2011-08-04 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "exceptions.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Inferior-specific data. */
310
311 /* Per-inferior data for this module. */
312
313 struct ada_inferior_data
314 {
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320 };
321
322 /* Our key to this module's inferior data. */
323 static const struct inferior_data *ada_inferior_data;
324
325 /* A cleanup routine for our inferior data. */
326 static void
327 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328 {
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334 }
335
336 /* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344 static struct ada_inferior_data *
345 get_ada_inferior_data (struct inferior *inf)
346 {
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357 }
358
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362 static void
363 ada_inferior_exit (struct inferior *inf)
364 {
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367 }
368
369 /* Utilities */
370
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398 static struct type *
399 ada_typedef_target_type (struct type *type)
400 {
401 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404 }
405
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
412 {
413 const char *result = strrchr (decoded_name, '.');
414
415 if (result != NULL)
416 result++; /* Skip the dot... */
417 else
418 result = decoded_name;
419
420 return result;
421 }
422
423 /* Return a string starting with '<', followed by STR, and '>'.
424 The result is good until the next call. */
425
426 static char *
427 add_angle_brackets (const char *str)
428 {
429 static char *result = NULL;
430
431 xfree (result);
432 result = xstrprintf ("<%s>", str);
433 return result;
434 }
435
436 static char *
437 ada_get_gdb_completer_word_break_characters (void)
438 {
439 return ada_completer_word_break_characters;
440 }
441
442 /* Print an array element index using the Ada syntax. */
443
444 static void
445 ada_print_array_index (struct value *index_value, struct ui_file *stream,
446 const struct value_print_options *options)
447 {
448 LA_VALUE_PRINT (index_value, stream, options);
449 fprintf_filtered (stream, " => ");
450 }
451
452 /* Assuming VECT points to an array of *SIZE objects of size
453 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
454 updating *SIZE as necessary and returning the (new) array. */
455
456 void *
457 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
458 {
459 if (*size < min_size)
460 {
461 *size *= 2;
462 if (*size < min_size)
463 *size = min_size;
464 vect = xrealloc (vect, *size * element_size);
465 }
466 return vect;
467 }
468
469 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
470 suffix of FIELD_NAME beginning "___". */
471
472 static int
473 field_name_match (const char *field_name, const char *target)
474 {
475 int len = strlen (target);
476
477 return
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (strncmp (field_name + len, "___", 3) == 0
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
483 }
484
485
486 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
493
494 int
495 ada_get_field_index (const struct type *type, const char *field_name,
496 int maybe_missing)
497 {
498 int fieldno;
499 struct type *struct_type = check_typedef ((struct type *) type);
500
501 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
502 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
503 return fieldno;
504
505 if (!maybe_missing)
506 error (_("Unable to find field %s in struct %s. Aborting"),
507 field_name, TYPE_NAME (struct_type));
508
509 return -1;
510 }
511
512 /* The length of the prefix of NAME prior to any "___" suffix. */
513
514 int
515 ada_name_prefix_len (const char *name)
516 {
517 if (name == NULL)
518 return 0;
519 else
520 {
521 const char *p = strstr (name, "___");
522
523 if (p == NULL)
524 return strlen (name);
525 else
526 return p - name;
527 }
528 }
529
530 /* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
533 static int
534 is_suffix (const char *str, const char *suffix)
535 {
536 int len1, len2;
537
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
543 }
544
545 /* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
547
548 static struct value *
549 coerce_unspec_val_to_type (struct value *val, struct type *type)
550 {
551 type = ada_check_typedef (type);
552 if (value_type (val) == type)
553 return val;
554 else
555 {
556 struct value *result;
557
558 /* Make sure that the object size is not unreasonable before
559 trying to allocate some memory for it. */
560 check_size (type);
561
562 if (value_lazy (val)
563 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
568 memcpy (value_contents_raw (result), value_contents (val),
569 TYPE_LENGTH (type));
570 }
571 set_value_component_location (result, val);
572 set_value_bitsize (result, value_bitsize (val));
573 set_value_bitpos (result, value_bitpos (val));
574 set_value_address (result, value_address (val));
575 return result;
576 }
577 }
578
579 static const gdb_byte *
580 cond_offset_host (const gdb_byte *valaddr, long offset)
581 {
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586 }
587
588 static CORE_ADDR
589 cond_offset_target (CORE_ADDR address, long offset)
590 {
591 if (address == 0)
592 return 0;
593 else
594 return address + offset;
595 }
596
597 /* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
601
602 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
604 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
605
606 static void
607 lim_warning (const char *format, ...)
608 {
609 va_list args;
610
611 va_start (args, format);
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
614 vwarning (format, args);
615
616 va_end (args);
617 }
618
619 /* Issue an error if the size of an object of type T is unreasonable,
620 i.e. if it would be a bad idea to allocate a value of this type in
621 GDB. */
622
623 static void
624 check_size (const struct type *type)
625 {
626 if (TYPE_LENGTH (type) > varsize_limit)
627 error (_("object size is larger than varsize-limit"));
628 }
629
630 /* Maximum value of a SIZE-byte signed integer type. */
631 static LONGEST
632 max_of_size (int size)
633 {
634 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
635
636 return top_bit | (top_bit - 1);
637 }
638
639 /* Minimum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 min_of_size (int size)
642 {
643 return -max_of_size (size) - 1;
644 }
645
646 /* Maximum value of a SIZE-byte unsigned integer type. */
647 static ULONGEST
648 umax_of_size (int size)
649 {
650 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
651
652 return top_bit | (top_bit - 1);
653 }
654
655 /* Maximum value of integral type T, as a signed quantity. */
656 static LONGEST
657 max_of_type (struct type *t)
658 {
659 if (TYPE_UNSIGNED (t))
660 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
661 else
662 return max_of_size (TYPE_LENGTH (t));
663 }
664
665 /* Minimum value of integral type T, as a signed quantity. */
666 static LONGEST
667 min_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return 0;
671 else
672 return min_of_size (TYPE_LENGTH (t));
673 }
674
675 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
676 LONGEST
677 ada_discrete_type_high_bound (struct type *type)
678 {
679 switch (TYPE_CODE (type))
680 {
681 case TYPE_CODE_RANGE:
682 return TYPE_HIGH_BOUND (type);
683 case TYPE_CODE_ENUM:
684 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
685 case TYPE_CODE_BOOL:
686 return 1;
687 case TYPE_CODE_CHAR:
688 case TYPE_CODE_INT:
689 return max_of_type (type);
690 default:
691 error (_("Unexpected type in ada_discrete_type_high_bound."));
692 }
693 }
694
695 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
696 LONGEST
697 ada_discrete_type_low_bound (struct type *type)
698 {
699 switch (TYPE_CODE (type))
700 {
701 case TYPE_CODE_RANGE:
702 return TYPE_LOW_BOUND (type);
703 case TYPE_CODE_ENUM:
704 return TYPE_FIELD_BITPOS (type, 0);
705 case TYPE_CODE_BOOL:
706 return 0;
707 case TYPE_CODE_CHAR:
708 case TYPE_CODE_INT:
709 return min_of_type (type);
710 default:
711 error (_("Unexpected type in ada_discrete_type_low_bound."));
712 }
713 }
714
715 /* The identity on non-range types. For range types, the underlying
716 non-range scalar type. */
717
718 static struct type *
719 base_type (struct type *type)
720 {
721 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
722 {
723 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
724 return type;
725 type = TYPE_TARGET_TYPE (type);
726 }
727 return type;
728 }
729 \f
730
731 /* Language Selection */
732
733 /* If the main program is in Ada, return language_ada, otherwise return LANG
734 (the main program is in Ada iif the adainit symbol is found). */
735
736 enum language
737 ada_update_initial_language (enum language lang)
738 {
739 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
740 (struct objfile *) NULL) != NULL)
741 return language_ada;
742
743 return lang;
744 }
745
746 /* If the main procedure is written in Ada, then return its name.
747 The result is good until the next call. Return NULL if the main
748 procedure doesn't appear to be in Ada. */
749
750 char *
751 ada_main_name (void)
752 {
753 struct minimal_symbol *msym;
754 static char *main_program_name = NULL;
755
756 /* For Ada, the name of the main procedure is stored in a specific
757 string constant, generated by the binder. Look for that symbol,
758 extract its address, and then read that string. If we didn't find
759 that string, then most probably the main procedure is not written
760 in Ada. */
761 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
762
763 if (msym != NULL)
764 {
765 CORE_ADDR main_program_name_addr;
766 int err_code;
767
768 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
769 if (main_program_name_addr == 0)
770 error (_("Invalid address for Ada main program name."));
771
772 xfree (main_program_name);
773 target_read_string (main_program_name_addr, &main_program_name,
774 1024, &err_code);
775
776 if (err_code != 0)
777 return NULL;
778 return main_program_name;
779 }
780
781 /* The main procedure doesn't seem to be in Ada. */
782 return NULL;
783 }
784 \f
785 /* Symbols */
786
787 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
788 of NULLs. */
789
790 const struct ada_opname_map ada_opname_table[] = {
791 {"Oadd", "\"+\"", BINOP_ADD},
792 {"Osubtract", "\"-\"", BINOP_SUB},
793 {"Omultiply", "\"*\"", BINOP_MUL},
794 {"Odivide", "\"/\"", BINOP_DIV},
795 {"Omod", "\"mod\"", BINOP_MOD},
796 {"Orem", "\"rem\"", BINOP_REM},
797 {"Oexpon", "\"**\"", BINOP_EXP},
798 {"Olt", "\"<\"", BINOP_LESS},
799 {"Ole", "\"<=\"", BINOP_LEQ},
800 {"Ogt", "\">\"", BINOP_GTR},
801 {"Oge", "\">=\"", BINOP_GEQ},
802 {"Oeq", "\"=\"", BINOP_EQUAL},
803 {"One", "\"/=\"", BINOP_NOTEQUAL},
804 {"Oand", "\"and\"", BINOP_BITWISE_AND},
805 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
806 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
807 {"Oconcat", "\"&\"", BINOP_CONCAT},
808 {"Oabs", "\"abs\"", UNOP_ABS},
809 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
810 {"Oadd", "\"+\"", UNOP_PLUS},
811 {"Osubtract", "\"-\"", UNOP_NEG},
812 {NULL, NULL}
813 };
814
815 /* The "encoded" form of DECODED, according to GNAT conventions.
816 The result is valid until the next call to ada_encode. */
817
818 char *
819 ada_encode (const char *decoded)
820 {
821 static char *encoding_buffer = NULL;
822 static size_t encoding_buffer_size = 0;
823 const char *p;
824 int k;
825
826 if (decoded == NULL)
827 return NULL;
828
829 GROW_VECT (encoding_buffer, encoding_buffer_size,
830 2 * strlen (decoded) + 10);
831
832 k = 0;
833 for (p = decoded; *p != '\0'; p += 1)
834 {
835 if (*p == '.')
836 {
837 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
838 k += 2;
839 }
840 else if (*p == '"')
841 {
842 const struct ada_opname_map *mapping;
843
844 for (mapping = ada_opname_table;
845 mapping->encoded != NULL
846 && strncmp (mapping->decoded, p,
847 strlen (mapping->decoded)) != 0; mapping += 1)
848 ;
849 if (mapping->encoded == NULL)
850 error (_("invalid Ada operator name: %s"), p);
851 strcpy (encoding_buffer + k, mapping->encoded);
852 k += strlen (mapping->encoded);
853 break;
854 }
855 else
856 {
857 encoding_buffer[k] = *p;
858 k += 1;
859 }
860 }
861
862 encoding_buffer[k] = '\0';
863 return encoding_buffer;
864 }
865
866 /* Return NAME folded to lower case, or, if surrounded by single
867 quotes, unfolded, but with the quotes stripped away. Result good
868 to next call. */
869
870 char *
871 ada_fold_name (const char *name)
872 {
873 static char *fold_buffer = NULL;
874 static size_t fold_buffer_size = 0;
875
876 int len = strlen (name);
877 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
878
879 if (name[0] == '\'')
880 {
881 strncpy (fold_buffer, name + 1, len - 2);
882 fold_buffer[len - 2] = '\000';
883 }
884 else
885 {
886 int i;
887
888 for (i = 0; i <= len; i += 1)
889 fold_buffer[i] = tolower (name[i]);
890 }
891
892 return fold_buffer;
893 }
894
895 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
896
897 static int
898 is_lower_alphanum (const char c)
899 {
900 return (isdigit (c) || (isalpha (c) && islower (c)));
901 }
902
903 /* ENCODED is the linkage name of a symbol and LEN contains its length.
904 This function saves in LEN the length of that same symbol name but
905 without either of these suffixes:
906 . .{DIGIT}+
907 . ${DIGIT}+
908 . ___{DIGIT}+
909 . __{DIGIT}+.
910
911 These are suffixes introduced by the compiler for entities such as
912 nested subprogram for instance, in order to avoid name clashes.
913 They do not serve any purpose for the debugger. */
914
915 static void
916 ada_remove_trailing_digits (const char *encoded, int *len)
917 {
918 if (*len > 1 && isdigit (encoded[*len - 1]))
919 {
920 int i = *len - 2;
921
922 while (i > 0 && isdigit (encoded[i]))
923 i--;
924 if (i >= 0 && encoded[i] == '.')
925 *len = i;
926 else if (i >= 0 && encoded[i] == '$')
927 *len = i;
928 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
929 *len = i - 2;
930 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
931 *len = i - 1;
932 }
933 }
934
935 /* Remove the suffix introduced by the compiler for protected object
936 subprograms. */
937
938 static void
939 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
940 {
941 /* Remove trailing N. */
942
943 /* Protected entry subprograms are broken into two
944 separate subprograms: The first one is unprotected, and has
945 a 'N' suffix; the second is the protected version, and has
946 the 'P' suffix. The second calls the first one after handling
947 the protection. Since the P subprograms are internally generated,
948 we leave these names undecoded, giving the user a clue that this
949 entity is internal. */
950
951 if (*len > 1
952 && encoded[*len - 1] == 'N'
953 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
954 *len = *len - 1;
955 }
956
957 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
958
959 static void
960 ada_remove_Xbn_suffix (const char *encoded, int *len)
961 {
962 int i = *len - 1;
963
964 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
965 i--;
966
967 if (encoded[i] != 'X')
968 return;
969
970 if (i == 0)
971 return;
972
973 if (isalnum (encoded[i-1]))
974 *len = i;
975 }
976
977 /* If ENCODED follows the GNAT entity encoding conventions, then return
978 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
979 replaced by ENCODED.
980
981 The resulting string is valid until the next call of ada_decode.
982 If the string is unchanged by decoding, the original string pointer
983 is returned. */
984
985 const char *
986 ada_decode (const char *encoded)
987 {
988 int i, j;
989 int len0;
990 const char *p;
991 char *decoded;
992 int at_start_name;
993 static char *decoding_buffer = NULL;
994 static size_t decoding_buffer_size = 0;
995
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (strncmp (encoded, "_ada_", 5) == 0)
1000 encoded += 5;
1001
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1006 goto Suppress;
1007
1008 len0 = strlen (encoded);
1009
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1012
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1019 {
1020 if (p[3] == 'X')
1021 len0 = p - encoded;
1022 else
1023 goto Suppress;
1024 }
1025
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
1030 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1031 len0 -= 3;
1032
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1038 len0 -= 2;
1039
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
1043 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1044 len0 -= 1;
1045
1046 /* Make decoded big enough for possible expansion by operator name. */
1047
1048 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1049 decoded = decoding_buffer;
1050
1051 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052
1053 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1054 {
1055 i = len0 - 2;
1056 while ((i >= 0 && isdigit (encoded[i]))
1057 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 i -= 1;
1059 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 len0 = i - 1;
1061 else if (encoded[i] == '$')
1062 len0 = i;
1063 }
1064
1065 /* The first few characters that are not alphabetic are not part
1066 of any encoding we use, so we can copy them over verbatim. */
1067
1068 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1069 decoded[j] = encoded[i];
1070
1071 at_start_name = 1;
1072 while (i < len0)
1073 {
1074 /* Is this a symbol function? */
1075 if (at_start_name && encoded[i] == 'O')
1076 {
1077 int k;
1078
1079 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 {
1081 int op_len = strlen (ada_opname_table[k].encoded);
1082 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 op_len - 1) == 0)
1084 && !isalnum (encoded[i + op_len]))
1085 {
1086 strcpy (decoded + j, ada_opname_table[k].decoded);
1087 at_start_name = 0;
1088 i += op_len;
1089 j += strlen (ada_opname_table[k].decoded);
1090 break;
1091 }
1092 }
1093 if (ada_opname_table[k].encoded != NULL)
1094 continue;
1095 }
1096 at_start_name = 0;
1097
1098 /* Replace "TK__" with "__", which will eventually be translated
1099 into "." (just below). */
1100
1101 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1102 i += 2;
1103
1104 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1105 be translated into "." (just below). These are internal names
1106 generated for anonymous blocks inside which our symbol is nested. */
1107
1108 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1109 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1110 && isdigit (encoded [i+4]))
1111 {
1112 int k = i + 5;
1113
1114 while (k < len0 && isdigit (encoded[k]))
1115 k++; /* Skip any extra digit. */
1116
1117 /* Double-check that the "__B_{DIGITS}+" sequence we found
1118 is indeed followed by "__". */
1119 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1120 i = k;
1121 }
1122
1123 /* Remove _E{DIGITS}+[sb] */
1124
1125 /* Just as for protected object subprograms, there are 2 categories
1126 of subprograms created by the compiler for each entry. The first
1127 one implements the actual entry code, and has a suffix following
1128 the convention above; the second one implements the barrier and
1129 uses the same convention as above, except that the 'E' is replaced
1130 by a 'B'.
1131
1132 Just as above, we do not decode the name of barrier functions
1133 to give the user a clue that the code he is debugging has been
1134 internally generated. */
1135
1136 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1137 && isdigit (encoded[i+2]))
1138 {
1139 int k = i + 3;
1140
1141 while (k < len0 && isdigit (encoded[k]))
1142 k++;
1143
1144 if (k < len0
1145 && (encoded[k] == 'b' || encoded[k] == 's'))
1146 {
1147 k++;
1148 /* Just as an extra precaution, make sure that if this
1149 suffix is followed by anything else, it is a '_'.
1150 Otherwise, we matched this sequence by accident. */
1151 if (k == len0
1152 || (k < len0 && encoded[k] == '_'))
1153 i = k;
1154 }
1155 }
1156
1157 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1158 the GNAT front-end in protected object subprograms. */
1159
1160 if (i < len0 + 3
1161 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 {
1163 /* Backtrack a bit up until we reach either the begining of
1164 the encoded name, or "__". Make sure that we only find
1165 digits or lowercase characters. */
1166 const char *ptr = encoded + i - 1;
1167
1168 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1169 ptr--;
1170 if (ptr < encoded
1171 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1172 i++;
1173 }
1174
1175 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 {
1177 /* This is a X[bn]* sequence not separated from the previous
1178 part of the name with a non-alpha-numeric character (in other
1179 words, immediately following an alpha-numeric character), then
1180 verify that it is placed at the end of the encoded name. If
1181 not, then the encoding is not valid and we should abort the
1182 decoding. Otherwise, just skip it, it is used in body-nested
1183 package names. */
1184 do
1185 i += 1;
1186 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1187 if (i < len0)
1188 goto Suppress;
1189 }
1190 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1191 {
1192 /* Replace '__' by '.'. */
1193 decoded[j] = '.';
1194 at_start_name = 1;
1195 i += 2;
1196 j += 1;
1197 }
1198 else
1199 {
1200 /* It's a character part of the decoded name, so just copy it
1201 over. */
1202 decoded[j] = encoded[i];
1203 i += 1;
1204 j += 1;
1205 }
1206 }
1207 decoded[j] = '\000';
1208
1209 /* Decoded names should never contain any uppercase character.
1210 Double-check this, and abort the decoding if we find one. */
1211
1212 for (i = 0; decoded[i] != '\0'; i += 1)
1213 if (isupper (decoded[i]) || decoded[i] == ' ')
1214 goto Suppress;
1215
1216 if (strcmp (decoded, encoded) == 0)
1217 return encoded;
1218 else
1219 return decoded;
1220
1221 Suppress:
1222 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1223 decoded = decoding_buffer;
1224 if (encoded[0] == '<')
1225 strcpy (decoded, encoded);
1226 else
1227 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1228 return decoded;
1229
1230 }
1231
1232 /* Table for keeping permanent unique copies of decoded names. Once
1233 allocated, names in this table are never released. While this is a
1234 storage leak, it should not be significant unless there are massive
1235 changes in the set of decoded names in successive versions of a
1236 symbol table loaded during a single session. */
1237 static struct htab *decoded_names_store;
1238
1239 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1240 in the language-specific part of GSYMBOL, if it has not been
1241 previously computed. Tries to save the decoded name in the same
1242 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1243 in any case, the decoded symbol has a lifetime at least that of
1244 GSYMBOL).
1245 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1246 const, but nevertheless modified to a semantically equivalent form
1247 when a decoded name is cached in it. */
1248
1249 char *
1250 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1251 {
1252 char **resultp =
1253 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1254
1255 if (*resultp == NULL)
1256 {
1257 const char *decoded = ada_decode (gsymbol->name);
1258
1259 if (gsymbol->obj_section != NULL)
1260 {
1261 struct objfile *objf = gsymbol->obj_section->objfile;
1262
1263 *resultp = obsavestring (decoded, strlen (decoded),
1264 &objf->objfile_obstack);
1265 }
1266 /* Sometimes, we can't find a corresponding objfile, in which
1267 case, we put the result on the heap. Since we only decode
1268 when needed, we hope this usually does not cause a
1269 significant memory leak (FIXME). */
1270 if (*resultp == NULL)
1271 {
1272 char **slot = (char **) htab_find_slot (decoded_names_store,
1273 decoded, INSERT);
1274
1275 if (*slot == NULL)
1276 *slot = xstrdup (decoded);
1277 *resultp = *slot;
1278 }
1279 }
1280
1281 return *resultp;
1282 }
1283
1284 static char *
1285 ada_la_decode (const char *encoded, int options)
1286 {
1287 return xstrdup (ada_decode (encoded));
1288 }
1289
1290 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1291 suffixes that encode debugging information or leading _ada_ on
1292 SYM_NAME (see is_name_suffix commentary for the debugging
1293 information that is ignored). If WILD, then NAME need only match a
1294 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1295 either argument is NULL. */
1296
1297 static int
1298 match_name (const char *sym_name, const char *name, int wild)
1299 {
1300 if (sym_name == NULL || name == NULL)
1301 return 0;
1302 else if (wild)
1303 return wild_match (sym_name, name) == 0;
1304 else
1305 {
1306 int len_name = strlen (name);
1307
1308 return (strncmp (sym_name, name, len_name) == 0
1309 && is_name_suffix (sym_name + len_name))
1310 || (strncmp (sym_name, "_ada_", 5) == 0
1311 && strncmp (sym_name + 5, name, len_name) == 0
1312 && is_name_suffix (sym_name + len_name + 5));
1313 }
1314 }
1315 \f
1316
1317 /* Arrays */
1318
1319 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1320 generated by the GNAT compiler to describe the index type used
1321 for each dimension of an array, check whether it follows the latest
1322 known encoding. If not, fix it up to conform to the latest encoding.
1323 Otherwise, do nothing. This function also does nothing if
1324 INDEX_DESC_TYPE is NULL.
1325
1326 The GNAT encoding used to describle the array index type evolved a bit.
1327 Initially, the information would be provided through the name of each
1328 field of the structure type only, while the type of these fields was
1329 described as unspecified and irrelevant. The debugger was then expected
1330 to perform a global type lookup using the name of that field in order
1331 to get access to the full index type description. Because these global
1332 lookups can be very expensive, the encoding was later enhanced to make
1333 the global lookup unnecessary by defining the field type as being
1334 the full index type description.
1335
1336 The purpose of this routine is to allow us to support older versions
1337 of the compiler by detecting the use of the older encoding, and by
1338 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1339 we essentially replace each field's meaningless type by the associated
1340 index subtype). */
1341
1342 void
1343 ada_fixup_array_indexes_type (struct type *index_desc_type)
1344 {
1345 int i;
1346
1347 if (index_desc_type == NULL)
1348 return;
1349 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1350
1351 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1352 to check one field only, no need to check them all). If not, return
1353 now.
1354
1355 If our INDEX_DESC_TYPE was generated using the older encoding,
1356 the field type should be a meaningless integer type whose name
1357 is not equal to the field name. */
1358 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1359 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1360 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1361 return;
1362
1363 /* Fixup each field of INDEX_DESC_TYPE. */
1364 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1365 {
1366 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1367 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1368
1369 if (raw_type)
1370 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1371 }
1372 }
1373
1374 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1375
1376 static char *bound_name[] = {
1377 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1378 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1379 };
1380
1381 /* Maximum number of array dimensions we are prepared to handle. */
1382
1383 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1384
1385
1386 /* The desc_* routines return primitive portions of array descriptors
1387 (fat pointers). */
1388
1389 /* The descriptor or array type, if any, indicated by TYPE; removes
1390 level of indirection, if needed. */
1391
1392 static struct type *
1393 desc_base_type (struct type *type)
1394 {
1395 if (type == NULL)
1396 return NULL;
1397 type = ada_check_typedef (type);
1398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1399 type = ada_typedef_target_type (type);
1400
1401 if (type != NULL
1402 && (TYPE_CODE (type) == TYPE_CODE_PTR
1403 || TYPE_CODE (type) == TYPE_CODE_REF))
1404 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1405 else
1406 return type;
1407 }
1408
1409 /* True iff TYPE indicates a "thin" array pointer type. */
1410
1411 static int
1412 is_thin_pntr (struct type *type)
1413 {
1414 return
1415 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1416 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1417 }
1418
1419 /* The descriptor type for thin pointer type TYPE. */
1420
1421 static struct type *
1422 thin_descriptor_type (struct type *type)
1423 {
1424 struct type *base_type = desc_base_type (type);
1425
1426 if (base_type == NULL)
1427 return NULL;
1428 if (is_suffix (ada_type_name (base_type), "___XVE"))
1429 return base_type;
1430 else
1431 {
1432 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1433
1434 if (alt_type == NULL)
1435 return base_type;
1436 else
1437 return alt_type;
1438 }
1439 }
1440
1441 /* A pointer to the array data for thin-pointer value VAL. */
1442
1443 static struct value *
1444 thin_data_pntr (struct value *val)
1445 {
1446 struct type *type = ada_check_typedef (value_type (val));
1447 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1448
1449 data_type = lookup_pointer_type (data_type);
1450
1451 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1452 return value_cast (data_type, value_copy (val));
1453 else
1454 return value_from_longest (data_type, value_address (val));
1455 }
1456
1457 /* True iff TYPE indicates a "thick" array pointer type. */
1458
1459 static int
1460 is_thick_pntr (struct type *type)
1461 {
1462 type = desc_base_type (type);
1463 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1464 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1465 }
1466
1467 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1468 pointer to one, the type of its bounds data; otherwise, NULL. */
1469
1470 static struct type *
1471 desc_bounds_type (struct type *type)
1472 {
1473 struct type *r;
1474
1475 type = desc_base_type (type);
1476
1477 if (type == NULL)
1478 return NULL;
1479 else if (is_thin_pntr (type))
1480 {
1481 type = thin_descriptor_type (type);
1482 if (type == NULL)
1483 return NULL;
1484 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1485 if (r != NULL)
1486 return ada_check_typedef (r);
1487 }
1488 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1489 {
1490 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1491 if (r != NULL)
1492 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1493 }
1494 return NULL;
1495 }
1496
1497 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1498 one, a pointer to its bounds data. Otherwise NULL. */
1499
1500 static struct value *
1501 desc_bounds (struct value *arr)
1502 {
1503 struct type *type = ada_check_typedef (value_type (arr));
1504
1505 if (is_thin_pntr (type))
1506 {
1507 struct type *bounds_type =
1508 desc_bounds_type (thin_descriptor_type (type));
1509 LONGEST addr;
1510
1511 if (bounds_type == NULL)
1512 error (_("Bad GNAT array descriptor"));
1513
1514 /* NOTE: The following calculation is not really kosher, but
1515 since desc_type is an XVE-encoded type (and shouldn't be),
1516 the correct calculation is a real pain. FIXME (and fix GCC). */
1517 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1518 addr = value_as_long (arr);
1519 else
1520 addr = value_address (arr);
1521
1522 return
1523 value_from_longest (lookup_pointer_type (bounds_type),
1524 addr - TYPE_LENGTH (bounds_type));
1525 }
1526
1527 else if (is_thick_pntr (type))
1528 {
1529 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1530 _("Bad GNAT array descriptor"));
1531 struct type *p_bounds_type = value_type (p_bounds);
1532
1533 if (p_bounds_type
1534 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1535 {
1536 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1537
1538 if (TYPE_STUB (target_type))
1539 p_bounds = value_cast (lookup_pointer_type
1540 (ada_check_typedef (target_type)),
1541 p_bounds);
1542 }
1543 else
1544 error (_("Bad GNAT array descriptor"));
1545
1546 return p_bounds;
1547 }
1548 else
1549 return NULL;
1550 }
1551
1552 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1553 position of the field containing the address of the bounds data. */
1554
1555 static int
1556 fat_pntr_bounds_bitpos (struct type *type)
1557 {
1558 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1559 }
1560
1561 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1562 size of the field containing the address of the bounds data. */
1563
1564 static int
1565 fat_pntr_bounds_bitsize (struct type *type)
1566 {
1567 type = desc_base_type (type);
1568
1569 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1570 return TYPE_FIELD_BITSIZE (type, 1);
1571 else
1572 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1573 }
1574
1575 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1576 pointer to one, the type of its array data (a array-with-no-bounds type);
1577 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1578 data. */
1579
1580 static struct type *
1581 desc_data_target_type (struct type *type)
1582 {
1583 type = desc_base_type (type);
1584
1585 /* NOTE: The following is bogus; see comment in desc_bounds. */
1586 if (is_thin_pntr (type))
1587 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1588 else if (is_thick_pntr (type))
1589 {
1590 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1591
1592 if (data_type
1593 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1594 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1595 }
1596
1597 return NULL;
1598 }
1599
1600 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1601 its array data. */
1602
1603 static struct value *
1604 desc_data (struct value *arr)
1605 {
1606 struct type *type = value_type (arr);
1607
1608 if (is_thin_pntr (type))
1609 return thin_data_pntr (arr);
1610 else if (is_thick_pntr (type))
1611 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1612 _("Bad GNAT array descriptor"));
1613 else
1614 return NULL;
1615 }
1616
1617
1618 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1619 position of the field containing the address of the data. */
1620
1621 static int
1622 fat_pntr_data_bitpos (struct type *type)
1623 {
1624 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1625 }
1626
1627 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1628 size of the field containing the address of the data. */
1629
1630 static int
1631 fat_pntr_data_bitsize (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1636 return TYPE_FIELD_BITSIZE (type, 0);
1637 else
1638 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1639 }
1640
1641 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1642 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1643 bound, if WHICH is 1. The first bound is I=1. */
1644
1645 static struct value *
1646 desc_one_bound (struct value *bounds, int i, int which)
1647 {
1648 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1649 _("Bad GNAT array descriptor bounds"));
1650 }
1651
1652 /* If BOUNDS is an array-bounds structure type, return the bit position
1653 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1654 bound, if WHICH is 1. The first bound is I=1. */
1655
1656 static int
1657 desc_bound_bitpos (struct type *type, int i, int which)
1658 {
1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1660 }
1661
1662 /* If BOUNDS is an array-bounds structure type, return the bit field size
1663 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1664 bound, if WHICH is 1. The first bound is I=1. */
1665
1666 static int
1667 desc_bound_bitsize (struct type *type, int i, int which)
1668 {
1669 type = desc_base_type (type);
1670
1671 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1672 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1673 else
1674 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1675 }
1676
1677 /* If TYPE is the type of an array-bounds structure, the type of its
1678 Ith bound (numbering from 1). Otherwise, NULL. */
1679
1680 static struct type *
1681 desc_index_type (struct type *type, int i)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1686 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1687 else
1688 return NULL;
1689 }
1690
1691 /* The number of index positions in the array-bounds type TYPE.
1692 Return 0 if TYPE is NULL. */
1693
1694 static int
1695 desc_arity (struct type *type)
1696 {
1697 type = desc_base_type (type);
1698
1699 if (type != NULL)
1700 return TYPE_NFIELDS (type) / 2;
1701 return 0;
1702 }
1703
1704 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1705 an array descriptor type (representing an unconstrained array
1706 type). */
1707
1708 static int
1709 ada_is_direct_array_type (struct type *type)
1710 {
1711 if (type == NULL)
1712 return 0;
1713 type = ada_check_typedef (type);
1714 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1715 || ada_is_array_descriptor_type (type));
1716 }
1717
1718 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1719 * to one. */
1720
1721 static int
1722 ada_is_array_type (struct type *type)
1723 {
1724 while (type != NULL
1725 && (TYPE_CODE (type) == TYPE_CODE_PTR
1726 || TYPE_CODE (type) == TYPE_CODE_REF))
1727 type = TYPE_TARGET_TYPE (type);
1728 return ada_is_direct_array_type (type);
1729 }
1730
1731 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1732
1733 int
1734 ada_is_simple_array_type (struct type *type)
1735 {
1736 if (type == NULL)
1737 return 0;
1738 type = ada_check_typedef (type);
1739 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1740 || (TYPE_CODE (type) == TYPE_CODE_PTR
1741 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1742 == TYPE_CODE_ARRAY));
1743 }
1744
1745 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1746
1747 int
1748 ada_is_array_descriptor_type (struct type *type)
1749 {
1750 struct type *data_type = desc_data_target_type (type);
1751
1752 if (type == NULL)
1753 return 0;
1754 type = ada_check_typedef (type);
1755 return (data_type != NULL
1756 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1757 && desc_arity (desc_bounds_type (type)) > 0);
1758 }
1759
1760 /* Non-zero iff type is a partially mal-formed GNAT array
1761 descriptor. FIXME: This is to compensate for some problems with
1762 debugging output from GNAT. Re-examine periodically to see if it
1763 is still needed. */
1764
1765 int
1766 ada_is_bogus_array_descriptor (struct type *type)
1767 {
1768 return
1769 type != NULL
1770 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1772 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1773 && !ada_is_array_descriptor_type (type);
1774 }
1775
1776
1777 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1778 (fat pointer) returns the type of the array data described---specifically,
1779 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1780 in from the descriptor; otherwise, they are left unspecified. If
1781 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1782 returns NULL. The result is simply the type of ARR if ARR is not
1783 a descriptor. */
1784 struct type *
1785 ada_type_of_array (struct value *arr, int bounds)
1786 {
1787 if (ada_is_constrained_packed_array_type (value_type (arr)))
1788 return decode_constrained_packed_array_type (value_type (arr));
1789
1790 if (!ada_is_array_descriptor_type (value_type (arr)))
1791 return value_type (arr);
1792
1793 if (!bounds)
1794 {
1795 struct type *array_type =
1796 ada_check_typedef (desc_data_target_type (value_type (arr)));
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (array_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
1801
1802 return array_type;
1803 }
1804 else
1805 {
1806 struct type *elt_type;
1807 int arity;
1808 struct value *descriptor;
1809
1810 elt_type = ada_array_element_type (value_type (arr), -1);
1811 arity = ada_array_arity (value_type (arr));
1812
1813 if (elt_type == NULL || arity == 0)
1814 return ada_check_typedef (value_type (arr));
1815
1816 descriptor = desc_bounds (arr);
1817 if (value_as_long (descriptor) == 0)
1818 return NULL;
1819 while (arity > 0)
1820 {
1821 struct type *range_type = alloc_type_copy (value_type (arr));
1822 struct type *array_type = alloc_type_copy (value_type (arr));
1823 struct value *low = desc_one_bound (descriptor, arity, 0);
1824 struct value *high = desc_one_bound (descriptor, arity, 1);
1825
1826 arity -= 1;
1827 create_range_type (range_type, value_type (low),
1828 longest_to_int (value_as_long (low)),
1829 longest_to_int (value_as_long (high)));
1830 elt_type = create_array_type (array_type, elt_type, range_type);
1831
1832 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1833 {
1834 /* We need to store the element packed bitsize, as well as
1835 recompute the array size, because it was previously
1836 computed based on the unpacked element size. */
1837 LONGEST lo = value_as_long (low);
1838 LONGEST hi = value_as_long (high);
1839
1840 TYPE_FIELD_BITSIZE (elt_type, 0) =
1841 decode_packed_array_bitsize (value_type (arr));
1842 /* If the array has no element, then the size is already
1843 zero, and does not need to be recomputed. */
1844 if (lo < hi)
1845 {
1846 int array_bitsize =
1847 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1848
1849 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1850 }
1851 }
1852 }
1853
1854 return lookup_pointer_type (elt_type);
1855 }
1856 }
1857
1858 /* If ARR does not represent an array, returns ARR unchanged.
1859 Otherwise, returns either a standard GDB array with bounds set
1860 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1861 GDB array. Returns NULL if ARR is a null fat pointer. */
1862
1863 struct value *
1864 ada_coerce_to_simple_array_ptr (struct value *arr)
1865 {
1866 if (ada_is_array_descriptor_type (value_type (arr)))
1867 {
1868 struct type *arrType = ada_type_of_array (arr, 1);
1869
1870 if (arrType == NULL)
1871 return NULL;
1872 return value_cast (arrType, value_copy (desc_data (arr)));
1873 }
1874 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1875 return decode_constrained_packed_array (arr);
1876 else
1877 return arr;
1878 }
1879
1880 /* If ARR does not represent an array, returns ARR unchanged.
1881 Otherwise, returns a standard GDB array describing ARR (which may
1882 be ARR itself if it already is in the proper form). */
1883
1884 struct value *
1885 ada_coerce_to_simple_array (struct value *arr)
1886 {
1887 if (ada_is_array_descriptor_type (value_type (arr)))
1888 {
1889 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1890
1891 if (arrVal == NULL)
1892 error (_("Bounds unavailable for null array pointer."));
1893 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1894 return value_ind (arrVal);
1895 }
1896 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1897 return decode_constrained_packed_array (arr);
1898 else
1899 return arr;
1900 }
1901
1902 /* If TYPE represents a GNAT array type, return it translated to an
1903 ordinary GDB array type (possibly with BITSIZE fields indicating
1904 packing). For other types, is the identity. */
1905
1906 struct type *
1907 ada_coerce_to_simple_array_type (struct type *type)
1908 {
1909 if (ada_is_constrained_packed_array_type (type))
1910 return decode_constrained_packed_array_type (type);
1911
1912 if (ada_is_array_descriptor_type (type))
1913 return ada_check_typedef (desc_data_target_type (type));
1914
1915 return type;
1916 }
1917
1918 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1919
1920 static int
1921 ada_is_packed_array_type (struct type *type)
1922 {
1923 if (type == NULL)
1924 return 0;
1925 type = desc_base_type (type);
1926 type = ada_check_typedef (type);
1927 return
1928 ada_type_name (type) != NULL
1929 && strstr (ada_type_name (type), "___XP") != NULL;
1930 }
1931
1932 /* Non-zero iff TYPE represents a standard GNAT constrained
1933 packed-array type. */
1934
1935 int
1936 ada_is_constrained_packed_array_type (struct type *type)
1937 {
1938 return ada_is_packed_array_type (type)
1939 && !ada_is_array_descriptor_type (type);
1940 }
1941
1942 /* Non-zero iff TYPE represents an array descriptor for a
1943 unconstrained packed-array type. */
1944
1945 static int
1946 ada_is_unconstrained_packed_array_type (struct type *type)
1947 {
1948 return ada_is_packed_array_type (type)
1949 && ada_is_array_descriptor_type (type);
1950 }
1951
1952 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1953 return the size of its elements in bits. */
1954
1955 static long
1956 decode_packed_array_bitsize (struct type *type)
1957 {
1958 char *raw_name;
1959 char *tail;
1960 long bits;
1961
1962 /* Access to arrays implemented as fat pointers are encoded as a typedef
1963 of the fat pointer type. We need the name of the fat pointer type
1964 to do the decoding, so strip the typedef layer. */
1965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1966 type = ada_typedef_target_type (type);
1967
1968 raw_name = ada_type_name (ada_check_typedef (type));
1969 if (!raw_name)
1970 raw_name = ada_type_name (desc_base_type (type));
1971
1972 if (!raw_name)
1973 return 0;
1974
1975 tail = strstr (raw_name, "___XP");
1976 gdb_assert (tail != NULL);
1977
1978 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1979 {
1980 lim_warning
1981 (_("could not understand bit size information on packed array"));
1982 return 0;
1983 }
1984
1985 return bits;
1986 }
1987
1988 /* Given that TYPE is a standard GDB array type with all bounds filled
1989 in, and that the element size of its ultimate scalar constituents
1990 (that is, either its elements, or, if it is an array of arrays, its
1991 elements' elements, etc.) is *ELT_BITS, return an identical type,
1992 but with the bit sizes of its elements (and those of any
1993 constituent arrays) recorded in the BITSIZE components of its
1994 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1995 in bits. */
1996
1997 static struct type *
1998 constrained_packed_array_type (struct type *type, long *elt_bits)
1999 {
2000 struct type *new_elt_type;
2001 struct type *new_type;
2002 LONGEST low_bound, high_bound;
2003
2004 type = ada_check_typedef (type);
2005 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2006 return type;
2007
2008 new_type = alloc_type_copy (type);
2009 new_elt_type =
2010 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2011 elt_bits);
2012 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2013 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2014 TYPE_NAME (new_type) = ada_type_name (type);
2015
2016 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2017 &low_bound, &high_bound) < 0)
2018 low_bound = high_bound = 0;
2019 if (high_bound < low_bound)
2020 *elt_bits = TYPE_LENGTH (new_type) = 0;
2021 else
2022 {
2023 *elt_bits *= (high_bound - low_bound + 1);
2024 TYPE_LENGTH (new_type) =
2025 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2026 }
2027
2028 TYPE_FIXED_INSTANCE (new_type) = 1;
2029 return new_type;
2030 }
2031
2032 /* The array type encoded by TYPE, where
2033 ada_is_constrained_packed_array_type (TYPE). */
2034
2035 static struct type *
2036 decode_constrained_packed_array_type (struct type *type)
2037 {
2038 char *raw_name = ada_type_name (ada_check_typedef (type));
2039 char *name;
2040 char *tail;
2041 struct type *shadow_type;
2042 long bits;
2043
2044 if (!raw_name)
2045 raw_name = ada_type_name (desc_base_type (type));
2046
2047 if (!raw_name)
2048 return NULL;
2049
2050 name = (char *) alloca (strlen (raw_name) + 1);
2051 tail = strstr (raw_name, "___XP");
2052 type = desc_base_type (type);
2053
2054 memcpy (name, raw_name, tail - raw_name);
2055 name[tail - raw_name] = '\000';
2056
2057 shadow_type = ada_find_parallel_type_with_name (type, name);
2058
2059 if (shadow_type == NULL)
2060 {
2061 lim_warning (_("could not find bounds information on packed array"));
2062 return NULL;
2063 }
2064 CHECK_TYPEDEF (shadow_type);
2065
2066 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2067 {
2068 lim_warning (_("could not understand bounds "
2069 "information on packed array"));
2070 return NULL;
2071 }
2072
2073 bits = decode_packed_array_bitsize (type);
2074 return constrained_packed_array_type (shadow_type, &bits);
2075 }
2076
2077 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2078 array, returns a simple array that denotes that array. Its type is a
2079 standard GDB array type except that the BITSIZEs of the array
2080 target types are set to the number of bits in each element, and the
2081 type length is set appropriately. */
2082
2083 static struct value *
2084 decode_constrained_packed_array (struct value *arr)
2085 {
2086 struct type *type;
2087
2088 arr = ada_coerce_ref (arr);
2089
2090 /* If our value is a pointer, then dererence it. Make sure that
2091 this operation does not cause the target type to be fixed, as
2092 this would indirectly cause this array to be decoded. The rest
2093 of the routine assumes that the array hasn't been decoded yet,
2094 so we use the basic "value_ind" routine to perform the dereferencing,
2095 as opposed to using "ada_value_ind". */
2096 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2097 arr = value_ind (arr);
2098
2099 type = decode_constrained_packed_array_type (value_type (arr));
2100 if (type == NULL)
2101 {
2102 error (_("can't unpack array"));
2103 return NULL;
2104 }
2105
2106 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2107 && ada_is_modular_type (value_type (arr)))
2108 {
2109 /* This is a (right-justified) modular type representing a packed
2110 array with no wrapper. In order to interpret the value through
2111 the (left-justified) packed array type we just built, we must
2112 first left-justify it. */
2113 int bit_size, bit_pos;
2114 ULONGEST mod;
2115
2116 mod = ada_modulus (value_type (arr)) - 1;
2117 bit_size = 0;
2118 while (mod > 0)
2119 {
2120 bit_size += 1;
2121 mod >>= 1;
2122 }
2123 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2124 arr = ada_value_primitive_packed_val (arr, NULL,
2125 bit_pos / HOST_CHAR_BIT,
2126 bit_pos % HOST_CHAR_BIT,
2127 bit_size,
2128 type);
2129 }
2130
2131 return coerce_unspec_val_to_type (arr, type);
2132 }
2133
2134
2135 /* The value of the element of packed array ARR at the ARITY indices
2136 given in IND. ARR must be a simple array. */
2137
2138 static struct value *
2139 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2140 {
2141 int i;
2142 int bits, elt_off, bit_off;
2143 long elt_total_bit_offset;
2144 struct type *elt_type;
2145 struct value *v;
2146
2147 bits = 0;
2148 elt_total_bit_offset = 0;
2149 elt_type = ada_check_typedef (value_type (arr));
2150 for (i = 0; i < arity; i += 1)
2151 {
2152 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2153 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2154 error
2155 (_("attempt to do packed indexing of "
2156 "something other than a packed array"));
2157 else
2158 {
2159 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2160 LONGEST lowerbound, upperbound;
2161 LONGEST idx;
2162
2163 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2164 {
2165 lim_warning (_("don't know bounds of array"));
2166 lowerbound = upperbound = 0;
2167 }
2168
2169 idx = pos_atr (ind[i]);
2170 if (idx < lowerbound || idx > upperbound)
2171 lim_warning (_("packed array index %ld out of bounds"),
2172 (long) idx);
2173 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2174 elt_total_bit_offset += (idx - lowerbound) * bits;
2175 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2176 }
2177 }
2178 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2179 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2180
2181 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2182 bits, elt_type);
2183 return v;
2184 }
2185
2186 /* Non-zero iff TYPE includes negative integer values. */
2187
2188 static int
2189 has_negatives (struct type *type)
2190 {
2191 switch (TYPE_CODE (type))
2192 {
2193 default:
2194 return 0;
2195 case TYPE_CODE_INT:
2196 return !TYPE_UNSIGNED (type);
2197 case TYPE_CODE_RANGE:
2198 return TYPE_LOW_BOUND (type) < 0;
2199 }
2200 }
2201
2202
2203 /* Create a new value of type TYPE from the contents of OBJ starting
2204 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2205 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2206 assigning through the result will set the field fetched from.
