arg);
11117
11118 if (op == OP_ATR_LENGTH)
11119 type = builtin_type (exp->gdbarch)->builtin_int;
11120 else
11121 {
11122 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11123 if (type == NULL)
11124 type = builtin_type (exp->gdbarch)->builtin_int;
11125 }
11126
11127 switch (op)
11128 {
11129 default:
11130 error (_("unexpected attribute encountered"));
11131 case OP_ATR_FIRST:
11132 low = ada_array_bound_from_type (type_arg, tem, 0);
11133 return value_from_longest (type, low);
11134 case OP_ATR_LAST:
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
11136 return value_from_longest (type, high);
11137 case OP_ATR_LENGTH:
11138 low = ada_array_bound_from_type (type_arg, tem, 0);
11139 high = ada_array_bound_from_type (type_arg, tem, 1);
11140 return value_from_longest (type, high - low + 1);
11141 }
11142 }
11143 }
11144
11145 case OP_ATR_TAG:
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 if (noside == EVAL_SKIP)
11148 goto nosideret;
11149
11150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11151 return value_zero (ada_tag_type (arg1), not_lval);
11152
11153 return ada_value_tag (arg1);
11154
11155 case OP_ATR_MIN:
11156 case OP_ATR_MAX:
11157 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 if (noside == EVAL_SKIP)
11161 goto nosideret;
11162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11163 return value_zero (value_type (arg1), not_lval);
11164 else
11165 {
11166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11167 return value_binop (arg1, arg2,
11168 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11169 }
11170
11171 case OP_ATR_MODULUS:
11172 {
11173 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11174
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
11178
11179 if (!ada_is_modular_type (type_arg))
11180 error (_("'modulus must be applied to modular type"));
11181
11182 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11183 ada_modulus (type_arg));
11184 }
11185
11186
11187 case OP_ATR_POS:
11188 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
11191 goto nosideret;
11192 type = builtin_type (exp->gdbarch)->builtin_int;
11193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11194 return value_zero (type, not_lval);
11195 else
11196 return value_pos_atr (type, arg1);
11197
11198 case OP_ATR_SIZE:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 type = value_type (arg1);
11201
11202 /* If the argument is a reference, then dereference its type, since
11203 the user is really asking for the size of the actual object,
11204 not the size of the pointer. */
11205 if (TYPE_CODE (type) == TYPE_CODE_REF)
11206 type = TYPE_TARGET_TYPE (type);
11207
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11212 else
11213 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11214 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11215
11216 case OP_ATR_VAL:
11217 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 type = exp->elts[pc + 2].type;
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11223 return value_zero (type, not_lval);
11224 else
11225 return value_val_atr (type, arg1);
11226
11227 case BINOP_EXP:
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
11232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return value_zero (value_type (arg1), not_lval);
11234 else
11235 {
11236 /* For integer exponentiation operations,
11237 only promote the first argument. */
11238 if (is_integral_type (value_type (arg2)))
11239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11240 else
11241 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11242
11243 return value_binop (arg1, arg2, op);
11244 }
11245
11246 case UNOP_PLUS:
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else
11251 return arg1;
11252
11253 case UNOP_ABS:
11254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11255 if (noside == EVAL_SKIP)
11256 goto nosideret;
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11259 return value_neg (arg1);
11260 else
11261 return arg1;
11262
11263 case UNOP_IND:
11264 preeval_pos = *pos;
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 type = ada_check_typedef (value_type (arg1));
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 {
11271 if (ada_is_array_descriptor_type (type))
11272 /* GDB allows dereferencing GNAT array descriptors. */
11273 {
11274 struct type *arrType = ada_type_of_array (arg1, 0);
11275
11276 if (arrType == NULL)
11277 error (_("Attempt to dereference null array pointer."));
11278 return value_at_lazy (arrType, 0);
11279 }
11280 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11281 || TYPE_CODE (type) == TYPE_CODE_REF
11282 /* In C you can dereference an array to get the 1st elt. */
11283 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11284 {
11285 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11286 only be determined by inspecting the object's tag.
11287 This means that we need to evaluate completely the
11288 expression in order to get its type. */
11289
11290 if ((TYPE_CODE (type) == TYPE_CODE_REF
11291 || TYPE_CODE (type) == TYPE_CODE_PTR)
11292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11293 {
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11295 EVAL_NORMAL);
11296 type = value_type (ada_value_ind (arg1));
11297 }
11298 else
11299 {
11300 type = to_static_fixed_type
11301 (ada_aligned_type
11302 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11303 }
11304 ada_ensure_varsize_limit (type);
11305 return value_zero (type, lval_memory);
11306 }
11307 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11308 {
11309 /* GDB allows dereferencing an int. */
11310 if (expect_type == NULL)
11311 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11312 lval_memory);
11313 else
11314 {
11315 expect_type =
11316 to_static_fixed_type (ada_aligned_type (expect_type));
11317 return value_zero (expect_type, lval_memory);
11318 }
11319 }
11320 else
11321 error (_("Attempt to take contents of a non-pointer value."));
11322 }
11323 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11324 type = ada_check_typedef (value_type (arg1));
11325
11326 if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 /* GDB allows dereferencing an int. If we were given
11328 the expect_type, then use that as the target type.
11329 Otherwise, assume that the target type is an int. */
11330 {
11331 if (expect_type != NULL)
11332 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11333 arg1));
11334 else
11335 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11336 (CORE_ADDR) value_as_address (arg1));
11337 }
11338
11339 if (ada_is_array_descriptor_type (type))
11340 /* GDB allows dereferencing GNAT array descriptors. */
11341 return ada_coerce_to_simple_array (arg1);
11342 else
11343 return ada_value_ind (arg1);
11344
11345 case STRUCTOP_STRUCT:
11346 tem = longest_to_int (exp->elts[pc + 1].longconst);
11347 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11348 preeval_pos = *pos;
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
11351 goto nosideret;
11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 {
11354 struct type *type1 = value_type (arg1);
11355
11356 if (ada_is_tagged_type (type1, 1))
11357 {
11358 type = ada_lookup_struct_elt_type (type1,
11359 &exp->elts[pc + 2].string,
11360 1, 1);
11361
11362 /* If the field is not found, check if it exists in the
11363 extension of this object's type. This means that we
11364 need to evaluate completely the expression. */
11365
11366 if (type == NULL)
11367 {
11368 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11369 EVAL_NORMAL);
11370 arg1 = ada_value_struct_elt (arg1,
11371 &exp->elts[pc + 2].string,
11372 0);
11373 arg1 = unwrap_value (arg1);
11374 type = value_type (ada_to_fixed_value (arg1));
11375 }
11376 }
11377 else
11378 type =
11379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11380 0);
11381
11382 return value_zero (ada_aligned_type (type), lval_memory);
11383 }
11384 else
11385 {
11386 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11387 arg1 = unwrap_value (arg1);
11388 return ada_to_fixed_value (arg1);
11389 }
11390
11391 case OP_TYPE:
11392 /* The value is not supposed to be used. This is here to make it
11393 easier to accommodate expressions that contain types. */
11394 (*pos) += 2;
11395 if (noside == EVAL_SKIP)
11396 goto nosideret;
11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11398 return allocate_value (exp->elts[pc + 1].type);
11399 else
11400 error (_("Attempt to use a type name as an expression"));
11401
11402 case OP_AGGREGATE:
11403 case OP_CHOICES:
11404 case OP_OTHERS:
11405 case OP_DISCRETE_RANGE:
11406 case OP_POSITIONAL:
11407 case OP_NAME:
11408 if (noside == EVAL_NORMAL)
11409 switch (op)
11410 {
11411 case OP_NAME:
11412 error (_("Undefined name, ambiguous name, or renaming used in "
11413 "component association: %s."), &exp->elts[pc+2].string);
11414 case OP_AGGREGATE:
11415 error (_("Aggregates only allowed on the right of an assignment"));
11416 default:
11417 internal_error (__FILE__, __LINE__,
11418 _("aggregate apparently mangled"));
11419 }
11420
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422 *pos += oplen - 1;
11423 for (tem = 0; tem < nargs; tem += 1)
11424 ada_evaluate_subexp (NULL, exp, pos, noside);
11425 goto nosideret;
11426 }
11427
11428 nosideret:
11429 return eval_skip_value (exp);
11430 }
11431 \f
11432
11433 /* Fixed point */
11434
11435 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11436 type name that encodes the 'small and 'delta information.
11437 Otherwise, return NULL. */
11438
11439 static const char *
11440 fixed_type_info (struct type *type)
11441 {
11442 const char *name = ada_type_name (type);
11443 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11444
11445 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11446 {
11447 const char *tail = strstr (name, "___XF_");
11448
11449 if (tail == NULL)
11450 return NULL;
11451 else
11452 return tail + 5;
11453 }
11454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11455 return fixed_type_info (TYPE_TARGET_TYPE (type));
11456 else
11457 return NULL;
11458 }
11459
11460 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11461
11462 int
11463 ada_is_fixed_point_type (struct type *type)
11464 {
11465 return fixed_type_info (type) != NULL;
11466 }
11467
11468 /* Return non-zero iff TYPE represents a System.Address type. */
11469
11470 int
11471 ada_is_system_address_type (struct type *type)
11472 {
11473 return (TYPE_NAME (type)
11474 && strcmp (TYPE_NAME (type), "system__address") == 0);
11475 }
11476
11477 /* Assuming that TYPE is the representation of an Ada fixed-point
11478 type, return the target floating-point type to be used to represent
11479 of this type during internal computation. */
11480
11481 static struct type *
11482 ada_scaling_type (struct type *type)
11483 {
11484 return builtin_type (get_type_arch (type))->builtin_long_double;
11485 }
11486
11487 /* Assuming that TYPE is the representation of an Ada fixed-point
11488 type, return its delta, or NULL if the type is malformed and the
11489 delta cannot be determined. */
11490
11491 struct value *
11492 ada_delta (struct type *type)
11493 {
11494 const char *encoding = fixed_type_info (type);
11495 struct type *scale_type = ada_scaling_type (type);
11496
11497 long long num, den;
11498
11499 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11500 return nullptr;
11501 else
11502 return value_binop (value_from_longest (scale_type, num),
11503 value_from_longest (scale_type, den), BINOP_DIV);
11504 }
11505
11506 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11507 factor ('SMALL value) associated with the type. */
11508
11509 struct value *
11510 ada_scaling_factor (struct type *type)
11511 {
11512 const char *encoding = fixed_type_info (type);
11513 struct type *scale_type = ada_scaling_type (type);
11514
11515 long long num0, den0, num1, den1;
11516 int n;
11517
11518 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11519 &num0, &den0, &num1, &den1);
11520
11521 if (n < 2)
11522 return value_from_longest (scale_type, 1);
11523 else if (n == 4)
11524 return value_binop (value_from_longest (scale_type, num1),
11525 value_from_longest (scale_type, den1), BINOP_DIV);
11526 else
11527 return value_binop (value_from_longest (scale_type, num0),
11528 value_from_longest (scale_type, den0), BINOP_DIV);
11529 }
11530
11531 \f
11532
11533 /* Range types */
11534
11535 /* Scan STR beginning at position K for a discriminant name, and
11536 return the value of that discriminant field of DVAL in *PX. If
11537 PNEW_K is not null, put the position of the character beyond the
11538 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11539 not alter *PX and *PNEW_K if unsuccessful. */
11540
11541 static int
11542 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11543 int *pnew_k)
11544 {
11545 static char *bound_buffer = NULL;
11546 static size_t bound_buffer_len = 0;
11547 const char *pstart, *pend, *bound;
11548 struct value *bound_val;
11549
11550 if (dval == NULL || str == NULL || str[k] == '\0')
11551 return 0;
11552
11553 pstart = str + k;
11554 pend = strstr (pstart, "__");
11555 if (pend == NULL)
11556 {
11557 bound = pstart;
11558 k += strlen (bound);
11559 }
11560 else
11561 {
11562 int len = pend - pstart;
11563
11564 /* Strip __ and beyond. */
11565 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11566 strncpy (bound_buffer, pstart, len);
11567 bound_buffer[len] = '\0';
11568
11569 bound = bound_buffer;
11570 k = pend - str;
11571 }
11572
11573 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11574 if (bound_val == NULL)
11575 return 0;
11576
11577 *px = value_as_long (bound_val);
11578 if (pnew_k != NULL)
11579 *pnew_k = k;
11580 return 1;
11581 }
11582
11583 /* Value of variable named NAME in the current environment. If
11584 no such variable found, then if ERR_MSG is null, returns 0, and
11585 otherwise causes an error with message ERR_MSG. */
11586
11587 static struct value *
11588 get_var_value (const char *name, const char *err_msg)
11589 {
11590 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11591
11592 std::vector<struct block_symbol> syms;
11593 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11594 get_selected_block (0),
11595 VAR_DOMAIN, &syms, 1);
11596
11597 if (nsyms != 1)
11598 {
11599 if (err_msg == NULL)
11600 return 0;
11601 else
11602 error (("%s"), err_msg);
11603 }
11604
11605 return value_of_variable (syms[0].symbol, syms[0].block);
11606 }
11607
11608 /* Value of integer variable named NAME in the current environment.
