Change iterate_over_symbols to return bool
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static int ada_ignore_descriptive_types_p = 0;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp = obstack_strdup (obstack, decoded);
1399 else
1400 {
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
1408
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
1413 }
1414
1415 return *resultp;
1416 }
1417
1418 static char *
1419 ada_la_decode (const char *encoded, int options)
1420 {
1421 return xstrdup (ada_decode (encoded));
1422 }
1423
1424 /* Implement la_sniff_from_mangled_name for Ada. */
1425
1426 static int
1427 ada_sniff_from_mangled_name (const char *mangled, char **out)
1428 {
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461 }
1462
1463 \f
1464
1465 /* Arrays */
1466
1467 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490 void
1491 ada_fixup_array_indexes_type (struct type *index_desc_type)
1492 {
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520 }
1521
1522 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1523
1524 static const char *bound_name[] = {
1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527 };
1528
1529 /* Maximum number of array dimensions we are prepared to handle. */
1530
1531 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1532
1533
1534 /* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
1536
1537 /* The descriptor or array type, if any, indicated by TYPE; removes
1538 level of indirection, if needed. */
1539
1540 static struct type *
1541 desc_base_type (struct type *type)
1542 {
1543 if (type == NULL)
1544 return NULL;
1545 type = ada_check_typedef (type);
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1553 else
1554 return type;
1555 }
1556
1557 /* True iff TYPE indicates a "thin" array pointer type. */
1558
1559 static int
1560 is_thin_pntr (struct type *type)
1561 {
1562 return
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565 }
1566
1567 /* The descriptor type for thin pointer type TYPE. */
1568
1569 static struct type *
1570 thin_descriptor_type (struct type *type)
1571 {
1572 struct type *base_type = desc_base_type (type);
1573
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
1578 else
1579 {
1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1581
1582 if (alt_type == NULL)
1583 return base_type;
1584 else
1585 return alt_type;
1586 }
1587 }
1588
1589 /* A pointer to the array data for thin-pointer value VAL. */
1590
1591 static struct value *
1592 thin_data_pntr (struct value *val)
1593 {
1594 struct type *type = ada_check_typedef (value_type (val));
1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1596
1597 data_type = lookup_pointer_type (data_type);
1598
1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1600 return value_cast (data_type, value_copy (val));
1601 else
1602 return value_from_longest (data_type, value_address (val));
1603 }
1604
1605 /* True iff TYPE indicates a "thick" array pointer type. */
1606
1607 static int
1608 is_thick_pntr (struct type *type)
1609 {
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
1617
1618 static struct type *
1619 desc_bounds_type (struct type *type)
1620 {
1621 struct type *r;
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
1631 return NULL;
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
1634 return ada_check_typedef (r);
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1641 }
1642 return NULL;
1643 }
1644
1645 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
1648 static struct value *
1649 desc_bounds (struct value *arr)
1650 {
1651 struct type *type = ada_check_typedef (value_type (arr));
1652
1653 if (is_thin_pntr (type))
1654 {
1655 struct type *bounds_type =
1656 desc_bounds_type (thin_descriptor_type (type));
1657 LONGEST addr;
1658
1659 if (bounds_type == NULL)
1660 error (_("Bad GNAT array descriptor"));
1661
1662 /* NOTE: The following calculation is not really kosher, but
1663 since desc_type is an XVE-encoded type (and shouldn't be),
1664 the correct calculation is a real pain. FIXME (and fix GCC). */
1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1666 addr = value_as_long (arr);
1667 else
1668 addr = value_address (arr);
1669
1670 return
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
1673 }
1674
1675 else if (is_thick_pntr (type))
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
1696 else
1697 return NULL;
1698 }
1699
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
1703 static int
1704 fat_pntr_bounds_bitpos (struct type *type)
1705 {
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 size of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitsize (struct type *type)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1721 }
1722
1723 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
1727
1728 static struct type *
1729 desc_data_target_type (struct type *type)
1730 {
1731 type = desc_base_type (type);
1732
1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
1734 if (is_thin_pntr (type))
1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1736 else if (is_thick_pntr (type))
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1743 }
1744
1745 return NULL;
1746 }
1747
1748 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
1750
1751 static struct value *
1752 desc_data (struct value *arr)
1753 {
1754 struct type *type = value_type (arr);
1755
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1760 _("Bad GNAT array descriptor"));
1761 else
1762 return NULL;
1763 }
1764
1765
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 position of the field containing the address of the data. */
1768
1769 static int
1770 fat_pntr_data_bitpos (struct type *type)
1771 {
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773 }
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 size of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitsize (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
1785 else
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static struct value *
1794 desc_one_bound (struct value *bounds, int i, int which)
1795 {
1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1797 _("Bad GNAT array descriptor bounds"));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static int
1805 desc_bound_bitpos (struct type *type, int i, int which)
1806 {
1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1808 }
1809
1810 /* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
1814 static int
1815 desc_bound_bitsize (struct type *type, int i, int which)
1816 {
1817 type = desc_base_type (type);
1818
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1823 }
1824
1825 /* If TYPE is the type of an array-bounds structure, the type of its
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
1828 static struct type *
1829 desc_index_type (struct type *type, int i)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
1836 return NULL;
1837 }
1838
1839 /* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
1842 static int
1843 desc_arity (struct type *type)
1844 {
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850 }
1851
1852 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
1856 static int
1857 ada_is_direct_array_type (struct type *type)
1858 {
1859 if (type == NULL)
1860 return 0;
1861 type = ada_check_typedef (type);
1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1863 || ada_is_array_descriptor_type (type));
1864 }
1865
1866 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1867 * to one. */
1868
1869 static int
1870 ada_is_array_type (struct type *type)
1871 {
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877 }
1878
1879 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1880
1881 int
1882 ada_is_simple_array_type (struct type *type)
1883 {
1884 if (type == NULL)
1885 return 0;
1886 type = ada_check_typedef (type);
1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
1891 }
1892
1893 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
1895 int
1896 ada_is_array_descriptor_type (struct type *type)
1897 {
1898 struct type *data_type = desc_data_target_type (type);
1899
1900 if (type == NULL)
1901 return 0;
1902 type = ada_check_typedef (type);
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
1906 }
1907
1908 /* Non-zero iff type is a partially mal-formed GNAT array
1909 descriptor. FIXME: This is to compensate for some problems with
1910 debugging output from GNAT. Re-examine periodically to see if it
1911 is still needed. */
1912
1913 int
1914 ada_is_bogus_array_descriptor (struct type *type)
1915 {
1916 return
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
1922 }
1923
1924
1925 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1926 (fat pointer) returns the type of the array data described---specifically,
1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1928 in from the descriptor; otherwise, they are left unspecified. If
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
1931 a descriptor. */
1932 struct type *
1933 ada_type_of_array (struct value *arr, int bounds)
1934 {
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
1937
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
1940
1941 if (!bounds)
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
1952 else
1953 {
1954 struct type *elt_type;
1955 int arity;
1956 struct value *descriptor;
1957
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
1960
1961 if (elt_type == NULL || arity == 0)
1962 return ada_check_typedef (value_type (arr));
1963
1964 descriptor = desc_bounds (arr);
1965 if (value_as_long (descriptor) == 0)
1966 return NULL;
1967 while (arity > 0)
1968 {
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
1973
1974 arity -= 1;
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
1978 elt_type = create_array_type (array_type, elt_type, range_type);
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
2000 }
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004 }
2005
2006 /* If ARR does not represent an array, returns ARR unchanged.
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
2011 struct value *
2012 ada_coerce_to_simple_array_ptr (struct value *arr)
2013 {
2014 if (ada_is_array_descriptor_type (value_type (arr)))
2015 {
2016 struct type *arrType = ada_type_of_array (arr, 1);
2017
2018 if (arrType == NULL)
2019 return NULL;
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
2024 else
2025 return arr;
2026 }
2027
2028 /* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
2030 be ARR itself if it already is in the proper form). */
2031
2032 struct value *
2033 ada_coerce_to_simple_array (struct value *arr)
2034 {
2035 if (ada_is_array_descriptor_type (value_type (arr)))
2036 {
2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2038
2039 if (arrVal == NULL)
2040 error (_("Bounds unavailable for null array pointer."));
2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2042 return value_ind (arrVal);
2043 }
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
2046 else
2047 return arr;
2048 }
2049
2050 /* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
2052 packing). For other types, is the identity. */
2053
2054 struct type *
2055 ada_coerce_to_simple_array_type (struct type *type)
2056 {
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
2059
2060 if (ada_is_array_descriptor_type (type))
2061 return ada_check_typedef (desc_data_target_type (type));
2062
2063 return type;
2064 }
2065
2066 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
2068 static int
2069 ada_is_packed_array_type (struct type *type)
2070 {
2071 if (type == NULL)
2072 return 0;
2073 type = desc_base_type (type);
2074 type = ada_check_typedef (type);
2075 return
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078 }
2079
2080 /* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083 int
2084 ada_is_constrained_packed_array_type (struct type *type)
2085 {
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088 }
2089
2090 /* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093 static int
2094 ada_is_unconstrained_packed_array_type (struct type *type)
2095 {
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098 }
2099
2100 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103 static long
2104 decode_packed_array_bitsize (struct type *type)
2105 {
2106 const char *raw_name;
2107 const char *tail;
2108 long bits;
2109
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
2124 gdb_assert (tail != NULL);
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134 }
2135
2136 /* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
2152
2153 static struct type *
2154 constrained_packed_array_type (struct type *type, long *elt_bits)
2155 {
2156 struct type *new_elt_type;
2157 struct type *new_type;
2158 struct type *index_type_desc;
2159 struct type *index_type;
2160 LONGEST low_bound, high_bound;
2161
2162 type = ada_check_typedef (type);
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
2173 new_type = alloc_type_copy (type);
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
2177 create_array_type (new_type, new_elt_type, index_type);
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2187 else
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2192 }
2193
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 return new_type;
2196 }
2197
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2200
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2203 {
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2205 char *name;
2206 const char *tail;
2207 struct type *shadow_type;
2208 long bits;
2209
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2219
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
2226 {
2227 lim_warning (_("could not find bounds information on packed array"));
2228 return NULL;
2229 }
2230 shadow_type = check_typedef (shadow_type);
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2236 return NULL;
2237 }
2238
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2241 }
2242
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2248
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2251 {
2252 struct type *type;
2253
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2264
2265 type = decode_constrained_packed_array_type (value_type (arr));
2266 if (type == NULL)
2267 {
2268 error (_("can't unpack array"));
2269 return NULL;
2270 }
2271
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
2282 mod = ada_modulus (value_type (arr)) - 1;
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
2297 return coerce_unspec_val_to_type (arr, type);
2298 }
2299
2300
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2303
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2306 {
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2311 struct value *v;
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2317 {
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2323 else
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2333 }
2334
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2342 }
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2348 bits, elt_type);
2349 return v;
2350 }
2351
2352 /* Non-zero iff TYPE includes negative integer values. */
2353
2354 static int
2355 has_negatives (struct type *type)
2356 {
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2365 }
2366 }
2367
2368 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2370 the unpacked buffer.
2371
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
2377
2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2379
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382 static void
2383 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387 {
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
2398 unsigned long accum; /* Staging area for bits being transferred */
2399 int accumSize; /* Number of meaningful bits in accum */
2400 unsigned char sign;
2401
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
2404 int delta = is_big_endian ? -1 : 1;
2405
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
2412 srcBitsLeft = bit_size;
2413 src_bytes_left = src_len;
2414 unpacked_bytes_left = unpacked_len;
2415 sign = 0;
2416
2417 if (is_big_endian)
2418 {
2419 src_idx = src_len - 1;
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2422 sign = ~0;
2423
2424 unusedLS =
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
2427
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
2442 }
2443 }
2444 else
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
2448 src_idx = unpacked_idx = 0;
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2453 sign = ~0;
2454 }
2455
2456 accum = 0;
2457 while (src_bytes_left > 0)
2458 {
2459 /* Mask for removing bits of the next source byte that are not
2460 part of the value. */
2461 unsigned int unusedMSMask =
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
2465 unsigned int signMask = sign & ~unusedMSMask;
2466
2467 accum |=
2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2469 accumSize += HOST_CHAR_BIT - unusedLS;
2470 if (accumSize >= HOST_CHAR_BIT)
2471 {
2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
2477 }
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
2480 src_bytes_left -= 1;
2481 src_idx += delta;
2482 }
2483 while (unpacked_bytes_left > 0)
2484 {
2485 accum |= sign << accumSize;
2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2487 accumSize -= HOST_CHAR_BIT;
2488 if (accumSize < 0)
2489 accumSize = 0;
2490 accum >>= HOST_CHAR_BIT;
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
2493 }
2494 }
2495
2496 /* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505 struct value *
2506 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509 {
2510 struct value *v;
2511 const gdb_byte *src; /* First byte containing data to unpack */
2512 gdb_byte *unpacked;
2513 const int is_scalar = is_scalar_type (type);
2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2515 gdb::byte_vector staging;
2516
2517 type = ada_check_typedef (type);
2518
2519 if (obj == NULL)
2520 src = valaddr + offset;
2521 else
2522 src = value_contents (obj) + offset;
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
2537 staging.data (), staging.size (),
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
2540 type = resolve_dynamic_type (type, staging.data (), 0);
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
2552 }
2553
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
2557 src = valaddr + offset;
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2562 gdb_byte *buf;
2563
2564 v = value_at (type, value_address (obj) + offset);
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
2572 src = value_contents (obj) + offset;
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
2595 unpacked = value_contents_writeable (v);
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
2603 if (staging.size () == TYPE_LENGTH (type))
2604 {
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
2608 memcpy (unpacked, staging.data (), staging.size ());
2609 }
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
2614
2615 return v;
2616 }
2617
2618 /* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
2621 floating-point or non-scalar types. */
2622
2623 static struct value *
2624 ada_value_assign (struct value *toval, struct value *fromval)
2625 {
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
2628
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
2637 if (!deprecated_value_modifiable (toval))
2638 error (_("Left operand of assignment is not a modifiable lvalue."));
2639
2640 if (VALUE_LVAL (toval) == lval_memory
2641 && bits > 0
2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2644 {
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2647 int from_size;
2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
2649 struct value *val;
2650 CORE_ADDR to_addr = value_address (toval);
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2653 fromval = value_cast (type, fromval);
2654
2655 read_memory (to_addr, buffer, len);
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
2667 write_memory_with_notification (to_addr, buffer, len);
2668
2669 val = value_copy (toval);
2670 memcpy (value_contents_raw (val), value_contents (fromval),
2671 TYPE_LENGTH (type));
2672 deprecated_set_value_type (val, type);
2673
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678 }
2679
2680
2681 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
2692 static void
2693 value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695 {
2696 LONGEST offset_in_container =
2697 (LONGEST) (value_address (component) - value_address (container));
2698 int bit_offset_in_container =
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
2701
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2721 }
2722 else
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
2726 }
2727
2728 /* Determine if TYPE is an access to an unconstrained array. */
2729
2730 bool
2731 ada_is_access_to_unconstrained_array (struct type *type)
2732 {
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735 }
2736
2737 /* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
2739 thereto. */
2740
2741 struct value *
2742 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2743 {
2744 int k;
2745 struct value *elt;
2746 struct type *elt_type;
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2760 error (_("too many subscripts (%d expected)"), k);
2761
2762 elt = value_subscript (elt, pos_atr (ind[k]));
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
2783 }
2784
2785 return elt;
2786 }
2787
2788 /* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
2799
2800 static struct value *
2801 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2802 {
2803 int k;
2804 struct value *array_ind = ada_value_ind (arr);
2805 struct type *type
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
2815 struct value *lwb_value;
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2818 error (_("too many subscripts (%d expected)"), k);
2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2820 value_copy (arr));
2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828 }
2829
2830 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
2834 static struct value *
2835 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
2837 {
2838 struct type *type0 = ada_check_typedef (type);
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2840 struct type *index_type
2841 = create_static_range_type (NULL, base_index_type, low, high);
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
2857
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2861 return value_at_lazy (slice_type, base);
2862 }
2863
2864
2865 static struct value *
2866 ada_value_slice (struct value *array, int low, int high)
2867 {
2868 struct type *type = ada_check_typedef (value_type (array));
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
2876 LONGEST low_pos, high_pos;
2877
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
2888 }
2889
2890 /* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
2893 type designation. Otherwise, returns 0. */
2894
2895 int
2896 ada_array_arity (struct type *type)
2897 {
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2907 return desc_arity (desc_bounds_type (type));
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2910 {
2911 arity += 1;
2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2913 }
2914
2915 return arity;
2916 }
2917
2918 /* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
2921 NINDICES is -1. Otherwise, returns NULL. */
2922
2923 struct type *
2924 ada_array_element_type (struct type *type, int nindices)
2925 {
2926 type = desc_base_type (type);
2927
2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2929 {
2930 int k;
2931 struct type *p_array_type;
2932
2933 p_array_type = desc_data_target_type (type);
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
2937 return NULL;
2938
2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2940 if (nindices >= 0 && k > nindices)
2941 k = nindices;
2942 while (k > 0 && p_array_type != NULL)
2943 {
2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2945 k -= 1;
2946 }
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
2956 return type;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /* The type of nth index in arrays of given type (n numbering from 1).
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
2967
2968 static struct type *
2969 ada_index_type (struct type *type, int n, const char *name)
2970 {
2971 struct type *result_type;
2972
2973 type = desc_base_type (type);
2974
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
2977
2978 if (ada_is_simple_array_type (type))
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
2983 type = TYPE_TARGET_TYPE (type);
2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2987 perhaps stabsread.c would make more sense. */
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
2990 }
2991 else
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
2999 }
3000
3001 /* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
3006
3007 static LONGEST
3008 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3009 {
3010 struct type *type, *index_type_desc, *index_type;
3011 int i;
3012
3013 gdb_assert (which == 0 || which == 1);
3014
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
3017
3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3019 return (LONGEST) - which;
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
3039 if (index_type_desc != NULL)
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
3042 else
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
3051
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
3056 }
3057
3058 /* Given that arr is an array value, returns the lower bound of the
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
3061 supplied by run-time quantities other than discriminants. */
3062
3063 static LONGEST
3064 ada_array_bound (struct value *arr, int n, int which)
3065 {
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
3071
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3074 else if (ada_is_simple_array_type (arr_type))
3075 return ada_array_bound_from_type (arr_type, n, which);
3076 else
3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3078 }
3079
3080 /* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
3085
3086 static LONGEST
3087 ada_array_length (struct value *arr, int n)
3088 {
3089 struct type *arr_type, *index_type;
3090 int low, high;
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
3098
3099 if (ada_is_simple_array_type (arr_type))
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
3104 else
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
3110 arr_type = check_typedef (arr_type);
3111 index_type = ada_index_type (arr_type, n, "length");
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
3124 }
3125
3126 /* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
3129
3130 static struct value *
3131 empty_array (struct type *arr_type, int low, int high)
3132 {
3133 struct type *arr_type0 = ada_check_typedef (arr_type);
3134 struct type *index_type
3135 = create_static_range_type
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3139
3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
3141 }
3142 \f
3143
3144 /* Name resolution */
3145
3146 /* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
3148
3149 static const char *
3150 ada_decoded_op_name (enum exp_opcode op)
3151 {
3152 int i;
3153
3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3155 {
3156 if (ada_opname_table[i].op == op)
3157 return ada_opname_table[i].decoded;
3158 }
3159 error (_("Could not find operator name for opcode"));
3160 }
3161
3162
3163 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3170 return type is preferred. May change (expand) *EXP. */
3171
3172 static void
3173 resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
3175 {
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3183 }
3184
3185 /* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
3193
3194 static struct value *
3195 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
3198 {
3199 int pc = *pos;
3200 int i;
3201 struct expression *exp; /* Convenience: == *expp. */
3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
3205 int oplen;
3206
3207 argvec = NULL;
3208 nargs = 0;
3209 exp = expp->get ();
3210
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
3213 switch (op)
3214 {
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
3219 else
3220 {
3221 *pos += 3;
3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3225 break;
3226
3227 case UNOP_ADDR:
3228 *pos += 1;
3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3230 break;
3231
3232 case UNOP_QUAL:
3233 *pos += 3;
3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3235 parse_completion, tracker);
3236 break;
3237
3238 case OP_ATR_MODULUS:
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
3263 struct value *arg1;
3264
3265 *pos += 1;
3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3267 if (arg1 == NULL)
3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3269 else
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
3272 break;
3273 }
3274
3275 case UNOP_CAST:
3276 *pos += 3;
3277 nargs = 1;
3278 break;
3279
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
3293
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
3300
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
3304 *pos += 1;
3305 nargs = 2;
3306 break;
3307
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
3316
3317 case OP_LONG:
3318 case OP_FLOAT:
3319 case OP_VAR_VALUE:
3320 case OP_VAR_MSYM_VALUE:
3321 *pos += 4;
3322 break;
3323
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
3330
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
3345 case TERNOP_SLICE:
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
3350 case OP_STRING:
3351 break;
3352
3353 default:
3354 error (_("Unexpected operator during name resolution"));
3355 }
3356
3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
3358 for (i = 0; i < nargs; i += 1)
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
3361 argvec[i] = NULL;
3362 exp = expp->get ();
3363
3364 /* Pass two: perform any resolution on principal operator. */
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
3370 case OP_VAR_VALUE:
3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3372 {
3373 std::vector<struct block_symbol> candidates;
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
3380 &candidates);
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
3389 switch (SYMBOL_CLASS (candidates[j].symbol))
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
3396 case LOC_COMPUTED:
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
3419 error (_("No definition found for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
3424 && !is_nonfunction (candidates.data (), n_candidates))
3425 {
3426 i = ada_resolve_function
3427 (candidates.data (), n_candidates, NULL, 0,
3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3429 context_type, parse_completion);
3430 if (i < 0)
3431 error (_("Could not find a match for %s"),
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
3436 printf_filtered (_("Multiple matches for %s\n"),
3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3438 user_select_syms (candidates.data (), n_candidates, 1);
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
3444 tracker->update (candidates[i]);
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
3451 replace_operator_with_call (expp, pc, 0, 4,
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
3454 exp = expp->get ();
3455 }
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3462 {
3463 std::vector<struct block_symbol> candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
3470 &candidates);
3471
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
3476 i = ada_resolve_function
3477 (candidates.data (), n_candidates,
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
3488 tracker->update (candidates[i]);
3489 }
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
3514 {
3515 std::vector<struct block_symbol> candidates;
3516 int n_candidates;
3517
3518 n_candidates =
3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
3520 NULL, VAR_DOMAIN,
3521 &candidates);
3522
3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
3526 if (i < 0)
3527 break;
3528
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
3532 exp = expp->get ();
3533 }
3534 break;
3535
3536 case OP_TYPE:
3537 case OP_REGISTER:
3538 return NULL;
3539 }
3540
3541 *pos = pc;
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
3548 }
3549
3550 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3552 a non-pointer. */
3553 /* The term "match" here is rather loose. The match is heuristic and
3554 liberal. */
3555
3556 static int
3557 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3558 {
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
3567 switch (TYPE_CODE (ftype))
3568 {
3569 default:
3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
3575 else
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
3590
3591 case TYPE_CODE_ARRAY:
3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3593 || ada_is_array_descriptor_type (atype));
3594
3595 case TYPE_CODE_STRUCT:
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
3599 else
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607 }
3608
3609 /* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
3612 argument function. */
3613
3614 static int
3615 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3616 {
3617 int i;
3618 struct type *func_type = SYMBOL_TYPE (func);
3619
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
3631 if (actuals[i] == NULL)
3632 return 0;
3633 else
3634 {
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3638
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
3642 }
3643 return 1;
3644 }
3645
3646 /* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651 static int
3652 return_match (struct type *func_type, struct type *context_type)
3653 {
3654 struct type *return_type;
3655
3656 if (func_type == NULL)
3657 return 1;
3658
3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3661 else
3662 return_type = get_base_type (func_type);
3663 if (return_type == NULL)
3664 return 1;
3665
3666 context_type = get_base_type (context_type);
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674 }
3675
3676
3677 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3678 function (if any) that matches the types of the NARGS arguments in
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
3688
3689 static int
3690 ada_resolve_function (struct block_symbol syms[],
3691 int nsyms, struct value **args, int nargs,
3692 const char *name, struct type *context_type,
3693 int parse_completion)
3694 {
3695 int fallback;
3696 int k;
3697 int m; /* Number of hits */
3698
3699 m = 0;
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3704 {
3705 for (k = 0; k < nsyms; k += 1)
3706 {
3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3708
3709 if (ada_args_match (syms[k].symbol, args, nargs)
3710 && (fallback || return_match (type, context_type)))
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
3716 }
3717
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
3722 if (m == 0)
3723 return -1;
3724 else if (m > 1 && !parse_completion)
3725 {
3726 printf_filtered (_("Multiple matches for %s\n"), name);
3727 user_select_syms (syms, m, 1);
3728 return 0;
3729 }
3730 return 0;
3731 }
3732
3733 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
3739 static int
3740 encoded_ordered_before (const char *N0, const char *N1)
3741 {
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
3749
3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3751 ;
3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3753 ;
3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
3758
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
3768 return (strcmp (N0, N1) < 0);
3769 }
3770 }
3771
3772 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
3775 static void
3776 sort_choices (struct block_symbol syms[], int nsyms)
3777 {
3778 int i;
3779
3780 for (i = 1; i < nsyms; i += 1)
3781 {
3782 struct block_symbol sym = syms[i];
3783 int j;
3784
3785 for (j = i - 1; j >= 0; j -= 1)
3786 {
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
3792 syms[j + 1] = sym;
3793 }
3794 }
3795
3796 /* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798 static int print_signatures = 1;
3799
3800 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805 static void
3806 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808 {
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837 }
3838
3839 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
3843
3844 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3845 to be re-integrated one of these days. */
3846
3847 int
3848 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3849 {
3850 int i;
3851 int *chosen = XALLOCAVEC (int , nsyms);
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
3854 const char *select_mode = multiple_symbols_select_mode ();
3855
3856 if (max_results < 1)
3857 error (_("Request to select 0 symbols!"));
3858 if (nsyms <= 1)
3859 return nsyms;
3860
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863 canceled because the command is ambiguous\n\
3864 See set/show multiple-symbol."));
3865
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
3872 printf_filtered (_("[0] cancel\n"));
3873 if (max_results > 1)
3874 printf_filtered (_("[1] all\n"));
3875
3876 sort_choices (syms, nsyms);
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
3880 if (syms[i].symbol == NULL)
3881 continue;
3882
3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3884 {
3885 struct symtab_and_line sal =
3886 find_function_start_sal (syms[i].symbol, 1);
3887
3888 printf_filtered ("[%d] ", i + first_choice);
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
3891 if (sal.symtab == NULL)
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
3894 else
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
3898 continue;
3899 }
3900 else
3901 {
3902 int is_enumeral =
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3906 struct symtab *symtab = NULL;
3907
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
3910
3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3912 {
3913 printf_filtered ("[%d] ", i + first_choice);
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
3919 }
3920 else if (is_enumeral
3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3922 {
3923 printf_filtered (("[%d] "), i + first_choice);
3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3925 gdb_stdout, -1, 0, &type_print_raw_options);
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
3928 }
3929 else
3930 {
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
3940 else
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
3944 }
3945 }
3946 }
3947
3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3949 "overload-choice");
3950
3951 for (i = 0; i < n_chosen; i += 1)
3952 syms[i] = syms[chosen[i]];
3953
3954 return n_chosen;
3955 }
3956
3957 /* Read and validate a set of numeric choices from the user in the
3958 range 0 .. N_CHOICES-1. Place the results in increasing
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
3964 + A choice of 0 means to cancel the selection, throwing an error.
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
3968 The user is not allowed to choose more than MAX_RESULTS values.
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
3971 prompts (for use with the -f switch). */
3972
3973 int
3974 get_selections (int *choices, int n_choices, int max_results,
3975 int is_all_choice, const char *annotation_suffix)
3976 {
3977 char *args;
3978 const char *prompt;
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
3981
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
3984 prompt = "> ";
3985
3986 args = command_line_input (prompt, annotation_suffix);
3987
3988 if (args == NULL)
3989 error_no_arg (_("one or more choice numbers"));
3990
3991 n_chosen = 0;
3992
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
3995 while (1)
3996 {
3997 char *args2;
3998 int choice, j;
3999
4000 args = skip_spaces (args);
4001 if (*args == '\0' && n_chosen == 0)
4002 error_no_arg (_("one or more choice numbers"));
4003 else if (*args == '\0')
4004 break;
4005
4006 choice = strtol (args, &args2, 10);
4007 if (args == args2 || choice < 0
4008 || choice > n_choices + first_choice - 1)
4009 error (_("Argument must be choice number"));
4010 args = args2;
4011
4012 if (choice == 0)
4013 error (_("cancelled"));
4014
4015 if (choice < first_choice)
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
4022 choice -= first_choice;
4023
4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4025 {
4026 }
4027
4028 if (j < 0 || choice != choices[j])
4029 {
4030 int k;
4031
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
4037 }
4038
4039 if (n_chosen > max_results)
4040 error (_("Select no more than %d of the above"), max_results);
4041
4042 return n_chosen;
4043 }
4044
4045 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
4048
4049 static void
4050 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4051 int oplen, struct symbol *sym,
4052 const struct block *block)
4053 {
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4055 symbol, -oplen for operator being replaced). */
4056 struct expression *newexp = (struct expression *)
4057 xzalloc (sizeof (struct expression)
4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4059 struct expression *exp = expp->get ();
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
4063 newexp->gdbarch = exp->gdbarch;
4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
4075 expp->reset (newexp);
4076 }
4077
4078 /* Type-class predicates */
4079
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
4082
4083 static int
4084 numeric_type_p (struct type *type)
4085 {
4086 if (type == NULL)
4087 return 0;
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
4101 }
4102 }
4103
4104 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4105
4106 static int
4107 integer_type_p (struct type *type)
4108 {
4109 if (type == NULL)
4110 return 0;
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
4123 }
4124 }
4125
4126 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4127
4128 static int
4129 scalar_type_p (struct type *type)
4130 {
4131 if (type == NULL)
4132 return 0;
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
4145 }
4146 }
4147
4148 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4149
4150 static int
4151 discrete_type_p (struct type *type)
4152 {
4153 if (type == NULL)
4154 return 0;
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
4162 case TYPE_CODE_BOOL:
4163 return 1;
4164 default:
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 /* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
4173
4174 static int
4175 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4176 {
4177 struct type *type0 =
4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4179 struct type *type1 =
4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181
4182 if (type0 == NULL)
4183 return 0;
4184
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4210
4211 case BINOP_CONCAT:
4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4213
4214 case BINOP_EXP:
4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
4222
4223 }
4224 }
4225 \f
4226 /* Renaming */
4227
4228 /* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240 /* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259 enum ada_renaming_category
4260 ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263 {
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
4271 {
4272 default:
4273 return ADA_NOT_RENAMING;
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
4302 }
4303
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315 }
4316
4317 /* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
4320
4321 static struct value *
4322 ada_read_renaming_var_value (struct symbol *renaming_sym,
4323 const struct block *block)
4324 {
4325 const char *sym_name;
4326
4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
4330 }
4331 \f
4332
4333 /* Evaluation: Function Calls */
4334
4335 /* Return an lvalue containing the value VAL. This is the identity on
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
4338
4339 static struct value *
4340 ensure_lval (struct value *val)
4341 {
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
4344 {
4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
4348
4349 VALUE_LVAL (val) = lval_memory;
4350 set_value_address (val, addr);
4351 write_memory (addr, value_contents (val), len);
4352 }
4353
4354 return val;
4355 }
4356
4357 /* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4360 values not residing in memory, updating it as needed. */
4361
4362 struct value *
4363 ada_convert_actual (struct value *actual, struct type *formal_type0)
4364 {
4365 struct type *actual_type = ada_check_typedef (value_type (actual));
4366 struct type *formal_type = ada_check_typedef (formal_type0);
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4373
4374 if (ada_is_array_descriptor_type (formal_target)
4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4376 return make_array_descriptor (formal_type, actual);
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4379 {
4380 struct value *result;
4381
4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4383 && ada_is_array_descriptor_type (actual_target))
4384 result = desc_data (actual);
4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
4390
4391 actual_type = ada_check_typedef (value_type (actual));
4392 val = allocate_value (actual_type);
4393 memcpy ((char *) value_contents_raw (val),
4394 (char *) value_contents (actual),
4395 TYPE_LENGTH (actual_type));
4396 actual = ensure_lval (val);
4397 }
4398 result = value_addr (actual);
4399 }
4400 else
4401 return actual;
4402 return value_cast_pointers (formal_type, result, 0);
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
4416
4417 return actual;
4418 }
4419
4420 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425 static CORE_ADDR
4426 value_pointer (struct value *value, struct type *type)
4427 {
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
4430 gdb_byte *buf = (gdb_byte *) alloca (len);
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437 }
4438
4439
4440 /* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
4445
4446 static struct value *
4447 make_array_descriptor (struct type *type, struct value *arr)
4448 {
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
4453 int i;
4454
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
4457 {
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
4466 }
4467
4468 bounds = ensure_lval (bounds);
4469
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
4483
4484 descriptor = ensure_lval (descriptor);
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490 }
4491 \f
4492 /* Symbol Cache Module */
4493
4494 /* Performance measurements made as of 2010-01-15 indicate that
4495 this cache does bring some noticeable improvements. Depending
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
4504 /* Initialize the contents of SYM_CACHE. */
4505
4506 static void
4507 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511 }
4512
4513 /* Free the memory used by SYM_CACHE. */
4514
4515 static void
4516 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4517 {
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520 }
4521
4522 /* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
4524
4525 static struct ada_symbol_cache *
4526 ada_get_symbol_cache (struct program_space *pspace)
4527 {
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4529
4530 if (pspace_data->sym_cache == NULL)
4531 {
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
4534 }
4535
4536 return pspace_data->sym_cache;
4537 }
4538
4539 /* Clear all entries from the symbol cache. */
4540
4541 static void
4542 ada_clear_symbol_cache (void)
4543 {
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
4549 }
4550
4551 /* Search our cache for an entry matching NAME and DOMAIN.
4552 Return it if found, or NULL otherwise. */
4553
4554 static struct cache_entry **
4555 find_entry (const char *name, domain_enum domain)
4556 {
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4563 {
4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4565 return e;
4566 }
4567 return NULL;
4568 }
4569
4570 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
4575
4576 static int
4577 lookup_cached_symbol (const char *name, domain_enum domain,
4578 struct symbol **sym, const struct block **block)
4579 {
4580 struct cache_entry **e = find_entry (name, domain);
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
4589 }
4590
4591 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4592 in domain DOMAIN, save this result in our symbol cache. */
4593
4594 static void
4595 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4596 const struct block *block)
4597 {
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4615 GLOBAL_BLOCK) != block
4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4617 STATIC_BLOCK) != block)
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4626 strcpy (copy, name);
4627 e->sym = sym;
4628 e->domain = domain;
4629 e->block = block;
4630 }
4631 \f
4632 /* Symbol Lookup */
4633
4634 /* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
4638 for Ada lookups. */
4639
4640 static symbol_name_match_type
4641 name_match_type_from_name (const char *lookup_name)
4642 {
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
4646 }
4647
4648 /* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651 static struct symbol *
4652 standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654 {
4655 /* Initialize it just to avoid a GCC false warning. */
4656 struct block_symbol sym = {};
4657
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4663 }
4664
4665
4666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669 static int
4670 is_nonfunction (struct block_symbol syms[], int n)
4671 {
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4678 return 1;
4679
4680 return 0;
4681 }
4682
4683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4684 struct types. Otherwise, they may not. */
4685
4686 static int
4687 equiv_types (struct type *type0, struct type *type1)
4688 {
4689 if (type0 == type1)
4690 return 1;
4691 if (type0 == NULL || type1 == NULL
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4698 return 1;
4699
4700 return 0;
4701 }
4702
4703 /* True iff SYM0 represents the same entity as SYM1, or one that is
4704 no more defined than that of SYM1. */
4705
4706 static int
4707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4708 {
4709 if (sym0 == sym1)
4710 return 1;
4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
4715 switch (SYMBOL_CLASS (sym0))
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4725 int len0 = strlen (name0);
4726
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4731 && startswith (name1 + len0, "___XV")));
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4847 {
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867 }
4868
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4874
4875 static void
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
4879 {
4880 }
4881
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4884
4885 static int
4886 is_nondebugging_type (struct type *type)
4887 {
4888 const char *name = ada_type_name (type);
4889
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891 }
4892
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900 static int
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902 {
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934 }
4935
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956 static int
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4958 {
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4990 return 0;
4991
4992 return 1;
4993 }
4994
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5001
5002 static int
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5004 {
5005 int i, j;
5006
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5012
5013 i = 0;
5014 while (i < syms->size ())
5015 {
5016 int remove_p = 0;
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5023 {
5024 for (j = 0; j < syms->size (); j++)
5025 {
5026 if (j != i
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5031 remove_p = 1;
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5041 {
5042 for (j = 0; j < syms->size (); j += 1)
5043 {
5044 if (i != j
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5052 remove_p = 1;
5053 }
5054 }
5055
5056 if (remove_p)
5057 syms->erase (syms->begin () + i);
5058
5059 i += 1;
5060 }
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
5076
5077 return syms->size ();
5078 }
5079
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5083 defined. */
5084
5085 static std::string
5086 xget_renaming_scope (struct type *renaming_type)
5087 {
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5092
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
5096
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5099
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
5103
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5106 }
5107
5108 /* Return nonzero if NAME corresponds to a package name. */
5109
5110 static int
5111 is_package_name (const char *name)
5112 {
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5118
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
5123
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5126
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5130 return 0;
5131
5132 std::string fun_name = string_printf ("_ada_%s", name);
5133
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5135 }
5136
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5139
5140 static int
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5142 {
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5147
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
5151
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5154
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
5159 if (startswith (function_name, "_ada_"))
5160 function_name += 5;
5161
5162 return !startswith (function_name, scope.c_str ());
5163 }
5164
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5170
5171 Rationale:
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5184
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5201
5202 static int
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5205 {
5206 struct symbol *current_function;
5207 const char *current_function_name;
5208 int i;
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5216 {
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5231
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5236 name_len) == 0
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5247 {
5248 (*syms)[k] = (*syms)[j];
5249 k += 1;
5250 }
5251 return k;
5252 }
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5256
5257 if (current_block == NULL)
5258 return syms->size ();
5259
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
5273 while (i < syms->size ())
5274 {
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5280 else
5281 i += 1;
5282 }
5283
5284 return syms->size ();
5285 }
5286
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297 static void
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5301 {
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5321 }
5322
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5325
5326 struct match_data
5327 {
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5331 int found_sym;
5332 };
5333
5334 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5342
5343 static bool
5344 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
5346 {
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return true;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return true;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552
5553 if (is_wild_match)
5554 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5555 domain, global, callback,
5556 symbol_name_match_type::WILD,
5557 NULL);
5558 else
5559 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5560 domain, global, callback,
5561 symbol_name_match_type::FULL,
5562 compare_names);
5563
5564 for (compunit_symtab *cu : objfile->compunits ())
5565 {
5566 const struct block *global_block
5567 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5568
5569 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5570 domain))
5571 data.found_sym = 1;
5572 }
5573 }
5574
5575 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5576 {
5577 const char *name = ada_lookup_name (lookup_name);
5578 std::string name1 = std::string ("<_ada_") + name + '>';
5579
5580 for (objfile *objfile : current_program_space->objfiles ())
5581 {
5582 data.objfile = objfile;
5583 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5584 domain, global, callback,
5585 symbol_name_match_type::FULL,
5586 compare_names);
5587 }
5588 }
5589 }
5590
5591 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5592 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5593 returning the number of matches. Add these to OBSTACKP.