2207 VALADDR is ignored unless OBJ is NULL, in which case,
2208 VALADDR+OFFSET must address the start of storage containing the
2209 packed value. The value returned in this case is never an lval.
2210 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2211
2212 struct value *
2213 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2214 long offset, int bit_offset, int bit_size,
2215 struct type *type)
2216 {
2217 struct value *v;
2218 int src, /* Index into the source area */
2219 targ, /* Index into the target area */
2220 srcBitsLeft, /* Number of source bits left to move */
2221 nsrc, ntarg, /* Number of source and target bytes */
2222 unusedLS, /* Number of bits in next significant
2223 byte of source that are unused */
2224 accumSize; /* Number of meaningful bits in accum */
2225 unsigned char *bytes; /* First byte containing data to unpack */
2226 unsigned char *unpacked;
2227 unsigned long accum; /* Staging area for bits being transferred */
2228 unsigned char sign;
2229 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2230 /* Transmit bytes from least to most significant; delta is the direction
2231 the indices move. */
2232 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2233
2234 type = ada_check_typedef (type);
2235
2236 if (obj == NULL)
2237 {
2238 v = allocate_value (type);
2239 bytes = (unsigned char *) (valaddr + offset);
2240 }
2241 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2242 {
2243 v = value_at (type,
2244 value_address (obj) + offset);
2245 bytes = (unsigned char *) alloca (len);
2246 read_memory (value_address (v), bytes, len);
2247 }
2248 else
2249 {
2250 v = allocate_value (type);
2251 bytes = (unsigned char *) value_contents (obj) + offset;
2252 }
2253
2254 if (obj != NULL)
2255 {
2256 CORE_ADDR new_addr;
2257
2258 set_value_component_location (v, obj);
2259 new_addr = value_address (obj) + offset;
2260 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2261 set_value_bitsize (v, bit_size);
2262 if (value_bitpos (v) >= HOST_CHAR_BIT)
2263 {
2264 ++new_addr;
2265 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2266 }
2267 set_value_address (v, new_addr);
2268 }
2269 else
2270 set_value_bitsize (v, bit_size);
2271 unpacked = (unsigned char *) value_contents (v);
2272
2273 srcBitsLeft = bit_size;
2274 nsrc = len;
2275 ntarg = TYPE_LENGTH (type);
2276 sign = 0;
2277 if (bit_size == 0)
2278 {
2279 memset (unpacked, 0, TYPE_LENGTH (type));
2280 return v;
2281 }
2282 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2283 {
2284 src = len - 1;
2285 if (has_negatives (type)
2286 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2287 sign = ~0;
2288
2289 unusedLS =
2290 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2291 % HOST_CHAR_BIT;
2292
2293 switch (TYPE_CODE (type))
2294 {
2295 case TYPE_CODE_ARRAY:
2296 case TYPE_CODE_UNION:
2297 case TYPE_CODE_STRUCT:
2298 /* Non-scalar values must be aligned at a byte boundary... */
2299 accumSize =
2300 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2301 /* ... And are placed at the beginning (most-significant) bytes
2302 of the target. */
2303 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2304 ntarg = targ + 1;
2305 break;
2306 default:
2307 accumSize = 0;
2308 targ = TYPE_LENGTH (type) - 1;
2309 break;
2310 }
2311 }
2312 else
2313 {
2314 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2315
2316 src = targ = 0;
2317 unusedLS = bit_offset;
2318 accumSize = 0;
2319
2320 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2321 sign = ~0;
2322 }
2323
2324 accum = 0;
2325 while (nsrc > 0)
2326 {
2327 /* Mask for removing bits of the next source byte that are not
2328 part of the value. */
2329 unsigned int unusedMSMask =
2330 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2331 1;
2332 /* Sign-extend bits for this byte. */
2333 unsigned int signMask = sign & ~unusedMSMask;
2334
2335 accum |=
2336 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2337 accumSize += HOST_CHAR_BIT - unusedLS;
2338 if (accumSize >= HOST_CHAR_BIT)
2339 {
2340 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2341 accumSize -= HOST_CHAR_BIT;
2342 accum >>= HOST_CHAR_BIT;
2343 ntarg -= 1;
2344 targ += delta;
2345 }
2346 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2347 unusedLS = 0;
2348 nsrc -= 1;
2349 src += delta;
2350 }
2351 while (ntarg > 0)
2352 {
2353 accum |= sign << accumSize;
2354 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2355 accumSize -= HOST_CHAR_BIT;
2356 accum >>= HOST_CHAR_BIT;
2357 ntarg -= 1;
2358 targ += delta;
2359 }
2360
2361 return v;
2362 }
2363
2364 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2365 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2366 not overlap. */
2367 static void
2368 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2369 int src_offset, int n, int bits_big_endian_p)
2370 {
2371 unsigned int accum, mask;
2372 int accum_bits, chunk_size;
2373
2374 target += targ_offset / HOST_CHAR_BIT;
2375 targ_offset %= HOST_CHAR_BIT;
2376 source += src_offset / HOST_CHAR_BIT;
2377 src_offset %= HOST_CHAR_BIT;
2378 if (bits_big_endian_p)
2379 {
2380 accum = (unsigned char) *source;
2381 source += 1;
2382 accum_bits = HOST_CHAR_BIT - src_offset;
2383
2384 while (n > 0)
2385 {
2386 int unused_right;
2387
2388 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2389 accum_bits += HOST_CHAR_BIT;
2390 source += 1;
2391 chunk_size = HOST_CHAR_BIT - targ_offset;
2392 if (chunk_size > n)
2393 chunk_size = n;
2394 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2395 mask = ((1 << chunk_size) - 1) << unused_right;
2396 *target =
2397 (*target & ~mask)
2398 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2399 n -= chunk_size;
2400 accum_bits -= chunk_size;
2401 target += 1;
2402 targ_offset = 0;
2403 }
2404 }
2405 else
2406 {
2407 accum = (unsigned char) *source >> src_offset;
2408 source += 1;
2409 accum_bits = HOST_CHAR_BIT - src_offset;
2410
2411 while (n > 0)
2412 {
2413 accum = accum + ((unsigned char) *source << accum_bits);
2414 accum_bits += HOST_CHAR_BIT;
2415 source += 1;
2416 chunk_size = HOST_CHAR_BIT - targ_offset;
2417 if (chunk_size > n)
2418 chunk_size = n;
2419 mask = ((1 << chunk_size) - 1) << targ_offset;
2420 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2421 n -= chunk_size;
2422 accum_bits -= chunk_size;
2423 accum >>= chunk_size;
2424 target += 1;
2425 targ_offset = 0;
2426 }
2427 }
2428 }
2429
2430 /* Store the contents of FROMVAL into the location of TOVAL.
2431 Return a new value with the location of TOVAL and contents of
2432 FROMVAL. Handles assignment into packed fields that have
2433 floating-point or non-scalar types. */
2434
2435 static struct value *
2436 ada_value_assign (struct value *toval, struct value *fromval)
2437 {
2438 struct type *type = value_type (toval);
2439 int bits = value_bitsize (toval);
2440
2441 toval = ada_coerce_ref (toval);
2442 fromval = ada_coerce_ref (fromval);
2443
2444 if (ada_is_direct_array_type (value_type (toval)))
2445 toval = ada_coerce_to_simple_array (toval);
2446 if (ada_is_direct_array_type (value_type (fromval)))
2447 fromval = ada_coerce_to_simple_array (fromval);
2448
2449 if (!deprecated_value_modifiable (toval))
2450 error (_("Left operand of assignment is not a modifiable lvalue."));
2451
2452 if (VALUE_LVAL (toval) == lval_memory
2453 && bits > 0
2454 && (TYPE_CODE (type) == TYPE_CODE_FLT
2455 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2456 {
2457 int len = (value_bitpos (toval)
2458 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2459 int from_size;
2460 char *buffer = (char *) alloca (len);
2461 struct value *val;
2462 CORE_ADDR to_addr = value_address (toval);
2463
2464 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2465 fromval = value_cast (type, fromval);
2466
2467 read_memory (to_addr, buffer, len);
2468 from_size = value_bitsize (fromval);
2469 if (from_size == 0)
2470 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2471 if (gdbarch_bits_big_endian (get_type_arch (type)))
2472 move_bits (buffer, value_bitpos (toval),
2473 value_contents (fromval), from_size - bits, bits, 1);
2474 else
2475 move_bits (buffer, value_bitpos (toval),
2476 value_contents (fromval), 0, bits, 0);
2477 write_memory (to_addr, buffer, len);
2478 observer_notify_memory_changed (to_addr, len, buffer);
2479
2480 val = value_copy (toval);
2481 memcpy (value_contents_raw (val), value_contents (fromval),
2482 TYPE_LENGTH (type));
2483 deprecated_set_value_type (val, type);
2484
2485 return val;
2486 }
2487
2488 return value_assign (toval, fromval);
2489 }
2490
2491
2492 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2493 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2494 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2495 * COMPONENT, and not the inferior's memory. The current contents
2496 * of COMPONENT are ignored. */
2497 static void
2498 value_assign_to_component (struct value *container, struct value *component,
2499 struct value *val)
2500 {
2501 LONGEST offset_in_container =
2502 (LONGEST) (value_address (component) - value_address (container));
2503 int bit_offset_in_container =
2504 value_bitpos (component) - value_bitpos (container);
2505 int bits;
2506
2507 val = value_cast (value_type (component), val);
2508
2509 if (value_bitsize (component) == 0)
2510 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2511 else
2512 bits = value_bitsize (component);
2513
2514 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2515 move_bits (value_contents_writeable (container) + offset_in_container,
2516 value_bitpos (container) + bit_offset_in_container,
2517 value_contents (val),
2518 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2519 bits, 1);
2520 else
2521 move_bits (value_contents_writeable (container) + offset_in_container,
2522 value_bitpos (container) + bit_offset_in_container,
2523 value_contents (val), 0, bits, 0);
2524 }
2525
2526 /* The value of the element of array ARR at the ARITY indices given in IND.
2527 ARR may be either a simple array, GNAT array descriptor, or pointer
2528 thereto. */
2529
2530 struct value *
2531 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2532 {
2533 int k;
2534 struct value *elt;
2535 struct type *elt_type;
2536
2537 elt = ada_coerce_to_simple_array (arr);
2538
2539 elt_type = ada_check_typedef (value_type (elt));
2540 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2541 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2542 return value_subscript_packed (elt, arity, ind);
2543
2544 for (k = 0; k < arity; k += 1)
2545 {
2546 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2547 error (_("too many subscripts (%d expected)"), k);
2548 elt = value_subscript (elt, pos_atr (ind[k]));
2549 }
2550 return elt;
2551 }
2552
2553 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2554 value of the element of *ARR at the ARITY indices given in
2555 IND. Does not read the entire array into memory. */
2556
2557 static struct value *
2558 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2559 struct value **ind)
2560 {
2561 int k;
2562
2563 for (k = 0; k < arity; k += 1)
2564 {
2565 LONGEST lwb, upb;
2566
2567 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2568 error (_("too many subscripts (%d expected)"), k);
2569 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2570 value_copy (arr));
2571 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2572 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2573 type = TYPE_TARGET_TYPE (type);
2574 }
2575
2576 return value_ind (arr);
2577 }
2578
2579 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2580 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2581 elements starting at index LOW. The lower bound of this array is LOW, as
2582 per Ada rules. */
2583 static struct value *
2584 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2585 int low, int high)
2586 {
2587 struct type *type0 = ada_check_typedef (type);
2588 CORE_ADDR base = value_as_address (array_ptr)
2589 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2590 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2591 struct type *index_type =
2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2593 low, high);
2594 struct type *slice_type =
2595 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2596
2597 return value_at_lazy (slice_type, base);
2598 }
2599
2600
2601 static struct value *
2602 ada_value_slice (struct value *array, int low, int high)
2603 {
2604 struct type *type = ada_check_typedef (value_type (array));
2605 struct type *index_type =
2606 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2607 struct type *slice_type =
2608 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2609
2610 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2611 }
2612
2613 /* If type is a record type in the form of a standard GNAT array
2614 descriptor, returns the number of dimensions for type. If arr is a
2615 simple array, returns the number of "array of"s that prefix its
2616 type designation. Otherwise, returns 0. */
2617
2618 int
2619 ada_array_arity (struct type *type)
2620 {
2621 int arity;
2622
2623 if (type == NULL)
2624 return 0;
2625
2626 type = desc_base_type (type);
2627
2628 arity = 0;
2629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2630 return desc_arity (desc_bounds_type (type));
2631 else
2632 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2633 {
2634 arity += 1;
2635 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2636 }
2637
2638 return arity;
2639 }
2640
2641 /* If TYPE is a record type in the form of a standard GNAT array
2642 descriptor or a simple array type, returns the element type for
2643 TYPE after indexing by NINDICES indices, or by all indices if
2644 NINDICES is -1. Otherwise, returns NULL. */
2645
2646 struct type *
2647 ada_array_element_type (struct type *type, int nindices)
2648 {
2649 type = desc_base_type (type);
2650
2651 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2652 {
2653 int k;
2654 struct type *p_array_type;
2655
2656 p_array_type = desc_data_target_type (type);
2657
2658 k = ada_array_arity (type);
2659 if (k == 0)
2660 return NULL;
2661
2662 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2663 if (nindices >= 0 && k > nindices)
2664 k = nindices;
2665 while (k > 0 && p_array_type != NULL)
2666 {
2667 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2668 k -= 1;
2669 }
2670 return p_array_type;
2671 }
2672 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2673 {
2674 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2675 {
2676 type = TYPE_TARGET_TYPE (type);
2677 nindices -= 1;
2678 }
2679 return type;
2680 }
2681
2682 return NULL;
2683 }
2684
2685 /* The type of nth index in arrays of given type (n numbering from 1).
2686 Does not examine memory. Throws an error if N is invalid or TYPE
2687 is not an array type. NAME is the name of the Ada attribute being
2688 evaluated ('range, 'first, 'last, or 'length); it is used in building
2689 the error message. */
2690
2691 static struct type *
2692 ada_index_type (struct type *type, int n, const char *name)
2693 {
2694 struct type *result_type;
2695
2696 type = desc_base_type (type);
2697
2698 if (n < 0 || n > ada_array_arity (type))
2699 error (_("invalid dimension number to '%s"), name);
2700
2701 if (ada_is_simple_array_type (type))
2702 {
2703 int i;
2704
2705 for (i = 1; i < n; i += 1)
2706 type = TYPE_TARGET_TYPE (type);
2707 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2708 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2709 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2710 perhaps stabsread.c would make more sense. */
2711 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2712 result_type = NULL;
2713 }
2714 else
2715 {
2716 result_type = desc_index_type (desc_bounds_type (type), n);
2717 if (result_type == NULL)
2718 error (_("attempt to take bound of something that is not an array"));
2719 }
2720
2721 return result_type;
2722 }
2723
2724 /* Given that arr is an array type, returns the lower bound of the
2725 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2726 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2727 array-descriptor type. It works for other arrays with bounds supplied
2728 by run-time quantities other than discriminants. */
2729
2730 static LONGEST
2731 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2732 {
2733 struct type *type, *elt_type, *index_type_desc, *index_type;
2734 int i;
2735
2736 gdb_assert (which == 0 || which == 1);
2737
2738 if (ada_is_constrained_packed_array_type (arr_type))
2739 arr_type = decode_constrained_packed_array_type (arr_type);
2740
2741 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2742 return (LONGEST) - which;
2743
2744 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2745 type = TYPE_TARGET_TYPE (arr_type);
2746 else
2747 type = arr_type;
2748
2749 elt_type = type;
2750 for (i = n; i > 1; i--)
2751 elt_type = TYPE_TARGET_TYPE (type);
2752
2753 index_type_desc = ada_find_parallel_type (type, "___XA");
2754 ada_fixup_array_indexes_type (index_type_desc);
2755 if (index_type_desc != NULL)
2756 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2757 NULL);
2758 else
2759 index_type = TYPE_INDEX_TYPE (elt_type);
2760
2761 return
2762 (LONGEST) (which == 0
2763 ? ada_discrete_type_low_bound (index_type)
2764 : ada_discrete_type_high_bound (index_type));
2765 }
2766
2767 /* Given that arr is an array value, returns the lower bound of the
2768 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2769 WHICH is 1. This routine will also work for arrays with bounds
2770 supplied by run-time quantities other than discriminants. */
2771
2772 static LONGEST
2773 ada_array_bound (struct value *arr, int n, int which)
2774 {
2775 struct type *arr_type = value_type (arr);
2776
2777 if (ada_is_constrained_packed_array_type (arr_type))
2778 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2779 else if (ada_is_simple_array_type (arr_type))
2780 return ada_array_bound_from_type (arr_type, n, which);
2781 else
2782 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2783 }
2784
2785 /* Given that arr is an array value, returns the length of the
2786 nth index. This routine will also work for arrays with bounds
2787 supplied by run-time quantities other than discriminants.
2788 Does not work for arrays indexed by enumeration types with representation
2789 clauses at the moment. */
2790
2791 static LONGEST
2792 ada_array_length (struct value *arr, int n)
2793 {
2794 struct type *arr_type = ada_check_typedef (value_type (arr));
2795
2796 if (ada_is_constrained_packed_array_type (arr_type))
2797 return ada_array_length (decode_constrained_packed_array (arr), n);
2798
2799 if (ada_is_simple_array_type (arr_type))
2800 return (ada_array_bound_from_type (arr_type, n, 1)
2801 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2802 else
2803 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2804 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2805 }
2806
2807 /* An empty array whose type is that of ARR_TYPE (an array type),
2808 with bounds LOW to LOW-1. */
2809
2810 static struct value *
2811 empty_array (struct type *arr_type, int low)
2812 {
2813 struct type *arr_type0 = ada_check_typedef (arr_type);
2814 struct type *index_type =
2815 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2816 low, low - 1);
2817 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2818
2819 return allocate_value (create_array_type (NULL, elt_type, index_type));
2820 }
2821 \f
2822
2823 /* Name resolution */
2824
2825 /* The "decoded" name for the user-definable Ada operator corresponding
2826 to OP. */
2827
2828 static const char *
2829 ada_decoded_op_name (enum exp_opcode op)
2830 {
2831 int i;
2832
2833 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2834 {
2835 if (ada_opname_table[i].op == op)
2836 return ada_opname_table[i].decoded;
2837 }
2838 error (_("Could not find operator name for opcode"));
2839 }
2840
2841
2842 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2843 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2844 undefined namespace) and converts operators that are
2845 user-defined into appropriate function calls. If CONTEXT_TYPE is
2846 non-null, it provides a preferred result type [at the moment, only
2847 type void has any effect---causing procedures to be preferred over
2848 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2849 return type is preferred. May change (expand) *EXP. */
2850
2851 static void
2852 resolve (struct expression **expp, int void_context_p)
2853 {
2854 struct type *context_type = NULL;
2855 int pc = 0;
2856
2857 if (void_context_p)
2858 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2859
2860 resolve_subexp (expp, &pc, 1, context_type);
2861 }
2862
2863 /* Resolve the operator of the subexpression beginning at
2864 position *POS of *EXPP. "Resolving" consists of replacing
2865 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2866 with their resolutions, replacing built-in operators with
2867 function calls to user-defined operators, where appropriate, and,
2868 when DEPROCEDURE_P is non-zero, converting function-valued variables
2869 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2870 are as in ada_resolve, above. */
2871
2872 static struct value *
2873 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2874 struct type *context_type)
2875 {
2876 int pc = *pos;
2877 int i;
2878 struct expression *exp; /* Convenience: == *expp. */
2879 enum exp_opcode op = (*expp)->elts[pc].opcode;
2880 struct value **argvec; /* Vector of operand types (alloca'ed). */
2881 int nargs; /* Number of operands. */
2882 int oplen;
2883
2884 argvec = NULL;
2885 nargs = 0;
2886 exp = *expp;
2887
2888 /* Pass one: resolve operands, saving their types and updating *pos,
2889 if needed. */
2890 switch (op)
2891 {
2892 case OP_FUNCALL:
2893 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2894 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2895 *pos += 7;
2896 else
2897 {
2898 *pos += 3;
2899 resolve_subexp (expp, pos, 0, NULL);
2900 }
2901 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2902 break;
2903
2904 case UNOP_ADDR:
2905 *pos += 1;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 break;
2908
2909 case UNOP_QUAL:
2910 *pos += 3;
2911 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2912 break;
2913
2914 case OP_ATR_MODULUS:
2915 case OP_ATR_SIZE:
2916 case OP_ATR_TAG:
2917 case OP_ATR_FIRST:
2918 case OP_ATR_LAST:
2919 case OP_ATR_LENGTH:
2920 case OP_ATR_POS:
2921 case OP_ATR_VAL:
2922 case OP_ATR_MIN:
2923 case OP_ATR_MAX:
2924 case TERNOP_IN_RANGE:
2925 case BINOP_IN_BOUNDS:
2926 case UNOP_IN_RANGE:
2927 case OP_AGGREGATE:
2928 case OP_OTHERS:
2929 case OP_CHOICES:
2930 case OP_POSITIONAL:
2931 case OP_DISCRETE_RANGE:
2932 case OP_NAME:
2933 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2934 *pos += oplen;
2935 break;
2936
2937 case BINOP_ASSIGN:
2938 {
2939 struct value *arg1;
2940
2941 *pos += 1;
2942 arg1 = resolve_subexp (expp, pos, 0, NULL);
2943 if (arg1 == NULL)
2944 resolve_subexp (expp, pos, 1, NULL);
2945 else
2946 resolve_subexp (expp, pos, 1, value_type (arg1));
2947 break;
2948 }
2949
2950 case UNOP_CAST:
2951 *pos += 3;
2952 nargs = 1;
2953 break;
2954
2955 case BINOP_ADD:
2956 case BINOP_SUB:
2957 case BINOP_MUL:
2958 case BINOP_DIV:
2959 case BINOP_REM:
2960 case BINOP_MOD:
2961 case BINOP_EXP:
2962 case BINOP_CONCAT:
2963 case BINOP_LOGICAL_AND:
2964 case BINOP_LOGICAL_OR:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
2968
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
2975
2976 case BINOP_REPEAT:
2977 case BINOP_SUBSCRIPT:
2978 case BINOP_COMMA:
2979 *pos += 1;
2980 nargs = 2;
2981 break;
2982
2983 case UNOP_NEG:
2984 case UNOP_PLUS:
2985 case UNOP_LOGICAL_NOT:
2986 case UNOP_ABS:
2987 case UNOP_IND:
2988 *pos += 1;
2989 nargs = 1;
2990 break;
2991
2992 case OP_LONG:
2993 case OP_DOUBLE:
2994 case OP_VAR_VALUE:
2995 *pos += 4;
2996 break;
2997
2998 case OP_TYPE:
2999 case OP_BOOL:
3000 case OP_LAST:
3001 case OP_INTERNALVAR:
3002 *pos += 3;
3003 break;
3004
3005 case UNOP_MEMVAL:
3006 *pos += 3;
3007 nargs = 1;
3008 break;
3009
3010 case OP_REGISTER:
3011 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3012 break;
3013
3014 case STRUCTOP_STRUCT:
3015 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3016 nargs = 1;
3017 break;
3018
3019 case TERNOP_SLICE:
3020 *pos += 1;
3021 nargs = 3;
3022 break;
3023
3024 case OP_STRING:
3025 break;
3026
3027 default:
3028 error (_("Unexpected operator during name resolution"));
3029 }
3030
3031 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3032 for (i = 0; i < nargs; i += 1)
3033 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3034 argvec[i] = NULL;
3035 exp = *expp;
3036
3037 /* Pass two: perform any resolution on principal operator. */
3038 switch (op)
3039 {
3040 default:
3041 break;
3042
3043 case OP_VAR_VALUE:
3044 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3045 {
3046 struct ada_symbol_info *candidates;
3047 int n_candidates;
3048
3049 n_candidates =
3050 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3051 (exp->elts[pc + 2].symbol),
3052 exp->elts[pc + 1].block, VAR_DOMAIN,
3053 &candidates);
3054
3055 if (n_candidates > 1)
3056 {
3057 /* Types tend to get re-introduced locally, so if there
3058 are any local symbols that are not types, first filter
3059 out all types. */
3060 int j;
3061 for (j = 0; j < n_candidates; j += 1)
3062 switch (SYMBOL_CLASS (candidates[j].sym))
3063 {
3064 case LOC_REGISTER:
3065 case LOC_ARG:
3066 case LOC_REF_ARG:
3067 case LOC_REGPARM_ADDR:
3068 case LOC_LOCAL:
3069 case LOC_COMPUTED:
3070 goto FoundNonType;
3071 default:
3072 break;
3073 }
3074 FoundNonType:
3075 if (j < n_candidates)
3076 {
3077 j = 0;
3078 while (j < n_candidates)
3079 {
3080 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3081 {
3082 candidates[j] = candidates[n_candidates - 1];
3083 n_candidates -= 1;
3084 }
3085 else
3086 j += 1;
3087 }
3088 }
3089 }
3090
3091 if (n_candidates == 0)
3092 error (_("No definition found for %s"),
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3094 else if (n_candidates == 1)
3095 i = 0;
3096 else if (deprocedure_p
3097 && !is_nonfunction (candidates, n_candidates))
3098 {
3099 i = ada_resolve_function
3100 (candidates, n_candidates, NULL, 0,
3101 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3102 context_type);
3103 if (i < 0)
3104 error (_("Could not find a match for %s"),
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 }
3107 else
3108 {
3109 printf_filtered (_("Multiple matches for %s\n"),
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 user_select_syms (candidates, n_candidates, 1);
3112 i = 0;
3113 }
3114
3115 exp->elts[pc + 1].block = candidates[i].block;
3116 exp->elts[pc + 2].symbol = candidates[i].sym;
3117 if (innermost_block == NULL
3118 || contained_in (candidates[i].block, innermost_block))
3119 innermost_block = candidates[i].block;
3120 }
3121
3122 if (deprocedure_p
3123 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3124 == TYPE_CODE_FUNC))
3125 {
3126 replace_operator_with_call (expp, pc, 0, 0,
3127 exp->elts[pc + 2].symbol,
3128 exp->elts[pc + 1].block);
3129 exp = *expp;
3130 }
3131 break;
3132
3133 case OP_FUNCALL:
3134 {
3135 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3136 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3137 {
3138 struct ada_symbol_info *candidates;
3139 int n_candidates;
3140
3141 n_candidates =
3142 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3143 (exp->elts[pc + 5].symbol),
3144 exp->elts[pc + 4].block, VAR_DOMAIN,
3145 &candidates);
3146 if (n_candidates == 1)
3147 i = 0;
3148 else
3149 {
3150 i = ada_resolve_function
3151 (candidates, n_candidates,
3152 argvec, nargs,
3153 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3154 context_type);
3155 if (i < 0)
3156 error (_("Could not find a match for %s"),
3157 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3158 }
3159
3160 exp->elts[pc + 4].block = candidates[i].block;
3161 exp->elts[pc + 5].symbol = candidates[i].sym;
3162 if (innermost_block == NULL
3163 || contained_in (candidates[i].block, innermost_block))
3164 innermost_block = candidates[i].block;
3165 }
3166 }
3167 break;
3168 case BINOP_ADD:
3169 case BINOP_SUB:
3170 case BINOP_MUL:
3171 case BINOP_DIV:
3172 case BINOP_REM:
3173 case BINOP_MOD:
3174 case BINOP_CONCAT:
3175 case BINOP_BITWISE_AND:
3176 case BINOP_BITWISE_IOR:
3177 case BINOP_BITWISE_XOR:
3178 case BINOP_EQUAL:
3179 case BINOP_NOTEQUAL:
3180 case BINOP_LESS:
3181 case BINOP_GTR:
3182 case BINOP_LEQ:
3183 case BINOP_GEQ:
3184 case BINOP_EXP:
3185 case UNOP_NEG:
3186 case UNOP_PLUS:
3187 case UNOP_LOGICAL_NOT:
3188 case UNOP_ABS:
3189 if (possible_user_operator_p (op, argvec))
3190 {
3191 struct ada_symbol_info *candidates;
3192 int n_candidates;
3193
3194 n_candidates =
3195 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3196 (struct block *) NULL, VAR_DOMAIN,
3197 &candidates);
3198 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3199 ada_decoded_op_name (op), NULL);
3200 if (i < 0)
3201 break;
3202
3203 replace_operator_with_call (expp, pc, nargs, 1,
3204 candidates[i].sym, candidates[i].block);
3205 exp = *expp;
3206 }
3207 break;
3208
3209 case OP_TYPE:
3210 case OP_REGISTER:
3211 return NULL;
3212 }
3213
3214 *pos = pc;
3215 return evaluate_subexp_type (exp, pos);
3216 }
3217
3218 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3219 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3220 a non-pointer. */
3221 /* The term "match" here is rather loose. The match is heuristic and
3222 liberal. */
3223
3224 static int
3225 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3226 {
3227 ftype = ada_check_typedef (ftype);
3228 atype = ada_check_typedef (atype);
3229
3230 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3231 ftype = TYPE_TARGET_TYPE (ftype);
3232 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3233 atype = TYPE_TARGET_TYPE (atype);
3234
3235 switch (TYPE_CODE (ftype))
3236 {
3237 default:
3238 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3239 case TYPE_CODE_PTR:
3240 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3241 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3242 TYPE_TARGET_TYPE (atype), 0);
3243 else
3244 return (may_deref
3245 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 switch (TYPE_CODE (atype))
3250 {
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 return 1;
3255 default:
3256 return 0;
3257 }
3258
3259 case TYPE_CODE_ARRAY:
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
3262
3263 case TYPE_CODE_STRUCT:
3264 if (ada_is_array_descriptor_type (ftype))
3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3266 || ada_is_array_descriptor_type (atype));
3267 else
3268 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3269 && !ada_is_array_descriptor_type (atype));
3270
3271 case TYPE_CODE_UNION:
3272 case TYPE_CODE_FLT:
3273 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3274 }
3275 }
3276
3277 /* Return non-zero if the formals of FUNC "sufficiently match" the
3278 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3279 may also be an enumeral, in which case it is treated as a 0-
3280 argument function. */
3281
3282 static int
3283 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3284 {
3285 int i;
3286 struct type *func_type = SYMBOL_TYPE (func);
3287
3288 if (SYMBOL_CLASS (func) == LOC_CONST
3289 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3290 return (n_actuals == 0);
3291 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3292 return 0;
3293
3294 if (TYPE_NFIELDS (func_type) != n_actuals)
3295 return 0;
3296
3297 for (i = 0; i < n_actuals; i += 1)
3298 {
3299 if (actuals[i] == NULL)
3300 return 0;
3301 else
3302 {
3303 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3304 i));
3305 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3306
3307 if (!ada_type_match (ftype, atype, 1))
3308 return 0;
3309 }
3310 }
3311 return 1;
3312 }
3313
3314 /* False iff function type FUNC_TYPE definitely does not produce a value
3315 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3316 FUNC_TYPE is not a valid function type with a non-null return type
3317 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3318
3319 static int
3320 return_match (struct type *func_type, struct type *context_type)
3321 {
3322 struct type *return_type;
3323
3324 if (func_type == NULL)
3325 return 1;
3326
3327 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3328 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3329 else
3330 return_type = base_type (func_type);
3331 if (return_type == NULL)
3332 return 1;
3333
3334 context_type = base_type (context_type);
3335
3336 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3337 return context_type == NULL || return_type == context_type;
3338 else if (context_type == NULL)
3339 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3340 else
3341 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3342 }
3343
3344
3345 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3346 function (if any) that matches the types of the NARGS arguments in
3347 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3348 that returns that type, then eliminate matches that don't. If
3349 CONTEXT_TYPE is void and there is at least one match that does not
3350 return void, eliminate all matches that do.
3351
3352 Asks the user if there is more than one match remaining. Returns -1
3353 if there is no such symbol or none is selected. NAME is used
3354 solely for messages. May re-arrange and modify SYMS in
3355 the process; the index returned is for the modified vector. */
3356
3357 static int
3358 ada_resolve_function (struct ada_symbol_info syms[],
3359 int nsyms, struct value **args, int nargs,
3360 const char *name, struct type *context_type)
3361 {
3362 int fallback;
3363 int k;
3364 int m; /* Number of hits */
3365
3366 m = 0;
3367 /* In the first pass of the loop, we only accept functions matching
3368 context_type. If none are found, we add a second pass of the loop
3369 where every function is accepted. */
3370 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3371 {
3372 for (k = 0; k < nsyms; k += 1)
3373 {
3374 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3375
3376 if (ada_args_match (syms[k].sym, args, nargs)
3377 && (fallback || return_match (type, context_type)))
3378 {
3379 syms[m] = syms[k];
3380 m += 1;
3381 }
3382 }
3383 }
3384
3385 if (m == 0)
3386 return -1;
3387 else if (m > 1)
3388 {
3389 printf_filtered (_("Multiple matches for %s\n"), name);
3390 user_select_syms (syms, m, 1);
3391 return 0;
3392 }
3393 return 0;
3394 }
3395
3396 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3397 in a listing of choices during disambiguation (see sort_choices, below).
3398 The idea is that overloadings of a subprogram name from the
3399 same package should sort in their source order. We settle for ordering
3400 such symbols by their trailing number (__N or $N). */
3401
3402 static int
3403 encoded_ordered_before (char *N0, char *N1)
3404 {
3405 if (N1 == NULL)
3406 return 0;
3407 else if (N0 == NULL)
3408 return 1;
3409 else
3410 {
3411 int k0, k1;
3412
3413 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3414 ;
3415 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3416 ;
3417 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3418 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3419 {
3420 int n0, n1;
3421
3422 n0 = k0;
3423 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3424 n0 -= 1;
3425 n1 = k1;
3426 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3427 n1 -= 1;
3428 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3429 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3430 }
3431 return (strcmp (N0, N1) < 0);
3432 }
3433 }
3434
3435 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3436 encoded names. */
3437
3438 static void
3439 sort_choices (struct ada_symbol_info syms[], int nsyms)
3440 {
3441 int i;
3442
3443 for (i = 1; i < nsyms; i += 1)
3444 {
3445 struct ada_symbol_info sym = syms[i];
3446 int j;
3447
3448 for (j = i - 1; j >= 0; j -= 1)
3449 {
3450 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3451 SYMBOL_LINKAGE_NAME (sym.sym)))
3452 break;
3453 syms[j + 1] = syms[j];
3454 }
3455 syms[j + 1] = sym;
3456 }
3457 }
3458
3459 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3460 by asking the user (if necessary), returning the number selected,
3461 and setting the first elements of SYMS items. Error if no symbols
3462 selected. */
3463
3464 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3465 to be re-integrated one of these days. */
3466
3467 int
3468 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3469 {
3470 int i;
3471 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3472 int n_chosen;
3473 int first_choice = (max_results == 1) ? 1 : 2;
3474 const char *select_mode = multiple_symbols_select_mode ();
3475
3476 if (max_results < 1)
3477 error (_("Request to select 0 symbols!"));
3478 if (nsyms <= 1)
3479 return nsyms;
3480
3481 if (select_mode == multiple_symbols_cancel)
3482 error (_("\
3483 canceled because the command is ambiguous\n\
3484 See set/show multiple-symbol."));
3485
3486 /* If select_mode is "all", then return all possible symbols.
3487 Only do that if more than one symbol can be selected, of course.
3488 Otherwise, display the menu as usual. */
3489 if (select_mode == multiple_symbols_all && max_results > 1)
3490 return nsyms;
3491
3492 printf_unfiltered (_("[0] cancel\n"));
3493 if (max_results > 1)
3494 printf_unfiltered (_("[1] all\n"));
3495
3496 sort_choices (syms, nsyms);
3497
3498 for (i = 0; i < nsyms; i += 1)
3499 {
3500 if (syms[i].sym == NULL)
3501 continue;
3502
3503 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3504 {
3505 struct symtab_and_line sal =
3506 find_function_start_sal (syms[i].sym, 1);
3507
3508 if (sal.symtab == NULL)
3509 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3510 i + first_choice,
3511 SYMBOL_PRINT_NAME (syms[i].sym),
3512 sal.line);
3513 else
3514 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3515 SYMBOL_PRINT_NAME (syms[i].sym),
3516 sal.symtab->filename, sal.line);
3517 continue;
3518 }
3519 else
3520 {
3521 int is_enumeral =
3522 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3523 && SYMBOL_TYPE (syms[i].sym) != NULL
3524 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3525 struct symtab *symtab = syms[i].sym->symtab;
3526
3527 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3528 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3529 i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 symtab->filename, SYMBOL_LINE (syms[i].sym));
3532 else if (is_enumeral
3533 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3534 {
3535 printf_unfiltered (("[%d] "), i + first_choice);
3536 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3537 gdb_stdout, -1, 0);
3538 printf_unfiltered (_("'(%s) (enumeral)\n"),
3539 SYMBOL_PRINT_NAME (syms[i].sym));
3540 }
3541 else if (symtab != NULL)
3542 printf_unfiltered (is_enumeral
3543 ? _("[%d] %s in %s (enumeral)\n")
3544 : _("[%d] %s at %s:?\n"),
3545 i + first_choice,
3546 SYMBOL_PRINT_NAME (syms[i].sym),
3547 symtab->filename);
3548 else
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s (enumeral)\n")
3551 : _("[%d] %s at ?\n"),
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym));
3554 }
3555 }
3556
3557 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3558 "overload-choice");
3559
3560 for (i = 0; i < n_chosen; i += 1)
3561 syms[i] = syms[chosen[i]];
3562
3563 return n_chosen;
3564 }
3565
3566 /* Read and validate a set of numeric choices from the user in the
3567 range 0 .. N_CHOICES-1. Place the results in increasing
3568 order in CHOICES[0 .. N-1], and return N.
3569
3570 The user types choices as a sequence of numbers on one line
3571 separated by blanks, encoding them as follows:
3572
3573 + A choice of 0 means to cancel the selection, throwing an error.