11609 If no such variable is found, returns false. Otherwise, sets VALUE
11610 to the variable's value and returns true. */
11611
11612 bool
11613 get_int_var_value (const char *name, LONGEST &value)
11614 {
11615 struct value *var_val = get_var_value (name, 0);
11616
11617 if (var_val == 0)
11618 return false;
11619
11620 value = value_as_long (var_val);
11621 return true;
11622 }
11623
11624
11625 /* Return a range type whose base type is that of the range type named
11626 NAME in the current environment, and whose bounds are calculated
11627 from NAME according to the GNAT range encoding conventions.
11628 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11629 corresponding range type from debug information; fall back to using it
11630 if symbol lookup fails. If a new type must be created, allocate it
11631 like ORIG_TYPE was. The bounds information, in general, is encoded
11632 in NAME, the base type given in the named range type. */
11633
11634 static struct type *
11635 to_fixed_range_type (struct type *raw_type, struct value *dval)
11636 {
11637 const char *name;
11638 struct type *base_type;
11639 const char *subtype_info;
11640
11641 gdb_assert (raw_type != NULL);
11642 gdb_assert (TYPE_NAME (raw_type) != NULL);
11643
11644 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11645 base_type = TYPE_TARGET_TYPE (raw_type);
11646 else
11647 base_type = raw_type;
11648
11649 name = TYPE_NAME (raw_type);
11650 subtype_info = strstr (name, "___XD");
11651 if (subtype_info == NULL)
11652 {
11653 LONGEST L = ada_discrete_type_low_bound (raw_type);
11654 LONGEST U = ada_discrete_type_high_bound (raw_type);
11655
11656 if (L < INT_MIN || U > INT_MAX)
11657 return raw_type;
11658 else
11659 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11660 L, U);
11661 }
11662 else
11663 {
11664 static char *name_buf = NULL;
11665 static size_t name_len = 0;
11666 int prefix_len = subtype_info - name;
11667 LONGEST L, U;
11668 struct type *type;
11669 const char *bounds_str;
11670 int n;
11671
11672 GROW_VECT (name_buf, name_len, prefix_len + 5);
11673 strncpy (name_buf, name, prefix_len);
11674 name_buf[prefix_len] = '\0';
11675
11676 subtype_info += 5;
11677 bounds_str = strchr (subtype_info, '_');
11678 n = 1;
11679
11680 if (*subtype_info == 'L')
11681 {
11682 if (!ada_scan_number (bounds_str, n, &L, &n)
11683 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11684 return raw_type;
11685 if (bounds_str[n] == '_')
11686 n += 2;
11687 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11688 n += 1;
11689 subtype_info += 1;
11690 }
11691 else
11692 {
11693 strcpy (name_buf + prefix_len, "___L");
11694 if (!get_int_var_value (name_buf, L))
11695 {
11696 lim_warning (_("Unknown lower bound, using 1."));
11697 L = 1;
11698 }
11699 }
11700
11701 if (*subtype_info == 'U')
11702 {
11703 if (!ada_scan_number (bounds_str, n, &U, &n)
11704 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11705 return raw_type;
11706 }
11707 else
11708 {
11709 strcpy (name_buf + prefix_len, "___U");
11710 if (!get_int_var_value (name_buf, U))
11711 {
11712 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11713 U = L;
11714 }
11715 }
11716
11717 type = create_static_range_type (alloc_type_copy (raw_type),
11718 base_type, L, U);
11719 /* create_static_range_type alters the resulting type's length
11720 to match the size of the base_type, which is not what we want.
11721 Set it back to the original range type's length. */
11722 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11723 TYPE_NAME (type) = name;
11724 return type;
11725 }
11726 }
11727
11728 /* True iff NAME is the name of a range type. */
11729
11730 int
11731 ada_is_range_type_name (const char *name)
11732 {
11733 return (name != NULL && strstr (name, "___XD"));
11734 }
11735 \f
11736
11737 /* Modular types */
11738
11739 /* True iff TYPE is an Ada modular type. */
11740
11741 int
11742 ada_is_modular_type (struct type *type)
11743 {
11744 struct type *subranged_type = get_base_type (type);
11745
11746 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11747 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11748 && TYPE_UNSIGNED (subranged_type));
11749 }
11750
11751 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11752
11753 ULONGEST
11754 ada_modulus (struct type *type)
11755 {
11756 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11757 }
11758 \f
11759
11760 /* Ada exception catchpoint support:
11761 ---------------------------------
11762
11763 We support 3 kinds of exception catchpoints:
11764 . catchpoints on Ada exceptions
11765 . catchpoints on unhandled Ada exceptions
11766 . catchpoints on failed assertions
11767
11768 Exceptions raised during failed assertions, or unhandled exceptions
11769 could perfectly be caught with the general catchpoint on Ada exceptions.
11770 However, we can easily differentiate these two special cases, and having
11771 the option to distinguish these two cases from the rest can be useful
11772 to zero-in on certain situations.
11773
11774 Exception catchpoints are a specialized form of breakpoint,
11775 since they rely on inserting breakpoints inside known routines
11776 of the GNAT runtime. The implementation therefore uses a standard
11777 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11778 of breakpoint_ops.
11779
11780 Support in the runtime for exception catchpoints have been changed
11781 a few times already, and these changes affect the implementation
11782 of these catchpoints. In order to be able to support several
11783 variants of the runtime, we use a sniffer that will determine
11784 the runtime variant used by the program being debugged. */
11785
11786 /* Ada's standard exceptions.
11787
11788 The Ada 83 standard also defined Numeric_Error. But there so many
11789 situations where it was unclear from the Ada 83 Reference Manual
11790 (RM) whether Constraint_Error or Numeric_Error should be raised,
11791 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11792 Interpretation saying that anytime the RM says that Numeric_Error
11793 should be raised, the implementation may raise Constraint_Error.
11794 Ada 95 went one step further and pretty much removed Numeric_Error
11795 from the list of standard exceptions (it made it a renaming of
11796 Constraint_Error, to help preserve compatibility when compiling
11797 an Ada83 compiler). As such, we do not include Numeric_Error from
11798 this list of standard exceptions. */
11799
11800 static const char *standard_exc[] = {
11801 "constraint_error",
11802 "program_error",
11803 "storage_error",
11804 "tasking_error"
11805 };
11806
11807 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11808
11809 /* A structure that describes how to support exception catchpoints
11810 for a given executable. */
11811
11812 struct exception_support_info
11813 {
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on exceptions. */
11816 const char *catch_exception_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on unhandled exceptions. */
11820 const char *catch_exception_unhandled_sym;
11821
11822 /* The name of the symbol to break on in order to insert
11823 a catchpoint on failed assertions. */
11824 const char *catch_assert_sym;
11825
11826 /* The name of the symbol to break on in order to insert
11827 a catchpoint on exception handling. */
11828 const char *catch_handlers_sym;
11829
11830 /* Assuming that the inferior just triggered an unhandled exception
11831 catchpoint, this function is responsible for returning the address
11832 in inferior memory where the name of that exception is stored.
11833 Return zero if the address could not be computed. */
11834 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11835 };
11836
11837 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11838 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11839
11840 /* The following exception support info structure describes how to
11841 implement exception catchpoints with the latest version of the
11842 Ada runtime (as of 2019-08-??). */
11843
11844 static const struct exception_support_info default_exception_support_info =
11845 {
11846 "__gnat_debug_raise_exception", /* catch_exception_sym */
11847 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11848 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11849 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11850 ada_unhandled_exception_name_addr
11851 };
11852
11853 /* The following exception support info structure describes how to
11854 implement exception catchpoints with an earlier version of the
11855 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11856
11857 static const struct exception_support_info exception_support_info_v0 =
11858 {
11859 "__gnat_debug_raise_exception", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11862 "__gnat_begin_handler", /* catch_handlers_sym */
11863 ada_unhandled_exception_name_addr
11864 };
11865
11866 /* The following exception support info structure describes how to
11867 implement exception catchpoints with a slightly older version
11868 of the Ada runtime. */
11869
11870 static const struct exception_support_info exception_support_info_fallback =
11871 {
11872 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11873 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11874 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11875 "__gnat_begin_handler", /* catch_handlers_sym */
11876 ada_unhandled_exception_name_addr_from_raise
11877 };
11878
11879 /* Return nonzero if we can detect the exception support routines
11880 described in EINFO.
11881
11882 This function errors out if an abnormal situation is detected
11883 (for instance, if we find the exception support routines, but
11884 that support is found to be incomplete). */
11885
11886 static int
11887 ada_has_this_exception_support (const struct exception_support_info *einfo)
11888 {
11889 struct symbol *sym;
11890
11891 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11892 that should be compiled with debugging information. As a result, we
11893 expect to find that symbol in the symtabs. */
11894
11895 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11896 if (sym == NULL)
11897 {
11898 /* Perhaps we did not find our symbol because the Ada runtime was
11899 compiled without debugging info, or simply stripped of it.
11900 It happens on some GNU/Linux distributions for instance, where
11901 users have to install a separate debug package in order to get
11902 the runtime's debugging info. In that situation, let the user
11903 know why we cannot insert an Ada exception catchpoint.
11904
11905 Note: Just for the purpose of inserting our Ada exception
11906 catchpoint, we could rely purely on the associated minimal symbol.
11907 But we would be operating in degraded mode anyway, since we are
11908 still lacking the debugging info needed later on to extract
11909 the name of the exception being raised (this name is printed in
11910 the catchpoint message, and is also used when trying to catch
11911 a specific exception). We do not handle this case for now. */
11912 struct bound_minimal_symbol msym
11913 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11914
11915 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11916 error (_("Your Ada runtime appears to be missing some debugging "
11917 "information.\nCannot insert Ada exception catchpoint "
11918 "in this configuration."));
11919
11920 return 0;
11921 }
11922
11923 /* Make sure that the symbol we found corresponds to a function. */
11924
11925 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11926 {
11927 error (_("Symbol \"%s\" is not a function (class = %d)"),
11928 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11929 return 0;
11930 }
11931
11932 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11933 if (sym == NULL)
11934 {
11935 struct bound_minimal_symbol msym
11936 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11937
11938 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11939 error (_("Your Ada runtime appears to be missing some debugging "
11940 "information.\nCannot insert Ada exception catchpoint "
11941 "in this configuration."));
11942
11943 return 0;
11944 }
11945
11946 /* Make sure that the symbol we found corresponds to a function. */
11947
11948 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11949 {
11950 error (_("Symbol \"%s\" is not a function (class = %d)"),
11951 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11952 return 0;
11953 }
11954
11955 return 1;
11956 }
11957
11958 /* Inspect the Ada runtime and determine which exception info structure
11959 should be used to provide support for exception catchpoints.
