306cf3acafc5d99ec81a5115e9759815a31dc953
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* la_watch_location_expression for Ada. */
492
493 static gdb::unique_xmalloc_ptr<char>
494 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
495 {
496 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
497 std::string name = type_to_string (type);
498 return gdb::unique_xmalloc_ptr<char>
499 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
500 }
501
502 /* Assuming V points to an array of S objects, make sure that it contains at
503 least M objects, updating V and S as necessary. */
504
505 #define GROW_VECT(v, s, m) \
506 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
507
508 /* Assuming VECT points to an array of *SIZE objects of size
509 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
510 updating *SIZE as necessary and returning the (new) array. */
511
512 static void *
513 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
514 {
515 if (*size < min_size)
516 {
517 *size *= 2;
518 if (*size < min_size)
519 *size = min_size;
520 vect = xrealloc (vect, *size * element_size);
521 }
522 return vect;
523 }
524
525 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
526 suffix of FIELD_NAME beginning "___". */
527
528 static int
529 field_name_match (const char *field_name, const char *target)
530 {
531 int len = strlen (target);
532
533 return
534 (strncmp (field_name, target, len) == 0
535 && (field_name[len] == '\0'
536 || (startswith (field_name + len, "___")
537 && strcmp (field_name + strlen (field_name) - 6,
538 "___XVN") != 0)));
539 }
540
541
542 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
543 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
544 and return its index. This function also handles fields whose name
545 have ___ suffixes because the compiler sometimes alters their name
546 by adding such a suffix to represent fields with certain constraints.
547 If the field could not be found, return a negative number if
548 MAYBE_MISSING is set. Otherwise raise an error. */
549
550 int
551 ada_get_field_index (const struct type *type, const char *field_name,
552 int maybe_missing)
553 {
554 int fieldno;
555 struct type *struct_type = check_typedef ((struct type *) type);
556
557 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
558 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
559 return fieldno;
560
561 if (!maybe_missing)
562 error (_("Unable to find field %s in struct %s. Aborting"),
563 field_name, struct_type->name ());
564
565 return -1;
566 }
567
568 /* The length of the prefix of NAME prior to any "___" suffix. */
569
570 int
571 ada_name_prefix_len (const char *name)
572 {
573 if (name == NULL)
574 return 0;
575 else
576 {
577 const char *p = strstr (name, "___");
578
579 if (p == NULL)
580 return strlen (name);
581 else
582 return p - name;
583 }
584 }
585
586 /* Return non-zero if SUFFIX is a suffix of STR.
587 Return zero if STR is null. */
588
589 static int
590 is_suffix (const char *str, const char *suffix)
591 {
592 int len1, len2;
593
594 if (str == NULL)
595 return 0;
596 len1 = strlen (str);
597 len2 = strlen (suffix);
598 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
599 }
600
601 /* The contents of value VAL, treated as a value of type TYPE. The
602 result is an lval in memory if VAL is. */
603
604 static struct value *
605 coerce_unspec_val_to_type (struct value *val, struct type *type)
606 {
607 type = ada_check_typedef (type);
608 if (value_type (val) == type)
609 return val;
610 else
611 {
612 struct value *result;
613
614 /* Make sure that the object size is not unreasonable before
615 trying to allocate some memory for it. */
616 ada_ensure_varsize_limit (type);
617
618 if (value_lazy (val)
619 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
620 result = allocate_value_lazy (type);
621 else
622 {
623 result = allocate_value (type);
624 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
625 }
626 set_value_component_location (result, val);
627 set_value_bitsize (result, value_bitsize (val));
628 set_value_bitpos (result, value_bitpos (val));
629 if (VALUE_LVAL (result) == lval_memory)
630 set_value_address (result, value_address (val));
631 return result;
632 }
633 }
634
635 static const gdb_byte *
636 cond_offset_host (const gdb_byte *valaddr, long offset)
637 {
638 if (valaddr == NULL)
639 return NULL;
640 else
641 return valaddr + offset;
642 }
643
644 static CORE_ADDR
645 cond_offset_target (CORE_ADDR address, long offset)
646 {
647 if (address == 0)
648 return 0;
649 else
650 return address + offset;
651 }
652
653 /* Issue a warning (as for the definition of warning in utils.c, but
654 with exactly one argument rather than ...), unless the limit on the
655 number of warnings has passed during the evaluation of the current
656 expression. */
657
658 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
659 provided by "complaint". */
660 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
661
662 static void
663 lim_warning (const char *format, ...)
664 {
665 va_list args;
666
667 va_start (args, format);
668 warnings_issued += 1;
669 if (warnings_issued <= warning_limit)
670 vwarning (format, args);
671
672 va_end (args);
673 }
674
675 /* Issue an error if the size of an object of type T is unreasonable,
676 i.e. if it would be a bad idea to allocate a value of this type in
677 GDB. */
678
679 void
680 ada_ensure_varsize_limit (const struct type *type)
681 {
682 if (TYPE_LENGTH (type) > varsize_limit)
683 error (_("object size is larger than varsize-limit"));
684 }
685
686 /* Maximum value of a SIZE-byte signed integer type. */
687 static LONGEST
688 max_of_size (int size)
689 {
690 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
691
692 return top_bit | (top_bit - 1);
693 }
694
695 /* Minimum value of a SIZE-byte signed integer type. */
696 static LONGEST
697 min_of_size (int size)
698 {
699 return -max_of_size (size) - 1;
700 }
701
702 /* Maximum value of a SIZE-byte unsigned integer type. */
703 static ULONGEST
704 umax_of_size (int size)
705 {
706 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
707
708 return top_bit | (top_bit - 1);
709 }
710
711 /* Maximum value of integral type T, as a signed quantity. */
712 static LONGEST
713 max_of_type (struct type *t)
714 {
715 if (TYPE_UNSIGNED (t))
716 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
717 else
718 return max_of_size (TYPE_LENGTH (t));
719 }
720
721 /* Minimum value of integral type T, as a signed quantity. */
722 static LONGEST
723 min_of_type (struct type *t)
724 {
725 if (TYPE_UNSIGNED (t))
726 return 0;
727 else
728 return min_of_size (TYPE_LENGTH (t));
729 }
730
731 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
732 LONGEST
733 ada_discrete_type_high_bound (struct type *type)
734 {
735 type = resolve_dynamic_type (type, {}, 0);
736 switch (type->code ())
737 {
738 case TYPE_CODE_RANGE:
739 return TYPE_HIGH_BOUND (type);
740 case TYPE_CODE_ENUM:
741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
745 case TYPE_CODE_INT:
746 return max_of_type (type);
747 default:
748 error (_("Unexpected type in ada_discrete_type_high_bound."));
749 }
750 }
751
752 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
753 LONGEST
754 ada_discrete_type_low_bound (struct type *type)
755 {
756 type = resolve_dynamic_type (type, {}, 0);
757 switch (type->code ())
758 {
759 case TYPE_CODE_RANGE:
760 return TYPE_LOW_BOUND (type);
761 case TYPE_CODE_ENUM:
762 return TYPE_FIELD_ENUMVAL (type, 0);
763 case TYPE_CODE_BOOL:
764 return 0;
765 case TYPE_CODE_CHAR:
766 case TYPE_CODE_INT:
767 return min_of_type (type);
768 default:
769 error (_("Unexpected type in ada_discrete_type_low_bound."));
770 }
771 }
772
773 /* The identity on non-range types. For range types, the underlying
774 non-range scalar type. */
775
776 static struct type *
777 get_base_type (struct type *type)
778 {
779 while (type != NULL && type->code () == TYPE_CODE_RANGE)
780 {
781 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
782 return type;
783 type = TYPE_TARGET_TYPE (type);
784 }
785 return type;
786 }
787
788 /* Return a decoded version of the given VALUE. This means returning
789 a value whose type is obtained by applying all the GNAT-specific
790 encodings, making the resulting type a static but standard description
791 of the initial type. */
792
793 struct value *
794 ada_get_decoded_value (struct value *value)
795 {
796 struct type *type = ada_check_typedef (value_type (value));
797
798 if (ada_is_array_descriptor_type (type)
799 || (ada_is_constrained_packed_array_type (type)
800 && type->code () != TYPE_CODE_PTR))
801 {
802 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
803 value = ada_coerce_to_simple_array_ptr (value);
804 else
805 value = ada_coerce_to_simple_array (value);
806 }
807 else
808 value = ada_to_fixed_value (value);
809
810 return value;
811 }
812
813 /* Same as ada_get_decoded_value, but with the given TYPE.
814 Because there is no associated actual value for this type,
815 the resulting type might be a best-effort approximation in
816 the case of dynamic types. */
817
818 struct type *
819 ada_get_decoded_type (struct type *type)
820 {
821 type = to_static_fixed_type (type);
822 if (ada_is_constrained_packed_array_type (type))
823 type = ada_coerce_to_simple_array_type (type);
824 return type;
825 }
826
827 \f
828
829 /* Language Selection */
830
831 /* If the main program is in Ada, return language_ada, otherwise return LANG
832 (the main program is in Ada iif the adainit symbol is found). */
833
834 static enum language
835 ada_update_initial_language (enum language lang)
836 {
837 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
838 return language_ada;
839
840 return lang;
841 }
842
843 /* If the main procedure is written in Ada, then return its name.
844 The result is good until the next call. Return NULL if the main
845 procedure doesn't appear to be in Ada. */
846
847 char *
848 ada_main_name (void)
849 {
850 struct bound_minimal_symbol msym;
851 static gdb::unique_xmalloc_ptr<char> main_program_name;
852
853 /* For Ada, the name of the main procedure is stored in a specific
854 string constant, generated by the binder. Look for that symbol,
855 extract its address, and then read that string. If we didn't find
856 that string, then most probably the main procedure is not written
857 in Ada. */
858 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
859
860 if (msym.minsym != NULL)
861 {
862 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
863 if (main_program_name_addr == 0)
864 error (_("Invalid address for Ada main program name."));
865
866 main_program_name = target_read_string (main_program_name_addr, 1024);
867 return main_program_name.get ();
868 }
869
870 /* The main procedure doesn't seem to be in Ada. */
871 return NULL;
872 }
873 \f
874 /* Symbols */
875
876 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
877 of NULLs. */
878
879 const struct ada_opname_map ada_opname_table[] = {
880 {"Oadd", "\"+\"", BINOP_ADD},
881 {"Osubtract", "\"-\"", BINOP_SUB},
882 {"Omultiply", "\"*\"", BINOP_MUL},
883 {"Odivide", "\"/\"", BINOP_DIV},
884 {"Omod", "\"mod\"", BINOP_MOD},
885 {"Orem", "\"rem\"", BINOP_REM},
886 {"Oexpon", "\"**\"", BINOP_EXP},
887 {"Olt", "\"<\"", BINOP_LESS},
888 {"Ole", "\"<=\"", BINOP_LEQ},
889 {"Ogt", "\">\"", BINOP_GTR},
890 {"Oge", "\">=\"", BINOP_GEQ},
891 {"Oeq", "\"=\"", BINOP_EQUAL},
892 {"One", "\"/=\"", BINOP_NOTEQUAL},
893 {"Oand", "\"and\"", BINOP_BITWISE_AND},
894 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
895 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
896 {"Oconcat", "\"&\"", BINOP_CONCAT},
897 {"Oabs", "\"abs\"", UNOP_ABS},
898 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
899 {"Oadd", "\"+\"", UNOP_PLUS},
900 {"Osubtract", "\"-\"", UNOP_NEG},
901 {NULL, NULL}
902 };
903
904 /* The "encoded" form of DECODED, according to GNAT conventions. The
905 result is valid until the next call to ada_encode. If
906 THROW_ERRORS, throw an error if invalid operator name is found.
907 Otherwise, return NULL in that case. */
908
909 static char *
910 ada_encode_1 (const char *decoded, bool throw_errors)
911 {
912 static char *encoding_buffer = NULL;
913 static size_t encoding_buffer_size = 0;
914 const char *p;
915 int k;
916
917 if (decoded == NULL)
918 return NULL;
919
920 GROW_VECT (encoding_buffer, encoding_buffer_size,
921 2 * strlen (decoded) + 10);
922
923 k = 0;
924 for (p = decoded; *p != '\0'; p += 1)
925 {
926 if (*p == '.')