3574 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3575 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3576
3577 The user is not allowed to choose more than MAX_RESULTS values.
3578
3579 ANNOTATION_SUFFIX, if present, is used to annotate the input
3580 prompts (for use with the -f switch). */
3581
3582 int
3583 get_selections (int *choices, int n_choices, int max_results,
3584 int is_all_choice, char *annotation_suffix)
3585 {
3586 char *args;
3587 char *prompt;
3588 int n_chosen;
3589 int first_choice = is_all_choice ? 2 : 1;
3590
3591 prompt = getenv ("PS2");
3592 if (prompt == NULL)
3593 prompt = "> ";
3594
3595 args = command_line_input (prompt, 0, annotation_suffix);
3596
3597 if (args == NULL)
3598 error_no_arg (_("one or more choice numbers"));
3599
3600 n_chosen = 0;
3601
3602 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3603 order, as given in args. Choices are validated. */
3604 while (1)
3605 {
3606 char *args2;
3607 int choice, j;
3608
3609 while (isspace (*args))
3610 args += 1;
3611 if (*args == '\0' && n_chosen == 0)
3612 error_no_arg (_("one or more choice numbers"));
3613 else if (*args == '\0')
3614 break;
3615
3616 choice = strtol (args, &args2, 10);
3617 if (args == args2 || choice < 0
3618 || choice > n_choices + first_choice - 1)
3619 error (_("Argument must be choice number"));
3620 args = args2;
3621
3622 if (choice == 0)
3623 error (_("cancelled"));
3624
3625 if (choice < first_choice)
3626 {
3627 n_chosen = n_choices;
3628 for (j = 0; j < n_choices; j += 1)
3629 choices[j] = j;
3630 break;
3631 }
3632 choice -= first_choice;
3633
3634 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3635 {
3636 }
3637
3638 if (j < 0 || choice != choices[j])
3639 {
3640 int k;
3641
3642 for (k = n_chosen - 1; k > j; k -= 1)
3643 choices[k + 1] = choices[k];
3644 choices[j + 1] = choice;
3645 n_chosen += 1;
3646 }
3647 }
3648
3649 if (n_chosen > max_results)
3650 error (_("Select no more than %d of the above"), max_results);
3651
3652 return n_chosen;
3653 }
3654
3655 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3656 on the function identified by SYM and BLOCK, and taking NARGS
3657 arguments. Update *EXPP as needed to hold more space. */
3658
3659 static void
3660 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3661 int oplen, struct symbol *sym,
3662 struct block *block)
3663 {
3664 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3665 symbol, -oplen for operator being replaced). */
3666 struct expression *newexp = (struct expression *)
3667 xzalloc (sizeof (struct expression)
3668 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3669 struct expression *exp = *expp;
3670
3671 newexp->nelts = exp->nelts + 7 - oplen;
3672 newexp->language_defn = exp->language_defn;
3673 newexp->gdbarch = exp->gdbarch;
3674 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3675 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3676 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3677
3678 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3679 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3680
3681 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3682 newexp->elts[pc + 4].block = block;
3683 newexp->elts[pc + 5].symbol = sym;
3684
3685 *expp = newexp;
3686 xfree (exp);
3687 }
3688
3689 /* Type-class predicates */
3690
3691 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3692 or FLOAT). */
3693
3694 static int
3695 numeric_type_p (struct type *type)
3696 {
3697 if (type == NULL)
3698 return 0;
3699 else
3700 {
3701 switch (TYPE_CODE (type))
3702 {
3703 case TYPE_CODE_INT:
3704 case TYPE_CODE_FLT:
3705 return 1;
3706 case TYPE_CODE_RANGE:
3707 return (type == TYPE_TARGET_TYPE (type)
3708 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3709 default:
3710 return 0;
3711 }
3712 }
3713 }
3714
3715 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3716
3717 static int
3718 integer_type_p (struct type *type)
3719 {
3720 if (type == NULL)
3721 return 0;
3722 else
3723 {
3724 switch (TYPE_CODE (type))
3725 {
3726 case TYPE_CODE_INT:
3727 return 1;
3728 case TYPE_CODE_RANGE:
3729 return (type == TYPE_TARGET_TYPE (type)
3730 || integer_type_p (TYPE_TARGET_TYPE (type)));
3731 default:
3732 return 0;
3733 }
3734 }
3735 }
3736
3737 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3738
3739 static int
3740 scalar_type_p (struct type *type)
3741 {
3742 if (type == NULL)
3743 return 0;
3744 else
3745 {
3746 switch (TYPE_CODE (type))
3747 {
3748 case TYPE_CODE_INT:
3749 case TYPE_CODE_RANGE:
3750 case TYPE_CODE_ENUM:
3751 case TYPE_CODE_FLT:
3752 return 1;
3753 default:
3754 return 0;
3755 }
3756 }
3757 }
3758
3759 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3760
3761 static int
3762 discrete_type_p (struct type *type)
3763 {
3764 if (type == NULL)
3765 return 0;
3766 else
3767 {
3768 switch (TYPE_CODE (type))
3769 {
3770 case TYPE_CODE_INT:
3771 case TYPE_CODE_RANGE:
3772 case TYPE_CODE_ENUM:
3773 case TYPE_CODE_BOOL:
3774 return 1;
3775 default:
3776 return 0;
3777 }
3778 }
3779 }
3780
3781 /* Returns non-zero if OP with operands in the vector ARGS could be
3782 a user-defined function. Errs on the side of pre-defined operators
3783 (i.e., result 0). */
3784
3785 static int
3786 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3787 {
3788 struct type *type0 =
3789 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3790 struct type *type1 =
3791 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3792
3793 if (type0 == NULL)
3794 return 0;
3795
3796 switch (op)
3797 {
3798 default:
3799 return 0;
3800
3801 case BINOP_ADD:
3802 case BINOP_SUB:
3803 case BINOP_MUL:
3804 case BINOP_DIV:
3805 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3806
3807 case BINOP_REM:
3808 case BINOP_MOD:
3809 case BINOP_BITWISE_AND:
3810 case BINOP_BITWISE_IOR:
3811 case BINOP_BITWISE_XOR:
3812 return (!(integer_type_p (type0) && integer_type_p (type1)));
3813
3814 case BINOP_EQUAL:
3815 case BINOP_NOTEQUAL:
3816 case BINOP_LESS:
3817 case BINOP_GTR:
3818 case BINOP_LEQ:
3819 case BINOP_GEQ:
3820 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3821
3822 case BINOP_CONCAT:
3823 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3824
3825 case BINOP_EXP:
3826 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3827
3828 case UNOP_NEG:
3829 case UNOP_PLUS:
3830 case UNOP_LOGICAL_NOT:
3831 case UNOP_ABS:
3832 return (!numeric_type_p (type0));
3833
3834 }
3835 }
3836 \f
3837 /* Renaming */
3838
3839 /* NOTES:
3840
3841 1. In the following, we assume that a renaming type's name may
3842 have an ___XD suffix. It would be nice if this went away at some
3843 point.
3844 2. We handle both the (old) purely type-based representation of
3845 renamings and the (new) variable-based encoding. At some point,
3846 it is devoutly to be hoped that the former goes away
3847 (FIXME: hilfinger-2007-07-09).
3848 3. Subprogram renamings are not implemented, although the XRS
3849 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3850
3851 /* If SYM encodes a renaming,
3852
3853 <renaming> renames <renamed entity>,
3854
3855 sets *LEN to the length of the renamed entity's name,
3856 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3857 the string describing the subcomponent selected from the renamed
3858 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3859 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3860 are undefined). Otherwise, returns a value indicating the category
3861 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3862 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3863 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3864 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3865 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3866 may be NULL, in which case they are not assigned.
3867
3868 [Currently, however, GCC does not generate subprogram renamings.] */
3869
3870 enum ada_renaming_category
3871 ada_parse_renaming (struct symbol *sym,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874 {
3875 enum ada_renaming_category kind;
3876 const char *info;
3877 const char *suffix;
3878
3879 if (sym == NULL)
3880 return ADA_NOT_RENAMING;
3881 switch (SYMBOL_CLASS (sym))
3882 {
3883 default:
3884 return ADA_NOT_RENAMING;
3885 case LOC_TYPEDEF:
3886 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3887 renamed_entity, len, renaming_expr);
3888 case LOC_LOCAL:
3889 case LOC_STATIC:
3890 case LOC_COMPUTED:
3891 case LOC_OPTIMIZED_OUT:
3892 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3893 if (info == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (info[5])
3896 {
3897 case '_':
3898 kind = ADA_OBJECT_RENAMING;
3899 info += 6;
3900 break;
3901 case 'E':
3902 kind = ADA_EXCEPTION_RENAMING;
3903 info += 7;
3904 break;
3905 case 'P':
3906 kind = ADA_PACKAGE_RENAMING;
3907 info += 7;
3908 break;
3909 case 'S':
3910 kind = ADA_SUBPROGRAM_RENAMING;
3911 info += 7;
3912 break;
3913 default:
3914 return ADA_NOT_RENAMING;
3915 }
3916 }
3917
3918 if (renamed_entity != NULL)
3919 *renamed_entity = info;
3920 suffix = strstr (info, "___XE");
3921 if (suffix == NULL || suffix == info)
3922 return ADA_NOT_RENAMING;
3923 if (len != NULL)
3924 *len = strlen (info) - strlen (suffix);
3925 suffix += 5;
3926 if (renaming_expr != NULL)
3927 *renaming_expr = suffix;
3928 return kind;
3929 }
3930
3931 /* Assuming TYPE encodes a renaming according to the old encoding in
3932 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3933 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3934 ADA_NOT_RENAMING otherwise. */
3935 static enum ada_renaming_category
3936 parse_old_style_renaming (struct type *type,
3937 const char **renamed_entity, int *len,
3938 const char **renaming_expr)
3939 {
3940 enum ada_renaming_category kind;
3941 const char *name;
3942 const char *info;
3943 const char *suffix;
3944
3945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3946 || TYPE_NFIELDS (type) != 1)
3947 return ADA_NOT_RENAMING;
3948
3949 name = type_name_no_tag (type);
3950 if (name == NULL)
3951 return ADA_NOT_RENAMING;
3952
3953 name = strstr (name, "___XR");
3954 if (name == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (name[5])
3957 {
3958 case '\0':
3959 case '_':
3960 kind = ADA_OBJECT_RENAMING;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
3974
3975 info = TYPE_FIELD_NAME (type, 0);
3976 if (info == NULL)
3977 return ADA_NOT_RENAMING;
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (renaming_expr != NULL)
3982 *renaming_expr = suffix + 5;
3983 if (suffix == NULL || suffix == info)
3984 return ADA_NOT_RENAMING;
3985 if (len != NULL)
3986 *len = suffix - info;
3987 return kind;
3988 }
3989
3990 \f
3991
3992 /* Evaluation: Function Calls */
3993
3994 /* Return an lvalue containing the value VAL. This is the identity on
3995 lvalues, and otherwise has the side-effect of allocating memory
3996 in the inferior where a copy of the value contents is copied. */
3997
3998 static struct value *
3999 ensure_lval (struct value *val)
4000 {
4001 if (VALUE_LVAL (val) == not_lval
4002 || VALUE_LVAL (val) == lval_internalvar)
4003 {
4004 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4005 const CORE_ADDR addr =
4006 value_as_long (value_allocate_space_in_inferior (len));
4007
4008 set_value_address (val, addr);
4009 VALUE_LVAL (val) = lval_memory;
4010 write_memory (addr, value_contents (val), len);
4011 }
4012
4013 return val;
4014 }
4015
4016 /* Return the value ACTUAL, converted to be an appropriate value for a
4017 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4018 allocating any necessary descriptors (fat pointers), or copies of
4019 values not residing in memory, updating it as needed. */
4020
4021 struct value *
4022 ada_convert_actual (struct value *actual, struct type *formal_type0)
4023 {
4024 struct type *actual_type = ada_check_typedef (value_type (actual));
4025 struct type *formal_type = ada_check_typedef (formal_type0);
4026 struct type *formal_target =
4027 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4028 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4029 struct type *actual_target =
4030 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4031 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4032
4033 if (ada_is_array_descriptor_type (formal_target)
4034 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4035 return make_array_descriptor (formal_type, actual);
4036 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4037 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4038 {
4039 struct value *result;
4040
4041 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4042 && ada_is_array_descriptor_type (actual_target))
4043 result = desc_data (actual);
4044 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4045 {
4046 if (VALUE_LVAL (actual) != lval_memory)
4047 {
4048 struct value *val;
4049
4050 actual_type = ada_check_typedef (value_type (actual));
4051 val = allocate_value (actual_type);
4052 memcpy ((char *) value_contents_raw (val),
4053 (char *) value_contents (actual),
4054 TYPE_LENGTH (actual_type));
4055 actual = ensure_lval (val);
4056 }
4057 result = value_addr (actual);
4058 }
4059 else
4060 return actual;
4061 return value_cast_pointers (formal_type, result);
4062 }
4063 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4064 return ada_value_ind (actual);
4065
4066 return actual;
4067 }
4068
4069 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4070 type TYPE. This is usually an inefficient no-op except on some targets
4071 (such as AVR) where the representation of a pointer and an address
4072 differs. */
4073
4074 static CORE_ADDR
4075 value_pointer (struct value *value, struct type *type)
4076 {
4077 struct gdbarch *gdbarch = get_type_arch (type);
4078 unsigned len = TYPE_LENGTH (type);
4079 gdb_byte *buf = alloca (len);
4080 CORE_ADDR addr;
4081
4082 addr = value_address (value);
4083 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4084 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4085 return addr;
4086 }
4087
4088
4089 /* Push a descriptor of type TYPE for array value ARR on the stack at
4090 *SP, updating *SP to reflect the new descriptor. Return either
4091 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4092 to-descriptor type rather than a descriptor type), a struct value *
4093 representing a pointer to this descriptor. */
4094
4095 static struct value *
4096 make_array_descriptor (struct type *type, struct value *arr)
4097 {
4098 struct type *bounds_type = desc_bounds_type (type);
4099 struct type *desc_type = desc_base_type (type);
4100 struct value *descriptor = allocate_value (desc_type);
4101 struct value *bounds = allocate_value (bounds_type);
4102 int i;
4103
4104 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4105 i > 0; i -= 1)
4106 {
4107 modify_field (value_type (bounds), value_contents_writeable (bounds),
4108 ada_array_bound (arr, i, 0),
4109 desc_bound_bitpos (bounds_type, i, 0),
4110 desc_bound_bitsize (bounds_type, i, 0));
4111 modify_field (value_type (bounds), value_contents_writeable (bounds),
4112 ada_array_bound (arr, i, 1),
4113 desc_bound_bitpos (bounds_type, i, 1),
4114 desc_bound_bitsize (bounds_type, i, 1));
4115 }
4116
4117 bounds = ensure_lval (bounds);
4118
4119 modify_field (value_type (descriptor),
4120 value_contents_writeable (descriptor),
4121 value_pointer (ensure_lval (arr),
4122 TYPE_FIELD_TYPE (desc_type, 0)),
4123 fat_pntr_data_bitpos (desc_type),
4124 fat_pntr_data_bitsize (desc_type));
4125
4126 modify_field (value_type (descriptor),
4127 value_contents_writeable (descriptor),
4128 value_pointer (bounds,
4129 TYPE_FIELD_TYPE (desc_type, 1)),
4130 fat_pntr_bounds_bitpos (desc_type),
4131 fat_pntr_bounds_bitsize (desc_type));
4132
4133 descriptor = ensure_lval (descriptor);
4134
4135 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4136 return value_addr (descriptor);
4137 else
4138 return descriptor;
4139 }
4140 \f
4141 /* Dummy definitions for an experimental caching module that is not
4142 * used in the public sources. */
4143
4144 static int
4145 lookup_cached_symbol (const char *name, domain_enum namespace,
4146 struct symbol **sym, struct block **block)
4147 {
4148 return 0;
4149 }
4150
4151 static void
4152 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4153 struct block *block)
4154 {
4155 }
4156 \f
4157 /* Symbol Lookup */
4158
4159 /* Return the result of a standard (literal, C-like) lookup of NAME in
4160 given DOMAIN, visible from lexical block BLOCK. */
4161
4162 static struct symbol *
4163 standard_lookup (const char *name, const struct block *block,
4164 domain_enum domain)
4165 {
4166 struct symbol *sym;
4167
4168 if (lookup_cached_symbol (name, domain, &sym, NULL))
4169 return sym;
4170 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4171 cache_symbol (name, domain, sym, block_found);
4172 return sym;
4173 }
4174
4175
4176 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4177 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4178 since they contend in overloading in the same way. */
4179 static int
4180 is_nonfunction (struct ada_symbol_info syms[], int n)
4181 {
4182 int i;
4183
4184 for (i = 0; i < n; i += 1)
4185 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4186 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4187 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4188 return 1;
4189
4190 return 0;
4191 }
4192
4193 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4194 struct types. Otherwise, they may not. */
4195
4196 static int
4197 equiv_types (struct type *type0, struct type *type1)
4198 {
4199 if (type0 == type1)
4200 return 1;
4201 if (type0 == NULL || type1 == NULL
4202 || TYPE_CODE (type0) != TYPE_CODE (type1))
4203 return 0;
4204 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4205 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4206 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4207 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4208 return 1;
4209
4210 return 0;
4211 }
4212
4213 /* True iff SYM0 represents the same entity as SYM1, or one that is
4214 no more defined than that of SYM1. */
4215
4216 static int
4217 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4218 {
4219 if (sym0 == sym1)
4220 return 1;
4221 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4222 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4223 return 0;
4224
4225 switch (SYMBOL_CLASS (sym0))
4226 {
4227 case LOC_UNDEF:
4228 return 1;
4229 case LOC_TYPEDEF:
4230 {
4231 struct type *type0 = SYMBOL_TYPE (sym0);
4232 struct type *type1 = SYMBOL_TYPE (sym1);
4233 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4234 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4235 int len0 = strlen (name0);
4236
4237 return
4238 TYPE_CODE (type0) == TYPE_CODE (type1)
4239 && (equiv_types (type0, type1)
4240 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4241 && strncmp (name1 + len0, "___XV", 5) == 0));
4242 }
4243 case LOC_CONST:
4244 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4245 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4246 default:
4247 return 0;
4248 }
4249 }
4250
4251 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4252 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4253
4254 static void
4255 add_defn_to_vec (struct obstack *obstackp,
4256 struct symbol *sym,
4257 struct block *block)
4258 {
4259 int i;
4260 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4261
4262 /* Do not try to complete stub types, as the debugger is probably
4263 already scanning all symbols matching a certain name at the
4264 time when this function is called. Trying to replace the stub
4265 type by its associated full type will cause us to restart a scan
4266 which may lead to an infinite recursion. Instead, the client
4267 collecting the matching symbols will end up collecting several
4268 matches, with at least one of them complete. It can then filter
4269 out the stub ones if needed. */
4270
4271 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4272 {
4273 if (lesseq_defined_than (sym, prevDefns[i].sym))
4274 return;
4275 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4276 {
4277 prevDefns[i].sym = sym;
4278 prevDefns[i].block = block;
4279 return;
4280 }
4281 }
4282
4283 {
4284 struct ada_symbol_info info;
4285
4286 info.sym = sym;
4287 info.block = block;
4288 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4289 }
4290 }
4291
4292 /* Number of ada_symbol_info structures currently collected in
4293 current vector in *OBSTACKP. */
4294
4295 static int
4296 num_defns_collected (struct obstack *obstackp)
4297 {
4298 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4299 }
4300
4301 /* Vector of ada_symbol_info structures currently collected in current
4302 vector in *OBSTACKP. If FINISH, close off the vector and return
4303 its final address. */
4304
4305 static struct ada_symbol_info *
4306 defns_collected (struct obstack *obstackp, int finish)
4307 {
4308 if (finish)
4309 return obstack_finish (obstackp);
4310 else
4311 return (struct ada_symbol_info *) obstack_base (obstackp);
4312 }
4313
4314 /* Return a minimal symbol matching NAME according to Ada decoding
4315 rules. Returns NULL if there is no such minimal symbol. Names
4316 prefixed with "standard__" are handled specially: "standard__" is
4317 first stripped off, and only static and global symbols are searched. */
4318
4319 struct minimal_symbol *
4320 ada_lookup_simple_minsym (const char *name)
4321 {
4322 struct objfile *objfile;
4323 struct minimal_symbol *msymbol;
4324 int wild_match;
4325
4326 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4327 {
4328 name += sizeof ("standard__") - 1;
4329 wild_match = 0;
4330 }
4331 else
4332 wild_match = (strstr (name, "__") == NULL);
4333
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
4336 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4337 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4338 return msymbol;
4339 }
4340
4341 return NULL;
4342 }
4343
4344 /* For all subprograms that statically enclose the subprogram of the
4345 selected frame, add symbols matching identifier NAME in DOMAIN
4346 and their blocks to the list of data in OBSTACKP, as for
4347 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4348 wildcard prefix. */
4349
4350 static void
4351 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4352 const char *name, domain_enum namespace,
4353 int wild_match)
4354 {
4355 }
4356
4357 /* True if TYPE is definitely an artificial type supplied to a symbol
4358 for which no debugging information was given in the symbol file. */
4359
4360 static int
4361 is_nondebugging_type (struct type *type)
4362 {
4363 char *name = ada_type_name (type);
4364
4365 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4366 }
4367
4368 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4369 that are deemed "identical" for practical purposes.
4370
4371 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4372 types and that their number of enumerals is identical (in other
4373 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4374
4375 static int
4376 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4377 {
4378 int i;
4379
4380 /* The heuristic we use here is fairly conservative. We consider
4381 that 2 enumerate types are identical if they have the same
4382 number of enumerals and that all enumerals have the same
4383 underlying value and name. */
4384
4385 /* All enums in the type should have an identical underlying value. */
4386 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4387 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4388 return 0;
4389
4390 /* All enumerals should also have the same name (modulo any numerical
4391 suffix). */
4392 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4393 {
4394 char *name_1 = TYPE_FIELD_NAME (type1, i);
4395 char *name_2 = TYPE_FIELD_NAME (type2, i);
4396 int len_1 = strlen (name_1);
4397 int len_2 = strlen (name_2);
4398
4399 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4400 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4401 if (len_1 != len_2
4402 || strncmp (TYPE_FIELD_NAME (type1, i),
4403 TYPE_FIELD_NAME (type2, i),
4404 len_1) != 0)
4405 return 0;
4406 }
4407
4408 return 1;
4409 }
4410
4411 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4412 that are deemed "identical" for practical purposes. Sometimes,
4413 enumerals are not strictly identical, but their types are so similar
4414 that they can be considered identical.
4415
4416 For instance, consider the following code:
4417
4418 type Color is (Black, Red, Green, Blue, White);
4419 type RGB_Color is new Color range Red .. Blue;
4420
4421 Type RGB_Color is a subrange of an implicit type which is a copy
4422 of type Color. If we call that implicit type RGB_ColorB ("B" is
4423 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4424 As a result, when an expression references any of the enumeral
4425 by name (Eg. "print green"), the expression is technically
4426 ambiguous and the user should be asked to disambiguate. But
4427 doing so would only hinder the user, since it wouldn't matter
4428 what choice he makes, the outcome would always be the same.
4429 So, for practical purposes, we consider them as the same. */
4430
4431 static int
4432 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4433 {
4434 int i;
4435
4436 /* Before performing a thorough comparison check of each type,
4437 we perform a series of inexpensive checks. We expect that these
4438 checks will quickly fail in the vast majority of cases, and thus
4439 help prevent the unnecessary use of a more expensive comparison.
4440 Said comparison also expects us to make some of these checks
4441 (see ada_identical_enum_types_p). */
4442
4443 /* Quick check: All symbols should have an enum type. */
4444 for (i = 0; i < nsyms; i++)
4445 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4446 return 0;
4447
4448 /* Quick check: They should all have the same value. */
4449 for (i = 1; i < nsyms; i++)
4450 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4451 return 0;
4452
4453 /* Quick check: They should all have the same number of enumerals. */
4454 for (i = 1; i < nsyms; i++)
4455 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4456 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4457 return 0;
4458
4459 /* All the sanity checks passed, so we might have a set of
4460 identical enumeration types. Perform a more complete
4461 comparison of the type of each symbol. */
4462 for (i = 1; i < nsyms; i++)
4463 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4464 SYMBOL_TYPE (syms[0].sym)))
4465 return 0;
4466
4467 return 1;
4468 }
4469
4470 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4471 duplicate other symbols in the list (The only case I know of where
4472 this happens is when object files containing stabs-in-ecoff are
4473 linked with files containing ordinary ecoff debugging symbols (or no
4474 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4475 Returns the number of items in the modified list. */
4476
4477 static int
4478 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4479 {
4480 int i, j;
4481
4482 /* We should never be called with less than 2 symbols, as there
4483 cannot be any extra symbol in that case. But it's easy to
4484 handle, since we have nothing to do in that case. */
4485 if (nsyms < 2)
4486 return nsyms;
4487
4488 i = 0;
4489 while (i < nsyms)
4490 {
4491 int remove = 0;
4492
4493 /* If two symbols have the same name and one of them is a stub type,
4494 the get rid of the stub. */
4495
4496 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4497 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4498 {
4499 for (j = 0; j < nsyms; j++)
4500 {
4501 if (j != i
4502 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4503 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4504 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4505 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4506 remove = 1;
4507 }
4508 }
4509
4510 /* Two symbols with the same name, same class and same address
4511 should be identical. */
4512
4513 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4514 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4515 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4516 {
4517 for (j = 0; j < nsyms; j += 1)
4518 {
4519 if (i != j
4520 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4521 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4522 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4523 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4524 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4525 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4526 remove = 1;
4527 }
4528 }
4529
4530 if (remove)
4531 {
4532 for (j = i + 1; j < nsyms; j += 1)
4533 syms[j - 1] = syms[j];
4534 nsyms -= 1;
4535 }
4536
4537 i += 1;
4538 }
4539
4540 /* If all the remaining symbols are identical enumerals, then
4541 just keep the first one and discard the rest.
4542
4543 Unlike what we did previously, we do not discard any entry
4544 unless they are ALL identical. This is because the symbol
4545 comparison is not a strict comparison, but rather a practical
4546 comparison. If all symbols are considered identical, then
4547 we can just go ahead and use the first one and discard the rest.
4548 But if we cannot reduce the list to a single element, we have
4549 to ask the user to disambiguate anyways. And if we have to
4550 present a multiple-choice menu, it's less confusing if the list
4551 isn't missing some choices that were identical and yet distinct. */
4552 if (symbols_are_identical_enums (syms, nsyms))
4553 nsyms = 1;
4554
4555 return nsyms;
4556 }
4557
4558 /* Given a type that corresponds to a renaming entity, use the type name
4559 to extract the scope (package name or function name, fully qualified,
4560 and following the GNAT encoding convention) where this renaming has been
4561 defined. The string returned needs to be deallocated after use. */
4562
4563 static char *
4564 xget_renaming_scope (struct type *renaming_type)
4565 {
4566 /* The renaming types adhere to the following convention:
4567 <scope>__<rename>___<XR extension>.
4568 So, to extract the scope, we search for the "___XR" extension,
4569 and then backtrack until we find the first "__". */
4570
4571 const char *name = type_name_no_tag (renaming_type);
4572 char *suffix = strstr (name, "___XR");
4573 char *last;
4574 int scope_len;
4575 char *scope;
4576
4577 /* Now, backtrack a bit until we find the first "__". Start looking
4578 at suffix - 3, as the <rename> part is at least one character long. */
4579
4580 for (last = suffix - 3; last > name; last--)
4581 if (last[0] == '_' && last[1] == '_')
4582 break;
4583
4584 /* Make a copy of scope and return it. */
4585
4586 scope_len = last - name;
4587 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4588
4589 strncpy (scope, name, scope_len);
4590 scope[scope_len] = '\0';
4591
4592 return scope;
4593 }
4594
4595 /* Return nonzero if NAME corresponds to a package name. */
4596
4597 static int
4598 is_package_name (const char *name)
4599 {
4600 /* Here, We take advantage of the fact that no symbols are generated
4601 for packages, while symbols are generated for each function.
4602 So the condition for NAME represent a package becomes equivalent
4603 to NAME not existing in our list of symbols. There is only one
4604 small complication with library-level functions (see below). */
4605
4606 char *fun_name;
4607
4608 /* If it is a function that has not been defined at library level,
4609 then we should be able to look it up in the symbols. */
4610 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4611 return 0;
4612
4613 /* Library-level function names start with "_ada_". See if function
4614 "_ada_" followed by NAME can be found. */
4615
4616 /* Do a quick check that NAME does not contain "__", since library-level
4617 functions names cannot contain "__" in them. */
4618 if (strstr (name, "__") != NULL)
4619 return 0;
4620
4621 fun_name = xstrprintf ("_ada_%s", name);
4622
4623 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4624 }
4625
4626 /* Return nonzero if SYM corresponds to a renaming entity that is
4627 not visible from FUNCTION_NAME. */
4628
4629 static int
4630 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4631 {
4632 char *scope;
4633
4634 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4635 return 0;
4636
4637 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4638
4639 make_cleanup (xfree, scope);
4640
4641 /* If the rename has been defined in a package, then it is visible. */
4642 if (is_package_name (scope))
4643 return 0;
4644
4645 /* Check that the rename is in the current function scope by checking
4646 that its name starts with SCOPE. */
4647
4648 /* If the function name starts with "_ada_", it means that it is
4649 a library-level function. Strip this prefix before doing the
4650 comparison, as the encoding for the renaming does not contain
4651 this prefix. */
4652 if (strncmp (function_name, "_ada_", 5) == 0)
4653 function_name += 5;
4654
4655 return (strncmp (function_name, scope, strlen (scope)) != 0);
4656 }
4657
4658 /* Remove entries from SYMS that corresponds to a renaming entity that
4659 is not visible from the function associated with CURRENT_BLOCK or
4660 that is superfluous due to the presence of more specific renaming
4661 information. Places surviving symbols in the initial entries of
4662 SYMS and returns the number of surviving symbols.
4663
4664 Rationale:
4665 First, in cases where an object renaming is implemented as a
4666 reference variable, GNAT may produce both the actual reference
4667 variable and the renaming encoding. In this case, we discard the
4668 latter.
4669
4670 Second, GNAT emits a type following a specified encoding for each renaming
4671 entity. Unfortunately, STABS currently does not support the definition
4672 of types that are local to a given lexical block, so all renamings types
4673 are emitted at library level. As a consequence, if an application
4674 contains two renaming entities using the same name, and a user tries to
4675 print the value of one of these entities, the result of the ada symbol
4676 lookup will also contain the wrong renaming type.
4677
4678 This function partially covers for this limitation by attempting to
4679 remove from the SYMS list renaming symbols that should be visible
4680 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4681 method with the current information available. The implementation
4682 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4683
4684 - When the user tries to print a rename in a function while there
4685 is another rename entity defined in a package: Normally, the
4686 rename in the function has precedence over the rename in the
4687 package, so the latter should be removed from the list. This is
4688 currently not the case.
4689
4690 - This function will incorrectly remove valid renames if
4691 the CURRENT_BLOCK corresponds to a function which symbol name
4692 has been changed by an "Export" pragma. As a consequence,
4693 the user will be unable to print such rename entities. */
4694
4695 static int
4696 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4697 int nsyms, const struct block *current_block)
4698 {
4699 struct symbol *current_function;
4700 char *current_function_name;
4701 int i;
4702 int is_new_style_renaming;
4703
4704 /* If there is both a renaming foo___XR... encoded as a variable and
4705 a simple variable foo in the same block, discard the latter.
4706 First, zero out such symbols, then compress. */
4707 is_new_style_renaming = 0;
4708 for (i = 0; i < nsyms; i += 1)
4709 {
4710 struct symbol *sym = syms[i].sym;
4711 struct block *block = syms[i].block;
4712 const char *name;
4713 const char *suffix;
4714
4715 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4716 continue;
4717 name = SYMBOL_LINKAGE_NAME (sym);
4718 suffix = strstr (name, "___XR");
4719
4720 if (suffix != NULL)
4721 {
4722 int name_len = suffix - name;
4723 int j;
4724
4725 is_new_style_renaming = 1;
4726 for (j = 0; j < nsyms; j += 1)
4727 if (i != j && syms[j].sym != NULL
4728 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4729 name_len) == 0
4730 && block == syms[j].block)
4731 syms[j].sym = NULL;
4732 }
4733 }
4734 if (is_new_style_renaming)
4735 {
4736 int j, k;
4737
4738 for (j = k = 0; j < nsyms; j += 1)
4739 if (syms[j].sym != NULL)
4740 {
4741 syms[k] = syms[j];
4742 k += 1;
4743 }
4744 return k;
4745 }
4746
4747 /* Extract the function name associated to CURRENT_BLOCK.
4748 Abort if unable to do so. */
4749
4750 if (current_block == NULL)
4751 return nsyms;
4752
4753 current_function = block_linkage_function (current_block);
4754 if (current_function == NULL)
4755 return nsyms;
4756
4757 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4758 if (current_function_name == NULL)
4759 return nsyms;
4760
4761 /* Check each of the symbols, and remove it from the list if it is
4762 a type corresponding to a renaming that is out of the scope of
4763 the current block. */
4764
4765 i = 0;
4766 while (i < nsyms)
4767 {
4768 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4769 == ADA_OBJECT_RENAMING
4770 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4771 {
4772 int j;
4773
4774 for (j = i + 1; j < nsyms; j += 1)
4775 syms[j - 1] = syms[j];
4776 nsyms -= 1;
4777 }
4778 else
4779 i += 1;
4780 }
4781
4782 return nsyms;
4783 }
4784
4785 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4786 whose name and domain match NAME and DOMAIN respectively.
4787 If no match was found, then extend the search to "enclosing"
4788 routines (in other words, if we're inside a nested function,
4789 search the symbols defined inside the enclosing functions).
4790
4791 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4792
4793 static void
4794 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4795 struct block *block, domain_enum domain,
4796 int wild_match)
4797 {
4798 int block_depth = 0;
4799
4800 while (block != NULL)
4801 {
4802 block_depth += 1;
4803 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4804
4805 /* If we found a non-function match, assume that's the one. */
4806 if (is_nonfunction (defns_collected (obstackp, 0),
4807 num_defns_collected (obstackp)))
4808 return;
4809
4810 block = BLOCK_SUPERBLOCK (block);
4811 }
4812
4813 /* If no luck so far, try to find NAME as a local symbol in some lexically
4814 enclosing subprogram. */
4815 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4816 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4817 }
4818
4819 /* An object of this type is used as the user_data argument when
4820 calling the map_matching_symbols method. */
4821
4822 struct match_data
4823 {
4824 struct objfile *objfile;
4825 struct obstack *obstackp;
4826 struct symbol *arg_sym;
4827 int found_sym;
4828 };
4829
4830 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4831 to a list of symbols. DATA0 is a pointer to a struct match_data *
4832 containing the obstack that collects the symbol list, the file that SYM
4833 must come from, a flag indicating whether a non-argument symbol has
4834 been found in the current block, and the last argument symbol
4835 passed in SYM within the current block (if any). When SYM is null,
4836 marking the end of a block, the argument symbol is added if no
4837 other has been found. */
4838
4839 static int
4840 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4841 {
4842 struct match_data *data = (struct match_data *) data0;
4843
4844 if (sym == NULL)
4845 {
4846 if (!data->found_sym && data->arg_sym != NULL)
4847 add_defn_to_vec (data->obstackp,
4848 fixup_symbol_section (data->arg_sym, data->objfile),
4849 block);
4850 data->found_sym = 0;
4851 data->arg_sym = NULL;
4852 }
4853 else
4854 {
4855 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4856 return 0;
4857 else if (SYMBOL_IS_ARGUMENT (sym))
4858 data->arg_sym = sym;
4859 else
4860 {
4861 data->found_sym = 1;
4862 add_defn_to_vec (data->obstackp,
4863 fixup_symbol_section (sym, data->objfile),
4864 block);
4865 }
4866 }
4867 return 0;
4868 }
4869
4870 /* Compare STRING1 to STRING2, with results as for strcmp.
4871 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4872 implies compare_names (STRING1, STRING2) (they may differ as to
4873 what symbols compare equal). */
4874
4875 static int
4876 compare_names (const char *string1, const char *string2)
4877 {
4878 while (*string1 != '\0' && *string2 != '\0')
4879 {
4880 if (isspace (*string1) || isspace (*string2))
4881 return strcmp_iw_ordered (string1, string2);
4882 if (*string1 != *string2)
4883 break;
4884 string1 += 1;
4885 string2 += 1;
4886 }
4887 switch (*string1)
4888 {
4889 case '(':
4890 return strcmp_iw_ordered (string1, string2);
4891 case '_':
4892 if (*string2 == '\0')
4893 {
4894 if (is_name_suffix (string1))
4895 return 0;
4896 else
4897 return -1;
4898 }
4899 /* FALLTHROUGH */
4900 default:
4901 if (*string2 == '(')
4902 return strcmp_iw_ordered (string1, string2);
4903 else
4904 return *string1 - *string2;
4905 }
4906 }
4907
4908 /* Add to OBSTACKP all non-local symbols whose name and domain match
4909 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4910 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4911
4912 static void
4913 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4914 domain_enum domain, int global,
4915 int is_wild_match)
4916 {
4917 struct objfile *objfile;
4918 struct match_data data;
4919
4920 data.obstackp = obstackp;
4921 data.arg_sym = NULL;
4922
4923 ALL_OBJFILES (objfile)
4924 {
4925 data.objfile = objfile;
4926
4927 if (is_wild_match)
4928 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4929 aux_add_nonlocal_symbols, &data,
4930 wild_match, NULL);
4931 else
4932 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4933 aux_add_nonlocal_symbols, &data,
4934 full_match, compare_names);
4935 }
4936
4937 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4938 {
4939 ALL_OBJFILES (objfile)
4940 {
4941 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4942 strcpy (name1, "_ada_");
4943 strcpy (name1 + sizeof ("_ada_") - 1, name);
4944 data.objfile = objfile;
4945 objfile->sf->qf->map_matching_symbols (name1, domain,
4946 objfile, global,
4947 aux_add_nonlocal_symbols,
4948 &data,
4949 full_match, compare_names);
4950 }
4951 }
4952 }
4953
4954 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4955 scope and in global scopes, returning the number of matches. Sets
4956 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4957 indicating the symbols found and the blocks and symbol tables (if
4958 any) in which they were found. This vector are transient---good only to
4959 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4960 symbol match within the nest of blocks whose innermost member is BLOCK0,
4961 is the one match returned (no other matches in that or
4962 enclosing blocks is returned). If there are any matches in or
4963 surrounding BLOCK0, then these alone are returned. Otherwise, the
4964 search extends to global and file-scope (static) symbol tables.
4965 Names prefixed with "standard__" are handled specially: "standard__"
4966 is first stripped off, and only static and global symbols are searched. */
4967
4968 int
4969 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4970 domain_enum namespace,
4971 struct ada_symbol_info **results)
4972 {
4973 struct symbol *sym;
4974 struct block *block;
4975 const char *name;
4976 int wild_match;
4977 int cacheIfUnique;
4978 int ndefns;
4979
4980 obstack_free (&symbol_list_obstack, NULL);
4981 obstack_init (&symbol_list_obstack);
4982
4983 cacheIfUnique = 0;
4984
4985 /* Search specified block and its superiors. */
4986
4987 wild_match = (strstr (name0, "__") == NULL);
4988 name = name0;
4989 block = (struct block *) block0; /* FIXME: No cast ought to be
4990 needed, but adding const will
4991 have a cascade effect. */
4992
4993 /* Special case: If the user specifies a symbol name inside package
4994 Standard, do a non-wild matching of the symbol name without
4995 the "standard__" prefix. This was primarily introduced in order
4996 to allow the user to specifically access the standard exceptions
4997 using, for instance, Standard.Constraint_Error when Constraint_Error
4998 is ambiguous (due to the user defining its own Constraint_Error
4999 entity inside its program). */
5000 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5001 {
5002 wild_match = 0;
5003 block = NULL;
5004 name = name0 + sizeof ("standard__") - 1;
5005 }
5006
5007 /* Check the non-global symbols. If we have ANY match, then we're done. */
5008
5009 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5010 wild_match);
5011 if (num_defns_collected (&symbol_list_obstack) > 0)
5012 goto done;
5013
5014 /* No non-global symbols found. Check our cache to see if we have
5015 already performed this search before. If we have, then return
5016 the same result. */
5017
5018 cacheIfUnique = 1;
5019 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5020 {
5021 if (sym != NULL)
5022 add_defn_to_vec (&symbol_list_obstack, sym, block);
5023 goto done;
5024 }
5025
5026 /* Search symbols from all global blocks. */
5027
5028 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5029 wild_match);
5030
5031 /* Now add symbols from all per-file blocks if we've gotten no hits
5032 (not strictly correct, but perhaps better than an error). */
5033
5034 if (num_defns_collected (&symbol_list_obstack) == 0)
5035 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5036 wild_match);
5037
5038 done:
5039 ndefns = num_defns_collected (&symbol_list_obstack);
5040 *results = defns_collected (&symbol_list_obstack, 1);
5041
5042 ndefns = remove_extra_symbols (*results, ndefns);
5043
5044 if (ndefns == 0)
5045 cache_symbol (name0, namespace, NULL, NULL);
5046
5047 if (ndefns == 1 && cacheIfUnique)
5048 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5049
5050 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5051
5052 return ndefns;
5053 }
5054
5055 struct symbol *
5056 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5057 domain_enum namespace, struct block **block_found)
5058 {
5059 struct ada_symbol_info *candidates;
5060 int n_candidates;
5061
5062 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
5063
5064 if (n_candidates == 0)
5065 return NULL;
5066
5067 if (block_found != NULL)
5068 *block_found = candidates[0].block;
5069
5070 return fixup_symbol_section (candidates[0].sym, NULL);
5071 }
5072
5073 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5074 scope and in global scopes, or NULL if none. NAME is folded and
5075 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5076 choosing the first symbol if there are multiple choices.
5077 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5078 table in which the symbol was found (in both cases, these
5079 assignments occur only if the pointers are non-null). */
5080 struct symbol *
5081 ada_lookup_symbol (const char *name, const struct block *block0,
5082 domain_enum namespace, int *is_a_field_of_this)
5083 {
5084 if (is_a_field_of_this != NULL)
5085 *is_a_field_of_this = 0;
5086
5087 return
5088 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5089 block0, namespace, NULL);
5090 }
5091
5092 static struct symbol *
5093 ada_lookup_symbol_nonlocal (const char *name,
5094 const struct block *block,
5095 const domain_enum domain)
5096 {
5097 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5098 }
5099
5100
5101 /* True iff STR is a possible encoded suffix of a normal Ada name
5102 that is to be ignored for matching purposes. Suffixes of parallel
5103 names (e.g., XVE) are not included here. Currently, the possible suffixes
5104 are given by any of the regular expressions:
5105
5106 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5107 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5108 _E[0-9]+[bs]$ [protected object entry suffixes]
5109 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5110
5111 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5112 match is performed. This sequence is used to differentiate homonyms,
5113 is an optional part of a valid name suffix. */
5114
5115 static int
5116 is_name_suffix (const char *str)
5117 {
5118 int k;
5119 const char *matching;
5120 const int len = strlen (str);
5121
5122 /* Skip optional leading __[0-9]+. */
5123
5124 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5125 {
5126 str += 3;
5127 while (isdigit (str[0]))
5128 str += 1;
5129 }
5130
5131 /* [.$][0-9]+ */
5132
5133 if (str[0] == '.' || str[0] == '$')
5134 {
5135 matching = str + 1;
5136 while (isdigit (matching[0]))
5137 matching += 1;
5138 if (matching[0] == '\0')
5139 return 1;
5140 }
5141
5142 /* ___[0-9]+ */
5143
5144 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5145 {
5146 matching = str + 3;
5147 while (isdigit (matching[0]))
5148 matching += 1;
5149 if (matching[0] == '\0')
5150 return 1;
5151 }
5152
5153 #if 0
5154 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5155 with a N at the end. Unfortunately, the compiler uses the same
5156 convention for other internal types it creates. So treating
5157 all entity names that end with an "N" as a name suffix causes
5158 some regressions. For instance, consider the case of an enumerated
5159 type. To support the 'Image attribute, it creates an array whose
5160 name ends with N.