11960
11961 This function will always set the per-inferior exception_info,
11962 or raise an error. */
11963
11964 static void
11965 ada_exception_support_info_sniffer (void)
11966 {
11967 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11968
11969 /* If the exception info is already known, then no need to recompute it. */
11970 if (data->exception_info != NULL)
11971 return;
11972
11973 /* Check the latest (default) exception support info. */
11974 if (ada_has_this_exception_support (&default_exception_support_info))
11975 {
11976 data->exception_info = &default_exception_support_info;
11977 return;
11978 }
11979
11980 /* Try the v0 exception suport info. */
11981 if (ada_has_this_exception_support (&exception_support_info_v0))
11982 {
11983 data->exception_info = &exception_support_info_v0;
11984 return;
11985 }
11986
11987 /* Try our fallback exception suport info. */
11988 if (ada_has_this_exception_support (&exception_support_info_fallback))
11989 {
11990 data->exception_info = &exception_support_info_fallback;
11991 return;
11992 }
11993
11994 /* Sometimes, it is normal for us to not be able to find the routine
11995 we are looking for. This happens when the program is linked with
11996 the shared version of the GNAT runtime, and the program has not been
11997 started yet. Inform the user of these two possible causes if
11998 applicable. */
11999
12000 if (ada_update_initial_language (language_unknown) != language_ada)
12001 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12002
12003 /* If the symbol does not exist, then check that the program is
12004 already started, to make sure that shared libraries have been
12005 loaded. If it is not started, this may mean that the symbol is
12006 in a shared library. */
12007
12008 if (inferior_ptid.pid () == 0)
12009 error (_("Unable to insert catchpoint. Try to start the program first."));
12010
12011 /* At this point, we know that we are debugging an Ada program and
12012 that the inferior has been started, but we still are not able to
12013 find the run-time symbols. That can mean that we are in
12014 configurable run time mode, or that a-except as been optimized
12015 out by the linker... In any case, at this point it is not worth
12016 supporting this feature. */
12017
12018 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12019 }
12020
12021 /* True iff FRAME is very likely to be that of a function that is
12022 part of the runtime system. This is all very heuristic, but is
12023 intended to be used as advice as to what frames are uninteresting
12024 to most users. */
12025
12026 static int
12027 is_known_support_routine (struct frame_info *frame)
12028 {
12029 enum language func_lang;
12030 int i;
12031 const char *fullname;
12032
12033 /* If this code does not have any debugging information (no symtab),
12034 This cannot be any user code. */
12035
12036 symtab_and_line sal = find_frame_sal (frame);
12037 if (sal.symtab == NULL)
12038 return 1;
12039
12040 /* If there is a symtab, but the associated source file cannot be
12041 located, then assume this is not user code: Selecting a frame
12042 for which we cannot display the code would not be very helpful
12043 for the user. This should also take care of case such as VxWorks
12044 where the kernel has some debugging info provided for a few units. */
12045
12046 fullname = symtab_to_fullname (sal.symtab);
12047 if (access (fullname, R_OK) != 0)
12048 return 1;
12049
12050 /* Check the unit filename againt the Ada runtime file naming.
12051 We also check the name of the objfile against the name of some
12052 known system libraries that sometimes come with debugging info
12053 too. */
12054
12055 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12056 {
12057 re_comp (known_runtime_file_name_patterns[i]);
12058 if (re_exec (lbasename (sal.symtab->filename)))
12059 return 1;
12060 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12061 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12062 return 1;
12063 }
12064
12065 /* Check whether the function is a GNAT-generated entity. */
12066
12067 gdb::unique_xmalloc_ptr<char> func_name
12068 = find_frame_funname (frame, &func_lang, NULL);
12069 if (func_name == NULL)
12070 return 1;
12071
12072 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12073 {
12074 re_comp (known_auxiliary_function_name_patterns[i]);
12075 if (re_exec (func_name.get ()))
12076 return 1;
12077 }
12078
12079 return 0;
12080 }
12081
12082 /* Find the first frame that contains debugging information and that is not
12083 part of the Ada run-time, starting from FI and moving upward. */
12084
12085 void
12086 ada_find_printable_frame (struct frame_info *fi)
12087 {
12088 for (; fi != NULL; fi = get_prev_frame (fi))
12089 {
12090 if (!is_known_support_routine (fi))
12091 {
12092 select_frame (fi);
12093 break;
12094 }
12095 }
12096
12097 }
12098
12099 /* Assuming that the inferior just triggered an unhandled exception
12100 catchpoint, return the address in inferior memory where the name
12101 of the exception is stored.
12102
12103 Return zero if the address could not be computed. */
12104
12105 static CORE_ADDR
12106 ada_unhandled_exception_name_addr (void)
12107 {
12108 return parse_and_eval_address ("e.full_name");
12109 }
12110
12111 /* Same as ada_unhandled_exception_name_addr, except that this function
12112 should be used when the inferior uses an older version of the runtime,
12113 where the exception name needs to be extracted from a specific frame
12114 several frames up in the callstack. */
12115
12116 static CORE_ADDR
12117 ada_unhandled_exception_name_addr_from_raise (void)
12118 {
12119 int frame_level;
12120 struct frame_info *fi;
12121 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12122
12123 /* To determine the name of this exception, we need to select
12124 the frame corresponding to RAISE_SYM_NAME. This frame is
12125 at least 3 levels up, so we simply skip the first 3 frames
12126 without checking the name of their associated function. */
12127 fi = get_current_frame ();
12128 for (frame_level = 0; frame_level < 3; frame_level += 1)
12129 if (fi != NULL)
12130 fi = get_prev_frame (fi);
12131
12132 while (fi != NULL)
12133 {
12134 enum language func_lang;
12135
12136 gdb::unique_xmalloc_ptr<char> func_name
12137 = find_frame_funname (fi, &func_lang, NULL);
12138 if (func_name != NULL)
12139 {
12140 if (strcmp (func_name.get (),
12141 data->exception_info->catch_exception_sym) == 0)
12142 break; /* We found the frame we were looking for... */
12143 }
12144 fi = get_prev_frame (fi);
12145 }
12146
12147 if (fi == NULL)
12148 return 0;
12149
12150 select_frame (fi);
12151 return parse_and_eval_address ("id.full_name");
12152 }
12153
12154 /* Assuming the inferior just triggered an Ada exception catchpoint
12155 (of any type), return the address in inferior memory where the name
12156 of the exception is stored, if applicable.
12157
12158 Assumes the selected frame is the current frame.
12159
12160 Return zero if the address could not be computed, or if not relevant. */
12161
12162 static CORE_ADDR
12163 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12164 struct breakpoint *b)
12165 {
12166 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12167
12168 switch (ex)
12169 {
12170 case ada_catch_exception:
12171 return (parse_and_eval_address ("e.full_name"));
12172 break;
12173
12174 case ada_catch_exception_unhandled:
12175 return data->exception_info->unhandled_exception_name_addr ();
12176 break;
12177
12178 case ada_catch_handlers:
12179 return 0; /* The runtimes does not provide access to the exception
12180 name. */
12181 break;
12182
12183 case ada_catch_assert:
12184 return 0; /* Exception name is not relevant in this case. */
12185 break;
12186
12187 default:
12188 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12189 break;
12190 }
12191
12192 return 0; /* Should never be reached. */
12193 }
12194
12195 /* Assuming the inferior is stopped at an exception catchpoint,
12196 return the message which was associated to the exception, if
12197 available. Return NULL if the message could not be retrieved.
12198
12199 Note: The exception message can be associated to an exception
12200 either through the use of the Raise_Exception function, or
12201 more simply (Ada 2005 and later), via:
12202
12203 raise Exception_Name with "exception message";
12204
12205 */
12206
12207 static gdb::unique_xmalloc_ptr<char>
12208 ada_exception_message_1 (void)
12209 {
12210 struct value *e_msg_val;
12211 int e_msg_len;
12212
12213 /* For runtimes that support this feature, the exception message
12214 is passed as an unbounded string argument called "message". */
12215 e_msg_val = parse_and_eval ("message");
12216 if (e_msg_val == NULL)
12217 return NULL; /* Exception message not supported. */
12218
12219 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12220 gdb_assert (e_msg_val != NULL);
12221 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12222
12223 /* If the message string is empty, then treat it as if there was
12224 no exception message. */
12225 if (e_msg_len <= 0)
12226 return NULL;
12227
12228 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12229 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12230 e_msg.get ()[e_msg_len] = '\0';
12231
12232 return e_msg;
12233 }
12234
12235 /* Same as ada_exception_message_1, except that all exceptions are
12236 contained here (returning NULL instead). */
12237
12238 static gdb::unique_xmalloc_ptr<char>
12239 ada_exception_message (void)
12240 {
12241 gdb::unique_xmalloc_ptr<char> e_msg;
12242
12243 try
12244 {
12245 e_msg = ada_exception_message_1 ();
12246 }
12247 catch (const gdb_exception_error &e)
12248 {
12249 e_msg.reset (nullptr);
12250 }
12251
12252 return e_msg;
12253 }
12254
12255 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12256 any error that ada_exception_name_addr_1 might cause to be thrown.
12257 When an error is intercepted, a warning with the error message is printed,
12258 and zero is returned. */
12259
12260 static CORE_ADDR
12261 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12262 struct breakpoint *b)
12263 {
12264 CORE_ADDR result = 0;
12265
12266 try
12267 {
12268 result = ada_exception_name_addr_1 (ex, b);
12269 }
12270
12271 catch (const gdb_exception_error &e)
12272 {
12273 warning (_("failed to get exception name: %s"), e.what ());
12274 return 0;
12275 }
12276
12277 return result;
12278 }
12279
12280 static std::string ada_exception_catchpoint_cond_string
12281 (const char *excep_string,
12282 enum ada_exception_catchpoint_kind ex);
12283
12284 /* Ada catchpoints.
12285
12286 In the case of catchpoints on Ada exceptions, the catchpoint will
12287 stop the target on every exception the program throws. When a user
12288 specifies the name of a specific exception, we translate this
12289 request into a condition expression (in text form), and then parse
12290 it into an expression stored in each of the catchpoint's locations.