927 {
928 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
929 k += 2;
930 }
931 else if (*p == '"')
932 {
933 const struct ada_opname_map *mapping;
934
935 for (mapping = ada_opname_table;
936 mapping->encoded != NULL
937 && !startswith (p, mapping->decoded); mapping += 1)
938 ;
939 if (mapping->encoded == NULL)
940 {
941 if (throw_errors)
942 error (_("invalid Ada operator name: %s"), p);
943 else
944 return NULL;
945 }
946 strcpy (encoding_buffer + k, mapping->encoded);
947 k += strlen (mapping->encoded);
948 break;
949 }
950 else
951 {
952 encoding_buffer[k] = *p;
953 k += 1;
954 }
955 }
956
957 encoding_buffer[k] = '\0';
958 return encoding_buffer;
959 }
960
961 /* The "encoded" form of DECODED, according to GNAT conventions.
962 The result is valid until the next call to ada_encode. */
963
964 char *
965 ada_encode (const char *decoded)
966 {
967 return ada_encode_1 (decoded, true);
968 }
969
970 /* Return NAME folded to lower case, or, if surrounded by single
971 quotes, unfolded, but with the quotes stripped away. Result good
972 to next call. */
973
974 static char *
975 ada_fold_name (gdb::string_view name)
976 {
977 static char *fold_buffer = NULL;
978 static size_t fold_buffer_size = 0;
979
980 int len = name.size ();
981 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
982
983 if (name[0] == '\'')
984 {
985 strncpy (fold_buffer, name.data () + 1, len - 2);
986 fold_buffer[len - 2] = '\000';
987 }
988 else
989 {
990 int i;
991
992 for (i = 0; i <= len; i += 1)
993 fold_buffer[i] = tolower (name[i]);
994 }
995
996 return fold_buffer;
997 }
998
999 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1000
1001 static int
1002 is_lower_alphanum (const char c)
1003 {
1004 return (isdigit (c) || (isalpha (c) && islower (c)));
1005 }
1006
1007 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1008 This function saves in LEN the length of that same symbol name but
1009 without either of these suffixes:
1010 . .{DIGIT}+
1011 . ${DIGIT}+
1012 . ___{DIGIT}+
1013 . __{DIGIT}+.
1014
1015 These are suffixes introduced by the compiler for entities such as
1016 nested subprogram for instance, in order to avoid name clashes.
1017 They do not serve any purpose for the debugger. */
1018
1019 static void
1020 ada_remove_trailing_digits (const char *encoded, int *len)
1021 {
1022 if (*len > 1 && isdigit (encoded[*len - 1]))
1023 {
1024 int i = *len - 2;
1025
1026 while (i > 0 && isdigit (encoded[i]))
1027 i--;
1028 if (i >= 0 && encoded[i] == '.')
1029 *len = i;
1030 else if (i >= 0 && encoded[i] == '$')
1031 *len = i;
1032 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1033 *len = i - 2;
1034 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1035 *len = i - 1;
1036 }
1037 }
1038
1039 /* Remove the suffix introduced by the compiler for protected object
1040 subprograms. */
1041
1042 static void
1043 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1044 {
1045 /* Remove trailing N. */
1046
1047 /* Protected entry subprograms are broken into two
1048 separate subprograms: The first one is unprotected, and has
1049 a 'N' suffix; the second is the protected version, and has
1050 the 'P' suffix. The second calls the first one after handling
1051 the protection. Since the P subprograms are internally generated,
1052 we leave these names undecoded, giving the user a clue that this
1053 entity is internal. */
1054
1055 if (*len > 1
1056 && encoded[*len - 1] == 'N'
1057 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1058 *len = *len - 1;
1059 }
1060
1061 /* If ENCODED follows the GNAT entity encoding conventions, then return
1062 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1063 replaced by ENCODED. */
1064
1065 std::string
1066 ada_decode (const char *encoded)
1067 {
1068 int i, j;
1069 int len0;
1070 const char *p;
1071 int at_start_name;
1072 std::string decoded;
1073
1074 /* With function descriptors on PPC64, the value of a symbol named
1075 ".FN", if it exists, is the entry point of the function "FN". */
1076 if (encoded[0] == '.')
1077 encoded += 1;
1078
1079 /* The name of the Ada main procedure starts with "_ada_".
1080 This prefix is not part of the decoded name, so skip this part
1081 if we see this prefix. */
1082 if (startswith (encoded, "_ada_"))
1083 encoded += 5;
1084
1085 /* If the name starts with '_', then it is not a properly encoded
1086 name, so do not attempt to decode it. Similarly, if the name
1087 starts with '<', the name should not be decoded. */
1088 if (encoded[0] == '_' || encoded[0] == '<')
1089 goto Suppress;
1090
1091 len0 = strlen (encoded);
1092
1093 ada_remove_trailing_digits (encoded, &len0);
1094 ada_remove_po_subprogram_suffix (encoded, &len0);
1095
1096 /* Remove the ___X.* suffix if present. Do not forget to verify that
1097 the suffix is located before the current "end" of ENCODED. We want
1098 to avoid re-matching parts of ENCODED that have previously been
1099 marked as discarded (by decrementing LEN0). */
1100 p = strstr (encoded, "___");
1101 if (p != NULL && p - encoded < len0 - 3)
1102 {
1103 if (p[3] == 'X')
1104 len0 = p - encoded;
1105 else
1106 goto Suppress;
1107 }
1108
1109 /* Remove any trailing TKB suffix. It tells us that this symbol
1110 is for the body of a task, but that information does not actually
1111 appear in the decoded name. */
1112
1113 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1114 len0 -= 3;
1115
1116 /* Remove any trailing TB suffix. The TB suffix is slightly different
1117 from the TKB suffix because it is used for non-anonymous task
1118 bodies. */
1119
1120 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1121 len0 -= 2;
1122
1123 /* Remove trailing "B" suffixes. */
1124 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1125
1126 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1127 len0 -= 1;
1128
1129 /* Make decoded big enough for possible expansion by operator name. */
1130
1131 decoded.resize (2 * len0 + 1, 'X');
1132
1133 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1134
1135 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1136 {
1137 i = len0 - 2;
1138 while ((i >= 0 && isdigit (encoded[i]))
1139 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1140 i -= 1;
1141 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1142 len0 = i - 1;
1143 else if (encoded[i] == '$')
1144 len0 = i;
1145 }
1146
1147 /* The first few characters that are not alphabetic are not part
1148 of any encoding we use, so we can copy them over verbatim. */
1149
1150 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1151 decoded[j] = encoded[i];
1152
1153 at_start_name = 1;
1154 while (i < len0)
1155 {
1156 /* Is this a symbol function? */
1157 if (at_start_name && encoded[i] == 'O')
1158 {
1159 int k;
1160
1161 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1162 {
1163 int op_len = strlen (ada_opname_table[k].encoded);
1164 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1165 op_len - 1) == 0)
1166 && !isalnum (encoded[i + op_len]))
1167 {
1168 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1169 at_start_name = 0;
1170 i += op_len;
1171 j += strlen (ada_opname_table[k].decoded);
1172 break;
1173 }
1174 }
1175 if (ada_opname_table[k].encoded != NULL)
1176 continue;
1177 }
1178 at_start_name = 0;
1179
1180 /* Replace "TK__" with "__", which will eventually be translated
1181 into "." (just below). */
1182
1183 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1184 i += 2;
1185
1186 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1187 be translated into "." (just below). These are internal names
1188 generated for anonymous blocks inside which our symbol is nested. */
1189
1190 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1191 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1192 && isdigit (encoded [i+4]))
1193 {
1194 int k = i + 5;
1195
1196 while (k < len0 && isdigit (encoded[k]))
1197 k++; /* Skip any extra digit. */
1198
1199 /* Double-check that the "__B_{DIGITS}+" sequence we found
1200 is indeed followed by "__". */
1201 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1202 i = k;
1203 }
1204
1205 /* Remove _E{DIGITS}+[sb] */
1206
1207 /* Just as for protected object subprograms, there are 2 categories
1208 of subprograms created by the compiler for each entry. The first
1209 one implements the actual entry code, and has a suffix following
1210 the convention above; the second one implements the barrier and
1211 uses the same convention as above, except that the 'E' is replaced
1212 by a 'B'.
1213
1214 Just as above, we do not decode the name of barrier functions
1215 to give the user a clue that the code he is debugging has been
1216 internally generated. */
1217
1218 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1219 && isdigit (encoded[i+2]))
1220 {
1221 int k = i + 3;
1222
1223 while (k < len0 && isdigit (encoded[k]))
1224 k++;
1225
1226 if (k < len0
1227 && (encoded[k] == 'b' || encoded[k] == 's'))
1228 {
1229 k++;
1230 /* Just as an extra precaution, make sure that if this
1231 suffix is followed by anything else, it is a '_'.
1232 Otherwise, we matched this sequence by accident. */
1233 if (k == len0
1234 || (k < len0 && encoded[k] == '_'))
1235 i = k;
1236 }
1237 }
1238
1239 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1240 the GNAT front-end in protected object subprograms. */
1241
1242 if (i < len0 + 3
1243 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1244 {
1245 /* Backtrack a bit up until we reach either the begining of
1246 the encoded name, or "__". Make sure that we only find
1247 digits or lowercase characters. */
1248 const char *ptr = encoded + i - 1;
1249
1250 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1251 ptr--;
1252 if (ptr < encoded
1253 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1254 i++;
1255 }
1256
1257 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1258 {
1259 /* This is a X[bn]* sequence not separated from the previous
1260 part of the name with a non-alpha-numeric character (in other
1261 words, immediately following an alpha-numeric character), then
1262 verify that it is placed at the end of the encoded name. If
1263 not, then the encoding is not valid and we should abort the
1264 decoding. Otherwise, just skip it, it is used in body-nested
1265 package names. */
1266 do
1267 i += 1;
1268 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1269 if (i < len0)
1270 goto Suppress;
1271 }
1272 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1273 {
1274 /* Replace '__' by '.'. */
1275 decoded[j] = '.';
1276 at_start_name = 1;
1277 i += 2;
1278 j += 1;
1279 }
1280 else
1281 {
1282 /* It's a character part of the decoded name, so just copy it
1283 over. */
1284 decoded[j] = encoded[i];
1285 i += 1;
1286 j += 1;
1287 }
1288 }
1289 decoded.resize (j);
1290
1291 /* Decoded names should never contain any uppercase character.