5594
5595 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5596 symbol match within the nest of blocks whose innermost member is BLOCK,
5597 is the one match returned (no other matches in that or
5598 enclosing blocks is returned). If there are any matches in or
5599 surrounding BLOCK, then these alone are returned.
5600
5601 Names prefixed with "standard__" are handled specially:
5602 "standard__" is first stripped off (by the lookup_name
5603 constructor), and only static and global symbols are searched.
5604
5605 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5606 to lookup global symbols. */
5607
5608 static void
5609 ada_add_all_symbols (struct obstack *obstackp,
5610 const struct block *block,
5611 const lookup_name_info &lookup_name,
5612 domain_enum domain,
5613 int full_search,
5614 int *made_global_lookup_p)
5615 {
5616 struct symbol *sym;
5617
5618 if (made_global_lookup_p)
5619 *made_global_lookup_p = 0;
5620
5621 /* Special case: If the user specifies a symbol name inside package
5622 Standard, do a non-wild matching of the symbol name without
5623 the "standard__" prefix. This was primarily introduced in order
5624 to allow the user to specifically access the standard exceptions
5625 using, for instance, Standard.Constraint_Error when Constraint_Error
5626 is ambiguous (due to the user defining its own Constraint_Error
5627 entity inside its program). */
5628 if (lookup_name.ada ().standard_p ())
5629 block = NULL;
5630
5631 /* Check the non-global symbols. If we have ANY match, then we're done. */
5632
5633 if (block != NULL)
5634 {
5635 if (full_search)
5636 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5637 else
5638 {
5639 /* In the !full_search case we're are being called by
5640 ada_iterate_over_symbols, and we don't want to search
5641 superblocks. */
5642 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5643 }
5644 if (num_defns_collected (obstackp) > 0 || !full_search)
5645 return;
5646 }
5647
5648 /* No non-global symbols found. Check our cache to see if we have
5649 already performed this search before. If we have, then return
5650 the same result. */
5651
5652 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5653 domain, &sym, &block))
5654 {
5655 if (sym != NULL)
5656 add_defn_to_vec (obstackp, sym, block);
5657 return;
5658 }
5659
5660 if (made_global_lookup_p)
5661 *made_global_lookup_p = 1;
5662
5663 /* Search symbols from all global blocks. */
5664
5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5666
5667 /* Now add symbols from all per-file blocks if we've gotten no hits
5668 (not strictly correct, but perhaps better than an error). */
5669
5670 if (num_defns_collected (obstackp) == 0)
5671 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5672 }
5673
5674 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5675 is non-zero, enclosing scope and in global scopes, returning the number of
5676 matches.
5677 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5678 found and the blocks and symbol tables (if any) in which they were
5679 found.
5680
5681 When full_search is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
5683 is the one match returned (no other matches in that or
5684 enclosing blocks is returned). If there are any matches in or
5685 surrounding BLOCK, then these alone are returned.
5686
5687 Names prefixed with "standard__" are handled specially: "standard__"
5688 is first stripped off, and only static and global symbols are searched. */
5689
5690 static int
5691 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5692 const struct block *block,
5693 domain_enum domain,
5694 std::vector<struct block_symbol> *results,
5695 int full_search)
5696 {
5697 int syms_from_global_search;
5698 int ndefns;
5699 auto_obstack obstack;
5700
5701 ada_add_all_symbols (&obstack, block, lookup_name,
5702 domain, full_search, &syms_from_global_search);
5703
5704 ndefns = num_defns_collected (&obstack);
5705
5706 struct block_symbol *base = defns_collected (&obstack, 1);
5707 for (int i = 0; i < ndefns; ++i)
5708 results->push_back (base[i]);
5709
5710 ndefns = remove_extra_symbols (results);
5711
5712 if (ndefns == 0 && full_search && syms_from_global_search)
5713 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5714
5715 if (ndefns == 1 && full_search && syms_from_global_search)
5716 cache_symbol (ada_lookup_name (lookup_name), domain,
5717 (*results)[0].symbol, (*results)[0].block);
5718
5719 ndefns = remove_irrelevant_renamings (results, block);
5720
5721 return ndefns;
5722 }
5723
5724 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5725 in global scopes, returning the number of matches, and filling *RESULTS
5726 with (SYM,BLOCK) tuples.
5727
5728 See ada_lookup_symbol_list_worker for further details. */
5729
5730 int
5731 ada_lookup_symbol_list (const char *name, const struct block *block,
5732 domain_enum domain,
5733 std::vector<struct block_symbol> *results)
5734 {
5735 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5736 lookup_name_info lookup_name (name, name_match_type);
5737
5738 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5739 }
5740
5741 /* Implementation of the la_iterate_over_symbols method. */
5742
5743 static bool
5744 ada_iterate_over_symbols
5745 (const struct block *block, const lookup_name_info &name,
5746 domain_enum domain,
5747 gdb::function_view<symbol_found_callback_ftype> callback)
5748 {
5749 int ndefs, i;
5750 std::vector<struct block_symbol> results;
5751
5752 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5753
5754 for (i = 0; i < ndefs; ++i)
5755 {
5756 if (!callback (&results[i]))
5757 return false;
5758 }
5759
5760 return true;
5761 }
5762
5763 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5764 to 1, but choosing the first symbol found if there are multiple
5765 choices.
5766
5767 The result is stored in *INFO, which must be non-NULL.
5768 If no match is found, INFO->SYM is set to NULL. */
5769
5770 void
5771 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5772 domain_enum domain,
5773 struct block_symbol *info)
5774 {
5775 /* Since we already have an encoded name, wrap it in '<>' to force a
5776 verbatim match. Otherwise, if the name happens to not look like
5777 an encoded name (because it doesn't include a "__"),
5778 ada_lookup_name_info would re-encode/fold it again, and that
5779 would e.g., incorrectly lowercase object renaming names like
5780 "R28b" -> "r28b". */
5781 std::string verbatim = std::string ("<") + name + '>';
5782
5783 gdb_assert (info != NULL);
5784 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5785 }
5786
5787 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5788 scope and in global scopes, or NULL if none. NAME is folded and
5789 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5790 choosing the first symbol if there are multiple choices. */
5791
5792 struct block_symbol
5793 ada_lookup_symbol (const char *name, const struct block *block0,
5794 domain_enum domain)
5795 {
5796 std::vector<struct block_symbol> candidates;
5797 int n_candidates;
5798
5799 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5800
5801 if (n_candidates == 0)
5802 return {};
5803
5804 block_symbol info = candidates[0];
5805 info.symbol = fixup_symbol_section (info.symbol, NULL);
5806 return info;
5807 }
5808
5809 static struct block_symbol
5810 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5811 const char *name,
5812 const struct block *block,
5813 const domain_enum domain)
5814 {
5815 struct block_symbol sym;
5816
5817 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5818 if (sym.symbol != NULL)
5819 return sym;
5820
5821 /* If we haven't found a match at this point, try the primitive
5822 types. In other languages, this search is performed before
5823 searching for global symbols in order to short-circuit that
5824 global-symbol search if it happens that the name corresponds
5825 to a primitive type. But we cannot do the same in Ada, because
5826 it is perfectly legitimate for a program to declare a type which
5827 has the same name as a standard type. If looking up a type in
5828 that situation, we have traditionally ignored the primitive type
5829 in favor of user-defined types. This is why, unlike most other
5830 languages, we search the primitive types this late and only after
5831 having searched the global symbols without success. */
5832
5833 if (domain == VAR_DOMAIN)
5834 {
5835 struct gdbarch *gdbarch;
5836
5837 if (block == NULL)
5838 gdbarch = target_gdbarch ();
5839 else
5840 gdbarch = block_gdbarch (block);
5841 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5842 if (sym.symbol != NULL)
5843 return sym;
5844 }
5845
5846 return {};
5847 }
5848
5849
5850 /* True iff STR is a possible encoded suffix of a normal Ada name
5851 that is to be ignored for matching purposes. Suffixes of parallel
5852 names (e.g., XVE) are not included here. Currently, the possible suffixes
5853 are given by any of the regular expressions:
5854
5855 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5856 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5857 TKB [subprogram suffix for task bodies]
5858 _E[0-9]+[bs]$ [protected object entry suffixes]
5859 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5860
5861 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5862 match is performed. This sequence is used to differentiate homonyms,
5863 is an optional part of a valid name suffix. */
5864
5865 static int
5866 is_name_suffix (const char *str)
5867 {
5868 int k;
5869 const char *matching;
5870 const int len = strlen (str);
5871
5872 /* Skip optional leading __[0-9]+. */
5873
5874 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5875 {
5876 str += 3;
5877 while (isdigit (str[0]))
5878 str += 1;
5879 }
5880
5881 /* [.$][0-9]+ */
5882
5883 if (str[0] == '.' || str[0] == '$')
5884 {
5885 matching = str + 1;
5886 while (isdigit (matching[0]))
5887 matching += 1;
5888 if (matching[0] == '\0')
5889 return 1;
5890 }
5891
5892 /* ___[0-9]+ */
5893
5894 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5895 {
5896 matching = str + 3;
5897 while (isdigit (matching[0]))
5898 matching += 1;
5899 if (matching[0] == '\0')
5900 return 1;
5901 }
5902
5903 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5904
5905 if (strcmp (str, "TKB") == 0)
5906 return 1;
5907
5908 #if 0
5909 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5910 with a N at the end. Unfortunately, the compiler uses the same
5911 convention for other internal types it creates. So treating
5912 all entity names that end with an "N" as a name suffix causes
5913 some regressions. For instance, consider the case of an enumerated
5914 type. To support the 'Image attribute, it creates an array whose
5915 name ends with N.
5916 Having a single character like this as a suffix carrying some
5917 information is a bit risky. Perhaps we should change the encoding
5918 to be something like "_N" instead. In the meantime, do not do
5919 the following check. */
5920 /* Protected Object Subprograms */
5921 if (len == 1 && str [0] == 'N')
5922 return 1;
5923 #endif
5924
5925 /* _E[0-9]+[bs]$ */
5926 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5927 {
5928 matching = str + 3;
5929 while (isdigit (matching[0]))
5930 matching += 1;
5931 if ((matching[0] == 'b' || matching[0] == 's')
5932 && matching [1] == '\0')
5933 return 1;
5934 }
5935
5936 /* ??? We should not modify STR directly, as we are doing below. This
5937 is fine in this case, but may become problematic later if we find
5938 that this alternative did not work, and want to try matching
5939 another one from the begining of STR. Since we modified it, we
5940 won't be able to find the begining of the string anymore! */
5941 if (str[0] == 'X')
5942 {
5943 str += 1;
5944 while (str[0] != '_' && str[0] != '\0')
5945 {
5946 if (str[0] != 'n' && str[0] != 'b')
5947 return 0;
5948 str += 1;
5949 }
5950 }
5951
5952 if (str[0] == '\000')
5953 return 1;
5954
5955 if (str[0] == '_')
5956 {
5957 if (str[1] != '_' || str[2] == '\000')
5958 return 0;
5959 if (str[2] == '_')
5960 {
5961 if (strcmp (str + 3, "JM") == 0)
5962 return 1;
5963 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5964 the LJM suffix in favor of the JM one. But we will
5965 still accept LJM as a valid suffix for a reasonable
5966 amount of time, just to allow ourselves to debug programs
5967 compiled using an older version of GNAT. */
5968 if (strcmp (str + 3, "LJM") == 0)
5969 return 1;
5970 if (str[3] != 'X')
5971 return 0;
5972 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5973 || str[4] == 'U' || str[4] == 'P')
5974 return 1;
5975 if (str[4] == 'R' && str[5] != 'T')
5976 return 1;
5977 return 0;
5978 }
5979 if (!isdigit (str[2]))
5980 return 0;
5981 for (k = 3; str[k] != '\0'; k += 1)
5982 if (!isdigit (str[k]) && str[k] != '_')
5983 return 0;
5984 return 1;
5985 }
5986 if (str[0] == '$' && isdigit (str[1]))
5987 {
5988 for (k = 2; str[k] != '\0'; k += 1)
5989 if (!isdigit (str[k]) && str[k] != '_')
5990 return 0;
5991 return 1;
5992 }
5993 return 0;
5994 }
5995
5996 /* Return non-zero if the string starting at NAME and ending before
5997 NAME_END contains no capital letters. */
5998
5999 static int
6000 is_valid_name_for_wild_match (const char *name0)
6001 {
6002 const char *decoded_name = ada_decode (name0);
6003 int i;
6004
6005 /* If the decoded name starts with an angle bracket, it means that
6006 NAME0 does not follow the GNAT encoding format. It should then
6007 not be allowed as a possible wild match. */
6008 if (decoded_name[0] == '<')
6009 return 0;
6010
6011 for (i=0; decoded_name[i] != '\0'; i++)
6012 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6013 return 0;
6014
6015 return 1;
6016 }
6017
6018 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6019 that could start a simple name. Assumes that *NAMEP points into
6020 the string beginning at NAME0. */
6021
6022 static int
6023 advance_wild_match (const char **namep, const char *name0, int target0)
6024 {
6025 const char *name = *namep;
6026
6027 while (1)
6028 {
6029 int t0, t1;
6030
6031 t0 = *name;
6032 if (t0 == '_')
6033 {
6034 t1 = name[1];
6035 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6036 {
6037 name += 1;
6038 if (name == name0 + 5 && startswith (name0, "_ada"))
6039 break;
6040 else
6041 name += 1;
6042 }
6043 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6044 || name[2] == target0))
6045 {
6046 name += 2;
6047 break;
6048 }
6049 else
6050 return 0;
6051 }
6052 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6053 name += 1;
6054 else
6055 return 0;
6056 }
6057
6058 *namep = name;
6059 return 1;
6060 }
6061
6062 /* Return true iff NAME encodes a name of the form prefix.PATN.
6063 Ignores any informational suffixes of NAME (i.e., for which
6064 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6065 simple name. */
6066
6067 static bool
6068 wild_match (const char *name, const char *patn)
6069 {
6070 const char *p;
6071 const char *name0 = name;
6072
6073 while (1)
6074 {
6075 const char *match = name;
6076
6077 if (*name == *patn)
6078 {
6079 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6080 if (*p != *name)
6081 break;
6082 if (*p == '\0' && is_name_suffix (name))
6083 return match == name0 || is_valid_name_for_wild_match (name0);
6084
6085 if (name[-1] == '_')
6086 name -= 1;
6087 }
6088 if (!advance_wild_match (&name, name0, *patn))
6089 return false;
6090 }
6091 }
6092
6093 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6094 any trailing suffixes that encode debugging information or leading
6095 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6096 information that is ignored). */
6097
6098 static bool
6099 full_match (const char *sym_name, const char *search_name)
6100 {
6101 size_t search_name_len = strlen (search_name);
6102
6103 if (strncmp (sym_name, search_name, search_name_len) == 0
6104 && is_name_suffix (sym_name + search_name_len))
6105 return true;
6106
6107 if (startswith (sym_name, "_ada_")
6108 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6109 && is_name_suffix (sym_name + search_name_len + 5))
6110 return true;
6111
6112 return false;
6113 }
6114
6115 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6116 *defn_symbols, updating the list of symbols in OBSTACKP (if
6117 necessary). OBJFILE is the section containing BLOCK. */
6118
6119 static void
6120 ada_add_block_symbols (struct obstack *obstackp,
6121 const struct block *block,
6122 const lookup_name_info &lookup_name,
6123 domain_enum domain, struct objfile *objfile)
6124 {
6125 struct block_iterator iter;
6126 /* A matching argument symbol, if any. */
6127 struct symbol *arg_sym;
6128 /* Set true when we find a matching non-argument symbol. */
6129 int found_sym;
6130 struct symbol *sym;
6131
6132 arg_sym = NULL;
6133 found_sym = 0;
6134 for (sym = block_iter_match_first (block, lookup_name, &iter);
6135 sym != NULL;
6136 sym = block_iter_match_next (lookup_name, &iter))
6137 {
6138 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6139 SYMBOL_DOMAIN (sym), domain))
6140 {
6141 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6142 {
6143 if (SYMBOL_IS_ARGUMENT (sym))
6144 arg_sym = sym;
6145 else
6146 {
6147 found_sym = 1;
6148 add_defn_to_vec (obstackp,
6149 fixup_symbol_section (sym, objfile),
6150 block);
6151 }
6152 }
6153 }
6154 }
6155
6156 /* Handle renamings. */
6157
6158 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6159 found_sym = 1;
6160
6161 if (!found_sym && arg_sym != NULL)
6162 {
6163 add_defn_to_vec (obstackp,
6164 fixup_symbol_section (arg_sym, objfile),
6165 block);
6166 }
6167
6168 if (!lookup_name.ada ().wild_match_p ())
6169 {
6170 arg_sym = NULL;
6171 found_sym = 0;
6172 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6173 const char *name = ada_lookup_name.c_str ();
6174 size_t name_len = ada_lookup_name.size ();
6175
6176 ALL_BLOCK_SYMBOLS (block, iter, sym)
6177 {
6178 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6179 SYMBOL_DOMAIN (sym), domain))
6180 {
6181 int cmp;
6182
6183 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6184 if (cmp == 0)
6185 {
6186 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6187 if (cmp == 0)
6188 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6189 name_len);
6190 }
6191
6192 if (cmp == 0
6193 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6194 {
6195 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6196 {
6197 if (SYMBOL_IS_ARGUMENT (sym))
6198 arg_sym = sym;
6199 else
6200 {
6201 found_sym = 1;
6202 add_defn_to_vec (obstackp,
6203 fixup_symbol_section (sym, objfile),
6204 block);
6205 }
6206 }
6207 }
6208 }
6209 }
6210
6211 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6212 They aren't parameters, right? */
6213 if (!found_sym && arg_sym != NULL)
6214 {
6215 add_defn_to_vec (obstackp,
6216 fixup_symbol_section (arg_sym, objfile),
6217 block);
6218 }
6219 }
6220 }
6221 \f
6222
6223 /* Symbol Completion */
6224
6225 /* See symtab.h. */
6226
6227 bool
6228 ada_lookup_name_info::matches
6229 (const char *sym_name,
6230 symbol_name_match_type match_type,
6231 completion_match_result *comp_match_res) const
6232 {
6233 bool match = false;
6234 const char *text = m_encoded_name.c_str ();
6235 size_t text_len = m_encoded_name.size ();
6236
6237 /* First, test against the fully qualified name of the symbol. */
6238
6239 if (strncmp (sym_name, text, text_len) == 0)
6240 match = true;
6241
6242 if (match && !m_encoded_p)
6243 {
6244 /* One needed check before declaring a positive match is to verify
6245 that iff we are doing a verbatim match, the decoded version
6246 of the symbol name starts with '<'. Otherwise, this symbol name
6247 is not a suitable completion. */
6248 const char *sym_name_copy = sym_name;
6249 bool has_angle_bracket;
6250
6251 sym_name = ada_decode (sym_name);
6252 has_angle_bracket = (sym_name[0] == '<');
6253 match = (has_angle_bracket == m_verbatim_p);
6254 sym_name = sym_name_copy;
6255 }
6256
6257 if (match && !m_verbatim_p)
6258 {
6259 /* When doing non-verbatim match, another check that needs to
6260 be done is to verify that the potentially matching symbol name
6261 does not include capital letters, because the ada-mode would
6262 not be able to understand these symbol names without the
6263 angle bracket notation. */
6264 const char *tmp;
6265
6266 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6267 if (*tmp != '\0')
6268 match = false;
6269 }
6270
6271 /* Second: Try wild matching... */
6272
6273 if (!match && m_wild_match_p)
6274 {
6275 /* Since we are doing wild matching, this means that TEXT
6276 may represent an unqualified symbol name. We therefore must
6277 also compare TEXT against the unqualified name of the symbol. */
6278 sym_name = ada_unqualified_name (ada_decode (sym_name));
6279
6280 if (strncmp (sym_name, text, text_len) == 0)
6281 match = true;
6282 }
6283
6284 /* Finally: If we found a match, prepare the result to return. */
6285
6286 if (!match)
6287 return false;
6288
6289 if (comp_match_res != NULL)
6290 {
6291 std::string &match_str = comp_match_res->match.storage ();
6292
6293 if (!m_encoded_p)
6294 match_str = ada_decode (sym_name);
6295 else
6296 {
6297 if (m_verbatim_p)
6298 match_str = add_angle_brackets (sym_name);
6299 else
6300 match_str = sym_name;
6301
6302 }
6303
6304 comp_match_res->set_match (match_str.c_str ());
6305 }
6306
6307 return true;
6308 }
6309
6310 /* Add the list of possible symbol names completing TEXT to TRACKER.
6311 WORD is the entire command on which completion is made. */
6312
6313 static void
6314 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6315 complete_symbol_mode mode,
6316 symbol_name_match_type name_match_type,
6317 const char *text, const char *word,
6318 enum type_code code)
6319 {
6320 struct symbol *sym;
6321 const struct block *b, *surrounding_static_block = 0;
6322 struct block_iterator iter;
6323
6324 gdb_assert (code == TYPE_CODE_UNDEF);
6325
6326 lookup_name_info lookup_name (text, name_match_type, true);
6327
6328 /* First, look at the partial symtab symbols. */
6329 expand_symtabs_matching (NULL,
6330 lookup_name,
6331 NULL,
6332 NULL,
6333 ALL_DOMAIN);
6334
6335 /* At this point scan through the misc symbol vectors and add each
6336 symbol you find to the list. Eventually we want to ignore
6337 anything that isn't a text symbol (everything else will be
6338 handled by the psymtab code above). */
6339
6340 for (objfile *objfile : current_program_space->objfiles ())
6341 {
6342 for (minimal_symbol *msymbol : objfile->msymbols ())
6343 {
6344 QUIT;
6345
6346 if (completion_skip_symbol (mode, msymbol))
6347 continue;
6348
6349 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6350
6351 /* Ada minimal symbols won't have their language set to Ada. If
6352 we let completion_list_add_name compare using the
6353 default/C-like matcher, then when completing e.g., symbols in a
6354 package named "pck", we'd match internal Ada symbols like
6355 "pckS", which are invalid in an Ada expression, unless you wrap
6356 them in '<' '>' to request a verbatim match.
6357
6358 Unfortunately, some Ada encoded names successfully demangle as
6359 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6360 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6361 with the wrong language set. Paper over that issue here. */
6362 if (symbol_language == language_auto
6363 || symbol_language == language_cplus)
6364 symbol_language = language_ada;
6365
6366 completion_list_add_name (tracker,
6367 symbol_language,
6368 MSYMBOL_LINKAGE_NAME (msymbol),
6369 lookup_name, text, word);
6370 }
6371 }
6372
6373 /* Search upwards from currently selected frame (so that we can
6374 complete on local vars. */
6375
6376 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6377 {
6378 if (!BLOCK_SUPERBLOCK (b))
6379 surrounding_static_block = b; /* For elmin of dups */
6380
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
6385
6386 completion_list_add_name (tracker,
6387 SYMBOL_LANGUAGE (sym),
6388 SYMBOL_LINKAGE_NAME (sym),
6389 lookup_name, text, word);
6390 }
6391 }
6392
6393 /* Go through the symtabs and check the externs and statics for
6394 symbols which match. */
6395
6396 for (objfile *objfile : current_program_space->objfiles ())
6397 {
6398 for (compunit_symtab *s : objfile->compunits ())
6399 {
6400 QUIT;
6401 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6402 ALL_BLOCK_SYMBOLS (b, iter, sym)
6403 {
6404 if (completion_skip_symbol (mode, sym))
6405 continue;
6406
6407 completion_list_add_name (tracker,
6408 SYMBOL_LANGUAGE (sym),
6409 SYMBOL_LINKAGE_NAME (sym),
6410 lookup_name, text, word);
6411 }
6412 }
6413 }
6414
6415 for (objfile *objfile : current_program_space->objfiles ())
6416 {
6417 for (compunit_symtab *s : objfile->compunits ())
6418 {
6419 QUIT;
6420 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6421 /* Don't do this block twice. */
6422 if (b == surrounding_static_block)
6423 continue;
6424 ALL_BLOCK_SYMBOLS (b, iter, sym)
6425 {
6426 if (completion_skip_symbol (mode, sym))
6427 continue;
6428
6429 completion_list_add_name (tracker,
6430 SYMBOL_LANGUAGE (sym),
6431 SYMBOL_LINKAGE_NAME (sym),
6432 lookup_name, text, word);
6433 }
6434 }
6435 }
6436 }
6437
6438 /* Field Access */
6439
6440 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6441 for tagged types. */
6442
6443 static int
6444 ada_is_dispatch_table_ptr_type (struct type *type)
6445 {
6446 const char *name;
6447
6448 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6449 return 0;
6450
6451 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6452 if (name == NULL)
6453 return 0;
6454
6455 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6456 }
6457
6458 /* Return non-zero if TYPE is an interface tag. */
6459
6460 static int
6461 ada_is_interface_tag (struct type *type)
6462 {
6463 const char *name = TYPE_NAME (type);
6464
6465 if (name == NULL)
6466 return 0;
6467
6468 return (strcmp (name, "ada__tags__interface_tag") == 0);
6469 }
6470
6471 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6472 to be invisible to users. */
6473
6474 int
6475 ada_is_ignored_field (struct type *type, int field_num)
6476 {
6477 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6478 return 1;
6479
6480 /* Check the name of that field. */
6481 {
6482 const char *name = TYPE_FIELD_NAME (type, field_num);
6483
6484 /* Anonymous field names should not be printed.
6485 brobecker/2007-02-20: I don't think this can actually happen
6486 but we don't want to print the value of annonymous fields anyway. */
6487 if (name == NULL)
6488 return 1;
6489
6490 /* Normally, fields whose name start with an underscore ("_")
6491 are fields that have been internally generated by the compiler,
6492 and thus should not be printed. The "_parent" field is special,
6493 however: This is a field internally generated by the compiler
6494 for tagged types, and it contains the components inherited from
6495 the parent type. This field should not be printed as is, but
6496 should not be ignored either. */
6497 if (name[0] == '_' && !startswith (name, "_parent"))
6498 return 1;
6499 }
6500
6501 /* If this is the dispatch table of a tagged type or an interface tag,
6502 then ignore. */
6503 if (ada_is_tagged_type (type, 1)
6504 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6505 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6506 return 1;
6507
6508 /* Not a special field, so it should not be ignored. */
6509 return 0;
6510 }
6511
6512 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6513 pointer or reference type whose ultimate target has a tag field. */
6514
6515 int
6516 ada_is_tagged_type (struct type *type, int refok)
6517 {
6518 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6519 }
6520
6521 /* True iff TYPE represents the type of X'Tag */
6522
6523 int
6524 ada_is_tag_type (struct type *type)
6525 {
6526 type = ada_check_typedef (type);
6527
6528 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6529 return 0;
6530 else
6531 {
6532 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6533
6534 return (name != NULL
6535 && strcmp (name, "ada__tags__dispatch_table") == 0);
6536 }
6537 }
6538
6539 /* The type of the tag on VAL. */
6540
6541 struct type *
6542 ada_tag_type (struct value *val)
6543 {
6544 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6545 }
6546
6547 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6548 retired at Ada 05). */
6549
6550 static int
6551 is_ada95_tag (struct value *tag)
6552 {
6553 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6554 }
6555
6556 /* The value of the tag on VAL. */
6557
6558 struct value *
6559 ada_value_tag (struct value *val)
6560 {
6561 return ada_value_struct_elt (val, "_tag", 0);
6562 }
6563
6564 /* The value of the tag on the object of type TYPE whose contents are
6565 saved at VALADDR, if it is non-null, or is at memory address
6566 ADDRESS. */
6567
6568 static struct value *
6569 value_tag_from_contents_and_address (struct type *type,
6570 const gdb_byte *valaddr,
6571 CORE_ADDR address)
6572 {
6573 int tag_byte_offset;
6574 struct type *tag_type;
6575
6576 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6577 NULL, NULL, NULL))
6578 {
6579 const gdb_byte *valaddr1 = ((valaddr == NULL)
6580 ? NULL
6581 : valaddr + tag_byte_offset);
6582 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6583
6584 return value_from_contents_and_address (tag_type, valaddr1, address1);
6585 }
6586 return NULL;
6587 }
6588
6589 static struct type *
6590 type_from_tag (struct value *tag)
6591 {
6592 const char *type_name = ada_tag_name (tag);
6593
6594 if (type_name != NULL)
6595 return ada_find_any_type (ada_encode (type_name));
6596 return NULL;
6597 }
6598
6599 /* Given a value OBJ of a tagged type, return a value of this
6600 type at the base address of the object. The base address, as
6601 defined in Ada.Tags, it is the address of the primary tag of
6602 the object, and therefore where the field values of its full
6603 view can be fetched. */
6604
6605 struct value *
6606 ada_tag_value_at_base_address (struct value *obj)
6607 {
6608 struct value *val;
6609 LONGEST offset_to_top = 0;
6610 struct type *ptr_type, *obj_type;
6611 struct value *tag;
6612 CORE_ADDR base_address;
6613
6614 obj_type = value_type (obj);
6615
6616 /* It is the responsability of the caller to deref pointers. */
6617
6618 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6619 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6620 return obj;
6621
6622 tag = ada_value_tag (obj);
6623 if (!tag)
6624 return obj;
6625
6626 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6627
6628 if (is_ada95_tag (tag))
6629 return obj;
6630
6631 ptr_type = language_lookup_primitive_type
6632 (language_def (language_ada), target_gdbarch(), "storage_offset");
6633 ptr_type = lookup_pointer_type (ptr_type);
6634 val = value_cast (ptr_type, tag);
6635 if (!val)
6636 return obj;
6637
6638 /* It is perfectly possible that an exception be raised while
6639 trying to determine the base address, just like for the tag;
6640 see ada_tag_name for more details. We do not print the error
6641 message for the same reason. */
6642
6643 try
6644 {
6645 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6646 }
6647
6648 catch (const gdb_exception_error &e)
6649 {
6650 return obj;
6651 }
6652
6653 /* If offset is null, nothing to do. */
6654
6655 if (offset_to_top == 0)
6656 return obj;
6657
6658 /* -1 is a special case in Ada.Tags; however, what should be done
6659 is not quite clear from the documentation. So do nothing for
6660 now. */
6661
6662 if (offset_to_top == -1)
6663 return obj;
6664
6665 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6666 from the base address. This was however incompatible with
6667 C++ dispatch table: C++ uses a *negative* value to *add*
6668 to the base address. Ada's convention has therefore been
6669 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6670 use the same convention. Here, we support both cases by
6671 checking the sign of OFFSET_TO_TOP. */
6672
6673 if (offset_to_top > 0)
6674 offset_to_top = -offset_to_top;
6675
6676 base_address = value_address (obj) + offset_to_top;
6677 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6678
6679 /* Make sure that we have a proper tag at the new address.
6680 Otherwise, offset_to_top is bogus (which can happen when
6681 the object is not initialized yet). */
6682
6683 if (!tag)
6684 return obj;
6685
6686 obj_type = type_from_tag (tag);
6687
6688 if (!obj_type)
6689 return obj;
6690
6691 return value_from_contents_and_address (obj_type, NULL, base_address);
6692 }
6693
6694 /* Return the "ada__tags__type_specific_data" type. */
6695
6696 static struct type *
6697 ada_get_tsd_type (struct inferior *inf)
6698 {
6699 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6700
6701 if (data->tsd_type == 0)
6702 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6703 return data->tsd_type;
6704 }
6705
6706 /* Return the TSD (type-specific data) associated to the given TAG.
6707 TAG is assumed to be the tag of a tagged-type entity.
6708
6709 May return NULL if we are unable to get the TSD. */
6710
6711 static struct value *
6712 ada_get_tsd_from_tag (struct value *tag)
6713 {
6714 struct value *val;
6715 struct type *type;
6716
6717 /* First option: The TSD is simply stored as a field of our TAG.
6718 Only older versions of GNAT would use this format, but we have
6719 to test it first, because there are no visible markers for
6720 the current approach except the absence of that field. */
6721
6722 val = ada_value_struct_elt (tag, "tsd", 1);
6723 if (val)
6724 return val;
6725
6726 /* Try the second representation for the dispatch table (in which
6727 there is no explicit 'tsd' field in the referent of the tag pointer,
6728 and instead the tsd pointer is stored just before the dispatch
6729 table. */
6730
6731 type = ada_get_tsd_type (current_inferior());
6732 if (type == NULL)
6733 return NULL;
6734 type = lookup_pointer_type (lookup_pointer_type (type));
6735 val = value_cast (type, tag);
6736 if (val == NULL)
6737 return NULL;
6738 return value_ind (value_ptradd (val, -1));
6739 }
6740
6741 /* Given the TSD of a tag (type-specific data), return a string
6742 containing the name of the associated type.
6743
6744 The returned value is good until the next call. May return NULL
6745 if we are unable to determine the tag name. */
6746
6747 static char *
6748 ada_tag_name_from_tsd (struct value *tsd)
6749 {
6750 static char name[1024];
6751 char *p;
6752 struct value *val;
6753
6754 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6755 if (val == NULL)
6756 return NULL;
6757 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6758 for (p = name; *p != '\0'; p += 1)
6759 if (isalpha (*p))
6760 *p = tolower (*p);
6761 return name;
6762 }
6763
6764 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6765 a C string.
6766
6767 Return NULL if the TAG is not an Ada tag, or if we were unable to
6768 determine the name of that tag. The result is good until the next
6769 call. */
6770
6771 const char *
6772 ada_tag_name (struct value *tag)
6773 {
6774 char *name = NULL;
6775
6776 if (!ada_is_tag_type (value_type (tag)))
6777 return NULL;
6778
6779 /* It is perfectly possible that an exception be raised while trying
6780 to determine the TAG's name, even under normal circumstances:
6781 The associated variable may be uninitialized or corrupted, for
6782 instance. We do not let any exception propagate past this point.
6783 instead we return NULL.
6784
6785 We also do not print the error message either (which often is very
6786 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6787 the caller print a more meaningful message if necessary. */
6788 try
6789 {
6790 struct value *tsd = ada_get_tsd_from_tag (tag);
6791
6792 if (tsd != NULL)
6793 name = ada_tag_name_from_tsd (tsd);
6794 }
6795 catch (const gdb_exception_error &e)
6796 {
6797 }
6798
6799 return name;
6800 }
6801
6802 /* The parent type of TYPE, or NULL if none. */
6803
6804 struct type *
6805 ada_parent_type (struct type *type)
6806 {
6807 int i;
6808
6809 type = ada_check_typedef (type);
6810
6811 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6812 return NULL;
6813
6814 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6815 if (ada_is_parent_field (type, i))
6816 {
6817 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6818
6819 /* If the _parent field is a pointer, then dereference it. */
6820 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6821 parent_type = TYPE_TARGET_TYPE (parent_type);
6822 /* If there is a parallel XVS type, get the actual base type. */
6823 parent_type = ada_get_base_type (parent_type);
6824
6825 return ada_check_typedef (parent_type);
6826 }
6827
6828 return NULL;
6829 }
6830
6831 /* True iff field number FIELD_NUM of structure type TYPE contains the
6832 parent-type (inherited) fields of a derived type. Assumes TYPE is
6833 a structure type with at least FIELD_NUM+1 fields. */
6834
6835 int
6836 ada_is_parent_field (struct type *type, int field_num)
6837 {
6838 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6839
6840 return (name != NULL
6841 && (startswith (name, "PARENT")
6842 || startswith (name, "_parent")));
6843 }
6844
6845 /* True iff field number FIELD_NUM of structure type TYPE is a
6846 transparent wrapper field (which should be silently traversed when doing
6847 field selection and flattened when printing). Assumes TYPE is a
6848 structure type with at least FIELD_NUM+1 fields. Such fields are always
6849 structures. */
6850
6851 int
6852 ada_is_wrapper_field (struct type *type, int field_num)
6853 {
6854 const char *name = TYPE_FIELD_NAME (type, field_num);
6855
6856 if (name != NULL && strcmp (name, "RETVAL") == 0)
6857 {
6858 /* This happens in functions with "out" or "in out" parameters
6859 which are passed by copy. For such functions, GNAT describes
6860 the function's return type as being a struct where the return
6861 value is in a field called RETVAL, and where the other "out"
6862 or "in out" parameters are fields of that struct. This is not
6863 a wrapper. */
6864 return 0;
6865 }
6866
6867 return (name != NULL
6868 && (startswith (name, "PARENT")
6869 || strcmp (name, "REP") == 0
6870 || startswith (name, "_parent")
6871 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6872 }
6873
6874 /* True iff field number FIELD_NUM of structure or union type TYPE
6875 is a variant wrapper. Assumes TYPE is a structure type with at least
6876 FIELD_NUM+1 fields. */
6877
6878 int
6879 ada_is_variant_part (struct type *type, int field_num)
6880 {
6881 /* Only Ada types are eligible. */
6882 if (!ADA_TYPE_P (type))
6883 return 0;
6884
6885 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6886
6887 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6888 || (is_dynamic_field (type, field_num)
6889 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6890 == TYPE_CODE_UNION)));
6891 }
6892
6893 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6894 whose discriminants are contained in the record type OUTER_TYPE,
6895 returns the type of the controlling discriminant for the variant.