12291 We then use this condition to check whether the exception that was
12292 raised is the one the user is interested in. If not, then the
12293 target is resumed again. We store the name of the requested
12294 exception, in order to be able to re-set the condition expression
12295 when symbols change. */
12296
12297 /* An instance of this type is used to represent an Ada catchpoint
12298 breakpoint location. */
12299
12300 class ada_catchpoint_location : public bp_location
12301 {
12302 public:
12303 ada_catchpoint_location (breakpoint *owner)
12304 : bp_location (owner, bp_loc_software_breakpoint)
12305 {}
12306
12307 /* The condition that checks whether the exception that was raised
12308 is the specific exception the user specified on catchpoint
12309 creation. */
12310 expression_up excep_cond_expr;
12311 };
12312
12313 /* An instance of this type is used to represent an Ada catchpoint. */
12314
12315 struct ada_catchpoint : public breakpoint
12316 {
12317 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12318 : m_kind (kind)
12319 {
12320 }
12321
12322 /* The name of the specific exception the user specified. */
12323 std::string excep_string;
12324
12325 /* What kind of catchpoint this is. */
12326 enum ada_exception_catchpoint_kind m_kind;
12327 };
12328
12329 /* Parse the exception condition string in the context of each of the
12330 catchpoint's locations, and store them for later evaluation. */
12331
12332 static void
12333 create_excep_cond_exprs (struct ada_catchpoint *c,
12334 enum ada_exception_catchpoint_kind ex)
12335 {
12336 struct bp_location *bl;
12337
12338 /* Nothing to do if there's no specific exception to catch. */
12339 if (c->excep_string.empty ())
12340 return;
12341
12342 /* Same if there are no locations... */
12343 if (c->loc == NULL)
12344 return;
12345
12346 /* Compute the condition expression in text form, from the specific
12347 expection we want to catch. */
12348 std::string cond_string
12349 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12350
12351 /* Iterate over all the catchpoint's locations, and parse an
12352 expression for each. */
12353 for (bl = c->loc; bl != NULL; bl = bl->next)
12354 {
12355 struct ada_catchpoint_location *ada_loc
12356 = (struct ada_catchpoint_location *) bl;
12357 expression_up exp;
12358
12359 if (!bl->shlib_disabled)
12360 {
12361 const char *s;
12362
12363 s = cond_string.c_str ();
12364 try
12365 {
12366 exp = parse_exp_1 (&s, bl->address,
12367 block_for_pc (bl->address),
12368 0);
12369 }
12370 catch (const gdb_exception_error &e)
12371 {
12372 warning (_("failed to reevaluate internal exception condition "
12373 "for catchpoint %d: %s"),
12374 c->number, e.what ());
12375 }
12376 }
12377
12378 ada_loc->excep_cond_expr = std::move (exp);
12379 }
12380 }
12381
12382 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12383 structure for all exception catchpoint kinds. */
12384
12385 static struct bp_location *
12386 allocate_location_exception (struct breakpoint *self)
12387 {
12388 return new ada_catchpoint_location (self);
12389 }
12390
12391 /* Implement the RE_SET method in the breakpoint_ops structure for all
12392 exception catchpoint kinds. */
12393
12394 static void
12395 re_set_exception (struct breakpoint *b)
12396 {
12397 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12398
12399 /* Call the base class's method. This updates the catchpoint's
12400 locations. */
12401 bkpt_breakpoint_ops.re_set (b);
12402
12403 /* Reparse the exception conditional expressions. One for each
12404 location. */
12405 create_excep_cond_exprs (c, c->m_kind);
12406 }
12407
12408 /* Returns true if we should stop for this breakpoint hit. If the
12409 user specified a specific exception, we only want to cause a stop
12410 if the program thrown that exception. */
12411
12412 static int
12413 should_stop_exception (const struct bp_location *bl)
12414 {
12415 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12416 const struct ada_catchpoint_location *ada_loc
12417 = (const struct ada_catchpoint_location *) bl;
12418 int stop;
12419
12420 struct internalvar *var = lookup_internalvar ("_ada_exception");
12421 if (c->m_kind == ada_catch_assert)
12422 clear_internalvar (var);
12423 else
12424 {
12425 try
12426 {
12427 const char *expr;
12428
12429 if (c->m_kind == ada_catch_handlers)
12430 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12431 ".all.occurrence.id");
12432 else
12433 expr = "e";
12434
12435 struct value *exc = parse_and_eval (expr);
12436 set_internalvar (var, exc);
12437 }
12438 catch (const gdb_exception_error &ex)
12439 {
12440 clear_internalvar (var);
12441 }
12442 }
12443
12444 /* With no specific exception, should always stop. */
12445 if (c->excep_string.empty ())
12446 return 1;
12447
12448 if (ada_loc->excep_cond_expr == NULL)
12449 {
12450 /* We will have a NULL expression if back when we were creating
12451 the expressions, this location's had failed to parse. */
12452 return 1;
12453 }
12454
12455 stop = 1;
12456 try
12457 {
12458 struct value *mark;
12459
12460 mark = value_mark ();
12461 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12462 value_free_to_mark (mark);
12463 }
12464 catch (const gdb_exception &ex)
12465 {
12466 exception_fprintf (gdb_stderr, ex,
12467 _("Error in testing exception condition:\n"));
12468 }
12469
12470 return stop;
12471 }
12472
12473 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12474 for all exception catchpoint kinds. */
12475
12476 static void
12477 check_status_exception (bpstat bs)
12478 {
12479 bs->stop = should_stop_exception (bs->bp_location_at);
12480 }
12481
12482 /* Implement the PRINT_IT method in the breakpoint_ops structure
12483 for all exception catchpoint kinds. */
12484
12485 static enum print_stop_action
12486 print_it_exception (bpstat bs)
12487 {
12488 struct ui_out *uiout = current_uiout;
12489 struct breakpoint *b = bs->breakpoint_at;
12490
12491 annotate_catchpoint (b->number);
12492
12493 if (uiout->is_mi_like_p ())
12494 {
12495 uiout->field_string ("reason",
12496 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12497 uiout->field_string ("disp", bpdisp_text (b->disposition));
12498 }
12499
12500 uiout->text (b->disposition == disp_del
12501 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12502 uiout->field_signed ("bkptno", b->number);
12503 uiout->text (", ");
12504
12505 /* ada_exception_name_addr relies on the selected frame being the
12506 current frame. Need to do this here because this function may be
12507 called more than once when printing a stop, and below, we'll
12508 select the first frame past the Ada run-time (see
12509 ada_find_printable_frame). */
12510 select_frame (get_current_frame ());
12511
12512 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12513 switch (c->m_kind)
12514 {
12515 case ada_catch_exception:
12516 case ada_catch_exception_unhandled:
12517 case ada_catch_handlers:
12518 {
12519 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12520 char exception_name[256];
12521
12522 if (addr != 0)
12523 {
12524 read_memory (addr, (gdb_byte *) exception_name,
12525 sizeof (exception_name) - 1);
12526 exception_name [sizeof (exception_name) - 1] = '\0';
12527 }
12528 else
12529 {
12530 /* For some reason, we were unable to read the exception
12531 name. This could happen if the Runtime was compiled
12532 without debugging info, for instance. In that case,
12533 just replace the exception name by the generic string
12534 "exception" - it will read as "an exception" in the
12535 notification we are about to print. */
12536 memcpy (exception_name, "exception", sizeof ("exception"));
12537 }
12538 /* In the case of unhandled exception breakpoints, we print
12539 the exception name as "unhandled EXCEPTION_NAME", to make
12540 it clearer to the user which kind of catchpoint just got
12541 hit. We used ui_out_text to make sure that this extra
12542 info does not pollute the exception name in the MI case. */
12543 if (c->m_kind == ada_catch_exception_unhandled)
12544 uiout->text ("unhandled ");
12545 uiout->field_string ("exception-name", exception_name);
12546 }
12547 break;
12548 case ada_catch_assert:
12549 /* In this case, the name of the exception is not really
12550 important. Just print "failed assertion" to make it clearer
12551 that his program just hit an assertion-failure catchpoint.
12552 We used ui_out_text because this info does not belong in
12553 the MI output. */
12554 uiout->text ("failed assertion");
12555 break;
12556 }
12557
12558 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12559 if (exception_message != NULL)
12560 {
12561 uiout->text (" (");
12562 uiout->field_string ("exception-message", exception_message.get ());
12563 uiout->text (")");
12564 }
12565
12566 uiout->text (" at ");
12567 ada_find_printable_frame (get_current_frame ());
12568
12569 return PRINT_SRC_AND_LOC;
12570 }
12571
12572 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575 static void
12576 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12577 {
12578 struct ui_out *uiout = current_uiout;
12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12580 struct value_print_options opts;
12581
12582 get_user_print_options (&opts);
12583
12584 if (opts.addressprint)
12585 uiout->field_skip ("addr");
12586
12587 annotate_field (5);
12588 switch (c->m_kind)
12589 {
12590 case ada_catch_exception:
12591 if (!c->excep_string.empty ())
12592 {
12593 std::string msg = string_printf (_("`%s' Ada exception"),
12594 c->excep_string.c_str ());
12595
12596 uiout->field_string ("what", msg);
12597 }
12598 else
12599 uiout->field_string ("what", "all Ada exceptions");
12600
12601 break;
12602
12603 case ada_catch_exception_unhandled:
12604 uiout->field_string ("what", "unhandled Ada exceptions");
12605 break;
12606
12607 case ada_catch_handlers:
12608 if (!c->excep_string.empty ())
12609 {
12610 uiout->field_fmt ("what",
12611 _("`%s' Ada exception handlers"),
12612 c->excep_string.c_str ());
12613 }
12614 else
12615 uiout->field_string ("what", "all Ada exceptions handlers");
12616 break;
12617
12618 case ada_catch_assert:
12619 uiout->field_string ("what", "failed Ada assertions");
12620 break;
12621
12622 default:
12623 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12624 break;
12625 }
12626 }
12627
12628 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12629 for all exception catchpoint kinds. */
12630
12631 static void
12632 print_mention_exception (struct breakpoint *b)
12633 {
12634 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12635 struct ui_out *uiout = current_uiout;
12636
12637 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12638 : _("Catchpoint "));
12639 uiout->field_signed ("bkptno", b->number);
12640 uiout->text (": ");
12641
12642 switch (c->m_kind)
12643 {
12644 case ada_catch_exception:
12645 if (!c->excep_string.empty ())
12646 {
12647 std::string info = string_printf (_("`%s' Ada exception"),
12648 c->excep_string.c_str ());
12649 uiout->text (info.c_str ());
12650 }
12651 else
12652 uiout->text (_("all Ada exceptions"));
12653 break;
12654
12655 case ada_catch_exception_unhandled:
12656 uiout->text (_("unhandled Ada exceptions"));
12657 break;
12658
12659 case ada_catch_handlers:
12660 if (!c->excep_string.empty ())
12661 {
12662 std::string info
12663 = string_printf (_("`%s' Ada exception handlers"),
12664 c->excep_string.c_str ());
12665 uiout->text (info.c_str ());
12666 }
12667 else
12668 uiout->text (_("all Ada exceptions handlers"));
12669 break;
12670
12671 case ada_catch_assert:
12672 uiout->text (_("failed Ada assertions"));
12673 break;
12674
12675 default:
12676 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12677 break;
12678 }
12679 }
12680
12681 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12682 for all exception catchpoint kinds. */
12683
12684 static void
12685 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12686 {
12687 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12688
12689 switch (c->m_kind)
12690 {
12691 case ada_catch_exception:
12692 fprintf_filtered (fp, "catch exception");
12693 if (!c->excep_string.empty ())
12694 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12695 break;
12696
12697 case ada_catch_exception_unhandled:
12698 fprintf_filtered (fp, "catch exception unhandled");
12699 break;
12700
12701 case ada_catch_handlers:
12702 fprintf_filtered (fp, "catch handlers");
12703 break;
12704
12705 case ada_catch_assert:
12706 fprintf_filtered (fp, "catch assert");
12707 break;
12708
12709 default:
12710 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12711 }
12712 print_recreate_thread (b, fp);
12713 }
12714
12715 /* Virtual tables for various breakpoint types. */
12716 static struct breakpoint_ops catch_exception_breakpoint_ops;
12717 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12718 static struct breakpoint_ops catch_assert_breakpoint_ops;
12719 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12720
12721 /* See ada-lang.h. */
12722
12723 bool
12724 is_ada_exception_catchpoint (breakpoint *bp)
12725 {
12726 return (bp->ops == &catch_exception_breakpoint_ops
12727 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12728 || bp->ops == &catch_assert_breakpoint_ops
12729 || bp->ops == &catch_handlers_breakpoint_ops);
12730 }
12731
12732 /* Split the arguments specified in a "catch exception" command.
12733 Set EX to the appropriate catchpoint type.
12734 Set EXCEP_STRING to the name of the specific exception if
12735 specified by the user.
12736 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12737 "catch handlers" command. False otherwise.