1292 Double-check this, and abort the decoding if we find one. */
1293
1294 for (i = 0; i < decoded.length(); ++i)
1295 if (isupper (decoded[i]) || decoded[i] == ' ')
1296 goto Suppress;
1297
1298 return decoded;
1299
1300 Suppress:
1301 if (encoded[0] == '<')
1302 decoded = encoded;
1303 else
1304 decoded = '<' + std::string(encoded) + '>';
1305 return decoded;
1306
1307 }
1308
1309 /* Table for keeping permanent unique copies of decoded names. Once
1310 allocated, names in this table are never released. While this is a
1311 storage leak, it should not be significant unless there are massive
1312 changes in the set of decoded names in successive versions of a
1313 symbol table loaded during a single session. */
1314 static struct htab *decoded_names_store;
1315
1316 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1317 in the language-specific part of GSYMBOL, if it has not been
1318 previously computed. Tries to save the decoded name in the same
1319 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1320 in any case, the decoded symbol has a lifetime at least that of
1321 GSYMBOL).
1322 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1323 const, but nevertheless modified to a semantically equivalent form
1324 when a decoded name is cached in it. */
1325
1326 const char *
1327 ada_decode_symbol (const struct general_symbol_info *arg)
1328 {
1329 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1330 const char **resultp =
1331 &gsymbol->language_specific.demangled_name;
1332
1333 if (!gsymbol->ada_mangled)
1334 {
1335 std::string decoded = ada_decode (gsymbol->linkage_name ());
1336 struct obstack *obstack = gsymbol->language_specific.obstack;
1337
1338 gsymbol->ada_mangled = 1;
1339
1340 if (obstack != NULL)
1341 *resultp = obstack_strdup (obstack, decoded.c_str ());
1342 else
1343 {
1344 /* Sometimes, we can't find a corresponding objfile, in
1345 which case, we put the result on the heap. Since we only
1346 decode when needed, we hope this usually does not cause a
1347 significant memory leak (FIXME). */
1348
1349 char **slot = (char **) htab_find_slot (decoded_names_store,
1350 decoded.c_str (), INSERT);
1351
1352 if (*slot == NULL)
1353 *slot = xstrdup (decoded.c_str ());
1354 *resultp = *slot;
1355 }
1356 }
1357
1358 return *resultp;
1359 }
1360
1361 static char *
1362 ada_la_decode (const char *encoded, int options)
1363 {
1364 return xstrdup (ada_decode (encoded).c_str ());
1365 }
1366
1367 \f
1368
1369 /* Arrays */
1370
1371 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1372 generated by the GNAT compiler to describe the index type used
1373 for each dimension of an array, check whether it follows the latest
1374 known encoding. If not, fix it up to conform to the latest encoding.
1375 Otherwise, do nothing. This function also does nothing if
1376 INDEX_DESC_TYPE is NULL.
1377
1378 The GNAT encoding used to describe the array index type evolved a bit.
1379 Initially, the information would be provided through the name of each
1380 field of the structure type only, while the type of these fields was
1381 described as unspecified and irrelevant. The debugger was then expected
1382 to perform a global type lookup using the name of that field in order
1383 to get access to the full index type description. Because these global
1384 lookups can be very expensive, the encoding was later enhanced to make
1385 the global lookup unnecessary by defining the field type as being
1386 the full index type description.
1387
1388 The purpose of this routine is to allow us to support older versions
1389 of the compiler by detecting the use of the older encoding, and by
1390 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1391 we essentially replace each field's meaningless type by the associated
1392 index subtype). */
1393
1394 void
1395 ada_fixup_array_indexes_type (struct type *index_desc_type)
1396 {
1397 int i;
1398
1399 if (index_desc_type == NULL)
1400 return;
1401 gdb_assert (index_desc_type->num_fields () > 0);
1402
1403 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1404 to check one field only, no need to check them all). If not, return
1405 now.
1406
1407 If our INDEX_DESC_TYPE was generated using the older encoding,
1408 the field type should be a meaningless integer type whose name
1409 is not equal to the field name. */
1410 if (index_desc_type->field (0).type ()->name () != NULL
1411 && strcmp (index_desc_type->field (0).type ()->name (),
1412 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 return;
1414
1415 /* Fixup each field of INDEX_DESC_TYPE. */
1416 for (i = 0; i < index_desc_type->num_fields (); i++)
1417 {
1418 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1419 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420
1421 if (raw_type)
1422 index_desc_type->field (i).set_type (raw_type);
1423 }
1424 }
1425
1426 /* The desc_* routines return primitive portions of array descriptors
1427 (fat pointers). */
1428
1429 /* The descriptor or array type, if any, indicated by TYPE; removes
1430 level of indirection, if needed. */
1431
1432 static struct type *
1433 desc_base_type (struct type *type)
1434 {
1435 if (type == NULL)
1436 return NULL;
1437 type = ada_check_typedef (type);
1438 if (type->code () == TYPE_CODE_TYPEDEF)
1439 type = ada_typedef_target_type (type);
1440
1441 if (type != NULL
1442 && (type->code () == TYPE_CODE_PTR
1443 || type->code () == TYPE_CODE_REF))
1444 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1445 else
1446 return type;
1447 }
1448
1449 /* True iff TYPE indicates a "thin" array pointer type. */
1450
1451 static int
1452 is_thin_pntr (struct type *type)
1453 {
1454 return
1455 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1456 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1457 }
1458
1459 /* The descriptor type for thin pointer type TYPE. */
1460
1461 static struct type *
1462 thin_descriptor_type (struct type *type)
1463 {
1464 struct type *base_type = desc_base_type (type);
1465
1466 if (base_type == NULL)
1467 return NULL;
1468 if (is_suffix (ada_type_name (base_type), "___XVE"))
1469 return base_type;
1470 else
1471 {
1472 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1473
1474 if (alt_type == NULL)
1475 return base_type;
1476 else
1477 return alt_type;
1478 }
1479 }
1480
1481 /* A pointer to the array data for thin-pointer value VAL. */
1482
1483 static struct value *
1484 thin_data_pntr (struct value *val)
1485 {
1486 struct type *type = ada_check_typedef (value_type (val));
1487 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1488
1489 data_type = lookup_pointer_type (data_type);
1490
1491 if (type->code () == TYPE_CODE_PTR)
1492 return value_cast (data_type, value_copy (val));
1493 else
1494 return value_from_longest (data_type, value_address (val));
1495 }
1496
1497 /* True iff TYPE indicates a "thick" array pointer type. */
1498
1499 static int
1500 is_thick_pntr (struct type *type)
1501 {
1502 type = desc_base_type (type);
1503 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1504 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1505 }
1506
1507 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1508 pointer to one, the type of its bounds data; otherwise, NULL. */
1509
1510 static struct type *
1511 desc_bounds_type (struct type *type)
1512 {
1513 struct type *r;
1514
1515 type = desc_base_type (type);
1516
1517 if (type == NULL)
1518 return NULL;
1519 else if (is_thin_pntr (type))
1520 {
1521 type = thin_descriptor_type (type);
1522 if (type == NULL)
1523 return NULL;
1524 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1525 if (r != NULL)
1526 return ada_check_typedef (r);
1527 }
1528 else if (type->code () == TYPE_CODE_STRUCT)
1529 {
1530 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1531 if (r != NULL)
1532 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1533 }
1534 return NULL;
1535 }
1536
1537 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1538 one, a pointer to its bounds data. Otherwise NULL. */
1539
1540 static struct value *
1541 desc_bounds (struct value *arr)
1542 {
1543 struct type *type = ada_check_typedef (value_type (arr));
1544
1545 if (is_thin_pntr (type))
1546 {
1547 struct type *bounds_type =
1548 desc_bounds_type (thin_descriptor_type (type));
1549 LONGEST addr;
1550
1551 if (bounds_type == NULL)
1552 error (_("Bad GNAT array descriptor"));
1553
1554 /* NOTE: The following calculation is not really kosher, but
1555 since desc_type is an XVE-encoded type (and shouldn't be),
1556 the correct calculation is a real pain. FIXME (and fix GCC). */
1557 if (type->code () == TYPE_CODE_PTR)
1558 addr = value_as_long (arr);
1559 else
1560 addr = value_address (arr);
1561
1562 return
1563 value_from_longest (lookup_pointer_type (bounds_type),
1564 addr - TYPE_LENGTH (bounds_type));
1565 }
1566
1567 else if (is_thick_pntr (type))
1568 {
1569 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1570 _("Bad GNAT array descriptor"));
1571 struct type *p_bounds_type = value_type (p_bounds);
1572
1573 if (p_bounds_type
1574 && p_bounds_type->code () == TYPE_CODE_PTR)
1575 {
1576 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1577
1578 if (TYPE_STUB (target_type))
1579 p_bounds = value_cast (lookup_pointer_type
1580 (ada_check_typedef (target_type)),
1581 p_bounds);
1582 }
1583 else
1584 error (_("Bad GNAT array descriptor"));
1585
1586 return p_bounds;
1587 }
1588 else
1589 return NULL;
1590 }
1591
1592 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1593 position of the field containing the address of the bounds data. */
1594
1595 static int
1596 fat_pntr_bounds_bitpos (struct type *type)
1597 {
1598 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 size of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitsize (struct type *type)
1606 {
1607 type = desc_base_type (type);
1608
1609 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1610 return TYPE_FIELD_BITSIZE (type, 1);
1611 else
1612 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its array data (a array-with-no-bounds type);
1617 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1618 data. */
1619
1620 static struct type *
1621 desc_data_target_type (struct type *type)
1622 {
1623 type = desc_base_type (type);
1624
1625 /* NOTE: The following is bogus; see comment in desc_bounds. */
1626 if (is_thin_pntr (type))
1627 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1628 else if (is_thick_pntr (type))
1629 {
1630 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1631
1632 if (data_type
1633 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1634 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1635 }
1636
1637 return NULL;
1638 }
1639
1640 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1641 its array data. */
1642
1643 static struct value *
1644 desc_data (struct value *arr)
1645 {
1646 struct type *type = value_type (arr);
1647
1648 if (is_thin_pntr (type))
1649 return thin_data_pntr (arr);
1650 else if (is_thick_pntr (type))
1651 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1652 _("Bad GNAT array descriptor"));
1653 else
1654 return NULL;
1655 }
1656
1657
1658 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1659 position of the field containing the address of the data. */
1660
1661 static int
1662 fat_pntr_data_bitpos (struct type *type)
1663 {
1664 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1665 }
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 size of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitsize (struct type *type)
1672 {
1673 type = desc_base_type (type);
1674
1675 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1676 return TYPE_FIELD_BITSIZE (type, 0);
1677 else
1678 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1679 }
1680
1681 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1682 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1683 bound, if WHICH is 1. The first bound is I=1. */
1684
1685 static struct value *
1686 desc_one_bound (struct value *bounds, int i, int which)
1687 {
1688 char bound_name[20];
1689 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1690 which ? 'U' : 'L', i - 1);
1691 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1692 _("Bad GNAT array descriptor bounds"));
1693 }
1694
1695 /* If BOUNDS is an array-bounds structure type, return the bit position
1696 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1697 bound, if WHICH is 1. The first bound is I=1. */
1698
1699 static int
1700 desc_bound_bitpos (struct type *type, int i, int which)
1701 {
1702 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1703 }
1704
1705 /* If BOUNDS is an array-bounds structure type, return the bit field size
1706 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1707 bound, if WHICH is 1. The first bound is I=1. */
1708
1709 static int
1710 desc_bound_bitsize (struct type *type, int i, int which)
1711 {
1712 type = desc_base_type (type);
1713
1714 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1715 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1716 else
1717 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1718 }
1719
1720 /* If TYPE is the type of an array-bounds structure, the type of its
1721 Ith bound (numbering from 1). Otherwise, NULL. */
1722
1723 static struct type *
1724 desc_index_type (struct type *type, int i)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (type->code () == TYPE_CODE_STRUCT)
1729 {
1730 char bound_name[20];
1731 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1732 return lookup_struct_elt_type (type, bound_name, 1);
1733 }
1734 else
1735 return NULL;
1736 }
1737
1738 /* The number of index positions in the array-bounds type TYPE.