6896 May return NULL if the type could not be found. */
6897
6898 struct type *
6899 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6900 {
6901 const char *name = ada_variant_discrim_name (var_type);
6902
6903 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6904 }
6905
6906 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6907 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6908 represents a 'when others' clause; otherwise 0. */
6909
6910 int
6911 ada_is_others_clause (struct type *type, int field_num)
6912 {
6913 const char *name = TYPE_FIELD_NAME (type, field_num);
6914
6915 return (name != NULL && name[0] == 'O');
6916 }
6917
6918 /* Assuming that TYPE0 is the type of the variant part of a record,
6919 returns the name of the discriminant controlling the variant.
6920 The value is valid until the next call to ada_variant_discrim_name. */
6921
6922 const char *
6923 ada_variant_discrim_name (struct type *type0)
6924 {
6925 static char *result = NULL;
6926 static size_t result_len = 0;
6927 struct type *type;
6928 const char *name;
6929 const char *discrim_end;
6930 const char *discrim_start;
6931
6932 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6933 type = TYPE_TARGET_TYPE (type0);
6934 else
6935 type = type0;
6936
6937 name = ada_type_name (type);
6938
6939 if (name == NULL || name[0] == '\000')
6940 return "";
6941
6942 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6943 discrim_end -= 1)
6944 {
6945 if (startswith (discrim_end, "___XVN"))
6946 break;
6947 }
6948 if (discrim_end == name)
6949 return "";
6950
6951 for (discrim_start = discrim_end; discrim_start != name + 3;
6952 discrim_start -= 1)
6953 {
6954 if (discrim_start == name + 1)
6955 return "";
6956 if ((discrim_start > name + 3
6957 && startswith (discrim_start - 3, "___"))
6958 || discrim_start[-1] == '.')
6959 break;
6960 }
6961
6962 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6963 strncpy (result, discrim_start, discrim_end - discrim_start);
6964 result[discrim_end - discrim_start] = '\0';
6965 return result;
6966 }
6967
6968 /* Scan STR for a subtype-encoded number, beginning at position K.
6969 Put the position of the character just past the number scanned in
6970 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6971 Return 1 if there was a valid number at the given position, and 0
6972 otherwise. A "subtype-encoded" number consists of the absolute value
6973 in decimal, followed by the letter 'm' to indicate a negative number.
6974 Assumes 0m does not occur. */
6975
6976 int
6977 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6978 {
6979 ULONGEST RU;
6980
6981 if (!isdigit (str[k]))
6982 return 0;
6983
6984 /* Do it the hard way so as not to make any assumption about
6985 the relationship of unsigned long (%lu scan format code) and
6986 LONGEST. */
6987 RU = 0;
6988 while (isdigit (str[k]))
6989 {
6990 RU = RU * 10 + (str[k] - '0');
6991 k += 1;
6992 }
6993
6994 if (str[k] == 'm')
6995 {
6996 if (R != NULL)
6997 *R = (-(LONGEST) (RU - 1)) - 1;
6998 k += 1;
6999 }
7000 else if (R != NULL)
7001 *R = (LONGEST) RU;
7002
7003 /* NOTE on the above: Technically, C does not say what the results of
7004 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7005 number representable as a LONGEST (although either would probably work
7006 in most implementations). When RU>0, the locution in the then branch
7007 above is always equivalent to the negative of RU. */
7008
7009 if (new_k != NULL)
7010 *new_k = k;
7011 return 1;
7012 }
7013
7014 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7015 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7016 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7017
7018 int
7019 ada_in_variant (LONGEST val, struct type *type, int field_num)
7020 {
7021 const char *name = TYPE_FIELD_NAME (type, field_num);
7022 int p;
7023
7024 p = 0;
7025 while (1)
7026 {
7027 switch (name[p])
7028 {
7029 case '\0':
7030 return 0;
7031 case 'S':
7032 {
7033 LONGEST W;
7034
7035 if (!ada_scan_number (name, p + 1, &W, &p))
7036 return 0;
7037 if (val == W)
7038 return 1;
7039 break;
7040 }
7041 case 'R':
7042 {
7043 LONGEST L, U;
7044
7045 if (!ada_scan_number (name, p + 1, &L, &p)
7046 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7047 return 0;
7048 if (val >= L && val <= U)
7049 return 1;
7050 break;
7051 }
7052 case 'O':
7053 return 1;
7054 default:
7055 return 0;
7056 }
7057 }
7058 }
7059
7060 /* FIXME: Lots of redundancy below. Try to consolidate. */
7061
7062 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7063 ARG_TYPE, extract and return the value of one of its (non-static)
7064 fields. FIELDNO says which field. Differs from value_primitive_field
7065 only in that it can handle packed values of arbitrary type. */
7066
7067 static struct value *
7068 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7069 struct type *arg_type)
7070 {
7071 struct type *type;
7072
7073 arg_type = ada_check_typedef (arg_type);
7074 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7075
7076 /* Handle packed fields. It might be that the field is not packed
7077 relative to its containing structure, but the structure itself is
7078 packed; in this case we must take the bit-field path. */
7079 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7080 {
7081 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7082 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7083
7084 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7085 offset + bit_pos / 8,
7086 bit_pos % 8, bit_size, type);
7087 }
7088 else
7089 return value_primitive_field (arg1, offset, fieldno, arg_type);
7090 }
7091
7092 /* Find field with name NAME in object of type TYPE. If found,
7093 set the following for each argument that is non-null:
7094 - *FIELD_TYPE_P to the field's type;
7095 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7096 an object of that type;
7097 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7098 - *BIT_SIZE_P to its size in bits if the field is packed, and
7099 0 otherwise;
7100 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7101 fields up to but not including the desired field, or by the total
7102 number of fields if not found. A NULL value of NAME never
7103 matches; the function just counts visible fields in this case.
7104
7105 Notice that we need to handle when a tagged record hierarchy
7106 has some components with the same name, like in this scenario:
7107
7108 type Top_T is tagged record
7109 N : Integer := 1;
7110 U : Integer := 974;
7111 A : Integer := 48;
7112 end record;
7113
7114 type Middle_T is new Top.Top_T with record
7115 N : Character := 'a';
7116 C : Integer := 3;
7117 end record;
7118
7119 type Bottom_T is new Middle.Middle_T with record
7120 N : Float := 4.0;
7121 C : Character := '5';
7122 X : Integer := 6;
7123 A : Character := 'J';
7124 end record;
7125
7126 Let's say we now have a variable declared and initialized as follow:
7127
7128 TC : Top_A := new Bottom_T;
7129
7130 And then we use this variable to call this function
7131
7132 procedure Assign (Obj: in out Top_T; TV : Integer);
7133
7134 as follow:
7135
7136 Assign (Top_T (B), 12);
7137
7138 Now, we're in the debugger, and we're inside that procedure
7139 then and we want to print the value of obj.c:
7140
7141 Usually, the tagged record or one of the parent type owns the
7142 component to print and there's no issue but in this particular
7143 case, what does it mean to ask for Obj.C? Since the actual
7144 type for object is type Bottom_T, it could mean two things: type
7145 component C from the Middle_T view, but also component C from
7146 Bottom_T. So in that "undefined" case, when the component is
7147 not found in the non-resolved type (which includes all the
7148 components of the parent type), then resolve it and see if we
7149 get better luck once expanded.
7150
7151 In the case of homonyms in the derived tagged type, we don't
7152 guaranty anything, and pick the one that's easiest for us
7153 to program.
7154
7155 Returns 1 if found, 0 otherwise. */
7156
7157 static int
7158 find_struct_field (const char *name, struct type *type, int offset,
7159 struct type **field_type_p,
7160 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7161 int *index_p)
7162 {
7163 int i;
7164 int parent_offset = -1;
7165
7166 type = ada_check_typedef (type);
7167
7168 if (field_type_p != NULL)
7169 *field_type_p = NULL;
7170 if (byte_offset_p != NULL)
7171 *byte_offset_p = 0;
7172 if (bit_offset_p != NULL)
7173 *bit_offset_p = 0;
7174 if (bit_size_p != NULL)
7175 *bit_size_p = 0;
7176
7177 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7178 {
7179 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7180 int fld_offset = offset + bit_pos / 8;
7181 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7182
7183 if (t_field_name == NULL)
7184 continue;
7185
7186 else if (ada_is_parent_field (type, i))
7187 {
7188 /* This is a field pointing us to the parent type of a tagged
7189 type. As hinted in this function's documentation, we give
7190 preference to fields in the current record first, so what
7191 we do here is just record the index of this field before
7192 we skip it. If it turns out we couldn't find our field
7193 in the current record, then we'll get back to it and search
7194 inside it whether the field might exist in the parent. */
7195
7196 parent_offset = i;
7197 continue;
7198 }
7199
7200 else if (name != NULL && field_name_match (t_field_name, name))
7201 {
7202 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7203
7204 if (field_type_p != NULL)
7205 *field_type_p = TYPE_FIELD_TYPE (type, i);
7206 if (byte_offset_p != NULL)
7207 *byte_offset_p = fld_offset;
7208 if (bit_offset_p != NULL)
7209 *bit_offset_p = bit_pos % 8;
7210 if (bit_size_p != NULL)
7211 *bit_size_p = bit_size;
7212 return 1;
7213 }
7214 else if (ada_is_wrapper_field (type, i))
7215 {
7216 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7217 field_type_p, byte_offset_p, bit_offset_p,
7218 bit_size_p, index_p))
7219 return 1;
7220 }
7221 else if (ada_is_variant_part (type, i))
7222 {
7223 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7224 fixed type?? */
7225 int j;
7226 struct type *field_type
7227 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7228
7229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7230 {
7231 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7232 fld_offset
7233 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7234 field_type_p, byte_offset_p,
7235 bit_offset_p, bit_size_p, index_p))
7236 return 1;
7237 }
7238 }
7239 else if (index_p != NULL)
7240 *index_p += 1;
7241 }
7242
7243 /* Field not found so far. If this is a tagged type which
7244 has a parent, try finding that field in the parent now. */
7245
7246 if (parent_offset != -1)
7247 {
7248 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7249 int fld_offset = offset + bit_pos / 8;
7250
7251 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7252 fld_offset, field_type_p, byte_offset_p,
7253 bit_offset_p, bit_size_p, index_p))
7254 return 1;
7255 }
7256
7257 return 0;
7258 }
7259
7260 /* Number of user-visible fields in record type TYPE. */
7261
7262 static int
7263 num_visible_fields (struct type *type)
7264 {
7265 int n;
7266
7267 n = 0;
7268 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7269 return n;
7270 }
7271
7272 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7273 and search in it assuming it has (class) type TYPE.
7274 If found, return value, else return NULL.
7275
7276 Searches recursively through wrapper fields (e.g., '_parent').
7277
7278 In the case of homonyms in the tagged types, please refer to the
7279 long explanation in find_struct_field's function documentation. */
7280
7281 static struct value *
7282 ada_search_struct_field (const char *name, struct value *arg, int offset,
7283 struct type *type)
7284 {
7285 int i;
7286 int parent_offset = -1;
7287
7288 type = ada_check_typedef (type);
7289 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7290 {
7291 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7292
7293 if (t_field_name == NULL)
7294 continue;
7295
7296 else if (ada_is_parent_field (type, i))
7297 {
7298 /* This is a field pointing us to the parent type of a tagged
7299 type. As hinted in this function's documentation, we give
7300 preference to fields in the current record first, so what
7301 we do here is just record the index of this field before
7302 we skip it. If it turns out we couldn't find our field
7303 in the current record, then we'll get back to it and search
7304 inside it whether the field might exist in the parent. */
7305
7306 parent_offset = i;
7307 continue;
7308 }
7309
7310 else if (field_name_match (t_field_name, name))
7311 return ada_value_primitive_field (arg, offset, i, type);
7312
7313 else if (ada_is_wrapper_field (type, i))
7314 {
7315 struct value *v = /* Do not let indent join lines here. */
7316 ada_search_struct_field (name, arg,
7317 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7318 TYPE_FIELD_TYPE (type, i));
7319
7320 if (v != NULL)
7321 return v;
7322 }
7323
7324 else if (ada_is_variant_part (type, i))
7325 {
7326 /* PNH: Do we ever get here? See find_struct_field. */
7327 int j;
7328 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7329 i));
7330 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7331
7332 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7333 {
7334 struct value *v = ada_search_struct_field /* Force line
7335 break. */
7336 (name, arg,
7337 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7338 TYPE_FIELD_TYPE (field_type, j));
7339
7340 if (v != NULL)
7341 return v;
7342 }
7343 }
7344 }
7345
7346 /* Field not found so far. If this is a tagged type which
7347 has a parent, try finding that field in the parent now. */
7348
7349 if (parent_offset != -1)
7350 {
7351 struct value *v = ada_search_struct_field (
7352 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7353 TYPE_FIELD_TYPE (type, parent_offset));
7354
7355 if (v != NULL)
7356 return v;
7357 }
7358
7359 return NULL;
7360 }
7361
7362 static struct value *ada_index_struct_field_1 (int *, struct value *,
7363 int, struct type *);
7364
7365
7366 /* Return field #INDEX in ARG, where the index is that returned by
7367 * find_struct_field through its INDEX_P argument. Adjust the address
7368 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7369 * If found, return value, else return NULL. */
7370
7371 static struct value *
7372 ada_index_struct_field (int index, struct value *arg, int offset,
7373 struct type *type)
7374 {
7375 return ada_index_struct_field_1 (&index, arg, offset, type);
7376 }
7377
7378
7379 /* Auxiliary function for ada_index_struct_field. Like
7380 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7381 * *INDEX_P. */
7382
7383 static struct value *
7384 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7385 struct type *type)
7386 {
7387 int i;
7388 type = ada_check_typedef (type);
7389
7390 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7391 {
7392 if (TYPE_FIELD_NAME (type, i) == NULL)
7393 continue;
7394 else if (ada_is_wrapper_field (type, i))
7395 {
7396 struct value *v = /* Do not let indent join lines here. */
7397 ada_index_struct_field_1 (index_p, arg,
7398 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7399 TYPE_FIELD_TYPE (type, i));
7400
7401 if (v != NULL)
7402 return v;
7403 }
7404
7405 else if (ada_is_variant_part (type, i))
7406 {
7407 /* PNH: Do we ever get here? See ada_search_struct_field,
7408 find_struct_field. */
7409 error (_("Cannot assign this kind of variant record"));
7410 }
7411 else if (*index_p == 0)
7412 return ada_value_primitive_field (arg, offset, i, type);
7413 else
7414 *index_p -= 1;
7415 }
7416 return NULL;
7417 }
7418
7419 /* Given ARG, a value of type (pointer or reference to a)*
7420 structure/union, extract the component named NAME from the ultimate
7421 target structure/union and return it as a value with its
7422 appropriate type.
7423
7424 The routine searches for NAME among all members of the structure itself
7425 and (recursively) among all members of any wrapper members
7426 (e.g., '_parent').
7427
7428 If NO_ERR, then simply return NULL in case of error, rather than
7429 calling error. */
7430
7431 struct value *
7432 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7433 {
7434 struct type *t, *t1;
7435 struct value *v;
7436 int check_tag;
7437
7438 v = NULL;
7439 t1 = t = ada_check_typedef (value_type (arg));
7440 if (TYPE_CODE (t) == TYPE_CODE_REF)
7441 {
7442 t1 = TYPE_TARGET_TYPE (t);
7443 if (t1 == NULL)
7444 goto BadValue;
7445 t1 = ada_check_typedef (t1);
7446 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7447 {
7448 arg = coerce_ref (arg);
7449 t = t1;
7450 }
7451 }
7452
7453 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7454 {
7455 t1 = TYPE_TARGET_TYPE (t);
7456 if (t1 == NULL)
7457 goto BadValue;
7458 t1 = ada_check_typedef (t1);
7459 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7460 {
7461 arg = value_ind (arg);
7462 t = t1;
7463 }
7464 else
7465 break;
7466 }
7467
7468 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7469 goto BadValue;
7470
7471 if (t1 == t)
7472 v = ada_search_struct_field (name, arg, 0, t);
7473 else
7474 {
7475 int bit_offset, bit_size, byte_offset;
7476 struct type *field_type;
7477 CORE_ADDR address;
7478
7479 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7480 address = value_address (ada_value_ind (arg));
7481 else
7482 address = value_address (ada_coerce_ref (arg));
7483
7484 /* Check to see if this is a tagged type. We also need to handle
7485 the case where the type is a reference to a tagged type, but
7486 we have to be careful to exclude pointers to tagged types.
7487 The latter should be shown as usual (as a pointer), whereas
7488 a reference should mostly be transparent to the user. */
7489
7490 if (ada_is_tagged_type (t1, 0)
7491 || (TYPE_CODE (t1) == TYPE_CODE_REF
7492 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7493 {
7494 /* We first try to find the searched field in the current type.
7495 If not found then let's look in the fixed type. */
7496
7497 if (!find_struct_field (name, t1, 0,
7498 &field_type, &byte_offset, &bit_offset,
7499 &bit_size, NULL))
7500 check_tag = 1;
7501 else
7502 check_tag = 0;
7503 }
7504 else
7505 check_tag = 0;
7506
7507 /* Convert to fixed type in all cases, so that we have proper
7508 offsets to each field in unconstrained record types. */
7509 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7510 address, NULL, check_tag);
7511
7512 if (find_struct_field (name, t1, 0,
7513 &field_type, &byte_offset, &bit_offset,
7514 &bit_size, NULL))
7515 {
7516 if (bit_size != 0)
7517 {
7518 if (TYPE_CODE (t) == TYPE_CODE_REF)
7519 arg = ada_coerce_ref (arg);
7520 else
7521 arg = ada_value_ind (arg);
7522 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7523 bit_offset, bit_size,
7524 field_type);
7525 }
7526 else
7527 v = value_at_lazy (field_type, address + byte_offset);
7528 }
7529 }
7530
7531 if (v != NULL || no_err)
7532 return v;
7533 else
7534 error (_("There is no member named %s."), name);
7535
7536 BadValue:
7537 if (no_err)
7538 return NULL;
7539 else
7540 error (_("Attempt to extract a component of "
7541 "a value that is not a record."));
7542 }
7543
7544 /* Return a string representation of type TYPE. */
7545
7546 static std::string
7547 type_as_string (struct type *type)
7548 {
7549 string_file tmp_stream;
7550
7551 type_print (type, "", &tmp_stream, -1);
7552
7553 return std::move (tmp_stream.string ());
7554 }
7555
7556 /* Given a type TYPE, look up the type of the component of type named NAME.
7557 If DISPP is non-null, add its byte displacement from the beginning of a
7558 structure (pointed to by a value) of type TYPE to *DISPP (does not
7559 work for packed fields).
7560
7561 Matches any field whose name has NAME as a prefix, possibly
7562 followed by "___".
7563
7564 TYPE can be either a struct or union. If REFOK, TYPE may also
7565 be a (pointer or reference)+ to a struct or union, and the
7566 ultimate target type will be searched.
7567
7568 Looks recursively into variant clauses and parent types.
7569
7570 In the case of homonyms in the tagged types, please refer to the
7571 long explanation in find_struct_field's function documentation.
7572
7573 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7574 TYPE is not a type of the right kind. */
7575
7576 static struct type *
7577 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7578 int noerr)
7579 {
7580 int i;
7581 int parent_offset = -1;
7582
7583 if (name == NULL)
7584 goto BadName;
7585
7586 if (refok && type != NULL)
7587 while (1)
7588 {
7589 type = ada_check_typedef (type);
7590 if (TYPE_CODE (type) != TYPE_CODE_PTR
7591 && TYPE_CODE (type) != TYPE_CODE_REF)
7592 break;
7593 type = TYPE_TARGET_TYPE (type);
7594 }
7595
7596 if (type == NULL
7597 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7598 && TYPE_CODE (type) != TYPE_CODE_UNION))
7599 {
7600 if (noerr)
7601 return NULL;
7602
7603 error (_("Type %s is not a structure or union type"),
7604 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7605 }
7606
7607 type = to_static_fixed_type (type);
7608
7609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7610 {
7611 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7612 struct type *t;
7613
7614 if (t_field_name == NULL)
7615 continue;
7616
7617 else if (ada_is_parent_field (type, i))
7618 {
7619 /* This is a field pointing us to the parent type of a tagged
7620 type. As hinted in this function's documentation, we give
7621 preference to fields in the current record first, so what
7622 we do here is just record the index of this field before
7623 we skip it. If it turns out we couldn't find our field
7624 in the current record, then we'll get back to it and search
7625 inside it whether the field might exist in the parent. */
7626
7627 parent_offset = i;
7628 continue;
7629 }
7630
7631 else if (field_name_match (t_field_name, name))
7632 return TYPE_FIELD_TYPE (type, i);
7633
7634 else if (ada_is_wrapper_field (type, i))
7635 {
7636 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7637 0, 1);
7638 if (t != NULL)
7639 return t;
7640 }
7641
7642 else if (ada_is_variant_part (type, i))
7643 {
7644 int j;
7645 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7646 i));
7647
7648 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7649 {
7650 /* FIXME pnh 2008/01/26: We check for a field that is
7651 NOT wrapped in a struct, since the compiler sometimes
7652 generates these for unchecked variant types. Revisit
7653 if the compiler changes this practice. */
7654 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7655
7656 if (v_field_name != NULL
7657 && field_name_match (v_field_name, name))
7658 t = TYPE_FIELD_TYPE (field_type, j);
7659 else
7660 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7661 j),
7662 name, 0, 1);
7663
7664 if (t != NULL)
7665 return t;
7666 }
7667 }
7668
7669 }
7670
7671 /* Field not found so far. If this is a tagged type which
7672 has a parent, try finding that field in the parent now. */
7673
7674 if (parent_offset != -1)
7675 {
7676 struct type *t;
7677
7678 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7679 name, 0, 1);
7680 if (t != NULL)
7681 return t;
7682 }
7683
7684 BadName:
7685 if (!noerr)
7686 {
7687 const char *name_str = name != NULL ? name : _("<null>");
7688
7689 error (_("Type %s has no component named %s"),
7690 type_as_string (type).c_str (), name_str);
7691 }
7692
7693 return NULL;
7694 }
7695
7696 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7697 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7698 represents an unchecked union (that is, the variant part of a
7699 record that is named in an Unchecked_Union pragma). */
7700
7701 static int
7702 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7703 {
7704 const char *discrim_name = ada_variant_discrim_name (var_type);
7705
7706 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7707 }
7708
7709
7710 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7711 within a value of type OUTER_TYPE that is stored in GDB at
7712 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7713 numbering from 0) is applicable. Returns -1 if none are. */
7714
7715 int
7716 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7717 const gdb_byte *outer_valaddr)
7718 {
7719 int others_clause;
7720 int i;
7721 const char *discrim_name = ada_variant_discrim_name (var_type);
7722 struct value *outer;
7723 struct value *discrim;
7724 LONGEST discrim_val;
7725
7726 /* Using plain value_from_contents_and_address here causes problems
7727 because we will end up trying to resolve a type that is currently
7728 being constructed. */
7729 outer = value_from_contents_and_address_unresolved (outer_type,
7730 outer_valaddr, 0);
7731 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7732 if (discrim == NULL)
7733 return -1;
7734 discrim_val = value_as_long (discrim);
7735
7736 others_clause = -1;
7737 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7738 {
7739 if (ada_is_others_clause (var_type, i))
7740 others_clause = i;
7741 else if (ada_in_variant (discrim_val, var_type, i))
7742 return i;
7743 }
7744
7745 return others_clause;
7746 }
7747 \f
7748
7749
7750 /* Dynamic-Sized Records */
7751
7752 /* Strategy: The type ostensibly attached to a value with dynamic size
7753 (i.e., a size that is not statically recorded in the debugging
7754 data) does not accurately reflect the size or layout of the value.
7755 Our strategy is to convert these values to values with accurate,
7756 conventional types that are constructed on the fly. */
7757
7758 /* There is a subtle and tricky problem here. In general, we cannot
7759 determine the size of dynamic records without its data. However,
7760 the 'struct value' data structure, which GDB uses to represent
7761 quantities in the inferior process (the target), requires the size
7762 of the type at the time of its allocation in order to reserve space
7763 for GDB's internal copy of the data. That's why the
7764 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7765 rather than struct value*s.
7766
7767 However, GDB's internal history variables ($1, $2, etc.) are
7768 struct value*s containing internal copies of the data that are not, in
7769 general, the same as the data at their corresponding addresses in
7770 the target. Fortunately, the types we give to these values are all
7771 conventional, fixed-size types (as per the strategy described
7772 above), so that we don't usually have to perform the
7773 'to_fixed_xxx_type' conversions to look at their values.
7774 Unfortunately, there is one exception: if one of the internal
7775 history variables is an array whose elements are unconstrained
7776 records, then we will need to create distinct fixed types for each
7777 element selected. */
7778
7779 /* The upshot of all of this is that many routines take a (type, host
7780 address, target address) triple as arguments to represent a value.
7781 The host address, if non-null, is supposed to contain an internal
7782 copy of the relevant data; otherwise, the program is to consult the
7783 target at the target address. */
7784
7785 /* Assuming that VAL0 represents a pointer value, the result of
7786 dereferencing it. Differs from value_ind in its treatment of
7787 dynamic-sized types. */
7788
7789 struct value *
7790 ada_value_ind (struct value *val0)
7791 {
7792 struct value *val = value_ind (val0);
7793
7794 if (ada_is_tagged_type (value_type (val), 0))
7795 val = ada_tag_value_at_base_address (val);
7796
7797 return ada_to_fixed_value (val);
7798 }
7799
7800 /* The value resulting from dereferencing any "reference to"
7801 qualifiers on VAL0. */
7802
7803 static struct value *
7804 ada_coerce_ref (struct value *val0)
7805 {
7806 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7807 {
7808 struct value *val = val0;
7809
7810 val = coerce_ref (val);
7811
7812 if (ada_is_tagged_type (value_type (val), 0))
7813 val = ada_tag_value_at_base_address (val);
7814
7815 return ada_to_fixed_value (val);
7816 }
7817 else
7818 return val0;
7819 }
7820
7821 /* Return OFF rounded upward if necessary to a multiple of
7822 ALIGNMENT (a power of 2). */
7823
7824 static unsigned int
7825 align_value (unsigned int off, unsigned int alignment)
7826 {
7827 return (off + alignment - 1) & ~(alignment - 1);
7828 }
7829
7830 /* Return the bit alignment required for field #F of template type TYPE. */
7831
7832 static unsigned int
7833 field_alignment (struct type *type, int f)
7834 {
7835 const char *name = TYPE_FIELD_NAME (type, f);
7836 int len;
7837 int align_offset;
7838
7839 /* The field name should never be null, unless the debugging information
7840 is somehow malformed. In this case, we assume the field does not
7841 require any alignment. */
7842 if (name == NULL)
7843 return 1;
7844
7845 len = strlen (name);
7846
7847 if (!isdigit (name[len - 1]))
7848 return 1;
7849
7850 if (isdigit (name[len - 2]))
7851 align_offset = len - 2;
7852 else
7853 align_offset = len - 1;
7854
7855 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7856 return TARGET_CHAR_BIT;
7857
7858 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7859 }
7860
7861 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7862
7863 static struct symbol *
7864 ada_find_any_type_symbol (const char *name)
7865 {
7866 struct symbol *sym;
7867
7868 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7869 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7870 return sym;
7871
7872 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7873 return sym;
7874 }
7875
7876 /* Find a type named NAME. Ignores ambiguity. This routine will look
7877 solely for types defined by debug info, it will not search the GDB
7878 primitive types. */
7879
7880 static struct type *
7881 ada_find_any_type (const char *name)
7882 {
7883 struct symbol *sym = ada_find_any_type_symbol (name);
7884
7885 if (sym != NULL)
7886 return SYMBOL_TYPE (sym);
7887
7888 return NULL;
7889 }
7890
7891 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7892 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7893 symbol, in which case it is returned. Otherwise, this looks for
7894 symbols whose name is that of NAME_SYM suffixed with "___XR".
7895 Return symbol if found, and NULL otherwise. */
7896
7897 static bool
7898 ada_is_renaming_symbol (struct symbol *name_sym)
7899 {
7900 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7901 return strstr (name, "___XR") != NULL;
7902 }
7903
7904 /* Because of GNAT encoding conventions, several GDB symbols may match a
7905 given type name. If the type denoted by TYPE0 is to be preferred to
7906 that of TYPE1 for purposes of type printing, return non-zero;
7907 otherwise return 0. */
7908
7909 int
7910 ada_prefer_type (struct type *type0, struct type *type1)
7911 {
7912 if (type1 == NULL)
7913 return 1;
7914 else if (type0 == NULL)
7915 return 0;
7916 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7917 return 1;
7918 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7919 return 0;
7920 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7921 return 1;
7922 else if (ada_is_constrained_packed_array_type (type0))
7923 return 1;
7924 else if (ada_is_array_descriptor_type (type0)
7925 && !ada_is_array_descriptor_type (type1))
7926 return 1;
7927 else
7928 {
7929 const char *type0_name = TYPE_NAME (type0);
7930 const char *type1_name = TYPE_NAME (type1);
7931
7932 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7933 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7934 return 1;
7935 }
7936 return 0;
7937 }
7938
7939 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7940 null. */
7941
7942 const char *
7943 ada_type_name (struct type *type)
7944 {
7945 if (type == NULL)
7946 return NULL;
7947 return TYPE_NAME (type);
7948 }
7949
7950 /* Search the list of "descriptive" types associated to TYPE for a type
7951 whose name is NAME. */
7952
7953 static struct type *
7954 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7955 {
7956 struct type *result, *tmp;
7957
7958 if (ada_ignore_descriptive_types_p)
7959 return NULL;
7960
7961 /* If there no descriptive-type info, then there is no parallel type
7962 to be found. */
7963 if (!HAVE_GNAT_AUX_INFO (type))
7964 return NULL;
7965
7966 result = TYPE_DESCRIPTIVE_TYPE (type);
7967 while (result != NULL)
7968 {
7969 const char *result_name = ada_type_name (result);
7970
7971 if (result_name == NULL)
7972 {
7973 warning (_("unexpected null name on descriptive type"));
7974 return NULL;
7975 }
7976
7977 /* If the names match, stop. */
7978 if (strcmp (result_name, name) == 0)
7979 break;
7980
7981 /* Otherwise, look at the next item on the list, if any. */
7982 if (HAVE_GNAT_AUX_INFO (result))
7983 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7984 else
7985 tmp = NULL;
7986
7987 /* If not found either, try after having resolved the typedef. */
7988 if (tmp != NULL)
7989 result = tmp;
7990 else
7991 {
7992 result = check_typedef (result);
7993 if (HAVE_GNAT_AUX_INFO (result))
7994 result = TYPE_DESCRIPTIVE_TYPE (result);
7995 else
7996 result = NULL;
7997 }
7998 }
7999
8000 /* If we didn't find a match, see whether this is a packed array. With
8001 older compilers, the descriptive type information is either absent or
8002 irrelevant when it comes to packed arrays so the above lookup fails.
8003 Fall back to using a parallel lookup by name in this case. */
8004 if (result == NULL && ada_is_constrained_packed_array_type (type))
8005 return ada_find_any_type (name);
8006
8007 return result;
8008 }
8009
8010 /* Find a parallel type to TYPE with the specified NAME, using the
8011 descriptive type taken from the debugging information, if available,
8012 and otherwise using the (slower) name-based method. */
8013
8014 static struct type *
8015 ada_find_parallel_type_with_name (struct type *type, const char *name)
8016 {
8017 struct type *result = NULL;
8018
8019 if (HAVE_GNAT_AUX_INFO (type))
8020 result = find_parallel_type_by_descriptive_type (type, name);
8021 else
8022 result = ada_find_any_type (name);
8023
8024 return result;
8025 }
8026
8027 /* Same as above, but specify the name of the parallel type by appending
8028 SUFFIX to the name of TYPE. */
8029
8030 struct type *
8031 ada_find_parallel_type (struct type *type, const char *suffix)
8032 {
8033 char *name;
8034 const char *type_name = ada_type_name (type);
8035 int len;
8036
8037 if (type_name == NULL)
8038 return NULL;
8039
8040 len = strlen (type_name);
8041
8042 name = (char *) alloca (len + strlen (suffix) + 1);
8043
8044 strcpy (name, type_name);
8045 strcpy (name + len, suffix);
8046
8047 return ada_find_parallel_type_with_name (type, name);
8048 }
8049
8050 /* If TYPE is a variable-size record type, return the corresponding template
8051 type describing its fields. Otherwise, return NULL. */
8052
8053 static struct type *
8054 dynamic_template_type (struct type *type)
8055 {
8056 type = ada_check_typedef (type);
8057
8058 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8059 || ada_type_name (type) == NULL)
8060 return NULL;
8061 else
8062 {
8063 int len = strlen (ada_type_name (type));
8064
8065 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8066 return type;
8067 else
8068 return ada_find_parallel_type (type, "___XVE");
8069 }
8070 }
8071
8072 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8073 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8074
8075 static int
8076 is_dynamic_field (struct type *templ_type, int field_num)
8077 {
8078 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8079
8080 return name != NULL
8081 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8082 && strstr (name, "___XVL") != NULL;
8083 }
8084
8085 /* The index of the variant field of TYPE, or -1 if TYPE does not
8086 represent a variant record type. */
8087
8088 static int
8089 variant_field_index (struct type *type)
8090 {
8091 int f;
8092
8093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8094 return -1;
8095
8096 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8097 {
8098 if (ada_is_variant_part (type, f))
8099 return f;
8100 }
8101 return -1;
8102 }
8103
8104 /* A record type with no fields. */
8105
8106 static struct type *
8107 empty_record (struct type *templ)
8108 {
8109 struct type *type = alloc_type_copy (templ);
8110
8111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8112 TYPE_NFIELDS (type) = 0;
8113 TYPE_FIELDS (type) = NULL;
8114 INIT_NONE_SPECIFIC (type);
8115 TYPE_NAME (type) = "<empty>";
8116 TYPE_LENGTH (type) = 0;
8117 return type;
8118 }
8119
8120 /* An ordinary record type (with fixed-length fields) that describes
8121 the value of type TYPE at VALADDR or ADDRESS (see comments at
8122 the beginning of this section) VAL according to GNAT conventions.
8123 DVAL0 should describe the (portion of a) record that contains any
8124 necessary discriminants. It should be NULL if value_type (VAL) is
8125 an outer-level type (i.e., as opposed to a branch of a variant.) A
8126 variant field (unless unchecked) is replaced by a particular branch
8127 of the variant.
8128
8129 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8130 length are not statically known are discarded. As a consequence,
8131 VALADDR, ADDRESS and DVAL0 are ignored.
8132
8133 NOTE: Limitations: For now, we assume that dynamic fields and
8134 variants occupy whole numbers of bytes. However, they need not be
8135 byte-aligned. */
8136
8137 struct type *
8138 ada_template_to_fixed_record_type_1 (struct type *type,
8139 const gdb_byte *valaddr,
8140 CORE_ADDR address, struct value *dval0,
8141 int keep_dynamic_fields)
8142 {
8143 struct value *mark = value_mark ();
8144 struct value *dval;
8145 struct type *rtype;
8146 int nfields, bit_len;
8147 int variant_field;
8148 long off;
8149 int fld_bit_len;
8150 int f;
8151
8152 /* Compute the number of fields in this record type that are going
8153 to be processed: unless keep_dynamic_fields, this includes only
8154 fields whose position and length are static will be processed. */
8155 if (keep_dynamic_fields)
8156 nfields = TYPE_NFIELDS (type);
8157 else
8158 {
8159 nfields = 0;
8160 while (nfields < TYPE_NFIELDS (type)
8161 && !ada_is_variant_part (type, nfields)
8162 && !is_dynamic_field (type, nfields))
8163 nfields++;
8164 }
8165
8166 rtype = alloc_type_copy (type);
8167 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8168 INIT_NONE_SPECIFIC (rtype);
8169 TYPE_NFIELDS (rtype) = nfields;
8170 TYPE_FIELDS (rtype) = (struct field *)
8171 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8172 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8173 TYPE_NAME (rtype) = ada_type_name (type);
8174 TYPE_FIXED_INSTANCE (rtype) = 1;
8175
8176 off = 0;
8177 bit_len = 0;
8178 variant_field = -1;
8179
8180 for (f = 0; f < nfields; f += 1)
8181 {
8182 off = align_value (off, field_alignment (type, f))
8183 + TYPE_FIELD_BITPOS (type, f);
8184 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8185 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8186
8187 if (ada_is_variant_part (type, f))
8188 {
8189 variant_field = f;
8190 fld_bit_len = 0;
8191 }
8192 else if (is_dynamic_field (type, f))
8193 {
8194 const gdb_byte *field_valaddr = valaddr;
8195 CORE_ADDR field_address = address;
8196 struct type *field_type =
8197 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8198
8199 if (dval0 == NULL)
8200 {
8201 /* rtype's length is computed based on the run-time
8202 value of discriminants. If the discriminants are not
8203 initialized, the type size may be completely bogus and
8204 GDB may fail to allocate a value for it. So check the
8205 size first before creating the value. */
8206 ada_ensure_varsize_limit (rtype);
8207 /* Using plain value_from_contents_and_address here
8208 causes problems because we will end up trying to
8209 resolve a type that is currently being
8210 constructed. */
8211 dval = value_from_contents_and_address_unresolved (rtype,
8212 valaddr,
8213 address);
8214 rtype = value_type (dval);
8215 }
8216 else
8217 dval = dval0;
8218
8219 /* If the type referenced by this field is an aligner type, we need
8220 to unwrap that aligner type, because its size might not be set.