12738 If a condition is found at the end of the arguments, the condition
12739 expression is stored in COND_STRING (memory must be deallocated
12740 after use). Otherwise COND_STRING is set to NULL. */
12741
12742 static void
12743 catch_ada_exception_command_split (const char *args,
12744 bool is_catch_handlers_cmd,
12745 enum ada_exception_catchpoint_kind *ex,
12746 std::string *excep_string,
12747 std::string *cond_string)
12748 {
12749 std::string exception_name;
12750
12751 exception_name = extract_arg (&args);
12752 if (exception_name == "if")
12753 {
12754 /* This is not an exception name; this is the start of a condition
12755 expression for a catchpoint on all exceptions. So, "un-get"
12756 this token, and set exception_name to NULL. */
12757 exception_name.clear ();
12758 args -= 2;
12759 }
12760
12761 /* Check to see if we have a condition. */
12762
12763 args = skip_spaces (args);
12764 if (startswith (args, "if")
12765 && (isspace (args[2]) || args[2] == '\0'))
12766 {
12767 args += 2;
12768 args = skip_spaces (args);
12769
12770 if (args[0] == '\0')
12771 error (_("Condition missing after `if' keyword"));
12772 *cond_string = args;
12773
12774 args += strlen (args);
12775 }
12776
12777 /* Check that we do not have any more arguments. Anything else
12778 is unexpected. */
12779
12780 if (args[0] != '\0')
12781 error (_("Junk at end of expression"));
12782
12783 if (is_catch_handlers_cmd)
12784 {
12785 /* Catch handling of exceptions. */
12786 *ex = ada_catch_handlers;
12787 *excep_string = exception_name;
12788 }
12789 else if (exception_name.empty ())
12790 {
12791 /* Catch all exceptions. */
12792 *ex = ada_catch_exception;
12793 excep_string->clear ();
12794 }
12795 else if (exception_name == "unhandled")
12796 {
12797 /* Catch unhandled exceptions. */
12798 *ex = ada_catch_exception_unhandled;
12799 excep_string->clear ();
12800 }
12801 else
12802 {
12803 /* Catch a specific exception. */
12804 *ex = ada_catch_exception;
12805 *excep_string = exception_name;
12806 }
12807 }
12808
12809 /* Return the name of the symbol on which we should break in order to
12810 implement a catchpoint of the EX kind. */
12811
12812 static const char *
12813 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12814 {
12815 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12816
12817 gdb_assert (data->exception_info != NULL);
12818
12819 switch (ex)
12820 {
12821 case ada_catch_exception:
12822 return (data->exception_info->catch_exception_sym);
12823 break;
12824 case ada_catch_exception_unhandled:
12825 return (data->exception_info->catch_exception_unhandled_sym);
12826 break;
12827 case ada_catch_assert:
12828 return (data->exception_info->catch_assert_sym);
12829 break;
12830 case ada_catch_handlers:
12831 return (data->exception_info->catch_handlers_sym);
12832 break;
12833 default:
12834 internal_error (__FILE__, __LINE__,
12835 _("unexpected catchpoint kind (%d)"), ex);
12836 }
12837 }
12838
12839 /* Return the breakpoint ops "virtual table" used for catchpoints
12840 of the EX kind. */
12841
12842 static const struct breakpoint_ops *
12843 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12844 {
12845 switch (ex)
12846 {
12847 case ada_catch_exception:
12848 return (&catch_exception_breakpoint_ops);
12849 break;
12850 case ada_catch_exception_unhandled:
12851 return (&catch_exception_unhandled_breakpoint_ops);
12852 break;
12853 case ada_catch_assert:
12854 return (&catch_assert_breakpoint_ops);
12855 break;
12856 case ada_catch_handlers:
12857 return (&catch_handlers_breakpoint_ops);
12858 break;
12859 default:
12860 internal_error (__FILE__, __LINE__,
12861 _("unexpected catchpoint kind (%d)"), ex);
12862 }
12863 }
12864
12865 /* Return the condition that will be used to match the current exception
12866 being raised with the exception that the user wants to catch. This
12867 assumes that this condition is used when the inferior just triggered
12868 an exception catchpoint.
12869 EX: the type of catchpoints used for catching Ada exceptions. */
12870
12871 static std::string
12872 ada_exception_catchpoint_cond_string (const char *excep_string,
12873 enum ada_exception_catchpoint_kind ex)
12874 {
12875 int i;
12876 bool is_standard_exc = false;
12877 std::string result;
12878
12879 if (ex == ada_catch_handlers)
12880 {
12881 /* For exception handlers catchpoints, the condition string does
12882 not use the same parameter as for the other exceptions. */
12883 result = ("long_integer (GNAT_GCC_exception_Access"
12884 "(gcc_exception).all.occurrence.id)");
12885 }
12886 else
12887 result = "long_integer (e)";
12888
12889 /* The standard exceptions are a special case. They are defined in
12890 runtime units that have been compiled without debugging info; if
12891 EXCEP_STRING is the not-fully-qualified name of a standard
12892 exception (e.g. "constraint_error") then, during the evaluation
12893 of the condition expression, the symbol lookup on this name would
12894 *not* return this standard exception. The catchpoint condition
12895 may then be set only on user-defined exceptions which have the
12896 same not-fully-qualified name (e.g. my_package.constraint_error).
12897
12898 To avoid this unexcepted behavior, these standard exceptions are
12899 systematically prefixed by "standard". This means that "catch
12900 exception constraint_error" is rewritten into "catch exception
12901 standard.constraint_error".
12902
12903 If an exception named contraint_error is defined in another package of
12904 the inferior program, then the only way to specify this exception as a
12905 breakpoint condition is to use its fully-qualified named:
12906 e.g. my_package.constraint_error. */
12907
12908 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12909 {
12910 if (strcmp (standard_exc [i], excep_string) == 0)
12911 {
12912 is_standard_exc = true;
12913 break;
12914 }
12915 }
12916
12917 result += " = ";
12918
12919 if (is_standard_exc)
12920 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12921 else
12922 string_appendf (result, "long_integer (&%s)", excep_string);
12923
12924 return result;
12925 }
12926
12927 /* Return the symtab_and_line that should be used to insert an exception
12928 catchpoint of the TYPE kind.
12929
12930 ADDR_STRING returns the name of the function where the real
12931 breakpoint that implements the catchpoints is set, depending on the
12932 type of catchpoint we need to create. */
12933
12934 static struct symtab_and_line
12935 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12936 std::string *addr_string, const struct breakpoint_ops **ops)
12937 {
12938 const char *sym_name;
12939 struct symbol *sym;
12940
12941 /* First, find out which exception support info to use. */
12942 ada_exception_support_info_sniffer ();
12943
12944 /* Then lookup the function on which we will break in order to catch
12945 the Ada exceptions requested by the user. */
12946 sym_name = ada_exception_sym_name (ex);
12947 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12948
12949 if (sym == NULL)
12950 error (_("Catchpoint symbol not found: %s"), sym_name);
12951
12952 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12953 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12954
12955 /* Set ADDR_STRING. */
12956 *addr_string = sym_name;
12957
12958 /* Set OPS. */
12959 *ops = ada_exception_breakpoint_ops (ex);
12960
12961 return find_function_start_sal (sym, 1);
12962 }
12963
12964 /* Create an Ada exception catchpoint.
12965
12966 EX_KIND is the kind of exception catchpoint to be created.
12967
12968 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12969 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12970 of the exception to which this catchpoint applies.
12971
12972 COND_STRING, if not empty, is the catchpoint condition.
12973
12974 TEMPFLAG, if nonzero, means that the underlying breakpoint
12975 should be temporary.
12976
12977 FROM_TTY is the usual argument passed to all commands implementations. */
12978
12979 void
12980 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12981 enum ada_exception_catchpoint_kind ex_kind,
12982 const std::string &excep_string,
12983 const std::string &cond_string,
12984 int tempflag,
12985 int disabled,
12986 int from_tty)
12987 {
12988 std::string addr_string;
12989 const struct breakpoint_ops *ops = NULL;
12990 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12991
12992 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12993 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12994 ops, tempflag, disabled, from_tty);
12995 c->excep_string = excep_string;
12996 create_excep_cond_exprs (c.get (), ex_kind);
12997 if (!cond_string.empty ())
12998 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12999 install_breakpoint (0, std::move (c), 1);
13000 }
13001
13002 /* Implement the "catch exception" command. */
13003
13004 static void
13005 catch_ada_exception_command (const char *arg_entry, int from_tty,
13006 struct cmd_list_element *command)
13007 {
13008 const char *arg = arg_entry;
13009 struct gdbarch *gdbarch = get_current_arch ();
13010 int tempflag;
13011 enum ada_exception_catchpoint_kind ex_kind;
13012 std::string excep_string;
13013 std::string cond_string;
13014
13015 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13016
13017 if (!arg)
13018 arg = "";
13019 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13020 &cond_string);
13021 create_ada_exception_catchpoint (gdbarch, ex_kind,
13022 excep_string, cond_string,
13023 tempflag, 1 /* enabled */,
13024 from_tty);
13025 }
13026
13027 /* Implement the "catch handlers" command. */
13028
13029 static void
13030 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13031 struct cmd_list_element *command)
13032 {
13033 const char *arg = arg_entry;
13034 struct gdbarch *gdbarch = get_current_arch ();
13035 int tempflag;
13036 enum ada_exception_catchpoint_kind ex_kind;
13037 std::string excep_string;
13038 std::string cond_string;
13039
13040 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13041
13042 if (!arg)
13043 arg = "";
13044 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13045 &cond_string);
13046 create_ada_exception_catchpoint (gdbarch, ex_kind,
13047 excep_string, cond_string,
13048 tempflag, 1 /* enabled */,
13049 from_tty);
13050 }
13051
13052 /* Completion function for the Ada "catch" commands. */
13053
13054 static void
13055 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13056 const char *text, const char *word)
13057 {
13058 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13059
13060 for (const ada_exc_info &info : exceptions)
13061 {
13062 if (startswith (info.name, word))
13063 tracker.add_completion (make_unique_xstrdup (info.name));
13064 }
13065 }
13066
13067 /* Split the arguments specified in a "catch assert" command.
13068
13069 ARGS contains the command's arguments (or the empty string if
13070 no arguments were passed).
13071
13072 If ARGS contains a condition, set COND_STRING to that condition
13073 (the memory needs to be deallocated after use). */
13074
13075 static void
13076 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13077 {
13078 args = skip_spaces (args);
13079
13080 /* Check whether a condition was provided. */
13081 if (startswith (args, "if")
13082 && (isspace (args[2]) || args[2] == '\0'))
13083 {
13084 args += 2;
13085 args = skip_spaces (args);
13086 if (args[0] == '\0')
13087 error (_("condition missing after `if' keyword"));
13088 cond_string.assign (args);
13089 }
13090
13091 /* Otherwise, there should be no other argument at the end of
13092 the command. */
13093 else if (args[0] != '\0')
13094 error (_("Junk at end of arguments."));
13095 }
13096
13097 /* Implement the "catch assert" command. */
13098
13099 static void
13100 catch_assert_command (const char *arg_entry, int from_tty,
13101 struct cmd_list_element *command)
13102 {
13103 const char *arg = arg_entry;
13104 struct gdbarch *gdbarch = get_current_arch ();
13105 int tempflag;
13106 std::string cond_string;
13107
13108 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13109
13110 if (!arg)
13111 arg = "";
13112 catch_ada_assert_command_split (arg, cond_string);
13113 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13114 "", cond_string,
13115 tempflag, 1 /* enabled */,
13116 from_tty);
13117 }
13118
13119 /* Return non-zero if the symbol SYM is an Ada exception object. */
13120
13121 static int
13122 ada_is_exception_sym (struct symbol *sym)
13123 {
13124 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13125
13126 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13127 && SYMBOL_CLASS (sym) != LOC_BLOCK
13128 && SYMBOL_CLASS (sym) != LOC_CONST
13129 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13130 && type_name != NULL && strcmp (type_name, "exception") == 0);
13131 }
13132
13133 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13134 Ada exception object. This matches all exceptions except the ones
13135 defined by the Ada language. */
13136
13137 static int
13138 ada_is_non_standard_exception_sym (struct symbol *sym)
13139 {
13140 int i;
13141
13142 if (!ada_is_exception_sym (sym))
13143 return 0;
13144
13145 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13146 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13147 return 0; /* A standard exception. */
13148
13149 /* Numeric_Error is also a standard exception, so exclude it.
13150 See the STANDARD_EXC description for more details as to why
13151 this exception is not listed in that array. */
13152 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13153 return 0;
13154
13155 return 1;
13156 }
13157
13158 /* A helper function for std::sort, comparing two struct ada_exc_info
13159 objects.
13160
13161 The comparison is determined first by exception name, and then
13162 by exception address. */
13163
13164 bool
13165 ada_exc_info::operator< (const ada_exc_info &other) const
13166 {
13167 int result;
13168
13169 result = strcmp (name, other.name);
13170 if (result < 0)
13171 return true;
13172 if (result == 0 && addr < other.addr)
13173 return true;
13174 return false;
13175 }
13176
13177 bool
13178 ada_exc_info::operator== (const ada_exc_info &other) const
13179 {
13180 return addr == other.addr && strcmp (name, other.name) == 0;
13181 }
13182
13183 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13184 routine, but keeping the first SKIP elements untouched.
13185
13186 All duplicates are also removed. */
13187
13188 static void
13189 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13190 int skip)
13191 {
13192 std::sort (exceptions->begin () + skip, exceptions->end ());
13193 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13194 exceptions->end ());
13195 }
13196
13197 /* Add all exceptions defined by the Ada standard whose name match
13198 a regular expression.
13199
13200 If PREG is not NULL, then this regexp_t object is used to
13201 perform the symbol name matching. Otherwise, no name-based
13202 filtering is performed.