1739 Return 0 if TYPE is NULL. */
1740
1741 static int
1742 desc_arity (struct type *type)
1743 {
1744 type = desc_base_type (type);
1745
1746 if (type != NULL)
1747 return type->num_fields () / 2;
1748 return 0;
1749 }
1750
1751 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1752 an array descriptor type (representing an unconstrained array
1753 type). */
1754
1755 static int
1756 ada_is_direct_array_type (struct type *type)
1757 {
1758 if (type == NULL)
1759 return 0;
1760 type = ada_check_typedef (type);
1761 return (type->code () == TYPE_CODE_ARRAY
1762 || ada_is_array_descriptor_type (type));
1763 }
1764
1765 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1766 * to one. */
1767
1768 static int
1769 ada_is_array_type (struct type *type)
1770 {
1771 while (type != NULL
1772 && (type->code () == TYPE_CODE_PTR
1773 || type->code () == TYPE_CODE_REF))
1774 type = TYPE_TARGET_TYPE (type);
1775 return ada_is_direct_array_type (type);
1776 }
1777
1778 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1779
1780 int
1781 ada_is_simple_array_type (struct type *type)
1782 {
1783 if (type == NULL)
1784 return 0;
1785 type = ada_check_typedef (type);
1786 return (type->code () == TYPE_CODE_ARRAY
1787 || (type->code () == TYPE_CODE_PTR
1788 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1789 == TYPE_CODE_ARRAY)));
1790 }
1791
1792 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1793
1794 int
1795 ada_is_array_descriptor_type (struct type *type)
1796 {
1797 struct type *data_type = desc_data_target_type (type);
1798
1799 if (type == NULL)
1800 return 0;
1801 type = ada_check_typedef (type);
1802 return (data_type != NULL
1803 && data_type->code () == TYPE_CODE_ARRAY
1804 && desc_arity (desc_bounds_type (type)) > 0);
1805 }
1806
1807 /* Non-zero iff type is a partially mal-formed GNAT array
1808 descriptor. FIXME: This is to compensate for some problems with
1809 debugging output from GNAT. Re-examine periodically to see if it
1810 is still needed. */
1811
1812 int
1813 ada_is_bogus_array_descriptor (struct type *type)
1814 {
1815 return
1816 type != NULL
1817 && type->code () == TYPE_CODE_STRUCT
1818 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1819 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1820 && !ada_is_array_descriptor_type (type);
1821 }
1822
1823
1824 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1825 (fat pointer) returns the type of the array data described---specifically,
1826 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1827 in from the descriptor; otherwise, they are left unspecified. If
1828 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1829 returns NULL. The result is simply the type of ARR if ARR is not
1830 a descriptor. */
1831
1832 static struct type *
1833 ada_type_of_array (struct value *arr, int bounds)
1834 {
1835 if (ada_is_constrained_packed_array_type (value_type (arr)))
1836 return decode_constrained_packed_array_type (value_type (arr));
1837
1838 if (!ada_is_array_descriptor_type (value_type (arr)))
1839 return value_type (arr);
1840
1841 if (!bounds)
1842 {
1843 struct type *array_type =
1844 ada_check_typedef (desc_data_target_type (value_type (arr)));
1845
1846 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1847 TYPE_FIELD_BITSIZE (array_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849
1850 return array_type;
1851 }
1852 else
1853 {
1854 struct type *elt_type;
1855 int arity;
1856 struct value *descriptor;
1857
1858 elt_type = ada_array_element_type (value_type (arr), -1);
1859 arity = ada_array_arity (value_type (arr));
1860
1861 if (elt_type == NULL || arity == 0)
1862 return ada_check_typedef (value_type (arr));
1863
1864 descriptor = desc_bounds (arr);
1865 if (value_as_long (descriptor) == 0)
1866 return NULL;
1867 while (arity > 0)
1868 {
1869 struct type *range_type = alloc_type_copy (value_type (arr));
1870 struct type *array_type = alloc_type_copy (value_type (arr));
1871 struct value *low = desc_one_bound (descriptor, arity, 0);
1872 struct value *high = desc_one_bound (descriptor, arity, 1);
1873
1874 arity -= 1;
1875 create_static_range_type (range_type, value_type (low),
1876 longest_to_int (value_as_long (low)),
1877 longest_to_int (value_as_long (high)));
1878 elt_type = create_array_type (array_type, elt_type, range_type);
1879
1880 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1881 {
1882 /* We need to store the element packed bitsize, as well as
1883 recompute the array size, because it was previously
1884 computed based on the unpacked element size. */
1885 LONGEST lo = value_as_long (low);
1886 LONGEST hi = value_as_long (high);
1887
1888 TYPE_FIELD_BITSIZE (elt_type, 0) =
1889 decode_packed_array_bitsize (value_type (arr));
1890 /* If the array has no element, then the size is already
1891 zero, and does not need to be recomputed. */
1892 if (lo < hi)
1893 {
1894 int array_bitsize =
1895 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1896
1897 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1898 }
1899 }
1900 }
1901
1902 return lookup_pointer_type (elt_type);
1903 }
1904 }
1905
1906 /* If ARR does not represent an array, returns ARR unchanged.
1907 Otherwise, returns either a standard GDB array with bounds set
1908 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1909 GDB array. Returns NULL if ARR is a null fat pointer. */
1910
1911 struct value *
1912 ada_coerce_to_simple_array_ptr (struct value *arr)
1913 {
1914 if (ada_is_array_descriptor_type (value_type (arr)))
1915 {
1916 struct type *arrType = ada_type_of_array (arr, 1);
1917
1918 if (arrType == NULL)
1919 return NULL;
1920 return value_cast (arrType, value_copy (desc_data (arr)));
1921 }
1922 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1923 return decode_constrained_packed_array (arr);
1924 else
1925 return arr;
1926 }
1927
1928 /* If ARR does not represent an array, returns ARR unchanged.
1929 Otherwise, returns a standard GDB array describing ARR (which may
1930 be ARR itself if it already is in the proper form). */
1931
1932 struct value *
1933 ada_coerce_to_simple_array (struct value *arr)
1934 {
1935 if (ada_is_array_descriptor_type (value_type (arr)))
1936 {
1937 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1938
1939 if (arrVal == NULL)
1940 error (_("Bounds unavailable for null array pointer."));
1941 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1942 return value_ind (arrVal);
1943 }
1944 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array (arr);
1946 else
1947 return arr;
1948 }
1949
1950 /* If TYPE represents a GNAT array type, return it translated to an
1951 ordinary GDB array type (possibly with BITSIZE fields indicating
1952 packing). For other types, is the identity. */
1953
1954 struct type *
1955 ada_coerce_to_simple_array_type (struct type *type)
1956 {
1957 if (ada_is_constrained_packed_array_type (type))
1958 return decode_constrained_packed_array_type (type);
1959
1960 if (ada_is_array_descriptor_type (type))
1961 return ada_check_typedef (desc_data_target_type (type));
1962
1963 return type;
1964 }
1965
1966 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1967
1968 static int
1969 ada_is_packed_array_type (struct type *type)
1970 {
1971 if (type == NULL)
1972 return 0;
1973 type = desc_base_type (type);
1974 type = ada_check_typedef (type);
1975 return
1976 ada_type_name (type) != NULL
1977 && strstr (ada_type_name (type), "___XP") != NULL;
1978 }
1979
1980 /* Non-zero iff TYPE represents a standard GNAT constrained
1981 packed-array type. */
1982
1983 int
1984 ada_is_constrained_packed_array_type (struct type *type)
1985 {
1986 return ada_is_packed_array_type (type)
1987 && !ada_is_array_descriptor_type (type);
1988 }
1989
1990 /* Non-zero iff TYPE represents an array descriptor for a
1991 unconstrained packed-array type. */
1992
1993 static int
1994 ada_is_unconstrained_packed_array_type (struct type *type)
1995 {
1996 return ada_is_packed_array_type (type)
1997 && ada_is_array_descriptor_type (type);
1998 }
1999
2000 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2001 return the size of its elements in bits. */
2002
2003 static long
2004 decode_packed_array_bitsize (struct type *type)
2005 {
2006 const char *raw_name;
2007 const char *tail;
2008 long bits;
2009
2010 /* Access to arrays implemented as fat pointers are encoded as a typedef
2011 of the fat pointer type. We need the name of the fat pointer type
2012 to do the decoding, so strip the typedef layer. */
2013 if (type->code () == TYPE_CODE_TYPEDEF)
2014 type = ada_typedef_target_type (type);
2015
2016 raw_name = ada_type_name (ada_check_typedef (type));
2017 if (!raw_name)
2018 raw_name = ada_type_name (desc_base_type (type));
2019
2020 if (!raw_name)
2021 return 0;
2022
2023 tail = strstr (raw_name, "___XP");
2024 gdb_assert (tail != NULL);
2025
2026 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2027 {
2028 lim_warning
2029 (_("could not understand bit size information on packed array"));
2030 return 0;
2031 }
2032
2033 return bits;
2034 }
2035
2036 /* Given that TYPE is a standard GDB array type with all bounds filled
2037 in, and that the element size of its ultimate scalar constituents
2038 (that is, either its elements, or, if it is an array of arrays, its
2039 elements' elements, etc.) is *ELT_BITS, return an identical type,
2040 but with the bit sizes of its elements (and those of any
2041 constituent arrays) recorded in the BITSIZE components of its
2042 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2043 in bits.
2044
2045 Note that, for arrays whose index type has an XA encoding where
2046 a bound references a record discriminant, getting that discriminant,
2047 and therefore the actual value of that bound, is not possible
2048 because none of the given parameters gives us access to the record.