8221 Keeping the aligner type would cause us to compute the wrong
8222 size for this field, impacting the offset of the all the fields
8223 that follow this one. */
8224 if (ada_is_aligner_type (field_type))
8225 {
8226 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8227
8228 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8229 field_address = cond_offset_target (field_address, field_offset);
8230 field_type = ada_aligned_type (field_type);
8231 }
8232
8233 field_valaddr = cond_offset_host (field_valaddr,
8234 off / TARGET_CHAR_BIT);
8235 field_address = cond_offset_target (field_address,
8236 off / TARGET_CHAR_BIT);
8237
8238 /* Get the fixed type of the field. Note that, in this case,
8239 we do not want to get the real type out of the tag: if
8240 the current field is the parent part of a tagged record,
8241 we will get the tag of the object. Clearly wrong: the real
8242 type of the parent is not the real type of the child. We
8243 would end up in an infinite loop. */
8244 field_type = ada_get_base_type (field_type);
8245 field_type = ada_to_fixed_type (field_type, field_valaddr,
8246 field_address, dval, 0);
8247 /* If the field size is already larger than the maximum
8248 object size, then the record itself will necessarily
8249 be larger than the maximum object size. We need to make
8250 this check now, because the size might be so ridiculously
8251 large (due to an uninitialized variable in the inferior)
8252 that it would cause an overflow when adding it to the
8253 record size. */
8254 ada_ensure_varsize_limit (field_type);
8255
8256 TYPE_FIELD_TYPE (rtype, f) = field_type;
8257 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8258 /* The multiplication can potentially overflow. But because
8259 the field length has been size-checked just above, and
8260 assuming that the maximum size is a reasonable value,
8261 an overflow should not happen in practice. So rather than
8262 adding overflow recovery code to this already complex code,
8263 we just assume that it's not going to happen. */
8264 fld_bit_len =
8265 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8266 }
8267 else
8268 {
8269 /* Note: If this field's type is a typedef, it is important
8270 to preserve the typedef layer.
8271
8272 Otherwise, we might be transforming a typedef to a fat
8273 pointer (encoding a pointer to an unconstrained array),
8274 into a basic fat pointer (encoding an unconstrained
8275 array). As both types are implemented using the same
8276 structure, the typedef is the only clue which allows us
8277 to distinguish between the two options. Stripping it
8278 would prevent us from printing this field appropriately. */
8279 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8280 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8281 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8282 fld_bit_len =
8283 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8284 else
8285 {
8286 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8287
8288 /* We need to be careful of typedefs when computing
8289 the length of our field. If this is a typedef,
8290 get the length of the target type, not the length
8291 of the typedef. */
8292 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8293 field_type = ada_typedef_target_type (field_type);
8294
8295 fld_bit_len =
8296 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8297 }
8298 }
8299 if (off + fld_bit_len > bit_len)
8300 bit_len = off + fld_bit_len;
8301 off += fld_bit_len;
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8304 }
8305
8306 /* We handle the variant part, if any, at the end because of certain
8307 odd cases in which it is re-ordered so as NOT to be the last field of
8308 the record. This can happen in the presence of representation
8309 clauses. */
8310 if (variant_field >= 0)
8311 {
8312 struct type *branch_type;
8313
8314 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8315
8316 if (dval0 == NULL)
8317 {
8318 /* Using plain value_from_contents_and_address here causes
8319 problems because we will end up trying to resolve a type
8320 that is currently being constructed. */
8321 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8322 address);
8323 rtype = value_type (dval);
8324 }
8325 else
8326 dval = dval0;
8327
8328 branch_type =
8329 to_fixed_variant_branch_type
8330 (TYPE_FIELD_TYPE (type, variant_field),
8331 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8332 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8333 if (branch_type == NULL)
8334 {
8335 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8336 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8337 TYPE_NFIELDS (rtype) -= 1;
8338 }
8339 else
8340 {
8341 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8342 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8343 fld_bit_len =
8344 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8345 TARGET_CHAR_BIT;
8346 if (off + fld_bit_len > bit_len)
8347 bit_len = off + fld_bit_len;
8348 TYPE_LENGTH (rtype) =
8349 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8350 }
8351 }
8352
8353 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8354 should contain the alignment of that record, which should be a strictly
8355 positive value. If null or negative, then something is wrong, most
8356 probably in the debug info. In that case, we don't round up the size
8357 of the resulting type. If this record is not part of another structure,
8358 the current RTYPE length might be good enough for our purposes. */
8359 if (TYPE_LENGTH (type) <= 0)
8360 {
8361 if (TYPE_NAME (rtype))
8362 warning (_("Invalid type size for `%s' detected: %s."),
8363 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8364 else
8365 warning (_("Invalid type size for <unnamed> detected: %s."),
8366 pulongest (TYPE_LENGTH (type)));
8367 }
8368 else
8369 {
8370 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8371 TYPE_LENGTH (type));
8372 }
8373
8374 value_free_to_mark (mark);
8375 if (TYPE_LENGTH (rtype) > varsize_limit)
8376 error (_("record type with dynamic size is larger than varsize-limit"));
8377 return rtype;
8378 }
8379
8380 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8381 of 1. */
8382
8383 static struct type *
8384 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8385 CORE_ADDR address, struct value *dval0)
8386 {
8387 return ada_template_to_fixed_record_type_1 (type, valaddr,
8388 address, dval0, 1);
8389 }
8390
8391 /* An ordinary record type in which ___XVL-convention fields and
8392 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8393 static approximations, containing all possible fields. Uses
8394 no runtime values. Useless for use in values, but that's OK,
8395 since the results are used only for type determinations. Works on both
8396 structs and unions. Representation note: to save space, we memorize
8397 the result of this function in the TYPE_TARGET_TYPE of the
8398 template type. */
8399
8400 static struct type *
8401 template_to_static_fixed_type (struct type *type0)
8402 {
8403 struct type *type;
8404 int nfields;
8405 int f;
8406
8407 /* No need no do anything if the input type is already fixed. */
8408 if (TYPE_FIXED_INSTANCE (type0))
8409 return type0;
8410
8411 /* Likewise if we already have computed the static approximation. */
8412 if (TYPE_TARGET_TYPE (type0) != NULL)
8413 return TYPE_TARGET_TYPE (type0);
8414
8415 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8416 type = type0;
8417 nfields = TYPE_NFIELDS (type0);
8418
8419 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8420 recompute all over next time. */
8421 TYPE_TARGET_TYPE (type0) = type;
8422
8423 for (f = 0; f < nfields; f += 1)
8424 {
8425 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8426 struct type *new_type;
8427
8428 if (is_dynamic_field (type0, f))
8429 {
8430 field_type = ada_check_typedef (field_type);
8431 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8432 }
8433 else
8434 new_type = static_unwrap_type (field_type);
8435
8436 if (new_type != field_type)
8437 {
8438 /* Clone TYPE0 only the first time we get a new field type. */
8439 if (type == type0)
8440 {
8441 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8442 TYPE_CODE (type) = TYPE_CODE (type0);
8443 INIT_NONE_SPECIFIC (type);
8444 TYPE_NFIELDS (type) = nfields;
8445 TYPE_FIELDS (type) = (struct field *)
8446 TYPE_ALLOC (type, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8448 sizeof (struct field) * nfields);
8449 TYPE_NAME (type) = ada_type_name (type0);
8450 TYPE_FIXED_INSTANCE (type) = 1;
8451 TYPE_LENGTH (type) = 0;
8452 }
8453 TYPE_FIELD_TYPE (type, f) = new_type;
8454 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8455 }
8456 }
8457
8458 return type;
8459 }
8460
8461 /* Given an object of type TYPE whose contents are at VALADDR and
8462 whose address in memory is ADDRESS, returns a revision of TYPE,
8463 which should be a non-dynamic-sized record, in which the variant
8464 part, if any, is replaced with the appropriate branch. Looks
8465 for discriminant values in DVAL0, which can be NULL if the record
8466 contains the necessary discriminant values. */
8467
8468 static struct type *
8469 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8470 CORE_ADDR address, struct value *dval0)
8471 {
8472 struct value *mark = value_mark ();
8473 struct value *dval;
8474 struct type *rtype;
8475 struct type *branch_type;
8476 int nfields = TYPE_NFIELDS (type);
8477 int variant_field = variant_field_index (type);
8478
8479 if (variant_field == -1)
8480 return type;
8481
8482 if (dval0 == NULL)
8483 {
8484 dval = value_from_contents_and_address (type, valaddr, address);
8485 type = value_type (dval);
8486 }
8487 else
8488 dval = dval0;
8489
8490 rtype = alloc_type_copy (type);
8491 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8492 INIT_NONE_SPECIFIC (rtype);
8493 TYPE_NFIELDS (rtype) = nfields;
8494 TYPE_FIELDS (rtype) =
8495 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8496 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8497 sizeof (struct field) * nfields);
8498 TYPE_NAME (rtype) = ada_type_name (type);
8499 TYPE_FIXED_INSTANCE (rtype) = 1;
8500 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8501
8502 branch_type = to_fixed_variant_branch_type
8503 (TYPE_FIELD_TYPE (type, variant_field),
8504 cond_offset_host (valaddr,
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT),
8507 cond_offset_target (address,
8508 TYPE_FIELD_BITPOS (type, variant_field)
8509 / TARGET_CHAR_BIT), dval);
8510 if (branch_type == NULL)
8511 {
8512 int f;
8513
8514 for (f = variant_field + 1; f < nfields; f += 1)
8515 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8516 TYPE_NFIELDS (rtype) -= 1;
8517 }
8518 else
8519 {
8520 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8521 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8522 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8523 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8524 }
8525 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8526
8527 value_free_to_mark (mark);
8528 return rtype;
8529 }
8530
8531 /* An ordinary record type (with fixed-length fields) that describes
8532 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8533 beginning of this section]. Any necessary discriminants' values
8534 should be in DVAL, a record value; it may be NULL if the object
8535 at ADDR itself contains any necessary discriminant values.
8536 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8537 values from the record are needed. Except in the case that DVAL,
8538 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8539 unchecked) is replaced by a particular branch of the variant.
8540
8541 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8542 is questionable and may be removed. It can arise during the
8543 processing of an unconstrained-array-of-record type where all the
8544 variant branches have exactly the same size. This is because in
8545 such cases, the compiler does not bother to use the XVS convention
8546 when encoding the record. I am currently dubious of this
8547 shortcut and suspect the compiler should be altered. FIXME. */
8548
8549 static struct type *
8550 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8551 CORE_ADDR address, struct value *dval)
8552 {
8553 struct type *templ_type;
8554
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 templ_type = dynamic_template_type (type0);
8559
8560 if (templ_type != NULL)
8561 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8562 else if (variant_field_index (type0) >= 0)
8563 {
8564 if (dval == NULL && valaddr == NULL && address == 0)
8565 return type0;
8566 return to_record_with_fixed_variant_part (type0, valaddr, address,
8567 dval);
8568 }
8569 else
8570 {
8571 TYPE_FIXED_INSTANCE (type0) = 1;
8572 return type0;
8573 }
8574
8575 }
8576
8577 /* An ordinary record type (with fixed-length fields) that describes
8578 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8579 union type. Any necessary discriminants' values should be in DVAL,
8580 a record value. That is, this routine selects the appropriate
8581 branch of the union at ADDR according to the discriminant value
8582 indicated in the union's type name. Returns VAR_TYPE0 itself if
8583 it represents a variant subject to a pragma Unchecked_Union. */
8584
8585 static struct type *
8586 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8587 CORE_ADDR address, struct value *dval)
8588 {
8589 int which;
8590 struct type *templ_type;
8591 struct type *var_type;
8592
8593 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8594 var_type = TYPE_TARGET_TYPE (var_type0);
8595 else
8596 var_type = var_type0;
8597
8598 templ_type = ada_find_parallel_type (var_type, "___XVU");
8599
8600 if (templ_type != NULL)
8601 var_type = templ_type;
8602
8603 if (is_unchecked_variant (var_type, value_type (dval)))
8604 return var_type0;
8605 which =
8606 ada_which_variant_applies (var_type,
8607 value_type (dval), value_contents (dval));
8608
8609 if (which < 0)
8610 return empty_record (var_type);
8611 else if (is_dynamic_field (var_type, which))
8612 return to_fixed_record_type
8613 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8614 valaddr, address, dval);
8615 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8616 return
8617 to_fixed_record_type
8618 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8619 else
8620 return TYPE_FIELD_TYPE (var_type, which);
8621 }
8622
8623 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8624 ENCODING_TYPE, a type following the GNAT conventions for discrete
8625 type encodings, only carries redundant information. */
8626
8627 static int
8628 ada_is_redundant_range_encoding (struct type *range_type,
8629 struct type *encoding_type)
8630 {
8631 const char *bounds_str;
8632 int n;
8633 LONGEST lo, hi;
8634
8635 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8636
8637 if (TYPE_CODE (get_base_type (range_type))
8638 != TYPE_CODE (get_base_type (encoding_type)))
8639 {
8640 /* The compiler probably used a simple base type to describe
8641 the range type instead of the range's actual base type,
8642 expecting us to get the real base type from the encoding
8643 anyway. In this situation, the encoding cannot be ignored
8644 as redundant. */
8645 return 0;
8646 }
8647
8648 if (is_dynamic_type (range_type))
8649 return 0;
8650
8651 if (TYPE_NAME (encoding_type) == NULL)
8652 return 0;
8653
8654 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8655 if (bounds_str == NULL)
8656 return 0;
8657
8658 n = 8; /* Skip "___XDLU_". */
8659 if (!ada_scan_number (bounds_str, n, &lo, &n))
8660 return 0;
8661 if (TYPE_LOW_BOUND (range_type) != lo)
8662 return 0;
8663
8664 n += 2; /* Skip the "__" separator between the two bounds. */
8665 if (!ada_scan_number (bounds_str, n, &hi, &n))
8666 return 0;
8667 if (TYPE_HIGH_BOUND (range_type) != hi)
8668 return 0;
8669
8670 return 1;
8671 }
8672
8673 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8674 a type following the GNAT encoding for describing array type
8675 indices, only carries redundant information. */
8676
8677 static int
8678 ada_is_redundant_index_type_desc (struct type *array_type,
8679 struct type *desc_type)
8680 {
8681 struct type *this_layer = check_typedef (array_type);
8682 int i;
8683
8684 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8685 {
8686 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8687 TYPE_FIELD_TYPE (desc_type, i)))
8688 return 0;
8689 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8690 }
8691
8692 return 1;
8693 }
8694
8695 /* Assuming that TYPE0 is an array type describing the type of a value
8696 at ADDR, and that DVAL describes a record containing any
8697 discriminants used in TYPE0, returns a type for the value that
8698 contains no dynamic components (that is, no components whose sizes
8699 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8700 true, gives an error message if the resulting type's size is over
8701 varsize_limit. */
8702
8703 static struct type *
8704 to_fixed_array_type (struct type *type0, struct value *dval,
8705 int ignore_too_big)
8706 {
8707 struct type *index_type_desc;
8708 struct type *result;
8709 int constrained_packed_array_p;
8710 static const char *xa_suffix = "___XA";
8711
8712 type0 = ada_check_typedef (type0);
8713 if (TYPE_FIXED_INSTANCE (type0))
8714 return type0;
8715
8716 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8717 if (constrained_packed_array_p)
8718 type0 = decode_constrained_packed_array_type (type0);
8719
8720 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8721
8722 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8723 encoding suffixed with 'P' may still be generated. If so,
8724 it should be used to find the XA type. */
8725
8726 if (index_type_desc == NULL)
8727 {
8728 const char *type_name = ada_type_name (type0);
8729
8730 if (type_name != NULL)
8731 {
8732 const int len = strlen (type_name);
8733 char *name = (char *) alloca (len + strlen (xa_suffix));
8734
8735 if (type_name[len - 1] == 'P')
8736 {
8737 strcpy (name, type_name);
8738 strcpy (name + len - 1, xa_suffix);
8739 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8740 }
8741 }
8742 }
8743
8744 ada_fixup_array_indexes_type (index_type_desc);
8745 if (index_type_desc != NULL
8746 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8747 {
8748 /* Ignore this ___XA parallel type, as it does not bring any
8749 useful information. This allows us to avoid creating fixed
8750 versions of the array's index types, which would be identical
8751 to the original ones. This, in turn, can also help avoid
8752 the creation of fixed versions of the array itself. */
8753 index_type_desc = NULL;
8754 }
8755
8756 if (index_type_desc == NULL)
8757 {
8758 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8759
8760 /* NOTE: elt_type---the fixed version of elt_type0---should never
8761 depend on the contents of the array in properly constructed
8762 debugging data. */
8763 /* Create a fixed version of the array element type.
8764 We're not providing the address of an element here,
8765 and thus the actual object value cannot be inspected to do
8766 the conversion. This should not be a problem, since arrays of
8767 unconstrained objects are not allowed. In particular, all
8768 the elements of an array of a tagged type should all be of
8769 the same type specified in the debugging info. No need to
8770 consult the object tag. */
8771 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8772
8773 /* Make sure we always create a new array type when dealing with
8774 packed array types, since we're going to fix-up the array
8775 type length and element bitsize a little further down. */
8776 if (elt_type0 == elt_type && !constrained_packed_array_p)
8777 result = type0;
8778 else
8779 result = create_array_type (alloc_type_copy (type0),
8780 elt_type, TYPE_INDEX_TYPE (type0));
8781 }
8782 else
8783 {
8784 int i;
8785 struct type *elt_type0;
8786
8787 elt_type0 = type0;
8788 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8789 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8790
8791 /* NOTE: result---the fixed version of elt_type0---should never
8792 depend on the contents of the array in properly constructed
8793 debugging data. */
8794 /* Create a fixed version of the array element type.
8795 We're not providing the address of an element here,
8796 and thus the actual object value cannot be inspected to do
8797 the conversion. This should not be a problem, since arrays of
8798 unconstrained objects are not allowed. In particular, all
8799 the elements of an array of a tagged type should all be of
8800 the same type specified in the debugging info. No need to
8801 consult the object tag. */
8802 result =
8803 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8804
8805 elt_type0 = type0;
8806 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8807 {
8808 struct type *range_type =
8809 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8810
8811 result = create_array_type (alloc_type_copy (elt_type0),
8812 result, range_type);
8813 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8814 }
8815 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8816 error (_("array type with dynamic size is larger than varsize-limit"));
8817 }
8818
8819 /* We want to preserve the type name. This can be useful when
8820 trying to get the type name of a value that has already been
8821 printed (for instance, if the user did "print VAR; whatis $". */
8822 TYPE_NAME (result) = TYPE_NAME (type0);
8823
8824 if (constrained_packed_array_p)
8825 {
8826 /* So far, the resulting type has been created as if the original
8827 type was a regular (non-packed) array type. As a result, the
8828 bitsize of the array elements needs to be set again, and the array
8829 length needs to be recomputed based on that bitsize. */
8830 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8831 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8832
8833 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8834 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8835 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8836 TYPE_LENGTH (result)++;
8837 }
8838
8839 TYPE_FIXED_INSTANCE (result) = 1;
8840 return result;
8841 }
8842
8843
8844 /* A standard type (containing no dynamically sized components)
8845 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8846 DVAL describes a record containing any discriminants used in TYPE0,
8847 and may be NULL if there are none, or if the object of type TYPE at
8848 ADDRESS or in VALADDR contains these discriminants.
8849
8850 If CHECK_TAG is not null, in the case of tagged types, this function
8851 attempts to locate the object's tag and use it to compute the actual
8852 type. However, when ADDRESS is null, we cannot use it to determine the
8853 location of the tag, and therefore compute the tagged type's actual type.
8854 So we return the tagged type without consulting the tag. */
8855
8856 static struct type *
8857 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8858 CORE_ADDR address, struct value *dval, int check_tag)
8859 {
8860 type = ada_check_typedef (type);
8861
8862 /* Only un-fixed types need to be handled here. */
8863 if (!HAVE_GNAT_AUX_INFO (type))
8864 return type;
8865
8866 switch (TYPE_CODE (type))
8867 {
8868 default:
8869 return type;
8870 case TYPE_CODE_STRUCT:
8871 {
8872 struct type *static_type = to_static_fixed_type (type);
8873 struct type *fixed_record_type =
8874 to_fixed_record_type (type, valaddr, address, NULL);
8875
8876 /* If STATIC_TYPE is a tagged type and we know the object's address,
8877 then we can determine its tag, and compute the object's actual
8878 type from there. Note that we have to use the fixed record
8879 type (the parent part of the record may have dynamic fields
8880 and the way the location of _tag is expressed may depend on
8881 them). */
8882
8883 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8884 {
8885 struct value *tag =
8886 value_tag_from_contents_and_address
8887 (fixed_record_type,
8888 valaddr,
8889 address);
8890 struct type *real_type = type_from_tag (tag);
8891 struct value *obj =
8892 value_from_contents_and_address (fixed_record_type,
8893 valaddr,
8894 address);
8895 fixed_record_type = value_type (obj);
8896 if (real_type != NULL)
8897 return to_fixed_record_type
8898 (real_type, NULL,
8899 value_address (ada_tag_value_at_base_address (obj)), NULL);
8900 }
8901
8902 /* Check to see if there is a parallel ___XVZ variable.
8903 If there is, then it provides the actual size of our type. */
8904 else if (ada_type_name (fixed_record_type) != NULL)
8905 {
8906 const char *name = ada_type_name (fixed_record_type);
8907 char *xvz_name
8908 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8909 bool xvz_found = false;
8910 LONGEST size;
8911
8912 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8913 try
8914 {
8915 xvz_found = get_int_var_value (xvz_name, size);
8916 }
8917 catch (const gdb_exception_error &except)
8918 {
8919 /* We found the variable, but somehow failed to read
8920 its value. Rethrow the same error, but with a little
8921 bit more information, to help the user understand
8922 what went wrong (Eg: the variable might have been
8923 optimized out). */
8924 throw_error (except.error,
8925 _("unable to read value of %s (%s)"),
8926 xvz_name, except.what ());
8927 }
8928
8929 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8930 {
8931 fixed_record_type = copy_type (fixed_record_type);
8932 TYPE_LENGTH (fixed_record_type) = size;
8933
8934 /* The FIXED_RECORD_TYPE may have be a stub. We have
8935 observed this when the debugging info is STABS, and
8936 apparently it is something that is hard to fix.
8937
8938 In practice, we don't need the actual type definition
8939 at all, because the presence of the XVZ variable allows us
8940 to assume that there must be a XVS type as well, which we
8941 should be able to use later, when we need the actual type
8942 definition.
8943
8944 In the meantime, pretend that the "fixed" type we are
8945 returning is NOT a stub, because this can cause trouble
8946 when using this type to create new types targeting it.
8947 Indeed, the associated creation routines often check
8948 whether the target type is a stub and will try to replace
8949 it, thus using a type with the wrong size. This, in turn,
8950 might cause the new type to have the wrong size too.
8951 Consider the case of an array, for instance, where the size
8952 of the array is computed from the number of elements in
8953 our array multiplied by the size of its element. */
8954 TYPE_STUB (fixed_record_type) = 0;
8955 }
8956 }
8957 return fixed_record_type;
8958 }
8959 case TYPE_CODE_ARRAY:
8960 return to_fixed_array_type (type, dval, 1);
8961 case TYPE_CODE_UNION:
8962 if (dval == NULL)
8963 return type;
8964 else
8965 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8966 }
8967 }
8968
8969 /* The same as ada_to_fixed_type_1, except that it preserves the type
8970 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8971
8972 The typedef layer needs be preserved in order to differentiate between
8973 arrays and array pointers when both types are implemented using the same
8974 fat pointer. In the array pointer case, the pointer is encoded as
8975 a typedef of the pointer type. For instance, considering:
8976
8977 type String_Access is access String;
8978 S1 : String_Access := null;
8979
8980 To the debugger, S1 is defined as a typedef of type String. But
8981 to the user, it is a pointer. So if the user tries to print S1,
8982 we should not dereference the array, but print the array address
8983 instead.
8984
8985 If we didn't preserve the typedef layer, we would lose the fact that
8986 the type is to be presented as a pointer (needs de-reference before
8987 being printed). And we would also use the source-level type name. */
8988
8989 struct type *
8990 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8991 CORE_ADDR address, struct value *dval, int check_tag)
8992
8993 {
8994 struct type *fixed_type =
8995 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8996
8997 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8998 then preserve the typedef layer.
8999
9000 Implementation note: We can only check the main-type portion of
9001 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9002 from TYPE now returns a type that has the same instance flags
9003 as TYPE. For instance, if TYPE is a "typedef const", and its
9004 target type is a "struct", then the typedef elimination will return
9005 a "const" version of the target type. See check_typedef for more
9006 details about how the typedef layer elimination is done.
9007
9008 brobecker/2010-11-19: It seems to me that the only case where it is
9009 useful to preserve the typedef layer is when dealing with fat pointers.
9010 Perhaps, we could add a check for that and preserve the typedef layer
9011 only in that situation. But this seems unecessary so far, probably
9012 because we call check_typedef/ada_check_typedef pretty much everywhere.
9013 */
9014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9015 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9016 == TYPE_MAIN_TYPE (fixed_type)))
9017 return type;
9018
9019 return fixed_type;
9020 }
9021
9022 /* A standard (static-sized) type corresponding as well as possible to
9023 TYPE0, but based on no runtime data. */
9024
9025 static struct type *
9026 to_static_fixed_type (struct type *type0)
9027 {
9028 struct type *type;
9029
9030 if (type0 == NULL)
9031 return NULL;
9032
9033 if (TYPE_FIXED_INSTANCE (type0))
9034 return type0;
9035
9036 type0 = ada_check_typedef (type0);
9037
9038 switch (TYPE_CODE (type0))
9039 {
9040 default:
9041 return type0;
9042 case TYPE_CODE_STRUCT:
9043 type = dynamic_template_type (type0);
9044 if (type != NULL)
9045 return template_to_static_fixed_type (type);
9046 else
9047 return template_to_static_fixed_type (type0);
9048 case TYPE_CODE_UNION:
9049 type = ada_find_parallel_type (type0, "___XVU");
9050 if (type != NULL)
9051 return template_to_static_fixed_type (type);
9052 else
9053 return template_to_static_fixed_type (type0);
9054 }
9055 }
9056
9057 /* A static approximation of TYPE with all type wrappers removed. */
9058
9059 static struct type *
9060 static_unwrap_type (struct type *type)
9061 {
9062 if (ada_is_aligner_type (type))
9063 {
9064 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9065 if (ada_type_name (type1) == NULL)
9066 TYPE_NAME (type1) = ada_type_name (type);
9067
9068 return static_unwrap_type (type1);
9069 }
9070 else
9071 {
9072 struct type *raw_real_type = ada_get_base_type (type);
9073
9074 if (raw_real_type == type)
9075 return type;
9076 else
9077 return to_static_fixed_type (raw_real_type);
9078 }
9079 }
9080
9081 /* In some cases, incomplete and private types require
9082 cross-references that are not resolved as records (for example,
9083 type Foo;
9084 type FooP is access Foo;
9085 V: FooP;
9086 type Foo is array ...;
9087 ). In these cases, since there is no mechanism for producing
9088 cross-references to such types, we instead substitute for FooP a
9089 stub enumeration type that is nowhere resolved, and whose tag is
9090 the name of the actual type. Call these types "non-record stubs". */
9091
9092 /* A type equivalent to TYPE that is not a non-record stub, if one
9093 exists, otherwise TYPE. */
9094
9095 struct type *
9096 ada_check_typedef (struct type *type)
9097 {
9098 if (type == NULL)
9099 return NULL;
9100
9101 /* If our type is an access to an unconstrained array, which is encoded
9102 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9103 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9104 what allows us to distinguish between fat pointers that represent
9105 array types, and fat pointers that represent array access types
9106 (in both cases, the compiler implements them as fat pointers). */
9107 if (ada_is_access_to_unconstrained_array (type))
9108 return type;
9109
9110 type = check_typedef (type);
9111 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9112 || !TYPE_STUB (type)
9113 || TYPE_NAME (type) == NULL)
9114 return type;
9115 else
9116 {
9117 const char *name = TYPE_NAME (type);
9118 struct type *type1 = ada_find_any_type (name);
9119
9120 if (type1 == NULL)
9121 return type;
9122
9123 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9124 stubs pointing to arrays, as we don't create symbols for array
9125 types, only for the typedef-to-array types). If that's the case,
9126 strip the typedef layer. */
9127 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9128 type1 = ada_check_typedef (type1);
9129
9130 return type1;
9131 }
9132 }
9133
9134 /* A value representing the data at VALADDR/ADDRESS as described by
9135 type TYPE0, but with a standard (static-sized) type that correctly
9136 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9137 type, then return VAL0 [this feature is simply to avoid redundant
9138 creation of struct values]. */
9139
9140 static struct value *
9141 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9142 struct value *val0)
9143 {
9144 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9145
9146 if (type == type0 && val0 != NULL)
9147 return val0;
9148
9149 if (VALUE_LVAL (val0) != lval_memory)
9150 {
9151 /* Our value does not live in memory; it could be a convenience
9152 variable, for instance. Create a not_lval value using val0's
9153 contents. */
9154 return value_from_contents (type, value_contents (val0));
9155 }
9156
9157 return value_from_contents_and_address (type, 0, address);
9158 }
9159
9160 /* A value representing VAL, but with a standard (static-sized) type
9161 that correctly describes it. Does not necessarily create a new
9162 value. */
9163
9164 struct value *
9165 ada_to_fixed_value (struct value *val)
9166 {
9167 val = unwrap_value (val);
9168 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9169 return val;
9170 }
9171 \f
9172
9173 /* Attributes */
9174
9175 /* Table mapping attribute numbers to names.
9176 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9177
9178 static const char *attribute_names[] = {
9179 "<?>",
9180
9181 "first",
9182 "last",
9183 "length",
9184 "image",
9185 "max",
9186 "min",
9187 "modulus",
9188 "pos",
9189 "size",
9190 "tag",
9191 "val",
9192 0
9193 };
9194
9195 const char *
9196 ada_attribute_name (enum exp_opcode n)
9197 {
9198 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9199 return attribute_names[n - OP_ATR_FIRST + 1];
9200 else
9201 return attribute_names[0];
9202 }
9203
9204 /* Evaluate the 'POS attribute applied to ARG. */
9205
9206 static LONGEST
9207 pos_atr (struct value *arg)
9208 {
9209 struct value *val = coerce_ref (arg);
9210 struct type *type = value_type (val);
9211 LONGEST result;
9212
9213 if (!discrete_type_p (type))
9214 error (_("'POS only defined on discrete types"));
9215
9216 if (!discrete_position (type, value_as_long (val), &result))
9217 error (_("enumeration value is invalid: can't find 'POS"));
9218
9219 return result;
9220 }
9221
9222 static struct value *
9223 value_pos_atr (struct type *type, struct value *arg)
9224 {
9225 return value_from_longest (type, pos_atr (arg));
9226 }
9227
9228 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9229
9230 static struct value *
9231 value_val_atr (struct type *type, struct value *arg)
9232 {
9233 if (!discrete_type_p (type))
9234 error (_("'VAL only defined on discrete types"));
9235 if (!integer_type_p (value_type (arg)))
9236 error (_("'VAL requires integral argument"));
9237
9238 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9239 {
9240 long pos = value_as_long (arg);
9241
9242 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9243 error (_("argument to 'VAL out of range"));
9244 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9245 }
9246 else
9247 return value_from_longest (type, value_as_long (arg));
9248 }
9249 \f
9250
9251 /* Evaluation */
9252
9253 /* True if TYPE appears to be an Ada character type.
9254 [At the moment, this is true only for Character and Wide_Character;
9255 It is a heuristic test that could stand improvement]. */
9256
9257 bool
9258 ada_is_character_type (struct type *type)
9259 {
9260 const char *name;
9261
9262 /* If the type code says it's a character, then assume it really is,
9263 and don't check any further. */
9264 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9265 return true;
9266
9267 /* Otherwise, assume it's a character type iff it is a discrete type
9268 with a known character type name. */
9269 name = ada_type_name (type);
9270 return (name != NULL
9271 && (TYPE_CODE (type) == TYPE_CODE_INT
9272 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9273 && (strcmp (name, "character") == 0
9274 || strcmp (name, "wide_character") == 0
9275 || strcmp (name, "wide_wide_character") == 0
9276 || strcmp (name, "unsigned char") == 0));
9277 }
9278
9279 /* True if TYPE appears to be an Ada string type. */
9280
9281 bool
9282 ada_is_string_type (struct type *type)
9283 {
9284 type = ada_check_typedef (type);
9285 if (type != NULL
9286 && TYPE_CODE (type) != TYPE_CODE_PTR
9287 && (ada_is_simple_array_type (type)
9288 || ada_is_array_descriptor_type (type))
9289 && ada_array_arity (type) == 1)
9290 {
9291 struct type *elttype = ada_array_element_type (type, 1);
9292
9293 return ada_is_character_type (elttype);
9294 }
9295 else
9296 return false;
9297 }
9298
9299 /* The compiler sometimes provides a parallel XVS type for a given
9300 PAD type. Normally, it is safe to follow the PAD type directly,
9301 but older versions of the compiler have a bug that causes the offset
9302 of its "F" field to be wrong. Following that field in that case
9303 would lead to incorrect results, but this can be worked around
9304 by ignoring the PAD type and using the associated XVS type instead.
9305
9306 Set to True if the debugger should trust the contents of PAD types.
9307 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9308 static int trust_pad_over_xvs = 1;
9309
9310 /* True if TYPE is a struct type introduced by the compiler to force the
9311 alignment of a value. Such types have a single field with a
9312 distinctive name. */
9313
9314 int
9315 ada_is_aligner_type (struct type *type)
9316 {
9317 type = ada_check_typedef (type);
9318
9319 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9320 return 0;
9321
9322 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9323 && TYPE_NFIELDS (type) == 1
9324 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9325 }
9326
9327 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9328 the parallel type. */
9329
9330 struct type *
9331 ada_get_base_type (struct type *raw_type)
9332 {
9333 struct type *real_type_namer;
9334 struct type *raw_real_type;
9335
9336 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9337 return raw_type;
9338
9339 if (ada_is_aligner_type (raw_type))
9340 /* The encoding specifies that we should always use the aligner type.
9341 So, even if this aligner type has an associated XVS type, we should
9342 simply ignore it.
9343
9344 According to the compiler gurus, an XVS type parallel to an aligner
9345 type may exist because of a stabs limitation. In stabs, aligner
9346 types are empty because the field has a variable-sized type, and
9347 thus cannot actually be used as an aligner type. As a result,
9348 we need the associated parallel XVS type to decode the type.
9349 Since the policy in the compiler is to not change the internal
9350 representation based on the debugging info format, we sometimes
9351 end up having a redundant XVS type parallel to the aligner type. */
9352 return raw_type;
9353
9354 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9355 if (real_type_namer == NULL
9356 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9357 || TYPE_NFIELDS (real_type_namer) != 1)
9358 return raw_type;
9359
9360 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9361 {
9362 /* This is an older encoding form where the base type needs to be
9363 looked up by name. We prefer the newer enconding because it is
9364 more efficient. */
9365 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9366 if (raw_real_type == NULL)
9367 return raw_type;
9368 else
9369 return raw_real_type;
9370 }
9371
9372 /* The field in our XVS type is a reference to the base type. */
9373 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9374 }
9375
9376 /* The type of value designated by TYPE, with all aligners removed. */
9377
9378 struct type *
9379 ada_aligned_type (struct type *type)
9380 {
9381 if (ada_is_aligner_type (type))
9382 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9383 else
9384 return ada_get_base_type (type);
9385 }
9386
9387
9388 /* The address of the aligned value in an object at address VALADDR
9389 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9390
9391 const gdb_byte *
9392 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9393 {
9394 if (ada_is_aligner_type (type))
9395 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9396 valaddr +
9397 TYPE_FIELD_BITPOS (type,
9398 0) / TARGET_CHAR_BIT);
9399 else
9400 return valaddr;
9401 }
9402
9403
9404
9405 /* The printed representation of an enumeration literal with encoded
9406 name NAME. The value is good to the next call of ada_enum_name. */
9407 const char *
9408 ada_enum_name (const char *name)
9409 {
9410 static char *result;
9411 static size_t result_len = 0;
9412 const char *tmp;
9413
9414 /* First, unqualify the enumeration name:
9415 1. Search for the last '.' character. If we find one, then skip
9416 all the preceding characters, the unqualified name starts
9417 right after that dot.