13203
13204 EXCEPTIONS is a vector of exceptions to which matching exceptions
13205 gets pushed. */
13206
13207 static void
13208 ada_add_standard_exceptions (compiled_regex *preg,
13209 std::vector<ada_exc_info> *exceptions)
13210 {
13211 int i;
13212
13213 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13214 {
13215 if (preg == NULL
13216 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13217 {
13218 struct bound_minimal_symbol msymbol
13219 = ada_lookup_simple_minsym (standard_exc[i]);
13220
13221 if (msymbol.minsym != NULL)
13222 {
13223 struct ada_exc_info info
13224 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13225
13226 exceptions->push_back (info);
13227 }
13228 }
13229 }
13230 }
13231
13232 /* Add all Ada exceptions defined locally and accessible from the given
13233 FRAME.
13234
13235 If PREG is not NULL, then this regexp_t object is used to
13236 perform the symbol name matching. Otherwise, no name-based
13237 filtering is performed.
13238
13239 EXCEPTIONS is a vector of exceptions to which matching exceptions
13240 gets pushed. */
13241
13242 static void
13243 ada_add_exceptions_from_frame (compiled_regex *preg,
13244 struct frame_info *frame,
13245 std::vector<ada_exc_info> *exceptions)
13246 {
13247 const struct block *block = get_frame_block (frame, 0);
13248
13249 while (block != 0)
13250 {
13251 struct block_iterator iter;
13252 struct symbol *sym;
13253
13254 ALL_BLOCK_SYMBOLS (block, iter, sym)
13255 {
13256 switch (SYMBOL_CLASS (sym))
13257 {
13258 case LOC_TYPEDEF:
13259 case LOC_BLOCK:
13260 case LOC_CONST:
13261 break;
13262 default:
13263 if (ada_is_exception_sym (sym))
13264 {
13265 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13266 SYMBOL_VALUE_ADDRESS (sym)};
13267
13268 exceptions->push_back (info);
13269 }
13270 }
13271 }
13272 if (BLOCK_FUNCTION (block) != NULL)
13273 break;
13274 block = BLOCK_SUPERBLOCK (block);
13275 }
13276 }
13277
13278 /* Return true if NAME matches PREG or if PREG is NULL. */
13279
13280 static bool
13281 name_matches_regex (const char *name, compiled_regex *preg)
13282 {
13283 return (preg == NULL
13284 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13285 }
13286
13287 /* Add all exceptions defined globally whose name name match
13288 a regular expression, excluding standard exceptions.
13289
13290 The reason we exclude standard exceptions is that they need
13291 to be handled separately: Standard exceptions are defined inside
13292 a runtime unit which is normally not compiled with debugging info,
13293 and thus usually do not show up in our symbol search. However,
13294 if the unit was in fact built with debugging info, we need to
13295 exclude them because they would duplicate the entry we found
13296 during the special loop that specifically searches for those
13297 standard exceptions.
13298
13299 If PREG is not NULL, then this regexp_t object is used to
13300 perform the symbol name matching. Otherwise, no name-based
13301 filtering is performed.
13302
13303 EXCEPTIONS is a vector of exceptions to which matching exceptions
13304 gets pushed. */
13305
13306 static void
13307 ada_add_global_exceptions (compiled_regex *preg,
13308 std::vector<ada_exc_info> *exceptions)
13309 {
13310 /* In Ada, the symbol "search name" is a linkage name, whereas the
13311 regular expression used to do the matching refers to the natural
13312 name. So match against the decoded name. */
13313 expand_symtabs_matching (NULL,
13314 lookup_name_info::match_any (),
13315 [&] (const char *search_name)
13316 {
13317 std::string decoded = ada_decode (search_name);
13318 return name_matches_regex (decoded.c_str (), preg);
13319 },
13320 NULL,
13321 VARIABLES_DOMAIN);
13322
13323 for (objfile *objfile : current_program_space->objfiles ())
13324 {
13325 for (compunit_symtab *s : objfile->compunits ())
13326 {
13327 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13328 int i;
13329
13330 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13331 {
13332 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13333 struct block_iterator iter;
13334 struct symbol *sym;
13335
13336 ALL_BLOCK_SYMBOLS (b, iter, sym)
13337 if (ada_is_non_standard_exception_sym (sym)
13338 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13339 {
13340 struct ada_exc_info info
13341 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13342
13343 exceptions->push_back (info);
13344 }
13345 }
13346 }
13347 }
13348 }
13349
13350 /* Implements ada_exceptions_list with the regular expression passed
13351 as a regex_t, rather than a string.
13352
13353 If not NULL, PREG is used to filter out exceptions whose names
13354 do not match. Otherwise, all exceptions are listed. */
13355
13356 static std::vector<ada_exc_info>
13357 ada_exceptions_list_1 (compiled_regex *preg)
13358 {
13359 std::vector<ada_exc_info> result;
13360 int prev_len;
13361
13362 /* First, list the known standard exceptions. These exceptions
13363 need to be handled separately, as they are usually defined in
13364 runtime units that have been compiled without debugging info. */
13365
13366 ada_add_standard_exceptions (preg, &result);
13367
13368 /* Next, find all exceptions whose scope is local and accessible
13369 from the currently selected frame. */
13370
13371 if (has_stack_frames ())
13372 {
13373 prev_len = result.size ();
13374 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13375 &result);
13376 if (result.size () > prev_len)
13377 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13378 }
13379
13380 /* Add all exceptions whose scope is global. */
13381
13382 prev_len = result.size ();
13383 ada_add_global_exceptions (preg, &result);
13384 if (result.size () > prev_len)
13385 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13386
13387 return result;
13388 }
13389
13390 /* Return a vector of ada_exc_info.
13391
13392 If REGEXP is NULL, all exceptions are included in the result.
13393 Otherwise, it should contain a valid regular expression,
13394 and only the exceptions whose names match that regular expression
13395 are included in the result.
13396
13397 The exceptions are sorted in the following order:
13398 - Standard exceptions (defined by the Ada language), in
13399 alphabetical order;
13400 - Exceptions only visible from the current frame, in
13401 alphabetical order;
13402 - Exceptions whose scope is global, in alphabetical order. */
13403
13404 std::vector<ada_exc_info>
13405 ada_exceptions_list (const char *regexp)
13406 {
13407 if (regexp == NULL)
13408 return ada_exceptions_list_1 (NULL);
13409
13410 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13411 return ada_exceptions_list_1 (&reg);
13412 }
13413
13414 /* Implement the "info exceptions" command. */
13415
13416 static void
13417 info_exceptions_command (const char *regexp, int from_tty)
13418 {
13419 struct gdbarch *gdbarch = get_current_arch ();
13420
13421 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13422
13423 if (regexp != NULL)
13424 printf_filtered
13425 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13426 else
13427 printf_filtered (_("All defined Ada exceptions:\n"));
13428
13429 for (const ada_exc_info &info : exceptions)
13430 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13431 }
13432
13433 /* Operators */
13434 /* Information about operators given special treatment in functions
13435 below. */
13436 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13437
13438 #define ADA_OPERATORS \
13439 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13440 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13441 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13442 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13443 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13444 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13445 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13446 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13447 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13448 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13449 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13450 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13451 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13452 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13453 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13454 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13455 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13456 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13457 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13458
13459 static void
13460 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13461 int *argsp)
13462 {
13463 switch (exp->elts[pc - 1].opcode)
13464 {
13465 default:
13466 operator_length_standard (exp, pc, oplenp, argsp);
13467 break;
13468
13469 #define OP_DEFN(op, len, args, binop) \
13470 case op: *oplenp = len; *argsp = args; break;
13471 ADA_OPERATORS;
13472 #undef OP_DEFN
13473
13474 case OP_AGGREGATE:
13475 *oplenp = 3;
13476 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13477 break;
13478
13479 case OP_CHOICES:
13480 *oplenp = 3;
13481 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13482 break;
13483 }
13484 }
13485
13486 /* Implementation of the exp_descriptor method operator_check. */
13487
13488 static int
13489 ada_operator_check (struct expression *exp, int pos,
13490 int (*objfile_func) (struct objfile *objfile, void *data),
13491 void *data)
13492 {
13493 const union exp_element *const elts = exp->elts;
13494 struct type *type = NULL;
13495
13496 switch (elts[pos].opcode)
13497 {
13498 case UNOP_IN_RANGE:
13499 case UNOP_QUAL:
13500 type = elts[pos + 1].type;
13501 break;
13502
13503 default:
13504 return operator_check_standard (exp, pos, objfile_func, data);
13505 }
13506
13507 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13508
13509 if (type && TYPE_OBJFILE (type)
13510 && (*objfile_func) (TYPE_OBJFILE (type), data))
13511 return 1;
13512
13513 return 0;
13514 }
13515
13516 static const char *
13517 ada_op_name (enum exp_opcode opcode)
13518 {
13519 switch (opcode)
13520 {
13521 default:
13522 return op_name_standard (opcode);
13523
13524 #define OP_DEFN(op, len, args, binop) case op: return #op;
13525 ADA_OPERATORS;
13526 #undef OP_DEFN
13527
13528 case OP_AGGREGATE:
13529 return "OP_AGGREGATE";
13530 case OP_CHOICES:
13531 return "OP_CHOICES";
13532 case OP_NAME:
13533 return "OP_NAME";
13534 }
13535 }
13536
13537 /* As for operator_length, but assumes PC is pointing at the first
13538 element of the operator, and gives meaningful results only for the
13539 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13540
13541 static void
13542 ada_forward_operator_length (struct expression *exp, int pc,
13543 int *oplenp, int *argsp)
13544 {
13545 switch (exp->elts[pc].opcode)
13546 {
13547 default:
13548 *oplenp = *argsp = 0;
13549 break;
13550
13551 #define OP_DEFN(op, len, args, binop) \
13552 case op: *oplenp = len; *argsp = args; break;
13553 ADA_OPERATORS;
13554 #undef OP_DEFN
13555
13556 case OP_AGGREGATE:
13557 *oplenp = 3;
13558 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13559 break;
13560
13561 case OP_CHOICES:
13562 *oplenp = 3;
13563 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13564 break;
13565
13566 case OP_STRING:
13567 case OP_NAME:
13568 {
13569 int len = longest_to_int (exp->elts[pc + 1].longconst);
13570
13571 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13572 *argsp = 0;
13573 break;
13574 }
13575 }
13576 }
13577
13578 static int
13579 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13580 {
13581 enum exp_opcode op = exp->elts[elt].opcode;
13582 int oplen, nargs;
13583 int pc = elt;
13584 int i;
13585
13586 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13587
13588 switch (op)
13589 {
13590 /* Ada attributes ('Foo). */
13591 case OP_ATR_FIRST:
13592 case OP_ATR_LAST:
13593 case OP_ATR_LENGTH:
13594 case OP_ATR_IMAGE:
13595 case OP_ATR_MAX:
13596 case OP_ATR_MIN:
13597 case OP_ATR_MODULUS:
13598 case OP_ATR_POS:
13599 case OP_ATR_SIZE:
13600 case OP_ATR_TAG:
13601 case OP_ATR_VAL:
13602 break;
13603
13604 case UNOP_IN_RANGE:
13605 case UNOP_QUAL:
13606 /* XXX: gdb_sprint_host_address, type_sprint */
13607 fprintf_filtered (stream, _("Type @"));
13608 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13609 fprintf_filtered (stream, " (");
13610 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13611 fprintf_filtered (stream, ")");
13612 break;
13613 case BINOP_IN_BOUNDS:
13614 fprintf_filtered (stream, " (%d)",
13615 longest_to_int (exp->elts[pc + 2].longconst));
13616 break;
13617 case TERNOP_IN_RANGE:
13618 break;
13619
13620 case OP_AGGREGATE:
13621 case OP_OTHERS:
13622 case OP_DISCRETE_RANGE:
13623 case OP_POSITIONAL:
13624 case OP_CHOICES:
13625 break;
13626
13627 case OP_NAME:
13628 case OP_STRING:
13629 {
13630 char *name = &exp->elts[elt + 2].string;
13631 int len = longest_to_int (exp->elts[elt + 1].longconst);
13632
13633 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13634 break;
13635 }
13636
13637 default:
13638 return dump_subexp_body_standard (exp, stream, elt);
13639 }
13640
13641 elt += oplen;
13642 for (i = 0; i < nargs; i += 1)
13643 elt = dump_subexp (exp, stream, elt);
13644
13645 return elt;
13646 }
13647
13648 /* The Ada extension of print_subexp (q.v.). */
13649
13650 static void
13651 ada_print_subexp (struct expression *exp, int *pos,
13652 struct ui_file *stream, enum precedence prec)
13653 {
13654 int oplen, nargs, i;
13655 int pc = *pos;
13656 enum exp_opcode op = exp->elts[pc].opcode;
13657
13658 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13659
13660 *pos += oplen;
13661 switch (op)
13662 {
13663 default:
13664 *pos -= oplen;
13665 print_subexp_standard (exp, pos, stream, prec);
13666 return;
13667
13668 case OP_VAR_VALUE:
13669 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13670 return;
13671
13672 case BINOP_IN_BOUNDS:
13673 /* XXX: sprint_subexp */
13674 print_subexp (exp, pos, stream, PREC_SUFFIX);
13675 fputs_filtered (" in ", stream);
13676 print_subexp (exp, pos, stream, PREC_SUFFIX);
13677 fputs_filtered ("'range", stream);
13678 if (exp->elts[pc + 1].longconst > 1)
13679 fprintf_filtered (stream, "(%ld)",
13680 (long) exp->elts[pc + 1].longconst);
13681 return;
13682
13683 case TERNOP_IN_RANGE:
13684 if (prec >= PREC_EQUAL)
13685 fputs_filtered ("(", stream);
13686 /* XXX: sprint_subexp */
13687 print_subexp (exp, pos, stream, PREC_SUFFIX);
13688 fputs_filtered (" in ", stream);
13689 print_subexp (exp, pos, stream, PREC_EQUAL);
13690 fputs_filtered (" .. ", stream);
13691 print_subexp (exp, pos, stream, PREC_EQUAL);
13692 if (prec >= PREC_EQUAL)
13693 fputs_filtered (")", stream);
13694 return;
13695
13696 case OP_ATR_FIRST:
13697 case OP_ATR_LAST:
13698 case OP_ATR_LENGTH:
13699 case OP_ATR_IMAGE:
13700 case OP_ATR_MAX:
13701 case OP_ATR_MIN:
13702 case OP_ATR_MODULUS:
13703 case OP_ATR_POS:
13704 case OP_ATR_SIZE:
13705 case OP_ATR_TAG:
13706 case OP_ATR_VAL:
13707 if (exp->elts[*pos].opcode == OP_TYPE)
13708 {
13709 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13710 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13711 &type_print_raw_options);
13712 *pos += 3;
13713 }
13714 else
13715 print_subexp (exp, pos, stream, PREC_SUFFIX);
13716 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13717 if (nargs > 1)
13718 {
13719 int tem;
13720
13721 for (tem = 1; tem < nargs; tem += 1)
13722 {
13723 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13724 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13725 }
13726 fputs_filtered (")", stream);
13727 }
13728 return;
13729
13730 case UNOP_QUAL:
13731 type_print (exp->elts[pc + 1].type, "", stream, 0);
13732 fputs_filtered ("'(", stream);
13733 print_subexp (exp, pos, stream, PREC_PREFIX);
13734 fputs_filtered (")", stream);
13735 return;
13736
13737 case UNOP_IN_RANGE:
13738 /* XXX: sprint_subexp */
13739 print_subexp (exp, pos, stream, PREC_SUFFIX);
13740 fputs_filtered (" in ", stream);
13741 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13742 &type_print_raw_options);
13743 return;
13744
13745 case OP_DISCRETE_RANGE:
13746 print_subexp (exp, pos, stream, PREC_SUFFIX);
13747 fputs_filtered ("..", stream);
13748 print_subexp (exp, pos, stream, PREC_SUFFIX);
13749 return;
13750
13751 case OP_OTHERS:
13752 fputs_filtered ("others => ", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 return;
13755
13756 case OP_CHOICES:
13757 for (i = 0; i < nargs-1; i += 1)
13758 {
13759 if (i > 0)
13760 fputs_filtered ("|", stream);
13761 print_subexp (exp, pos, stream, PREC_SUFFIX);
13762 }
13763 fputs_filtered (" => ", stream);
13764 print_subexp (exp, pos, stream, PREC_SUFFIX);
13765 return;
13766
13767 case OP_POSITIONAL:
13768 print_subexp (exp, pos, stream, PREC_SUFFIX);
13769 return;
13770
13771 case OP_AGGREGATE:
13772 fputs_filtered ("(", stream);
13773 for (i = 0; i < nargs; i += 1)
13774 {
13775 if (i > 0)
13776 fputs_filtered (", ", stream);
13777 print_subexp (exp, pos, stream, PREC_SUFFIX);
13778 }
13779 fputs_filtered (")", stream);
13780 return;
13781 }
13782 }
13783
13784 /* Table mapping opcodes into strings for printing operators
13785 and precedences of the operators. */
13786
13787 static const struct op_print ada_op_print_tab[] = {
13788 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13789 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13790 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13791 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13792 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13793 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13794 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13795 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13796 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13797 {">=", BINOP_GEQ, PREC_ORDER, 0},
13798 {">", BINOP_GTR, PREC_ORDER, 0},
13799 {"<", BINOP_LESS, PREC_ORDER, 0},
13800 {">>", BINOP_RSH, PREC_SHIFT, 0},
13801 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13802 {"+", BINOP_ADD, PREC_ADD, 0},
13803 {"-", BINOP_SUB, PREC_ADD, 0},
13804 {"&", BINOP_CONCAT, PREC_ADD, 0},
13805 {"*", BINOP_MUL, PREC_MUL, 0},
13806 {"/", BINOP_DIV, PREC_MUL, 0},
13807 {"rem", BINOP_REM, PREC_MUL, 0},
13808 {"mod", BINOP_MOD, PREC_MUL, 0},
13809 {"**", BINOP_EXP, PREC_REPEAT, 0},
13810 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13811 {"-", UNOP_NEG, PREC_PREFIX, 0},
13812 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13813 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13814 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13815 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13816 {".all", UNOP_IND, PREC_SUFFIX, 1},
13817 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13818 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13819 {NULL, OP_NULL, PREC_SUFFIX, 0}
13820 };
13821 \f
13822 enum ada_primitive_types {
13823 ada_primitive_type_int,
13824 ada_primitive_type_long,
13825 ada_primitive_type_short,
13826 ada_primitive_type_char,
13827 ada_primitive_type_float,
13828 ada_primitive_type_double,
13829 ada_primitive_type_void,
13830 ada_primitive_type_long_long,
13831 ada_primitive_type_long_double,
13832 ada_primitive_type_natural,
13833 ada_primitive_type_positive,
13834 ada_primitive_type_system_address,
13835 ada_primitive_type_storage_offset,
13836 nr_ada_primitive_types
13837 };
13838
13839 static void
13840 ada_language_arch_info (struct gdbarch *gdbarch,
13841 struct language_arch_info *lai)
13842 {
13843 const struct builtin_type *builtin = builtin_type (gdbarch);
13844
13845 lai->primitive_type_vector
13846 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13847 struct type *);
13848
13849 lai->primitive_type_vector [ada_primitive_type_int]
13850 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13851 0, "integer");
13852 lai->primitive_type_vector [ada_primitive_type_long]
13853 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13854 0, "long_integer");
13855 lai->primitive_type_vector [ada_primitive_type_short]
13856 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13857 0, "short_integer");
13858 lai->string_char_type
13859 = lai->primitive_type_vector [ada_primitive_type_char]
13860 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13861 lai->primitive_type_vector [ada_primitive_type_float]
13862 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13863 "float", gdbarch_float_format (gdbarch));
13864 lai->primitive_type_vector [ada_primitive_type_double]
13865 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13866 "long_float", gdbarch_double_format (gdbarch));
13867 lai->primitive_type_vector [ada_primitive_type_long_long]
13868 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13869 0, "long_long_integer");
13870 lai->primitive_type_vector [ada_primitive_type_long_double]
13871 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13872 "long_long_float", gdbarch_long_double_format (gdbarch));
13873 lai->primitive_type_vector [ada_primitive_type_natural]
13874 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13875 0, "natural");
13876 lai->primitive_type_vector [ada_primitive_type_positive]
13877 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13878 0, "positive");
13879 lai->primitive_type_vector [ada_primitive_type_void]
13880 = builtin->builtin_void;
13881
13882 lai->primitive_type_vector [ada_primitive_type_system_address]
13883 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13884 "void"));
13885 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13886 = "system__address";
13887
13888 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13889 type. This is a signed integral type whose size is the same as
13890 the size of addresses. */
13891 {
13892 unsigned int addr_length = TYPE_LENGTH
13893 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13894
13895 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13896 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13897 "storage_offset");
13898 }
13899
13900 lai->bool_type_symbol = NULL;
13901 lai->bool_type_default = builtin->builtin_bool;
13902 }
13903 \f
13904 /* Language vector */
13905
13906 /* Not really used, but needed in the ada_language_defn. */
13907
13908 static void
13909 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13910 {
13911 ada_emit_char (c, type, stream, quoter, 1);
13912 }
13913
13914 static int
13915 parse (struct parser_state *ps)
13916 {
13917 warnings_issued = 0;
13918 return ada_parse (ps);
13919 }
13920
13921 static const struct exp_descriptor ada_exp_descriptor = {
13922 ada_print_subexp,
13923 ada_operator_length,
13924 ada_operator_check,
13925 ada_op_name,
13926 ada_dump_subexp_body,
13927 ada_evaluate_subexp
13928 };
13929
13930 /* symbol_name_matcher_ftype adapter for wild_match. */
13931
13932 static bool
13933 do_wild_match (const char *symbol_search_name,
13934 const lookup_name_info &lookup_name,
13935 completion_match_result *comp_match_res)
13936 {
13937 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13938 }
13939
13940 /* symbol_name_matcher_ftype adapter for full_match. */
13941
13942 static bool
13943 do_full_match (const char *symbol_search_name,
13944 const lookup_name_info &lookup_name,
13945 completion_match_result *comp_match_res)
13946 {
13947 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13948 }
13949
13950 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13951
13952 static bool
13953 do_exact_match (const char *symbol_search_name,
13954 const lookup_name_info &lookup_name,
13955 completion_match_result *comp_match_res)
13956 {
13957 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13958 }
13959
13960 /* Build the Ada lookup name for LOOKUP_NAME. */
13961
13962 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13963 {
13964 const std::string &user_name = lookup_name.name ();
13965
13966 if (user_name[0] == '<')
13967 {
13968 if (user_name.back () == '>')
13969 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13970 else
13971 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13972 m_encoded_p = true;
13973 m_verbatim_p = true;
13974 m_wild_match_p = false;
13975 m_standard_p = false;
13976 }
13977 else
13978 {
13979 m_verbatim_p = false;
13980
13981 m_encoded_p = user_name.find ("__") != std::string::npos;
13982
13983 if (!m_encoded_p)
13984 {
13985 const char *folded = ada_fold_name (user_name.c_str ());
13986 const char *encoded = ada_encode_1 (folded, false);
13987 if (encoded != NULL)
13988 m_encoded_name = encoded;
13989 else
13990 m_encoded_name = user_name;
13991 }
13992 else
13993 m_encoded_name = user_name;
13994
13995 /* Handle the 'package Standard' special case. See description
13996 of m_standard_p. */
13997 if (startswith (m_encoded_name.c_str (), "standard__"))
13998 {
13999 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14000 m_standard_p = true;
14001 }
14002 else
14003 m_standard_p = false;
14004
14005 /* If the name contains a ".", then the user is entering a fully
14006 qualified entity name, and the match must not be done in wild
14007 mode. Similarly, if the user wants to complete what looks
14008 like an encoded name, the match must not be done in wild
14009 mode. Also, in the standard__ special case always do
14010 non-wild matching. */
14011 m_wild_match_p
14012 = (lookup_name.match_type () != symbol_name_match_type::FULL
14013 && !m_encoded_p
14014 && !m_standard_p