2049 This function assumes that it is OK in the context where it is being
2050 used to return an array whose bounds are still dynamic and where
2051 the length is arbitrary. */
2052
2053 static struct type *
2054 constrained_packed_array_type (struct type *type, long *elt_bits)
2055 {
2056 struct type *new_elt_type;
2057 struct type *new_type;
2058 struct type *index_type_desc;
2059 struct type *index_type;
2060 LONGEST low_bound, high_bound;
2061
2062 type = ada_check_typedef (type);
2063 if (type->code () != TYPE_CODE_ARRAY)
2064 return type;
2065
2066 index_type_desc = ada_find_parallel_type (type, "___XA");
2067 if (index_type_desc)
2068 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2069 NULL);
2070 else
2071 index_type = type->index_type ();
2072
2073 new_type = alloc_type_copy (type);
2074 new_elt_type =
2075 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2076 elt_bits);
2077 create_array_type (new_type, new_elt_type, index_type);
2078 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2079 new_type->set_name (ada_type_name (type));
2080
2081 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2082 && is_dynamic_type (check_typedef (index_type)))
2083 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2084 low_bound = high_bound = 0;
2085 if (high_bound < low_bound)
2086 *elt_bits = TYPE_LENGTH (new_type) = 0;
2087 else
2088 {
2089 *elt_bits *= (high_bound - low_bound + 1);
2090 TYPE_LENGTH (new_type) =
2091 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2092 }
2093
2094 TYPE_FIXED_INSTANCE (new_type) = 1;
2095 return new_type;
2096 }
2097
2098 /* The array type encoded by TYPE, where
2099 ada_is_constrained_packed_array_type (TYPE). */
2100
2101 static struct type *
2102 decode_constrained_packed_array_type (struct type *type)
2103 {
2104 const char *raw_name = ada_type_name (ada_check_typedef (type));
2105 char *name;
2106 const char *tail;
2107 struct type *shadow_type;
2108 long bits;
2109
2110 if (!raw_name)
2111 raw_name = ada_type_name (desc_base_type (type));
2112
2113 if (!raw_name)
2114 return NULL;
2115
2116 name = (char *) alloca (strlen (raw_name) + 1);
2117 tail = strstr (raw_name, "___XP");
2118 type = desc_base_type (type);
2119
2120 memcpy (name, raw_name, tail - raw_name);
2121 name[tail - raw_name] = '\000';
2122
2123 shadow_type = ada_find_parallel_type_with_name (type, name);
2124
2125 if (shadow_type == NULL)
2126 {
2127 lim_warning (_("could not find bounds information on packed array"));
2128 return NULL;
2129 }
2130 shadow_type = check_typedef (shadow_type);
2131
2132 if (shadow_type->code () != TYPE_CODE_ARRAY)
2133 {
2134 lim_warning (_("could not understand bounds "
2135 "information on packed array"));
2136 return NULL;
2137 }
2138
2139 bits = decode_packed_array_bitsize (type);
2140 return constrained_packed_array_type (shadow_type, &bits);
2141 }
2142
2143 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2144 array, returns a simple array that denotes that array. Its type is a
2145 standard GDB array type except that the BITSIZEs of the array
2146 target types are set to the number of bits in each element, and the
2147 type length is set appropriately. */
2148
2149 static struct value *
2150 decode_constrained_packed_array (struct value *arr)
2151 {
2152 struct type *type;
2153
2154 /* If our value is a pointer, then dereference it. Likewise if
2155 the value is a reference. Make sure that this operation does not
2156 cause the target type to be fixed, as this would indirectly cause
2157 this array to be decoded. The rest of the routine assumes that
2158 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2159 and "value_ind" routines to perform the dereferencing, as opposed
2160 to using "ada_coerce_ref" or "ada_value_ind". */
2161 arr = coerce_ref (arr);
2162 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2163 arr = value_ind (arr);
2164
2165 type = decode_constrained_packed_array_type (value_type (arr));
2166 if (type == NULL)
2167 {
2168 error (_("can't unpack array"));
2169 return NULL;
2170 }
2171
2172 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2173 && ada_is_modular_type (value_type (arr)))
2174 {
2175 /* This is a (right-justified) modular type representing a packed
2176 array with no wrapper. In order to interpret the value through
2177 the (left-justified) packed array type we just built, we must
2178 first left-justify it. */
2179 int bit_size, bit_pos;
2180 ULONGEST mod;
2181
2182 mod = ada_modulus (value_type (arr)) - 1;
2183 bit_size = 0;
2184 while (mod > 0)
2185 {
2186 bit_size += 1;
2187 mod >>= 1;
2188 }
2189 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2190 arr = ada_value_primitive_packed_val (arr, NULL,
2191 bit_pos / HOST_CHAR_BIT,
2192 bit_pos % HOST_CHAR_BIT,
2193 bit_size,
2194 type);
2195 }
2196
2197 return coerce_unspec_val_to_type (arr, type);
2198 }
2199
2200
2201 /* The value of the element of packed array ARR at the ARITY indices
2202 given in IND. ARR must be a simple array. */
2203
2204 static struct value *
2205 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2206 {
2207 int i;
2208 int bits, elt_off, bit_off;
2209 long elt_total_bit_offset;
2210 struct type *elt_type;
2211 struct value *v;
2212
2213 bits = 0;
2214 elt_total_bit_offset = 0;
2215 elt_type = ada_check_typedef (value_type (arr));
2216 for (i = 0; i < arity; i += 1)
2217 {
2218 if (elt_type->code () != TYPE_CODE_ARRAY
2219 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2220 error
2221 (_("attempt to do packed indexing of "
2222 "something other than a packed array"));
2223 else
2224 {
2225 struct type *range_type = elt_type->index_type ();
2226 LONGEST lowerbound, upperbound;
2227 LONGEST idx;
2228
2229 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2230 {
2231 lim_warning (_("don't know bounds of array"));
2232 lowerbound = upperbound = 0;
2233 }
2234
2235 idx = pos_atr (ind[i]);
2236 if (idx < lowerbound || idx > upperbound)
2237 lim_warning (_("packed array index %ld out of bounds"),
2238 (long) idx);
2239 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2240 elt_total_bit_offset += (idx - lowerbound) * bits;
2241 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2242 }
2243 }
2244 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2245 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2246
2247 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2248 bits, elt_type);
2249 return v;
2250 }
2251
2252 /* Non-zero iff TYPE includes negative integer values. */
2253
2254 static int
2255 has_negatives (struct type *type)
2256 {
2257 switch (type->code ())
2258 {
2259 default:
2260 return 0;
2261 case TYPE_CODE_INT:
2262 return !TYPE_UNSIGNED (type);
2263 case TYPE_CODE_RANGE:
2264 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2265 }
2266 }
2267
2268 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2269 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2270 the unpacked buffer.
2271
2272 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2273 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2274
2275 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2276 zero otherwise.
2277
2278 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2279
2280 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2281
2282 static void
2283 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2284 gdb_byte *unpacked, int unpacked_len,
2285 int is_big_endian, int is_signed_type,
2286 int is_scalar)
2287 {
2288 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 int src_idx; /* Index into the source area */
2290 int src_bytes_left; /* Number of source bytes left to process. */
2291 int srcBitsLeft; /* Number of source bits left to move */
2292 int unusedLS; /* Number of bits in next significant
2293 byte of source that are unused */
2294
2295 int unpacked_idx; /* Index into the unpacked buffer */
2296 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2297
2298 unsigned long accum; /* Staging area for bits being transferred */
2299 int accumSize; /* Number of meaningful bits in accum */
2300 unsigned char sign;
2301
2302 /* Transmit bytes from least to most significant; delta is the direction
2303 the indices move. */
2304 int delta = is_big_endian ? -1 : 1;
2305
2306 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2307 bits from SRC. .*/
2308 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2309 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2310 bit_size, unpacked_len);
2311
2312 srcBitsLeft = bit_size;
2313 src_bytes_left = src_len;
2314 unpacked_bytes_left = unpacked_len;
2315 sign = 0;
2316
2317 if (is_big_endian)
2318 {
2319 src_idx = src_len - 1;
2320 if (is_signed_type
2321 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2322 sign = ~0;
2323
2324 unusedLS =
2325 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2326 % HOST_CHAR_BIT;
2327
2328 if (is_scalar)
2329 {
2330 accumSize = 0;
2331 unpacked_idx = unpacked_len - 1;
2332 }
2333 else
2334 {
2335 /* Non-scalar values must be aligned at a byte boundary... */
2336 accumSize =
2337 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2338 /* ... And are placed at the beginning (most-significant) bytes
2339 of the target. */
2340 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2341 unpacked_bytes_left = unpacked_idx + 1;
2342 }
2343 }
2344 else
2345 {
2346 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2347
2348 src_idx = unpacked_idx = 0;
2349 unusedLS = bit_offset;
2350 accumSize = 0;
2351
2352 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2353 sign = ~0;
2354 }
2355
2356 accum = 0;
2357 while (src_bytes_left > 0)
2358 {
2359 /* Mask for removing bits of the next source byte that are not
2360 part of the value. */
2361 unsigned int unusedMSMask =
2362 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2363 1;
2364 /* Sign-extend bits for this byte. */
2365 unsigned int signMask = sign & ~unusedMSMask;
2366
2367 accum |=
2368 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2369 accumSize += HOST_CHAR_BIT - unusedLS;
2370 if (accumSize >= HOST_CHAR_BIT)
2371 {
2372 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2373 accumSize -= HOST_CHAR_BIT;
2374 accum >>= HOST_CHAR_BIT;
2375 unpacked_bytes_left -= 1;
2376 unpacked_idx += delta;
2377 }
2378 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2379 unusedLS = 0;
2380 src_bytes_left -= 1;
2381 src_idx += delta;
2382 }
2383 while (unpacked_bytes_left > 0)
2384 {
2385 accum |= sign << accumSize;
2386 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2387 accumSize -= HOST_CHAR_BIT;
2388 if (accumSize < 0)
2389 accumSize = 0;
2390 accum >>= HOST_CHAR_BIT;
2391 unpacked_bytes_left -= 1;
2392 unpacked_idx += delta;
2393 }
2394 }
2395
2396 /* Create a new value of type TYPE from the contents of OBJ starting
2397 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2398 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2399 assigning through the result will set the field fetched from.
2400 VALADDR is ignored unless OBJ is NULL, in which case,
2401 VALADDR+OFFSET must address the start of storage containing the
2402 packed value. The value returned in this case is never an lval.
2403 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2404
2405 struct value *
2406 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2407 long offset, int bit_offset, int bit_size,
2408 struct type *type)
2409 {
2410 struct value *v;
2411 const gdb_byte *src; /* First byte containing data to unpack */
2412 gdb_byte *unpacked;
2413 const int is_scalar = is_scalar_type (type);
2414 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2415 gdb::byte_vector staging;
2416
2417 type = ada_check_typedef (type);
2418
2419 if (obj == NULL)
2420 src = valaddr + offset;
2421 else
2422 src = value_contents (obj) + offset;
2423
2424 if (is_dynamic_type (type))
2425 {
2426 /* The length of TYPE might by dynamic, so we need to resolve
2427 TYPE in order to know its actual size, which we then use
2428 to create the contents buffer of the value we return.
2429 The difficulty is that the data containing our object is
2430 packed, and therefore maybe not at a byte boundary. So, what
2431 we do, is unpack the data into a byte-aligned buffer, and then
2432 use that buffer as our object's value for resolving the type. */
2433 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2434 staging.resize (staging_len);
2435
2436 ada_unpack_from_contents (src, bit_offset, bit_size,
2437 staging.data (), staging.size (),
2438 is_big_endian, has_negatives (type),
2439 is_scalar);
2440 type = resolve_dynamic_type (type, staging, 0);
2441 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2442 {
2443 /* This happens when the length of the object is dynamic,
2444 and is actually smaller than the space reserved for it.