9418 2. Otherwise, we may be debugging on a target where the compiler
9419 translates dots into "__". Search forward for double underscores,
9420 but stop searching when we hit an overloading suffix, which is
9421 of the form "__" followed by digits. */
9422
9423 tmp = strrchr (name, '.');
9424 if (tmp != NULL)
9425 name = tmp + 1;
9426 else
9427 {
9428 while ((tmp = strstr (name, "__")) != NULL)
9429 {
9430 if (isdigit (tmp[2]))
9431 break;
9432 else
9433 name = tmp + 2;
9434 }
9435 }
9436
9437 if (name[0] == 'Q')
9438 {
9439 int v;
9440
9441 if (name[1] == 'U' || name[1] == 'W')
9442 {
9443 if (sscanf (name + 2, "%x", &v) != 1)
9444 return name;
9445 }
9446 else if (((name[1] >= '0' && name[1] <= '9')
9447 || (name[1] >= 'a' && name[1] <= 'z'))
9448 && name[2] == '\0')
9449 {
9450 GROW_VECT (result, result_len, 4);
9451 xsnprintf (result, result_len, "'%c'", name[1]);
9452 return result;
9453 }
9454 else
9455 return name;
9456
9457 GROW_VECT (result, result_len, 16);
9458 if (isascii (v) && isprint (v))
9459 xsnprintf (result, result_len, "'%c'", v);
9460 else if (name[1] == 'U')
9461 xsnprintf (result, result_len, "[\"%02x\"]", v);
9462 else
9463 xsnprintf (result, result_len, "[\"%04x\"]", v);
9464
9465 return result;
9466 }
9467 else
9468 {
9469 tmp = strstr (name, "__");
9470 if (tmp == NULL)
9471 tmp = strstr (name, "$");
9472 if (tmp != NULL)
9473 {
9474 GROW_VECT (result, result_len, tmp - name + 1);
9475 strncpy (result, name, tmp - name);
9476 result[tmp - name] = '\0';
9477 return result;
9478 }
9479
9480 return name;
9481 }
9482 }
9483
9484 /* Evaluate the subexpression of EXP starting at *POS as for
9485 evaluate_type, updating *POS to point just past the evaluated
9486 expression. */
9487
9488 static struct value *
9489 evaluate_subexp_type (struct expression *exp, int *pos)
9490 {
9491 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9492 }
9493
9494 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9495 value it wraps. */
9496
9497 static struct value *
9498 unwrap_value (struct value *val)
9499 {
9500 struct type *type = ada_check_typedef (value_type (val));
9501
9502 if (ada_is_aligner_type (type))
9503 {
9504 struct value *v = ada_value_struct_elt (val, "F", 0);
9505 struct type *val_type = ada_check_typedef (value_type (v));
9506
9507 if (ada_type_name (val_type) == NULL)
9508 TYPE_NAME (val_type) = ada_type_name (type);
9509
9510 return unwrap_value (v);
9511 }
9512 else
9513 {
9514 struct type *raw_real_type =
9515 ada_check_typedef (ada_get_base_type (type));
9516
9517 /* If there is no parallel XVS or XVE type, then the value is
9518 already unwrapped. Return it without further modification. */
9519 if ((type == raw_real_type)
9520 && ada_find_parallel_type (type, "___XVE") == NULL)
9521 return val;
9522
9523 return
9524 coerce_unspec_val_to_type
9525 (val, ada_to_fixed_type (raw_real_type, 0,
9526 value_address (val),
9527 NULL, 1));
9528 }
9529 }
9530
9531 static struct value *
9532 cast_from_fixed (struct type *type, struct value *arg)
9533 {
9534 struct value *scale = ada_scaling_factor (value_type (arg));
9535 arg = value_cast (value_type (scale), arg);
9536
9537 arg = value_binop (arg, scale, BINOP_MUL);
9538 return value_cast (type, arg);
9539 }
9540
9541 static struct value *
9542 cast_to_fixed (struct type *type, struct value *arg)
9543 {
9544 if (type == value_type (arg))
9545 return arg;
9546
9547 struct value *scale = ada_scaling_factor (type);
9548 if (ada_is_fixed_point_type (value_type (arg)))
9549 arg = cast_from_fixed (value_type (scale), arg);
9550 else
9551 arg = value_cast (value_type (scale), arg);
9552
9553 arg = value_binop (arg, scale, BINOP_DIV);
9554 return value_cast (type, arg);
9555 }
9556
9557 /* Given two array types T1 and T2, return nonzero iff both arrays
9558 contain the same number of elements. */
9559
9560 static int
9561 ada_same_array_size_p (struct type *t1, struct type *t2)
9562 {
9563 LONGEST lo1, hi1, lo2, hi2;
9564
9565 /* Get the array bounds in order to verify that the size of
9566 the two arrays match. */
9567 if (!get_array_bounds (t1, &lo1, &hi1)
9568 || !get_array_bounds (t2, &lo2, &hi2))
9569 error (_("unable to determine array bounds"));
9570
9571 /* To make things easier for size comparison, normalize a bit
9572 the case of empty arrays by making sure that the difference
9573 between upper bound and lower bound is always -1. */
9574 if (lo1 > hi1)
9575 hi1 = lo1 - 1;
9576 if (lo2 > hi2)
9577 hi2 = lo2 - 1;
9578
9579 return (hi1 - lo1 == hi2 - lo2);
9580 }
9581
9582 /* Assuming that VAL is an array of integrals, and TYPE represents
9583 an array with the same number of elements, but with wider integral
9584 elements, return an array "casted" to TYPE. In practice, this
9585 means that the returned array is built by casting each element
9586 of the original array into TYPE's (wider) element type. */
9587
9588 static struct value *
9589 ada_promote_array_of_integrals (struct type *type, struct value *val)
9590 {
9591 struct type *elt_type = TYPE_TARGET_TYPE (type);
9592 LONGEST lo, hi;
9593 struct value *res;
9594 LONGEST i;
9595
9596 /* Verify that both val and type are arrays of scalars, and
9597 that the size of val's elements is smaller than the size
9598 of type's element. */
9599 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9600 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9601 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9602 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9603 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9604 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9605
9606 if (!get_array_bounds (type, &lo, &hi))
9607 error (_("unable to determine array bounds"));
9608
9609 res = allocate_value (type);
9610
9611 /* Promote each array element. */
9612 for (i = 0; i < hi - lo + 1; i++)
9613 {
9614 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9615
9616 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9617 value_contents_all (elt), TYPE_LENGTH (elt_type));
9618 }
9619
9620 return res;
9621 }
9622
9623 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9624 return the converted value. */
9625
9626 static struct value *
9627 coerce_for_assign (struct type *type, struct value *val)
9628 {
9629 struct type *type2 = value_type (val);
9630
9631 if (type == type2)
9632 return val;
9633
9634 type2 = ada_check_typedef (type2);
9635 type = ada_check_typedef (type);
9636
9637 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9639 {
9640 val = ada_value_ind (val);
9641 type2 = value_type (val);
9642 }
9643
9644 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9645 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9646 {
9647 if (!ada_same_array_size_p (type, type2))
9648 error (_("cannot assign arrays of different length"));
9649
9650 if (is_integral_type (TYPE_TARGET_TYPE (type))
9651 && is_integral_type (TYPE_TARGET_TYPE (type2))
9652 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9653 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9654 {
9655 /* Allow implicit promotion of the array elements to
9656 a wider type. */
9657 return ada_promote_array_of_integrals (type, val);
9658 }
9659
9660 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9661 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9662 error (_("Incompatible types in assignment"));
9663 deprecated_set_value_type (val, type);
9664 }
9665 return val;
9666 }
9667
9668 static struct value *
9669 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9670 {
9671 struct value *val;
9672 struct type *type1, *type2;
9673 LONGEST v, v1, v2;
9674
9675 arg1 = coerce_ref (arg1);
9676 arg2 = coerce_ref (arg2);
9677 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9678 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9679
9680 if (TYPE_CODE (type1) != TYPE_CODE_INT
9681 || TYPE_CODE (type2) != TYPE_CODE_INT)
9682 return value_binop (arg1, arg2, op);
9683
9684 switch (op)
9685 {
9686 case BINOP_MOD:
9687 case BINOP_DIV:
9688 case BINOP_REM:
9689 break;
9690 default:
9691 return value_binop (arg1, arg2, op);
9692 }
9693
9694 v2 = value_as_long (arg2);
9695 if (v2 == 0)
9696 error (_("second operand of %s must not be zero."), op_string (op));
9697
9698 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9699 return value_binop (arg1, arg2, op);
9700
9701 v1 = value_as_long (arg1);
9702 switch (op)
9703 {
9704 case BINOP_DIV:
9705 v = v1 / v2;
9706 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9707 v += v > 0 ? -1 : 1;
9708 break;
9709 case BINOP_REM:
9710 v = v1 % v2;
9711 if (v * v1 < 0)
9712 v -= v2;
9713 break;
9714 default:
9715 /* Should not reach this point. */
9716 v = 0;
9717 }
9718
9719 val = allocate_value (type1);
9720 store_unsigned_integer (value_contents_raw (val),
9721 TYPE_LENGTH (value_type (val)),
9722 gdbarch_byte_order (get_type_arch (type1)), v);
9723 return val;
9724 }
9725
9726 static int
9727 ada_value_equal (struct value *arg1, struct value *arg2)
9728 {
9729 if (ada_is_direct_array_type (value_type (arg1))
9730 || ada_is_direct_array_type (value_type (arg2)))
9731 {
9732 struct type *arg1_type, *arg2_type;
9733
9734 /* Automatically dereference any array reference before
9735 we attempt to perform the comparison. */
9736 arg1 = ada_coerce_ref (arg1);
9737 arg2 = ada_coerce_ref (arg2);
9738
9739 arg1 = ada_coerce_to_simple_array (arg1);
9740 arg2 = ada_coerce_to_simple_array (arg2);
9741
9742 arg1_type = ada_check_typedef (value_type (arg1));
9743 arg2_type = ada_check_typedef (value_type (arg2));
9744
9745 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9747 error (_("Attempt to compare array with non-array"));
9748 /* FIXME: The following works only for types whose
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
9751 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9752 && memcmp (value_contents (arg1), value_contents (arg2),
9753 TYPE_LENGTH (arg1_type)) == 0);
9754 }
9755 return value_equal (arg1, arg2);
9756 }
9757
9758 /* Total number of component associations in the aggregate starting at
9759 index PC in EXP. Assumes that index PC is the start of an
9760 OP_AGGREGATE. */
9761
9762 static int
9763 num_component_specs (struct expression *exp, int pc)
9764 {
9765 int n, m, i;
9766
9767 m = exp->elts[pc + 1].longconst;
9768 pc += 3;
9769 n = 0;
9770 for (i = 0; i < m; i += 1)
9771 {
9772 switch (exp->elts[pc].opcode)
9773 {
9774 default:
9775 n += 1;
9776 break;
9777 case OP_CHOICES:
9778 n += exp->elts[pc + 1].longconst;
9779 break;
9780 }
9781 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9782 }
9783 return n;
9784 }
9785
9786 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9787 component of LHS (a simple array or a record), updating *POS past
9788 the expression, assuming that LHS is contained in CONTAINER. Does
9789 not modify the inferior's memory, nor does it modify LHS (unless
9790 LHS == CONTAINER). */
9791
9792 static void
9793 assign_component (struct value *container, struct value *lhs, LONGEST index,
9794 struct expression *exp, int *pos)
9795 {
9796 struct value *mark = value_mark ();
9797 struct value *elt;
9798 struct type *lhs_type = check_typedef (value_type (lhs));
9799
9800 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9801 {
9802 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9803 struct value *index_val = value_from_longest (index_type, index);
9804
9805 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9806 }
9807 else
9808 {
9809 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9810 elt = ada_to_fixed_value (elt);
9811 }
9812
9813 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9814 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9815 else
9816 value_assign_to_component (container, elt,
9817 ada_evaluate_subexp (NULL, exp, pos,
9818 EVAL_NORMAL));
9819
9820 value_free_to_mark (mark);
9821 }
9822
9823 /* Assuming that LHS represents an lvalue having a record or array
9824 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9825 of that aggregate's value to LHS, advancing *POS past the
9826 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9827 lvalue containing LHS (possibly LHS itself). Does not modify
9828 the inferior's memory, nor does it modify the contents of
9829 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9830
9831 static struct value *
9832 assign_aggregate (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, enum noside noside)
9835 {
9836 struct type *lhs_type;
9837 int n = exp->elts[*pos+1].longconst;
9838 LONGEST low_index, high_index;
9839 int num_specs;
9840 LONGEST *indices;
9841 int max_indices, num_indices;
9842 int i;
9843
9844 *pos += 3;
9845 if (noside != EVAL_NORMAL)
9846 {
9847 for (i = 0; i < n; i += 1)
9848 ada_evaluate_subexp (NULL, exp, pos, noside);
9849 return container;
9850 }
9851
9852 container = ada_coerce_ref (container);
9853 if (ada_is_direct_array_type (value_type (container)))
9854 container = ada_coerce_to_simple_array (container);
9855 lhs = ada_coerce_ref (lhs);
9856 if (!deprecated_value_modifiable (lhs))
9857 error (_("Left operand of assignment is not a modifiable lvalue."));
9858
9859 lhs_type = check_typedef (value_type (lhs));
9860 if (ada_is_direct_array_type (lhs_type))
9861 {
9862 lhs = ada_coerce_to_simple_array (lhs);
9863 lhs_type = check_typedef (value_type (lhs));
9864 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9865 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9866 }
9867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9868 {
9869 low_index = 0;
9870 high_index = num_visible_fields (lhs_type) - 1;
9871 }
9872 else
9873 error (_("Left-hand side must be array or record."));
9874
9875 num_specs = num_component_specs (exp, *pos - 3);
9876 max_indices = 4 * num_specs + 4;
9877 indices = XALLOCAVEC (LONGEST, max_indices);
9878 indices[0] = indices[1] = low_index - 1;
9879 indices[2] = indices[3] = high_index + 1;
9880 num_indices = 4;
9881
9882 for (i = 0; i < n; i += 1)
9883 {
9884 switch (exp->elts[*pos].opcode)
9885 {
9886 case OP_CHOICES:
9887 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9888 &num_indices, max_indices,
9889 low_index, high_index);
9890 break;
9891 case OP_POSITIONAL:
9892 aggregate_assign_positional (container, lhs, exp, pos, indices,
9893 &num_indices, max_indices,
9894 low_index, high_index);
9895 break;
9896 case OP_OTHERS:
9897 if (i != n-1)
9898 error (_("Misplaced 'others' clause"));
9899 aggregate_assign_others (container, lhs, exp, pos, indices,
9900 num_indices, low_index, high_index);
9901 break;
9902 default:
9903 error (_("Internal error: bad aggregate clause"));
9904 }
9905 }
9906
9907 return container;
9908 }
9909
9910 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9911 construct at *POS, updating *POS past the construct, given that
9912 the positions are relative to lower bound LOW, where HIGH is the
9913 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9914 updating *NUM_INDICES as needed. CONTAINER is as for
9915 assign_aggregate. */
9916 static void
9917 aggregate_assign_positional (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, LONGEST *indices, int *num_indices,
9920 int max_indices, LONGEST low, LONGEST high)
9921 {
9922 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9923
9924 if (ind - 1 == high)
9925 warning (_("Extra components in aggregate ignored."));
9926 if (ind <= high)
9927 {
9928 add_component_interval (ind, ind, indices, num_indices, max_indices);
9929 *pos += 3;
9930 assign_component (container, lhs, ind, exp, pos);
9931 }
9932 else
9933 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9934 }
9935
9936 /* Assign into the components of LHS indexed by the OP_CHOICES
9937 construct at *POS, updating *POS past the construct, given that
9938 the allowable indices are LOW..HIGH. Record the indices assigned
9939 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9940 needed. CONTAINER is as for assign_aggregate. */
9941 static void
9942 aggregate_assign_from_choices (struct value *container,
9943 struct value *lhs, struct expression *exp,
9944 int *pos, LONGEST *indices, int *num_indices,
9945 int max_indices, LONGEST low, LONGEST high)
9946 {
9947 int j;
9948 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9949 int choice_pos, expr_pc;
9950 int is_array = ada_is_direct_array_type (value_type (lhs));
9951
9952 choice_pos = *pos += 3;
9953
9954 for (j = 0; j < n_choices; j += 1)
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 expr_pc = *pos;
9957 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9958
9959 for (j = 0; j < n_choices; j += 1)
9960 {
9961 LONGEST lower, upper;
9962 enum exp_opcode op = exp->elts[choice_pos].opcode;
9963
9964 if (op == OP_DISCRETE_RANGE)
9965 {
9966 choice_pos += 1;
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 EVAL_NORMAL));
9969 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9970 EVAL_NORMAL));
9971 }
9972 else if (is_array)
9973 {
9974 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9975 EVAL_NORMAL));
9976 upper = lower;
9977 }
9978 else
9979 {
9980 int ind;
9981 const char *name;
9982
9983 switch (op)
9984 {
9985 case OP_NAME:
9986 name = &exp->elts[choice_pos + 2].string;
9987 break;
9988 case OP_VAR_VALUE:
9989 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9990 break;
9991 default:
9992 error (_("Invalid record component association."));
9993 }
9994 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9995 ind = 0;
9996 if (! find_struct_field (name, value_type (lhs), 0,
9997 NULL, NULL, NULL, NULL, &ind))
9998 error (_("Unknown component name: %s."), name);
9999 lower = upper = ind;
10000 }
10001
10002 if (lower <= upper && (lower < low || upper > high))
10003 error (_("Index in component association out of bounds."));
10004
10005 add_component_interval (lower, upper, indices, num_indices,
10006 max_indices);
10007 while (lower <= upper)
10008 {
10009 int pos1;
10010
10011 pos1 = expr_pc;
10012 assign_component (container, lhs, lower, exp, &pos1);
10013 lower += 1;
10014 }
10015 }
10016 }
10017
10018 /* Assign the value of the expression in the OP_OTHERS construct in
10019 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10020 have not been previously assigned. The index intervals already assigned
10021 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10022 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10023 static void
10024 aggregate_assign_others (struct value *container,
10025 struct value *lhs, struct expression *exp,
10026 int *pos, LONGEST *indices, int num_indices,
10027 LONGEST low, LONGEST high)
10028 {
10029 int i;
10030 int expr_pc = *pos + 1;
10031
10032 for (i = 0; i < num_indices - 2; i += 2)
10033 {
10034 LONGEST ind;
10035
10036 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10037 {
10038 int localpos;
10039
10040 localpos = expr_pc;
10041 assign_component (container, lhs, ind, exp, &localpos);
10042 }
10043 }
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045 }
10046
10047 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10048 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10049 modifying *SIZE as needed. It is an error if *SIZE exceeds
10050 MAX_SIZE. The resulting intervals do not overlap. */
10051 static void
10052 add_component_interval (LONGEST low, LONGEST high,
10053 LONGEST* indices, int *size, int max_size)
10054 {
10055 int i, j;
10056
10057 for (i = 0; i < *size; i += 2) {
10058 if (high >= indices[i] && low <= indices[i + 1])
10059 {
10060 int kh;
10061
10062 for (kh = i + 2; kh < *size; kh += 2)
10063 if (high < indices[kh])
10064 break;
10065 if (low < indices[i])
10066 indices[i] = low;
10067 indices[i + 1] = indices[kh - 1];
10068 if (high > indices[i + 1])
10069 indices[i + 1] = high;
10070 memcpy (indices + i + 2, indices + kh, *size - kh);
10071 *size -= kh - i - 2;
10072 return;
10073 }
10074 else if (high < indices[i])
10075 break;
10076 }
10077
10078 if (*size == max_size)
10079 error (_("Internal error: miscounted aggregate components."));
10080 *size += 2;
10081 for (j = *size-1; j >= i+2; j -= 1)
10082 indices[j] = indices[j - 2];
10083 indices[i] = low;
10084 indices[i + 1] = high;
10085 }
10086
10087 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10088 is different. */
10089
10090 static struct value *
10091 ada_value_cast (struct type *type, struct value *arg2)
10092 {
10093 if (type == ada_check_typedef (value_type (arg2)))
10094 return arg2;
10095
10096 if (ada_is_fixed_point_type (type))
10097 return cast_to_fixed (type, arg2);
10098
10099 if (ada_is_fixed_point_type (value_type (arg2)))
10100 return cast_from_fixed (type, arg2);
10101
10102 return value_cast (type, arg2);
10103 }
10104
10105 /* Evaluating Ada expressions, and printing their result.
10106 ------------------------------------------------------
10107
10108 1. Introduction:
10109 ----------------
10110
10111 We usually evaluate an Ada expression in order to print its value.
10112 We also evaluate an expression in order to print its type, which
10113 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10114 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10115 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10116 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10117 similar.
10118
10119 Evaluating expressions is a little more complicated for Ada entities
10120 than it is for entities in languages such as C. The main reason for
10121 this is that Ada provides types whose definition might be dynamic.
10122 One example of such types is variant records. Or another example
10123 would be an array whose bounds can only be known at run time.
10124
10125 The following description is a general guide as to what should be
10126 done (and what should NOT be done) in order to evaluate an expression
10127 involving such types, and when. This does not cover how the semantic
10128 information is encoded by GNAT as this is covered separatly. For the
10129 document used as the reference for the GNAT encoding, see exp_dbug.ads
10130 in the GNAT sources.
10131
10132 Ideally, we should embed each part of this description next to its
10133 associated code. Unfortunately, the amount of code is so vast right
10134 now that it's hard to see whether the code handling a particular
10135 situation might be duplicated or not. One day, when the code is
10136 cleaned up, this guide might become redundant with the comments
10137 inserted in the code, and we might want to remove it.
10138
10139 2. ``Fixing'' an Entity, the Simple Case:
10140 -----------------------------------------
10141
10142 When evaluating Ada expressions, the tricky issue is that they may
10143 reference entities whose type contents and size are not statically
10144 known. Consider for instance a variant record:
10145
10146 type Rec (Empty : Boolean := True) is record
10147 case Empty is
10148 when True => null;
10149 when False => Value : Integer;
10150 end case;
10151 end record;
10152 Yes : Rec := (Empty => False, Value => 1);
10153 No : Rec := (empty => True);
10154
10155 The size and contents of that record depends on the value of the
10156 descriminant (Rec.Empty). At this point, neither the debugging
10157 information nor the associated type structure in GDB are able to
10158 express such dynamic types. So what the debugger does is to create
10159 "fixed" versions of the type that applies to the specific object.
10160 We also informally refer to this opperation as "fixing" an object,
10161 which means creating its associated fixed type.
10162
10163 Example: when printing the value of variable "Yes" above, its fixed
10164 type would look like this:
10165
10166 type Rec is record
10167 Empty : Boolean;
10168 Value : Integer;
10169 end record;
10170
10171 On the other hand, if we printed the value of "No", its fixed type
10172 would become:
10173
10174 type Rec is record
10175 Empty : Boolean;
10176 end record;
10177
10178 Things become a little more complicated when trying to fix an entity
10179 with a dynamic type that directly contains another dynamic type,
10180 such as an array of variant records, for instance. There are
10181 two possible cases: Arrays, and records.
10182
10183 3. ``Fixing'' Arrays:
10184 ---------------------
10185
10186 The type structure in GDB describes an array in terms of its bounds,
10187 and the type of its elements. By design, all elements in the array
10188 have the same type and we cannot represent an array of variant elements
10189 using the current type structure in GDB. When fixing an array,
10190 we cannot fix the array element, as we would potentially need one
10191 fixed type per element of the array. As a result, the best we can do
10192 when fixing an array is to produce an array whose bounds and size
10193 are correct (allowing us to read it from memory), but without having
10194 touched its element type. Fixing each element will be done later,
10195 when (if) necessary.
10196
10197 Arrays are a little simpler to handle than records, because the same
10198 amount of memory is allocated for each element of the array, even if
10199 the amount of space actually used by each element differs from element
10200 to element. Consider for instance the following array of type Rec:
10201
10202 type Rec_Array is array (1 .. 2) of Rec;
10203
10204 The actual amount of memory occupied by each element might be different
10205 from element to element, depending on the value of their discriminant.
10206 But the amount of space reserved for each element in the array remains
10207 fixed regardless. So we simply need to compute that size using
10208 the debugging information available, from which we can then determine
10209 the array size (we multiply the number of elements of the array by
10210 the size of each element).
10211
10212 The simplest case is when we have an array of a constrained element
10213 type. For instance, consider the following type declarations:
10214
10215 type Bounded_String (Max_Size : Integer) is
10216 Length : Integer;
10217 Buffer : String (1 .. Max_Size);
10218 end record;
10219 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10220
10221 In this case, the compiler describes the array as an array of
10222 variable-size elements (identified by its XVS suffix) for which
10223 the size can be read in the parallel XVZ variable.
10224
10225 In the case of an array of an unconstrained element type, the compiler
10226 wraps the array element inside a private PAD type. This type should not
10227 be shown to the user, and must be "unwrap"'ed before printing. Note
10228 that we also use the adjective "aligner" in our code to designate
10229 these wrapper types.
10230
10231 In some cases, the size allocated for each element is statically
10232 known. In that case, the PAD type already has the correct size,
10233 and the array element should remain unfixed.
10234
10235 But there are cases when this size is not statically known.
10236 For instance, assuming that "Five" is an integer variable:
10237
10238 type Dynamic is array (1 .. Five) of Integer;
10239 type Wrapper (Has_Length : Boolean := False) is record
10240 Data : Dynamic;
10241 case Has_Length is
10242 when True => Length : Integer;
10243 when False => null;
10244 end case;
10245 end record;
10246 type Wrapper_Array is array (1 .. 2) of Wrapper;
10247
10248 Hello : Wrapper_Array := (others => (Has_Length => True,
10249 Data => (others => 17),
10250 Length => 1));
10251
10252
10253 The debugging info would describe variable Hello as being an
10254 array of a PAD type. The size of that PAD type is not statically
10255 known, but can be determined using a parallel XVZ variable.
10256 In that case, a copy of the PAD type with the correct size should
10257 be used for the fixed array.
10258
10259 3. ``Fixing'' record type objects:
10260 ----------------------------------
10261
10262 Things are slightly different from arrays in the case of dynamic
10263 record types. In this case, in order to compute the associated
10264 fixed type, we need to determine the size and offset of each of
10265 its components. This, in turn, requires us to compute the fixed
10266 type of each of these components.
10267
10268 Consider for instance the example:
10269
10270 type Bounded_String (Max_Size : Natural) is record
10271 Str : String (1 .. Max_Size);
10272 Length : Natural;
10273 end record;
10274 My_String : Bounded_String (Max_Size => 10);
10275
10276 In that case, the position of field "Length" depends on the size
10277 of field Str, which itself depends on the value of the Max_Size
10278 discriminant. In order to fix the type of variable My_String,
10279 we need to fix the type of field Str. Therefore, fixing a variant
10280 record requires us to fix each of its components.
10281
10282 However, if a component does not have a dynamic size, the component
10283 should not be fixed. In particular, fields that use a PAD type
10284 should not fixed. Here is an example where this might happen
10285 (assuming type Rec above):
10286
10287 type Container (Big : Boolean) is record
10288 First : Rec;
10289 After : Integer;
10290 case Big is
10291 when True => Another : Integer;
10292 when False => null;
10293 end case;
10294 end record;
10295 My_Container : Container := (Big => False,
10296 First => (Empty => True),
10297 After => 42);
10298
10299 In that example, the compiler creates a PAD type for component First,
10300 whose size is constant, and then positions the component After just
10301 right after it. The offset of component After is therefore constant
10302 in this case.
10303
10304 The debugger computes the position of each field based on an algorithm
10305 that uses, among other things, the actual position and size of the field
10306 preceding it. Let's now imagine that the user is trying to print
10307 the value of My_Container. If the type fixing was recursive, we would
10308 end up computing the offset of field After based on the size of the
10309 fixed version of field First. And since in our example First has
10310 only one actual field, the size of the fixed type is actually smaller
10311 than the amount of space allocated to that field, and thus we would
10312 compute the wrong offset of field After.
10313
10314 To make things more complicated, we need to watch out for dynamic
10315 components of variant records (identified by the ___XVL suffix in
10316 the component name). Even if the target type is a PAD type, the size
10317 of that type might not be statically known. So the PAD type needs
10318 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10319 we might end up with the wrong size for our component. This can be
10320 observed with the following type declarations:
10321
10322 type Octal is new Integer range 0 .. 7;
10323 type Octal_Array is array (Positive range <>) of Octal;
10324 pragma Pack (Octal_Array);
10325
10326 type Octal_Buffer (Size : Positive) is record
10327 Buffer : Octal_Array (1 .. Size);
10328 Length : Integer;
10329 end record;
10330
10331 In that case, Buffer is a PAD type whose size is unset and needs
10332 to be computed by fixing the unwrapped type.
10333
10334 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10335 ----------------------------------------------------------
10336
10337 Lastly, when should the sub-elements of an entity that remained unfixed
10338 thus far, be actually fixed?
10339
10340 The answer is: Only when referencing that element. For instance
10341 when selecting one component of a record, this specific component
10342 should be fixed at that point in time. Or when printing the value
10343 of a record, each component should be fixed before its value gets
10344 printed. Similarly for arrays, the element of the array should be
10345 fixed when printing each element of the array, or when extracting
10346 one element out of that array. On the other hand, fixing should
10347 not be performed on the elements when taking a slice of an array!
10348
10349 Note that one of the side effects of miscomputing the offset and
10350 size of each field is that we end up also miscomputing the size
10351 of the containing type. This can have adverse results when computing
10352 the value of an entity. GDB fetches the value of an entity based
10353 on the size of its type, and thus a wrong size causes GDB to fetch
10354 the wrong amount of memory. In the case where the computed size is
10355 too small, GDB fetches too little data to print the value of our
10356 entity. Results in this case are unpredictable, as we usually read
10357 past the buffer containing the data =:-o. */
10358
10359 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10360 for that subexpression cast to TO_TYPE. Advance *POS over the
10361 subexpression. */
10362
10363 static value *
10364 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10365 enum noside noside, struct type *to_type)
10366 {
10367 int pc = *pos;
10368
10369 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10370 || exp->elts[pc].opcode == OP_VAR_VALUE)
10371 {
10372 (*pos) += 4;
10373
10374 value *val;
10375 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10376 {
10377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10378 return value_zero (to_type, not_lval);
10379
10380 val = evaluate_var_msym_value (noside,
10381 exp->elts[pc + 1].objfile,
10382 exp->elts[pc + 2].msymbol);
10383 }
10384 else
10385 val = evaluate_var_value (noside,
10386 exp->elts[pc + 1].block,
10387 exp->elts[pc + 2].symbol);
10388
10389 if (noside == EVAL_SKIP)
10390 return eval_skip_value (exp);
10391
10392 val = ada_value_cast (to_type, val);
10393
10394 /* Follow the Ada language semantics that do not allow taking
10395 an address of the result of a cast (view conversion in Ada). */
10396 if (VALUE_LVAL (val) == lval_memory)
10397 {
10398 if (value_lazy (val))
10399 value_fetch_lazy (val);
10400 VALUE_LVAL (val) = not_lval;
10401 }
10402 return val;
10403 }
10404
10405 value *val = evaluate_subexp (to_type, exp, pos, noside);
10406 if (noside == EVAL_SKIP)
10407 return eval_skip_value (exp);
10408 return ada_value_cast (to_type, val);
10409 }
10410
10411 /* Implement the evaluate_exp routine in the exp_descriptor structure
10412 for the Ada language. */
10413
10414 static struct value *
10415 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10416 int *pos, enum noside noside)
10417 {
10418 enum exp_opcode op;
10419 int tem;
10420 int pc;
10421 int preeval_pos;
10422 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10423 struct type *type;
10424 int nargs, oplen;
10425 struct value **argvec;
10426
10427 pc = *pos;
10428 *pos += 1;
10429 op = exp->elts[pc].opcode;
10430
10431 switch (op)
10432 {
10433 default:
10434 *pos -= 1;
10435 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10436
10437 if (noside == EVAL_NORMAL)
10438 arg1 = unwrap_value (arg1);
10439
10440 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10441 then we need to perform the conversion manually, because
10442 evaluate_subexp_standard doesn't do it. This conversion is
10443 necessary in Ada because the different kinds of float/fixed
10444 types in Ada have different representations.
10445
10446 Similarly, we need to perform the conversion from OP_LONG
10447 ourselves. */
10448 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10449 arg1 = ada_value_cast (expect_type, arg1);
10450
10451 return arg1;
10452
10453 case OP_STRING:
10454 {
10455 struct value *result;
10456
10457 *pos -= 1;
10458 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 /* The result type will have code OP_STRING, bashed there from
10460 OP_ARRAY. Bash it back. */
10461 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10462 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10463 return result;
10464 }
10465
10466 case UNOP_CAST:
10467 (*pos) += 2;
10468 type = exp->elts[pc + 1].type;
10469 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10470
10471 case UNOP_QUAL:
10472 (*pos) += 2;
10473 type = exp->elts[pc + 1].type;
10474 return ada_evaluate_subexp (type, exp, pos, noside);
10475
10476 case BINOP_ASSIGN:
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10479 {
10480 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10481 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10482 return arg1;
10483 return ada_value_assign (arg1, arg1);
10484 }
10485 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10486 except if the lhs of our assignment is a convenience variable.
10487 In the case of assigning to a convenience variable, the lhs
10488 should be exactly the result of the evaluation of the rhs. */
10489 type = value_type (arg1);
10490 if (VALUE_LVAL (arg1) == lval_internalvar)
10491 type = NULL;
10492 arg2 = evaluate_subexp (type, exp, pos, noside);
10493 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10494 return arg1;
10495 if (VALUE_LVAL (arg1) == lval_internalvar)
10496 {
10497 /* Nothing. */
10498 }
10499 else if (ada_is_fixed_point_type (value_type (arg1)))
10500 arg2 = cast_to_fixed (value_type (arg1), arg2);
10501 else if (ada_is_fixed_point_type (value_type (arg2)))
10502 error
10503 (_("Fixed-point values must be assigned to fixed-point variables"));
10504 else
10505 arg2 = coerce_for_assign (value_type (arg1), arg2);
10506 return ada_value_assign (arg1, arg2);
10507
10508 case BINOP_ADD:
10509 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10511 if (noside == EVAL_SKIP)
10512 goto nosideret;
10513 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg1),
10516 value_as_long (arg1) + value_as_long (arg2)));
10517 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg2),
10520 value_as_long (arg1) + value_as_long (arg2)));
10521 if ((ada_is_fixed_point_type (value_type (arg1))
10522 || ada_is_fixed_point_type (value_type (arg2)))
10523 && value_type (arg1) != value_type (arg2))
10524 error (_("Operands of fixed-point addition must have the same type"));
10525 /* Do the addition, and cast the result to the type of the first
10526 argument. We cannot cast the result to a reference type, so if
10527 ARG1 is a reference type, find its underlying type. */
10528 type = value_type (arg1);
10529 while (TYPE_CODE (type) == TYPE_CODE_REF)
10530 type = TYPE_TARGET_TYPE (type);
10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10532 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10533
10534 case BINOP_SUB:
10535 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10537 if (noside == EVAL_SKIP)
10538 goto nosideret;
10539 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg1),
10542 value_as_long (arg1) - value_as_long (arg2)));
10543 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10544 return (value_from_longest
10545 (value_type (arg2),
10546 value_as_long (arg1) - value_as_long (arg2)));
10547 if ((ada_is_fixed_point_type (value_type (arg1))
10548 || ada_is_fixed_point_type (value_type (arg2)))
10549 && value_type (arg1) != value_type (arg2))
10550 error (_("Operands of fixed-point subtraction "
10551 "must have the same type"));
10552 /* Do the substraction, and cast the result to the type of the first
10553 argument. We cannot cast the result to a reference type, so if
10554 ARG1 is a reference type, find its underlying type. */
10555 type = value_type (arg1);
10556 while (TYPE_CODE (type) == TYPE_CODE_REF)
10557 type = TYPE_TARGET_TYPE (type);
10558 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10559 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10560
10561 case BINOP_MUL:
10562 case BINOP_DIV:
10563 case BINOP_REM:
10564 case BINOP_MOD:
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567 if (noside == EVAL_SKIP)
10568 goto nosideret;
10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570 {
10571 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10572 return value_zero (value_type (arg1), not_lval);
10573 }
10574 else
10575 {
10576 type = builtin_type (exp->gdbarch)->builtin_double;
10577 if (ada_is_fixed_point_type (value_type (arg1)))
10578 arg1 = cast_from_fixed (type, arg1);
10579 if (ada_is_fixed_point_type (value_type (arg2)))
10580 arg2 = cast_from_fixed (type, arg2);
10581 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10582 return ada_value_binop (arg1, arg2, op);
10583 }
10584
10585 case BINOP_EQUAL:
10586 case BINOP_NOTEQUAL:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 tem = 0;
10593 else
10594 {
10595 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10596 tem = ada_value_equal (arg1, arg2);
10597 }
10598 if (op == BINOP_NOTEQUAL)
10599 tem = !tem;
10600 type = language_bool_type (exp->language_defn, exp->gdbarch);
10601 return value_from_longest (type, (LONGEST) tem);
10602
10603 case UNOP_NEG:
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 if (noside == EVAL_SKIP)
10606 goto nosideret;
10607 else if (ada_is_fixed_point_type (value_type (arg1)))
10608 return value_cast (value_type (arg1), value_neg (arg1));
10609 else
10610 {
10611 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10612 return value_neg (arg1);
10613 }
10614
10615 case BINOP_LOGICAL_AND:
10616 case BINOP_LOGICAL_OR:
10617 case UNOP_LOGICAL_NOT:
10618 {
10619 struct value *val;
10620
10621 *pos -= 1;
10622 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return value_cast (type, val);
10625 }
10626
10627 case BINOP_BITWISE_AND:
10628 case BINOP_BITWISE_IOR:
10629 case BINOP_BITWISE_XOR:
10630 {
10631 struct value *val;
10632
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10634 *pos = pc;
10635 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636
10637 return value_cast (value_type (arg1), val);
10638 }
10639
10640 case OP_VAR_VALUE:
10641 *pos -= 1;
10642
10643 if (noside == EVAL_SKIP)
10644 {
10645 *pos += 4;
10646 goto nosideret;
10647 }
10648
10649 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10650 /* Only encountered when an unresolved symbol occurs in a
10651 context other than a function call, in which case, it is
10652 invalid. */
10653 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10654 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10655
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 {
10658 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10659 /* Check to see if this is a tagged type. We also need to handle
10660 the case where the type is a reference to a tagged type, but
10661 we have to be careful to exclude pointers to tagged types.
10662 The latter should be shown as usual (as a pointer), whereas
10663 a reference should mostly be transparent to the user. */
10664 if (ada_is_tagged_type (type, 0)
10665 || (TYPE_CODE (type) == TYPE_CODE_REF
10666 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10667 {
10668 /* Tagged types are a little special in the fact that the real
10669 type is dynamic and can only be determined by inspecting the
10670 object's tag. This means that we need to get the object's
10671 value first (EVAL_NORMAL) and then extract the actual object
10672 type from its tag.
10673
10674 Note that we cannot skip the final step where we extract
10675 the object type from its tag, because the EVAL_NORMAL phase
10676 results in dynamic components being resolved into fixed ones.
10677 This can cause problems when trying to print the type
10678 description of tagged types whose parent has a dynamic size:
10679 We use the type name of the "_parent" component in order
10680 to print the name of the ancestor type in the type description.
10681 If that component had a dynamic size, the resolution into
10682 a fixed type would result in the loss of that type name,
10683 thus preventing us from printing the name of the ancestor
10684 type in the type description. */
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10686
10687 if (TYPE_CODE (type) != TYPE_CODE_REF)
10688 {
10689 struct type *actual_type;
10690
10691 actual_type = type_from_tag (ada_value_tag (arg1));
10692 if (actual_type == NULL)
10693 /* If, for some reason, we were unable to determine
10694 the actual type from the tag, then use the static
10695 approximation that we just computed as a fallback.