14015 && user_name.find ('.') == std::string::npos);
14016 }
14017 }
14018
14019 /* symbol_name_matcher_ftype method for Ada. This only handles
14020 completion mode. */
14021
14022 static bool
14023 ada_symbol_name_matches (const char *symbol_search_name,
14024 const lookup_name_info &lookup_name,
14025 completion_match_result *comp_match_res)
14026 {
14027 return lookup_name.ada ().matches (symbol_search_name,
14028 lookup_name.match_type (),
14029 comp_match_res);
14030 }
14031
14032 /* A name matcher that matches the symbol name exactly, with
14033 strcmp. */
14034
14035 static bool
14036 literal_symbol_name_matcher (const char *symbol_search_name,
14037 const lookup_name_info &lookup_name,
14038 completion_match_result *comp_match_res)
14039 {
14040 const std::string &name = lookup_name.name ();
14041
14042 int cmp = (lookup_name.completion_mode ()
14043 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14044 : strcmp (symbol_search_name, name.c_str ()));
14045 if (cmp == 0)
14046 {
14047 if (comp_match_res != NULL)
14048 comp_match_res->set_match (symbol_search_name);
14049 return true;
14050 }
14051 else
14052 return false;
14053 }
14054
14055 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14056 Ada. */
14057
14058 static symbol_name_matcher_ftype *
14059 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14060 {
14061 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14062 return literal_symbol_name_matcher;
14063
14064 if (lookup_name.completion_mode ())
14065 return ada_symbol_name_matches;
14066 else
14067 {
14068 if (lookup_name.ada ().wild_match_p ())
14069 return do_wild_match;
14070 else if (lookup_name.ada ().verbatim_p ())
14071 return do_exact_match;
14072 else
14073 return do_full_match;
14074 }
14075 }
14076
14077 /* Implement the "la_read_var_value" language_defn method for Ada. */
14078
14079 static struct value *
14080 ada_read_var_value (struct symbol *var, const struct block *var_block,
14081 struct frame_info *frame)
14082 {
14083 /* The only case where default_read_var_value is not sufficient
14084 is when VAR is a renaming... */
14085 if (frame != nullptr)
14086 {
14087 const struct block *frame_block = get_frame_block (frame, NULL);
14088 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14089 return ada_read_renaming_var_value (var, frame_block);
14090 }
14091
14092 /* This is a typical case where we expect the default_read_var_value
14093 function to work. */
14094 return default_read_var_value (var, var_block, frame);
14095 }
14096
14097 static const char *ada_extensions[] =
14098 {
14099 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14100 };
14101
14102 extern const struct language_defn ada_language_defn = {
14103 "ada", /* Language name */
14104 "Ada",
14105 language_ada,
14106 range_check_off,
14107 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14108 that's not quite what this means. */
14109 array_row_major,
14110 macro_expansion_no,
14111 ada_extensions,
14112 &ada_exp_descriptor,
14113 parse,
14114 resolve,
14115 ada_printchar, /* Print a character constant */
14116 ada_printstr, /* Function to print string constant */
14117 emit_char, /* Function to print single char (not used) */
14118 ada_print_type, /* Print a type using appropriate syntax */
14119 ada_print_typedef, /* Print a typedef using appropriate syntax */
14120 ada_val_print, /* Print a value using appropriate syntax */
14121 ada_value_print, /* Print a top-level value */
14122 ada_read_var_value, /* la_read_var_value */
14123 NULL, /* Language specific skip_trampoline */
14124 NULL, /* name_of_this */
14125 true, /* la_store_sym_names_in_linkage_form_p */
14126 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14127 basic_lookup_transparent_type, /* lookup_transparent_type */
14128 ada_la_decode, /* Language specific symbol demangler */
14129 ada_sniff_from_mangled_name,
14130 NULL, /* Language specific
14131 class_name_from_physname */
14132 ada_op_print_tab, /* expression operators for printing */
14133 0, /* c-style arrays */
14134 1, /* String lower bound */
14135 ada_get_gdb_completer_word_break_characters,
14136 ada_collect_symbol_completion_matches,
14137 ada_language_arch_info,
14138 ada_print_array_index,
14139 default_pass_by_reference,
14140 c_get_string,
14141 ada_watch_location_expression,
14142 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14143 ada_iterate_over_symbols,
14144 default_search_name_hash,
14145 &ada_varobj_ops,
14146 NULL,
14147 NULL,
14148 ada_is_string_type,
14149 "(...)" /* la_struct_too_deep_ellipsis */
14150 };
14151
14152 /* Command-list for the "set/show ada" prefix command. */
14153 static struct cmd_list_element *set_ada_list;
14154 static struct cmd_list_element *show_ada_list;
14155
14156 /* Implement the "set ada" prefix command. */
14157
14158 static void
14159 set_ada_command (const char *arg, int from_tty)
14160 {
14161 printf_unfiltered (_(\
14162 "\"set ada\" must be followed by the name of a setting.\n"));
14163 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14164 }
14165
14166 /* Implement the "show ada" prefix command. */
14167
14168 static void
14169 show_ada_command (const char *args, int from_tty)
14170 {
14171 cmd_show_list (show_ada_list, from_tty, "");
14172 }
14173
14174 static void
14175 initialize_ada_catchpoint_ops (void)
14176 {
14177 struct breakpoint_ops *ops;
14178
14179 initialize_breakpoint_ops ();
14180
14181 ops = &catch_exception_breakpoint_ops;
14182 *ops = bkpt_breakpoint_ops;
14183 ops->allocate_location = allocate_location_exception;
14184 ops->re_set = re_set_exception;
14185 ops->check_status = check_status_exception;
14186 ops->print_it = print_it_exception;
14187 ops->print_one = print_one_exception;
14188 ops->print_mention = print_mention_exception;
14189 ops->print_recreate = print_recreate_exception;
14190
14191 ops = &catch_exception_unhandled_breakpoint_ops;
14192 *ops = bkpt_breakpoint_ops;
14193 ops->allocate_location = allocate_location_exception;
14194 ops->re_set = re_set_exception;
14195 ops->check_status = check_status_exception;
14196 ops->print_it = print_it_exception;
14197 ops->print_one = print_one_exception;
14198 ops->print_mention = print_mention_exception;
14199 ops->print_recreate = print_recreate_exception;
14200
14201 ops = &catch_assert_breakpoint_ops;
14202 *ops = bkpt_breakpoint_ops;
14203 ops->allocate_location = allocate_location_exception;
14204 ops->re_set = re_set_exception;
14205 ops->check_status = check_status_exception;
14206 ops->print_it = print_it_exception;
14207 ops->print_one = print_one_exception;
14208 ops->print_mention = print_mention_exception;
14209 ops->print_recreate = print_recreate_exception;
14210
14211 ops = &catch_handlers_breakpoint_ops;
14212 *ops = bkpt_breakpoint_ops;
14213 ops->allocate_location = allocate_location_exception;
14214 ops->re_set = re_set_exception;
14215 ops->check_status = check_status_exception;
14216 ops->print_it = print_it_exception;
14217 ops->print_one = print_one_exception;
14218 ops->print_mention = print_mention_exception;
14219 ops->print_recreate = print_recreate_exception;
14220 }
14221
14222 /* This module's 'new_objfile' observer. */
14223
14224 static void
14225 ada_new_objfile_observer (struct objfile *objfile)
14226 {
14227 ada_clear_symbol_cache ();
14228 }
14229
14230 /* This module's 'free_objfile' observer. */
14231
14232 static void
14233 ada_free_objfile_observer (struct objfile *objfile)
14234 {
14235 ada_clear_symbol_cache ();
14236 }
14237
14238 void
14239 _initialize_ada_language (void)
14240 {
14241 initialize_ada_catchpoint_ops ();
14242
14243 add_prefix_cmd ("ada", no_class, set_ada_command,
14244 _("Prefix command for changing Ada-specific settings."),
14245 &set_ada_list, "set ada ", 0, &setlist);
14246
14247 add_prefix_cmd ("ada", no_class, show_ada_command,
14248 _("Generic command for showing Ada-specific settings."),
14249 &show_ada_list, "show ada ", 0, &showlist);
14250
14251 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14252 &trust_pad_over_xvs, _("\
14253 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14254 Show whether an optimization trusting PAD types over XVS types is activated."),
14255 _("\
14256 This is related to the encoding used by the GNAT compiler. The debugger\n\
14257 should normally trust the contents of PAD types, but certain older versions\n\
14258 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14259 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14260 work around this bug. It is always safe to turn this option \"off\", but\n\
14261 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14262 this option to \"off\" unless necessary."),
14263 NULL, NULL, &set_ada_list, &show_ada_list);
14264
14265 add_setshow_boolean_cmd ("print-signatures", class_vars,
14266 &print_signatures, _("\
14267 Enable or disable the output of formal and return types for functions in the \
14268 overloads selection menu."), _("\
14269 Show whether the output of formal and return types for functions in the \
14270 overloads selection menu is activated."),
14271 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14272
14273 add_catch_command ("exception", _("\
14274 Catch Ada exceptions, when raised.\n\
14275 Usage: catch exception [ARG] [if CONDITION]\n\
14276 Without any argument, stop when any Ada exception is raised.\n\
14277 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14278 being raised does not have a handler (and will therefore lead to the task's\n\
14279 termination).\n\
14280 Otherwise, the catchpoint only stops when the name of the exception being\n\
14281 raised is the same as ARG.\n\
14282 CONDITION is a boolean expression that is evaluated to see whether the\n\
14283 exception should cause a stop."),
14284 catch_ada_exception_command,
14285 catch_ada_completer,
14286 CATCH_PERMANENT,
14287 CATCH_TEMPORARY);
14288
14289 add_catch_command ("handlers", _("\
14290 Catch Ada exceptions, when handled.\n\
14291 Usage: catch handlers [ARG] [if CONDITION]\n\
14292 Without any argument, stop when any Ada exception is handled.\n\
14293 With an argument, catch only exceptions with the given name.\n\
14294 CONDITION is a boolean expression that is evaluated to see whether the\n\
14295 exception should cause a stop."),
14296 catch_ada_handlers_command,
14297 catch_ada_completer,
14298 CATCH_PERMANENT,
14299 CATCH_TEMPORARY);
14300 add_catch_command ("assert", _("\
14301 Catch failed Ada assertions, when raised.\n\
14302 Usage: catch assert [if CONDITION]\n\
14303 CONDITION is a boolean expression that is evaluated to see whether the\n\
14304 exception should cause a stop."),
14305 catch_assert_command,
14306 NULL,
14307 CATCH_PERMANENT,
14308 CATCH_TEMPORARY);
14309
14310 varsize_limit = 65536;
14311 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14312 &varsize_limit, _("\
14313 Set the maximum number of bytes allowed in a variable-size object."), _("\
14314 Show the maximum number of bytes allowed in a variable-size object."), _("\
14315 Attempts to access an object whose size is not a compile-time constant\n\
14316 and exceeds this limit will cause an error."),
14317 NULL, NULL, &setlist, &showlist);
14318
14319 add_info ("exceptions", info_exceptions_command,
14320 _("\
14321 List all Ada exception names.\n\
14322 Usage: info exceptions [REGEXP]\n\
14323 If a regular expression is passed as an argument, only those matching\n\
14324 the regular expression are listed."));
14325
14326 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14327 _("Set Ada maintenance-related variables."),
14328 &maint_set_ada_cmdlist, "maintenance set ada ",
14329 0/*allow-unknown*/, &maintenance_set_cmdlist);
14330
14331 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14332 _("Show Ada maintenance-related variables."),
14333 &maint_show_ada_cmdlist, "maintenance show ada ",
14334 0/*allow-unknown*/, &maintenance_show_cmdlist);
14335
14336 add_setshow_boolean_cmd
14337 ("ignore-descriptive-types", class_maintenance,
14338 &ada_ignore_descriptive_types_p,
14339 _("Set whether descriptive types generated by GNAT should be ignored."),
14340 _("Show whether descriptive types generated by GNAT should be ignored."),
14341 _("\
14342 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14343 DWARF attribute."),
14344 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14345
14346 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14347 NULL, xcalloc, xfree);
14348
14349 /* The ada-lang observers. */
14350 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14351 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14352 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14353 }
This page took 0.515316 seconds and 3 git commands to generate.