5161 Having a single character like this as a suffix carrying some
5162 information is a bit risky. Perhaps we should change the encoding
5163 to be something like "_N" instead. In the meantime, do not do
5164 the following check. */
5165 /* Protected Object Subprograms */
5166 if (len == 1 && str [0] == 'N')
5167 return 1;
5168 #endif
5169
5170 /* _E[0-9]+[bs]$ */
5171 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5172 {
5173 matching = str + 3;
5174 while (isdigit (matching[0]))
5175 matching += 1;
5176 if ((matching[0] == 'b' || matching[0] == 's')
5177 && matching [1] == '\0')
5178 return 1;
5179 }
5180
5181 /* ??? We should not modify STR directly, as we are doing below. This
5182 is fine in this case, but may become problematic later if we find
5183 that this alternative did not work, and want to try matching
5184 another one from the begining of STR. Since we modified it, we
5185 won't be able to find the begining of the string anymore! */
5186 if (str[0] == 'X')
5187 {
5188 str += 1;
5189 while (str[0] != '_' && str[0] != '\0')
5190 {
5191 if (str[0] != 'n' && str[0] != 'b')
5192 return 0;
5193 str += 1;
5194 }
5195 }
5196
5197 if (str[0] == '\000')
5198 return 1;
5199
5200 if (str[0] == '_')
5201 {
5202 if (str[1] != '_' || str[2] == '\000')
5203 return 0;
5204 if (str[2] == '_')
5205 {
5206 if (strcmp (str + 3, "JM") == 0)
5207 return 1;
5208 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5209 the LJM suffix in favor of the JM one. But we will
5210 still accept LJM as a valid suffix for a reasonable
5211 amount of time, just to allow ourselves to debug programs
5212 compiled using an older version of GNAT. */
5213 if (strcmp (str + 3, "LJM") == 0)
5214 return 1;
5215 if (str[3] != 'X')
5216 return 0;
5217 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5218 || str[4] == 'U' || str[4] == 'P')
5219 return 1;
5220 if (str[4] == 'R' && str[5] != 'T')
5221 return 1;
5222 return 0;
5223 }
5224 if (!isdigit (str[2]))
5225 return 0;
5226 for (k = 3; str[k] != '\0'; k += 1)
5227 if (!isdigit (str[k]) && str[k] != '_')
5228 return 0;
5229 return 1;
5230 }
5231 if (str[0] == '$' && isdigit (str[1]))
5232 {
5233 for (k = 2; str[k] != '\0'; k += 1)
5234 if (!isdigit (str[k]) && str[k] != '_')
5235 return 0;
5236 return 1;
5237 }
5238 return 0;
5239 }
5240
5241 /* Return non-zero if the string starting at NAME and ending before
5242 NAME_END contains no capital letters. */
5243
5244 static int
5245 is_valid_name_for_wild_match (const char *name0)
5246 {
5247 const char *decoded_name = ada_decode (name0);
5248 int i;
5249
5250 /* If the decoded name starts with an angle bracket, it means that
5251 NAME0 does not follow the GNAT encoding format. It should then
5252 not be allowed as a possible wild match. */
5253 if (decoded_name[0] == '<')
5254 return 0;
5255
5256 for (i=0; decoded_name[i] != '\0'; i++)
5257 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5258 return 0;
5259
5260 return 1;
5261 }
5262
5263 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5264 that could start a simple name. Assumes that *NAMEP points into
5265 the string beginning at NAME0. */
5266
5267 static int
5268 advance_wild_match (const char **namep, const char *name0, int target0)
5269 {
5270 const char *name = *namep;
5271
5272 while (1)
5273 {
5274 int t0, t1;
5275
5276 t0 = *name;
5277 if (t0 == '_')
5278 {
5279 t1 = name[1];
5280 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5281 {
5282 name += 1;
5283 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5284 break;
5285 else
5286 name += 1;
5287 }
5288 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5289 || name[2] == target0))
5290 {
5291 name += 2;
5292 break;
5293 }
5294 else
5295 return 0;
5296 }
5297 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5298 name += 1;
5299 else
5300 return 0;
5301 }
5302
5303 *namep = name;
5304 return 1;
5305 }
5306
5307 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5308 informational suffixes of NAME (i.e., for which is_name_suffix is
5309 true). Assumes that PATN is a lower-cased Ada simple name. */
5310
5311 static int
5312 wild_match (const char *name, const char *patn)
5313 {
5314 const char *p, *n;
5315 const char *name0 = name;
5316
5317 while (1)
5318 {
5319 const char *match = name;
5320
5321 if (*name == *patn)
5322 {
5323 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5324 if (*p != *name)
5325 break;
5326 if (*p == '\0' && is_name_suffix (name))
5327 return match != name0 && !is_valid_name_for_wild_match (name0);
5328
5329 if (name[-1] == '_')
5330 name -= 1;
5331 }
5332 if (!advance_wild_match (&name, name0, *patn))
5333 return 1;
5334 }
5335 }
5336
5337 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5338 informational suffix. */
5339
5340 static int
5341 full_match (const char *sym_name, const char *search_name)
5342 {
5343 return !match_name (sym_name, search_name, 0);
5344 }
5345
5346
5347 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5348 vector *defn_symbols, updating the list of symbols in OBSTACKP
5349 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5350 OBJFILE is the section containing BLOCK.
5351 SYMTAB is recorded with each symbol added. */
5352
5353 static void
5354 ada_add_block_symbols (struct obstack *obstackp,
5355 struct block *block, const char *name,
5356 domain_enum domain, struct objfile *objfile,
5357 int wild)
5358 {
5359 struct dict_iterator iter;
5360 int name_len = strlen (name);
5361 /* A matching argument symbol, if any. */
5362 struct symbol *arg_sym;
5363 /* Set true when we find a matching non-argument symbol. */
5364 int found_sym;
5365 struct symbol *sym;
5366
5367 arg_sym = NULL;
5368 found_sym = 0;
5369 if (wild)
5370 {
5371 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5372 wild_match, &iter);
5373 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5374 {
5375 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5376 SYMBOL_DOMAIN (sym), domain)
5377 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5378 {
5379 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5380 continue;
5381 else if (SYMBOL_IS_ARGUMENT (sym))
5382 arg_sym = sym;
5383 else
5384 {
5385 found_sym = 1;
5386 add_defn_to_vec (obstackp,
5387 fixup_symbol_section (sym, objfile),
5388 block);
5389 }
5390 }
5391 }
5392 }
5393 else
5394 {
5395 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5396 full_match, &iter);
5397 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5398 {
5399 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5400 SYMBOL_DOMAIN (sym), domain))
5401 {
5402 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5403 {
5404 if (SYMBOL_IS_ARGUMENT (sym))
5405 arg_sym = sym;
5406 else
5407 {
5408 found_sym = 1;
5409 add_defn_to_vec (obstackp,
5410 fixup_symbol_section (sym, objfile),
5411 block);
5412 }
5413 }
5414 }
5415 }
5416 }
5417
5418 if (!found_sym && arg_sym != NULL)
5419 {
5420 add_defn_to_vec (obstackp,
5421 fixup_symbol_section (arg_sym, objfile),
5422 block);
5423 }
5424
5425 if (!wild)
5426 {
5427 arg_sym = NULL;
5428 found_sym = 0;
5429
5430 ALL_BLOCK_SYMBOLS (block, iter, sym)
5431 {
5432 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5433 SYMBOL_DOMAIN (sym), domain))
5434 {
5435 int cmp;
5436
5437 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5438 if (cmp == 0)
5439 {
5440 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5441 if (cmp == 0)
5442 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5443 name_len);
5444 }
5445
5446 if (cmp == 0
5447 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5448 {
5449 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5450 {
5451 if (SYMBOL_IS_ARGUMENT (sym))
5452 arg_sym = sym;
5453 else
5454 {
5455 found_sym = 1;
5456 add_defn_to_vec (obstackp,
5457 fixup_symbol_section (sym, objfile),
5458 block);
5459 }
5460 }
5461 }
5462 }
5463 }
5464
5465 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5466 They aren't parameters, right? */
5467 if (!found_sym && arg_sym != NULL)
5468 {
5469 add_defn_to_vec (obstackp,
5470 fixup_symbol_section (arg_sym, objfile),
5471 block);
5472 }
5473 }
5474 }
5475 \f
5476
5477 /* Symbol Completion */
5478
5479 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5480 name in a form that's appropriate for the completion. The result
5481 does not need to be deallocated, but is only good until the next call.
5482
5483 TEXT_LEN is equal to the length of TEXT.
5484 Perform a wild match if WILD_MATCH is set.
5485 ENCODED should be set if TEXT represents the start of a symbol name
5486 in its encoded form. */
5487
5488 static const char *
5489 symbol_completion_match (const char *sym_name,
5490 const char *text, int text_len,
5491 int wild_match, int encoded)
5492 {
5493 const int verbatim_match = (text[0] == '<');
5494 int match = 0;
5495
5496 if (verbatim_match)
5497 {
5498 /* Strip the leading angle bracket. */
5499 text = text + 1;
5500 text_len--;
5501 }
5502
5503 /* First, test against the fully qualified name of the symbol. */
5504
5505 if (strncmp (sym_name, text, text_len) == 0)
5506 match = 1;
5507
5508 if (match && !encoded)
5509 {
5510 /* One needed check before declaring a positive match is to verify
5511 that iff we are doing a verbatim match, the decoded version
5512 of the symbol name starts with '<'. Otherwise, this symbol name
5513 is not a suitable completion. */
5514 const char *sym_name_copy = sym_name;
5515 int has_angle_bracket;
5516
5517 sym_name = ada_decode (sym_name);
5518 has_angle_bracket = (sym_name[0] == '<');
5519 match = (has_angle_bracket == verbatim_match);
5520 sym_name = sym_name_copy;
5521 }
5522
5523 if (match && !verbatim_match)
5524 {
5525 /* When doing non-verbatim match, another check that needs to
5526 be done is to verify that the potentially matching symbol name
5527 does not include capital letters, because the ada-mode would
5528 not be able to understand these symbol names without the
5529 angle bracket notation. */
5530 const char *tmp;
5531
5532 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5533 if (*tmp != '\0')
5534 match = 0;
5535 }
5536
5537 /* Second: Try wild matching... */
5538
5539 if (!match && wild_match)
5540 {
5541 /* Since we are doing wild matching, this means that TEXT
5542 may represent an unqualified symbol name. We therefore must
5543 also compare TEXT against the unqualified name of the symbol. */
5544 sym_name = ada_unqualified_name (ada_decode (sym_name));
5545
5546 if (strncmp (sym_name, text, text_len) == 0)
5547 match = 1;
5548 }
5549
5550 /* Finally: If we found a mach, prepare the result to return. */
5551
5552 if (!match)
5553 return NULL;
5554
5555 if (verbatim_match)
5556 sym_name = add_angle_brackets (sym_name);
5557
5558 if (!encoded)
5559 sym_name = ada_decode (sym_name);
5560
5561 return sym_name;
5562 }
5563
5564 DEF_VEC_P (char_ptr);
5565
5566 /* A companion function to ada_make_symbol_completion_list().
5567 Check if SYM_NAME represents a symbol which name would be suitable
5568 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5569 it is appended at the end of the given string vector SV.
5570
5571 ORIG_TEXT is the string original string from the user command
5572 that needs to be completed. WORD is the entire command on which
5573 completion should be performed. These two parameters are used to
5574 determine which part of the symbol name should be added to the
5575 completion vector.
5576 if WILD_MATCH is set, then wild matching is performed.
5577 ENCODED should be set if TEXT represents a symbol name in its
5578 encoded formed (in which case the completion should also be
5579 encoded). */
5580
5581 static void
5582 symbol_completion_add (VEC(char_ptr) **sv,
5583 const char *sym_name,
5584 const char *text, int text_len,
5585 const char *orig_text, const char *word,
5586 int wild_match, int encoded)
5587 {
5588 const char *match = symbol_completion_match (sym_name, text, text_len,
5589 wild_match, encoded);
5590 char *completion;
5591
5592 if (match == NULL)
5593 return;
5594
5595 /* We found a match, so add the appropriate completion to the given
5596 string vector. */
5597
5598 if (word == orig_text)
5599 {
5600 completion = xmalloc (strlen (match) + 5);
5601 strcpy (completion, match);
5602 }
5603 else if (word > orig_text)
5604 {
5605 /* Return some portion of sym_name. */
5606 completion = xmalloc (strlen (match) + 5);
5607 strcpy (completion, match + (word - orig_text));
5608 }
5609 else
5610 {
5611 /* Return some of ORIG_TEXT plus sym_name. */
5612 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5613 strncpy (completion, word, orig_text - word);
5614 completion[orig_text - word] = '\0';
5615 strcat (completion, match);
5616 }
5617
5618 VEC_safe_push (char_ptr, *sv, completion);
5619 }
5620
5621 /* An object of this type is passed as the user_data argument to the
5622 expand_partial_symbol_names method. */
5623 struct add_partial_datum
5624 {
5625 VEC(char_ptr) **completions;
5626 char *text;
5627 int text_len;
5628 char *text0;
5629 char *word;
5630 int wild_match;
5631 int encoded;
5632 };
5633
5634 /* A callback for expand_partial_symbol_names. */
5635 static int
5636 ada_expand_partial_symbol_name (const char *name, void *user_data)
5637 {
5638 struct add_partial_datum *data = user_data;
5639
5640 return symbol_completion_match (name, data->text, data->text_len,
5641 data->wild_match, data->encoded) != NULL;
5642 }
5643
5644 /* Return a list of possible symbol names completing TEXT0. The list
5645 is NULL terminated. WORD is the entire command on which completion
5646 is made. */
5647
5648 static char **
5649 ada_make_symbol_completion_list (char *text0, char *word)
5650 {
5651 char *text;
5652 int text_len;
5653 int wild_match;
5654 int encoded;
5655 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5656 struct symbol *sym;
5657 struct symtab *s;
5658 struct minimal_symbol *msymbol;
5659 struct objfile *objfile;
5660 struct block *b, *surrounding_static_block = 0;
5661 int i;
5662 struct dict_iterator iter;
5663
5664 if (text0[0] == '<')
5665 {
5666 text = xstrdup (text0);
5667 make_cleanup (xfree, text);
5668 text_len = strlen (text);
5669 wild_match = 0;
5670 encoded = 1;
5671 }
5672 else
5673 {
5674 text = xstrdup (ada_encode (text0));
5675 make_cleanup (xfree, text);
5676 text_len = strlen (text);
5677 for (i = 0; i < text_len; i++)
5678 text[i] = tolower (text[i]);
5679
5680 encoded = (strstr (text0, "__") != NULL);
5681 /* If the name contains a ".", then the user is entering a fully
5682 qualified entity name, and the match must not be done in wild
5683 mode. Similarly, if the user wants to complete what looks like
5684 an encoded name, the match must not be done in wild mode. */
5685 wild_match = (strchr (text0, '.') == NULL && !encoded);
5686 }
5687
5688 /* First, look at the partial symtab symbols. */
5689 {
5690 struct add_partial_datum data;
5691
5692 data.completions = &completions;
5693 data.text = text;
5694 data.text_len = text_len;
5695 data.text0 = text0;
5696 data.word = word;
5697 data.wild_match = wild_match;
5698 data.encoded = encoded;
5699 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5700 }
5701
5702 /* At this point scan through the misc symbol vectors and add each
5703 symbol you find to the list. Eventually we want to ignore
5704 anything that isn't a text symbol (everything else will be
5705 handled by the psymtab code above). */
5706
5707 ALL_MSYMBOLS (objfile, msymbol)
5708 {
5709 QUIT;
5710 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5711 text, text_len, text0, word, wild_match, encoded);
5712 }
5713
5714 /* Search upwards from currently selected frame (so that we can
5715 complete on local vars. */
5716
5717 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5718 {
5719 if (!BLOCK_SUPERBLOCK (b))
5720 surrounding_static_block = b; /* For elmin of dups */
5721
5722 ALL_BLOCK_SYMBOLS (b, iter, sym)
5723 {
5724 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5725 text, text_len, text0, word,
5726 wild_match, encoded);
5727 }
5728 }
5729
5730 /* Go through the symtabs and check the externs and statics for
5731 symbols which match. */
5732
5733 ALL_SYMTABS (objfile, s)
5734 {
5735 QUIT;
5736 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5737 ALL_BLOCK_SYMBOLS (b, iter, sym)
5738 {
5739 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5740 text, text_len, text0, word,
5741 wild_match, encoded);
5742 }
5743 }
5744
5745 ALL_SYMTABS (objfile, s)
5746 {
5747 QUIT;
5748 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5749 /* Don't do this block twice. */
5750 if (b == surrounding_static_block)
5751 continue;
5752 ALL_BLOCK_SYMBOLS (b, iter, sym)
5753 {
5754 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5755 text, text_len, text0, word,
5756 wild_match, encoded);
5757 }
5758 }
5759
5760 /* Append the closing NULL entry. */
5761 VEC_safe_push (char_ptr, completions, NULL);
5762
5763 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5764 return the copy. It's unfortunate that we have to make a copy
5765 of an array that we're about to destroy, but there is nothing much
5766 we can do about it. Fortunately, it's typically not a very large
5767 array. */
5768 {
5769 const size_t completions_size =
5770 VEC_length (char_ptr, completions) * sizeof (char *);
5771 char **result = xmalloc (completions_size);
5772
5773 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5774
5775 VEC_free (char_ptr, completions);
5776 return result;
5777 }
5778 }
5779
5780 /* Field Access */
5781
5782 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5783 for tagged types. */
5784
5785 static int
5786 ada_is_dispatch_table_ptr_type (struct type *type)
5787 {
5788 char *name;
5789
5790 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5791 return 0;
5792
5793 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5794 if (name == NULL)
5795 return 0;
5796
5797 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5798 }
5799
5800 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5801 to be invisible to users. */
5802
5803 int
5804 ada_is_ignored_field (struct type *type, int field_num)
5805 {
5806 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5807 return 1;
5808
5809 /* Check the name of that field. */
5810 {
5811 const char *name = TYPE_FIELD_NAME (type, field_num);
5812
5813 /* Anonymous field names should not be printed.
5814 brobecker/2007-02-20: I don't think this can actually happen
5815 but we don't want to print the value of annonymous fields anyway. */
5816 if (name == NULL)
5817 return 1;
5818
5819 /* A field named "_parent" is internally generated by GNAT for
5820 tagged types, and should not be printed either. */
5821 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5822 return 1;
5823 }
5824
5825 /* If this is the dispatch table of a tagged type, then ignore. */
5826 if (ada_is_tagged_type (type, 1)
5827 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5828 return 1;
5829
5830 /* Not a special field, so it should not be ignored. */
5831 return 0;
5832 }
5833
5834 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5835 pointer or reference type whose ultimate target has a tag field. */
5836
5837 int
5838 ada_is_tagged_type (struct type *type, int refok)
5839 {
5840 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5841 }
5842
5843 /* True iff TYPE represents the type of X'Tag */
5844
5845 int
5846 ada_is_tag_type (struct type *type)
5847 {
5848 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5849 return 0;
5850 else
5851 {
5852 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5853
5854 return (name != NULL
5855 && strcmp (name, "ada__tags__dispatch_table") == 0);
5856 }
5857 }
5858
5859 /* The type of the tag on VAL. */
5860
5861 struct type *
5862 ada_tag_type (struct value *val)
5863 {
5864 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5865 }
5866
5867 /* The value of the tag on VAL. */
5868
5869 struct value *
5870 ada_value_tag (struct value *val)
5871 {
5872 return ada_value_struct_elt (val, "_tag", 0);
5873 }
5874
5875 /* The value of the tag on the object of type TYPE whose contents are
5876 saved at VALADDR, if it is non-null, or is at memory address
5877 ADDRESS. */
5878
5879 static struct value *
5880 value_tag_from_contents_and_address (struct type *type,
5881 const gdb_byte *valaddr,
5882 CORE_ADDR address)
5883 {
5884 int tag_byte_offset;
5885 struct type *tag_type;
5886
5887 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5888 NULL, NULL, NULL))
5889 {
5890 const gdb_byte *valaddr1 = ((valaddr == NULL)
5891 ? NULL
5892 : valaddr + tag_byte_offset);
5893 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5894
5895 return value_from_contents_and_address (tag_type, valaddr1, address1);
5896 }
5897 return NULL;
5898 }
5899
5900 static struct type *
5901 type_from_tag (struct value *tag)
5902 {
5903 const char *type_name = ada_tag_name (tag);
5904
5905 if (type_name != NULL)
5906 return ada_find_any_type (ada_encode (type_name));
5907 return NULL;
5908 }
5909
5910 struct tag_args
5911 {
5912 struct value *tag;
5913 char *name;
5914 };
5915
5916
5917 static int ada_tag_name_1 (void *);
5918 static int ada_tag_name_2 (struct tag_args *);
5919
5920 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5921 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5922 The value stored in ARGS->name is valid until the next call to
5923 ada_tag_name_1. */
5924
5925 static int
5926 ada_tag_name_1 (void *args0)
5927 {
5928 struct tag_args *args = (struct tag_args *) args0;
5929 static char name[1024];
5930 char *p;
5931 struct value *val;
5932
5933 args->name = NULL;
5934 val = ada_value_struct_elt (args->tag, "tsd", 1);
5935 if (val == NULL)
5936 return ada_tag_name_2 (args);
5937 val = ada_value_struct_elt (val, "expanded_name", 1);
5938 if (val == NULL)
5939 return 0;
5940 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5941 for (p = name; *p != '\0'; p += 1)
5942 if (isalpha (*p))
5943 *p = tolower (*p);
5944 args->name = name;
5945 return 0;
5946 }
5947
5948 /* Return the "ada__tags__type_specific_data" type. */
5949
5950 static struct type *
5951 ada_get_tsd_type (struct inferior *inf)
5952 {
5953 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5954
5955 if (data->tsd_type == 0)
5956 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5957 return data->tsd_type;
5958 }
5959
5960 /* Utility function for ada_tag_name_1 that tries the second
5961 representation for the dispatch table (in which there is no
5962 explicit 'tsd' field in the referent of the tag pointer, and instead
5963 the tsd pointer is stored just before the dispatch table. */
5964
5965 static int
5966 ada_tag_name_2 (struct tag_args *args)
5967 {
5968 struct type *info_type;
5969 static char name[1024];
5970 char *p;
5971 struct value *val, *valp;
5972
5973 args->name = NULL;
5974 info_type = ada_get_tsd_type (current_inferior());
5975 if (info_type == NULL)
5976 return 0;
5977 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5978 valp = value_cast (info_type, args->tag);
5979 if (valp == NULL)
5980 return 0;
5981 val = value_ind (value_ptradd (valp, -1));
5982 if (val == NULL)
5983 return 0;
5984 val = ada_value_struct_elt (val, "expanded_name", 1);
5985 if (val == NULL)
5986 return 0;
5987 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5988 for (p = name; *p != '\0'; p += 1)
5989 if (isalpha (*p))
5990 *p = tolower (*p);
5991 args->name = name;
5992 return 0;
5993 }
5994
5995 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5996 a C string. */
5997
5998 const char *
5999 ada_tag_name (struct value *tag)
6000 {
6001 struct tag_args args;
6002
6003 if (!ada_is_tag_type (value_type (tag)))
6004 return NULL;
6005 args.tag = tag;
6006 args.name = NULL;
6007 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6008 return args.name;
6009 }
6010
6011 /* The parent type of TYPE, or NULL if none. */
6012
6013 struct type *
6014 ada_parent_type (struct type *type)
6015 {
6016 int i;
6017
6018 type = ada_check_typedef (type);
6019
6020 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6021 return NULL;
6022
6023 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6024 if (ada_is_parent_field (type, i))
6025 {
6026 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6027
6028 /* If the _parent field is a pointer, then dereference it. */
6029 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6030 parent_type = TYPE_TARGET_TYPE (parent_type);
6031 /* If there is a parallel XVS type, get the actual base type. */
6032 parent_type = ada_get_base_type (parent_type);
6033
6034 return ada_check_typedef (parent_type);
6035 }
6036
6037 return NULL;
6038 }
6039
6040 /* True iff field number FIELD_NUM of structure type TYPE contains the
6041 parent-type (inherited) fields of a derived type. Assumes TYPE is
6042 a structure type with at least FIELD_NUM+1 fields. */
6043
6044 int
6045 ada_is_parent_field (struct type *type, int field_num)
6046 {
6047 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6048
6049 return (name != NULL
6050 && (strncmp (name, "PARENT", 6) == 0
6051 || strncmp (name, "_parent", 7) == 0));
6052 }
6053
6054 /* True iff field number FIELD_NUM of structure type TYPE is a
6055 transparent wrapper field (which should be silently traversed when doing
6056 field selection and flattened when printing). Assumes TYPE is a
6057 structure type with at least FIELD_NUM+1 fields. Such fields are always
6058 structures. */
6059
6060 int
6061 ada_is_wrapper_field (struct type *type, int field_num)
6062 {
6063 const char *name = TYPE_FIELD_NAME (type, field_num);
6064
6065 return (name != NULL
6066 && (strncmp (name, "PARENT", 6) == 0
6067 || strcmp (name, "REP") == 0
6068 || strncmp (name, "_parent", 7) == 0
6069 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6070 }
6071
6072 /* True iff field number FIELD_NUM of structure or union type TYPE
6073 is a variant wrapper. Assumes TYPE is a structure type with at least
6074 FIELD_NUM+1 fields. */
6075
6076 int
6077 ada_is_variant_part (struct type *type, int field_num)
6078 {
6079 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6080
6081 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6082 || (is_dynamic_field (type, field_num)
6083 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6084 == TYPE_CODE_UNION)));
6085 }
6086
6087 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6088 whose discriminants are contained in the record type OUTER_TYPE,
6089 returns the type of the controlling discriminant for the variant.
6090 May return NULL if the type could not be found. */
6091
6092 struct type *
6093 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6094 {
6095 char *name = ada_variant_discrim_name (var_type);
6096
6097 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6098 }
6099
6100 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6101 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6102 represents a 'when others' clause; otherwise 0. */
6103
6104 int
6105 ada_is_others_clause (struct type *type, int field_num)
6106 {
6107 const char *name = TYPE_FIELD_NAME (type, field_num);
6108
6109 return (name != NULL && name[0] == 'O');
6110 }
6111
6112 /* Assuming that TYPE0 is the type of the variant part of a record,
6113 returns the name of the discriminant controlling the variant.
6114 The value is valid until the next call to ada_variant_discrim_name. */
6115
6116 char *
6117 ada_variant_discrim_name (struct type *type0)
6118 {
6119 static char *result = NULL;
6120 static size_t result_len = 0;
6121 struct type *type;
6122 const char *name;
6123 const char *discrim_end;
6124 const char *discrim_start;
6125
6126 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6127 type = TYPE_TARGET_TYPE (type0);
6128 else
6129 type = type0;
6130
6131 name = ada_type_name (type);
6132
6133 if (name == NULL || name[0] == '\000')
6134 return "";
6135
6136 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6137 discrim_end -= 1)
6138 {
6139 if (strncmp (discrim_end, "___XVN", 6) == 0)
6140 break;
6141 }
6142 if (discrim_end == name)
6143 return "";
6144
6145 for (discrim_start = discrim_end; discrim_start != name + 3;
6146 discrim_start -= 1)
6147 {
6148 if (discrim_start == name + 1)
6149 return "";
6150 if ((discrim_start > name + 3
6151 && strncmp (discrim_start - 3, "___", 3) == 0)
6152 || discrim_start[-1] == '.')
6153 break;
6154 }
6155
6156 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6157 strncpy (result, discrim_start, discrim_end - discrim_start);
6158 result[discrim_end - discrim_start] = '\0';
6159 return result;
6160 }
6161
6162 /* Scan STR for a subtype-encoded number, beginning at position K.
6163 Put the position of the character just past the number scanned in
6164 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6165 Return 1 if there was a valid number at the given position, and 0
6166 otherwise. A "subtype-encoded" number consists of the absolute value
6167 in decimal, followed by the letter 'm' to indicate a negative number.
6168 Assumes 0m does not occur. */
6169
6170 int
6171 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6172 {
6173 ULONGEST RU;
6174
6175 if (!isdigit (str[k]))
6176 return 0;
6177
6178 /* Do it the hard way so as not to make any assumption about
6179 the relationship of unsigned long (%lu scan format code) and
6180 LONGEST. */
6181 RU = 0;
6182 while (isdigit (str[k]))
6183 {
6184 RU = RU * 10 + (str[k] - '0');
6185 k += 1;
6186 }
6187
6188 if (str[k] == 'm')
6189 {
6190 if (R != NULL)
6191 *R = (-(LONGEST) (RU - 1)) - 1;
6192 k += 1;
6193 }
6194 else if (R != NULL)
6195 *R = (LONGEST) RU;
6196
6197 /* NOTE on the above: Technically, C does not say what the results of
6198 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6199 number representable as a LONGEST (although either would probably work
6200 in most implementations). When RU>0, the locution in the then branch
6201 above is always equivalent to the negative of RU. */
6202
6203 if (new_k != NULL)
6204 *new_k = k;
6205 return 1;
6206 }
6207
6208 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6209 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6210 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6211
6212 int
6213 ada_in_variant (LONGEST val, struct type *type, int field_num)
6214 {
6215 const char *name = TYPE_FIELD_NAME (type, field_num);
6216 int p;
6217
6218 p = 0;
6219 while (1)
6220 {
6221 switch (name[p])
6222 {
6223 case '\0':
6224 return 0;
6225 case 'S':
6226 {
6227 LONGEST W;
6228
6229 if (!ada_scan_number (name, p + 1, &W, &p))
6230 return 0;
6231 if (val == W)
6232 return 1;
6233 break;
6234 }
6235 case 'R':
6236 {
6237 LONGEST L, U;
6238
6239 if (!ada_scan_number (name, p + 1, &L, &p)
6240 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6241 return 0;
6242 if (val >= L && val <= U)
6243 return 1;
6244 break;
6245 }
6246 case 'O':
6247 return 1;
6248 default:
6249 return 0;
6250 }
6251 }
6252 }
6253
6254 /* FIXME: Lots of redundancy below. Try to consolidate. */
6255
6256 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6257 ARG_TYPE, extract and return the value of one of its (non-static)
6258 fields. FIELDNO says which field. Differs from value_primitive_field
6259 only in that it can handle packed values of arbitrary type. */
6260
6261 static struct value *
6262 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6263 struct type *arg_type)
6264 {
6265 struct type *type;
6266
6267 arg_type = ada_check_typedef (arg_type);
6268 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6269
6270 /* Handle packed fields. */
6271
6272 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6273 {
6274 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6275 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6276
6277 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6278 offset + bit_pos / 8,
6279 bit_pos % 8, bit_size, type);
6280 }
6281 else
6282 return value_primitive_field (arg1, offset, fieldno, arg_type);
6283 }
6284
6285 /* Find field with name NAME in object of type TYPE. If found,
6286 set the following for each argument that is non-null:
6287 - *FIELD_TYPE_P to the field's type;
6288 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6289 an object of that type;
6290 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6291 - *BIT_SIZE_P to its size in bits if the field is packed, and
6292 0 otherwise;
6293 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6294 fields up to but not including the desired field, or by the total
6295 number of fields if not found. A NULL value of NAME never
6296 matches; the function just counts visible fields in this case.
6297
6298 Returns 1 if found, 0 otherwise. */
6299
6300 static int
6301 find_struct_field (char *name, struct type *type, int offset,
6302 struct type **field_type_p,
6303 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6304 int *index_p)
6305 {
6306 int i;
6307
6308 type = ada_check_typedef (type);
6309
6310 if (field_type_p != NULL)
6311 *field_type_p = NULL;
6312 if (byte_offset_p != NULL)
6313 *byte_offset_p = 0;
6314 if (bit_offset_p != NULL)
6315 *bit_offset_p = 0;
6316 if (bit_size_p != NULL)
6317 *bit_size_p = 0;
6318
6319 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6320 {
6321 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6322 int fld_offset = offset + bit_pos / 8;
6323 char *t_field_name = TYPE_FIELD_NAME (type, i);
6324
6325 if (t_field_name == NULL)
6326 continue;
6327
6328 else if (name != NULL && field_name_match (t_field_name, name))
6329 {
6330 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6331
6332 if (field_type_p != NULL)
6333 *field_type_p = TYPE_FIELD_TYPE (type, i);
6334 if (byte_offset_p != NULL)
6335 *byte_offset_p = fld_offset;
6336 if (bit_offset_p != NULL)
6337 *bit_offset_p = bit_pos % 8;
6338 if (bit_size_p != NULL)
6339 *bit_size_p = bit_size;
6340 return 1;
6341 }
6342 else if (ada_is_wrapper_field (type, i))
6343 {
6344 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6345 field_type_p, byte_offset_p, bit_offset_p,
6346 bit_size_p, index_p))
6347 return 1;
6348 }
6349 else if (ada_is_variant_part (type, i))
6350 {
6351 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6352 fixed type?? */
6353 int j;
6354 struct type *field_type
6355 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6356
6357 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6358 {
6359 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6360 fld_offset
6361 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6362 field_type_p, byte_offset_p,
6363 bit_offset_p, bit_size_p, index_p))
6364 return 1;
6365 }
6366 }
6367 else if (index_p != NULL)
6368 *index_p += 1;
6369 }
6370 return 0;
6371 }
6372
6373 /* Number of user-visible fields in record type TYPE. */
6374
6375 static int
6376 num_visible_fields (struct type *type)
6377 {
6378 int n;
6379
6380 n = 0;
6381 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6382 return n;
6383 }
6384
6385 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6386 and search in it assuming it has (class) type TYPE.
6387 If found, return value, else return NULL.
6388
6389 Searches recursively through wrapper fields (e.g., '_parent'). */
6390
6391 static struct value *
6392 ada_search_struct_field (char *name, struct value *arg, int offset,
6393 struct type *type)
6394 {
6395 int i;
6396
6397 type = ada_check_typedef (type);
6398 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6399 {
6400 char *t_field_name = TYPE_FIELD_NAME (type, i);
6401
6402 if (t_field_name == NULL)
6403 continue;
6404
6405 else if (field_name_match (t_field_name, name))
6406 return ada_value_primitive_field (arg, offset, i, type);
6407
6408 else if (ada_is_wrapper_field (type, i))
6409 {
6410 struct value *v = /* Do not let indent join lines here. */
6411 ada_search_struct_field (name, arg,
6412 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6413 TYPE_FIELD_TYPE (type, i));
6414
6415 if (v != NULL)
6416 return v;
6417 }
6418
6419 else if (ada_is_variant_part (type, i))
6420 {
6421 /* PNH: Do we ever get here? See find_struct_field. */
6422 int j;
6423 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6424 i));
6425 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6426
6427 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6428 {
6429 struct value *v = ada_search_struct_field /* Force line
6430 break. */
6431 (name, arg,
6432 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6433 TYPE_FIELD_TYPE (field_type, j));
6434
6435 if (v != NULL)
6436 return v;
6437 }
6438 }
6439 }
6440 return NULL;
6441 }
6442
6443 static struct value *ada_index_struct_field_1 (int *, struct value *,
6444 int, struct type *);
6445
6446
6447 /* Return field #INDEX in ARG, where the index is that returned by
6448 * find_struct_field through its INDEX_P argument. Adjust the address
6449 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6450 * If found, return value, else return NULL. */
6451
6452 static struct value *
6453 ada_index_struct_field (int index, struct value *arg, int offset,
6454 struct type *type)
6455 {
6456 return ada_index_struct_field_1 (&index, arg, offset, type);
6457 }
6458
6459
6460 /* Auxiliary function for ada_index_struct_field. Like
6461 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6462 * *INDEX_P. */
6463
6464 static struct value *
6465 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6466 struct type *type)
6467 {
6468 int i;
6469 type = ada_check_typedef (type);
6470
6471 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6472 {
6473 if (TYPE_FIELD_NAME (type, i) == NULL)
6474 continue;
6475 else if (ada_is_wrapper_field (type, i))
6476 {
6477 struct value *v = /* Do not let indent join lines here. */
6478 ada_index_struct_field_1 (index_p, arg,
6479 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6480 TYPE_FIELD_TYPE (type, i));
6481
6482 if (v != NULL)
6483 return v;
6484 }
6485
6486 else if (ada_is_variant_part (type, i))
6487 {
6488 /* PNH: Do we ever get here? See ada_search_struct_field,
6489 find_struct_field. */
6490 error (_("Cannot assign this kind of variant record"));
6491 }
6492 else if (*index_p == 0)
6493 return ada_value_primitive_field (arg, offset, i, type);
6494 else
6495 *index_p -= 1;
6496 }
6497 return NULL;
6498 }
6499
6500 /* Given ARG, a value of type (pointer or reference to a)*
6501 structure/union, extract the component named NAME from the ultimate
6502 target structure/union and return it as a value with its
6503 appropriate type.
6504
6505 The routine searches for NAME among all members of the structure itself
6506 and (recursively) among all members of any wrapper members
6507 (e.g., '_parent').
6508
6509 If NO_ERR, then simply return NULL in case of error, rather than
6510 calling error. */
6511
6512 struct value *
6513 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6514 {
6515 struct type *t, *t1;
6516 struct value *v;
6517
6518 v = NULL;
6519 t1 = t = ada_check_typedef (value_type (arg));
6520 if (TYPE_CODE (t) == TYPE_CODE_REF)
6521 {
6522 t1 = TYPE_TARGET_TYPE (t);
6523 if (t1 == NULL)
6524 goto BadValue;
6525 t1 = ada_check_typedef (t1);
6526 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6527 {
6528 arg = coerce_ref (arg);
6529 t = t1;
6530 }
6531 }
6532
6533 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6534 {
6535 t1 = TYPE_TARGET_TYPE (t);
6536 if (t1 == NULL)
6537 goto BadValue;
6538 t1 = ada_check_typedef (t1);
6539 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6540 {
6541 arg = value_ind (arg);
6542 t = t1;
6543 }
6544 else
6545 break;
6546 }
6547
6548 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6549 goto BadValue;
6550
6551 if (t1 == t)
6552 v = ada_search_struct_field (name, arg, 0, t);
6553 else
6554 {
6555 int bit_offset, bit_size, byte_offset;
6556 struct type *field_type;
6557 CORE_ADDR address;
6558
6559 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6560 address = value_as_address (arg);
6561 else
6562 address = unpack_pointer (t, value_contents (arg));
6563
6564 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6565 if (find_struct_field (name, t1, 0,
6566 &field_type, &byte_offset, &bit_offset,
6567 &bit_size, NULL))
6568 {
6569 if (bit_size != 0)
6570 {
6571 if (TYPE_CODE (t) == TYPE_CODE_REF)
6572 arg = ada_coerce_ref (arg);
6573 else
6574 arg = ada_value_ind (arg);
6575 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6576 bit_offset, bit_size,
6577 field_type);
6578 }
6579 else
6580 v = value_at_lazy (field_type, address + byte_offset);
6581 }
6582 }
6583
6584 if (v != NULL || no_err)
6585 return v;
6586 else
6587 error (_("There is no member named %s."), name);
6588
6589 BadValue:
6590 if (no_err)
6591 return NULL;
6592 else
6593 error (_("Attempt to extract a component of "
6594 "a value that is not a record."));
6595 }
6596
6597 /* Given a type TYPE, look up the type of the component of type named NAME.
6598 If DISPP is non-null, add its byte displacement from the beginning of a
6599 structure (pointed to by a value) of type TYPE to *DISPP (does not
6600 work for packed fields).
6601
6602 Matches any field whose name has NAME as a prefix, possibly
6603 followed by "___".
6604
6605 TYPE can be either a struct or union. If REFOK, TYPE may also
6606 be a (pointer or reference)+ to a struct or union, and the
6607 ultimate target type will be searched.
6608
6609 Looks recursively into variant clauses and parent types.
6610
6611 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6612 TYPE is not a type of the right kind. */
6613
6614 static struct type *
6615 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6616 int noerr, int *dispp)
6617 {
6618 int i;
6619
6620 if (name == NULL)
6621 goto BadName;
6622
6623 if (refok && type != NULL)
6624 while (1)
6625 {
6626 type = ada_check_typedef (type);
6627 if (TYPE_CODE (type) != TYPE_CODE_PTR
6628 && TYPE_CODE (type) != TYPE_CODE_REF)
6629 break;
6630 type = TYPE_TARGET_TYPE (type);
6631 }
6632
6633 if (type == NULL
6634 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6635 && TYPE_CODE (type) != TYPE_CODE_UNION))
6636 {
6637 if (noerr)
6638 return NULL;
6639 else
6640 {
6641 target_terminal_ours ();
6642 gdb_flush (gdb_stdout);
6643 if (type == NULL)
6644 error (_("Type (null) is not a structure or union type"));
6645 else
6646 {
6647 /* XXX: type_sprint */
6648 fprintf_unfiltered (gdb_stderr, _("Type "));
6649 type_print (type, "", gdb_stderr, -1);
6650 error (_(" is not a structure or union type"));
6651 }
6652 }
6653 }
6654
6655 type = to_static_fixed_type (type);
6656
6657 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6658 {
6659 char *t_field_name = TYPE_FIELD_NAME (type, i);
6660 struct type *t;
6661 int disp;
6662
6663 if (t_field_name == NULL)
6664 continue;
6665
6666 else if (field_name_match (t_field_name, name))
6667 {
6668 if (dispp != NULL)
6669 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6670 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6671 }
6672
6673 else if (ada_is_wrapper_field (type, i))
6674 {
6675 disp = 0;
6676 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6677 0, 1, &disp);
6678 if (t != NULL)
6679 {
6680 if (dispp != NULL)
6681 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6682 return t;
6683 }
6684 }
6685
6686 else if (ada_is_variant_part (type, i))
6687 {
6688 int j;
6689 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6690 i));
6691
6692 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6693 {
6694 /* FIXME pnh 2008/01/26: We check for a field that is
6695 NOT wrapped in a struct, since the compiler sometimes
6696 generates these for unchecked variant types. Revisit
6697 if the compiler changes this practice. */
6698 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6699 disp = 0;
6700 if (v_field_name != NULL
6701 && field_name_match (v_field_name, name))
6702 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6703 else
6704 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6705 j),
6706 name, 0, 1, &disp);
6707
6708 if (t != NULL)
6709 {
6710 if (dispp != NULL)
6711 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6712 return t;
6713 }
6714 }
6715 }
6716
6717 }
6718
6719 BadName:
6720 if (!noerr)
6721 {
6722 target_terminal_ours ();
6723 gdb_flush (gdb_stdout);
6724 if (name == NULL)
6725 {
6726 /* XXX: type_sprint */
6727 fprintf_unfiltered (gdb_stderr, _("Type "));
6728 type_print (type, "", gdb_stderr, -1);
6729 error (_(" has no component named <null>"));
6730 }
6731 else
6732 {
6733 /* XXX: type_sprint */
6734 fprintf_unfiltered (gdb_stderr, _("Type "));
6735 type_print (type, "", gdb_stderr, -1);
6736 error (_(" has no component named %s"), name);
6737 }
6738 }
6739
6740 return NULL;
6741 }
6742
6743 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6744 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6745 represents an unchecked union (that is, the variant part of a
6746 record that is named in an Unchecked_Union pragma). */
6747
6748 static int
6749 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6750 {
6751 char *discrim_name = ada_variant_discrim_name (var_type);
6752
6753 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6754 == NULL);
6755 }
6756
6757
6758 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6759 within a value of type OUTER_TYPE that is stored in GDB at
6760 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6761 numbering from 0) is applicable. Returns -1 if none are. */
6762
6763 int
6764 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6765 const gdb_byte *outer_valaddr)
6766 {
6767 int others_clause;
6768 int i;
6769 char *discrim_name = ada_variant_discrim_name (var_type);
6770 struct value *outer;
6771 struct value *discrim;
6772 LONGEST discrim_val;
6773
6774 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6775 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6776 if (discrim == NULL)
6777 return -1;
6778 discrim_val = value_as_long (discrim);
6779
6780 others_clause = -1;
6781 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6782 {
6783 if (ada_is_others_clause (var_type, i))
6784 others_clause = i;
6785 else if (ada_in_variant (discrim_val, var_type, i))
6786 return i;
6787 }
6788
6789 return others_clause;
6790 }
6791 \f
6792
6793
6794 /* Dynamic-Sized Records */
6795
6796 /* Strategy: The type ostensibly attached to a value with dynamic size
6797 (i.e., a size that is not statically recorded in the debugging
6798 data) does not accurately reflect the size or layout of the value.