2445 For instance, in an array of variant records, the bit_size
2446 we're given is the array stride, which is constant and
2447 normally equal to the maximum size of its element.
2448 But, in reality, each element only actually spans a portion
2449 of that stride. */
2450 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2451 }
2452 }
2453
2454 if (obj == NULL)
2455 {
2456 v = allocate_value (type);
2457 src = valaddr + offset;
2458 }
2459 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2460 {
2461 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2462 gdb_byte *buf;
2463
2464 v = value_at (type, value_address (obj) + offset);
2465 buf = (gdb_byte *) alloca (src_len);
2466 read_memory (value_address (v), buf, src_len);
2467 src = buf;
2468 }
2469 else
2470 {
2471 v = allocate_value (type);
2472 src = value_contents (obj) + offset;
2473 }
2474
2475 if (obj != NULL)
2476 {
2477 long new_offset = offset;
2478
2479 set_value_component_location (v, obj);
2480 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2481 set_value_bitsize (v, bit_size);
2482 if (value_bitpos (v) >= HOST_CHAR_BIT)
2483 {
2484 ++new_offset;
2485 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2486 }
2487 set_value_offset (v, new_offset);
2488
2489 /* Also set the parent value. This is needed when trying to
2490 assign a new value (in inferior memory). */
2491 set_value_parent (v, obj);
2492 }
2493 else
2494 set_value_bitsize (v, bit_size);
2495 unpacked = value_contents_writeable (v);
2496
2497 if (bit_size == 0)
2498 {
2499 memset (unpacked, 0, TYPE_LENGTH (type));
2500 return v;
2501 }
2502
2503 if (staging.size () == TYPE_LENGTH (type))
2504 {
2505 /* Small short-cut: If we've unpacked the data into a buffer
2506 of the same size as TYPE's length, then we can reuse that,
2507 instead of doing the unpacking again. */
2508 memcpy (unpacked, staging.data (), staging.size ());
2509 }
2510 else
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 unpacked, TYPE_LENGTH (type),
2513 is_big_endian, has_negatives (type), is_scalar);
2514
2515 return v;
2516 }
2517
2518 /* Store the contents of FROMVAL into the location of TOVAL.
2519 Return a new value with the location of TOVAL and contents of
2520 FROMVAL. Handles assignment into packed fields that have
2521 floating-point or non-scalar types. */
2522
2523 static struct value *
2524 ada_value_assign (struct value *toval, struct value *fromval)
2525 {
2526 struct type *type = value_type (toval);
2527 int bits = value_bitsize (toval);
2528
2529 toval = ada_coerce_ref (toval);
2530 fromval = ada_coerce_ref (fromval);
2531
2532 if (ada_is_direct_array_type (value_type (toval)))
2533 toval = ada_coerce_to_simple_array (toval);
2534 if (ada_is_direct_array_type (value_type (fromval)))
2535 fromval = ada_coerce_to_simple_array (fromval);
2536
2537 if (!deprecated_value_modifiable (toval))
2538 error (_("Left operand of assignment is not a modifiable lvalue."));
2539
2540 if (VALUE_LVAL (toval) == lval_memory
2541 && bits > 0
2542 && (type->code () == TYPE_CODE_FLT
2543 || type->code () == TYPE_CODE_STRUCT))
2544 {
2545 int len = (value_bitpos (toval)
2546 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2547 int from_size;
2548 gdb_byte *buffer = (gdb_byte *) alloca (len);
2549 struct value *val;
2550 CORE_ADDR to_addr = value_address (toval);
2551
2552 if (type->code () == TYPE_CODE_FLT)
2553 fromval = value_cast (type, fromval);
2554
2555 read_memory (to_addr, buffer, len);
2556 from_size = value_bitsize (fromval);
2557 if (from_size == 0)
2558 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2559
2560 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2561 ULONGEST from_offset = 0;
2562 if (is_big_endian && is_scalar_type (value_type (fromval)))
2563 from_offset = from_size - bits;
2564 copy_bitwise (buffer, value_bitpos (toval),
2565 value_contents (fromval), from_offset,
2566 bits, is_big_endian);
2567 write_memory_with_notification (to_addr, buffer, len);
2568
2569 val = value_copy (toval);
2570 memcpy (value_contents_raw (val), value_contents (fromval),
2571 TYPE_LENGTH (type));
2572 deprecated_set_value_type (val, type);
2573
2574 return val;
2575 }
2576
2577 return value_assign (toval, fromval);
2578 }
2579
2580
2581 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2582 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2583 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2584 COMPONENT, and not the inferior's memory. The current contents
2585 of COMPONENT are ignored.
2586
2587 Although not part of the initial design, this function also works
2588 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2589 had a null address, and COMPONENT had an address which is equal to
2590 its offset inside CONTAINER. */
2591
2592 static void
2593 value_assign_to_component (struct value *container, struct value *component,
2594 struct value *val)
2595 {
2596 LONGEST offset_in_container =
2597 (LONGEST) (value_address (component) - value_address (container));
2598 int bit_offset_in_container =
2599 value_bitpos (component) - value_bitpos (container);
2600 int bits;
2601
2602 val = value_cast (value_type (component), val);
2603
2604 if (value_bitsize (component) == 0)
2605 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2606 else
2607 bits = value_bitsize (component);
2608
2609 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2610 {
2611 int src_offset;
2612
2613 if (is_scalar_type (check_typedef (value_type (component))))
2614 src_offset
2615 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2616 else
2617 src_offset = 0;
2618 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2619 value_bitpos (container) + bit_offset_in_container,
2620 value_contents (val), src_offset, bits, 1);
2621 }
2622 else
2623 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2624 value_bitpos (container) + bit_offset_in_container,
2625 value_contents (val), 0, bits, 0);
2626 }
2627
2628 /* Determine if TYPE is an access to an unconstrained array. */
2629
2630 bool
2631 ada_is_access_to_unconstrained_array (struct type *type)
2632 {
2633 return (type->code () == TYPE_CODE_TYPEDEF
2634 && is_thick_pntr (ada_typedef_target_type (type)));
2635 }
2636
2637 /* The value of the element of array ARR at the ARITY indices given in IND.
2638 ARR may be either a simple array, GNAT array descriptor, or pointer
2639 thereto. */
2640
2641 struct value *
2642 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2643 {
2644 int k;
2645 struct value *elt;
2646 struct type *elt_type;
2647
2648 elt = ada_coerce_to_simple_array (arr);
2649
2650 elt_type = ada_check_typedef (value_type (elt));
2651 if (elt_type->code () == TYPE_CODE_ARRAY
2652 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2653 return value_subscript_packed (elt, arity, ind);
2654
2655 for (k = 0; k < arity; k += 1)
2656 {
2657 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2658
2659 if (elt_type->code () != TYPE_CODE_ARRAY)
2660 error (_("too many subscripts (%d expected)"), k);
2661
2662 elt = value_subscript (elt, pos_atr (ind[k]));
2663
2664 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2665 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2666 {
2667 /* The element is a typedef to an unconstrained array,
2668 except that the value_subscript call stripped the
2669 typedef layer. The typedef layer is GNAT's way to
2670 specify that the element is, at the source level, an
2671 access to the unconstrained array, rather than the
2672 unconstrained array. So, we need to restore that
2673 typedef layer, which we can do by forcing the element's
2674 type back to its original type. Otherwise, the returned
2675 value is going to be printed as the array, rather
2676 than as an access. Another symptom of the same issue
2677 would be that an expression trying to dereference the
2678 element would also be improperly rejected. */
2679 deprecated_set_value_type (elt, saved_elt_type);
2680 }
2681
2682 elt_type = ada_check_typedef (value_type (elt));
2683 }
2684
2685 return elt;
2686 }
2687
2688 /* Assuming ARR is a pointer to a GDB array, the value of the element
2689 of *ARR at the ARITY indices given in IND.
2690 Does not read the entire array into memory.
2691
2692 Note: Unlike what one would expect, this function is used instead of
2693 ada_value_subscript for basically all non-packed array types. The reason
2694 for this is that a side effect of doing our own pointer arithmetics instead
2695 of relying on value_subscript is that there is no implicit typedef peeling.
2696 This is important for arrays of array accesses, where it allows us to
2697 preserve the fact that the array's element is an array access, where the
2698 access part os encoded in a typedef layer. */
2699
2700 static struct value *
2701 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2702 {
2703 int k;
2704 struct value *array_ind = ada_value_ind (arr);
2705 struct type *type
2706 = check_typedef (value_enclosing_type (array_ind));
2707
2708 if (type->code () == TYPE_CODE_ARRAY
2709 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2710 return value_subscript_packed (array_ind, arity, ind);
2711
2712 for (k = 0; k < arity; k += 1)
2713 {
2714 LONGEST lwb, upb;
2715
2716 if (type->code () != TYPE_CODE_ARRAY)
2717 error (_("too many subscripts (%d expected)"), k);
2718 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2719 value_copy (arr));
2720 get_discrete_bounds (type->index_type (), &lwb, &upb);
2721 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2722 type = TYPE_TARGET_TYPE (type);
2723 }
2724
2725 return value_ind (arr);
2726 }
2727
2728 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2729 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2730 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2731 this array is LOW, as per Ada rules. */
2732 static struct value *
2733 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2734 int low, int high)
2735 {
2736 struct type *type0 = ada_check_typedef (type);
2737 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2738 struct type *index_type
2739 = create_static_range_type (NULL, base_index_type, low, high);
2740 struct type *slice_type = create_array_type_with_stride
2741 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2742 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2743 TYPE_FIELD_BITSIZE (type0, 0));
2744 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2745 LONGEST base_low_pos, low_pos;
2746 CORE_ADDR base;
2747
2748 if (!discrete_position (base_index_type, low, &low_pos)
2749 || !discrete_position (base_index_type, base_low, &base_low_pos))
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
2755
2756 base = value_as_address (array_ptr)
2757 + ((low_pos - base_low_pos)
2758 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2759 return value_at_lazy (slice_type, base);
2760 }
2761
2762
2763 static struct value *
2764 ada_value_slice (struct value *array, int low, int high)
2765 {
2766 struct type *type = ada_check_typedef (value_type (array));
2767 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2768 struct type *index_type
2769 = create_static_range_type (NULL, type->index_type (), low, high);
2770 struct type *slice_type = create_array_type_with_stride
2771 (NULL, TYPE_TARGET_TYPE (type), index_type,
2772 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2773 TYPE_FIELD_BITSIZE (type, 0));
2774 LONGEST low_pos, high_pos;
2775
2776 if (!discrete_position (base_index_type, low, &low_pos)
2777 || !discrete_position (base_index_type, high, &high_pos))
2778 {
2779 warning (_("unable to get positions in slice, use bounds instead"));
2780 low_pos = low;
2781 high_pos = high;
2782 }
2783
2784 return value_cast (slice_type,
2785 value_slice (array, low, high_pos - low_pos + 1));
2786 }
2787
2788 /* If type is a record type in the form of a standard GNAT array
2789 descriptor, returns the number of dimensions for type. If arr is a
2790 simple array, returns the number of "array of"s that prefix its
2791 type designation. Otherwise, returns 0. */
2792
2793 int
2794 ada_array_arity (struct type *type)
2795 {
2796 int arity;
2797
2798 if (type == NULL)
2799 return 0;
2800
2801 type = desc_base_type (type);
2802
2803 arity = 0;
2804 if (type->code () == TYPE_CODE_STRUCT)
2805 return desc_arity (desc_bounds_type (type));
2806 else
2807 while (type->code () == TYPE_CODE_ARRAY)
2808 {
2809 arity += 1;
2810 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2811 }
2812
2813 return arity;
2814 }
2815
2816 /* If TYPE is a record type in the form of a standard GNAT array
2817 descriptor or a simple array type, returns the element type for
2818 TYPE after indexing by NINDICES indices, or by all indices if
2819 NINDICES is -1. Otherwise, returns NULL. */
2820
2821 struct type *
2822 ada_array_element_type (struct type *type, int nindices)
2823 {
2824 type = desc_base_type (type);
2825
2826 if (type->code () == TYPE_CODE_STRUCT)
2827 {
2828 int k;
2829 struct type *p_array_type;
2830
2831 p_array_type = desc_data_target_type (type);
2832
2833 k = ada_array_arity (type);
2834 if (k == 0)
2835 return NULL;
2836
2837 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2838 if (nindices >= 0 && k > nindices)
2839 k = nindices;
2840 while (k > 0 && p_array_type != NULL)
2841 {
2842 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2843 k -= 1;
2844 }
2845 return p_array_type;
2846 }
2847 else if (type->code () == TYPE_CODE_ARRAY)
2848 {
2849 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2850 {
2851 type = TYPE_TARGET_TYPE (type);
2852 nindices -= 1;
2853 }
2854 return type;
2855 }
2856
2857 return NULL;
2858 }
2859
2860 /* The type of nth index in arrays of given type (n numbering from 1).