10696 This can happen if the debugging information is
10697 incomplete, for instance. */
10698 actual_type = type;
10699 return value_zero (actual_type, not_lval);
10700 }
10701 else
10702 {
10703 /* In the case of a ref, ada_coerce_ref takes care
10704 of determining the actual type. But the evaluation
10705 should return a ref as it should be valid to ask
10706 for its address; so rebuild a ref after coerce. */
10707 arg1 = ada_coerce_ref (arg1);
10708 return value_ref (arg1, TYPE_CODE_REF);
10709 }
10710 }
10711
10712 /* Records and unions for which GNAT encodings have been
10713 generated need to be statically fixed as well.
10714 Otherwise, non-static fixing produces a type where
10715 all dynamic properties are removed, which prevents "ptype"
10716 from being able to completely describe the type.
10717 For instance, a case statement in a variant record would be
10718 replaced by the relevant components based on the actual
10719 value of the discriminants. */
10720 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10721 && dynamic_template_type (type) != NULL)
10722 || (TYPE_CODE (type) == TYPE_CODE_UNION
10723 && ada_find_parallel_type (type, "___XVU") != NULL))
10724 {
10725 *pos += 4;
10726 return value_zero (to_static_fixed_type (type), not_lval);
10727 }
10728 }
10729
10730 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10731 return ada_to_fixed_value (arg1);
10732
10733 case OP_FUNCALL:
10734 (*pos) += 2;
10735
10736 /* Allocate arg vector, including space for the function to be
10737 called in argvec[0] and a terminating NULL. */
10738 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10739 argvec = XALLOCAVEC (struct value *, nargs + 2);
10740
10741 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10742 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10743 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10744 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10745 else
10746 {
10747 for (tem = 0; tem <= nargs; tem += 1)
10748 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 argvec[tem] = 0;
10750
10751 if (noside == EVAL_SKIP)
10752 goto nosideret;
10753 }
10754
10755 if (ada_is_constrained_packed_array_type
10756 (desc_base_type (value_type (argvec[0]))))
10757 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10759 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10760 /* This is a packed array that has already been fixed, and
10761 therefore already coerced to a simple array. Nothing further
10762 to do. */
10763 ;
10764 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10765 {
10766 /* Make sure we dereference references so that all the code below
10767 feels like it's really handling the referenced value. Wrapping
10768 types (for alignment) may be there, so make sure we strip them as
10769 well. */
10770 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10771 }
10772 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10773 && VALUE_LVAL (argvec[0]) == lval_memory)
10774 argvec[0] = value_addr (argvec[0]);
10775
10776 type = ada_check_typedef (value_type (argvec[0]));
10777
10778 /* Ada allows us to implicitly dereference arrays when subscripting
10779 them. So, if this is an array typedef (encoding use for array
10780 access types encoded as fat pointers), strip it now. */
10781 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10782 type = ada_typedef_target_type (type);
10783
10784 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10785 {
10786 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10787 {
10788 case TYPE_CODE_FUNC:
10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10790 break;
10791 case TYPE_CODE_ARRAY:
10792 break;
10793 case TYPE_CODE_STRUCT:
10794 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10795 argvec[0] = ada_value_ind (argvec[0]);
10796 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10797 break;
10798 default:
10799 error (_("cannot subscript or call something of type `%s'"),
10800 ada_type_name (value_type (argvec[0])));
10801 break;
10802 }
10803 }
10804
10805 switch (TYPE_CODE (type))
10806 {
10807 case TYPE_CODE_FUNC:
10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10809 {
10810 if (TYPE_TARGET_TYPE (type) == NULL)
10811 error_call_unknown_return_type (NULL);
10812 return allocate_value (TYPE_TARGET_TYPE (type));
10813 }
10814 return call_function_by_hand (argvec[0], NULL,
10815 gdb::make_array_view (argvec + 1,
10816 nargs));
10817 case TYPE_CODE_INTERNAL_FUNCTION:
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 /* We don't know anything about what the internal
10820 function might return, but we have to return
10821 something. */
10822 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10823 not_lval);
10824 else
10825 return call_internal_function (exp->gdbarch, exp->language_defn,
10826 argvec[0], nargs, argvec + 1);
10827
10828 case TYPE_CODE_STRUCT:
10829 {
10830 int arity;
10831
10832 arity = ada_array_arity (type);
10833 type = ada_array_element_type (type, nargs);
10834 if (type == NULL)
10835 error (_("cannot subscript or call a record"));
10836 if (arity != nargs)
10837 error (_("wrong number of subscripts; expecting %d"), arity);
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 return value_zero (ada_aligned_type (type), lval_memory);
10840 return
10841 unwrap_value (ada_value_subscript
10842 (argvec[0], nargs, argvec + 1));
10843 }
10844 case TYPE_CODE_ARRAY:
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 {
10847 type = ada_array_element_type (type, nargs);
10848 if (type == NULL)
10849 error (_("element type of array unknown"));
10850 else
10851 return value_zero (ada_aligned_type (type), lval_memory);
10852 }
10853 return
10854 unwrap_value (ada_value_subscript
10855 (ada_coerce_to_simple_array (argvec[0]),
10856 nargs, argvec + 1));
10857 case TYPE_CODE_PTR: /* Pointer to array */
10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859 {
10860 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10861 type = ada_array_element_type (type, nargs);
10862 if (type == NULL)
10863 error (_("element type of array unknown"));
10864 else
10865 return value_zero (ada_aligned_type (type), lval_memory);
10866 }
10867 return
10868 unwrap_value (ada_value_ptr_subscript (argvec[0],
10869 nargs, argvec + 1));
10870
10871 default:
10872 error (_("Attempt to index or call something other than an "
10873 "array or function"));
10874 }
10875
10876 case TERNOP_SLICE:
10877 {
10878 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 struct value *low_bound_val =
10880 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 struct value *high_bound_val =
10882 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 LONGEST low_bound;
10884 LONGEST high_bound;
10885
10886 low_bound_val = coerce_ref (low_bound_val);
10887 high_bound_val = coerce_ref (high_bound_val);
10888 low_bound = value_as_long (low_bound_val);
10889 high_bound = value_as_long (high_bound_val);
10890
10891 if (noside == EVAL_SKIP)
10892 goto nosideret;
10893
10894 /* If this is a reference to an aligner type, then remove all
10895 the aligners. */
10896 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10897 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10898 TYPE_TARGET_TYPE (value_type (array)) =
10899 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10900
10901 if (ada_is_constrained_packed_array_type (value_type (array)))
10902 error (_("cannot slice a packed array"));
10903
10904 /* If this is a reference to an array or an array lvalue,
10905 convert to a pointer. */
10906 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10907 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10908 && VALUE_LVAL (array) == lval_memory))
10909 array = value_addr (array);
10910
10911 if (noside == EVAL_AVOID_SIDE_EFFECTS
10912 && ada_is_array_descriptor_type (ada_check_typedef
10913 (value_type (array))))
10914 return empty_array (ada_type_of_array (array, 0), low_bound,
10915 high_bound);
10916
10917 array = ada_coerce_to_simple_array_ptr (array);
10918
10919 /* If we have more than one level of pointer indirection,
10920 dereference the value until we get only one level. */
10921 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10922 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10923 == TYPE_CODE_PTR))
10924 array = value_ind (array);
10925
10926 /* Make sure we really do have an array type before going further,
10927 to avoid a SEGV when trying to get the index type or the target
10928 type later down the road if the debug info generated by
10929 the compiler is incorrect or incomplete. */
10930 if (!ada_is_simple_array_type (value_type (array)))
10931 error (_("cannot take slice of non-array"));
10932
10933 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10934 == TYPE_CODE_PTR)
10935 {
10936 struct type *type0 = ada_check_typedef (value_type (array));
10937
10938 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10939 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10940 else
10941 {
10942 struct type *arr_type0 =
10943 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10944
10945 return ada_value_slice_from_ptr (array, arr_type0,
10946 longest_to_int (low_bound),
10947 longest_to_int (high_bound));
10948 }
10949 }
10950 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 return array;
10952 else if (high_bound < low_bound)
10953 return empty_array (value_type (array), low_bound, high_bound);
10954 else
10955 return ada_value_slice (array, longest_to_int (low_bound),
10956 longest_to_int (high_bound));
10957 }
10958
10959 case UNOP_IN_RANGE:
10960 (*pos) += 2;
10961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10962 type = check_typedef (exp->elts[pc + 1].type);
10963
10964 if (noside == EVAL_SKIP)
10965 goto nosideret;
10966
10967 switch (TYPE_CODE (type))
10968 {
10969 default:
10970 lim_warning (_("Membership test incompletely implemented; "
10971 "always returns true"));
10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
10973 return value_from_longest (type, (LONGEST) 1);
10974
10975 case TYPE_CODE_RANGE:
10976 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10977 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10979 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10980 type = language_bool_type (exp->language_defn, exp->gdbarch);
10981 return
10982 value_from_longest (type,
10983 (value_less (arg1, arg3)
10984 || value_equal (arg1, arg3))
10985 && (value_less (arg2, arg1)
10986 || value_equal (arg2, arg1)));
10987 }
10988
10989 case BINOP_IN_BOUNDS:
10990 (*pos) += 2;
10991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10992 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10993
10994 if (noside == EVAL_SKIP)
10995 goto nosideret;
10996
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 {
10999 type = language_bool_type (exp->language_defn, exp->gdbarch);
11000 return value_zero (type, not_lval);
11001 }
11002
11003 tem = longest_to_int (exp->elts[pc + 1].longconst);
11004
11005 type = ada_index_type (value_type (arg2), tem, "range");
11006 if (!type)
11007 type = value_type (arg1);
11008
11009 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11010 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11011
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 return
11016 value_from_longest (type,
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021
11022 case TERNOP_IN_RANGE:
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026
11027 if (noside == EVAL_SKIP)
11028 goto nosideret;
11029
11030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11031 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11032 type = language_bool_type (exp->language_defn, exp->gdbarch);
11033 return
11034 value_from_longest (type,
11035 (value_less (arg1, arg3)
11036 || value_equal (arg1, arg3))
11037 && (value_less (arg2, arg1)
11038 || value_equal (arg2, arg1)));
11039
11040 case OP_ATR_FIRST:
11041 case OP_ATR_LAST:
11042 case OP_ATR_LENGTH:
11043 {
11044 struct type *type_arg;
11045
11046 if (exp->elts[*pos].opcode == OP_TYPE)
11047 {
11048 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11049 arg1 = NULL;
11050 type_arg = check_typedef (exp->elts[pc + 2].type);
11051 }
11052 else
11053 {
11054 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 type_arg = NULL;
11056 }
11057
11058 if (exp->elts[*pos].opcode != OP_LONG)
11059 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11060 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11061 *pos += 4;
11062
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
11065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11066 {
11067 if (type_arg == NULL)
11068 type_arg = value_type (arg1);
11069
11070 if (ada_is_constrained_packed_array_type (type_arg))
11071 type_arg = decode_constrained_packed_array_type (type_arg);
11072
11073 if (!discrete_type_p (type_arg))
11074 {
11075 switch (op)
11076 {
11077 default: /* Should never happen. */
11078 error (_("unexpected attribute encountered"));
11079 case OP_ATR_FIRST:
11080 case OP_ATR_LAST:
11081 type_arg = ada_index_type (type_arg, tem,
11082 ada_attribute_name (op));
11083 break;
11084 case OP_ATR_LENGTH:
11085 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11086 break;
11087 }
11088 }
11089
11090 return value_zero (type_arg, not_lval);
11091 }
11092 else if (type_arg == NULL)
11093 {
11094 arg1 = ada_coerce_ref (arg1);
11095
11096 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11097 arg1 = ada_coerce_to_simple_array (arg1);
11098
11099 if (op == OP_ATR_LENGTH)
11100 type = builtin_type (exp->gdbarch)->builtin_int;
11101 else
11102 {
11103 type = ada_index_type (value_type (arg1), tem,
11104 ada_attribute_name (op));
11105 if (type == NULL)
11106 type = builtin_type (exp->gdbarch)->builtin_int;
11107 }
11108
11109 switch (op)
11110 {
11111 default: /* Should never happen. */
11112 error (_("unexpected attribute encountered"));
11113 case OP_ATR_FIRST:
11114 return value_from_longest
11115 (type, ada_array_bound (arg1, tem, 0));
11116 case OP_ATR_LAST:
11117 return value_from_longest
11118 (type, ada_array_bound (arg1, tem, 1));
11119 case OP_ATR_LENGTH:
11120 return value_from_longest
11121 (type, ada_array_length (arg1, tem));
11122 }
11123 }
11124 else if (discrete_type_p (type_arg))
11125 {
11126 struct type *range_type;
11127 const char *name = ada_type_name (type_arg);
11128
11129 range_type = NULL;
11130 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11131 range_type = to_fixed_range_type (type_arg, NULL);
11132 if (range_type == NULL)
11133 range_type = type_arg;
11134 switch (op)
11135 {
11136 default:
11137 error (_("unexpected attribute encountered"));
11138 case OP_ATR_FIRST:
11139 return value_from_longest
11140 (range_type, ada_discrete_type_low_bound (range_type));
11141 case OP_ATR_LAST:
11142 return value_from_longest
11143 (range_type, ada_discrete_type_high_bound (range_type));
11144 case OP_ATR_LENGTH:
11145 error (_("the 'length attribute applies only to array types"));
11146 }
11147 }
11148 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11149 error (_("unimplemented type attribute"));
11150 else
11151 {
11152 LONGEST low, high;
11153
11154 if (ada_is_constrained_packed_array_type (type_arg))
11155 type_arg = decode_constrained_packed_array_type (type_arg);
11156
11157 if (op == OP_ATR_LENGTH)
11158 type = builtin_type (exp->gdbarch)->builtin_int;
11159 else
11160 {
11161 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11162 if (type == NULL)
11163 type = builtin_type (exp->gdbarch)->builtin_int;
11164 }
11165
11166 switch (op)
11167 {
11168 default:
11169 error (_("unexpected attribute encountered"));
11170 case OP_ATR_FIRST:
11171 low = ada_array_bound_from_type (type_arg, tem, 0);
11172 return value_from_longest (type, low);
11173 case OP_ATR_LAST:
11174 high = ada_array_bound_from_type (type_arg, tem, 1);
11175 return value_from_longest (type, high);
11176 case OP_ATR_LENGTH:
11177 low = ada_array_bound_from_type (type_arg, tem, 0);
11178 high = ada_array_bound_from_type (type_arg, tem, 1);
11179 return value_from_longest (type, high - low + 1);
11180 }
11181 }
11182 }
11183
11184 case OP_ATR_TAG:
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 if (noside == EVAL_SKIP)
11187 goto nosideret;
11188
11189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11190 return value_zero (ada_tag_type (arg1), not_lval);
11191
11192 return ada_value_tag (arg1);
11193
11194 case OP_ATR_MIN:
11195 case OP_ATR_MAX:
11196 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 if (noside == EVAL_SKIP)
11200 goto nosideret;
11201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11202 return value_zero (value_type (arg1), not_lval);
11203 else
11204 {
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11206 return value_binop (arg1, arg2,
11207 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11208 }
11209
11210 case OP_ATR_MODULUS:
11211 {
11212 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11213
11214 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11215 if (noside == EVAL_SKIP)
11216 goto nosideret;
11217
11218 if (!ada_is_modular_type (type_arg))
11219 error (_("'modulus must be applied to modular type"));
11220
11221 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11222 ada_modulus (type_arg));
11223 }
11224
11225
11226 case OP_ATR_POS:
11227 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 type = builtin_type (exp->gdbarch)->builtin_int;
11232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return value_zero (type, not_lval);
11234 else
11235 return value_pos_atr (type, arg1);
11236
11237 case OP_ATR_SIZE:
11238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11239 type = value_type (arg1);
11240
11241 /* If the argument is a reference, then dereference its type, since
11242 the user is really asking for the size of the actual object,
11243 not the size of the pointer. */
11244 if (TYPE_CODE (type) == TYPE_CODE_REF)
11245 type = TYPE_TARGET_TYPE (type);
11246
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11250 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11251 else
11252 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11253 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11254
11255 case OP_ATR_VAL:
11256 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11258 type = exp->elts[pc + 2].type;
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
11261 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 return value_zero (type, not_lval);
11263 else
11264 return value_val_atr (type, arg1);
11265
11266 case BINOP_EXP:
11267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11268 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11269 if (noside == EVAL_SKIP)
11270 goto nosideret;
11271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11272 return value_zero (value_type (arg1), not_lval);
11273 else
11274 {
11275 /* For integer exponentiation operations,
11276 only promote the first argument. */
11277 if (is_integral_type (value_type (arg2)))
11278 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11279 else
11280 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11281
11282 return value_binop (arg1, arg2, op);
11283 }
11284
11285 case UNOP_PLUS:
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 else
11290 return arg1;
11291
11292 case UNOP_ABS:
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
11295 goto nosideret;
11296 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11297 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11298 return value_neg (arg1);
11299 else
11300 return arg1;
11301
11302 case UNOP_IND:
11303 preeval_pos = *pos;
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
11306 goto nosideret;
11307 type = ada_check_typedef (value_type (arg1));
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 {
11310 if (ada_is_array_descriptor_type (type))
11311 /* GDB allows dereferencing GNAT array descriptors. */
11312 {
11313 struct type *arrType = ada_type_of_array (arg1, 0);
11314
11315 if (arrType == NULL)
11316 error (_("Attempt to dereference null array pointer."));
11317 return value_at_lazy (arrType, 0);
11318 }
11319 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11320 || TYPE_CODE (type) == TYPE_CODE_REF
11321 /* In C you can dereference an array to get the 1st elt. */
11322 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11323 {
11324 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11325 only be determined by inspecting the object's tag.
11326 This means that we need to evaluate completely the
11327 expression in order to get its type. */
11328
11329 if ((TYPE_CODE (type) == TYPE_CODE_REF
11330 || TYPE_CODE (type) == TYPE_CODE_PTR)
11331 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11332 {
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11334 EVAL_NORMAL);
11335 type = value_type (ada_value_ind (arg1));
11336 }
11337 else
11338 {
11339 type = to_static_fixed_type
11340 (ada_aligned_type
11341 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11342 }
11343 ada_ensure_varsize_limit (type);
11344 return value_zero (type, lval_memory);
11345 }
11346 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11347 {
11348 /* GDB allows dereferencing an int. */
11349 if (expect_type == NULL)
11350 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11351 lval_memory);
11352 else
11353 {
11354 expect_type =
11355 to_static_fixed_type (ada_aligned_type (expect_type));
11356 return value_zero (expect_type, lval_memory);
11357 }
11358 }
11359 else
11360 error (_("Attempt to take contents of a non-pointer value."));
11361 }
11362 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11363 type = ada_check_typedef (value_type (arg1));
11364
11365 if (TYPE_CODE (type) == TYPE_CODE_INT)
11366 /* GDB allows dereferencing an int. If we were given
11367 the expect_type, then use that as the target type.
11368 Otherwise, assume that the target type is an int. */
11369 {
11370 if (expect_type != NULL)
11371 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11372 arg1));
11373 else
11374 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11375 (CORE_ADDR) value_as_address (arg1));
11376 }
11377
11378 if (ada_is_array_descriptor_type (type))
11379 /* GDB allows dereferencing GNAT array descriptors. */
11380 return ada_coerce_to_simple_array (arg1);
11381 else
11382 return ada_value_ind (arg1);
11383
11384 case STRUCTOP_STRUCT:
11385 tem = longest_to_int (exp->elts[pc + 1].longconst);
11386 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11387 preeval_pos = *pos;
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
11391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11392 {
11393 struct type *type1 = value_type (arg1);
11394
11395 if (ada_is_tagged_type (type1, 1))
11396 {
11397 type = ada_lookup_struct_elt_type (type1,
11398 &exp->elts[pc + 2].string,
11399 1, 1);
11400
11401 /* If the field is not found, check if it exists in the
11402 extension of this object's type. This means that we
11403 need to evaluate completely the expression. */
11404
11405 if (type == NULL)
11406 {
11407 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11408 EVAL_NORMAL);
11409 arg1 = ada_value_struct_elt (arg1,
11410 &exp->elts[pc + 2].string,
11411 0);
11412 arg1 = unwrap_value (arg1);
11413 type = value_type (ada_to_fixed_value (arg1));
11414 }
11415 }
11416 else
11417 type =
11418 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11419 0);
11420
11421 return value_zero (ada_aligned_type (type), lval_memory);
11422 }
11423 else
11424 {
11425 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11426 arg1 = unwrap_value (arg1);
11427 return ada_to_fixed_value (arg1);
11428 }
11429
11430 case OP_TYPE:
11431 /* The value is not supposed to be used. This is here to make it
11432 easier to accommodate expressions that contain types. */
11433 (*pos) += 2;
11434 if (noside == EVAL_SKIP)
11435 goto nosideret;
11436 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11437 return allocate_value (exp->elts[pc + 1].type);
11438 else
11439 error (_("Attempt to use a type name as an expression"));
11440
11441 case OP_AGGREGATE:
11442 case OP_CHOICES:
11443 case OP_OTHERS:
11444 case OP_DISCRETE_RANGE:
11445 case OP_POSITIONAL:
11446 case OP_NAME:
11447 if (noside == EVAL_NORMAL)
11448 switch (op)
11449 {
11450 case OP_NAME:
11451 error (_("Undefined name, ambiguous name, or renaming used in "
11452 "component association: %s."), &exp->elts[pc+2].string);
11453 case OP_AGGREGATE:
11454 error (_("Aggregates only allowed on the right of an assignment"));
11455 default:
11456 internal_error (__FILE__, __LINE__,
11457 _("aggregate apparently mangled"));
11458 }
11459
11460 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11461 *pos += oplen - 1;
11462 for (tem = 0; tem < nargs; tem += 1)
11463 ada_evaluate_subexp (NULL, exp, pos, noside);
11464 goto nosideret;
11465 }
11466
11467 nosideret:
11468 return eval_skip_value (exp);
11469 }
11470 \f
11471
11472 /* Fixed point */
11473
11474 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11475 type name that encodes the 'small and 'delta information.
11476 Otherwise, return NULL. */
11477
11478 static const char *
11479 fixed_type_info (struct type *type)
11480 {
11481 const char *name = ada_type_name (type);
11482 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11483
11484 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11485 {
11486 const char *tail = strstr (name, "___XF_");
11487
11488 if (tail == NULL)
11489 return NULL;
11490 else
11491 return tail + 5;
11492 }
11493 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11494 return fixed_type_info (TYPE_TARGET_TYPE (type));
11495 else
11496 return NULL;
11497 }
11498
11499 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11500
11501 int
11502 ada_is_fixed_point_type (struct type *type)
11503 {
11504 return fixed_type_info (type) != NULL;
11505 }
11506
11507 /* Return non-zero iff TYPE represents a System.Address type. */
11508
11509 int
11510 ada_is_system_address_type (struct type *type)
11511 {
11512 return (TYPE_NAME (type)
11513 && strcmp (TYPE_NAME (type), "system__address") == 0);
11514 }
11515
11516 /* Assuming that TYPE is the representation of an Ada fixed-point
11517 type, return the target floating-point type to be used to represent
11518 of this type during internal computation. */
11519
11520 static struct type *
11521 ada_scaling_type (struct type *type)
11522 {
11523 return builtin_type (get_type_arch (type))->builtin_long_double;
11524 }
11525
11526 /* Assuming that TYPE is the representation of an Ada fixed-point
11527 type, return its delta, or NULL if the type is malformed and the
11528 delta cannot be determined. */
11529
11530 struct value *
11531 ada_delta (struct type *type)
11532 {
11533 const char *encoding = fixed_type_info (type);
11534 struct type *scale_type = ada_scaling_type (type);
11535
11536 long long num, den;
11537
11538 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11539 return nullptr;
11540 else
11541 return value_binop (value_from_longest (scale_type, num),
11542 value_from_longest (scale_type, den), BINOP_DIV);
11543 }
11544
11545 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11546 factor ('SMALL value) associated with the type. */
11547
11548 struct value *
11549 ada_scaling_factor (struct type *type)
11550 {
11551 const char *encoding = fixed_type_info (type);
11552 struct type *scale_type = ada_scaling_type (type);
11553
11554 long long num0, den0, num1, den1;
11555 int n;
11556
11557 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11558 &num0, &den0, &num1, &den1);
11559
11560 if (n < 2)
11561 return value_from_longest (scale_type, 1);
11562 else if (n == 4)
11563 return value_binop (value_from_longest (scale_type, num1),
11564 value_from_longest (scale_type, den1), BINOP_DIV);
11565 else
11566 return value_binop (value_from_longest (scale_type, num0),
11567 value_from_longest (scale_type, den0), BINOP_DIV);
11568 }
11569
11570 \f
11571
11572 /* Range types */
11573
11574 /* Scan STR beginning at position K for a discriminant name, and
11575 return the value of that discriminant field of DVAL in *PX. If
11576 PNEW_K is not null, put the position of the character beyond the
11577 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11578 not alter *PX and *PNEW_K if unsuccessful. */
11579
11580 static int
11581 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11582 int *pnew_k)
11583 {
11584 static char *bound_buffer = NULL;
11585 static size_t bound_buffer_len = 0;
11586 const char *pstart, *pend, *bound;
11587 struct value *bound_val;
11588
11589 if (dval == NULL || str == NULL || str[k] == '\0')
11590 return 0;
11591
11592 pstart = str + k;
11593 pend = strstr (pstart, "__");
11594 if (pend == NULL)
11595 {
11596 bound = pstart;
11597 k += strlen (bound);
11598 }
11599 else
11600 {
11601 int len = pend - pstart;
11602
11603 /* Strip __ and beyond. */
11604 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11605 strncpy (bound_buffer, pstart, len);
11606 bound_buffer[len] = '\0';
11607
11608 bound = bound_buffer;
11609 k = pend - str;
11610 }
11611
11612 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11613 if (bound_val == NULL)
11614 return 0;
11615
11616 *px = value_as_long (bound_val);
11617 if (pnew_k != NULL)
11618 *pnew_k = k;
11619 return 1;
11620 }
11621
11622 /* Value of variable named NAME in the current environment. If
11623 no such variable found, then if ERR_MSG is null, returns 0, and
11624 otherwise causes an error with message ERR_MSG. */
11625
11626 static struct value *
11627 get_var_value (const char *name, const char *err_msg)
11628 {
11629 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11630
11631 std::vector<struct block_symbol> syms;
11632 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11633 get_selected_block (0),
11634 VAR_DOMAIN, &syms, 1);
11635
11636 if (nsyms != 1)
11637 {
11638 if (err_msg == NULL)
11639 return 0;
11640 else
11641 error (("%s"), err_msg);
11642 }
11643
11644 return value_of_variable (syms[0].symbol, syms[0].block);
11645 }
11646
11647 /* Value of integer variable named NAME in the current environment.
11648 If no such variable is found, returns false. Otherwise, sets VALUE
11649 to the variable's value and returns true. */
11650
11651 bool
11652 get_int_var_value (const char *name, LONGEST &value)
11653 {
11654 struct value *var_val = get_var_value (name, 0);
11655
11656 if (var_val == 0)
11657 return false;
11658
11659 value = value_as_long (var_val);
11660 return true;
11661 }
11662
11663
11664 /* Return a range type whose base type is that of the range type named
11665 NAME in the current environment, and whose bounds are calculated
11666 from NAME according to the GNAT range encoding conventions.
11667 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11668 corresponding range type from debug information; fall back to using it
11669 if symbol lookup fails. If a new type must be created, allocate it
11670 like ORIG_TYPE was. The bounds information, in general, is encoded
11671 in NAME, the base type given in the named range type. */
11672
11673 static struct type *
11674 to_fixed_range_type (struct type *raw_type, struct value *dval)
11675 {
11676 const char *name;
11677 struct type *base_type;
11678 const char *subtype_info;
11679
11680 gdb_assert (raw_type != NULL);
11681 gdb_assert (TYPE_NAME (raw_type) != NULL);
11682
11683 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11684 base_type = TYPE_TARGET_TYPE (raw_type);
11685 else
11686 base_type = raw_type;
11687
11688 name = TYPE_NAME (raw_type);
11689 subtype_info = strstr (name, "___XD");
11690 if (subtype_info == NULL)
11691 {
11692 LONGEST L = ada_discrete_type_low_bound (raw_type);
11693 LONGEST U = ada_discrete_type_high_bound (raw_type);
11694
11695 if (L < INT_MIN || U > INT_MAX)
11696 return raw_type;
11697 else
11698 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11699 L, U);
11700 }
11701 else
11702 {
11703 static char *name_buf = NULL;
11704 static size_t name_len = 0;
11705 int prefix_len = subtype_info - name;
11706 LONGEST L, U;
11707 struct type *type;
11708 const char *bounds_str;
11709 int n;
11710
11711 GROW_VECT (name_buf, name_len, prefix_len + 5);
11712 strncpy (name_buf, name, prefix_len);
11713 name_buf[prefix_len] = '\0';
11714
11715 subtype_info += 5;
11716 bounds_str = strchr (subtype_info, '_');
11717 n = 1;
11718
11719 if (*subtype_info == 'L')
11720 {
11721 if (!ada_scan_number (bounds_str, n, &L, &n)
11722 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11723 return raw_type;
11724 if (bounds_str[n] == '_')
11725 n += 2;
11726 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11727 n += 1;
11728 subtype_info += 1;
11729 }
11730 else
11731 {
11732 strcpy (name_buf + prefix_len, "___L");
11733 if (!get_int_var_value (name_buf, L))
11734 {
11735 lim_warning (_("Unknown lower bound, using 1."));
11736 L = 1;
11737 }
11738 }
11739
11740 if (*subtype_info == 'U')
11741 {
11742 if (!ada_scan_number (bounds_str, n, &U, &n)
11743 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11744 return raw_type;
11745 }
11746 else
11747 {
11748 strcpy (name_buf + prefix_len, "___U");
11749 if (!get_int_var_value (name_buf, U))
11750 {
11751 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11752 U = L;
11753 }
11754 }
11755
11756 type = create_static_range_type (alloc_type_copy (raw_type),
11757 base_type, L, U);
11758 /* create_static_range_type alters the resulting type's length
11759 to match the size of the base_type, which is not what we want.
11760 Set it back to the original range type's length. */
11761 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11762 TYPE_NAME (type) = name;
11763 return type;
11764 }
11765 }
11766
11767 /* True iff NAME is the name of a range type. */
11768
11769 int
11770 ada_is_range_type_name (const char *name)
11771 {
11772 return (name != NULL && strstr (name, "___XD"));
11773 }
11774 \f
11775
11776 /* Modular types */
11777
11778 /* True iff TYPE is an Ada modular type. */
11779
11780 int
11781 ada_is_modular_type (struct type *type)
11782 {
11783 struct type *subranged_type = get_base_type (type);
11784
11785 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11786 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11787 && TYPE_UNSIGNED (subranged_type));
11788 }
11789
11790 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11791
11792 ULONGEST
11793 ada_modulus (struct type *type)
11794 {
11795 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11796 }
11797 \f
11798
11799 /* Ada exception catchpoint support:
11800 ---------------------------------
11801
11802 We support 3 kinds of exception catchpoints:
11803 . catchpoints on Ada exceptions
11804 . catchpoints on unhandled Ada exceptions
11805 . catchpoints on failed assertions
11806
11807 Exceptions raised during failed assertions, or unhandled exceptions
11808 could perfectly be caught with the general catchpoint on Ada exceptions.
11809 However, we can easily differentiate these two special cases, and having
11810 the option to distinguish these two cases from the rest can be useful
11811 to zero-in on certain situations.
11812
11813 Exception catchpoints are a specialized form of breakpoint,
11814 since they rely on inserting breakpoints inside known routines
11815 of the GNAT runtime. The implementation therefore uses a standard
11816 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11817 of breakpoint_ops.
11818
11819 Support in the runtime for exception catchpoints have been changed
11820 a few times already, and these changes affect the implementation
11821 of these catchpoints. In order to be able to support several
11822 variants of the runtime, we use a sniffer that will determine
11823 the runtime variant used by the program being debugged. */
11824
11825 /* Ada's standard exceptions.
11826
11827 The Ada 83 standard also defined Numeric_Error. But there so many
11828 situations where it was unclear from the Ada 83 Reference Manual
11829 (RM) whether Constraint_Error or Numeric_Error should be raised,
11830 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11831 Interpretation saying that anytime the RM says that Numeric_Error
11832 should be raised, the implementation may raise Constraint_Error.
11833 Ada 95 went one step further and pretty much removed Numeric_Error
11834 from the list of standard exceptions (it made it a renaming of
11835 Constraint_Error, to help preserve compatibility when compiling
11836 an Ada83 compiler). As such, we do not include Numeric_Error from
11837 this list of standard exceptions. */
11838
11839 static const char *standard_exc[] = {
11840 "constraint_error",
11841 "program_error",
11842 "storage_error",
11843 "tasking_error"
11844 };
11845
11846 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11847
11848 /* A structure that describes how to support exception catchpoints
11849 for a given executable. */
11850
11851 struct exception_support_info
11852 {
11853 /* The name of the symbol to break on in order to insert
11854 a catchpoint on exceptions. */
11855 const char *catch_exception_sym;
11856
11857 /* The name of the symbol to break on in order to insert
11858 a catchpoint on unhandled exceptions. */
11859 const char *catch_exception_unhandled_sym;
11860
11861 /* The name of the symbol to break on in order to insert
11862 a catchpoint on failed assertions. */
11863 const char *catch_assert_sym;
11864
11865 /* The name of the symbol to break on in order to insert
11866 a catchpoint on exception handling. */
11867 const char *catch_handlers_sym;
11868
11869 /* Assuming that the inferior just triggered an unhandled exception
11870 catchpoint, this function is responsible for returning the address
11871 in inferior memory where the name of that exception is stored.
11872 Return zero if the address could not be computed. */
11873 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11874 };
11875
11876 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11877 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11878
11879 /* The following exception support info structure describes how to
11880 implement exception catchpoints with the latest version of the
11881 Ada runtime (as of 2019-08-??). */
11882
11883 static const struct exception_support_info default_exception_support_info =
11884 {
11885 "__gnat_debug_raise_exception", /* catch_exception_sym */
11886 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11887 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11888 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11889 ada_unhandled_exception_name_addr
11890 };
11891
11892 /* The following exception support info structure describes how to
11893 implement exception catchpoints with an earlier version of the
11894 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11895
11896 static const struct exception_support_info exception_support_info_v0 =
11897 {
11898 "__gnat_debug_raise_exception", /* catch_exception_sym */
11899 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11900 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11901 "__gnat_begin_handler", /* catch_handlers_sym */
11902 ada_unhandled_exception_name_addr
11903 };
11904
11905 /* The following exception support info structure describes how to
11906 implement exception catchpoints with a slightly older version
11907 of the Ada runtime. */
11908
11909 static const struct exception_support_info exception_support_info_fallback =
11910 {
11911 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11912 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11913 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11914 "__gnat_begin_handler", /* catch_handlers_sym */
11915 ada_unhandled_exception_name_addr_from_raise
11916 };
11917
11918 /* Return nonzero if we can detect the exception support routines
11919 described in EINFO.
11920
11921 This function errors out if an abnormal situation is detected
11922 (for instance, if we find the exception support routines, but
11923 that support is found to be incomplete). */
11924
11925 static int
11926 ada_has_this_exception_support (const struct exception_support_info *einfo)
11927 {
11928 struct symbol *sym;
11929
11930 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11931 that should be compiled with debugging information. As a result, we
11932 expect to find that symbol in the symtabs. */
11933
11934 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11935 if (sym == NULL)
11936 {
11937 /* Perhaps we did not find our symbol because the Ada runtime was
11938 compiled without debugging info, or simply stripped of it.
11939 It happens on some GNU/Linux distributions for instance, where
11940 users have to install a separate debug package in order to get
11941 the runtime's debugging info. In that situation, let the user
11942 know why we cannot insert an Ada exception catchpoint.
11943
11944 Note: Just for the purpose of inserting our Ada exception
11945 catchpoint, we could rely purely on the associated minimal symbol.
11946 But we would be operating in degraded mode anyway, since we are
11947 still lacking the debugging info needed later on to extract
11948 the name of the exception being raised (this name is printed in
11949 the catchpoint message, and is also used when trying to catch
11950 a specific exception). We do not handle this case for now. */
11951 struct bound_minimal_symbol msym
11952 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11953
11954 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11955 error (_("Your Ada runtime appears to be missing some debugging "
11956 "information.\nCannot insert Ada exception catchpoint "
11957 "in this configuration."));
11958
11959 return 0;
11960 }
11961
11962 /* Make sure that the symbol we found corresponds to a function. */
11963
11964 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11965 {
11966 error (_("Symbol \"%s\" is not a function (class = %d)"),
11967 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11968 return 0;
11969 }
11970
11971 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11972 if (sym == NULL)
11973 {
11974 struct bound_minimal_symbol msym
11975 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11976
11977 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11978 error (_("Your Ada runtime appears to be missing some debugging "
11979 "information.\nCannot insert Ada exception catchpoint "
11980 "in this configuration."));
11981
11982 return 0;
11983 }
11984
11985 /* Make sure that the symbol we found corresponds to a function. */
11986
11987 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11988 {
11989 error (_("Symbol \"%s\" is not a function (class = %d)"),
11990 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11991 return 0;
11992 }
11993
11994 return 1;
11995 }
11996
11997 /* Inspect the Ada runtime and determine which exception info structure
11998 should be used to provide support for exception catchpoints.