6799 Our strategy is to convert these values to values with accurate,
6800 conventional types that are constructed on the fly. */
6801
6802 /* There is a subtle and tricky problem here. In general, we cannot
6803 determine the size of dynamic records without its data. However,
6804 the 'struct value' data structure, which GDB uses to represent
6805 quantities in the inferior process (the target), requires the size
6806 of the type at the time of its allocation in order to reserve space
6807 for GDB's internal copy of the data. That's why the
6808 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6809 rather than struct value*s.
6810
6811 However, GDB's internal history variables ($1, $2, etc.) are
6812 struct value*s containing internal copies of the data that are not, in
6813 general, the same as the data at their corresponding addresses in
6814 the target. Fortunately, the types we give to these values are all
6815 conventional, fixed-size types (as per the strategy described
6816 above), so that we don't usually have to perform the
6817 'to_fixed_xxx_type' conversions to look at their values.
6818 Unfortunately, there is one exception: if one of the internal
6819 history variables is an array whose elements are unconstrained
6820 records, then we will need to create distinct fixed types for each
6821 element selected. */
6822
6823 /* The upshot of all of this is that many routines take a (type, host
6824 address, target address) triple as arguments to represent a value.
6825 The host address, if non-null, is supposed to contain an internal
6826 copy of the relevant data; otherwise, the program is to consult the
6827 target at the target address. */
6828
6829 /* Assuming that VAL0 represents a pointer value, the result of
6830 dereferencing it. Differs from value_ind in its treatment of
6831 dynamic-sized types. */
6832
6833 struct value *
6834 ada_value_ind (struct value *val0)
6835 {
6836 struct value *val = unwrap_value (value_ind (val0));
6837
6838 return ada_to_fixed_value (val);
6839 }
6840
6841 /* The value resulting from dereferencing any "reference to"
6842 qualifiers on VAL0. */
6843
6844 static struct value *
6845 ada_coerce_ref (struct value *val0)
6846 {
6847 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6848 {
6849 struct value *val = val0;
6850
6851 val = coerce_ref (val);
6852 val = unwrap_value (val);
6853 return ada_to_fixed_value (val);
6854 }
6855 else
6856 return val0;
6857 }
6858
6859 /* Return OFF rounded upward if necessary to a multiple of
6860 ALIGNMENT (a power of 2). */
6861
6862 static unsigned int
6863 align_value (unsigned int off, unsigned int alignment)
6864 {
6865 return (off + alignment - 1) & ~(alignment - 1);
6866 }
6867
6868 /* Return the bit alignment required for field #F of template type TYPE. */
6869
6870 static unsigned int
6871 field_alignment (struct type *type, int f)
6872 {
6873 const char *name = TYPE_FIELD_NAME (type, f);
6874 int len;
6875 int align_offset;
6876
6877 /* The field name should never be null, unless the debugging information
6878 is somehow malformed. In this case, we assume the field does not
6879 require any alignment. */
6880 if (name == NULL)
6881 return 1;
6882
6883 len = strlen (name);
6884
6885 if (!isdigit (name[len - 1]))
6886 return 1;
6887
6888 if (isdigit (name[len - 2]))
6889 align_offset = len - 2;
6890 else
6891 align_offset = len - 1;
6892
6893 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6894 return TARGET_CHAR_BIT;
6895
6896 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6897 }
6898
6899 /* Find a symbol named NAME. Ignores ambiguity. */
6900
6901 struct symbol *
6902 ada_find_any_symbol (const char *name)
6903 {
6904 struct symbol *sym;
6905
6906 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6907 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6908 return sym;
6909
6910 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6911 return sym;
6912 }
6913
6914 /* Find a type named NAME. Ignores ambiguity. This routine will look
6915 solely for types defined by debug info, it will not search the GDB
6916 primitive types. */
6917
6918 struct type *
6919 ada_find_any_type (const char *name)
6920 {
6921 struct symbol *sym = ada_find_any_symbol (name);
6922
6923 if (sym != NULL)
6924 return SYMBOL_TYPE (sym);
6925
6926 return NULL;
6927 }
6928
6929 /* Given NAME and an associated BLOCK, search all symbols for
6930 NAME suffixed with "___XR", which is the ``renaming'' symbol
6931 associated to NAME. Return this symbol if found, return
6932 NULL otherwise. */
6933
6934 struct symbol *
6935 ada_find_renaming_symbol (const char *name, struct block *block)
6936 {
6937 struct symbol *sym;
6938
6939 sym = find_old_style_renaming_symbol (name, block);
6940
6941 if (sym != NULL)
6942 return sym;
6943
6944 /* Not right yet. FIXME pnh 7/20/2007. */
6945 sym = ada_find_any_symbol (name);
6946 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6947 return sym;
6948 else
6949 return NULL;
6950 }
6951
6952 static struct symbol *
6953 find_old_style_renaming_symbol (const char *name, struct block *block)
6954 {
6955 const struct symbol *function_sym = block_linkage_function (block);
6956 char *rename;
6957
6958 if (function_sym != NULL)
6959 {
6960 /* If the symbol is defined inside a function, NAME is not fully
6961 qualified. This means we need to prepend the function name
6962 as well as adding the ``___XR'' suffix to build the name of
6963 the associated renaming symbol. */
6964 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6965 /* Function names sometimes contain suffixes used
6966 for instance to qualify nested subprograms. When building
6967 the XR type name, we need to make sure that this suffix is
6968 not included. So do not include any suffix in the function
6969 name length below. */
6970 int function_name_len = ada_name_prefix_len (function_name);
6971 const int rename_len = function_name_len + 2 /* "__" */
6972 + strlen (name) + 6 /* "___XR\0" */ ;
6973
6974 /* Strip the suffix if necessary. */
6975 ada_remove_trailing_digits (function_name, &function_name_len);
6976 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6977 ada_remove_Xbn_suffix (function_name, &function_name_len);
6978
6979 /* Library-level functions are a special case, as GNAT adds
6980 a ``_ada_'' prefix to the function name to avoid namespace
6981 pollution. However, the renaming symbols themselves do not
6982 have this prefix, so we need to skip this prefix if present. */
6983 if (function_name_len > 5 /* "_ada_" */
6984 && strstr (function_name, "_ada_") == function_name)
6985 {
6986 function_name += 5;
6987 function_name_len -= 5;
6988 }
6989
6990 rename = (char *) alloca (rename_len * sizeof (char));
6991 strncpy (rename, function_name, function_name_len);
6992 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6993 "__%s___XR", name);
6994 }
6995 else
6996 {
6997 const int rename_len = strlen (name) + 6;
6998
6999 rename = (char *) alloca (rename_len * sizeof (char));
7000 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7001 }
7002
7003 return ada_find_any_symbol (rename);
7004 }
7005
7006 /* Because of GNAT encoding conventions, several GDB symbols may match a
7007 given type name. If the type denoted by TYPE0 is to be preferred to
7008 that of TYPE1 for purposes of type printing, return non-zero;
7009 otherwise return 0. */
7010
7011 int
7012 ada_prefer_type (struct type *type0, struct type *type1)
7013 {
7014 if (type1 == NULL)
7015 return 1;
7016 else if (type0 == NULL)
7017 return 0;
7018 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7019 return 1;
7020 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7021 return 0;
7022 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7023 return 1;
7024 else if (ada_is_constrained_packed_array_type (type0))
7025 return 1;
7026 else if (ada_is_array_descriptor_type (type0)
7027 && !ada_is_array_descriptor_type (type1))
7028 return 1;
7029 else
7030 {
7031 const char *type0_name = type_name_no_tag (type0);
7032 const char *type1_name = type_name_no_tag (type1);
7033
7034 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7035 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7036 return 1;
7037 }
7038 return 0;
7039 }
7040
7041 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7042 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7043
7044 char *
7045 ada_type_name (struct type *type)
7046 {
7047 if (type == NULL)
7048 return NULL;
7049 else if (TYPE_NAME (type) != NULL)
7050 return TYPE_NAME (type);
7051 else
7052 return TYPE_TAG_NAME (type);
7053 }
7054
7055 /* Search the list of "descriptive" types associated to TYPE for a type
7056 whose name is NAME. */
7057
7058 static struct type *
7059 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7060 {
7061 struct type *result;
7062
7063 /* If there no descriptive-type info, then there is no parallel type
7064 to be found. */
7065 if (!HAVE_GNAT_AUX_INFO (type))
7066 return NULL;
7067
7068 result = TYPE_DESCRIPTIVE_TYPE (type);
7069 while (result != NULL)
7070 {
7071 char *result_name = ada_type_name (result);
7072
7073 if (result_name == NULL)
7074 {
7075 warning (_("unexpected null name on descriptive type"));
7076 return NULL;
7077 }
7078
7079 /* If the names match, stop. */
7080 if (strcmp (result_name, name) == 0)
7081 break;
7082
7083 /* Otherwise, look at the next item on the list, if any. */
7084 if (HAVE_GNAT_AUX_INFO (result))
7085 result = TYPE_DESCRIPTIVE_TYPE (result);
7086 else
7087 result = NULL;
7088 }
7089
7090 /* If we didn't find a match, see whether this is a packed array. With
7091 older compilers, the descriptive type information is either absent or
7092 irrelevant when it comes to packed arrays so the above lookup fails.
7093 Fall back to using a parallel lookup by name in this case. */
7094 if (result == NULL && ada_is_constrained_packed_array_type (type))
7095 return ada_find_any_type (name);
7096
7097 return result;
7098 }
7099
7100 /* Find a parallel type to TYPE with the specified NAME, using the
7101 descriptive type taken from the debugging information, if available,
7102 and otherwise using the (slower) name-based method. */
7103
7104 static struct type *
7105 ada_find_parallel_type_with_name (struct type *type, const char *name)
7106 {
7107 struct type *result = NULL;
7108
7109 if (HAVE_GNAT_AUX_INFO (type))
7110 result = find_parallel_type_by_descriptive_type (type, name);
7111 else
7112 result = ada_find_any_type (name);
7113
7114 return result;
7115 }
7116
7117 /* Same as above, but specify the name of the parallel type by appending
7118 SUFFIX to the name of TYPE. */
7119
7120 struct type *
7121 ada_find_parallel_type (struct type *type, const char *suffix)
7122 {
7123 char *name, *typename = ada_type_name (type);
7124 int len;
7125
7126 if (typename == NULL)
7127 return NULL;
7128
7129 len = strlen (typename);
7130
7131 name = (char *) alloca (len + strlen (suffix) + 1);
7132
7133 strcpy (name, typename);
7134 strcpy (name + len, suffix);
7135
7136 return ada_find_parallel_type_with_name (type, name);
7137 }
7138
7139 /* If TYPE is a variable-size record type, return the corresponding template
7140 type describing its fields. Otherwise, return NULL. */
7141
7142 static struct type *
7143 dynamic_template_type (struct type *type)
7144 {
7145 type = ada_check_typedef (type);
7146
7147 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7148 || ada_type_name (type) == NULL)
7149 return NULL;
7150 else
7151 {
7152 int len = strlen (ada_type_name (type));
7153
7154 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7155 return type;
7156 else
7157 return ada_find_parallel_type (type, "___XVE");
7158 }
7159 }
7160
7161 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7162 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7163
7164 static int
7165 is_dynamic_field (struct type *templ_type, int field_num)
7166 {
7167 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7168
7169 return name != NULL
7170 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7171 && strstr (name, "___XVL") != NULL;
7172 }
7173
7174 /* The index of the variant field of TYPE, or -1 if TYPE does not
7175 represent a variant record type. */
7176
7177 static int
7178 variant_field_index (struct type *type)
7179 {
7180 int f;
7181
7182 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7183 return -1;
7184
7185 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7186 {
7187 if (ada_is_variant_part (type, f))
7188 return f;
7189 }
7190 return -1;
7191 }
7192
7193 /* A record type with no fields. */
7194
7195 static struct type *
7196 empty_record (struct type *template)
7197 {
7198 struct type *type = alloc_type_copy (template);
7199
7200 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7201 TYPE_NFIELDS (type) = 0;
7202 TYPE_FIELDS (type) = NULL;
7203 INIT_CPLUS_SPECIFIC (type);
7204 TYPE_NAME (type) = "<empty>";
7205 TYPE_TAG_NAME (type) = NULL;
7206 TYPE_LENGTH (type) = 0;
7207 return type;
7208 }
7209
7210 /* An ordinary record type (with fixed-length fields) that describes
7211 the value of type TYPE at VALADDR or ADDRESS (see comments at
7212 the beginning of this section) VAL according to GNAT conventions.
7213 DVAL0 should describe the (portion of a) record that contains any
7214 necessary discriminants. It should be NULL if value_type (VAL) is
7215 an outer-level type (i.e., as opposed to a branch of a variant.) A
7216 variant field (unless unchecked) is replaced by a particular branch
7217 of the variant.
7218
7219 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7220 length are not statically known are discarded. As a consequence,
7221 VALADDR, ADDRESS and DVAL0 are ignored.
7222
7223 NOTE: Limitations: For now, we assume that dynamic fields and
7224 variants occupy whole numbers of bytes. However, they need not be
7225 byte-aligned. */
7226
7227 struct type *
7228 ada_template_to_fixed_record_type_1 (struct type *type,
7229 const gdb_byte *valaddr,
7230 CORE_ADDR address, struct value *dval0,
7231 int keep_dynamic_fields)
7232 {
7233 struct value *mark = value_mark ();
7234 struct value *dval;
7235 struct type *rtype;
7236 int nfields, bit_len;
7237 int variant_field;
7238 long off;
7239 int fld_bit_len;
7240 int f;
7241
7242 /* Compute the number of fields in this record type that are going
7243 to be processed: unless keep_dynamic_fields, this includes only
7244 fields whose position and length are static will be processed. */
7245 if (keep_dynamic_fields)
7246 nfields = TYPE_NFIELDS (type);
7247 else
7248 {
7249 nfields = 0;
7250 while (nfields < TYPE_NFIELDS (type)
7251 && !ada_is_variant_part (type, nfields)
7252 && !is_dynamic_field (type, nfields))
7253 nfields++;
7254 }
7255
7256 rtype = alloc_type_copy (type);
7257 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7258 INIT_CPLUS_SPECIFIC (rtype);
7259 TYPE_NFIELDS (rtype) = nfields;
7260 TYPE_FIELDS (rtype) = (struct field *)
7261 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7262 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7263 TYPE_NAME (rtype) = ada_type_name (type);
7264 TYPE_TAG_NAME (rtype) = NULL;
7265 TYPE_FIXED_INSTANCE (rtype) = 1;
7266
7267 off = 0;
7268 bit_len = 0;
7269 variant_field = -1;
7270
7271 for (f = 0; f < nfields; f += 1)
7272 {
7273 off = align_value (off, field_alignment (type, f))
7274 + TYPE_FIELD_BITPOS (type, f);
7275 TYPE_FIELD_BITPOS (rtype, f) = off;
7276 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7277
7278 if (ada_is_variant_part (type, f))
7279 {
7280 variant_field = f;
7281 fld_bit_len = 0;
7282 }
7283 else if (is_dynamic_field (type, f))
7284 {
7285 const gdb_byte *field_valaddr = valaddr;
7286 CORE_ADDR field_address = address;
7287 struct type *field_type =
7288 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7289
7290 if (dval0 == NULL)
7291 {
7292 /* rtype's length is computed based on the run-time
7293 value of discriminants. If the discriminants are not
7294 initialized, the type size may be completely bogus and
7295 GDB may fail to allocate a value for it. So check the
7296 size first before creating the value. */
7297 check_size (rtype);
7298 dval = value_from_contents_and_address (rtype, valaddr, address);
7299 }
7300 else
7301 dval = dval0;
7302
7303 /* If the type referenced by this field is an aligner type, we need
7304 to unwrap that aligner type, because its size might not be set.
7305 Keeping the aligner type would cause us to compute the wrong
7306 size for this field, impacting the offset of the all the fields
7307 that follow this one. */
7308 if (ada_is_aligner_type (field_type))
7309 {
7310 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7311
7312 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7313 field_address = cond_offset_target (field_address, field_offset);
7314 field_type = ada_aligned_type (field_type);
7315 }
7316
7317 field_valaddr = cond_offset_host (field_valaddr,
7318 off / TARGET_CHAR_BIT);
7319 field_address = cond_offset_target (field_address,
7320 off / TARGET_CHAR_BIT);
7321
7322 /* Get the fixed type of the field. Note that, in this case,
7323 we do not want to get the real type out of the tag: if
7324 the current field is the parent part of a tagged record,
7325 we will get the tag of the object. Clearly wrong: the real
7326 type of the parent is not the real type of the child. We
7327 would end up in an infinite loop. */
7328 field_type = ada_get_base_type (field_type);
7329 field_type = ada_to_fixed_type (field_type, field_valaddr,
7330 field_address, dval, 0);
7331 /* If the field size is already larger than the maximum
7332 object size, then the record itself will necessarily
7333 be larger than the maximum object size. We need to make
7334 this check now, because the size might be so ridiculously
7335 large (due to an uninitialized variable in the inferior)
7336 that it would cause an overflow when adding it to the
7337 record size. */
7338 check_size (field_type);
7339
7340 TYPE_FIELD_TYPE (rtype, f) = field_type;
7341 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7342 /* The multiplication can potentially overflow. But because
7343 the field length has been size-checked just above, and
7344 assuming that the maximum size is a reasonable value,
7345 an overflow should not happen in practice. So rather than
7346 adding overflow recovery code to this already complex code,
7347 we just assume that it's not going to happen. */
7348 fld_bit_len =
7349 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7350 }
7351 else
7352 {
7353 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7354
7355 /* If our field is a typedef type (most likely a typedef of
7356 a fat pointer, encoding an array access), then we need to
7357 look at its target type to determine its characteristics.
7358 In particular, we would miscompute the field size if we took
7359 the size of the typedef (zero), instead of the size of
7360 the target type. */
7361 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7362 field_type = ada_typedef_target_type (field_type);
7363
7364 TYPE_FIELD_TYPE (rtype, f) = field_type;
7365 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7366 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7367 fld_bit_len =
7368 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7369 else
7370 fld_bit_len =
7371 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7372 }
7373 if (off + fld_bit_len > bit_len)
7374 bit_len = off + fld_bit_len;
7375 off += fld_bit_len;
7376 TYPE_LENGTH (rtype) =
7377 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7378 }
7379
7380 /* We handle the variant part, if any, at the end because of certain
7381 odd cases in which it is re-ordered so as NOT to be the last field of
7382 the record. This can happen in the presence of representation
7383 clauses. */
7384 if (variant_field >= 0)
7385 {
7386 struct type *branch_type;
7387
7388 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7389
7390 if (dval0 == NULL)
7391 dval = value_from_contents_and_address (rtype, valaddr, address);
7392 else
7393 dval = dval0;
7394
7395 branch_type =
7396 to_fixed_variant_branch_type
7397 (TYPE_FIELD_TYPE (type, variant_field),
7398 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7399 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7400 if (branch_type == NULL)
7401 {
7402 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7403 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7404 TYPE_NFIELDS (rtype) -= 1;
7405 }
7406 else
7407 {
7408 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7409 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7410 fld_bit_len =
7411 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7412 TARGET_CHAR_BIT;
7413 if (off + fld_bit_len > bit_len)
7414 bit_len = off + fld_bit_len;
7415 TYPE_LENGTH (rtype) =
7416 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7417 }
7418 }
7419
7420 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7421 should contain the alignment of that record, which should be a strictly
7422 positive value. If null or negative, then something is wrong, most
7423 probably in the debug info. In that case, we don't round up the size
7424 of the resulting type. If this record is not part of another structure,
7425 the current RTYPE length might be good enough for our purposes. */
7426 if (TYPE_LENGTH (type) <= 0)
7427 {
7428 if (TYPE_NAME (rtype))
7429 warning (_("Invalid type size for `%s' detected: %d."),
7430 TYPE_NAME (rtype), TYPE_LENGTH (type));
7431 else
7432 warning (_("Invalid type size for <unnamed> detected: %d."),
7433 TYPE_LENGTH (type));
7434 }
7435 else
7436 {
7437 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7438 TYPE_LENGTH (type));
7439 }
7440
7441 value_free_to_mark (mark);
7442 if (TYPE_LENGTH (rtype) > varsize_limit)
7443 error (_("record type with dynamic size is larger than varsize-limit"));
7444 return rtype;
7445 }
7446
7447 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7448 of 1. */
7449
7450 static struct type *
7451 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7452 CORE_ADDR address, struct value *dval0)
7453 {
7454 return ada_template_to_fixed_record_type_1 (type, valaddr,
7455 address, dval0, 1);
7456 }
7457
7458 /* An ordinary record type in which ___XVL-convention fields and
7459 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7460 static approximations, containing all possible fields. Uses
7461 no runtime values. Useless for use in values, but that's OK,
7462 since the results are used only for type determinations. Works on both
7463 structs and unions. Representation note: to save space, we memorize
7464 the result of this function in the TYPE_TARGET_TYPE of the
7465 template type. */
7466
7467 static struct type *
7468 template_to_static_fixed_type (struct type *type0)
7469 {
7470 struct type *type;
7471 int nfields;
7472 int f;
7473
7474 if (TYPE_TARGET_TYPE (type0) != NULL)
7475 return TYPE_TARGET_TYPE (type0);
7476
7477 nfields = TYPE_NFIELDS (type0);
7478 type = type0;
7479
7480 for (f = 0; f < nfields; f += 1)
7481 {
7482 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7483 struct type *new_type;
7484
7485 if (is_dynamic_field (type0, f))
7486 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7487 else
7488 new_type = static_unwrap_type (field_type);
7489 if (type == type0 && new_type != field_type)
7490 {
7491 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7492 TYPE_CODE (type) = TYPE_CODE (type0);
7493 INIT_CPLUS_SPECIFIC (type);
7494 TYPE_NFIELDS (type) = nfields;
7495 TYPE_FIELDS (type) = (struct field *)
7496 TYPE_ALLOC (type, nfields * sizeof (struct field));
7497 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7498 sizeof (struct field) * nfields);
7499 TYPE_NAME (type) = ada_type_name (type0);
7500 TYPE_TAG_NAME (type) = NULL;
7501 TYPE_FIXED_INSTANCE (type) = 1;
7502 TYPE_LENGTH (type) = 0;
7503 }
7504 TYPE_FIELD_TYPE (type, f) = new_type;
7505 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7506 }
7507 return type;
7508 }
7509
7510 /* Given an object of type TYPE whose contents are at VALADDR and
7511 whose address in memory is ADDRESS, returns a revision of TYPE,
7512 which should be a non-dynamic-sized record, in which the variant
7513 part, if any, is replaced with the appropriate branch. Looks
7514 for discriminant values in DVAL0, which can be NULL if the record
7515 contains the necessary discriminant values. */
7516
7517 static struct type *
7518 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7519 CORE_ADDR address, struct value *dval0)
7520 {
7521 struct value *mark = value_mark ();
7522 struct value *dval;
7523 struct type *rtype;
7524 struct type *branch_type;
7525 int nfields = TYPE_NFIELDS (type);
7526 int variant_field = variant_field_index (type);
7527
7528 if (variant_field == -1)
7529 return type;
7530
7531 if (dval0 == NULL)
7532 dval = value_from_contents_and_address (type, valaddr, address);
7533 else
7534 dval = dval0;
7535
7536 rtype = alloc_type_copy (type);
7537 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7538 INIT_CPLUS_SPECIFIC (rtype);
7539 TYPE_NFIELDS (rtype) = nfields;
7540 TYPE_FIELDS (rtype) =
7541 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7542 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7543 sizeof (struct field) * nfields);
7544 TYPE_NAME (rtype) = ada_type_name (type);
7545 TYPE_TAG_NAME (rtype) = NULL;
7546 TYPE_FIXED_INSTANCE (rtype) = 1;
7547 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7548
7549 branch_type = to_fixed_variant_branch_type
7550 (TYPE_FIELD_TYPE (type, variant_field),
7551 cond_offset_host (valaddr,
7552 TYPE_FIELD_BITPOS (type, variant_field)
7553 / TARGET_CHAR_BIT),
7554 cond_offset_target (address,
7555 TYPE_FIELD_BITPOS (type, variant_field)
7556 / TARGET_CHAR_BIT), dval);
7557 if (branch_type == NULL)
7558 {
7559 int f;
7560
7561 for (f = variant_field + 1; f < nfields; f += 1)
7562 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7563 TYPE_NFIELDS (rtype) -= 1;
7564 }
7565 else
7566 {
7567 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7568 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7569 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7570 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7571 }
7572 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7573
7574 value_free_to_mark (mark);
7575 return rtype;
7576 }
7577
7578 /* An ordinary record type (with fixed-length fields) that describes
7579 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7580 beginning of this section]. Any necessary discriminants' values
7581 should be in DVAL, a record value; it may be NULL if the object
7582 at ADDR itself contains any necessary discriminant values.
7583 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7584 values from the record are needed. Except in the case that DVAL,
7585 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7586 unchecked) is replaced by a particular branch of the variant.
7587
7588 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7589 is questionable and may be removed. It can arise during the
7590 processing of an unconstrained-array-of-record type where all the
7591 variant branches have exactly the same size. This is because in
7592 such cases, the compiler does not bother to use the XVS convention
7593 when encoding the record. I am currently dubious of this
7594 shortcut and suspect the compiler should be altered. FIXME. */
7595
7596 static struct type *
7597 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7598 CORE_ADDR address, struct value *dval)
7599 {
7600 struct type *templ_type;
7601
7602 if (TYPE_FIXED_INSTANCE (type0))
7603 return type0;
7604
7605 templ_type = dynamic_template_type (type0);
7606
7607 if (templ_type != NULL)
7608 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7609 else if (variant_field_index (type0) >= 0)
7610 {
7611 if (dval == NULL && valaddr == NULL && address == 0)
7612 return type0;
7613 return to_record_with_fixed_variant_part (type0, valaddr, address,
7614 dval);
7615 }
7616 else
7617 {
7618 TYPE_FIXED_INSTANCE (type0) = 1;
7619 return type0;
7620 }
7621
7622 }
7623
7624 /* An ordinary record type (with fixed-length fields) that describes
7625 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7626 union type. Any necessary discriminants' values should be in DVAL,
7627 a record value. That is, this routine selects the appropriate
7628 branch of the union at ADDR according to the discriminant value
7629 indicated in the union's type name. Returns VAR_TYPE0 itself if
7630 it represents a variant subject to a pragma Unchecked_Union. */
7631
7632 static struct type *
7633 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7634 CORE_ADDR address, struct value *dval)
7635 {
7636 int which;
7637 struct type *templ_type;
7638 struct type *var_type;
7639
7640 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7641 var_type = TYPE_TARGET_TYPE (var_type0);
7642 else
7643 var_type = var_type0;
7644
7645 templ_type = ada_find_parallel_type (var_type, "___XVU");
7646
7647 if (templ_type != NULL)
7648 var_type = templ_type;
7649
7650 if (is_unchecked_variant (var_type, value_type (dval)))
7651 return var_type0;
7652 which =
7653 ada_which_variant_applies (var_type,
7654 value_type (dval), value_contents (dval));
7655
7656 if (which < 0)
7657 return empty_record (var_type);
7658 else if (is_dynamic_field (var_type, which))
7659 return to_fixed_record_type
7660 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7661 valaddr, address, dval);
7662 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7663 return
7664 to_fixed_record_type
7665 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7666 else
7667 return TYPE_FIELD_TYPE (var_type, which);
7668 }
7669
7670 /* Assuming that TYPE0 is an array type describing the type of a value
7671 at ADDR, and that DVAL describes a record containing any
7672 discriminants used in TYPE0, returns a type for the value that
7673 contains no dynamic components (that is, no components whose sizes
7674 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7675 true, gives an error message if the resulting type's size is over
7676 varsize_limit. */
7677
7678 static struct type *
7679 to_fixed_array_type (struct type *type0, struct value *dval,
7680 int ignore_too_big)
7681 {
7682 struct type *index_type_desc;
7683 struct type *result;
7684 int constrained_packed_array_p;
7685
7686 type0 = ada_check_typedef (type0);
7687 if (TYPE_FIXED_INSTANCE (type0))
7688 return type0;
7689
7690 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7691 if (constrained_packed_array_p)
7692 type0 = decode_constrained_packed_array_type (type0);
7693
7694 index_type_desc = ada_find_parallel_type (type0, "___XA");
7695 ada_fixup_array_indexes_type (index_type_desc);
7696 if (index_type_desc == NULL)
7697 {
7698 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7699
7700 /* NOTE: elt_type---the fixed version of elt_type0---should never
7701 depend on the contents of the array in properly constructed
7702 debugging data. */
7703 /* Create a fixed version of the array element type.
7704 We're not providing the address of an element here,
7705 and thus the actual object value cannot be inspected to do
7706 the conversion. This should not be a problem, since arrays of
7707 unconstrained objects are not allowed. In particular, all
7708 the elements of an array of a tagged type should all be of
7709 the same type specified in the debugging info. No need to
7710 consult the object tag. */
7711 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7712
7713 /* Make sure we always create a new array type when dealing with
7714 packed array types, since we're going to fix-up the array
7715 type length and element bitsize a little further down. */
7716 if (elt_type0 == elt_type && !constrained_packed_array_p)
7717 result = type0;
7718 else
7719 result = create_array_type (alloc_type_copy (type0),
7720 elt_type, TYPE_INDEX_TYPE (type0));
7721 }
7722 else
7723 {
7724 int i;
7725 struct type *elt_type0;
7726
7727 elt_type0 = type0;
7728 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7729 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7730
7731 /* NOTE: result---the fixed version of elt_type0---should never
7732 depend on the contents of the array in properly constructed
7733 debugging data. */
7734 /* Create a fixed version of the array element type.
7735 We're not providing the address of an element here,
7736 and thus the actual object value cannot be inspected to do
7737 the conversion. This should not be a problem, since arrays of
7738 unconstrained objects are not allowed. In particular, all
7739 the elements of an array of a tagged type should all be of
7740 the same type specified in the debugging info. No need to
7741 consult the object tag. */
7742 result =
7743 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7744
7745 elt_type0 = type0;
7746 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7747 {
7748 struct type *range_type =
7749 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7750
7751 result = create_array_type (alloc_type_copy (elt_type0),
7752 result, range_type);
7753 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7754 }
7755 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7756 error (_("array type with dynamic size is larger than varsize-limit"));
7757 }
7758
7759 if (constrained_packed_array_p)
7760 {
7761 /* So far, the resulting type has been created as if the original
7762 type was a regular (non-packed) array type. As a result, the
7763 bitsize of the array elements needs to be set again, and the array
7764 length needs to be recomputed based on that bitsize. */
7765 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7766 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7767
7768 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7769 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7770 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7771 TYPE_LENGTH (result)++;
7772 }
7773
7774 TYPE_FIXED_INSTANCE (result) = 1;
7775 return result;
7776 }
7777
7778
7779 /* A standard type (containing no dynamically sized components)
7780 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7781 DVAL describes a record containing any discriminants used in TYPE0,
7782 and may be NULL if there are none, or if the object of type TYPE at
7783 ADDRESS or in VALADDR contains these discriminants.
7784
7785 If CHECK_TAG is not null, in the case of tagged types, this function
7786 attempts to locate the object's tag and use it to compute the actual
7787 type. However, when ADDRESS is null, we cannot use it to determine the
7788 location of the tag, and therefore compute the tagged type's actual type.
7789 So we return the tagged type without consulting the tag. */
7790
7791 static struct type *
7792 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7793 CORE_ADDR address, struct value *dval, int check_tag)
7794 {
7795 type = ada_check_typedef (type);
7796 switch (TYPE_CODE (type))
7797 {
7798 default:
7799 return type;
7800 case TYPE_CODE_STRUCT:
7801 {
7802 struct type *static_type = to_static_fixed_type (type);
7803 struct type *fixed_record_type =
7804 to_fixed_record_type (type, valaddr, address, NULL);
7805
7806 /* If STATIC_TYPE is a tagged type and we know the object's address,
7807 then we can determine its tag, and compute the object's actual
7808 type from there. Note that we have to use the fixed record
7809 type (the parent part of the record may have dynamic fields
7810 and the way the location of _tag is expressed may depend on
7811 them). */
7812
7813 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7814 {
7815 struct type *real_type =
7816 type_from_tag (value_tag_from_contents_and_address
7817 (fixed_record_type,
7818 valaddr,
7819 address));
7820
7821 if (real_type != NULL)
7822 return to_fixed_record_type (real_type, valaddr, address, NULL);
7823 }
7824
7825 /* Check to see if there is a parallel ___XVZ variable.
7826 If there is, then it provides the actual size of our type. */
7827 else if (ada_type_name (fixed_record_type) != NULL)
7828 {
7829 char *name = ada_type_name (fixed_record_type);
7830 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7831 int xvz_found = 0;
7832 LONGEST size;
7833
7834 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7835 size = get_int_var_value (xvz_name, &xvz_found);
7836 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7837 {
7838 fixed_record_type = copy_type (fixed_record_type);
7839 TYPE_LENGTH (fixed_record_type) = size;
7840
7841 /* The FIXED_RECORD_TYPE may have be a stub. We have
7842 observed this when the debugging info is STABS, and
7843 apparently it is something that is hard to fix.
7844
7845 In practice, we don't need the actual type definition
7846 at all, because the presence of the XVZ variable allows us
7847 to assume that there must be a XVS type as well, which we
7848 should be able to use later, when we need the actual type
7849 definition.
7850
7851 In the meantime, pretend that the "fixed" type we are
7852 returning is NOT a stub, because this can cause trouble
7853 when using this type to create new types targeting it.
7854 Indeed, the associated creation routines often check
7855 whether the target type is a stub and will try to replace
7856 it, thus using a type with the wrong size. This, in turn,
7857 might cause the new type to have the wrong size too.
7858 Consider the case of an array, for instance, where the size
7859 of the array is computed from the number of elements in
7860 our array multiplied by the size of its element. */
7861 TYPE_STUB (fixed_record_type) = 0;
7862 }
7863 }
7864 return fixed_record_type;
7865 }
7866 case TYPE_CODE_ARRAY:
7867 return to_fixed_array_type (type, dval, 1);
7868 case TYPE_CODE_UNION:
7869 if (dval == NULL)
7870 return type;
7871 else
7872 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7873 }
7874 }
7875
7876 /* The same as ada_to_fixed_type_1, except that it preserves the type
7877 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7878
7879 The typedef layer needs be preserved in order to differentiate between
7880 arrays and array pointers when both types are implemented using the same
7881 fat pointer. In the array pointer case, the pointer is encoded as
7882 a typedef of the pointer type. For instance, considering:
7883
7884 type String_Access is access String;
7885 S1 : String_Access := null;
7886
7887 To the debugger, S1 is defined as a typedef of type String. But
7888 to the user, it is a pointer. So if the user tries to print S1,
7889 we should not dereference the array, but print the array address
7890 instead.
7891
7892 If we didn't preserve the typedef layer, we would lose the fact that
7893 the type is to be presented as a pointer (needs de-reference before
7894 being printed). And we would also use the source-level type name. */
7895
7896 struct type *
7897 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7898 CORE_ADDR address, struct value *dval, int check_tag)
7899
7900 {
7901 struct type *fixed_type =
7902 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7903
7904 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7905 then preserve the typedef layer.
7906
7907 Implementation note: We can only check the main-type portion of
7908 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7909 from TYPE now returns a type that has the same instance flags
7910 as TYPE. For instance, if TYPE is a "typedef const", and its
7911 target type is a "struct", then the typedef elimination will return
7912 a "const" version of the target type. See check_typedef for more
7913 details about how the typedef layer elimination is done.
7914
7915 brobecker/2010-11-19: It seems to me that the only case where it is
7916 useful to preserve the typedef layer is when dealing with fat pointers.
7917 Perhaps, we could add a check for that and preserve the typedef layer
7918 only in that situation. But this seems unecessary so far, probably
7919 because we call check_typedef/ada_check_typedef pretty much everywhere.
7920 */
7921 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7922 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7923 == TYPE_MAIN_TYPE (fixed_type)))
7924 return type;
7925
7926 return fixed_type;
7927 }
7928
7929 /* A standard (static-sized) type corresponding as well as possible to
7930 TYPE0, but based on no runtime data. */
7931
7932 static struct type *
7933 to_static_fixed_type (struct type *type0)
7934 {
7935 struct type *type;
7936
7937 if (type0 == NULL)
7938 return NULL;
7939
7940 if (TYPE_FIXED_INSTANCE (type0))
7941 return type0;
7942
7943 type0 = ada_check_typedef (type0);
7944
7945 switch (TYPE_CODE (type0))
7946 {
7947 default:
7948 return type0;
7949 case TYPE_CODE_STRUCT:
7950 type = dynamic_template_type (type0);
7951 if (type != NULL)
7952 return template_to_static_fixed_type (type);
7953 else
7954 return template_to_static_fixed_type (type0);
7955 case TYPE_CODE_UNION:
7956 type = ada_find_parallel_type (type0, "___XVU");
7957 if (type != NULL)
7958 return template_to_static_fixed_type (type);
7959 else
7960 return template_to_static_fixed_type (type0);
7961 }
7962 }
7963
7964 /* A static approximation of TYPE with all type wrappers removed. */
7965
7966 static struct type *
7967 static_unwrap_type (struct type *type)
7968 {
7969 if (ada_is_aligner_type (type))
7970 {
7971 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7972 if (ada_type_name (type1) == NULL)
7973 TYPE_NAME (type1) = ada_type_name (type);
7974
7975 return static_unwrap_type (type1);
7976 }
7977 else
7978 {
7979 struct type *raw_real_type = ada_get_base_type (type);
7980
7981 if (raw_real_type == type)
7982 return type;
7983 else
7984 return to_static_fixed_type (raw_real_type);
7985 }
7986 }
7987
7988 /* In some cases, incomplete and private types require
7989 cross-references that are not resolved as records (for example,
7990 type Foo;
7991 type FooP is access Foo;
7992 V: FooP;
7993 type Foo is array ...;
7994 ). In these cases, since there is no mechanism for producing
7995 cross-references to such types, we instead substitute for FooP a
7996 stub enumeration type that is nowhere resolved, and whose tag is
7997 the name of the actual type. Call these types "non-record stubs". */
7998
7999 /* A type equivalent to TYPE that is not a non-record stub, if one
8000 exists, otherwise TYPE. */
8001
8002 struct type *
8003 ada_check_typedef (struct type *type)
8004 {
8005 if (type == NULL)
8006 return NULL;
8007
8008 /* If our type is a typedef type of a fat pointer, then we're done.
8009 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8010 what allows us to distinguish between fat pointers that represent
8011 array types, and fat pointers that represent array access types
8012 (in both cases, the compiler implements them as fat pointers). */
8013 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8014 && is_thick_pntr (ada_typedef_target_type (type)))
8015 return type;
8016
8017 CHECK_TYPEDEF (type);
8018 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8019 || !TYPE_STUB (type)
8020 || TYPE_TAG_NAME (type) == NULL)
8021 return type;
8022 else
8023 {
8024 char *name = TYPE_TAG_NAME (type);
8025 struct type *type1 = ada_find_any_type (name);
8026
8027 if (type1 == NULL)
8028 return type;
8029
8030 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8031 stubs pointing to arrays, as we don't create symbols for array
8032 types, only for the typedef-to-array types). If that's the case,
8033 strip the typedef layer. */
8034 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8035 type1 = ada_check_typedef (type1);
8036
8037 return type1;
8038 }
8039 }
8040
8041 /* A value representing the data at VALADDR/ADDRESS as described by
8042 type TYPE0, but with a standard (static-sized) type that correctly
8043 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8044 type, then return VAL0 [this feature is simply to avoid redundant
8045 creation of struct values]. */
8046
8047 static struct value *
8048 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8049 struct value *val0)
8050 {
8051 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8052
8053 if (type == type0 && val0 != NULL)
8054 return val0;
8055 else
8056 return value_from_contents_and_address (type, 0, address);
8057 }
8058
8059 /* A value representing VAL, but with a standard (static-sized) type
8060 that correctly describes it. Does not necessarily create a new
8061 value. */
8062
8063 struct value *
8064 ada_to_fixed_value (struct value *val)
8065 {
8066 return ada_to_fixed_value_create (value_type (val),
8067 value_address (val),
8068 val);
8069 }
8070 \f
8071
8072 /* Attributes */
8073
8074 /* Table mapping attribute numbers to names.
8075 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8076
8077 static const char *attribute_names[] = {
8078 "<?>",
8079
8080 "first",
8081 "last",
8082 "length",
8083 "image",
8084 "max",
8085 "min",
8086 "modulus",
8087 "pos",
8088 "size",
8089 "tag",
8090 "val",
8091 0
8092 };
8093
8094 const char *
8095 ada_attribute_name (enum exp_opcode n)
8096 {
8097 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8098 return attribute_names[n - OP_ATR_FIRST + 1];
8099 else
8100 return attribute_names[0];
8101 }
8102
8103 /* Evaluate the 'POS attribute applied to ARG. */
8104
8105 static LONGEST
8106 pos_atr (struct value *arg)
8107 {
8108 struct value *val = coerce_ref (arg);
8109 struct type *type = value_type (val);
8110
8111 if (!discrete_type_p (type))
8112 error (_("'POS only defined on discrete types"));
8113
8114 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8115 {
8116 int i;
8117 LONGEST v = value_as_long (val);
8118
8119 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8120 {
8121 if (v == TYPE_FIELD_BITPOS (type, i))
8122 return i;
8123 }
8124 error (_("enumeration value is invalid: can't find 'POS"));
8125 }
8126 else
8127 return value_as_long (val);
8128 }
8129
8130 static struct value *
8131 value_pos_atr (struct type *type, struct value *arg)
8132 {
8133 return value_from_longest (type, pos_atr (arg));
8134 }
8135
8136 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8137
8138 static struct value *
8139 value_val_atr (struct type *type, struct value *arg)
8140 {
8141 if (!discrete_type_p (type))
8142 error (_("'VAL only defined on discrete types"));
8143 if (!integer_type_p (value_type (arg)))
8144 error (_("'VAL requires integral argument"));
8145
8146 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8147 {
8148 long pos = value_as_long (arg);
8149
8150 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8151 error (_("argument to 'VAL out of range"));
8152 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8153 }
8154 else
8155 return value_from_longest (type, value_as_long (arg));
8156 }
8157 \f
8158
8159 /* Evaluation */
8160
8161 /* True if TYPE appears to be an Ada character type.