2861 Does not examine memory. Throws an error if N is invalid or TYPE
2862 is not an array type. NAME is the name of the Ada attribute being
2863 evaluated ('range, 'first, 'last, or 'length); it is used in building
2864 the error message. */
2865
2866 static struct type *
2867 ada_index_type (struct type *type, int n, const char *name)
2868 {
2869 struct type *result_type;
2870
2871 type = desc_base_type (type);
2872
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2875
2876 if (ada_is_simple_array_type (type))
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
2881 type = TYPE_TARGET_TYPE (type);
2882 result_type = TYPE_TARGET_TYPE (type->index_type ());
2883 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2884 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2885 perhaps stabsread.c would make more sense. */
2886 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2887 result_type = NULL;
2888 }
2889 else
2890 {
2891 result_type = desc_index_type (desc_bounds_type (type), n);
2892 if (result_type == NULL)
2893 error (_("attempt to take bound of something that is not an array"));
2894 }
2895
2896 return result_type;
2897 }
2898
2899 /* Given that arr is an array type, returns the lower bound of the
2900 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2901 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2902 array-descriptor type. It works for other arrays with bounds supplied
2903 by run-time quantities other than discriminants. */
2904
2905 static LONGEST
2906 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2907 {
2908 struct type *type, *index_type_desc, *index_type;
2909 int i;
2910
2911 gdb_assert (which == 0 || which == 1);
2912
2913 if (ada_is_constrained_packed_array_type (arr_type))
2914 arr_type = decode_constrained_packed_array_type (arr_type);
2915
2916 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2917 return (LONGEST) - which;
2918
2919 if (arr_type->code () == TYPE_CODE_PTR)
2920 type = TYPE_TARGET_TYPE (arr_type);
2921 else
2922 type = arr_type;
2923
2924 if (TYPE_FIXED_INSTANCE (type))
2925 {
2926 /* The array has already been fixed, so we do not need to
2927 check the parallel ___XA type again. That encoding has
2928 already been applied, so ignore it now. */
2929 index_type_desc = NULL;
2930 }
2931 else
2932 {
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
2934 ada_fixup_array_indexes_type (index_type_desc);
2935 }
2936
2937 if (index_type_desc != NULL)
2938 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2939 NULL);
2940 else
2941 {
2942 struct type *elt_type = check_typedef (type);
2943
2944 for (i = 1; i < n; i++)
2945 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2946
2947 index_type = elt_type->index_type ();
2948 }
2949
2950 return
2951 (LONGEST) (which == 0
2952 ? ada_discrete_type_low_bound (index_type)
2953 : ada_discrete_type_high_bound (index_type));
2954 }
2955
2956 /* Given that arr is an array value, returns the lower bound of the
2957 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2958 WHICH is 1. This routine will also work for arrays with bounds
2959 supplied by run-time quantities other than discriminants. */
2960
2961 static LONGEST
2962 ada_array_bound (struct value *arr, int n, int which)
2963 {
2964 struct type *arr_type;
2965
2966 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2967 arr = value_ind (arr);
2968 arr_type = value_enclosing_type (arr);
2969
2970 if (ada_is_constrained_packed_array_type (arr_type))
2971 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2972 else if (ada_is_simple_array_type (arr_type))
2973 return ada_array_bound_from_type (arr_type, n, which);
2974 else
2975 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2976 }
2977
2978 /* Given that arr is an array value, returns the length of the
2979 nth index. This routine will also work for arrays with bounds
2980 supplied by run-time quantities other than discriminants.
2981 Does not work for arrays indexed by enumeration types with representation
2982 clauses at the moment. */
2983
2984 static LONGEST
2985 ada_array_length (struct value *arr, int n)
2986 {
2987 struct type *arr_type, *index_type;
2988 int low, high;
2989
2990 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2991 arr = value_ind (arr);
2992 arr_type = value_enclosing_type (arr);
2993
2994 if (ada_is_constrained_packed_array_type (arr_type))
2995 return ada_array_length (decode_constrained_packed_array (arr), n);
2996
2997 if (ada_is_simple_array_type (arr_type))
2998 {
2999 low = ada_array_bound_from_type (arr_type, n, 0);
3000 high = ada_array_bound_from_type (arr_type, n, 1);
3001 }
3002 else
3003 {
3004 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3005 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3006 }
3007
3008 arr_type = check_typedef (arr_type);
3009 index_type = ada_index_type (arr_type, n, "length");
3010 if (index_type != NULL)
3011 {
3012 struct type *base_type;
3013 if (index_type->code () == TYPE_CODE_RANGE)
3014 base_type = TYPE_TARGET_TYPE (index_type);
3015 else
3016 base_type = index_type;
3017
3018 low = pos_atr (value_from_longest (base_type, low));
3019 high = pos_atr (value_from_longest (base_type, high));
3020 }
3021 return high - low + 1;
3022 }
3023
3024 /* An array whose type is that of ARR_TYPE (an array type), with
3025 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3026 less than LOW, then LOW-1 is used. */
3027
3028 static struct value *
3029 empty_array (struct type *arr_type, int low, int high)
3030 {
3031 struct type *arr_type0 = ada_check_typedef (arr_type);
3032 struct type *index_type
3033 = create_static_range_type
3034 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3035 high < low ? low - 1 : high);
3036 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3037
3038 return allocate_value (create_array_type (NULL, elt_type, index_type));
3039 }
3040 \f
3041
3042 /* Name resolution */
3043
3044 /* The "decoded" name for the user-definable Ada operator corresponding
3045 to OP. */
3046
3047 static const char *
3048 ada_decoded_op_name (enum exp_opcode op)
3049 {
3050 int i;
3051
3052 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3053 {
3054 if (ada_opname_table[i].op == op)
3055 return ada_opname_table[i].decoded;
3056 }
3057 error (_("Could not find operator name for opcode"));
3058 }
3059
3060 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3061 in a listing of choices during disambiguation (see sort_choices, below).
3062 The idea is that overloadings of a subprogram name from the
3063 same package should sort in their source order. We settle for ordering
3064 such symbols by their trailing number (__N or $N). */
3065
3066 static int
3067 encoded_ordered_before (const char *N0, const char *N1)
3068 {
3069 if (N1 == NULL)
3070 return 0;
3071 else if (N0 == NULL)
3072 return 1;
3073 else
3074 {
3075 int k0, k1;
3076
3077 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3078 ;
3079 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3080 ;
3081 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3082 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3083 {
3084 int n0, n1;
3085
3086 n0 = k0;
3087 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3088 n0 -= 1;
3089 n1 = k1;
3090 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3091 n1 -= 1;
3092 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3093 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3094 }
3095 return (strcmp (N0, N1) < 0);
3096 }
3097 }
3098
3099 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3100 encoded names. */
3101
3102 static void
3103 sort_choices (struct block_symbol syms[], int nsyms)
3104 {
3105 int i;
3106
3107 for (i = 1; i < nsyms; i += 1)
3108 {
3109 struct block_symbol sym = syms[i];
3110 int j;
3111
3112 for (j = i - 1; j >= 0; j -= 1)
3113 {
3114 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3115 sym.symbol->linkage_name ()))
3116 break;
3117 syms[j + 1] = syms[j];
3118 }
3119 syms[j + 1] = sym;
3120 }
3121 }
3122
3123 /* Whether GDB should display formals and return types for functions in the
3124 overloads selection menu. */
3125 static bool print_signatures = true;
3126
3127 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3128 all but functions, the signature is just the name of the symbol. For
3129 functions, this is the name of the function, the list of types for formals
3130 and the return type (if any). */
3131
3132 static void
3133 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3134 const struct type_print_options *flags)
3135 {
3136 struct type *type = SYMBOL_TYPE (sym);
3137
3138 fprintf_filtered (stream, "%s", sym->print_name ());
3139 if (!print_signatures
3140 || type == NULL
3141 || type->code () != TYPE_CODE_FUNC)
3142 return;
3143
3144 if (type->num_fields () > 0)
3145 {
3146 int i;
3147
3148 fprintf_filtered (stream, " (");
3149 for (i = 0; i < type->num_fields (); ++i)
3150 {
3151 if (i > 0)
3152 fprintf_filtered (stream, "; ");
3153 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3154 flags);
3155 }
3156 fprintf_filtered (stream, ")");
3157 }
3158 if (TYPE_TARGET_TYPE (type) != NULL
3159 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3160 {
3161 fprintf_filtered (stream, " return ");
3162 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3163 }
3164 }
3165
3166 /* Read and validate a set of numeric choices from the user in the
3167 range 0 .. N_CHOICES-1. Place the results in increasing
3168 order in CHOICES[0 .. N-1], and return N.
3169
3170 The user types choices as a sequence of numbers on one line
3171 separated by blanks, encoding them as follows:
3172
3173 + A choice of 0 means to cancel the selection, throwing an error.