11999
12000 This function will always set the per-inferior exception_info,
12001 or raise an error. */
12002
12003 static void
12004 ada_exception_support_info_sniffer (void)
12005 {
12006 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12007
12008 /* If the exception info is already known, then no need to recompute it. */
12009 if (data->exception_info != NULL)
12010 return;
12011
12012 /* Check the latest (default) exception support info. */
12013 if (ada_has_this_exception_support (&default_exception_support_info))
12014 {
12015 data->exception_info = &default_exception_support_info;
12016 return;
12017 }
12018
12019 /* Try the v0 exception suport info. */
12020 if (ada_has_this_exception_support (&exception_support_info_v0))
12021 {
12022 data->exception_info = &exception_support_info_v0;
12023 return;
12024 }
12025
12026 /* Try our fallback exception suport info. */
12027 if (ada_has_this_exception_support (&exception_support_info_fallback))
12028 {
12029 data->exception_info = &exception_support_info_fallback;
12030 return;
12031 }
12032
12033 /* Sometimes, it is normal for us to not be able to find the routine
12034 we are looking for. This happens when the program is linked with
12035 the shared version of the GNAT runtime, and the program has not been
12036 started yet. Inform the user of these two possible causes if
12037 applicable. */
12038
12039 if (ada_update_initial_language (language_unknown) != language_ada)
12040 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12041
12042 /* If the symbol does not exist, then check that the program is
12043 already started, to make sure that shared libraries have been
12044 loaded. If it is not started, this may mean that the symbol is
12045 in a shared library. */
12046
12047 if (inferior_ptid.pid () == 0)
12048 error (_("Unable to insert catchpoint. Try to start the program first."));
12049
12050 /* At this point, we know that we are debugging an Ada program and
12051 that the inferior has been started, but we still are not able to
12052 find the run-time symbols. That can mean that we are in
12053 configurable run time mode, or that a-except as been optimized
12054 out by the linker... In any case, at this point it is not worth
12055 supporting this feature. */
12056
12057 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12058 }
12059
12060 /* True iff FRAME is very likely to be that of a function that is
12061 part of the runtime system. This is all very heuristic, but is
12062 intended to be used as advice as to what frames are uninteresting
12063 to most users. */
12064
12065 static int
12066 is_known_support_routine (struct frame_info *frame)
12067 {
12068 enum language func_lang;
12069 int i;
12070 const char *fullname;
12071
12072 /* If this code does not have any debugging information (no symtab),
12073 This cannot be any user code. */
12074
12075 symtab_and_line sal = find_frame_sal (frame);
12076 if (sal.symtab == NULL)
12077 return 1;
12078
12079 /* If there is a symtab, but the associated source file cannot be
12080 located, then assume this is not user code: Selecting a frame
12081 for which we cannot display the code would not be very helpful
12082 for the user. This should also take care of case such as VxWorks
12083 where the kernel has some debugging info provided for a few units. */
12084
12085 fullname = symtab_to_fullname (sal.symtab);
12086 if (access (fullname, R_OK) != 0)
12087 return 1;
12088
12089 /* Check the unit filename againt the Ada runtime file naming.
12090 We also check the name of the objfile against the name of some
12091 known system libraries that sometimes come with debugging info
12092 too. */
12093
12094 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12095 {
12096 re_comp (known_runtime_file_name_patterns[i]);
12097 if (re_exec (lbasename (sal.symtab->filename)))
12098 return 1;
12099 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12100 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12101 return 1;
12102 }
12103
12104 /* Check whether the function is a GNAT-generated entity. */
12105
12106 gdb::unique_xmalloc_ptr<char> func_name
12107 = find_frame_funname (frame, &func_lang, NULL);
12108 if (func_name == NULL)
12109 return 1;
12110
12111 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12112 {
12113 re_comp (known_auxiliary_function_name_patterns[i]);
12114 if (re_exec (func_name.get ()))
12115 return 1;
12116 }
12117
12118 return 0;
12119 }
12120
12121 /* Find the first frame that contains debugging information and that is not
12122 part of the Ada run-time, starting from FI and moving upward. */
12123
12124 void
12125 ada_find_printable_frame (struct frame_info *fi)
12126 {
12127 for (; fi != NULL; fi = get_prev_frame (fi))
12128 {
12129 if (!is_known_support_routine (fi))
12130 {
12131 select_frame (fi);
12132 break;
12133 }
12134 }
12135
12136 }
12137
12138 /* Assuming that the inferior just triggered an unhandled exception
12139 catchpoint, return the address in inferior memory where the name
12140 of the exception is stored.
12141
12142 Return zero if the address could not be computed. */
12143
12144 static CORE_ADDR
12145 ada_unhandled_exception_name_addr (void)
12146 {
12147 return parse_and_eval_address ("e.full_name");
12148 }
12149
12150 /* Same as ada_unhandled_exception_name_addr, except that this function
12151 should be used when the inferior uses an older version of the runtime,
12152 where the exception name needs to be extracted from a specific frame
12153 several frames up in the callstack. */
12154
12155 static CORE_ADDR
12156 ada_unhandled_exception_name_addr_from_raise (void)
12157 {
12158 int frame_level;
12159 struct frame_info *fi;
12160 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12161
12162 /* To determine the name of this exception, we need to select
12163 the frame corresponding to RAISE_SYM_NAME. This frame is
12164 at least 3 levels up, so we simply skip the first 3 frames
12165 without checking the name of their associated function. */
12166 fi = get_current_frame ();
12167 for (frame_level = 0; frame_level < 3; frame_level += 1)
12168 if (fi != NULL)
12169 fi = get_prev_frame (fi);
12170
12171 while (fi != NULL)
12172 {
12173 enum language func_lang;
12174
12175 gdb::unique_xmalloc_ptr<char> func_name
12176 = find_frame_funname (fi, &func_lang, NULL);
12177 if (func_name != NULL)
12178 {
12179 if (strcmp (func_name.get (),
12180 data->exception_info->catch_exception_sym) == 0)
12181 break; /* We found the frame we were looking for... */
12182 }
12183 fi = get_prev_frame (fi);
12184 }
12185
12186 if (fi == NULL)
12187 return 0;
12188
12189 select_frame (fi);
12190 return parse_and_eval_address ("id.full_name");
12191 }
12192
12193 /* Assuming the inferior just triggered an Ada exception catchpoint
12194 (of any type), return the address in inferior memory where the name
12195 of the exception is stored, if applicable.
12196
12197 Assumes the selected frame is the current frame.
12198
12199 Return zero if the address could not be computed, or if not relevant. */
12200
12201 static CORE_ADDR
12202 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12203 struct breakpoint *b)
12204 {
12205 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12206
12207 switch (ex)
12208 {
12209 case ada_catch_exception:
12210 return (parse_and_eval_address ("e.full_name"));
12211 break;
12212
12213 case ada_catch_exception_unhandled:
12214 return data->exception_info->unhandled_exception_name_addr ();
12215 break;
12216
12217 case ada_catch_handlers:
12218 return 0; /* The runtimes does not provide access to the exception
12219 name. */
12220 break;
12221
12222 case ada_catch_assert:
12223 return 0; /* Exception name is not relevant in this case. */
12224 break;
12225
12226 default:
12227 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12228 break;
12229 }
12230
12231 return 0; /* Should never be reached. */
12232 }
12233
12234 /* Assuming the inferior is stopped at an exception catchpoint,
12235 return the message which was associated to the exception, if
12236 available. Return NULL if the message could not be retrieved.
12237
12238 Note: The exception message can be associated to an exception
12239 either through the use of the Raise_Exception function, or
12240 more simply (Ada 2005 and later), via:
12241
12242 raise Exception_Name with "exception message";
12243
12244 */
12245
12246 static gdb::unique_xmalloc_ptr<char>
12247 ada_exception_message_1 (void)
12248 {
12249 struct value *e_msg_val;
12250 int e_msg_len;
12251
12252 /* For runtimes that support this feature, the exception message
12253 is passed as an unbounded string argument called "message". */
12254 e_msg_val = parse_and_eval ("message");
12255 if (e_msg_val == NULL)
12256 return NULL; /* Exception message not supported. */
12257
12258 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12259 gdb_assert (e_msg_val != NULL);
12260 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12261
12262 /* If the message string is empty, then treat it as if there was
12263 no exception message. */
12264 if (e_msg_len <= 0)
12265 return NULL;
12266
12267 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12268 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12269 e_msg.get ()[e_msg_len] = '\0';
12270
12271 return e_msg;
12272 }
12273
12274 /* Same as ada_exception_message_1, except that all exceptions are
12275 contained here (returning NULL instead). */
12276
12277 static gdb::unique_xmalloc_ptr<char>
12278 ada_exception_message (void)
12279 {
12280 gdb::unique_xmalloc_ptr<char> e_msg;
12281
12282 try
12283 {
12284 e_msg = ada_exception_message_1 ();
12285 }
12286 catch (const gdb_exception_error &e)
12287 {
12288 e_msg.reset (nullptr);
12289 }
12290
12291 return e_msg;
12292 }
12293
12294 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12295 any error that ada_exception_name_addr_1 might cause to be thrown.
12296 When an error is intercepted, a warning with the error message is printed,
12297 and zero is returned. */
12298
12299 static CORE_ADDR
12300 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12301 struct breakpoint *b)
12302 {
12303 CORE_ADDR result = 0;
12304
12305 try
12306 {
12307 result = ada_exception_name_addr_1 (ex, b);
12308 }
12309
12310 catch (const gdb_exception_error &e)
12311 {
12312 warning (_("failed to get exception name: %s"), e.what ());
12313 return 0;
12314 }
12315
12316 return result;
12317 }
12318
12319 static std::string ada_exception_catchpoint_cond_string
12320 (const char *excep_string,
12321 enum ada_exception_catchpoint_kind ex);
12322
12323 /* Ada catchpoints.
12324
12325 In the case of catchpoints on Ada exceptions, the catchpoint will
12326 stop the target on every exception the program throws. When a user
12327 specifies the name of a specific exception, we translate this
12328 request into a condition expression (in text form), and then parse
12329 it into an expression stored in each of the catchpoint's locations.
12330 We then use this condition to check whether the exception that was
12331 raised is the one the user is interested in. If not, then the
12332 target is resumed again. We store the name of the requested
12333 exception, in order to be able to re-set the condition expression
12334 when symbols change. */
12335
12336 /* An instance of this type is used to represent an Ada catchpoint
12337 breakpoint location. */
12338
12339 class ada_catchpoint_location : public bp_location
12340 {
12341 public:
12342 ada_catchpoint_location (breakpoint *owner)
12343 : bp_location (owner, bp_loc_software_breakpoint)
12344 {}
12345
12346 /* The condition that checks whether the exception that was raised
12347 is the specific exception the user specified on catchpoint
12348 creation. */
12349 expression_up excep_cond_expr;
12350 };
12351
12352 /* An instance of this type is used to represent an Ada catchpoint. */
12353
12354 struct ada_catchpoint : public breakpoint
12355 {
12356 /* The name of the specific exception the user specified. */
12357 std::string excep_string;
12358 };
12359
12360 /* Parse the exception condition string in the context of each of the
12361 catchpoint's locations, and store them for later evaluation. */
12362
12363 static void
12364 create_excep_cond_exprs (struct ada_catchpoint *c,
12365 enum ada_exception_catchpoint_kind ex)
12366 {
12367 /* Nothing to do if there's no specific exception to catch. */
12368 if (c->excep_string.empty ())
12369 return;
12370
12371 /* Same if there are no locations... */
12372 if (c->loc == NULL)
12373 return;
12374
12375 /* We have to compute the expression once for each program space,
12376 because the expression may hold the addresses of multiple symbols
12377 in some cases. */
12378 std::multimap<program_space *, struct bp_location *> loc_map;
12379 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12380 loc_map.emplace (bl->pspace, bl);
12381
12382 scoped_restore_current_program_space save_pspace;
12383
12384 std::string cond_string;
12385 program_space *last_ps = nullptr;
12386 for (auto iter : loc_map)
12387 {
12388 struct ada_catchpoint_location *ada_loc
12389 = (struct ada_catchpoint_location *) iter.second;
12390
12391 if (ada_loc->pspace != last_ps)
12392 {
12393 last_ps = ada_loc->pspace;
12394 set_current_program_space (last_ps);
12395
12396 /* Compute the condition expression in text form, from the
12397 specific expection we want to catch. */
12398 cond_string
12399 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12400 ex);
12401 }
12402
12403 expression_up exp;
12404
12405 if (!ada_loc->shlib_disabled)
12406 {
12407 const char *s;
12408
12409 s = cond_string.c_str ();
12410 try
12411 {
12412 exp = parse_exp_1 (&s, ada_loc->address,
12413 block_for_pc (ada_loc->address),
12414 0);
12415 }
12416 catch (const gdb_exception_error &e)
12417 {
12418 warning (_("failed to reevaluate internal exception condition "
12419 "for catchpoint %d: %s"),
12420 c->number, e.what ());
12421 }
12422 }
12423
12424 ada_loc->excep_cond_expr = std::move (exp);
12425 }
12426 }
12427
12428 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12429 structure for all exception catchpoint kinds. */
12430
12431 static struct bp_location *
12432 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12433 struct breakpoint *self)
12434 {
12435 return new ada_catchpoint_location (self);
12436 }
12437
12438 /* Implement the RE_SET method in the breakpoint_ops structure for all
12439 exception catchpoint kinds. */
12440
12441 static void
12442 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12443 {
12444 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12445
12446 /* Call the base class's method. This updates the catchpoint's
12447 locations. */
12448 bkpt_breakpoint_ops.re_set (b);
12449
12450 /* Reparse the exception conditional expressions. One for each
12451 location. */
12452 create_excep_cond_exprs (c, ex);
12453 }
12454
12455 /* Returns true if we should stop for this breakpoint hit. If the
12456 user specified a specific exception, we only want to cause a stop
12457 if the program thrown that exception. */
12458
12459 static int
12460 should_stop_exception (const struct bp_location *bl)
12461 {
12462 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12463 const struct ada_catchpoint_location *ada_loc
12464 = (const struct ada_catchpoint_location *) bl;
12465 int stop;
12466
12467 /* With no specific exception, should always stop. */
12468 if (c->excep_string.empty ())
12469 return 1;
12470
12471 if (ada_loc->excep_cond_expr == NULL)
12472 {
12473 /* We will have a NULL expression if back when we were creating
12474 the expressions, this location's had failed to parse. */
12475 return 1;
12476 }
12477
12478 stop = 1;
12479 try
12480 {
12481 struct value *mark;
12482
12483 mark = value_mark ();
12484 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12485 value_free_to_mark (mark);
12486 }
12487 catch (const gdb_exception &ex)
12488 {
12489 exception_fprintf (gdb_stderr, ex,
12490 _("Error in testing exception condition:\n"));
12491 }
12492
12493 return stop;
12494 }
12495
12496 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12497 for all exception catchpoint kinds. */
12498
12499 static void
12500 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12501 {
12502 bs->stop = should_stop_exception (bs->bp_location_at);
12503 }
12504
12505 /* Implement the PRINT_IT method in the breakpoint_ops structure
12506 for all exception catchpoint kinds. */
12507
12508 static enum print_stop_action
12509 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12510 {
12511 struct ui_out *uiout = current_uiout;
12512 struct breakpoint *b = bs->breakpoint_at;
12513
12514 annotate_catchpoint (b->number);
12515
12516 if (uiout->is_mi_like_p ())
12517 {
12518 uiout->field_string ("reason",
12519 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12520 uiout->field_string ("disp", bpdisp_text (b->disposition));
12521 }
12522
12523 uiout->text (b->disposition == disp_del
12524 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12525 uiout->field_signed ("bkptno", b->number);
12526 uiout->text (", ");
12527
12528 /* ada_exception_name_addr relies on the selected frame being the
12529 current frame. Need to do this here because this function may be
12530 called more than once when printing a stop, and below, we'll
12531 select the first frame past the Ada run-time (see
12532 ada_find_printable_frame). */
12533 select_frame (get_current_frame ());
12534
12535 switch (ex)
12536 {
12537 case ada_catch_exception:
12538 case ada_catch_exception_unhandled:
12539 case ada_catch_handlers:
12540 {
12541 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12542 char exception_name[256];
12543
12544 if (addr != 0)
12545 {
12546 read_memory (addr, (gdb_byte *) exception_name,
12547 sizeof (exception_name) - 1);
12548 exception_name [sizeof (exception_name) - 1] = '\0';
12549 }
12550 else
12551 {
12552 /* For some reason, we were unable to read the exception
12553 name. This could happen if the Runtime was compiled
12554 without debugging info, for instance. In that case,
12555 just replace the exception name by the generic string
12556 "exception" - it will read as "an exception" in the
12557 notification we are about to print. */
12558 memcpy (exception_name, "exception", sizeof ("exception"));
12559 }
12560 /* In the case of unhandled exception breakpoints, we print
12561 the exception name as "unhandled EXCEPTION_NAME", to make
12562 it clearer to the user which kind of catchpoint just got
12563 hit. We used ui_out_text to make sure that this extra
12564 info does not pollute the exception name in the MI case. */
12565 if (ex == ada_catch_exception_unhandled)
12566 uiout->text ("unhandled ");
12567 uiout->field_string ("exception-name", exception_name);
12568 }
12569 break;
12570 case ada_catch_assert:
12571 /* In this case, the name of the exception is not really
12572 important. Just print "failed assertion" to make it clearer
12573 that his program just hit an assertion-failure catchpoint.
12574 We used ui_out_text because this info does not belong in
12575 the MI output. */
12576 uiout->text ("failed assertion");
12577 break;
12578 }
12579
12580 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12581 if (exception_message != NULL)
12582 {
12583 uiout->text (" (");
12584 uiout->field_string ("exception-message", exception_message.get ());
12585 uiout->text (")");
12586 }
12587
12588 uiout->text (" at ");
12589 ada_find_printable_frame (get_current_frame ());
12590
12591 return PRINT_SRC_AND_LOC;
12592 }
12593
12594 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12595 for all exception catchpoint kinds. */
12596
12597 static void
12598 print_one_exception (enum ada_exception_catchpoint_kind ex,
12599 struct breakpoint *b, struct bp_location **last_loc)
12600 {
12601 struct ui_out *uiout = current_uiout;
12602 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12603 struct value_print_options opts;
12604
12605 get_user_print_options (&opts);
12606
12607 if (opts.addressprint)
12608 uiout->field_skip ("addr");
12609
12610 annotate_field (5);
12611 switch (ex)
12612 {
12613 case ada_catch_exception:
12614 if (!c->excep_string.empty ())
12615 {
12616 std::string msg = string_printf (_("`%s' Ada exception"),
12617 c->excep_string.c_str ());
12618
12619 uiout->field_string ("what", msg);
12620 }
12621 else
12622 uiout->field_string ("what", "all Ada exceptions");
12623
12624 break;
12625
12626 case ada_catch_exception_unhandled:
12627 uiout->field_string ("what", "unhandled Ada exceptions");
12628 break;
12629
12630 case ada_catch_handlers:
12631 if (!c->excep_string.empty ())
12632 {
12633 uiout->field_fmt ("what",
12634 _("`%s' Ada exception handlers"),
12635 c->excep_string.c_str ());
12636 }
12637 else
12638 uiout->field_string ("what", "all Ada exceptions handlers");
12639 break;
12640
12641 case ada_catch_assert:
12642 uiout->field_string ("what", "failed Ada assertions");
12643 break;
12644
12645 default:
12646 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12647 break;
12648 }
12649 }
12650
12651 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12652 for all exception catchpoint kinds. */
12653
12654 static void
12655 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12656 struct breakpoint *b)
12657 {
12658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12659 struct ui_out *uiout = current_uiout;
12660
12661 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12662 : _("Catchpoint "));
12663 uiout->field_signed ("bkptno", b->number);
12664 uiout->text (": ");
12665
12666 switch (ex)
12667 {
12668 case ada_catch_exception:
12669 if (!c->excep_string.empty ())
12670 {
12671 std::string info = string_printf (_("`%s' Ada exception"),
12672 c->excep_string.c_str ());
12673 uiout->text (info.c_str ());
12674 }
12675 else
12676 uiout->text (_("all Ada exceptions"));
12677 break;
12678
12679 case ada_catch_exception_unhandled:
12680 uiout->text (_("unhandled Ada exceptions"));
12681 break;
12682
12683 case ada_catch_handlers:
12684 if (!c->excep_string.empty ())
12685 {
12686 std::string info
12687 = string_printf (_("`%s' Ada exception handlers"),
12688 c->excep_string.c_str ());
12689 uiout->text (info.c_str ());
12690 }
12691 else
12692 uiout->text (_("all Ada exceptions handlers"));
12693 break;
12694
12695 case ada_catch_assert:
12696 uiout->text (_("failed Ada assertions"));
12697 break;
12698
12699 default:
12700 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12701 break;
12702 }
12703 }
12704
12705 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12706 for all exception catchpoint kinds. */
12707
12708 static void
12709 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12710 struct breakpoint *b, struct ui_file *fp)
12711 {
12712 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12713
12714 switch (ex)
12715 {
12716 case ada_catch_exception:
12717 fprintf_filtered (fp, "catch exception");
12718 if (!c->excep_string.empty ())
12719 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12720 break;
12721
12722 case ada_catch_exception_unhandled:
12723 fprintf_filtered (fp, "catch exception unhandled");
12724 break;
12725
12726 case ada_catch_handlers:
12727 fprintf_filtered (fp, "catch handlers");
12728 break;
12729
12730 case ada_catch_assert:
12731 fprintf_filtered (fp, "catch assert");
12732 break;
12733
12734 default:
12735 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12736 }
12737 print_recreate_thread (b, fp);
12738 }
12739
12740 /* Virtual table for "catch exception" breakpoints. */
12741
12742 static struct bp_location *
12743 allocate_location_catch_exception (struct breakpoint *self)
12744 {
12745 return allocate_location_exception (ada_catch_exception, self);
12746 }
12747
12748 static void
12749 re_set_catch_exception (struct breakpoint *b)
12750 {
12751 re_set_exception (ada_catch_exception, b);
12752 }
12753
12754 static void
12755 check_status_catch_exception (bpstat bs)
12756 {
12757 check_status_exception (ada_catch_exception, bs);
12758 }
12759
12760 static enum print_stop_action
12761 print_it_catch_exception (bpstat bs)
12762 {
12763 return print_it_exception (ada_catch_exception, bs);
12764 }
12765
12766 static void
12767 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12768 {
12769 print_one_exception (ada_catch_exception, b, last_loc);
12770 }
12771
12772 static void
12773 print_mention_catch_exception (struct breakpoint *b)
12774 {
12775 print_mention_exception (ada_catch_exception, b);
12776 }
12777
12778 static void
12779 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12780 {
12781 print_recreate_exception (ada_catch_exception, b, fp);
12782 }
12783
12784 static struct breakpoint_ops catch_exception_breakpoint_ops;
12785
12786 /* Virtual table for "catch exception unhandled" breakpoints. */
12787
12788 static struct bp_location *
12789 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12790 {
12791 return allocate_location_exception (ada_catch_exception_unhandled, self);
12792 }
12793
12794 static void
12795 re_set_catch_exception_unhandled (struct breakpoint *b)
12796 {
12797 re_set_exception (ada_catch_exception_unhandled, b);
12798 }
12799
12800 static void
12801 check_status_catch_exception_unhandled (bpstat bs)
12802 {
12803 check_status_exception (ada_catch_exception_unhandled, bs);
12804 }
12805
12806 static enum print_stop_action
12807 print_it_catch_exception_unhandled (bpstat bs)
12808 {
12809 return print_it_exception (ada_catch_exception_unhandled, bs);
12810 }
12811
12812 static void
12813 print_one_catch_exception_unhandled (struct breakpoint *b,
12814 struct bp_location **last_loc)
12815 {
12816 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12817 }
12818
12819 static void
12820 print_mention_catch_exception_unhandled (struct breakpoint *b)
12821 {
12822 print_mention_exception (ada_catch_exception_unhandled, b);
12823 }
12824
12825 static void
12826 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12827 struct ui_file *fp)
12828 {
12829 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12830 }
12831
12832 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12833
12834 /* Virtual table for "catch assert" breakpoints. */
12835
12836 static struct bp_location *
12837 allocate_location_catch_assert (struct breakpoint *self)
12838 {
12839 return allocate_location_exception (ada_catch_assert, self);
12840 }
12841
12842 static void
12843 re_set_catch_assert (struct breakpoint *b)
12844 {
12845 re_set_exception (ada_catch_assert, b);
12846 }
12847
12848 static void
12849 check_status_catch_assert (bpstat bs)
12850 {
12851 check_status_exception (ada_catch_assert, bs);
12852 }
12853
12854 static enum print_stop_action
12855 print_it_catch_assert (bpstat bs)
12856 {
12857 return print_it_exception (ada_catch_assert, bs);
12858 }
12859
12860 static void
12861 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12862 {
12863 print_one_exception (ada_catch_assert, b, last_loc);
12864 }
12865
12866 static void
12867 print_mention_catch_assert (struct breakpoint *b)
12868 {
12869 print_mention_exception (ada_catch_assert, b);
12870 }
12871
12872 static void
12873 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12874 {
12875 print_recreate_exception (ada_catch_assert, b, fp);
12876 }
12877
12878 static struct breakpoint_ops catch_assert_breakpoint_ops;
12879
12880 /* Virtual table for "catch handlers" breakpoints. */
12881
12882 static struct bp_location *
12883 allocate_location_catch_handlers (struct breakpoint *self)
12884 {
12885 return allocate_location_exception (ada_catch_handlers, self);
12886 }
12887
12888 static void
12889 re_set_catch_handlers (struct breakpoint *b)
12890 {
12891 re_set_exception (ada_catch_handlers, b);
12892 }
12893
12894 static void
12895 check_status_catch_handlers (bpstat bs)
12896 {
12897 check_status_exception (ada_catch_handlers, bs);
12898 }
12899
12900 static enum print_stop_action
12901 print_it_catch_handlers (bpstat bs)
12902 {
12903 return print_it_exception (ada_catch_handlers, bs);
12904 }
12905
12906 static void
12907 print_one_catch_handlers (struct breakpoint *b,
12908 struct bp_location **last_loc)
12909 {
12910 print_one_exception (ada_catch_handlers, b, last_loc);
12911 }
12912
12913 static void
12914 print_mention_catch_handlers (struct breakpoint *b)
12915 {
12916 print_mention_exception (ada_catch_handlers, b);
12917 }
12918
12919 static void
12920 print_recreate_catch_handlers (struct breakpoint *b,
12921 struct ui_file *fp)
12922 {
12923 print_recreate_exception (ada_catch_handlers, b, fp);
12924 }
12925
12926 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12927
12928 /* See ada-lang.h. */
12929
12930 bool
12931 is_ada_exception_catchpoint (breakpoint *bp)
12932 {
12933 return (bp->ops == &catch_exception_breakpoint_ops
12934 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12935 || bp->ops == &catch_assert_breakpoint_ops
12936 || bp->ops == &catch_handlers_breakpoint_ops);
12937 }
12938
12939 /* Split the arguments specified in a "catch exception" command.
12940 Set EX to the appropriate catchpoint type.
12941 Set EXCEP_STRING to the name of the specific exception if
12942 specified by the user.
12943 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12944 "catch handlers" command. False otherwise.
12945 If a condition is found at the end of the arguments, the condition
12946 expression is stored in COND_STRING (memory must be deallocated
12947 after use). Otherwise COND_STRING is set to NULL. */
12948
12949 static void
12950 catch_ada_exception_command_split (const char *args,
12951 bool is_catch_handlers_cmd,
12952 enum ada_exception_catchpoint_kind *ex,
12953 std::string *excep_string,
12954 std::string *cond_string)
12955 {
12956 std::string exception_name;
12957
12958 exception_name = extract_arg (&args);
12959 if (exception_name == "if")
12960 {
12961 /* This is not an exception name; this is the start of a condition
12962 expression for a catchpoint on all exceptions. So, "un-get"
12963 this token, and set exception_name to NULL. */
12964 exception_name.clear ();
12965 args -= 2;
12966 }
12967
12968 /* Check to see if we have a condition. */
12969
12970 args = skip_spaces (args);
12971 if (startswith (args, "if")
12972 && (isspace (args[2]) || args[2] == '\0'))
12973 {
12974 args += 2;
12975 args = skip_spaces (args);
12976
12977 if (args[0] == '\0')
12978 error (_("Condition missing after `if' keyword"));
12979 *cond_string = args;
12980
12981 args += strlen (args);
12982 }
12983
12984 /* Check that we do not have any more arguments. Anything else
12985 is unexpected. */
12986
12987 if (args[0] != '\0')
12988 error (_("Junk at end of expression"));
12989
12990 if (is_catch_handlers_cmd)
12991 {
12992 /* Catch handling of exceptions. */
12993 *ex = ada_catch_handlers;
12994 *excep_string = exception_name;
12995 }
12996 else if (exception_name.empty ())
12997 {
12998 /* Catch all exceptions. */
12999 *ex = ada_catch_exception;
13000 excep_string->clear ();
13001 }
13002 else if (exception_name == "unhandled")
13003 {
13004 /* Catch unhandled exceptions. */
13005 *ex = ada_catch_exception_unhandled;
13006 excep_string->clear ();
13007 }
13008 else
13009 {
13010 /* Catch a specific exception. */
13011 *ex = ada_catch_exception;
13012 *excep_string = exception_name;
13013 }
13014 }
13015
13016 /* Return the name of the symbol on which we should break in order to
13017 implement a catchpoint of the EX kind. */
13018
13019 static const char *
13020 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13021 {
13022 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13023
13024 gdb_assert (data->exception_info != NULL);
13025
13026 switch (ex)
13027 {
13028 case ada_catch_exception:
13029 return (data->exception_info->catch_exception_sym);
13030 break;
13031 case ada_catch_exception_unhandled:
13032 return (data->exception_info->catch_exception_unhandled_sym);
13033 break;
13034 case ada_catch_assert:
13035 return (data->exception_info->catch_assert_sym);
13036 break;
13037 case ada_catch_handlers:
13038 return (data->exception_info->catch_handlers_sym);
13039 break;
13040 default:
13041 internal_error (__FILE__, __LINE__,
13042 _("unexpected catchpoint kind (%d)"), ex);
13043 }
13044 }
13045
13046 /* Return the breakpoint ops "virtual table" used for catchpoints
13047 of the EX kind. */
13048
13049 static const struct breakpoint_ops *
13050 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13051 {
13052 switch (ex)
13053 {
13054 case ada_catch_exception:
13055 return (&catch_exception_breakpoint_ops);
13056 break;
13057 case ada_catch_exception_unhandled:
13058 return (&catch_exception_unhandled_breakpoint_ops);
13059 break;
13060 case ada_catch_assert:
13061 return (&catch_assert_breakpoint_ops);
13062 break;
13063 case ada_catch_handlers:
13064 return (&catch_handlers_breakpoint_ops);
13065 break;
13066 default:
13067 internal_error (__FILE__, __LINE__,
13068 _("unexpected catchpoint kind (%d)"), ex);
13069 }
13070 }
13071
13072 /* Return the condition that will be used to match the current exception
13073 being raised with the exception that the user wants to catch. This
13074 assumes that this condition is used when the inferior just triggered
13075 an exception catchpoint.
13076 EX: the type of catchpoints used for catching Ada exceptions. */
13077
13078 static std::string
13079 ada_exception_catchpoint_cond_string (const char *excep_string,
13080 enum ada_exception_catchpoint_kind ex)
13081 {
13082 int i;
13083 std::string result;
13084 const char *name;
13085
13086 if (ex == ada_catch_handlers)
13087 {
13088 /* For exception handlers catchpoints, the condition string does
13089 not use the same parameter as for the other exceptions. */
13090 name = ("long_integer (GNAT_GCC_exception_Access"
13091 "(gcc_exception).all.occurrence.id)");
13092 }
13093 else
13094 name = "long_integer (e)";
13095
13096 /* The standard exceptions are a special case. They are defined in
13097 runtime units that have been compiled without debugging info; if
13098 EXCEP_STRING is the not-fully-qualified name of a standard
13099 exception (e.g. "constraint_error") then, during the evaluation
13100 of the condition expression, the symbol lookup on this name would
13101 *not* return this standard exception. The catchpoint condition
13102 may then be set only on user-defined exceptions which have the
13103 same not-fully-qualified name (e.g. my_package.constraint_error).
13104
13105 To avoid this unexcepted behavior, these standard exceptions are
13106 systematically prefixed by "standard". This means that "catch
13107 exception constraint_error" is rewritten into "catch exception
13108 standard.constraint_error".
13109
13110 If an exception named contraint_error is defined in another package of
13111 the inferior program, then the only way to specify this exception as a
13112 breakpoint condition is to use its fully-qualified named:
13113 e.g. my_package.constraint_error.
13114
13115 Furthermore, in some situations a standard exception's symbol may
13116 be present in more than one objfile, because the compiler may
13117 choose to emit copy relocations for them. So, we have to compare
13118 against all the possible addresses. */
13119
13120 /* Storage for a rewritten symbol name. */
13121 std::string std_name;
13122 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13123 {
13124 if (strcmp (standard_exc [i], excep_string) == 0)
13125 {
13126 std_name = std::string ("standard.") + excep_string;
13127 excep_string = std_name.c_str ();
13128 break;
13129 }
13130 }
13131
13132 excep_string = ada_encode (excep_string);
13133 std::vector<struct bound_minimal_symbol> symbols
13134 = ada_lookup_simple_minsyms (excep_string);
13135 for (const bound_minimal_symbol &msym : symbols)
13136 {
13137 if (!result.empty ())
13138 result += " or ";
13139 string_appendf (result, "%s = %s", name,
13140 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13141 }
13142
13143 return result;
13144 }
13145
13146 /* Return the symtab_and_line that should be used to insert an exception
13147 catchpoint of the TYPE kind.
13148
13149 ADDR_STRING returns the name of the function where the real
13150 breakpoint that implements the catchpoints is set, depending on the
13151 type of catchpoint we need to create. */
13152
13153 static struct symtab_and_line
13154 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13155 std::string *addr_string, const struct breakpoint_ops **ops)
13156 {
13157 const char *sym_name;
13158 struct symbol *sym;
13159
13160 /* First, find out which exception support info to use. */
13161 ada_exception_support_info_sniffer ();
13162
13163 /* Then lookup the function on which we will break in order to catch
13164 the Ada exceptions requested by the user. */
13165 sym_name = ada_exception_sym_name (ex);
13166 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13167
13168 if (sym == NULL)
13169 error (_("Catchpoint symbol not found: %s"), sym_name);
13170
13171 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13172 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13173
13174 /* Set ADDR_STRING. */
13175 *addr_string = sym_name;
13176
13177 /* Set OPS. */
13178 *ops = ada_exception_breakpoint_ops (ex);
13179
13180 return find_function_start_sal (sym, 1);
13181 }
13182
13183 /* Create an Ada exception catchpoint.
13184
13185 EX_KIND is the kind of exception catchpoint to be created.
13186
13187 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13188 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13189 of the exception to which this catchpoint applies.
13190
13191 COND_STRING, if not empty, is the catchpoint condition.
13192
13193 TEMPFLAG, if nonzero, means that the underlying breakpoint
13194 should be temporary.
13195
13196 FROM_TTY is the usual argument passed to all commands implementations. */
13197
13198 void
13199 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13200 enum ada_exception_catchpoint_kind ex_kind,
13201 const std::string &excep_string,
13202 const std::string &cond_string,
13203 int tempflag,
13204 int disabled,
13205 int from_tty)
13206 {
13207 std::string addr_string;
13208 const struct breakpoint_ops *ops = NULL;
13209 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13210
13211 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13212 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13213 ops, tempflag, disabled, from_tty);
13214 c->excep_string = excep_string;
13215 create_excep_cond_exprs (c.get (), ex_kind);
13216 if (!cond_string.empty ())
13217 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13218 install_breakpoint (0, std::move (c), 1);
13219 }
13220
13221 /* Implement the "catch exception" command. */
13222
13223 static void
13224 catch_ada_exception_command (const char *arg_entry, int from_tty,
13225 struct cmd_list_element *command)
13226 {
13227 const char *arg = arg_entry;
13228 struct gdbarch *gdbarch = get_current_arch ();
13229 int tempflag;
13230 enum ada_exception_catchpoint_kind ex_kind;
13231 std::string excep_string;
13232 std::string cond_string;
13233
13234 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13235
13236 if (!arg)
13237 arg = "";
13238 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13239 &cond_string);
13240 create_ada_exception_catchpoint (gdbarch, ex_kind,
13241 excep_string, cond_string,
13242 tempflag, 1 /* enabled */,
13243 from_tty);
13244 }
13245
13246 /* Implement the "catch handlers" command. */
13247
13248 static void
13249 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13250 struct cmd_list_element *command)
13251 {
13252 const char *arg = arg_entry;
13253 struct gdbarch *gdbarch = get_current_arch ();
13254 int tempflag;
13255 enum ada_exception_catchpoint_kind ex_kind;
13256 std::string excep_string;
13257 std::string cond_string;
13258
13259 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13260
13261 if (!arg)
13262 arg = "";
13263 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13264 &cond_string);
13265 create_ada_exception_catchpoint (gdbarch, ex_kind,
13266 excep_string, cond_string,
13267 tempflag, 1 /* enabled */,
13268 from_tty);
13269 }
13270
13271 /* Completion function for the Ada "catch" commands. */
13272
13273 static void
13274 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13275 const char *text, const char *word)
13276 {
13277 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13278
13279 for (const ada_exc_info &info : exceptions)
13280 {
13281 if (startswith (info.name, word))
13282 tracker.add_completion (make_unique_xstrdup (info.name));
13283 }
13284 }
13285
13286 /* Split the arguments specified in a "catch assert" command.
13287
13288 ARGS contains the command's arguments (or the empty string if
13289 no arguments were passed).