8162 [At the moment, this is true only for Character and Wide_Character;
8163 It is a heuristic test that could stand improvement]. */
8164
8165 int
8166 ada_is_character_type (struct type *type)
8167 {
8168 const char *name;
8169
8170 /* If the type code says it's a character, then assume it really is,
8171 and don't check any further. */
8172 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8173 return 1;
8174
8175 /* Otherwise, assume it's a character type iff it is a discrete type
8176 with a known character type name. */
8177 name = ada_type_name (type);
8178 return (name != NULL
8179 && (TYPE_CODE (type) == TYPE_CODE_INT
8180 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8181 && (strcmp (name, "character") == 0
8182 || strcmp (name, "wide_character") == 0
8183 || strcmp (name, "wide_wide_character") == 0
8184 || strcmp (name, "unsigned char") == 0));
8185 }
8186
8187 /* True if TYPE appears to be an Ada string type. */
8188
8189 int
8190 ada_is_string_type (struct type *type)
8191 {
8192 type = ada_check_typedef (type);
8193 if (type != NULL
8194 && TYPE_CODE (type) != TYPE_CODE_PTR
8195 && (ada_is_simple_array_type (type)
8196 || ada_is_array_descriptor_type (type))
8197 && ada_array_arity (type) == 1)
8198 {
8199 struct type *elttype = ada_array_element_type (type, 1);
8200
8201 return ada_is_character_type (elttype);
8202 }
8203 else
8204 return 0;
8205 }
8206
8207 /* The compiler sometimes provides a parallel XVS type for a given
8208 PAD type. Normally, it is safe to follow the PAD type directly,
8209 but older versions of the compiler have a bug that causes the offset
8210 of its "F" field to be wrong. Following that field in that case
8211 would lead to incorrect results, but this can be worked around
8212 by ignoring the PAD type and using the associated XVS type instead.
8213
8214 Set to True if the debugger should trust the contents of PAD types.
8215 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8216 static int trust_pad_over_xvs = 1;
8217
8218 /* True if TYPE is a struct type introduced by the compiler to force the
8219 alignment of a value. Such types have a single field with a
8220 distinctive name. */
8221
8222 int
8223 ada_is_aligner_type (struct type *type)
8224 {
8225 type = ada_check_typedef (type);
8226
8227 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8228 return 0;
8229
8230 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8231 && TYPE_NFIELDS (type) == 1
8232 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8233 }
8234
8235 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8236 the parallel type. */
8237
8238 struct type *
8239 ada_get_base_type (struct type *raw_type)
8240 {
8241 struct type *real_type_namer;
8242 struct type *raw_real_type;
8243
8244 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8245 return raw_type;
8246
8247 if (ada_is_aligner_type (raw_type))
8248 /* The encoding specifies that we should always use the aligner type.
8249 So, even if this aligner type has an associated XVS type, we should
8250 simply ignore it.
8251
8252 According to the compiler gurus, an XVS type parallel to an aligner
8253 type may exist because of a stabs limitation. In stabs, aligner
8254 types are empty because the field has a variable-sized type, and
8255 thus cannot actually be used as an aligner type. As a result,
8256 we need the associated parallel XVS type to decode the type.
8257 Since the policy in the compiler is to not change the internal
8258 representation based on the debugging info format, we sometimes
8259 end up having a redundant XVS type parallel to the aligner type. */
8260 return raw_type;
8261
8262 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8263 if (real_type_namer == NULL
8264 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8265 || TYPE_NFIELDS (real_type_namer) != 1)
8266 return raw_type;
8267
8268 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8269 {
8270 /* This is an older encoding form where the base type needs to be
8271 looked up by name. We prefer the newer enconding because it is
8272 more efficient. */
8273 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8274 if (raw_real_type == NULL)
8275 return raw_type;
8276 else
8277 return raw_real_type;
8278 }
8279
8280 /* The field in our XVS type is a reference to the base type. */
8281 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8282 }
8283
8284 /* The type of value designated by TYPE, with all aligners removed. */
8285
8286 struct type *
8287 ada_aligned_type (struct type *type)
8288 {
8289 if (ada_is_aligner_type (type))
8290 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8291 else
8292 return ada_get_base_type (type);
8293 }
8294
8295
8296 /* The address of the aligned value in an object at address VALADDR
8297 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8298
8299 const gdb_byte *
8300 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8301 {
8302 if (ada_is_aligner_type (type))
8303 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8304 valaddr +
8305 TYPE_FIELD_BITPOS (type,
8306 0) / TARGET_CHAR_BIT);
8307 else
8308 return valaddr;
8309 }
8310
8311
8312
8313 /* The printed representation of an enumeration literal with encoded
8314 name NAME. The value is good to the next call of ada_enum_name. */
8315 const char *
8316 ada_enum_name (const char *name)
8317 {
8318 static char *result;
8319 static size_t result_len = 0;
8320 char *tmp;
8321
8322 /* First, unqualify the enumeration name:
8323 1. Search for the last '.' character. If we find one, then skip
8324 all the preceding characters, the unqualified name starts
8325 right after that dot.
8326 2. Otherwise, we may be debugging on a target where the compiler
8327 translates dots into "__". Search forward for double underscores,
8328 but stop searching when we hit an overloading suffix, which is
8329 of the form "__" followed by digits. */
8330
8331 tmp = strrchr (name, '.');
8332 if (tmp != NULL)
8333 name = tmp + 1;
8334 else
8335 {
8336 while ((tmp = strstr (name, "__")) != NULL)
8337 {
8338 if (isdigit (tmp[2]))
8339 break;
8340 else
8341 name = tmp + 2;
8342 }
8343 }
8344
8345 if (name[0] == 'Q')
8346 {
8347 int v;
8348
8349 if (name[1] == 'U' || name[1] == 'W')
8350 {
8351 if (sscanf (name + 2, "%x", &v) != 1)
8352 return name;
8353 }
8354 else
8355 return name;
8356
8357 GROW_VECT (result, result_len, 16);
8358 if (isascii (v) && isprint (v))
8359 xsnprintf (result, result_len, "'%c'", v);
8360 else if (name[1] == 'U')
8361 xsnprintf (result, result_len, "[\"%02x\"]", v);
8362 else
8363 xsnprintf (result, result_len, "[\"%04x\"]", v);
8364
8365 return result;
8366 }
8367 else
8368 {
8369 tmp = strstr (name, "__");
8370 if (tmp == NULL)
8371 tmp = strstr (name, "$");
8372 if (tmp != NULL)
8373 {
8374 GROW_VECT (result, result_len, tmp - name + 1);
8375 strncpy (result, name, tmp - name);
8376 result[tmp - name] = '\0';
8377 return result;
8378 }
8379
8380 return name;
8381 }
8382 }
8383
8384 /* Evaluate the subexpression of EXP starting at *POS as for
8385 evaluate_type, updating *POS to point just past the evaluated
8386 expression. */
8387
8388 static struct value *
8389 evaluate_subexp_type (struct expression *exp, int *pos)
8390 {
8391 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8392 }
8393
8394 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8395 value it wraps. */
8396
8397 static struct value *
8398 unwrap_value (struct value *val)
8399 {
8400 struct type *type = ada_check_typedef (value_type (val));
8401
8402 if (ada_is_aligner_type (type))
8403 {
8404 struct value *v = ada_value_struct_elt (val, "F", 0);
8405 struct type *val_type = ada_check_typedef (value_type (v));
8406
8407 if (ada_type_name (val_type) == NULL)
8408 TYPE_NAME (val_type) = ada_type_name (type);
8409
8410 return unwrap_value (v);
8411 }
8412 else
8413 {
8414 struct type *raw_real_type =
8415 ada_check_typedef (ada_get_base_type (type));
8416
8417 /* If there is no parallel XVS or XVE type, then the value is
8418 already unwrapped. Return it without further modification. */
8419 if ((type == raw_real_type)
8420 && ada_find_parallel_type (type, "___XVE") == NULL)
8421 return val;
8422
8423 return
8424 coerce_unspec_val_to_type
8425 (val, ada_to_fixed_type (raw_real_type, 0,
8426 value_address (val),
8427 NULL, 1));
8428 }
8429 }
8430
8431 static struct value *
8432 cast_to_fixed (struct type *type, struct value *arg)
8433 {
8434 LONGEST val;
8435
8436 if (type == value_type (arg))
8437 return arg;
8438 else if (ada_is_fixed_point_type (value_type (arg)))
8439 val = ada_float_to_fixed (type,
8440 ada_fixed_to_float (value_type (arg),
8441 value_as_long (arg)));
8442 else
8443 {
8444 DOUBLEST argd = value_as_double (arg);
8445
8446 val = ada_float_to_fixed (type, argd);
8447 }
8448
8449 return value_from_longest (type, val);
8450 }
8451
8452 static struct value *
8453 cast_from_fixed (struct type *type, struct value *arg)
8454 {
8455 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8456 value_as_long (arg));
8457
8458 return value_from_double (type, val);
8459 }
8460
8461 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8462 return the converted value. */
8463
8464 static struct value *
8465 coerce_for_assign (struct type *type, struct value *val)
8466 {
8467 struct type *type2 = value_type (val);
8468
8469 if (type == type2)
8470 return val;
8471
8472 type2 = ada_check_typedef (type2);
8473 type = ada_check_typedef (type);
8474
8475 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8476 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8477 {
8478 val = ada_value_ind (val);
8479 type2 = value_type (val);
8480 }
8481
8482 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8483 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8484 {
8485 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8486 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8487 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8488 error (_("Incompatible types in assignment"));
8489 deprecated_set_value_type (val, type);
8490 }
8491 return val;
8492 }
8493
8494 static struct value *
8495 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8496 {
8497 struct value *val;
8498 struct type *type1, *type2;
8499 LONGEST v, v1, v2;
8500
8501 arg1 = coerce_ref (arg1);
8502 arg2 = coerce_ref (arg2);
8503 type1 = base_type (ada_check_typedef (value_type (arg1)));
8504 type2 = base_type (ada_check_typedef (value_type (arg2)));
8505
8506 if (TYPE_CODE (type1) != TYPE_CODE_INT
8507 || TYPE_CODE (type2) != TYPE_CODE_INT)
8508 return value_binop (arg1, arg2, op);
8509
8510 switch (op)
8511 {
8512 case BINOP_MOD:
8513 case BINOP_DIV:
8514 case BINOP_REM:
8515 break;
8516 default:
8517 return value_binop (arg1, arg2, op);
8518 }
8519
8520 v2 = value_as_long (arg2);
8521 if (v2 == 0)
8522 error (_("second operand of %s must not be zero."), op_string (op));
8523
8524 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8525 return value_binop (arg1, arg2, op);
8526
8527 v1 = value_as_long (arg1);
8528 switch (op)
8529 {
8530 case BINOP_DIV:
8531 v = v1 / v2;
8532 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8533 v += v > 0 ? -1 : 1;
8534 break;
8535 case BINOP_REM:
8536 v = v1 % v2;
8537 if (v * v1 < 0)
8538 v -= v2;
8539 break;
8540 default:
8541 /* Should not reach this point. */
8542 v = 0;
8543 }
8544
8545 val = allocate_value (type1);
8546 store_unsigned_integer (value_contents_raw (val),
8547 TYPE_LENGTH (value_type (val)),
8548 gdbarch_byte_order (get_type_arch (type1)), v);
8549 return val;
8550 }
8551
8552 static int
8553 ada_value_equal (struct value *arg1, struct value *arg2)
8554 {
8555 if (ada_is_direct_array_type (value_type (arg1))
8556 || ada_is_direct_array_type (value_type (arg2)))
8557 {
8558 /* Automatically dereference any array reference before
8559 we attempt to perform the comparison. */
8560 arg1 = ada_coerce_ref (arg1);
8561 arg2 = ada_coerce_ref (arg2);
8562
8563 arg1 = ada_coerce_to_simple_array (arg1);
8564 arg2 = ada_coerce_to_simple_array (arg2);
8565 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8566 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8567 error (_("Attempt to compare array with non-array"));
8568 /* FIXME: The following works only for types whose
8569 representations use all bits (no padding or undefined bits)
8570 and do not have user-defined equality. */
8571 return
8572 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8573 && memcmp (value_contents (arg1), value_contents (arg2),
8574 TYPE_LENGTH (value_type (arg1))) == 0;
8575 }
8576 return value_equal (arg1, arg2);
8577 }
8578
8579 /* Total number of component associations in the aggregate starting at
8580 index PC in EXP. Assumes that index PC is the start of an
8581 OP_AGGREGATE. */
8582
8583 static int
8584 num_component_specs (struct expression *exp, int pc)
8585 {
8586 int n, m, i;
8587
8588 m = exp->elts[pc + 1].longconst;
8589 pc += 3;
8590 n = 0;
8591 for (i = 0; i < m; i += 1)
8592 {
8593 switch (exp->elts[pc].opcode)
8594 {
8595 default:
8596 n += 1;
8597 break;
8598 case OP_CHOICES:
8599 n += exp->elts[pc + 1].longconst;
8600 break;
8601 }
8602 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8603 }
8604 return n;
8605 }
8606
8607 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8608 component of LHS (a simple array or a record), updating *POS past
8609 the expression, assuming that LHS is contained in CONTAINER. Does
8610 not modify the inferior's memory, nor does it modify LHS (unless
8611 LHS == CONTAINER). */
8612
8613 static void
8614 assign_component (struct value *container, struct value *lhs, LONGEST index,
8615 struct expression *exp, int *pos)
8616 {
8617 struct value *mark = value_mark ();
8618 struct value *elt;
8619
8620 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8621 {
8622 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8623 struct value *index_val = value_from_longest (index_type, index);
8624
8625 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8626 }
8627 else
8628 {
8629 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8630 elt = ada_to_fixed_value (unwrap_value (elt));
8631 }
8632
8633 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8634 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8635 else
8636 value_assign_to_component (container, elt,
8637 ada_evaluate_subexp (NULL, exp, pos,
8638 EVAL_NORMAL));
8639
8640 value_free_to_mark (mark);
8641 }
8642
8643 /* Assuming that LHS represents an lvalue having a record or array
8644 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8645 of that aggregate's value to LHS, advancing *POS past the
8646 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8647 lvalue containing LHS (possibly LHS itself). Does not modify
8648 the inferior's memory, nor does it modify the contents of
8649 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8650
8651 static struct value *
8652 assign_aggregate (struct value *container,
8653 struct value *lhs, struct expression *exp,
8654 int *pos, enum noside noside)
8655 {
8656 struct type *lhs_type;
8657 int n = exp->elts[*pos+1].longconst;
8658 LONGEST low_index, high_index;
8659 int num_specs;
8660 LONGEST *indices;
8661 int max_indices, num_indices;
8662 int is_array_aggregate;
8663 int i;
8664
8665 *pos += 3;
8666 if (noside != EVAL_NORMAL)
8667 {
8668 int i;
8669
8670 for (i = 0; i < n; i += 1)
8671 ada_evaluate_subexp (NULL, exp, pos, noside);
8672 return container;
8673 }
8674
8675 container = ada_coerce_ref (container);
8676 if (ada_is_direct_array_type (value_type (container)))
8677 container = ada_coerce_to_simple_array (container);
8678 lhs = ada_coerce_ref (lhs);
8679 if (!deprecated_value_modifiable (lhs))
8680 error (_("Left operand of assignment is not a modifiable lvalue."));
8681
8682 lhs_type = value_type (lhs);
8683 if (ada_is_direct_array_type (lhs_type))
8684 {
8685 lhs = ada_coerce_to_simple_array (lhs);
8686 lhs_type = value_type (lhs);
8687 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8688 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8689 is_array_aggregate = 1;
8690 }
8691 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8692 {
8693 low_index = 0;
8694 high_index = num_visible_fields (lhs_type) - 1;
8695 is_array_aggregate = 0;
8696 }
8697 else
8698 error (_("Left-hand side must be array or record."));
8699
8700 num_specs = num_component_specs (exp, *pos - 3);
8701 max_indices = 4 * num_specs + 4;
8702 indices = alloca (max_indices * sizeof (indices[0]));
8703 indices[0] = indices[1] = low_index - 1;
8704 indices[2] = indices[3] = high_index + 1;
8705 num_indices = 4;
8706
8707 for (i = 0; i < n; i += 1)
8708 {
8709 switch (exp->elts[*pos].opcode)
8710 {
8711 case OP_CHOICES:
8712 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8713 &num_indices, max_indices,
8714 low_index, high_index);
8715 break;
8716 case OP_POSITIONAL:
8717 aggregate_assign_positional (container, lhs, exp, pos, indices,
8718 &num_indices, max_indices,
8719 low_index, high_index);
8720 break;
8721 case OP_OTHERS:
8722 if (i != n-1)
8723 error (_("Misplaced 'others' clause"));
8724 aggregate_assign_others (container, lhs, exp, pos, indices,
8725 num_indices, low_index, high_index);
8726 break;
8727 default:
8728 error (_("Internal error: bad aggregate clause"));
8729 }
8730 }
8731
8732 return container;
8733 }
8734
8735 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8736 construct at *POS, updating *POS past the construct, given that
8737 the positions are relative to lower bound LOW, where HIGH is the
8738 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8739 updating *NUM_INDICES as needed. CONTAINER is as for
8740 assign_aggregate. */
8741 static void
8742 aggregate_assign_positional (struct value *container,
8743 struct value *lhs, struct expression *exp,
8744 int *pos, LONGEST *indices, int *num_indices,
8745 int max_indices, LONGEST low, LONGEST high)
8746 {
8747 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8748
8749 if (ind - 1 == high)
8750 warning (_("Extra components in aggregate ignored."));
8751 if (ind <= high)
8752 {
8753 add_component_interval (ind, ind, indices, num_indices, max_indices);
8754 *pos += 3;
8755 assign_component (container, lhs, ind, exp, pos);
8756 }
8757 else
8758 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8759 }
8760
8761 /* Assign into the components of LHS indexed by the OP_CHOICES
8762 construct at *POS, updating *POS past the construct, given that
8763 the allowable indices are LOW..HIGH. Record the indices assigned
8764 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8765 needed. CONTAINER is as for assign_aggregate. */
8766 static void
8767 aggregate_assign_from_choices (struct value *container,
8768 struct value *lhs, struct expression *exp,
8769 int *pos, LONGEST *indices, int *num_indices,
8770 int max_indices, LONGEST low, LONGEST high)
8771 {
8772 int j;
8773 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8774 int choice_pos, expr_pc;
8775 int is_array = ada_is_direct_array_type (value_type (lhs));
8776
8777 choice_pos = *pos += 3;
8778
8779 for (j = 0; j < n_choices; j += 1)
8780 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8781 expr_pc = *pos;
8782 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8783
8784 for (j = 0; j < n_choices; j += 1)
8785 {
8786 LONGEST lower, upper;
8787 enum exp_opcode op = exp->elts[choice_pos].opcode;
8788
8789 if (op == OP_DISCRETE_RANGE)
8790 {
8791 choice_pos += 1;
8792 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8793 EVAL_NORMAL));
8794 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8795 EVAL_NORMAL));
8796 }
8797 else if (is_array)
8798 {
8799 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8800 EVAL_NORMAL));
8801 upper = lower;
8802 }
8803 else
8804 {
8805 int ind;
8806 char *name;
8807
8808 switch (op)
8809 {
8810 case OP_NAME:
8811 name = &exp->elts[choice_pos + 2].string;
8812 break;
8813 case OP_VAR_VALUE:
8814 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8815 break;
8816 default:
8817 error (_("Invalid record component association."));
8818 }
8819 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8820 ind = 0;
8821 if (! find_struct_field (name, value_type (lhs), 0,
8822 NULL, NULL, NULL, NULL, &ind))
8823 error (_("Unknown component name: %s."), name);
8824 lower = upper = ind;
8825 }
8826
8827 if (lower <= upper && (lower < low || upper > high))
8828 error (_("Index in component association out of bounds."));
8829
8830 add_component_interval (lower, upper, indices, num_indices,
8831 max_indices);
8832 while (lower <= upper)
8833 {
8834 int pos1;
8835
8836 pos1 = expr_pc;
8837 assign_component (container, lhs, lower, exp, &pos1);
8838 lower += 1;
8839 }
8840 }
8841 }
8842
8843 /* Assign the value of the expression in the OP_OTHERS construct in
8844 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8845 have not been previously assigned. The index intervals already assigned
8846 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8847 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8848 static void
8849 aggregate_assign_others (struct value *container,
8850 struct value *lhs, struct expression *exp,
8851 int *pos, LONGEST *indices, int num_indices,
8852 LONGEST low, LONGEST high)
8853 {
8854 int i;
8855 int expr_pc = *pos + 1;
8856
8857 for (i = 0; i < num_indices - 2; i += 2)
8858 {
8859 LONGEST ind;
8860
8861 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8862 {
8863 int localpos;
8864
8865 localpos = expr_pc;
8866 assign_component (container, lhs, ind, exp, &localpos);
8867 }
8868 }
8869 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8870 }
8871
8872 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8873 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8874 modifying *SIZE as needed. It is an error if *SIZE exceeds
8875 MAX_SIZE. The resulting intervals do not overlap. */
8876 static void
8877 add_component_interval (LONGEST low, LONGEST high,
8878 LONGEST* indices, int *size, int max_size)
8879 {
8880 int i, j;
8881
8882 for (i = 0; i < *size; i += 2) {
8883 if (high >= indices[i] && low <= indices[i + 1])
8884 {
8885 int kh;
8886
8887 for (kh = i + 2; kh < *size; kh += 2)
8888 if (high < indices[kh])
8889 break;
8890 if (low < indices[i])
8891 indices[i] = low;
8892 indices[i + 1] = indices[kh - 1];
8893 if (high > indices[i + 1])
8894 indices[i + 1] = high;
8895 memcpy (indices + i + 2, indices + kh, *size - kh);
8896 *size -= kh - i - 2;
8897 return;
8898 }
8899 else if (high < indices[i])
8900 break;
8901 }
8902
8903 if (*size == max_size)
8904 error (_("Internal error: miscounted aggregate components."));
8905 *size += 2;
8906 for (j = *size-1; j >= i+2; j -= 1)
8907 indices[j] = indices[j - 2];
8908 indices[i] = low;
8909 indices[i + 1] = high;
8910 }
8911
8912 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8913 is different. */
8914
8915 static struct value *
8916 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8917 {
8918 if (type == ada_check_typedef (value_type (arg2)))
8919 return arg2;
8920
8921 if (ada_is_fixed_point_type (type))
8922 return (cast_to_fixed (type, arg2));
8923
8924 if (ada_is_fixed_point_type (value_type (arg2)))
8925 return cast_from_fixed (type, arg2);
8926
8927 return value_cast (type, arg2);
8928 }
8929
8930 /* Evaluating Ada expressions, and printing their result.
8931 ------------------------------------------------------
8932
8933 1. Introduction:
8934 ----------------
8935
8936 We usually evaluate an Ada expression in order to print its value.
8937 We also evaluate an expression in order to print its type, which
8938 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8939 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8940 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8941 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8942 similar.
8943
8944 Evaluating expressions is a little more complicated for Ada entities
8945 than it is for entities in languages such as C. The main reason for
8946 this is that Ada provides types whose definition might be dynamic.
8947 One example of such types is variant records. Or another example
8948 would be an array whose bounds can only be known at run time.
8949
8950 The following description is a general guide as to what should be
8951 done (and what should NOT be done) in order to evaluate an expression
8952 involving such types, and when. This does not cover how the semantic
8953 information is encoded by GNAT as this is covered separatly. For the
8954 document used as the reference for the GNAT encoding, see exp_dbug.ads
8955 in the GNAT sources.
8956
8957 Ideally, we should embed each part of this description next to its
8958 associated code. Unfortunately, the amount of code is so vast right
8959 now that it's hard to see whether the code handling a particular
8960 situation might be duplicated or not. One day, when the code is
8961 cleaned up, this guide might become redundant with the comments
8962 inserted in the code, and we might want to remove it.
8963
8964 2. ``Fixing'' an Entity, the Simple Case:
8965 -----------------------------------------
8966
8967 When evaluating Ada expressions, the tricky issue is that they may
8968 reference entities whose type contents and size are not statically
8969 known. Consider for instance a variant record:
8970
8971 type Rec (Empty : Boolean := True) is record
8972 case Empty is
8973 when True => null;
8974 when False => Value : Integer;
8975 end case;
8976 end record;
8977 Yes : Rec := (Empty => False, Value => 1);
8978 No : Rec := (empty => True);
8979
8980 The size and contents of that record depends on the value of the
8981 descriminant (Rec.Empty). At this point, neither the debugging
8982 information nor the associated type structure in GDB are able to
8983 express such dynamic types. So what the debugger does is to create
8984 "fixed" versions of the type that applies to the specific object.
8985 We also informally refer to this opperation as "fixing" an object,
8986 which means creating its associated fixed type.
8987
8988 Example: when printing the value of variable "Yes" above, its fixed
8989 type would look like this:
8990
8991 type Rec is record
8992 Empty : Boolean;
8993 Value : Integer;
8994 end record;
8995
8996 On the other hand, if we printed the value of "No", its fixed type
8997 would become:
8998
8999 type Rec is record
9000 Empty : Boolean;
9001 end record;
9002
9003 Things become a little more complicated when trying to fix an entity
9004 with a dynamic type that directly contains another dynamic type,
9005 such as an array of variant records, for instance. There are
9006 two possible cases: Arrays, and records.
9007
9008 3. ``Fixing'' Arrays:
9009 ---------------------
9010
9011 The type structure in GDB describes an array in terms of its bounds,
9012 and the type of its elements. By design, all elements in the array
9013 have the same type and we cannot represent an array of variant elements
9014 using the current type structure in GDB. When fixing an array,
9015 we cannot fix the array element, as we would potentially need one
9016 fixed type per element of the array. As a result, the best we can do
9017 when fixing an array is to produce an array whose bounds and size
9018 are correct (allowing us to read it from memory), but without having
9019 touched its element type. Fixing each element will be done later,
9020 when (if) necessary.
9021
9022 Arrays are a little simpler to handle than records, because the same
9023 amount of memory is allocated for each element of the array, even if
9024 the amount of space actually used by each element differs from element
9025 to element. Consider for instance the following array of type Rec:
9026
9027 type Rec_Array is array (1 .. 2) of Rec;
9028
9029 The actual amount of memory occupied by each element might be different
9030 from element to element, depending on the value of their discriminant.
9031 But the amount of space reserved for each element in the array remains
9032 fixed regardless. So we simply need to compute that size using
9033 the debugging information available, from which we can then determine
9034 the array size (we multiply the number of elements of the array by
9035 the size of each element).
9036
9037 The simplest case is when we have an array of a constrained element
9038 type. For instance, consider the following type declarations:
9039
9040 type Bounded_String (Max_Size : Integer) is
9041 Length : Integer;
9042 Buffer : String (1 .. Max_Size);
9043 end record;
9044 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9045
9046 In this case, the compiler describes the array as an array of
9047 variable-size elements (identified by its XVS suffix) for which
9048 the size can be read in the parallel XVZ variable.
9049
9050 In the case of an array of an unconstrained element type, the compiler
9051 wraps the array element inside a private PAD type. This type should not
9052 be shown to the user, and must be "unwrap"'ed before printing. Note
9053 that we also use the adjective "aligner" in our code to designate
9054 these wrapper types.
9055
9056 In some cases, the size allocated for each element is statically
9057 known. In that case, the PAD type already has the correct size,
9058 and the array element should remain unfixed.
9059
9060 But there are cases when this size is not statically known.
9061 For instance, assuming that "Five" is an integer variable:
9062
9063 type Dynamic is array (1 .. Five) of Integer;
9064 type Wrapper (Has_Length : Boolean := False) is record
9065 Data : Dynamic;
9066 case Has_Length is
9067 when True => Length : Integer;
9068 when False => null;
9069 end case;
9070 end record;
9071 type Wrapper_Array is array (1 .. 2) of Wrapper;
9072
9073 Hello : Wrapper_Array := (others => (Has_Length => True,
9074 Data => (others => 17),
9075 Length => 1));
9076
9077
9078 The debugging info would describe variable Hello as being an
9079 array of a PAD type. The size of that PAD type is not statically
9080 known, but can be determined using a parallel XVZ variable.
9081 In that case, a copy of the PAD type with the correct size should
9082 be used for the fixed array.
9083
9084 3. ``Fixing'' record type objects:
9085 ----------------------------------
9086
9087 Things are slightly different from arrays in the case of dynamic
9088 record types. In this case, in order to compute the associated
9089 fixed type, we need to determine the size and offset of each of
9090 its components. This, in turn, requires us to compute the fixed
9091 type of each of these components.
9092
9093 Consider for instance the example:
9094
9095 type Bounded_String (Max_Size : Natural) is record
9096 Str : String (1 .. Max_Size);
9097 Length : Natural;
9098 end record;
9099 My_String : Bounded_String (Max_Size => 10);
9100
9101 In that case, the position of field "Length" depends on the size
9102 of field Str, which itself depends on the value of the Max_Size
9103 discriminant. In order to fix the type of variable My_String,
9104 we need to fix the type of field Str. Therefore, fixing a variant
9105 record requires us to fix each of its components.
9106
9107 However, if a component does not have a dynamic size, the component
9108 should not be fixed. In particular, fields that use a PAD type
9109 should not fixed. Here is an example where this might happen
9110 (assuming type Rec above):
9111
9112 type Container (Big : Boolean) is record
9113 First : Rec;
9114 After : Integer;
9115 case Big is
9116 when True => Another : Integer;
9117 when False => null;
9118 end case;
9119 end record;
9120 My_Container : Container := (Big => False,
9121 First => (Empty => True),
9122 After => 42);
9123
9124 In that example, the compiler creates a PAD type for component First,
9125 whose size is constant, and then positions the component After just
9126 right after it. The offset of component After is therefore constant
9127 in this case.
9128
9129 The debugger computes the position of each field based on an algorithm
9130 that uses, among other things, the actual position and size of the field
9131 preceding it. Let's now imagine that the user is trying to print
9132 the value of My_Container. If the type fixing was recursive, we would
9133 end up computing the offset of field After based on the size of the
9134 fixed version of field First. And since in our example First has
9135 only one actual field, the size of the fixed type is actually smaller
9136 than the amount of space allocated to that field, and thus we would
9137 compute the wrong offset of field After.
9138
9139 To make things more complicated, we need to watch out for dynamic
9140 components of variant records (identified by the ___XVL suffix in
9141 the component name). Even if the target type is a PAD type, the size
9142 of that type might not be statically known. So the PAD type needs
9143 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9144 we might end up with the wrong size for our component. This can be
9145 observed with the following type declarations:
9146
9147 type Octal is new Integer range 0 .. 7;
9148 type Octal_Array is array (Positive range <>) of Octal;
9149 pragma Pack (Octal_Array);
9150
9151 type Octal_Buffer (Size : Positive) is record
9152 Buffer : Octal_Array (1 .. Size);
9153 Length : Integer;
9154 end record;
9155
9156 In that case, Buffer is a PAD type whose size is unset and needs
9157 to be computed by fixing the unwrapped type.
9158
9159 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9160 ----------------------------------------------------------
9161
9162 Lastly, when should the sub-elements of an entity that remained unfixed
9163 thus far, be actually fixed?
9164
9165 The answer is: Only when referencing that element. For instance
9166 when selecting one component of a record, this specific component
9167 should be fixed at that point in time. Or when printing the value
9168 of a record, each component should be fixed before its value gets
9169 printed. Similarly for arrays, the element of the array should be
9170 fixed when printing each element of the array, or when extracting
9171 one element out of that array. On the other hand, fixing should
9172 not be performed on the elements when taking a slice of an array!
9173
9174 Note that one of the side-effects of miscomputing the offset and
9175 size of each field is that we end up also miscomputing the size
9176 of the containing type. This can have adverse results when computing
9177 the value of an entity. GDB fetches the value of an entity based
9178 on the size of its type, and thus a wrong size causes GDB to fetch
9179 the wrong amount of memory. In the case where the computed size is
9180 too small, GDB fetches too little data to print the value of our
9181 entiry. Results in this case as unpredicatble, as we usually read
9182 past the buffer containing the data =:-o. */
9183
9184 /* Implement the evaluate_exp routine in the exp_descriptor structure
9185 for the Ada language. */
9186
9187 static struct value *
9188 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9189 int *pos, enum noside noside)
9190 {
9191 enum exp_opcode op;
9192 int tem;
9193 int pc;
9194 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9195 struct type *type;
9196 int nargs, oplen;
9197 struct value **argvec;
9198
9199 pc = *pos;
9200 *pos += 1;
9201 op = exp->elts[pc].opcode;
9202
9203 switch (op)
9204 {
9205 default:
9206 *pos -= 1;
9207 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9208 arg1 = unwrap_value (arg1);
9209
9210 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9211 then we need to perform the conversion manually, because
9212 evaluate_subexp_standard doesn't do it. This conversion is
9213 necessary in Ada because the different kinds of float/fixed
9214 types in Ada have different representations.
9215
9216 Similarly, we need to perform the conversion from OP_LONG
9217 ourselves. */
9218 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9219 arg1 = ada_value_cast (expect_type, arg1, noside);
9220
9221 return arg1;
9222
9223 case OP_STRING:
9224 {
9225 struct value *result;
9226
9227 *pos -= 1;
9228 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9229 /* The result type will have code OP_STRING, bashed there from
9230 OP_ARRAY. Bash it back. */
9231 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9232 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9233 return result;
9234 }
9235
9236 case UNOP_CAST:
9237 (*pos) += 2;
9238 type = exp->elts[pc + 1].type;
9239 arg1 = evaluate_subexp (type, exp, pos, noside);
9240 if (noside == EVAL_SKIP)
9241 goto nosideret;
9242 arg1 = ada_value_cast (type, arg1, noside);
9243 return arg1;
9244
9245 case UNOP_QUAL:
9246 (*pos) += 2;
9247 type = exp->elts[pc + 1].type;
9248 return ada_evaluate_subexp (type, exp, pos, noside);
9249
9250 case BINOP_ASSIGN:
9251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9252 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9253 {
9254 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9255 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9256 return arg1;
9257 return ada_value_assign (arg1, arg1);
9258 }
9259 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9260 except if the lhs of our assignment is a convenience variable.
9261 In the case of assigning to a convenience variable, the lhs
9262 should be exactly the result of the evaluation of the rhs. */
9263 type = value_type (arg1);
9264 if (VALUE_LVAL (arg1) == lval_internalvar)
9265 type = NULL;
9266 arg2 = evaluate_subexp (type, exp, pos, noside);
9267 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9268 return arg1;
9269 if (ada_is_fixed_point_type (value_type (arg1)))
9270 arg2 = cast_to_fixed (value_type (arg1), arg2);
9271 else if (ada_is_fixed_point_type (value_type (arg2)))
9272 error
9273 (_("Fixed-point values must be assigned to fixed-point variables"));
9274 else
9275 arg2 = coerce_for_assign (value_type (arg1), arg2);
9276 return ada_value_assign (arg1, arg2);
9277
9278 case BINOP_ADD:
9279 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9280 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9281 if (noside == EVAL_SKIP)
9282 goto nosideret;
9283 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9284 return (value_from_longest
9285 (value_type (arg1),
9286 value_as_long (arg1) + value_as_long (arg2)));
9287 if ((ada_is_fixed_point_type (value_type (arg1))
9288 || ada_is_fixed_point_type (value_type (arg2)))
9289 && value_type (arg1) != value_type (arg2))
9290 error (_("Operands of fixed-point addition must have the same type"));
9291 /* Do the addition, and cast the result to the type of the first
9292 argument. We cannot cast the result to a reference type, so if
9293 ARG1 is a reference type, find its underlying type. */
9294 type = value_type (arg1);
9295 while (TYPE_CODE (type) == TYPE_CODE_REF)
9296 type = TYPE_TARGET_TYPE (type);
9297 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9298 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9299
9300 case BINOP_SUB:
9301 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9302 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9303 if (noside == EVAL_SKIP)
9304 goto nosideret;
9305 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9306 return (value_from_longest
9307 (value_type (arg1),
9308 value_as_long (arg1) - value_as_long (arg2)));
9309 if ((ada_is_fixed_point_type (value_type (arg1))
9310 || ada_is_fixed_point_type (value_type (arg2)))
9311 && value_type (arg1) != value_type (arg2))
9312 error (_("Operands of fixed-point subtraction "
9313 "must have the same type"));
9314 /* Do the substraction, and cast the result to the type of the first
9315 argument. We cannot cast the result to a reference type, so if
9316 ARG1 is a reference type, find its underlying type. */
9317 type = value_type (arg1);
9318 while (TYPE_CODE (type) == TYPE_CODE_REF)
9319 type = TYPE_TARGET_TYPE (type);
9320 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9321 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9322
9323 case BINOP_MUL:
9324 case BINOP_DIV:
9325 case BINOP_REM:
9326 case BINOP_MOD:
9327 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9328 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9329 if (noside == EVAL_SKIP)
9330 goto nosideret;
9331 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9332 {
9333 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9334 return value_zero (value_type (arg1), not_lval);
9335 }
9336 else
9337 {
9338 type = builtin_type (exp->gdbarch)->builtin_double;
9339 if (ada_is_fixed_point_type (value_type (arg1)))
9340 arg1 = cast_from_fixed (type, arg1);
9341 if (ada_is_fixed_point_type (value_type (arg2)))
9342 arg2 = cast_from_fixed (type, arg2);
9343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9344 return ada_value_binop (arg1, arg2, op);
9345 }
9346
9347 case BINOP_EQUAL:
9348 case BINOP_NOTEQUAL:
9349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9350 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9351 if (noside == EVAL_SKIP)
9352 goto nosideret;
9353 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9354 tem = 0;
9355 else
9356 {
9357 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9358 tem = ada_value_equal (arg1, arg2);
9359 }
9360 if (op == BINOP_NOTEQUAL)
9361 tem = !tem;
9362 type = language_bool_type (exp->language_defn, exp->gdbarch);
9363 return value_from_longest (type, (LONGEST) tem);
9364
9365 case UNOP_NEG:
9366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9367 if (noside == EVAL_SKIP)
9368 goto nosideret;
9369 else if (ada_is_fixed_point_type (value_type (arg1)))
9370 return value_cast (value_type (arg1), value_neg (arg1));
9371 else
9372 {
9373 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9374 return value_neg (arg1);
9375 }
9376
9377 case BINOP_LOGICAL_AND:
9378 case BINOP_LOGICAL_OR:
9379 case UNOP_LOGICAL_NOT:
9380 {
9381 struct value *val;
9382
9383 *pos -= 1;
9384 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9385 type = language_bool_type (exp->language_defn, exp->gdbarch);
9386 return value_cast (type, val);
9387 }
9388
9389 case BINOP_BITWISE_AND:
9390 case BINOP_BITWISE_IOR:
9391 case BINOP_BITWISE_XOR:
9392 {
9393 struct value *val;
9394
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9396 *pos = pc;
9397 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9398
9399 return value_cast (value_type (arg1), val);
9400 }
9401
9402 case OP_VAR_VALUE:
9403 *pos -= 1;
9404
9405 if (noside == EVAL_SKIP)
9406 {
9407 *pos += 4;
9408 goto nosideret;
9409 }
9410 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9411 /* Only encountered when an unresolved symbol occurs in a
9412 context other than a function call, in which case, it is
9413 invalid. */
9414 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9415 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9417 {
9418 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9419 /* Check to see if this is a tagged type. We also need to handle
9420 the case where the type is a reference to a tagged type, but
9421 we have to be careful to exclude pointers to tagged types.
9422 The latter should be shown as usual (as a pointer), whereas
9423 a reference should mostly be transparent to the user. */
9424 if (ada_is_tagged_type (type, 0)
9425 || (TYPE_CODE(type) == TYPE_CODE_REF
9426 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9427 {
9428 /* Tagged types are a little special in the fact that the real
9429 type is dynamic and can only be determined by inspecting the
9430 object's tag. This means that we need to get the object's
9431 value first (EVAL_NORMAL) and then extract the actual object
9432 type from its tag.
9433
9434 Note that we cannot skip the final step where we extract
9435 the object type from its tag, because the EVAL_NORMAL phase
9436 results in dynamic components being resolved into fixed ones.
9437 This can cause problems when trying to print the type
9438 description of tagged types whose parent has a dynamic size:
9439 We use the type name of the "_parent" component in order
9440 to print the name of the ancestor type in the type description.
9441 If that component had a dynamic size, the resolution into
9442 a fixed type would result in the loss of that type name,
9443 thus preventing us from printing the name of the ancestor
9444 type in the type description. */
9445 struct type *actual_type;
9446
9447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9448 actual_type = type_from_tag (ada_value_tag (arg1));
9449 if (actual_type == NULL)
9450 /* If, for some reason, we were unable to determine
9451 the actual type from the tag, then use the static
9452 approximation that we just computed as a fallback.
9453 This can happen if the debugging information is
9454 incomplete, for instance. */
9455 actual_type = type;
9456
9457 return value_zero (actual_type, not_lval);
9458 }
9459
9460 *pos += 4;
9461 return value_zero
9462 (to_static_fixed_type
9463 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9464 not_lval);
9465 }
9466 else
9467 {
9468 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9469 arg1 = unwrap_value (arg1);
9470 return ada_to_fixed_value (arg1);
9471 }
9472
9473 case OP_FUNCALL:
9474 (*pos) += 2;
9475
9476 /* Allocate arg vector, including space for the function to be
9477 called in argvec[0] and a terminating NULL. */
9478 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9479 argvec =
9480 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9481
9482 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9483 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9484 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9485 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9486 else
9487 {
9488 for (tem = 0; tem <= nargs; tem += 1)
9489 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9490 argvec[tem] = 0;
9491
9492 if (noside == EVAL_SKIP)
9493 goto nosideret;
9494 }
9495
9496 if (ada_is_constrained_packed_array_type
9497 (desc_base_type (value_type (argvec[0]))))
9498 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9499 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9500 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9501 /* This is a packed array that has already been fixed, and
9502 therefore already coerced to a simple array. Nothing further
9503 to do. */
9504 ;
9505 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9506 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9507 && VALUE_LVAL (argvec[0]) == lval_memory))
9508 argvec[0] = value_addr (argvec[0]);
9509
9510 type = ada_check_typedef (value_type (argvec[0]));
9511
9512 /* Ada allows us to implicitly dereference arrays when subscripting
9513 them. So, if this is an array typedef (encoding use for array
9514 access types encoded as fat pointers), strip it now. */
9515 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9516 type = ada_typedef_target_type (type);
9517
9518 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9519 {
9520 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9521 {
9522 case TYPE_CODE_FUNC:
9523 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9524 break;
9525 case TYPE_CODE_ARRAY:
9526 break;
9527 case TYPE_CODE_STRUCT:
9528 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9529 argvec[0] = ada_value_ind (argvec[0]);
9530 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9531 break;
9532 default:
9533 error (_("cannot subscript or call something of type `%s'"),
9534 ada_type_name (value_type (argvec[0])));
9535 break;
9536 }
9537 }
9538
9539 switch (TYPE_CODE (type))
9540 {
9541 case TYPE_CODE_FUNC:
9542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9543 return allocate_value (TYPE_TARGET_TYPE (type));
9544 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9545 case TYPE_CODE_STRUCT:
9546 {
9547 int arity;
9548
9549 arity = ada_array_arity (type);
9550 type = ada_array_element_type (type, nargs);
9551 if (type == NULL)
9552 error (_("cannot subscript or call a record"));
9553 if (arity != nargs)
9554 error (_("wrong number of subscripts; expecting %d"), arity);
9555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9556 return value_zero (ada_aligned_type (type), lval_memory);
9557 return
9558 unwrap_value (ada_value_subscript
9559 (argvec[0], nargs, argvec + 1));
9560 }
9561 case TYPE_CODE_ARRAY:
9562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9563 {
9564 type = ada_array_element_type (type, nargs);
9565 if (type == NULL)
9566 error (_("element type of array unknown"));
9567 else
9568 return value_zero (ada_aligned_type (type), lval_memory);
9569 }
9570 return
9571 unwrap_value (ada_value_subscript
9572 (ada_coerce_to_simple_array (argvec[0]),
9573 nargs, argvec + 1));
9574 case TYPE_CODE_PTR: /* Pointer to array */
9575 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9576 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9577 {
9578 type = ada_array_element_type (type, nargs);
9579 if (type == NULL)
9580 error (_("element type of array unknown"));
9581 else
9582 return value_zero (ada_aligned_type (type), lval_memory);
9583 }
9584 return
9585 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9586 nargs, argvec + 1));
9587
9588 default:
9589 error (_("Attempt to index or call something other than an "
9590 "array or function"));
9591 }
9592
9593 case TERNOP_SLICE:
9594 {
9595 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9596 struct value *low_bound_val =
9597 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9598 struct value *high_bound_val =
9599 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9600 LONGEST low_bound;
9601 LONGEST high_bound;
9602
9603 low_bound_val = coerce_ref (low_bound_val);
9604 high_bound_val = coerce_ref (high_bound_val);
9605 low_bound = pos_atr (low_bound_val);
9606 high_bound = pos_atr (high_bound_val);
9607
9608 if (noside == EVAL_SKIP)
9609 goto nosideret;
9610
9611 /* If this is a reference to an aligner type, then remove all
9612 the aligners. */
9613 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9614 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9615 TYPE_TARGET_TYPE (value_type (array)) =
9616 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9617
9618 if (ada_is_constrained_packed_array_type (value_type (array)))
9619 error (_("cannot slice a packed array"));
9620
9621 /* If this is a reference to an array or an array lvalue,
9622 convert to a pointer. */
9623 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9624 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9625 && VALUE_LVAL (array) == lval_memory))
9626 array = value_addr (array);
9627
9628 if (noside == EVAL_AVOID_SIDE_EFFECTS
9629 && ada_is_array_descriptor_type (ada_check_typedef
9630 (value_type (array))))
9631 return empty_array (ada_type_of_array (array, 0), low_bound);
9632
9633 array = ada_coerce_to_simple_array_ptr (array);
9634
9635 /* If we have more than one level of pointer indirection,
9636 dereference the value until we get only one level. */
9637 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9638 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9639 == TYPE_CODE_PTR))
9640 array = value_ind (array);
9641
9642 /* Make sure we really do have an array type before going further,
9643 to avoid a SEGV when trying to get the index type or the target
9644 type later down the road if the debug info generated by
9645 the compiler is incorrect or incomplete. */
9646 if (!ada_is_simple_array_type (value_type (array)))
9647 error (_("cannot take slice of non-array"));
9648
9649 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9650 == TYPE_CODE_PTR)
9651 {
9652 struct type *type0 = ada_check_typedef (value_type (array));
9653
9654 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9655 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9656 else
9657 {
9658 struct type *arr_type0 =
9659 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9660
9661 return ada_value_slice_from_ptr (array, arr_type0,
9662 longest_to_int (low_bound),
9663 longest_to_int (high_bound));
9664 }
9665 }
9666 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9667 return array;
9668 else if (high_bound < low_bound)
9669 return empty_array (value_type (array), low_bound);
9670 else
9671 return ada_value_slice (array, longest_to_int (low_bound),
9672 longest_to_int (high_bound));
9673 }
9674
9675 case UNOP_IN_RANGE:
9676 (*pos) += 2;
9677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9678 type = check_typedef (exp->elts[pc + 1].type);
9679
9680 if (noside == EVAL_SKIP)
9681 goto nosideret;
9682
9683 switch (TYPE_CODE (type))
9684 {
9685 default:
9686 lim_warning (_("Membership test incompletely implemented; "
9687 "always returns true"));
9688 type = language_bool_type (exp->language_defn, exp->gdbarch);
9689 return value_from_longest (type, (LONGEST) 1);
9690
9691 case TYPE_CODE_RANGE:
9692 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9693 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9696 type = language_bool_type (exp->language_defn, exp->gdbarch);
9697 return
9698 value_from_longest (type,
9699 (value_less (arg1, arg3)
9700 || value_equal (arg1, arg3))
9701 && (value_less (arg2, arg1)
9702 || value_equal (arg2, arg1)));
9703 }
9704
9705 case BINOP_IN_BOUNDS:
9706 (*pos) += 2;
9707 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9708 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9709
9710 if (noside == EVAL_SKIP)
9711 goto nosideret;
9712
9713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9714 {
9715 type = language_bool_type (exp->language_defn, exp->gdbarch);
9716 return value_zero (type, not_lval);
9717 }
9718
9719 tem = longest_to_int (exp->elts[pc + 1].longconst);
9720
9721 type = ada_index_type (value_type (arg2), tem, "range");
9722 if (!type)
9723 type = value_type (arg1);
9724
9725 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9726 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9727
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9730 type = language_bool_type (exp->language_defn, exp->gdbarch);
9731 return
9732 value_from_longest (type,
9733 (value_less (arg1, arg3)
9734 || value_equal (arg1, arg3))
9735 && (value_less (arg2, arg1)
9736 || value_equal (arg2, arg1)));
9737
9738 case TERNOP_IN_RANGE:
9739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9740 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9741 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742
9743 if (noside == EVAL_SKIP)
9744 goto nosideret;
9745
9746 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9747 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9748 type = language_bool_type (exp->language_defn, exp->gdbarch);
9749 return
9750 value_from_longest (type,
9751 (value_less (arg1, arg3)
9752 || value_equal (arg1, arg3))
9753 && (value_less (arg2, arg1)
9754 || value_equal (arg2, arg1)));
9755
9756 case OP_ATR_FIRST:
9757 case OP_ATR_LAST:
9758 case OP_ATR_LENGTH:
9759 {
9760 struct type *type_arg;
9761
9762 if (exp->elts[*pos].opcode == OP_TYPE)
9763 {
9764 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9765 arg1 = NULL;
9766 type_arg = check_typedef (exp->elts[pc + 2].type);
9767 }
9768 else
9769 {
9770 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9771 type_arg = NULL;
9772 }
9773
9774 if (exp->elts[*pos].opcode != OP_LONG)
9775 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9776 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9777 *pos += 4;
9778
9779 if (noside == EVAL_SKIP)
9780 goto nosideret;
9781
9782 if (type_arg == NULL)
9783 {
9784 arg1 = ada_coerce_ref (arg1);
9785
9786 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9787 arg1 = ada_coerce_to_simple_array (arg1);
9788
9789 type = ada_index_type (value_type (arg1), tem,
9790 ada_attribute_name (op));
9791 if (type == NULL)
9792 type = builtin_type (exp->gdbarch)->builtin_int;
9793
9794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9795 return allocate_value (type);
9796
9797 switch (op)
9798 {
9799 default: /* Should never happen. */
9800 error (_("unexpected attribute encountered"));
9801 case OP_ATR_FIRST:
9802 return value_from_longest
9803 (type, ada_array_bound (arg1, tem, 0));
9804 case OP_ATR_LAST:
9805 return value_from_longest
9806 (type, ada_array_bound (arg1, tem, 1));
9807 case OP_ATR_LENGTH:
9808 return value_from_longest
9809 (type, ada_array_length (arg1, tem));
9810 }
9811 }
9812 else if (discrete_type_p (type_arg))
9813 {
9814 struct type *range_type;
9815 char *name = ada_type_name (type_arg);
9816
9817 range_type = NULL;
9818 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9819 range_type = to_fixed_range_type (type_arg, NULL);
9820 if (range_type == NULL)
9821 range_type = type_arg;
9822 switch (op)
9823 {
9824 default:
9825 error (_("unexpected attribute encountered"));
9826 case OP_ATR_FIRST:
9827 return value_from_longest
9828 (range_type, ada_discrete_type_low_bound (range_type));
9829 case OP_ATR_LAST:
9830 return value_from_longest
9831 (range_type, ada_discrete_type_high_bound (range_type));
9832 case OP_ATR_LENGTH:
9833 error (_("the 'length attribute applies only to array types"));
9834 }
9835 }
9836 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9837 error (_("unimplemented type attribute"));
9838 else
9839 {
9840 LONGEST low, high;
9841
9842 if (ada_is_constrained_packed_array_type (type_arg))
9843 type_arg = decode_constrained_packed_array_type (type_arg);
9844
9845 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9846 if (type == NULL)
9847 type = builtin_type (exp->gdbarch)->builtin_int;
9848
9849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9850 return allocate_value (type);
9851
9852 switch (op)
9853 {
9854 default:
9855 error (_("unexpected attribute encountered"));
9856 case OP_ATR_FIRST:
9857 low = ada_array_bound_from_type (type_arg, tem, 0);
9858 return value_from_longest (type, low);
9859 case OP_ATR_LAST:
9860 high = ada_array_bound_from_type (type_arg, tem, 1);
9861 return value_from_longest (type, high);
9862 case OP_ATR_LENGTH:
9863 low = ada_array_bound_from_type (type_arg, tem, 0);
9864 high = ada_array_bound_from_type (type_arg, tem, 1);
9865 return value_from_longest (type, high - low + 1);
9866 }
9867 }
9868 }
9869
9870 case OP_ATR_TAG:
9871 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9872 if (noside == EVAL_SKIP)
9873 goto nosideret;
9874
9875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9876 return value_zero (ada_tag_type (arg1), not_lval);
9877
9878 return ada_value_tag (arg1);
9879
9880 case OP_ATR_MIN:
9881 case OP_ATR_MAX:
9882 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9884 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9885 if (noside == EVAL_SKIP)
9886 goto nosideret;
9887 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9888 return value_zero (value_type (arg1), not_lval);
9889 else
9890 {
9891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9892 return value_binop (arg1, arg2,
9893 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9894 }
9895
9896 case OP_ATR_MODULUS:
9897 {
9898 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9899
9900 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9901 if (noside == EVAL_SKIP)
9902 goto nosideret;
9903
9904 if (!ada_is_modular_type (type_arg))
9905 error (_("'modulus must be applied to modular type"));
9906
9907 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9908 ada_modulus (type_arg));
9909 }
9910
9911
9912 case OP_ATR_POS:
9913 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915 if (noside == EVAL_SKIP)
9916 goto nosideret;
9917 type = builtin_type (exp->gdbarch)->builtin_int;
9918 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9919 return value_zero (type, not_lval);
9920 else
9921 return value_pos_atr (type, arg1);
9922
9923 case OP_ATR_SIZE:
9924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9925 type = value_type (arg1);
9926
9927 /* If the argument is a reference, then dereference its type, since
9928 the user is really asking for the size of the actual object,
9929 not the size of the pointer. */
9930 if (TYPE_CODE (type) == TYPE_CODE_REF)
9931 type = TYPE_TARGET_TYPE (type);
9932
9933 if (noside == EVAL_SKIP)
9934 goto nosideret;
9935 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9936 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9937 else
9938 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9939 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9940
9941 case OP_ATR_VAL:
9942 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9944 type = exp->elts[pc + 2].type;
9945 if (noside == EVAL_SKIP)
9946 goto nosideret;
9947 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9948 return value_zero (type, not_lval);
9949 else
9950 return value_val_atr (type, arg1);
9951
9952 case BINOP_EXP:
9953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9954 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9955 if (noside == EVAL_SKIP)
9956 goto nosideret;
9957 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 return value_zero (value_type (arg1), not_lval);
9959 else
9960 {
9961 /* For integer exponentiation operations,
9962 only promote the first argument. */
9963 if (is_integral_type (value_type (arg2)))
9964 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9965 else
9966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9967
9968 return value_binop (arg1, arg2, op);
9969 }
9970
9971 case UNOP_PLUS:
9972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9973 if (noside == EVAL_SKIP)
9974 goto nosideret;
9975 else
9976 return arg1;
9977
9978 case UNOP_ABS:
9979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9980 if (noside == EVAL_SKIP)
9981 goto nosideret;
9982 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9983 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9984 return value_neg (arg1);
9985 else
9986 return arg1;
9987
9988 case UNOP_IND:
9989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9990 if (noside == EVAL_SKIP)
9991 goto nosideret;
9992 type = ada_check_typedef (value_type (arg1));
9993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9994 {
9995 if (ada_is_array_descriptor_type (type))
9996 /* GDB allows dereferencing GNAT array descriptors. */
9997 {
9998 struct type *arrType = ada_type_of_array (arg1, 0);
9999
10000 if (arrType == NULL)
10001 error (_("Attempt to dereference null array pointer."));
10002 return value_at_lazy (arrType, 0);
10003 }
10004 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10005 || TYPE_CODE (type) == TYPE_CODE_REF
10006 /* In C you can dereference an array to get the 1st elt. */
10007 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10008 {
10009 type = to_static_fixed_type
10010 (ada_aligned_type
10011 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10012 check_size (type);
10013 return value_zero (type, lval_memory);
10014 }
10015 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10016 {
10017 /* GDB allows dereferencing an int. */
10018 if (expect_type == NULL)
10019 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10020 lval_memory);
10021 else
10022 {
10023 expect_type =
10024 to_static_fixed_type (ada_aligned_type (expect_type));
10025 return value_zero (expect_type, lval_memory);
10026 }
10027 }
10028 else
10029 error (_("Attempt to take contents of a non-pointer value."));
10030 }
10031 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10032 type = ada_check_typedef (value_type (arg1));
10033
10034 if (TYPE_CODE (type) == TYPE_CODE_INT)
10035 /* GDB allows dereferencing an int. If we were given
10036 the expect_type, then use that as the target type.
10037 Otherwise, assume that the target type is an int. */
10038 {
10039 if (expect_type != NULL)
10040 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10041 arg1));
10042 else
10043 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10044 (CORE_ADDR) value_as_address (arg1));
10045 }
10046
10047 if (ada_is_array_descriptor_type (type))
10048 /* GDB allows dereferencing GNAT array descriptors. */
10049 return ada_coerce_to_simple_array (arg1);
10050 else
10051 return ada_value_ind (arg1);
10052
10053 case STRUCTOP_STRUCT:
10054 tem = longest_to_int (exp->elts[pc + 1].longconst);
10055 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10056 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10057 if (noside == EVAL_SKIP)
10058 goto nosideret;
10059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10060 {
10061 struct type *type1 = value_type (arg1);
10062
10063 if (ada_is_tagged_type (type1, 1))
10064 {
10065 type = ada_lookup_struct_elt_type (type1,
10066 &exp->elts[pc + 2].string,
10067 1, 1, NULL);
10068 if (type == NULL)
10069 /* In this case, we assume that the field COULD exist
10070 in some extension of the type. Return an object of
10071 "type" void, which will match any formal
10072 (see ada_type_match). */
10073 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10074 lval_memory);
10075 }
10076 else
10077 type =
10078 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10079 0, NULL);
10080
10081 return value_zero (ada_aligned_type (type), lval_memory);
10082 }
10083 else
10084 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10085 arg1 = unwrap_value (arg1);
10086 return ada_to_fixed_value (arg1);
10087
10088 case OP_TYPE:
10089 /* The value is not supposed to be used. This is here to make it
10090 easier to accommodate expressions that contain types. */
10091 (*pos) += 2;
10092 if (noside == EVAL_SKIP)
10093 goto nosideret;
10094 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10095 return allocate_value (exp->elts[pc + 1].type);
10096 else
10097 error (_("Attempt to use a type name as an expression"));
10098
10099 case OP_AGGREGATE:
10100 case OP_CHOICES:
10101 case OP_OTHERS:
10102 case OP_DISCRETE_RANGE:
10103 case OP_POSITIONAL:
10104 case OP_NAME:
10105 if (noside == EVAL_NORMAL)
10106 switch (op)
10107 {
10108 case OP_NAME:
10109 error (_("Undefined name, ambiguous name, or renaming used in "
10110 "component association: %s."), &exp->elts[pc+2].string);
10111 case OP_AGGREGATE:
10112 error (_("Aggregates only allowed on the right of an assignment"));
10113 default:
10114 internal_error (__FILE__, __LINE__,
10115 _("aggregate apparently mangled"));
10116 }
10117
10118 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10119 *pos += oplen - 1;
10120 for (tem = 0; tem < nargs; tem += 1)
10121 ada_evaluate_subexp (NULL, exp, pos, noside);
10122 goto nosideret;
10123 }
10124
10125 nosideret:
10126 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10127 }
10128 \f
10129
10130 /* Fixed point */
10131
10132 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10133 type name that encodes the 'small and 'delta information.
10134 Otherwise, return NULL. */
10135
10136 static const char *
10137 fixed_type_info (struct type *type)
10138 {
10139 const char *name = ada_type_name (type);
10140 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10141
10142 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10143 {
10144 const char *tail = strstr (name, "___XF_");
10145
10146 if (tail == NULL)
10147 return NULL;
10148 else
10149 return tail + 5;
10150 }
10151 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10152 return fixed_type_info (TYPE_TARGET_TYPE (type));
10153 else
10154 return NULL;
10155 }
10156
10157 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10158
10159 int
10160 ada_is_fixed_point_type (struct type *type)
10161 {
10162 return fixed_type_info (type) != NULL;
10163 }
10164
10165 /* Return non-zero iff TYPE represents a System.Address type. */
10166
10167 int
10168 ada_is_system_address_type (struct type *type)
10169 {
10170 return (TYPE_NAME (type)
10171 && strcmp (TYPE_NAME (type), "system__address") == 0);
10172 }
10173
10174 /* Assuming that TYPE is the representation of an Ada fixed-point
10175 type, return its delta, or -1 if the type is malformed and the
10176 delta cannot be determined. */
10177
10178 DOUBLEST
10179 ada_delta (struct type *type)
10180 {
10181 const char *encoding = fixed_type_info (type);
10182 DOUBLEST num, den;
10183
10184 /* Strictly speaking, num and den are encoded as integer. However,
10185 they may not fit into a long, and they will have to be converted
10186 to DOUBLEST anyway. So scan them as DOUBLEST. */
10187 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10188 &num, &den) < 2)
10189 return -1.0;
10190 else
10191 return num / den;
10192 }
10193
10194 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10195 factor ('SMALL value) associated with the type. */
10196
10197 static DOUBLEST
10198 scaling_factor (struct type *type)
10199 {
10200 const char *encoding = fixed_type_info (type);
10201 DOUBLEST num0, den0, num1, den1;
10202 int n;
10203
10204 /* Strictly speaking, num's and den's are encoded as integer. However,
10205 they may not fit into a long, and they will have to be converted
10206 to DOUBLEST anyway. So scan them as DOUBLEST. */
10207 n = sscanf (encoding,
10208 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10209 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10210 &num0, &den0, &num1, &den1);
10211
10212 if (n < 2)
10213 return 1.0;
10214 else if (n == 4)
10215 return num1 / den1;
10216 else
10217 return num0 / den0;
10218 }
10219
10220
10221 /* Assuming that X is the representation of a value of fixed-point
10222 type TYPE, return its floating-point equivalent. */
10223
10224 DOUBLEST
10225 ada_fixed_to_float (struct type *type, LONGEST x)
10226 {
10227 return (DOUBLEST) x *scaling_factor (type);
10228 }
10229
10230 /* The representation of a fixed-point value of type TYPE
10231 corresponding to the value X. */
10232
10233 LONGEST
10234 ada_float_to_fixed (struct type *type, DOUBLEST x)
10235 {
10236 return (LONGEST) (x / scaling_factor (type) + 0.5);
10237 }
10238
10239 \f
10240
10241 /* Range types */
10242
10243 /* Scan STR beginning at position K for a discriminant name, and
10244 return the value of that discriminant field of DVAL in *PX. If
10245 PNEW_K is not null, put the position of the character beyond the
10246 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10247 not alter *PX and *PNEW_K if unsuccessful. */
10248
10249 static int
10250 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10251 int *pnew_k)
10252 {
10253 static char *bound_buffer = NULL;
10254 static size_t bound_buffer_len = 0;
10255 char *bound;
10256 char *pend;
10257 struct value *bound_val;
10258
10259 if (dval == NULL || str == NULL || str[k] == '\0')
10260 return 0;
10261
10262 pend = strstr (str + k, "__");
10263 if (pend == NULL)
10264 {
10265 bound = str + k;
10266 k += strlen (bound);
10267 }
10268 else
10269 {
10270 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10271 bound = bound_buffer;
10272 strncpy (bound_buffer, str + k, pend - (str + k));
10273 bound[pend - (str + k)] = '\0';
10274 k = pend - str;
10275 }
10276
10277 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10278 if (bound_val == NULL)
10279 return 0;
10280
10281 *px = value_as_long (bound_val);
10282 if (pnew_k != NULL)
10283 *pnew_k = k;
10284 return 1;
10285 }
10286
10287 /* Value of variable named NAME in the current environment. If
10288 no such variable found, then if ERR_MSG is null, returns 0, and
10289 otherwise causes an error with message ERR_MSG. */
10290
10291 static struct value *
10292 get_var_value (char *name, char *err_msg)
10293 {
10294 struct ada_symbol_info *syms;
10295 int nsyms;
10296
10297 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10298 &syms);
10299
10300 if (nsyms != 1)
10301 {
10302 if (err_msg == NULL)
10303 return 0;
10304 else
10305 error (("%s"), err_msg);
10306 }
10307
10308 return value_of_variable (syms[0].sym, syms[0].block);
10309 }
10310
10311 /* Value of integer variable named NAME in the current environment. If
10312 no such variable found, returns 0, and sets *FLAG to 0. If
10313 successful, sets *FLAG to 1. */
10314
10315 LONGEST
10316 get_int_var_value (char *name, int *flag)
10317 {
10318 struct value *var_val = get_var_value (name, 0);
10319
10320 if (var_val == 0)
10321 {
10322 if (flag != NULL)
10323 *flag = 0;
10324 return 0;
10325 }
10326 else
10327 {
10328 if (flag != NULL)
10329 *flag = 1;
10330 return value_as_long (var_val);
10331 }
10332 }
10333
10334
10335 /* Return a range type whose base type is that of the range type named
10336 NAME in the current environment, and whose bounds are calculated
10337 from NAME according to the GNAT range encoding conventions.
10338 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10339 corresponding range type from debug information; fall back to using it
10340 if symbol lookup fails. If a new type must be created, allocate it
10341 like ORIG_TYPE was. The bounds information, in general, is encoded
10342 in NAME, the base type given in the named range type. */
10343
10344 static struct type *
10345 to_fixed_range_type (struct type *raw_type, struct value *dval)
10346 {
10347 char *name;
10348 struct type *base_type;
10349 char *subtype_info;
10350
10351 gdb_assert (raw_type != NULL);
10352 gdb_assert (TYPE_NAME (raw_type) != NULL);
10353
10354 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10355 base_type = TYPE_TARGET_TYPE (raw_type);
10356 else
10357 base_type = raw_type;
10358
10359 name = TYPE_NAME (raw_type);
10360 subtype_info = strstr (name, "___XD");
10361 if (subtype_info == NULL)
10362 {
10363 LONGEST L = ada_discrete_type_low_bound (raw_type);
10364 LONGEST U = ada_discrete_type_high_bound (raw_type);
10365
10366 if (L < INT_MIN || U > INT_MAX)
10367 return raw_type;
10368 else
10369 return create_range_type (alloc_type_copy (raw_type), raw_type,
10370 ada_discrete_type_low_bound (raw_type),
10371 ada_discrete_type_high_bound (raw_type));
10372 }
10373 else
10374 {
10375 static char *name_buf = NULL;
10376 static size_t name_len = 0;
10377 int prefix_len = subtype_info - name;
10378 LONGEST L, U;
10379 struct type *type;
10380 char *bounds_str;
10381 int n;
10382
10383 GROW_VECT (name_buf, name_len, prefix_len + 5);
10384 strncpy (name_buf, name, prefix_len);
10385 name_buf[prefix_len] = '\0';
10386
10387 subtype_info += 5;
10388 bounds_str = strchr (subtype_info, '_');
10389 n = 1;
10390
10391 if (*subtype_info == 'L')
10392 {
10393 if (!ada_scan_number (bounds_str, n, &L, &n)
10394 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10395 return raw_type;
10396 if (bounds_str[n] == '_')
10397 n += 2;
10398 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10399 n += 1;
10400 subtype_info += 1;
10401 }
10402 else
10403 {
10404 int ok;
10405
10406 strcpy (name_buf + prefix_len, "___L");
10407 L = get_int_var_value (name_buf, &ok);
10408 if (!ok)
10409 {
10410 lim_warning (_("Unknown lower bound, using 1."));
10411 L = 1;
10412 }
10413 }
10414
10415 if (*subtype_info == 'U')
10416 {
10417 if (!ada_scan_number (bounds_str, n, &U, &n)
10418 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10419 return raw_type;
10420 }
10421 else
10422 {
10423 int ok;
10424
10425 strcpy (name_buf + prefix_len, "___U");
10426 U = get_int_var_value (name_buf, &ok);
10427 if (!ok)
10428 {
10429 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10430 U = L;
10431 }
10432 }
10433
10434 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10435 TYPE_NAME (type) = name;
10436 return type;
10437 }
10438 }
10439
10440 /* True iff NAME is the name of a range type. */
10441
10442 int
10443 ada_is_range_type_name (const char *name)
10444 {
10445 return (name != NULL && strstr (name, "___XD"));
10446 }
10447 \f
10448
10449 /* Modular types */
10450
10451 /* True iff TYPE is an Ada modular type. */
10452
10453 int
10454 ada_is_modular_type (struct type *type)
10455 {
10456 struct type *subranged_type = base_type (type);
10457
10458 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10459 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10460 && TYPE_UNSIGNED (subranged_type));
10461 }
10462
10463 /* Try to determine the lower and upper bounds of the given modular type
10464 using the type name only. Return non-zero and set L and U as the lower
10465 and upper bounds (respectively) if successful. */
10466
10467 int
10468 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10469 {
10470 char *name = ada_type_name (type);
10471 char *suffix;
10472 int k;
10473 LONGEST U;
10474
10475 if (name == NULL)
10476 return 0;
10477
10478 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10479 we are looking for static bounds, which means an __XDLU suffix.
10480 Moreover, we know that the lower bound of modular types is always
10481 zero, so the actual suffix should start with "__XDLU_0__", and
10482 then be followed by the upper bound value. */
10483 suffix = strstr (name, "__XDLU_0__");
10484 if (suffix == NULL)
10485 return 0;
10486 k = 10;
10487 if (!ada_scan_number (suffix, k, &U, NULL))
10488 return 0;
10489
10490 *modulus = (ULONGEST) U + 1;
10491 return 1;
10492 }
10493
10494 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10495
10496 ULONGEST
10497 ada_modulus (struct type *type)
10498 {
10499 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10500 }
10501 \f
10502
10503 /* Ada exception catchpoint support:
10504 ---------------------------------
10505
10506 We support 3 kinds of exception catchpoints:
10507 . catchpoints on Ada exceptions
10508 . catchpoints on unhandled Ada exceptions
10509 . catchpoints on failed assertions
10510
10511 Exceptions raised during failed assertions, or unhandled exceptions
10512 could perfectly be caught with the general catchpoint on Ada exceptions.
10513 However, we can easily differentiate these two special cases, and having
10514 the option to distinguish these two cases from the rest can be useful
10515 to zero-in on certain situations.
10516
10517 Exception catchpoints are a specialized form of breakpoint,
10518 since they rely on inserting breakpoints inside known routines
10519 of the GNAT runtime. The implementation therefore uses a standard
10520 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10521 of breakpoint_ops.
10522
10523 Support in the runtime for exception catchpoints have been changed
10524 a few times already, and these changes affect the implementation
10525 of these catchpoints. In order to be able to support several
10526 variants of the runtime, we use a sniffer that will determine
10527 the runtime variant used by the program being debugged. */
10528
10529 /* The different types of catchpoints that we introduced for catching
10530 Ada exceptions. */
10531
10532 enum exception_catchpoint_kind
10533 {
10534 ex_catch_exception,
10535 ex_catch_exception_unhandled,
10536 ex_catch_assert
10537 };
10538
10539 /* Ada's standard exceptions. */
10540
10541 static char *standard_exc[] = {
10542 "constraint_error",
10543 "program_error",
10544 "storage_error",
10545 "tasking_error"
10546 };
10547
10548 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10549
10550 /* A structure that describes how to support exception catchpoints
10551 for a given executable. */
10552
10553 struct exception_support_info
10554 {
10555 /* The name of the symbol to break on in order to insert
10556 a catchpoint on exceptions. */
10557 const char *catch_exception_sym;
10558
10559 /* The name of the symbol to break on in order to insert
10560 a catchpoint on unhandled exceptions. */
10561 const char *catch_exception_unhandled_sym;
10562
10563 /* The name of the symbol to break on in order to insert
10564 a catchpoint on failed assertions. */
10565 const char *catch_assert_sym;
10566
10567 /* Assuming that the inferior just triggered an unhandled exception
10568 catchpoint, this function is responsible for returning the address
10569 in inferior memory where the name of that exception is stored.
10570 Return zero if the address could not be computed. */
10571 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10572 };
10573
10574 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10575 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10576
10577 /* The following exception support info structure describes how to
10578 implement exception catchpoints with the latest version of the
10579 Ada runtime (as of 2007-03-06). */
10580
10581 static const struct exception_support_info default_exception_support_info =
10582 {
10583 "__gnat_debug_raise_exception", /* catch_exception_sym */
10584 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10585 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10586 ada_unhandled_exception_name_addr
10587 };
10588
10589 /* The following exception support info structure describes how to
10590 implement exception catchpoints with a slightly older version
10591 of the Ada runtime. */
10592
10593 static const struct exception_support_info exception_support_info_fallback =
10594 {
10595 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10596 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10597 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10598 ada_unhandled_exception_name_addr_from_raise
10599 };
10600
10601 /* For each executable, we sniff which exception info structure to use
10602 and cache it in the following global variable. */
10603
10604 static const struct exception_support_info *exception_info = NULL;
10605
10606 /* Inspect the Ada runtime and determine which exception info structure
10607 should be used to provide support for exception catchpoints.
10608
10609 This function will always set exception_info, or raise an error. */
10610
10611 static void
10612 ada_exception_support_info_sniffer (void)
10613 {
10614 struct symbol *sym;
10615
10616 /* If the exception info is already known, then no need to recompute it. */
10617 if (exception_info != NULL)
10618 return;
10619
10620 /* Check the latest (default) exception support info. */
10621 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10622 NULL, VAR_DOMAIN);
10623 if (sym != NULL)
10624 {
10625 exception_info = &default_exception_support_info;
10626 return;
10627 }
10628
10629 /* Try our fallback exception suport info. */
10630 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10631 NULL, VAR_DOMAIN);
10632 if (sym != NULL)
10633 {
10634 exception_info = &exception_support_info_fallback;
10635 return;
10636 }
10637
10638 /* Sometimes, it is normal for us to not be able to find the routine
10639 we are looking for. This happens when the program is linked with
10640 the shared version of the GNAT runtime, and the program has not been
10641 started yet. Inform the user of these two possible causes if
10642 applicable. */
10643
10644 if (ada_update_initial_language (language_unknown) != language_ada)
10645 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10646
10647 /* If the symbol does not exist, then check that the program is
10648 already started, to make sure that shared libraries have been
10649 loaded. If it is not started, this may mean that the symbol is
10650 in a shared library. */
10651
10652 if (ptid_get_pid (inferior_ptid) == 0)
10653 error (_("Unable to insert catchpoint. Try to start the program first."));
10654
10655 /* At this point, we know that we are debugging an Ada program and
10656 that the inferior has been started, but we still are not able to
10657 find the run-time symbols. That can mean that we are in
10658 configurable run time mode, or that a-except as been optimized
10659 out by the linker... In any case, at this point it is not worth
10660 supporting this feature. */
10661
10662 error (_("Cannot insert catchpoints in this configuration."));
10663 }
10664
10665 /* An observer of "executable_changed" events.
10666 Its role is to clear certain cached values that need to be recomputed
10667 each time a new executable is loaded by GDB. */
10668
10669 static void
10670 ada_executable_changed_observer (void)
10671 {
10672 /* If the executable changed, then it is possible that the Ada runtime
10673 is different. So we need to invalidate the exception support info
10674 cache. */
10675 exception_info = NULL;
10676 }
10677
10678 /* True iff FRAME is very likely to be that of a function that is
10679 part of the runtime system. This is all very heuristic, but is
10680 intended to be used as advice as to what frames are uninteresting
10681 to most users. */
10682
10683 static int
10684 is_known_support_routine (struct frame_info *frame)
10685 {
10686 struct symtab_and_line sal;
10687 char *func_name;
10688 enum language func_lang;
10689 int i;
10690
10691 /* If this code does not have any debugging information (no symtab),
10692 This cannot be any user code. */
10693
10694 find_frame_sal (frame, &sal);
10695 if (sal.symtab == NULL)
10696 return 1;
10697
10698 /* If there is a symtab, but the associated source file cannot be
10699 located, then assume this is not user code: Selecting a frame
10700 for which we cannot display the code would not be very helpful
10701 for the user. This should also take care of case such as VxWorks
10702 where the kernel has some debugging info provided for a few units. */
10703
10704 if (symtab_to_fullname (sal.symtab) == NULL)
10705 return 1;
10706
10707 /* Check the unit filename againt the Ada runtime file naming.
10708 We also check the name of the objfile against the name of some
10709 known system libraries that sometimes come with debugging info
10710 too. */
10711
10712 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10713 {
10714 re_comp (known_runtime_file_name_patterns[i]);
10715 if (re_exec (sal.symtab->filename))
10716 return 1;
10717 if (sal.symtab->objfile != NULL
10718 && re_exec (sal.symtab->objfile->name))
10719 return 1;
10720 }
10721
10722 /* Check whether the function is a GNAT-generated entity. */
10723
10724 find_frame_funname (frame, &func_name, &func_lang, NULL);
10725 if (func_name == NULL)
10726 return 1;
10727
10728 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10729 {
10730 re_comp (known_auxiliary_function_name_patterns[i]);
10731 if (re_exec (func_name))
10732 return 1;
10733 }
10734
10735 return 0;
10736 }
10737
10738 /* Find the first frame that contains debugging information and that is not
10739 part of the Ada run-time, starting from FI and moving upward. */
10740
10741 void
10742 ada_find_printable_frame (struct frame_info *fi)
10743 {
10744 for (; fi != NULL; fi = get_prev_frame (fi))
10745 {
10746 if (!is_known_support_routine (fi))
10747 {
10748 select_frame (fi);
10749 break;
10750 }
10751 }
10752
10753 }
10754
10755 /* Assuming that the inferior just triggered an unhandled exception
10756 catchpoint, return the address in inferior memory where the name
10757 of the exception is stored.
10758
10759 Return zero if the address could not be computed. */
10760
10761 static CORE_ADDR
10762 ada_unhandled_exception_name_addr (void)
10763 {
10764 return parse_and_eval_address ("e.full_name");
10765 }
10766
10767 /* Same as ada_unhandled_exception_name_addr, except that this function
10768 should be used when the inferior uses an older version of the runtime,
10769 where the exception name needs to be extracted from a specific frame
10770 several frames up in the callstack. */
10771
10772 static CORE_ADDR
10773 ada_unhandled_exception_name_addr_from_raise (void)
10774 {
10775 int frame_level;
10776 struct frame_info *fi;
10777
10778 /* To determine the name of this exception, we need to select
10779 the frame corresponding to RAISE_SYM_NAME. This frame is
10780 at least 3 levels up, so we simply skip the first 3 frames
10781 without checking the name of their associated function. */
10782 fi = get_current_frame ();
10783 for (frame_level = 0; frame_level < 3; frame_level += 1)
10784 if (fi != NULL)
10785 fi = get_prev_frame (fi);
10786
10787 while (fi != NULL)
10788 {
10789 char *func_name;
10790 enum language func_lang;
10791
10792 find_frame_funname (fi, &func_name, &func_lang, NULL);
10793 if (func_name != NULL
10794 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10795 break; /* We found the frame we were looking for... */
10796 fi = get_prev_frame (fi);
10797 }
10798
10799 if (fi == NULL)
10800 return 0;
10801
10802 select_frame (fi);
10803 return parse_and_eval_address ("id.full_name");
10804 }
10805
10806 /* Assuming the inferior just triggered an Ada exception catchpoint
10807 (of any type), return the address in inferior memory where the name
10808 of the exception is stored, if applicable.
10809
10810 Return zero if the address could not be computed, or if not relevant. */
10811
10812 static CORE_ADDR
10813 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10814 struct breakpoint *b)
10815 {
10816 switch (ex)
10817 {
10818 case ex_catch_exception:
10819 return (parse_and_eval_address ("e.full_name"));
10820 break;
10821
10822 case ex_catch_exception_unhandled:
10823 return exception_info->unhandled_exception_name_addr ();
10824 break;
10825
10826 case ex_catch_assert:
10827 return 0; /* Exception name is not relevant in this case. */
10828 break;
10829
10830 default:
10831 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10832 break;
10833 }
10834
10835 return 0; /* Should never be reached. */
10836 }
10837
10838 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10839 any error that ada_exception_name_addr_1 might cause to be thrown.
10840 When an error is intercepted, a warning with the error message is printed,
10841 and zero is returned. */
10842
10843 static CORE_ADDR
10844 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10845 struct breakpoint *b)
10846 {
10847 struct gdb_exception e;
10848 CORE_ADDR result = 0;
10849
10850 TRY_CATCH (e, RETURN_MASK_ERROR)
10851 {
10852 result = ada_exception_name_addr_1 (ex, b);
10853 }
10854
10855 if (e.reason < 0)
10856 {
10857 warning (_("failed to get exception name: %s"), e.message);
10858 return 0;
10859 }
10860
10861 return result;
10862 }
10863
10864 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10865 char *, char **,
10866 const struct breakpoint_ops **);
10867 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10868
10869 /* Ada catchpoints.
10870
10871 In the case of catchpoints on Ada exceptions, the catchpoint will
10872 stop the target on every exception the program throws. When a user
10873 specifies the name of a specific exception, we translate this
10874 request into a condition expression (in text form), and then parse
10875 it into an expression stored in each of the catchpoint's locations.
10876 We then use this condition to check whether the exception that was
10877 raised is the one the user is interested in. If not, then the
10878 target is resumed again. We store the name of the requested
10879 exception, in order to be able to re-set the condition expression
10880 when symbols change. */
10881
10882 /* An instance of this type is used to represent an Ada catchpoint
10883 breakpoint location. It includes a "struct bp_location" as a kind
10884 of base class; users downcast to "struct bp_location *" when
10885 needed. */
10886
10887 struct ada_catchpoint_location
10888 {
10889 /* The base class. */
10890 struct bp_location base;
10891
10892 /* The condition that checks whether the exception that was raised
10893 is the specific exception the user specified on catchpoint
10894 creation. */
10895 struct expression *excep_cond_expr;
10896 };
10897
10898 /* Implement the DTOR method in the bp_location_ops structure for all
10899 Ada exception catchpoint kinds. */
10900
10901 static void
10902 ada_catchpoint_location_dtor (struct bp_location *bl)
10903 {
10904 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10905
10906 xfree (al->excep_cond_expr);
10907 }
10908
10909 /* The vtable to be used in Ada catchpoint locations. */
10910
10911 static const struct bp_location_ops ada_catchpoint_location_ops =
10912 {
10913 ada_catchpoint_location_dtor
10914 };
10915
10916 /* An instance of this type is used to represent an Ada catchpoint.