13290
13291 If ARGS contains a condition, set COND_STRING to that condition
13292 (the memory needs to be deallocated after use). */
13293
13294 static void
13295 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13296 {
13297 args = skip_spaces (args);
13298
13299 /* Check whether a condition was provided. */
13300 if (startswith (args, "if")
13301 && (isspace (args[2]) || args[2] == '\0'))
13302 {
13303 args += 2;
13304 args = skip_spaces (args);
13305 if (args[0] == '\0')
13306 error (_("condition missing after `if' keyword"));
13307 cond_string.assign (args);
13308 }
13309
13310 /* Otherwise, there should be no other argument at the end of
13311 the command. */
13312 else if (args[0] != '\0')
13313 error (_("Junk at end of arguments."));
13314 }
13315
13316 /* Implement the "catch assert" command. */
13317
13318 static void
13319 catch_assert_command (const char *arg_entry, int from_tty,
13320 struct cmd_list_element *command)
13321 {
13322 const char *arg = arg_entry;
13323 struct gdbarch *gdbarch = get_current_arch ();
13324 int tempflag;
13325 std::string cond_string;
13326
13327 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13328
13329 if (!arg)
13330 arg = "";
13331 catch_ada_assert_command_split (arg, cond_string);
13332 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13333 "", cond_string,
13334 tempflag, 1 /* enabled */,
13335 from_tty);
13336 }
13337
13338 /* Return non-zero if the symbol SYM is an Ada exception object. */
13339
13340 static int
13341 ada_is_exception_sym (struct symbol *sym)
13342 {
13343 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13344
13345 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13346 && SYMBOL_CLASS (sym) != LOC_BLOCK
13347 && SYMBOL_CLASS (sym) != LOC_CONST
13348 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13349 && type_name != NULL && strcmp (type_name, "exception") == 0);
13350 }
13351
13352 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13353 Ada exception object. This matches all exceptions except the ones
13354 defined by the Ada language. */
13355
13356 static int
13357 ada_is_non_standard_exception_sym (struct symbol *sym)
13358 {
13359 int i;
13360
13361 if (!ada_is_exception_sym (sym))
13362 return 0;
13363
13364 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13365 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13366 return 0; /* A standard exception. */
13367
13368 /* Numeric_Error is also a standard exception, so exclude it.
13369 See the STANDARD_EXC description for more details as to why
13370 this exception is not listed in that array. */
13371 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13372 return 0;
13373
13374 return 1;
13375 }
13376
13377 /* A helper function for std::sort, comparing two struct ada_exc_info
13378 objects.
13379
13380 The comparison is determined first by exception name, and then
13381 by exception address. */
13382
13383 bool
13384 ada_exc_info::operator< (const ada_exc_info &other) const
13385 {
13386 int result;
13387
13388 result = strcmp (name, other.name);
13389 if (result < 0)
13390 return true;
13391 if (result == 0 && addr < other.addr)
13392 return true;
13393 return false;
13394 }
13395
13396 bool
13397 ada_exc_info::operator== (const ada_exc_info &other) const
13398 {
13399 return addr == other.addr && strcmp (name, other.name) == 0;
13400 }
13401
13402 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13403 routine, but keeping the first SKIP elements untouched.
13404
13405 All duplicates are also removed. */
13406
13407 static void
13408 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13409 int skip)
13410 {
13411 std::sort (exceptions->begin () + skip, exceptions->end ());
13412 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13413 exceptions->end ());
13414 }
13415
13416 /* Add all exceptions defined by the Ada standard whose name match
13417 a regular expression.
13418
13419 If PREG is not NULL, then this regexp_t object is used to
13420 perform the symbol name matching. Otherwise, no name-based
13421 filtering is performed.
13422
13423 EXCEPTIONS is a vector of exceptions to which matching exceptions
13424 gets pushed. */
13425
13426 static void
13427 ada_add_standard_exceptions (compiled_regex *preg,
13428 std::vector<ada_exc_info> *exceptions)
13429 {
13430 int i;
13431
13432 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13433 {
13434 if (preg == NULL
13435 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13436 {
13437 struct bound_minimal_symbol msymbol
13438 = ada_lookup_simple_minsym (standard_exc[i]);
13439
13440 if (msymbol.minsym != NULL)
13441 {
13442 struct ada_exc_info info
13443 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13444
13445 exceptions->push_back (info);
13446 }
13447 }
13448 }
13449 }
13450
13451 /* Add all Ada exceptions defined locally and accessible from the given
13452 FRAME.
13453
13454 If PREG is not NULL, then this regexp_t object is used to
13455 perform the symbol name matching. Otherwise, no name-based
13456 filtering is performed.
13457
13458 EXCEPTIONS is a vector of exceptions to which matching exceptions
13459 gets pushed. */
13460
13461 static void
13462 ada_add_exceptions_from_frame (compiled_regex *preg,
13463 struct frame_info *frame,
13464 std::vector<ada_exc_info> *exceptions)
13465 {
13466 const struct block *block = get_frame_block (frame, 0);
13467
13468 while (block != 0)
13469 {
13470 struct block_iterator iter;
13471 struct symbol *sym;
13472
13473 ALL_BLOCK_SYMBOLS (block, iter, sym)
13474 {
13475 switch (SYMBOL_CLASS (sym))
13476 {
13477 case LOC_TYPEDEF:
13478 case LOC_BLOCK:
13479 case LOC_CONST:
13480 break;
13481 default:
13482 if (ada_is_exception_sym (sym))
13483 {
13484 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13485 SYMBOL_VALUE_ADDRESS (sym)};
13486
13487 exceptions->push_back (info);
13488 }
13489 }
13490 }
13491 if (BLOCK_FUNCTION (block) != NULL)
13492 break;
13493 block = BLOCK_SUPERBLOCK (block);
13494 }
13495 }
13496
13497 /* Return true if NAME matches PREG or if PREG is NULL. */
13498
13499 static bool
13500 name_matches_regex (const char *name, compiled_regex *preg)
13501 {
13502 return (preg == NULL
13503 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13504 }
13505
13506 /* Add all exceptions defined globally whose name name match
13507 a regular expression, excluding standard exceptions.
13508
13509 The reason we exclude standard exceptions is that they need
13510 to be handled separately: Standard exceptions are defined inside
13511 a runtime unit which is normally not compiled with debugging info,
13512 and thus usually do not show up in our symbol search. However,
13513 if the unit was in fact built with debugging info, we need to
13514 exclude them because they would duplicate the entry we found
13515 during the special loop that specifically searches for those
13516 standard exceptions.
13517
13518 If PREG is not NULL, then this regexp_t object is used to
13519 perform the symbol name matching. Otherwise, no name-based
13520 filtering is performed.
13521
13522 EXCEPTIONS is a vector of exceptions to which matching exceptions
13523 gets pushed. */
13524
13525 static void
13526 ada_add_global_exceptions (compiled_regex *preg,
13527 std::vector<ada_exc_info> *exceptions)
13528 {
13529 /* In Ada, the symbol "search name" is a linkage name, whereas the
13530 regular expression used to do the matching refers to the natural
13531 name. So match against the decoded name. */
13532 expand_symtabs_matching (NULL,
13533 lookup_name_info::match_any (),
13534 [&] (const char *search_name)
13535 {
13536 const char *decoded = ada_decode (search_name);
13537 return name_matches_regex (decoded, preg);
13538 },
13539 NULL,
13540 VARIABLES_DOMAIN);
13541
13542 for (objfile *objfile : current_program_space->objfiles ())
13543 {
13544 for (compunit_symtab *s : objfile->compunits ())
13545 {
13546 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13547 int i;
13548
13549 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13550 {
13551 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13552 struct block_iterator iter;
13553 struct symbol *sym;
13554
13555 ALL_BLOCK_SYMBOLS (b, iter, sym)
13556 if (ada_is_non_standard_exception_sym (sym)
13557 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13558 {
13559 struct ada_exc_info info
13560 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13561
13562 exceptions->push_back (info);
13563 }
13564 }
13565 }
13566 }
13567 }
13568
13569 /* Implements ada_exceptions_list with the regular expression passed
13570 as a regex_t, rather than a string.
13571
13572 If not NULL, PREG is used to filter out exceptions whose names
13573 do not match. Otherwise, all exceptions are listed. */
13574
13575 static std::vector<ada_exc_info>
13576 ada_exceptions_list_1 (compiled_regex *preg)
13577 {
13578 std::vector<ada_exc_info> result;
13579 int prev_len;
13580
13581 /* First, list the known standard exceptions. These exceptions
13582 need to be handled separately, as they are usually defined in
13583 runtime units that have been compiled without debugging info. */
13584
13585 ada_add_standard_exceptions (preg, &result);
13586
13587 /* Next, find all exceptions whose scope is local and accessible
13588 from the currently selected frame. */
13589
13590 if (has_stack_frames ())
13591 {
13592 prev_len = result.size ();
13593 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13594 &result);
13595 if (result.size () > prev_len)
13596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13597 }
13598
13599 /* Add all exceptions whose scope is global. */
13600
13601 prev_len = result.size ();
13602 ada_add_global_exceptions (preg, &result);
13603 if (result.size () > prev_len)
13604 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13605
13606 return result;
13607 }
13608
13609 /* Return a vector of ada_exc_info.
13610
13611 If REGEXP is NULL, all exceptions are included in the result.
13612 Otherwise, it should contain a valid regular expression,
13613 and only the exceptions whose names match that regular expression
13614 are included in the result.
13615
13616 The exceptions are sorted in the following order:
13617 - Standard exceptions (defined by the Ada language), in
13618 alphabetical order;
13619 - Exceptions only visible from the current frame, in
13620 alphabetical order;
13621 - Exceptions whose scope is global, in alphabetical order. */
13622
13623 std::vector<ada_exc_info>
13624 ada_exceptions_list (const char *regexp)
13625 {
13626 if (regexp == NULL)
13627 return ada_exceptions_list_1 (NULL);
13628
13629 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13630 return ada_exceptions_list_1 (&reg);
13631 }
13632
13633 /* Implement the "info exceptions" command. */
13634
13635 static void
13636 info_exceptions_command (const char *regexp, int from_tty)
13637 {
13638 struct gdbarch *gdbarch = get_current_arch ();
13639
13640 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13641
13642 if (regexp != NULL)
13643 printf_filtered
13644 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13645 else
13646 printf_filtered (_("All defined Ada exceptions:\n"));
13647
13648 for (const ada_exc_info &info : exceptions)
13649 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13650 }
13651
13652 /* Operators */
13653 /* Information about operators given special treatment in functions
13654 below. */
13655 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13656
13657 #define ADA_OPERATORS \
13658 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13659 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13660 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13661 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13662 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13664 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13665 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13666 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13667 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13668 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13669 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13670 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13671 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13672 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13673 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13674 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13675 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13676 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13677
13678 static void
13679 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13680 int *argsp)
13681 {
13682 switch (exp->elts[pc - 1].opcode)
13683 {
13684 default:
13685 operator_length_standard (exp, pc, oplenp, argsp);
13686 break;
13687
13688 #define OP_DEFN(op, len, args, binop) \
13689 case op: *oplenp = len; *argsp = args; break;
13690 ADA_OPERATORS;
13691 #undef OP_DEFN
13692
13693 case OP_AGGREGATE:
13694 *oplenp = 3;
13695 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13696 break;
13697
13698 case OP_CHOICES:
13699 *oplenp = 3;
13700 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13701 break;
13702 }
13703 }
13704
13705 /* Implementation of the exp_descriptor method operator_check. */
13706
13707 static int
13708 ada_operator_check (struct expression *exp, int pos,
13709 int (*objfile_func) (struct objfile *objfile, void *data),
13710 void *data)
13711 {
13712 const union exp_element *const elts = exp->elts;
13713 struct type *type = NULL;
13714
13715 switch (elts[pos].opcode)
13716 {
13717 case UNOP_IN_RANGE:
13718 case UNOP_QUAL:
13719 type = elts[pos + 1].type;
13720 break;
13721
13722 default:
13723 return operator_check_standard (exp, pos, objfile_func, data);
13724 }
13725
13726 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13727
13728 if (type && TYPE_OBJFILE (type)
13729 && (*objfile_func) (TYPE_OBJFILE (type), data))
13730 return 1;
13731
13732 return 0;
13733 }
13734
13735 static const char *
13736 ada_op_name (enum exp_opcode opcode)
13737 {
13738 switch (opcode)
13739 {
13740 default:
13741 return op_name_standard (opcode);
13742
13743 #define OP_DEFN(op, len, args, binop) case op: return #op;
13744 ADA_OPERATORS;
13745 #undef OP_DEFN
13746
13747 case OP_AGGREGATE:
13748 return "OP_AGGREGATE";
13749 case OP_CHOICES:
13750 return "OP_CHOICES";
13751 case OP_NAME:
13752 return "OP_NAME";
13753 }
13754 }
13755
13756 /* As for operator_length, but assumes PC is pointing at the first
13757 element of the operator, and gives meaningful results only for the
13758 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13759
13760 static void
13761 ada_forward_operator_length (struct expression *exp, int pc,
13762 int *oplenp, int *argsp)
13763 {
13764 switch (exp->elts[pc].opcode)
13765 {
13766 default:
13767 *oplenp = *argsp = 0;
13768 break;
13769
13770 #define OP_DEFN(op, len, args, binop) \
13771 case op: *oplenp = len; *argsp = args; break;
13772 ADA_OPERATORS;
13773 #undef OP_DEFN
13774
13775 case OP_AGGREGATE:
13776 *oplenp = 3;
13777 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13778 break;
13779
13780 case OP_CHOICES:
13781 *oplenp = 3;
13782 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13783 break;
13784
13785 case OP_STRING:
13786 case OP_NAME:
13787 {
13788 int len = longest_to_int (exp->elts[pc + 1].longconst);
13789
13790 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13791 *argsp = 0;
13792 break;
13793 }
13794 }
13795 }
13796
13797 static int
13798 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13799 {
13800 enum exp_opcode op = exp->elts[elt].opcode;
13801 int oplen, nargs;
13802 int pc = elt;
13803 int i;
13804
13805 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13806
13807 switch (op)
13808 {
13809 /* Ada attributes ('Foo). */
13810 case OP_ATR_FIRST:
13811 case OP_ATR_LAST:
13812 case OP_ATR_LENGTH:
13813 case OP_ATR_IMAGE:
13814 case OP_ATR_MAX:
13815 case OP_ATR_MIN:
13816 case OP_ATR_MODULUS:
13817 case OP_ATR_POS:
13818 case OP_ATR_SIZE:
13819 case OP_ATR_TAG:
13820 case OP_ATR_VAL:
13821 break;
13822
13823 case UNOP_IN_RANGE:
13824 case UNOP_QUAL:
13825 /* XXX: gdb_sprint_host_address, type_sprint */
13826 fprintf_filtered (stream, _("Type @"));
13827 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13828 fprintf_filtered (stream, " (");
13829 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13830 fprintf_filtered (stream, ")");
13831 break;
13832 case BINOP_IN_BOUNDS:
13833 fprintf_filtered (stream, " (%d)",
13834 longest_to_int (exp->elts[pc + 2].longconst));
13835 break;
13836 case TERNOP_IN_RANGE:
13837 break;
13838
13839 case OP_AGGREGATE:
13840 case OP_OTHERS:
13841 case OP_DISCRETE_RANGE:
13842 case OP_POSITIONAL:
13843 case OP_CHOICES:
13844 break;
13845
13846 case OP_NAME:
13847 case OP_STRING:
13848 {
13849 char *name = &exp->elts[elt + 2].string;
13850 int len = longest_to_int (exp->elts[elt + 1].longconst);
13851
13852 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13853 break;
13854 }
13855
13856 default:
13857 return dump_subexp_body_standard (exp, stream, elt);
13858 }
13859
13860 elt += oplen;
13861 for (i = 0; i < nargs; i += 1)
13862 elt = dump_subexp (exp, stream, elt);
13863
13864 return elt;
13865 }
13866
13867 /* The Ada extension of print_subexp (q.v.). */
13868
13869 static void
13870 ada_print_subexp (struct expression *exp, int *pos,
13871 struct ui_file *stream, enum precedence prec)
13872 {
13873 int oplen, nargs, i;
13874 int pc = *pos;
13875 enum exp_opcode op = exp->elts[pc].opcode;
13876
13877 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13878
13879 *pos += oplen;
13880 switch (op)
13881 {
13882 default:
13883 *pos -= oplen;
13884 print_subexp_standard (exp, pos, stream, prec);
13885 return;
13886
13887 case OP_VAR_VALUE:
13888 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13889 return;
13890
13891 case BINOP_IN_BOUNDS:
13892 /* XXX: sprint_subexp */
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 fputs_filtered (" in ", stream);
13895 print_subexp (exp, pos, stream, PREC_SUFFIX);
13896 fputs_filtered ("'range", stream);
13897 if (exp->elts[pc + 1].longconst > 1)
13898 fprintf_filtered (stream, "(%ld)",
13899 (long) exp->elts[pc + 1].longconst);
13900 return;
13901
13902 case TERNOP_IN_RANGE:
13903 if (prec >= PREC_EQUAL)
13904 fputs_filtered ("(", stream);
13905 /* XXX: sprint_subexp */
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 fputs_filtered (" in ", stream);
13908 print_subexp (exp, pos, stream, PREC_EQUAL);
13909 fputs_filtered (" .. ", stream);
13910 print_subexp (exp, pos, stream, PREC_EQUAL);
13911 if (prec >= PREC_EQUAL)
13912 fputs_filtered (")", stream);
13913 return;
13914
13915 case OP_ATR_FIRST:
13916 case OP_ATR_LAST:
13917 case OP_ATR_LENGTH:
13918 case OP_ATR_IMAGE:
13919 case OP_ATR_MAX:
13920 case OP_ATR_MIN:
13921 case OP_ATR_MODULUS:
13922 case OP_ATR_POS:
13923 case OP_ATR_SIZE:
13924 case OP_ATR_TAG:
13925 case OP_ATR_VAL:
13926 if (exp->elts[*pos].opcode == OP_TYPE)
13927 {
13928 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13929 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13930 &type_print_raw_options);
13931 *pos += 3;
13932 }
13933 else
13934 print_subexp (exp, pos, stream, PREC_SUFFIX);
13935 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13936 if (nargs > 1)
13937 {
13938 int tem;
13939
13940 for (tem = 1; tem < nargs; tem += 1)
13941 {
13942 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13943 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13944 }
13945 fputs_filtered (")", stream);
13946 }
13947 return;
13948
13949 case UNOP_QUAL:
13950 type_print (exp->elts[pc + 1].type, "", stream, 0);
13951 fputs_filtered ("'(", stream);
13952 print_subexp (exp, pos, stream, PREC_PREFIX);
13953 fputs_filtered (")", stream);
13954 return;
13955
13956 case UNOP_IN_RANGE:
13957 /* XXX: sprint_subexp */
13958 print_subexp (exp, pos, stream, PREC_SUFFIX);
13959 fputs_filtered (" in ", stream);
13960 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13961 &type_print_raw_options);
13962 return;
13963
13964 case OP_DISCRETE_RANGE:
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 fputs_filtered ("..", stream);
13967 print_subexp (exp, pos, stream, PREC_SUFFIX);
13968 return;
13969
13970 case OP_OTHERS:
13971 fputs_filtered ("others => ", stream);
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 return;
13974
13975 case OP_CHOICES:
13976 for (i = 0; i < nargs-1; i += 1)
13977 {
13978 if (i > 0)
13979 fputs_filtered ("|", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 }
13982 fputs_filtered (" => ", stream);
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 return;
13985
13986 case OP_POSITIONAL:
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 return;
13989
13990 case OP_AGGREGATE:
13991 fputs_filtered ("(", stream);
13992 for (i = 0; i < nargs; i += 1)
13993 {
13994 if (i > 0)
13995 fputs_filtered (", ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 }
13998 fputs_filtered (")", stream);
13999 return;
14000 }
14001 }
14002
14003 /* Table mapping opcodes into strings for printing operators
14004 and precedences of the operators. */
14005
14006 static const struct op_print ada_op_print_tab[] = {
14007 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14008 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14009 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14010 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14011 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14012 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14013 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14014 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14015 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14016 {">=", BINOP_GEQ, PREC_ORDER, 0},
14017 {">", BINOP_GTR, PREC_ORDER, 0},
14018 {"<", BINOP_LESS, PREC_ORDER, 0},
14019 {">>", BINOP_RSH, PREC_SHIFT, 0},
14020 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14021 {"+", BINOP_ADD, PREC_ADD, 0},
14022 {"-", BINOP_SUB, PREC_ADD, 0},
14023 {"&", BINOP_CONCAT, PREC_ADD, 0},
14024 {"*", BINOP_MUL, PREC_MUL, 0},
14025 {"/", BINOP_DIV, PREC_MUL, 0},
14026 {"rem", BINOP_REM, PREC_MUL, 0},
14027 {"mod", BINOP_MOD, PREC_MUL, 0},
14028 {"**", BINOP_EXP, PREC_REPEAT, 0},
14029 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14030 {"-", UNOP_NEG, PREC_PREFIX, 0},
14031 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14032 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14033 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14034 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14035 {".all", UNOP_IND, PREC_SUFFIX, 1},
14036 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14037 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14038 {NULL, OP_NULL, PREC_SUFFIX, 0}
14039 };
14040 \f
14041 enum ada_primitive_types {
14042 ada_primitive_type_int,
14043 ada_primitive_type_long,
14044 ada_primitive_type_short,
14045 ada_primitive_type_char,
14046 ada_primitive_type_float,
14047 ada_primitive_type_double,
14048 ada_primitive_type_void,
14049 ada_primitive_type_long_long,
14050 ada_primitive_type_long_double,
14051 ada_primitive_type_natural,
14052 ada_primitive_type_positive,
14053 ada_primitive_type_system_address,
14054 ada_primitive_type_storage_offset,
14055 nr_ada_primitive_types
14056 };
14057
14058 static void
14059 ada_language_arch_info (struct gdbarch *gdbarch,
14060 struct language_arch_info *lai)
14061 {
14062 const struct builtin_type *builtin = builtin_type (gdbarch);
14063
14064 lai->primitive_type_vector
14065 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14066 struct type *);
14067
14068 lai->primitive_type_vector [ada_primitive_type_int]
14069 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14070 0, "integer");
14071 lai->primitive_type_vector [ada_primitive_type_long]
14072 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14073 0, "long_integer");
14074 lai->primitive_type_vector [ada_primitive_type_short]
14075 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14076 0, "short_integer");
14077 lai->string_char_type
14078 = lai->primitive_type_vector [ada_primitive_type_char]
14079 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14080 lai->primitive_type_vector [ada_primitive_type_float]
14081 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14082 "float", gdbarch_float_format (gdbarch));
14083 lai->primitive_type_vector [ada_primitive_type_double]
14084 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14085 "long_float", gdbarch_double_format (gdbarch));
14086 lai->primitive_type_vector [ada_primitive_type_long_long]
14087 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14088 0, "long_long_integer");
14089 lai->primitive_type_vector [ada_primitive_type_long_double]
14090 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14091 "long_long_float", gdbarch_long_double_format (gdbarch));
14092 lai->primitive_type_vector [ada_primitive_type_natural]
14093 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14094 0, "natural");
14095 lai->primitive_type_vector [ada_primitive_type_positive]
14096 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14097 0, "positive");
14098 lai->primitive_type_vector [ada_primitive_type_void]
14099 = builtin->builtin_void;
14100
14101 lai->primitive_type_vector [ada_primitive_type_system_address]
14102 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14103 "void"));
14104 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14105 = "system__address";
14106
14107 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14108 type. This is a signed integral type whose size is the same as
14109 the size of addresses. */
14110 {
14111 unsigned int addr_length = TYPE_LENGTH
14112 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14113
14114 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14115 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14116 "storage_offset");
14117 }
14118
14119 lai->bool_type_symbol = NULL;
14120 lai->bool_type_default = builtin->builtin_bool;
14121 }
14122 \f
14123 /* Language vector */
14124
14125 /* Not really used, but needed in the ada_language_defn. */
14126
14127 static void
14128 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14129 {
14130 ada_emit_char (c, type, stream, quoter, 1);
14131 }
14132
14133 static int
14134 parse (struct parser_state *ps)
14135 {
14136 warnings_issued = 0;
14137 return ada_parse (ps);
14138 }
14139
14140 static const struct exp_descriptor ada_exp_descriptor = {
14141 ada_print_subexp,
14142 ada_operator_length,
14143 ada_operator_check,
14144 ada_op_name,
14145 ada_dump_subexp_body,
14146 ada_evaluate_subexp
14147 };
14148
14149 /* symbol_name_matcher_ftype adapter for wild_match. */
14150
14151 static bool
14152 do_wild_match (const char *symbol_search_name,
14153 const lookup_name_info &lookup_name,
14154 completion_match_result *comp_match_res)
14155 {
14156 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14157 }
14158
14159 /* symbol_name_matcher_ftype adapter for full_match. */
14160
14161 static bool
14162 do_full_match (const char *symbol_search_name,
14163 const lookup_name_info &lookup_name,
14164 completion_match_result *comp_match_res)
14165 {
14166 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14167 }
14168
14169 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14170
14171 static bool
14172 do_exact_match (const char *symbol_search_name,
14173 const lookup_name_info &lookup_name,
14174 completion_match_result *comp_match_res)
14175 {
14176 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14177 }
14178
14179 /* Build the Ada lookup name for LOOKUP_NAME. */
14180
14181 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14182 {
14183 const std::string &user_name = lookup_name.name ();
14184
14185 if (user_name[0] == '<')
14186 {
14187 if (user_name.back () == '>')
14188 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14189 else
14190 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14191 m_encoded_p = true;
14192 m_verbatim_p = true;
14193 m_wild_match_p = false;
14194 m_standard_p = false;
14195 }
14196 else
14197 {
14198 m_verbatim_p = false;
14199
14200 m_encoded_p = user_name.find ("__") != std::string::npos;
14201
14202 if (!m_encoded_p)
14203 {
14204 const char *folded = ada_fold_name (user_name.c_str ());
14205 const char *encoded = ada_encode_1 (folded, false);
14206 if (encoded != NULL)
14207 m_encoded_name = encoded;
14208 else
14209 m_encoded_name = user_name;
14210 }
14211 else
14212 m_encoded_name = user_name;
14213
14214 /* Handle the 'package Standard' special case. See description
14215 of m_standard_p. */
14216 if (startswith (m_encoded_name.c_str (), "standard__"))
14217 {
14218 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14219 m_standard_p = true;
14220 }
14221 else
14222 m_standard_p = false;
14223
14224 /* If the name contains a ".", then the user is entering a fully
14225 qualified entity name, and the match must not be done in wild
14226 mode. Similarly, if the user wants to complete what looks
14227 like an encoded name, the match must not be done in wild
14228 mode. Also, in the standard__ special case always do
14229 non-wild matching. */
14230 m_wild_match_p
14231 = (lookup_name.match_type () != symbol_name_match_type::FULL
14232 && !m_encoded_p
14233 && !m_standard_p
14234 && user_name.find ('.') == std::string::npos);
14235 }
14236 }
14237
14238 /* symbol_name_matcher_ftype method for Ada. This only handles
14239 completion mode. */
14240
14241 static bool
14242 ada_symbol_name_matches (const char *symbol_search_name,
14243 const lookup_name_info &lookup_name,
14244 completion_match_result *comp_match_res)
14245 {
14246 return lookup_name.ada ().matches (symbol_search_name,
14247 lookup_name.match_type (),
14248 comp_match_res);
14249 }
14250
14251 /* A name matcher that matches the symbol name exactly, with
14252 strcmp. */
14253
14254 static bool
14255 literal_symbol_name_matcher (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
14257 completion_match_result *comp_match_res)
14258 {
14259 const std::string &name = lookup_name.name ();
14260
14261 int cmp = (lookup_name.completion_mode ()
14262 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14263 : strcmp (symbol_search_name, name.c_str ()));
14264 if (cmp == 0)
14265 {
14266 if (comp_match_res != NULL)
14267 comp_match_res->set_match (symbol_search_name);
14268 return true;
14269 }
14270 else
14271 return false;
14272 }
14273
14274 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14275 Ada. */
14276
14277 static symbol_name_matcher_ftype *
14278 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14279 {
14280 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14281 return literal_symbol_name_matcher;
14282
14283 if (lookup_name.completion_mode ())
14284 return ada_symbol_name_matches;
14285 else
14286 {
14287 if (lookup_name.ada ().wild_match_p ())
14288 return do_wild_match;
14289 else if (lookup_name.ada ().verbatim_p ())
14290 return do_exact_match;
14291 else
14292 return do_full_match;
14293 }
14294 }
14295
14296 /* Implement the "la_read_var_value" language_defn method for Ada. */
14297
14298 static struct value *
14299 ada_read_var_value (struct symbol *var, const struct block *var_block,
14300 struct frame_info *frame)
14301 {
14302 /* The only case where default_read_var_value is not sufficient
14303 is when VAR is a renaming... */
14304 if (frame != nullptr)
14305 {
14306 const struct block *frame_block = get_frame_block (frame, NULL);
14307 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14308 return ada_read_renaming_var_value (var, frame_block);
14309 }
14310
14311 /* This is a typical case where we expect the default_read_var_value
14312 function to work. */
14313 return default_read_var_value (var, var_block, frame);
14314 }
14315
14316 static const char *ada_extensions[] =
14317 {
14318 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14319 };
14320
14321 extern const struct language_defn ada_language_defn = {
14322 "ada", /* Language name */
14323 "Ada",
14324 language_ada,
14325 range_check_off,
14326 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14327 that's not quite what this means. */
14328 array_row_major,
14329 macro_expansion_no,
14330 ada_extensions,
14331 &ada_exp_descriptor,
14332 parse,
14333 resolve,
14334 ada_printchar, /* Print a character constant */
14335 ada_printstr, /* Function to print string constant */
14336 emit_char, /* Function to print single char (not used) */
14337 ada_print_type, /* Print a type using appropriate syntax */
14338 ada_print_typedef, /* Print a typedef using appropriate syntax */
14339 ada_val_print, /* Print a value using appropriate syntax */
14340 ada_value_print, /* Print a top-level value */
14341 ada_read_var_value, /* la_read_var_value */
14342 NULL, /* Language specific skip_trampoline */
14343 NULL, /* name_of_this */
14344 true, /* la_store_sym_names_in_linkage_form_p */
14345 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14346 basic_lookup_transparent_type, /* lookup_transparent_type */
14347 ada_la_decode, /* Language specific symbol demangler */
14348 ada_sniff_from_mangled_name,
14349 NULL, /* Language specific
14350 class_name_from_physname */
14351 ada_op_print_tab, /* expression operators for printing */
14352 0, /* c-style arrays */
14353 1, /* String lower bound */
14354 ada_get_gdb_completer_word_break_characters,
14355 ada_collect_symbol_completion_matches,
14356 ada_language_arch_info,
14357 ada_print_array_index,
14358 default_pass_by_reference,
14359 c_get_string,
14360 ada_watch_location_expression,
14361 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14362 ada_iterate_over_symbols,
14363 default_search_name_hash,
14364 &ada_varobj_ops,
14365 NULL,
14366 NULL,
14367 ada_is_string_type,
14368 "(...)" /* la_struct_too_deep_ellipsis */
14369 };
14370
14371 /* Command-list for the "set/show ada" prefix command. */
14372 static struct cmd_list_element *set_ada_list;
14373 static struct cmd_list_element *show_ada_list;
14374
14375 /* Implement the "set ada" prefix command. */
14376
14377 static void
14378 set_ada_command (const char *arg, int from_tty)
14379 {
14380 printf_unfiltered (_(\
14381 "\"set ada\" must be followed by the name of a setting.\n"));
14382 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14383 }
14384
14385 /* Implement the "show ada" prefix command. */
14386
14387 static void
14388 show_ada_command (const char *args, int from_tty)
14389 {
14390 cmd_show_list (show_ada_list, from_tty, "");
14391 }
14392
14393 static void
14394 initialize_ada_catchpoint_ops (void)
14395 {
14396 struct breakpoint_ops *ops;
14397
14398 initialize_breakpoint_ops ();
14399
14400 ops = &catch_exception_breakpoint_ops;
14401 *ops = bkpt_breakpoint_ops;
14402 ops->allocate_location = allocate_location_catch_exception;
14403 ops->re_set = re_set_catch_exception;
14404 ops->check_status = check_status_catch_exception;
14405 ops->print_it = print_it_catch_exception;
14406 ops->print_one = print_one_catch_exception;
14407 ops->print_mention = print_mention_catch_exception;
14408 ops->print_recreate = print_recreate_catch_exception;
14409
14410 ops = &catch_exception_unhandled_breakpoint_ops;
14411 *ops = bkpt_breakpoint_ops;
14412 ops->allocate_location = allocate_location_catch_exception_unhandled;
14413 ops->re_set = re_set_catch_exception_unhandled;
14414 ops->check_status = check_status_catch_exception_unhandled;
14415 ops->print_it = print_it_catch_exception_unhandled;
14416 ops->print_one = print_one_catch_exception_unhandled;
14417 ops->print_mention = print_mention_catch_exception_unhandled;
14418 ops->print_recreate = print_recreate_catch_exception_unhandled;
14419
14420 ops = &catch_assert_breakpoint_ops;
14421 *ops = bkpt_breakpoint_ops;
14422 ops->allocate_location = allocate_location_catch_assert;
14423 ops->re_set = re_set_catch_assert;
14424 ops->check_status = check_status_catch_assert;
14425 ops->print_it = print_it_catch_assert;
14426 ops->print_one = print_one_catch_assert;
14427 ops->print_mention = print_mention_catch_assert;
14428 ops->print_recreate = print_recreate_catch_assert;
14429
14430 ops = &catch_handlers_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
14432 ops->allocate_location = allocate_location_catch_handlers;
14433 ops->re_set = re_set_catch_handlers;
14434 ops->check_status = check_status_catch_handlers;
14435 ops->print_it = print_it_catch_handlers;
14436 ops->print_one = print_one_catch_handlers;
14437 ops->print_mention = print_mention_catch_handlers;
14438 ops->print_recreate = print_recreate_catch_handlers;
14439 }
14440
14441 /* This module's 'new_objfile' observer. */
14442
14443 static void
14444 ada_new_objfile_observer (struct objfile *objfile)
14445 {
14446 ada_clear_symbol_cache ();
14447 }
14448
14449 /* This module's 'free_objfile' observer. */
14450
14451 static void
14452 ada_free_objfile_observer (struct objfile *objfile)
14453 {
14454 ada_clear_symbol_cache ();
14455 }
14456
14457 void
14458 _initialize_ada_language (void)
14459 {
14460 initialize_ada_catchpoint_ops ();
14461
14462 add_prefix_cmd ("ada", no_class, set_ada_command,
14463 _("Prefix command for changing Ada-specific settings."),
14464 &set_ada_list, "set ada ", 0, &setlist);
14465
14466 add_prefix_cmd ("ada", no_class, show_ada_command,
14467 _("Generic command for showing Ada-specific settings."),
14468 &show_ada_list, "show ada ", 0, &showlist);
14469
14470 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14471 &trust_pad_over_xvs, _("\
14472 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14473 Show whether an optimization trusting PAD types over XVS types is activated."),
14474 _("\
14475 This is related to the encoding used by the GNAT compiler. The debugger\n\
14476 should normally trust the contents of PAD types, but certain older versions\n\
14477 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14478 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14479 work around this bug. It is always safe to turn this option \"off\", but\n\
14480 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14481 this option to \"off\" unless necessary."),
14482 NULL, NULL, &set_ada_list, &show_ada_list);
14483
14484 add_setshow_boolean_cmd ("print-signatures", class_vars,
14485 &print_signatures, _("\
14486 Enable or disable the output of formal and return types for functions in the \
14487 overloads selection menu."), _("\
14488 Show whether the output of formal and return types for functions in the \
14489 overloads selection menu is activated."),
14490 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14491
14492 add_catch_command ("exception", _("\
14493 Catch Ada exceptions, when raised.\n\
14494 Usage: catch exception [ARG] [if CONDITION]\n\
14495 Without any argument, stop when any Ada exception is raised.\n\
14496 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14497 being raised does not have a handler (and will therefore lead to the task's\n\
14498 termination).\n\
14499 Otherwise, the catchpoint only stops when the name of the exception being\n\
14500 raised is the same as ARG.\n\
14501 CONDITION is a boolean expression that is evaluated to see whether the\n\
14502 exception should cause a stop."),
14503 catch_ada_exception_command,
14504 catch_ada_completer,
14505 CATCH_PERMANENT,
14506 CATCH_TEMPORARY);
14507
14508 add_catch_command ("handlers", _("\
14509 Catch Ada exceptions, when handled.\n\
14510 Usage: catch handlers [ARG] [if CONDITION]\n\
14511 Without any argument, stop when any Ada exception is handled.\n\
14512 With an argument, catch only exceptions with the given name.\n\
14513 CONDITION is a boolean expression that is evaluated to see whether the\n\
14514 exception should cause a stop."),
14515 catch_ada_handlers_command,
14516 catch_ada_completer,
14517 CATCH_PERMANENT,
14518 CATCH_TEMPORARY);
14519 add_catch_command ("assert", _("\
14520 Catch failed Ada assertions, when raised.\n\
14521 Usage: catch assert [if CONDITION]\n\
14522 CONDITION is a boolean expression that is evaluated to see whether the\n\
14523 exception should cause a stop."),
14524 catch_assert_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
14528
14529 varsize_limit = 65536;
14530 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14531 &varsize_limit, _("\
14532 Set the maximum number of bytes allowed in a variable-size object."), _("\
14533 Show the maximum number of bytes allowed in a variable-size object."), _("\
14534 Attempts to access an object whose size is not a compile-time constant\n\
14535 and exceeds this limit will cause an error."),
14536 NULL, NULL, &setlist, &showlist);
14537
14538 add_info ("exceptions", info_exceptions_command,
14539 _("\
14540 List all Ada exception names.\n\
14541 Usage: info exceptions [REGEXP]\n\
14542 If a regular expression is passed as an argument, only those matching\n\
14543 the regular expression are listed."));
14544
14545 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14546 _("Set Ada maintenance-related variables."),
14547 &maint_set_ada_cmdlist, "maintenance set ada ",
14548 0/*allow-unknown*/, &maintenance_set_cmdlist);
14549
14550 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14551 _("Show Ada maintenance-related variables."),
14552 &maint_show_ada_cmdlist, "maintenance show ada ",
14553 0/*allow-unknown*/, &maintenance_show_cmdlist);
14554
14555 add_setshow_boolean_cmd
14556 ("ignore-descriptive-types", class_maintenance,
14557 &ada_ignore_descriptive_types_p,
14558 _("Set whether descriptive types generated by GNAT should be ignored."),
14559 _("Show whether descriptive types generated by GNAT should be ignored."),
14560 _("\
14561 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14562 DWARF attribute."),
14563 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14564
14565 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14566 NULL, xcalloc, xfree);
14567
14568 /* The ada-lang observers. */
14569 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14570 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14571 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14572 }
This page took 0.430745 seconds and 4 git commands to generate.