10917 It includes a "struct breakpoint" as a kind of base class; users
10918 downcast to "struct breakpoint *" when needed. */
10919
10920 struct ada_catchpoint
10921 {
10922 /* The base class. */
10923 struct breakpoint base;
10924
10925 /* The name of the specific exception the user specified. */
10926 char *excep_string;
10927 };
10928
10929 /* Parse the exception condition string in the context of each of the
10930 catchpoint's locations, and store them for later evaluation. */
10931
10932 static void
10933 create_excep_cond_exprs (struct ada_catchpoint *c)
10934 {
10935 struct cleanup *old_chain;
10936 struct bp_location *bl;
10937 char *cond_string;
10938
10939 /* Nothing to do if there's no specific exception to catch. */
10940 if (c->excep_string == NULL)
10941 return;
10942
10943 /* Same if there are no locations... */
10944 if (c->base.loc == NULL)
10945 return;
10946
10947 /* Compute the condition expression in text form, from the specific
10948 expection we want to catch. */
10949 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
10950 old_chain = make_cleanup (xfree, cond_string);
10951
10952 /* Iterate over all the catchpoint's locations, and parse an
10953 expression for each. */
10954 for (bl = c->base.loc; bl != NULL; bl = bl->next)
10955 {
10956 struct ada_catchpoint_location *ada_loc
10957 = (struct ada_catchpoint_location *) bl;
10958 struct expression *exp = NULL;
10959
10960 if (!bl->shlib_disabled)
10961 {
10962 volatile struct gdb_exception e;
10963 char *s;
10964
10965 s = cond_string;
10966 TRY_CATCH (e, RETURN_MASK_ERROR)
10967 {
10968 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
10969 }
10970 if (e.reason < 0)
10971 warning (_("failed to reevaluate internal exception condition "
10972 "for catchpoint %d: %s"),
10973 c->base.number, e.message);
10974 }
10975
10976 ada_loc->excep_cond_expr = exp;
10977 }
10978
10979 do_cleanups (old_chain);
10980 }
10981
10982 /* Implement the DTOR method in the breakpoint_ops structure for all
10983 exception catchpoint kinds. */
10984
10985 static void
10986 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10987 {
10988 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
10989
10990 xfree (c->excep_string);
10991
10992 bkpt_breakpoint_ops.dtor (b);
10993 }
10994
10995 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
10996 structure for all exception catchpoint kinds. */
10997
10998 static struct bp_location *
10999 allocate_location_exception (enum exception_catchpoint_kind ex,
11000 struct breakpoint *self)
11001 {
11002 struct ada_catchpoint_location *loc;
11003
11004 loc = XNEW (struct ada_catchpoint_location);
11005 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11006 loc->excep_cond_expr = NULL;
11007 return &loc->base;
11008 }
11009
11010 /* Implement the RE_SET method in the breakpoint_ops structure for all
11011 exception catchpoint kinds. */
11012
11013 static void
11014 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11015 {
11016 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11017
11018 /* Call the base class's method. This updates the catchpoint's
11019 locations. */
11020 bkpt_breakpoint_ops.re_set (b);
11021
11022 /* Reparse the exception conditional expressions. One for each
11023 location. */
11024 create_excep_cond_exprs (c);
11025 }
11026
11027 /* Returns true if we should stop for this breakpoint hit. If the
11028 user specified a specific exception, we only want to cause a stop
11029 if the program thrown that exception. */
11030
11031 static int
11032 should_stop_exception (const struct bp_location *bl)
11033 {
11034 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11035 const struct ada_catchpoint_location *ada_loc
11036 = (const struct ada_catchpoint_location *) bl;
11037 volatile struct gdb_exception ex;
11038 int stop;
11039
11040 /* With no specific exception, should always stop. */
11041 if (c->excep_string == NULL)
11042 return 1;
11043
11044 if (ada_loc->excep_cond_expr == NULL)
11045 {
11046 /* We will have a NULL expression if back when we were creating
11047 the expressions, this location's had failed to parse. */
11048 return 1;
11049 }
11050
11051 stop = 1;
11052 TRY_CATCH (ex, RETURN_MASK_ALL)
11053 {
11054 struct value *mark;
11055
11056 mark = value_mark ();
11057 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11058 value_free_to_mark (mark);
11059 }
11060 if (ex.reason < 0)
11061 exception_fprintf (gdb_stderr, ex,
11062 _("Error in testing exception condition:\n"));
11063 return stop;
11064 }
11065
11066 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11067 for all exception catchpoint kinds. */
11068
11069 static void
11070 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11071 {
11072 bs->stop = should_stop_exception (bs->bp_location_at);
11073 }
11074
11075 /* Implement the PRINT_IT method in the breakpoint_ops structure
11076 for all exception catchpoint kinds. */
11077
11078 static enum print_stop_action
11079 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11080 {
11081 struct ui_out *uiout = current_uiout;
11082 struct breakpoint *b = bs->breakpoint_at;
11083
11084 annotate_catchpoint (b->number);
11085
11086 if (ui_out_is_mi_like_p (uiout))
11087 {
11088 ui_out_field_string (uiout, "reason",
11089 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11090 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11091 }
11092
11093 ui_out_text (uiout,
11094 b->disposition == disp_del ? "\nTemporary catchpoint "
11095 : "\nCatchpoint ");
11096 ui_out_field_int (uiout, "bkptno", b->number);
11097 ui_out_text (uiout, ", ");
11098
11099 switch (ex)
11100 {
11101 case ex_catch_exception:
11102 case ex_catch_exception_unhandled:
11103 {
11104 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11105 char exception_name[256];
11106
11107 if (addr != 0)
11108 {
11109 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11110 exception_name [sizeof (exception_name) - 1] = '\0';
11111 }
11112 else
11113 {
11114 /* For some reason, we were unable to read the exception
11115 name. This could happen if the Runtime was compiled
11116 without debugging info, for instance. In that case,
11117 just replace the exception name by the generic string
11118 "exception" - it will read as "an exception" in the
11119 notification we are about to print. */
11120 memcpy (exception_name, "exception", sizeof ("exception"));
11121 }
11122 /* In the case of unhandled exception breakpoints, we print
11123 the exception name as "unhandled EXCEPTION_NAME", to make
11124 it clearer to the user which kind of catchpoint just got
11125 hit. We used ui_out_text to make sure that this extra
11126 info does not pollute the exception name in the MI case. */
11127 if (ex == ex_catch_exception_unhandled)
11128 ui_out_text (uiout, "unhandled ");
11129 ui_out_field_string (uiout, "exception-name", exception_name);
11130 }
11131 break;
11132 case ex_catch_assert:
11133 /* In this case, the name of the exception is not really
11134 important. Just print "failed assertion" to make it clearer
11135 that his program just hit an assertion-failure catchpoint.
11136 We used ui_out_text because this info does not belong in
11137 the MI output. */
11138 ui_out_text (uiout, "failed assertion");
11139 break;
11140 }
11141 ui_out_text (uiout, " at ");
11142 ada_find_printable_frame (get_current_frame ());
11143
11144 return PRINT_SRC_AND_LOC;
11145 }
11146
11147 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11148 for all exception catchpoint kinds. */
11149
11150 static void
11151 print_one_exception (enum exception_catchpoint_kind ex,
11152 struct breakpoint *b, struct bp_location **last_loc)
11153 {
11154 struct ui_out *uiout = current_uiout;
11155 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11156 struct value_print_options opts;
11157
11158 get_user_print_options (&opts);
11159 if (opts.addressprint)
11160 {
11161 annotate_field (4);
11162 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11163 }
11164
11165 annotate_field (5);
11166 *last_loc = b->loc;
11167 switch (ex)
11168 {
11169 case ex_catch_exception:
11170 if (c->excep_string != NULL)
11171 {
11172 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11173
11174 ui_out_field_string (uiout, "what", msg);
11175 xfree (msg);
11176 }
11177 else
11178 ui_out_field_string (uiout, "what", "all Ada exceptions");
11179
11180 break;
11181
11182 case ex_catch_exception_unhandled:
11183 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11184 break;
11185
11186 case ex_catch_assert:
11187 ui_out_field_string (uiout, "what", "failed Ada assertions");
11188 break;
11189
11190 default:
11191 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11192 break;
11193 }
11194 }
11195
11196 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11197 for all exception catchpoint kinds. */
11198
11199 static void
11200 print_mention_exception (enum exception_catchpoint_kind ex,
11201 struct breakpoint *b)
11202 {
11203 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11204 struct ui_out *uiout = current_uiout;
11205
11206 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11207 : _("Catchpoint "));
11208 ui_out_field_int (uiout, "bkptno", b->number);
11209 ui_out_text (uiout, ": ");
11210
11211 switch (ex)
11212 {
11213 case ex_catch_exception:
11214 if (c->excep_string != NULL)
11215 {
11216 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11217 struct cleanup *old_chain = make_cleanup (xfree, info);
11218
11219 ui_out_text (uiout, info);
11220 do_cleanups (old_chain);
11221 }
11222 else
11223 ui_out_text (uiout, _("all Ada exceptions"));
11224 break;
11225
11226 case ex_catch_exception_unhandled:
11227 ui_out_text (uiout, _("unhandled Ada exceptions"));
11228 break;
11229
11230 case ex_catch_assert:
11231 ui_out_text (uiout, _("failed Ada assertions"));
11232 break;
11233
11234 default:
11235 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11236 break;
11237 }
11238 }
11239
11240 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11241 for all exception catchpoint kinds. */
11242
11243 static void
11244 print_recreate_exception (enum exception_catchpoint_kind ex,
11245 struct breakpoint *b, struct ui_file *fp)
11246 {
11247 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11248
11249 switch (ex)
11250 {
11251 case ex_catch_exception:
11252 fprintf_filtered (fp, "catch exception");
11253 if (c->excep_string != NULL)
11254 fprintf_filtered (fp, " %s", c->excep_string);
11255 break;
11256
11257 case ex_catch_exception_unhandled:
11258 fprintf_filtered (fp, "catch exception unhandled");
11259 break;
11260
11261 case ex_catch_assert:
11262 fprintf_filtered (fp, "catch assert");
11263 break;
11264
11265 default:
11266 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11267 }
11268 print_recreate_thread (b, fp);
11269 }
11270
11271 /* Virtual table for "catch exception" breakpoints. */
11272
11273 static void
11274 dtor_catch_exception (struct breakpoint *b)
11275 {
11276 dtor_exception (ex_catch_exception, b);
11277 }
11278
11279 static struct bp_location *
11280 allocate_location_catch_exception (struct breakpoint *self)
11281 {
11282 return allocate_location_exception (ex_catch_exception, self);
11283 }
11284
11285 static void
11286 re_set_catch_exception (struct breakpoint *b)
11287 {
11288 re_set_exception (ex_catch_exception, b);
11289 }
11290
11291 static void
11292 check_status_catch_exception (bpstat bs)
11293 {
11294 check_status_exception (ex_catch_exception, bs);
11295 }
11296
11297 static enum print_stop_action
11298 print_it_catch_exception (bpstat bs)
11299 {
11300 return print_it_exception (ex_catch_exception, bs);
11301 }
11302
11303 static void
11304 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11305 {
11306 print_one_exception (ex_catch_exception, b, last_loc);
11307 }
11308
11309 static void
11310 print_mention_catch_exception (struct breakpoint *b)
11311 {
11312 print_mention_exception (ex_catch_exception, b);
11313 }
11314
11315 static void
11316 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11317 {
11318 print_recreate_exception (ex_catch_exception, b, fp);
11319 }
11320
11321 static struct breakpoint_ops catch_exception_breakpoint_ops;
11322
11323 /* Virtual table for "catch exception unhandled" breakpoints. */
11324
11325 static void
11326 dtor_catch_exception_unhandled (struct breakpoint *b)
11327 {
11328 dtor_exception (ex_catch_exception_unhandled, b);
11329 }
11330
11331 static struct bp_location *
11332 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11333 {
11334 return allocate_location_exception (ex_catch_exception_unhandled, self);
11335 }
11336
11337 static void
11338 re_set_catch_exception_unhandled (struct breakpoint *b)
11339 {
11340 re_set_exception (ex_catch_exception_unhandled, b);
11341 }
11342
11343 static void
11344 check_status_catch_exception_unhandled (bpstat bs)
11345 {
11346 check_status_exception (ex_catch_exception_unhandled, bs);
11347 }
11348
11349 static enum print_stop_action
11350 print_it_catch_exception_unhandled (bpstat bs)
11351 {
11352 return print_it_exception (ex_catch_exception_unhandled, bs);
11353 }
11354
11355 static void
11356 print_one_catch_exception_unhandled (struct breakpoint *b,
11357 struct bp_location **last_loc)
11358 {
11359 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11360 }
11361
11362 static void
11363 print_mention_catch_exception_unhandled (struct breakpoint *b)
11364 {
11365 print_mention_exception (ex_catch_exception_unhandled, b);
11366 }
11367
11368 static void
11369 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11370 struct ui_file *fp)
11371 {
11372 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11373 }
11374
11375 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11376
11377 /* Virtual table for "catch assert" breakpoints. */
11378
11379 static void
11380 dtor_catch_assert (struct breakpoint *b)
11381 {
11382 dtor_exception (ex_catch_assert, b);
11383 }
11384
11385 static struct bp_location *
11386 allocate_location_catch_assert (struct breakpoint *self)
11387 {
11388 return allocate_location_exception (ex_catch_assert, self);
11389 }
11390
11391 static void
11392 re_set_catch_assert (struct breakpoint *b)
11393 {
11394 return re_set_exception (ex_catch_assert, b);
11395 }
11396
11397 static void
11398 check_status_catch_assert (bpstat bs)
11399 {
11400 check_status_exception (ex_catch_assert, bs);
11401 }
11402
11403 static enum print_stop_action
11404 print_it_catch_assert (bpstat bs)
11405 {
11406 return print_it_exception (ex_catch_assert, bs);
11407 }
11408
11409 static void
11410 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11411 {
11412 print_one_exception (ex_catch_assert, b, last_loc);
11413 }
11414
11415 static void
11416 print_mention_catch_assert (struct breakpoint *b)
11417 {
11418 print_mention_exception (ex_catch_assert, b);
11419 }
11420
11421 static void
11422 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11423 {
11424 print_recreate_exception (ex_catch_assert, b, fp);
11425 }
11426
11427 static struct breakpoint_ops catch_assert_breakpoint_ops;
11428
11429 /* Return a newly allocated copy of the first space-separated token
11430 in ARGSP, and then adjust ARGSP to point immediately after that
11431 token.
11432
11433 Return NULL if ARGPS does not contain any more tokens. */
11434
11435 static char *
11436 ada_get_next_arg (char **argsp)
11437 {
11438 char *args = *argsp;
11439 char *end;
11440 char *result;
11441
11442 /* Skip any leading white space. */
11443
11444 while (isspace (*args))
11445 args++;
11446
11447 if (args[0] == '\0')
11448 return NULL; /* No more arguments. */
11449
11450 /* Find the end of the current argument. */
11451
11452 end = args;
11453 while (*end != '\0' && !isspace (*end))
11454 end++;
11455
11456 /* Adjust ARGSP to point to the start of the next argument. */
11457
11458 *argsp = end;
11459
11460 /* Make a copy of the current argument and return it. */
11461
11462 result = xmalloc (end - args + 1);
11463 strncpy (result, args, end - args);
11464 result[end - args] = '\0';
11465
11466 return result;
11467 }
11468
11469 /* Split the arguments specified in a "catch exception" command.
11470 Set EX to the appropriate catchpoint type.
11471 Set EXCEP_STRING to the name of the specific exception if
11472 specified by the user. */
11473
11474 static void
11475 catch_ada_exception_command_split (char *args,
11476 enum exception_catchpoint_kind *ex,
11477 char **excep_string)
11478 {
11479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11480 char *exception_name;
11481
11482 exception_name = ada_get_next_arg (&args);
11483 make_cleanup (xfree, exception_name);
11484
11485 /* Check that we do not have any more arguments. Anything else
11486 is unexpected. */
11487
11488 while (isspace (*args))
11489 args++;
11490
11491 if (args[0] != '\0')
11492 error (_("Junk at end of expression"));
11493
11494 discard_cleanups (old_chain);
11495
11496 if (exception_name == NULL)
11497 {
11498 /* Catch all exceptions. */
11499 *ex = ex_catch_exception;
11500 *excep_string = NULL;
11501 }
11502 else if (strcmp (exception_name, "unhandled") == 0)
11503 {
11504 /* Catch unhandled exceptions. */
11505 *ex = ex_catch_exception_unhandled;
11506 *excep_string = NULL;
11507 }
11508 else
11509 {
11510 /* Catch a specific exception. */
11511 *ex = ex_catch_exception;
11512 *excep_string = exception_name;
11513 }
11514 }
11515
11516 /* Return the name of the symbol on which we should break in order to
11517 implement a catchpoint of the EX kind. */
11518
11519 static const char *
11520 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11521 {
11522 gdb_assert (exception_info != NULL);
11523
11524 switch (ex)
11525 {
11526 case ex_catch_exception:
11527 return (exception_info->catch_exception_sym);
11528 break;
11529 case ex_catch_exception_unhandled:
11530 return (exception_info->catch_exception_unhandled_sym);
11531 break;
11532 case ex_catch_assert:
11533 return (exception_info->catch_assert_sym);
11534 break;
11535 default:
11536 internal_error (__FILE__, __LINE__,
11537 _("unexpected catchpoint kind (%d)"), ex);
11538 }
11539 }
11540
11541 /* Return the breakpoint ops "virtual table" used for catchpoints
11542 of the EX kind. */
11543
11544 static const struct breakpoint_ops *
11545 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11546 {
11547 switch (ex)
11548 {
11549 case ex_catch_exception:
11550 return (&catch_exception_breakpoint_ops);
11551 break;
11552 case ex_catch_exception_unhandled:
11553 return (&catch_exception_unhandled_breakpoint_ops);
11554 break;
11555 case ex_catch_assert:
11556 return (&catch_assert_breakpoint_ops);
11557 break;
11558 default:
11559 internal_error (__FILE__, __LINE__,
11560 _("unexpected catchpoint kind (%d)"), ex);
11561 }
11562 }
11563
11564 /* Return the condition that will be used to match the current exception
11565 being raised with the exception that the user wants to catch. This
11566 assumes that this condition is used when the inferior just triggered
11567 an exception catchpoint.
11568
11569 The string returned is a newly allocated string that needs to be
11570 deallocated later. */
11571
11572 static char *
11573 ada_exception_catchpoint_cond_string (const char *excep_string)
11574 {
11575 int i;
11576
11577 /* The standard exceptions are a special case. They are defined in
11578 runtime units that have been compiled without debugging info; if
11579 EXCEP_STRING is the not-fully-qualified name of a standard
11580 exception (e.g. "constraint_error") then, during the evaluation
11581 of the condition expression, the symbol lookup on this name would
11582 *not* return this standard exception. The catchpoint condition
11583 may then be set only on user-defined exceptions which have the
11584 same not-fully-qualified name (e.g. my_package.constraint_error).
11585
11586 To avoid this unexcepted behavior, these standard exceptions are
11587 systematically prefixed by "standard". This means that "catch
11588 exception constraint_error" is rewritten into "catch exception
11589 standard.constraint_error".
11590
11591 If an exception named contraint_error is defined in another package of
11592 the inferior program, then the only way to specify this exception as a
11593 breakpoint condition is to use its fully-qualified named:
11594 e.g. my_package.constraint_error. */
11595
11596 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11597 {
11598 if (strcmp (standard_exc [i], excep_string) == 0)
11599 {
11600 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11601 excep_string);
11602 }
11603 }
11604 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11605 }
11606
11607 /* Return the symtab_and_line that should be used to insert an exception
11608 catchpoint of the TYPE kind.
11609
11610 EXCEP_STRING should contain the name of a specific exception that
11611 the catchpoint should catch, or NULL otherwise.
11612
11613 ADDR_STRING returns the name of the function where the real
11614 breakpoint that implements the catchpoints is set, depending on the
11615 type of catchpoint we need to create. */
11616
11617 static struct symtab_and_line
11618 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11619 char **addr_string, const struct breakpoint_ops **ops)
11620 {
11621 const char *sym_name;
11622 struct symbol *sym;
11623 struct symtab_and_line sal;
11624
11625 /* First, find out which exception support info to use. */
11626 ada_exception_support_info_sniffer ();
11627
11628 /* Then lookup the function on which we will break in order to catch
11629 the Ada exceptions requested by the user. */
11630
11631 sym_name = ada_exception_sym_name (ex);
11632 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11633
11634 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11635 that should be compiled with debugging information. As a result, we
11636 expect to find that symbol in the symtabs. If we don't find it, then
11637 the target most likely does not support Ada exceptions, or we cannot
11638 insert exception breakpoints yet, because the GNAT runtime hasn't been
11639 loaded yet. */
11640
11641 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11642 in such a way that no debugging information is produced for the symbol
11643 we are looking for. In this case, we could search the minimal symbols
11644 as a fall-back mechanism. This would still be operating in degraded
11645 mode, however, as we would still be missing the debugging information
11646 that is needed in order to extract the name of the exception being
11647 raised (this name is printed in the catchpoint message, and is also
11648 used when trying to catch a specific exception). We do not handle
11649 this case for now. */
11650
11651 if (sym == NULL)
11652 error (_("Unable to break on '%s' in this configuration."), sym_name);
11653
11654 /* Make sure that the symbol we found corresponds to a function. */
11655 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11656 error (_("Symbol \"%s\" is not a function (class = %d)"),
11657 sym_name, SYMBOL_CLASS (sym));
11658
11659 sal = find_function_start_sal (sym, 1);
11660
11661 /* Set ADDR_STRING. */
11662
11663 *addr_string = xstrdup (sym_name);
11664
11665 /* Set OPS. */
11666 *ops = ada_exception_breakpoint_ops (ex);
11667
11668 return sal;
11669 }
11670
11671 /* Parse the arguments (ARGS) of the "catch exception" command.
11672
11673 If the user asked the catchpoint to catch only a specific
11674 exception, then save the exception name in ADDR_STRING.
11675
11676 See ada_exception_sal for a description of all the remaining
11677 function arguments of this function. */
11678
11679 static struct symtab_and_line
11680 ada_decode_exception_location (char *args, char **addr_string,
11681 char **excep_string,
11682 const struct breakpoint_ops **ops)
11683 {
11684 enum exception_catchpoint_kind ex;
11685
11686 catch_ada_exception_command_split (args, &ex, excep_string);
11687 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11688 }
11689
11690 /* Create an Ada exception catchpoint. */
11691
11692 static void
11693 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11694 struct symtab_and_line sal,
11695 char *addr_string,
11696 char *excep_string,
11697 const struct breakpoint_ops *ops,
11698 int tempflag,
11699 int from_tty)
11700 {
11701 struct ada_catchpoint *c;
11702
11703 c = XNEW (struct ada_catchpoint);
11704 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11705 ops, tempflag, from_tty);
11706 c->excep_string = excep_string;
11707 create_excep_cond_exprs (c);
11708 install_breakpoint (0, &c->base);
11709 }
11710
11711 /* Implement the "catch exception" command. */
11712
11713 static void
11714 catch_ada_exception_command (char *arg, int from_tty,
11715 struct cmd_list_element *command)
11716 {
11717 struct gdbarch *gdbarch = get_current_arch ();
11718 int tempflag;
11719 struct symtab_and_line sal;
11720 char *addr_string = NULL;
11721 char *excep_string = NULL;
11722 const struct breakpoint_ops *ops = NULL;
11723
11724 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11725
11726 if (!arg)
11727 arg = "";
11728 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11729 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11730 excep_string, ops, tempflag, from_tty);
11731 }
11732
11733 static struct symtab_and_line
11734 ada_decode_assert_location (char *args, char **addr_string,
11735 const struct breakpoint_ops **ops)
11736 {
11737 /* Check that no argument where provided at the end of the command. */
11738
11739 if (args != NULL)
11740 {
11741 while (isspace (*args))
11742 args++;
11743 if (*args != '\0')
11744 error (_("Junk at end of arguments."));
11745 }
11746
11747 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11748 }
11749
11750 /* Implement the "catch assert" command. */
11751
11752 static void
11753 catch_assert_command (char *arg, int from_tty,
11754 struct cmd_list_element *command)
11755 {
11756 struct gdbarch *gdbarch = get_current_arch ();
11757 int tempflag;
11758 struct symtab_and_line sal;
11759 char *addr_string = NULL;
11760 const struct breakpoint_ops *ops = NULL;
11761
11762 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11763
11764 if (!arg)
11765 arg = "";
11766 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11767 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11768 NULL, ops, tempflag, from_tty);
11769 }
11770 /* Operators */
11771 /* Information about operators given special treatment in functions
11772 below. */
11773 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11774
11775 #define ADA_OPERATORS \
11776 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11777 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11778 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11779 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11780 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11781 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11782 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11783 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11784 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11785 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11786 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11787 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11788 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11789 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11790 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11791 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11792 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11793 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11794 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11795
11796 static void
11797 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11798 int *argsp)
11799 {
11800 switch (exp->elts[pc - 1].opcode)
11801 {
11802 default:
11803 operator_length_standard (exp, pc, oplenp, argsp);
11804 break;
11805
11806 #define OP_DEFN(op, len, args, binop) \
11807 case op: *oplenp = len; *argsp = args; break;
11808 ADA_OPERATORS;
11809 #undef OP_DEFN
11810
11811 case OP_AGGREGATE:
11812 *oplenp = 3;
11813 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11814 break;
11815
11816 case OP_CHOICES:
11817 *oplenp = 3;
11818 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11819 break;
11820 }
11821 }
11822
11823 /* Implementation of the exp_descriptor method operator_check. */
11824
11825 static int
11826 ada_operator_check (struct expression *exp, int pos,
11827 int (*objfile_func) (struct objfile *objfile, void *data),
11828 void *data)
11829 {
11830 const union exp_element *const elts = exp->elts;
11831 struct type *type = NULL;
11832
11833 switch (elts[pos].opcode)
11834 {
11835 case UNOP_IN_RANGE:
11836 case UNOP_QUAL:
11837 type = elts[pos + 1].type;
11838 break;
11839
11840 default:
11841 return operator_check_standard (exp, pos, objfile_func, data);
11842 }
11843
11844 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11845
11846 if (type && TYPE_OBJFILE (type)
11847 && (*objfile_func) (TYPE_OBJFILE (type), data))
11848 return 1;
11849
11850 return 0;
11851 }
11852
11853 static char *
11854 ada_op_name (enum exp_opcode opcode)
11855 {
11856 switch (opcode)
11857 {
11858 default:
11859 return op_name_standard (opcode);
11860
11861 #define OP_DEFN(op, len, args, binop) case op: return #op;
11862 ADA_OPERATORS;
11863 #undef OP_DEFN
11864
11865 case OP_AGGREGATE:
11866 return "OP_AGGREGATE";
11867 case OP_CHOICES:
11868 return "OP_CHOICES";
11869 case OP_NAME:
11870 return "OP_NAME";
11871 }
11872 }
11873
11874 /* As for operator_length, but assumes PC is pointing at the first
11875 element of the operator, and gives meaningful results only for the
11876 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11877
11878 static void
11879 ada_forward_operator_length (struct expression *exp, int pc,
11880 int *oplenp, int *argsp)
11881 {
11882 switch (exp->elts[pc].opcode)
11883 {
11884 default:
11885 *oplenp = *argsp = 0;
11886 break;
11887
11888 #define OP_DEFN(op, len, args, binop) \
11889 case op: *oplenp = len; *argsp = args; break;
11890 ADA_OPERATORS;
11891 #undef OP_DEFN
11892
11893 case OP_AGGREGATE:
11894 *oplenp = 3;
11895 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11896 break;
11897
11898 case OP_CHOICES:
11899 *oplenp = 3;
11900 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11901 break;
11902
11903 case OP_STRING:
11904 case OP_NAME:
11905 {
11906 int len = longest_to_int (exp->elts[pc + 1].longconst);
11907
11908 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11909 *argsp = 0;
11910 break;
11911 }
11912 }
11913 }
11914
11915 static int
11916 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11917 {
11918 enum exp_opcode op = exp->elts[elt].opcode;
11919 int oplen, nargs;
11920 int pc = elt;
11921 int i;
11922
11923 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11924
11925 switch (op)
11926 {
11927 /* Ada attributes ('Foo). */
11928 case OP_ATR_FIRST:
11929 case OP_ATR_LAST:
11930 case OP_ATR_LENGTH:
11931 case OP_ATR_IMAGE:
11932 case OP_ATR_MAX:
11933 case OP_ATR_MIN:
11934 case OP_ATR_MODULUS:
11935 case OP_ATR_POS:
11936 case OP_ATR_SIZE:
11937 case OP_ATR_TAG:
11938 case OP_ATR_VAL:
11939 break;
11940
11941 case UNOP_IN_RANGE:
11942 case UNOP_QUAL:
11943 /* XXX: gdb_sprint_host_address, type_sprint */
11944 fprintf_filtered (stream, _("Type @"));
11945 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11946 fprintf_filtered (stream, " (");
11947 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11948 fprintf_filtered (stream, ")");
11949 break;
11950 case BINOP_IN_BOUNDS:
11951 fprintf_filtered (stream, " (%d)",
11952 longest_to_int (exp->elts[pc + 2].longconst));
11953 break;
11954 case TERNOP_IN_RANGE:
11955 break;
11956
11957 case OP_AGGREGATE:
11958 case OP_OTHERS:
11959 case OP_DISCRETE_RANGE:
11960 case OP_POSITIONAL:
11961 case OP_CHOICES:
11962 break;
11963
11964 case OP_NAME:
11965 case OP_STRING:
11966 {
11967 char *name = &exp->elts[elt + 2].string;
11968 int len = longest_to_int (exp->elts[elt + 1].longconst);
11969
11970 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11971 break;
11972 }
11973
11974 default:
11975 return dump_subexp_body_standard (exp, stream, elt);
11976 }
11977
11978 elt += oplen;
11979 for (i = 0; i < nargs; i += 1)
11980 elt = dump_subexp (exp, stream, elt);
11981
11982 return elt;
11983 }
11984
11985 /* The Ada extension of print_subexp (q.v.). */
11986
11987 static void
11988 ada_print_subexp (struct expression *exp, int *pos,
11989 struct ui_file *stream, enum precedence prec)
11990 {
11991 int oplen, nargs, i;
11992 int pc = *pos;
11993 enum exp_opcode op = exp->elts[pc].opcode;
11994
11995 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11996
11997 *pos += oplen;
11998 switch (op)
11999 {
12000 default:
12001 *pos -= oplen;
12002 print_subexp_standard (exp, pos, stream, prec);
12003 return;
12004
12005 case OP_VAR_VALUE:
12006 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12007 return;
12008
12009 case BINOP_IN_BOUNDS:
12010 /* XXX: sprint_subexp */
12011 print_subexp (exp, pos, stream, PREC_SUFFIX);
12012 fputs_filtered (" in ", stream);
12013 print_subexp (exp, pos, stream, PREC_SUFFIX);
12014 fputs_filtered ("'range", stream);
12015 if (exp->elts[pc + 1].longconst > 1)
12016 fprintf_filtered (stream, "(%ld)",
12017 (long) exp->elts[pc + 1].longconst);
12018 return;
12019
12020 case TERNOP_IN_RANGE:
12021 if (prec >= PREC_EQUAL)
12022 fputs_filtered ("(", stream);
12023 /* XXX: sprint_subexp */
12024 print_subexp (exp, pos, stream, PREC_SUFFIX);
12025 fputs_filtered (" in ", stream);
12026 print_subexp (exp, pos, stream, PREC_EQUAL);
12027 fputs_filtered (" .. ", stream);
12028 print_subexp (exp, pos, stream, PREC_EQUAL);
12029 if (prec >= PREC_EQUAL)
12030 fputs_filtered (")", stream);
12031 return;
12032
12033 case OP_ATR_FIRST:
12034 case OP_ATR_LAST:
12035 case OP_ATR_LENGTH:
12036 case OP_ATR_IMAGE:
12037 case OP_ATR_MAX:
12038 case OP_ATR_MIN:
12039 case OP_ATR_MODULUS:
12040 case OP_ATR_POS:
12041 case OP_ATR_SIZE:
12042 case OP_ATR_TAG:
12043 case OP_ATR_VAL:
12044 if (exp->elts[*pos].opcode == OP_TYPE)
12045 {
12046 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12047 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12048 *pos += 3;
12049 }
12050 else
12051 print_subexp (exp, pos, stream, PREC_SUFFIX);
12052 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12053 if (nargs > 1)
12054 {
12055 int tem;
12056
12057 for (tem = 1; tem < nargs; tem += 1)
12058 {
12059 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12060 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12061 }
12062 fputs_filtered (")", stream);
12063 }
12064 return;
12065
12066 case UNOP_QUAL:
12067 type_print (exp->elts[pc + 1].type, "", stream, 0);
12068 fputs_filtered ("'(", stream);
12069 print_subexp (exp, pos, stream, PREC_PREFIX);
12070 fputs_filtered (")", stream);
12071 return;
12072
12073 case UNOP_IN_RANGE:
12074 /* XXX: sprint_subexp */
12075 print_subexp (exp, pos, stream, PREC_SUFFIX);
12076 fputs_filtered (" in ", stream);
12077 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12078 return;
12079
12080 case OP_DISCRETE_RANGE:
12081 print_subexp (exp, pos, stream, PREC_SUFFIX);
12082 fputs_filtered ("..", stream);
12083 print_subexp (exp, pos, stream, PREC_SUFFIX);
12084 return;
12085
12086 case OP_OTHERS:
12087 fputs_filtered ("others => ", stream);
12088 print_subexp (exp, pos, stream, PREC_SUFFIX);
12089 return;
12090
12091 case OP_CHOICES:
12092 for (i = 0; i < nargs-1; i += 1)
12093 {
12094 if (i > 0)
12095 fputs_filtered ("|", stream);
12096 print_subexp (exp, pos, stream, PREC_SUFFIX);
12097 }
12098 fputs_filtered (" => ", stream);
12099 print_subexp (exp, pos, stream, PREC_SUFFIX);
12100 return;
12101
12102 case OP_POSITIONAL:
12103 print_subexp (exp, pos, stream, PREC_SUFFIX);
12104 return;
12105
12106 case OP_AGGREGATE:
12107 fputs_filtered ("(", stream);
12108 for (i = 0; i < nargs; i += 1)
12109 {
12110 if (i > 0)
12111 fputs_filtered (", ", stream);
12112 print_subexp (exp, pos, stream, PREC_SUFFIX);
12113 }
12114 fputs_filtered (")", stream);
12115 return;
12116 }
12117 }
12118
12119 /* Table mapping opcodes into strings for printing operators
12120 and precedences of the operators. */
12121
12122 static const struct op_print ada_op_print_tab[] = {
12123 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12124 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12125 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12126 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12127 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12128 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12129 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12130 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12131 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12132 {">=", BINOP_GEQ, PREC_ORDER, 0},
12133 {">", BINOP_GTR, PREC_ORDER, 0},
12134 {"<", BINOP_LESS, PREC_ORDER, 0},
12135 {">>", BINOP_RSH, PREC_SHIFT, 0},
12136 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12137 {"+", BINOP_ADD, PREC_ADD, 0},
12138 {"-", BINOP_SUB, PREC_ADD, 0},
12139 {"&", BINOP_CONCAT, PREC_ADD, 0},
12140 {"*", BINOP_MUL, PREC_MUL, 0},
12141 {"/", BINOP_DIV, PREC_MUL, 0},
12142 {"rem", BINOP_REM, PREC_MUL, 0},
12143 {"mod", BINOP_MOD, PREC_MUL, 0},
12144 {"**", BINOP_EXP, PREC_REPEAT, 0},
12145 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12146 {"-", UNOP_NEG, PREC_PREFIX, 0},
12147 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12148 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12149 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12150 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12151 {".all", UNOP_IND, PREC_SUFFIX, 1},
12152 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12153 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12154 {NULL, 0, 0, 0}
12155 };
12156 \f
12157 enum ada_primitive_types {
12158 ada_primitive_type_int,
12159 ada_primitive_type_long,
12160 ada_primitive_type_short,
12161 ada_primitive_type_char,
12162 ada_primitive_type_float,
12163 ada_primitive_type_double,
12164 ada_primitive_type_void,
12165 ada_primitive_type_long_long,
12166 ada_primitive_type_long_double,
12167 ada_primitive_type_natural,
12168 ada_primitive_type_positive,
12169 ada_primitive_type_system_address,
12170 nr_ada_primitive_types
12171 };
12172
12173 static void
12174 ada_language_arch_info (struct gdbarch *gdbarch,
12175 struct language_arch_info *lai)
12176 {
12177 const struct builtin_type *builtin = builtin_type (gdbarch);
12178
12179 lai->primitive_type_vector
12180 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12181 struct type *);
12182
12183 lai->primitive_type_vector [ada_primitive_type_int]
12184 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12185 0, "integer");
12186 lai->primitive_type_vector [ada_primitive_type_long]
12187 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12188 0, "long_integer");
12189 lai->primitive_type_vector [ada_primitive_type_short]
12190 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12191 0, "short_integer");
12192 lai->string_char_type
12193 = lai->primitive_type_vector [ada_primitive_type_char]
12194 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12195 lai->primitive_type_vector [ada_primitive_type_float]
12196 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12197 "float", NULL);
12198 lai->primitive_type_vector [ada_primitive_type_double]
12199 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12200 "long_float", NULL);
12201 lai->primitive_type_vector [ada_primitive_type_long_long]
12202 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12203 0, "long_long_integer");
12204 lai->primitive_type_vector [ada_primitive_type_long_double]
12205 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12206 "long_long_float", NULL);
12207 lai->primitive_type_vector [ada_primitive_type_natural]
12208 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12209 0, "natural");
12210 lai->primitive_type_vector [ada_primitive_type_positive]
12211 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12212 0, "positive");
12213 lai->primitive_type_vector [ada_primitive_type_void]
12214 = builtin->builtin_void;
12215
12216 lai->primitive_type_vector [ada_primitive_type_system_address]
12217 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12218 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12219 = "system__address";
12220
12221 lai->bool_type_symbol = NULL;
12222 lai->bool_type_default = builtin->builtin_bool;
12223 }
12224 \f
12225 /* Language vector */
12226
12227 /* Not really used, but needed in the ada_language_defn. */
12228
12229 static void
12230 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12231 {
12232 ada_emit_char (c, type, stream, quoter, 1);
12233 }
12234
12235 static int
12236 parse (void)
12237 {
12238 warnings_issued = 0;
12239 return ada_parse ();
12240 }
12241
12242 static const struct exp_descriptor ada_exp_descriptor = {
12243 ada_print_subexp,
12244 ada_operator_length,
12245 ada_operator_check,
12246 ada_op_name,
12247 ada_dump_subexp_body,
12248 ada_evaluate_subexp
12249 };
12250
12251 const struct language_defn ada_language_defn = {
12252 "ada", /* Language name */
12253 language_ada,
12254 range_check_off,
12255 type_check_off,
12256 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12257 that's not quite what this means. */
12258 array_row_major,
12259 macro_expansion_no,
12260 &ada_exp_descriptor,
12261 parse,
12262 ada_error,
12263 resolve,
12264 ada_printchar, /* Print a character constant */
12265 ada_printstr, /* Function to print string constant */
12266 emit_char, /* Function to print single char (not used) */
12267 ada_print_type, /* Print a type using appropriate syntax */
12268 ada_print_typedef, /* Print a typedef using appropriate syntax */
12269 ada_val_print, /* Print a value using appropriate syntax */
12270 ada_value_print, /* Print a top-level value */
12271 NULL, /* Language specific skip_trampoline */
12272 NULL, /* name_of_this */
12273 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12274 basic_lookup_transparent_type, /* lookup_transparent_type */
12275 ada_la_decode, /* Language specific symbol demangler */
12276 NULL, /* Language specific
12277 class_name_from_physname */
12278 ada_op_print_tab, /* expression operators for printing */
12279 0, /* c-style arrays */
12280 1, /* String lower bound */
12281 ada_get_gdb_completer_word_break_characters,
12282 ada_make_symbol_completion_list,
12283 ada_language_arch_info,
12284 ada_print_array_index,
12285 default_pass_by_reference,
12286 c_get_string,
12287 LANG_MAGIC
12288 };
12289
12290 /* Provide a prototype to silence -Wmissing-prototypes. */
12291 extern initialize_file_ftype _initialize_ada_language;
12292
12293 /* Command-list for the "set/show ada" prefix command. */
12294 static struct cmd_list_element *set_ada_list;
12295 static struct cmd_list_element *show_ada_list;
12296
12297 /* Implement the "set ada" prefix command. */
12298
12299 static void
12300 set_ada_command (char *arg, int from_tty)
12301 {
12302 printf_unfiltered (_(\
12303 "\"set ada\" must be followed by the name of a setting.\n"));
12304 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12305 }
12306
12307 /* Implement the "show ada" prefix command. */
12308
12309 static void
12310 show_ada_command (char *args, int from_tty)
12311 {
12312 cmd_show_list (show_ada_list, from_tty, "");
12313 }
12314
12315 static void
12316 initialize_ada_catchpoint_ops (void)
12317 {
12318 struct breakpoint_ops *ops;
12319
12320 initialize_breakpoint_ops ();
12321
12322 ops = &catch_exception_breakpoint_ops;
12323 *ops = bkpt_breakpoint_ops;
12324 ops->dtor = dtor_catch_exception;
12325 ops->allocate_location = allocate_location_catch_exception;
12326 ops->re_set = re_set_catch_exception;
12327 ops->check_status = check_status_catch_exception;
12328 ops->print_it = print_it_catch_exception;
12329 ops->print_one = print_one_catch_exception;
12330 ops->print_mention = print_mention_catch_exception;
12331 ops->print_recreate = print_recreate_catch_exception;
12332
12333 ops = &catch_exception_unhandled_breakpoint_ops;
12334 *ops = bkpt_breakpoint_ops;
12335 ops->dtor = dtor_catch_exception_unhandled;
12336 ops->allocate_location = allocate_location_catch_exception_unhandled;
12337 ops->re_set = re_set_catch_exception_unhandled;
12338 ops->check_status = check_status_catch_exception_unhandled;
12339 ops->print_it = print_it_catch_exception_unhandled;
12340 ops->print_one = print_one_catch_exception_unhandled;
12341 ops->print_mention = print_mention_catch_exception_unhandled;
12342 ops->print_recreate = print_recreate_catch_exception_unhandled;
12343
12344 ops = &catch_assert_breakpoint_ops;
12345 *ops = bkpt_breakpoint_ops;
12346 ops->dtor = dtor_catch_assert;
12347 ops->allocate_location = allocate_location_catch_assert;
12348 ops->re_set = re_set_catch_assert;
12349 ops->check_status = check_status_catch_assert;
12350 ops->print_it = print_it_catch_assert;
12351 ops->print_one = print_one_catch_assert;
12352 ops->print_mention = print_mention_catch_assert;
12353 ops->print_recreate = print_recreate_catch_assert;
12354 }
12355
12356 void
12357 _initialize_ada_language (void)
12358 {
12359 add_language (&ada_language_defn);
12360
12361 initialize_ada_catchpoint_ops ();
12362
12363 add_prefix_cmd ("ada", no_class, set_ada_command,
12364 _("Prefix command for changing Ada-specfic settings"),
12365 &set_ada_list, "set ada ", 0, &setlist);
12366
12367 add_prefix_cmd ("ada", no_class, show_ada_command,
12368 _("Generic command for showing Ada-specific settings."),
12369 &show_ada_list, "show ada ", 0, &showlist);
12370
12371 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12372 &trust_pad_over_xvs, _("\
12373 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12374 Show whether an optimization trusting PAD types over XVS types is activated"),
12375 _("\
12376 This is related to the encoding used by the GNAT compiler. The debugger\n\
12377 should normally trust the contents of PAD types, but certain older versions\n\
12378 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12379 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12380 work around this bug. It is always safe to turn this option \"off\", but\n\
12381 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12382 this option to \"off\" unless necessary."),
12383 NULL, NULL, &set_ada_list, &show_ada_list);
12384
12385 add_catch_command ("exception", _("\
12386 Catch Ada exceptions, when raised.\n\
12387 With an argument, catch only exceptions with the given name."),
12388 catch_ada_exception_command,
12389 NULL,
12390 CATCH_PERMANENT,
12391 CATCH_TEMPORARY);
12392 add_catch_command ("assert", _("\
12393 Catch failed Ada assertions, when raised.\n\
12394 With an argument, catch only exceptions with the given name."),
12395 catch_assert_command,
12396 NULL,
12397 CATCH_PERMANENT,
12398 CATCH_TEMPORARY);
12399
12400 varsize_limit = 65536;
12401
12402 obstack_init (&symbol_list_obstack);
12403
12404 decoded_names_store = htab_create_alloc
12405 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12406 NULL, xcalloc, xfree);
12407
12408 observer_attach_executable_changed (ada_executable_changed_observer);
12409
12410 /* Setup per-inferior data. */
12411 observer_attach_inferior_exit (ada_inferior_exit);
12412 ada_inferior_data
12413 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12414 }
This page took 0.39776 seconds and 4 git commands to generate.