3174 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3175 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3176
3177 The user is not allowed to choose more than MAX_RESULTS values.
3178
3179 ANNOTATION_SUFFIX, if present, is used to annotate the input
3180 prompts (for use with the -f switch). */
3181
3182 static int
3183 get_selections (int *choices, int n_choices, int max_results,
3184 int is_all_choice, const char *annotation_suffix)
3185 {
3186 const char *args;
3187 const char *prompt;
3188 int n_chosen;
3189 int first_choice = is_all_choice ? 2 : 1;
3190
3191 prompt = getenv ("PS2");
3192 if (prompt == NULL)
3193 prompt = "> ";
3194
3195 args = command_line_input (prompt, annotation_suffix);
3196
3197 if (args == NULL)
3198 error_no_arg (_("one or more choice numbers"));
3199
3200 n_chosen = 0;
3201
3202 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3203 order, as given in args. Choices are validated. */
3204 while (1)
3205 {
3206 char *args2;
3207 int choice, j;
3208
3209 args = skip_spaces (args);
3210 if (*args == '\0' && n_chosen == 0)
3211 error_no_arg (_("one or more choice numbers"));
3212 else if (*args == '\0')
3213 break;
3214
3215 choice = strtol (args, &args2, 10);
3216 if (args == args2 || choice < 0
3217 || choice > n_choices + first_choice - 1)
3218 error (_("Argument must be choice number"));
3219 args = args2;
3220
3221 if (choice == 0)
3222 error (_("cancelled"));
3223
3224 if (choice < first_choice)
3225 {
3226 n_chosen = n_choices;
3227 for (j = 0; j < n_choices; j += 1)
3228 choices[j] = j;
3229 break;
3230 }
3231 choice -= first_choice;
3232
3233 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3234 {
3235 }
3236
3237 if (j < 0 || choice != choices[j])
3238 {
3239 int k;
3240
3241 for (k = n_chosen - 1; k > j; k -= 1)
3242 choices[k + 1] = choices[k];
3243 choices[j + 1] = choice;
3244 n_chosen += 1;
3245 }
3246 }
3247
3248 if (n_chosen > max_results)
3249 error (_("Select no more than %d of the above"), max_results);
3250
3251 return n_chosen;
3252 }
3253
3254 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3255 by asking the user (if necessary), returning the number selected,
3256 and setting the first elements of SYMS items. Error if no symbols
3257 selected. */
3258
3259 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3260 to be re-integrated one of these days. */
3261
3262 static int
3263 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3264 {
3265 int i;
3266 int *chosen = XALLOCAVEC (int , nsyms);
3267 int n_chosen;
3268 int first_choice = (max_results == 1) ? 1 : 2;
3269 const char *select_mode = multiple_symbols_select_mode ();
3270
3271 if (max_results < 1)
3272 error (_("Request to select 0 symbols!"));
3273 if (nsyms <= 1)
3274 return nsyms;
3275
3276 if (select_mode == multiple_symbols_cancel)
3277 error (_("\
3278 canceled because the command is ambiguous\n\
3279 See set/show multiple-symbol."));
3280
3281 /* If select_mode is "all", then return all possible symbols.
3282 Only do that if more than one symbol can be selected, of course.
3283 Otherwise, display the menu as usual. */
3284 if (select_mode == multiple_symbols_all && max_results > 1)
3285 return nsyms;
3286
3287 printf_filtered (_("[0] cancel\n"));
3288 if (max_results > 1)
3289 printf_filtered (_("[1] all\n"));
3290
3291 sort_choices (syms, nsyms);
3292
3293 for (i = 0; i < nsyms; i += 1)
3294 {
3295 if (syms[i].symbol == NULL)
3296 continue;
3297
3298 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3299 {
3300 struct symtab_and_line sal =
3301 find_function_start_sal (syms[i].symbol, 1);
3302
3303 printf_filtered ("[%d] ", i + first_choice);
3304 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3305 &type_print_raw_options);
3306 if (sal.symtab == NULL)
3307 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3308 metadata_style.style ().ptr (), nullptr, sal.line);
3309 else
3310 printf_filtered
3311 (_(" at %ps:%d\n"),
3312 styled_string (file_name_style.style (),
3313 symtab_to_filename_for_display (sal.symtab)),
3314 sal.line);
3315 continue;
3316 }
3317 else
3318 {
3319 int is_enumeral =
3320 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3321 && SYMBOL_TYPE (syms[i].symbol) != NULL
3322 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3323 struct symtab *symtab = NULL;
3324
3325 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3326 symtab = symbol_symtab (syms[i].symbol);
3327
3328 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3329 {
3330 printf_filtered ("[%d] ", i + first_choice);
3331 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3332 &type_print_raw_options);
3333 printf_filtered (_(" at %s:%d\n"),
3334 symtab_to_filename_for_display (symtab),
3335 SYMBOL_LINE (syms[i].symbol));
3336 }
3337 else if (is_enumeral
3338 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3339 {
3340 printf_filtered (("[%d] "), i + first_choice);
3341 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3342 gdb_stdout, -1, 0, &type_print_raw_options);
3343 printf_filtered (_("'(%s) (enumeral)\n"),
3344 syms[i].symbol->print_name ());
3345 }
3346 else
3347 {
3348 printf_filtered ("[%d] ", i + first_choice);
3349 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3350 &type_print_raw_options);
3351
3352 if (symtab != NULL)
3353 printf_filtered (is_enumeral
3354 ? _(" in %s (enumeral)\n")
3355 : _(" at %s:?\n"),
3356 symtab_to_filename_for_display (symtab));
3357 else
3358 printf_filtered (is_enumeral
3359 ? _(" (enumeral)\n")
3360 : _(" at ?\n"));
3361 }
3362 }
3363 }
3364
3365 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3366 "overload-choice");
3367
3368 for (i = 0; i < n_chosen; i += 1)
3369 syms[i] = syms[chosen[i]];
3370
3371 return n_chosen;
3372 }
3373
3374 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3375 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3376 undefined namespace) and converts operators that are
3377 user-defined into appropriate function calls. If CONTEXT_TYPE is
3378 non-null, it provides a preferred result type [at the moment, only
3379 type void has any effect---causing procedures to be preferred over
3380 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3381 return type is preferred. May change (expand) *EXP. */
3382
3383 static void
3384 resolve (expression_up *expp, int void_context_p, int parse_completion,
3385 innermost_block_tracker *tracker)
3386 {
3387 struct type *context_type = NULL;
3388 int pc = 0;
3389
3390 if (void_context_p)
3391 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3392
3393 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3394 }
3395
3396 /* Resolve the operator of the subexpression beginning at
3397 position *POS of *EXPP. "Resolving" consists of replacing
3398 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3399 with their resolutions, replacing built-in operators with
3400 function calls to user-defined operators, where appropriate, and,
3401 when DEPROCEDURE_P is non-zero, converting function-valued variables
3402 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3403 are as in ada_resolve, above. */
3404
3405 static struct value *
3406 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3407 struct type *context_type, int parse_completion,
3408 innermost_block_tracker *tracker)
3409 {
3410 int pc = *pos;
3411 int i;
3412 struct expression *exp; /* Convenience: == *expp. */
3413 enum exp_opcode op = (*expp)->elts[pc].opcode;
3414 struct value **argvec; /* Vector of operand types (alloca'ed). */
3415 int nargs; /* Number of operands. */
3416 int oplen;
3417
3418 argvec = NULL;
3419 nargs = 0;
3420 exp = expp->get ();
3421
3422 /* Pass one: resolve operands, saving their types and updating *pos,
3423 if needed. */
3424 switch (op)
3425 {
3426 case OP_FUNCALL:
3427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3429 *pos += 7;
3430 else
3431 {
3432 *pos += 3;
3433 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3434 }
3435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3436 break;
3437
3438 case UNOP_ADDR:
3439 *pos += 1;
3440 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3441 break;
3442
3443 case UNOP_QUAL:
3444 *pos += 3;
3445 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3446 parse_completion, tracker);
3447 break;
3448
3449 case OP_ATR_MODULUS:
3450 case OP_ATR_SIZE:
3451 case OP_ATR_TAG:
3452 case OP_ATR_FIRST:
3453 case OP_ATR_LAST:
3454 case OP_ATR_LENGTH:
3455 case OP_ATR_POS:
3456 case OP_ATR_VAL:
3457 case OP_ATR_MIN:
3458 case OP_ATR_MAX:
3459 case TERNOP_IN_RANGE:
3460 case BINOP_IN_BOUNDS:
3461 case UNOP_IN_RANGE:
3462 case OP_AGGREGATE:
3463 case OP_OTHERS:
3464 case OP_CHOICES:
3465 case OP_POSITIONAL:
3466 case OP_DISCRETE_RANGE:
3467 case OP_NAME:
3468 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3469 *pos += oplen;
3470 break;
3471
3472 case BINOP_ASSIGN:
3473 {
3474 struct value *arg1;
3475
3476 *pos += 1;
3477 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3478 if (arg1 == NULL)
3479 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3480 else
3481 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3482 tracker);
3483 break;
3484 }
3485
3486 case UNOP_CAST:
3487 *pos += 3;
3488 nargs = 1;
3489 break;
3490
3491 case BINOP_ADD:
3492 case BINOP_SUB:
3493 case BINOP_MUL:
3494 case BINOP_DIV:
3495 case BINOP_REM:
3496 case BINOP_MOD:
3497 case BINOP_EXP:
3498 case BINOP_CONCAT:
3499 case BINOP_LOGICAL_AND:
3500 case BINOP_LOGICAL_OR:
3501 case BINOP_BITWISE_AND:
3502 case BINOP_BITWISE_IOR:
3503 case BINOP_BITWISE_XOR:
3504
3505 case BINOP_EQUAL:
3506 case BINOP_NOTEQUAL:
3507 case BINOP_LESS:
3508 case BINOP_GTR:
3509 case BINOP_LEQ:
3510 case BINOP_GEQ:
3511
3512 case BINOP_REPEAT:
3513 case BINOP_SUBSCRIPT:
3514 case BINOP_COMMA:
3515 *pos += 1;
3516 nargs = 2;
3517 break;
3518
3519 case UNOP_NEG:
3520 case UNOP_PLUS:
3521 case UNOP_LOGICAL_NOT:
3522 case UNOP_ABS:
3523 case UNOP_IND:
3524 *pos += 1;
3525 nargs = 1;
3526 break;
3527
3528 case OP_LONG:
3529 case OP_FLOAT:
3530 case OP_VAR_VALUE:
3531 case OP_VAR_MSYM_VALUE:
3532 *pos += 4;
3533 break;
3534
3535 case OP_TYPE:
3536 case OP_BOOL:
3537 case OP_LAST:
3538 case OP_INTERNALVAR:
3539 *pos += 3;
3540 break;
3541
3542 case UNOP_MEMVAL:
3543 *pos += 3;
3544 nargs = 1;
3545 break;
3546
3547 case OP_REGISTER:
3548 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3549 break;
3550
3551 case STRUCTOP_STRUCT:
3552 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3553 nargs = 1;
3554 break;
3555
3556 case TERNOP_SLICE:
3557 *pos += 1;
3558 nargs = 3;
3559 break;
3560
3561 case OP_STRING:
3562 break;
3563
3564 default:
3565 error (_("Unexpected operator during name resolution"));
3566 }
3567
3568 argvec = XALLOCAVEC (struct value *, nargs + 1);
3569 for (i = 0; i < nargs; i += 1)
3570 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3571 tracker);
3572 argvec[i] = NULL;
3573 exp = expp->get ();
3574
3575 /* Pass two: perform any resolution on principal operator. */
3576 switch (op)
3577 {
3578 default:
3579 break;
3580
3581 case OP_VAR_VALUE:
3582 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3583 {
3584 std::vector<struct block_symbol> candidates;
3585 int n_candidates;
3586
3587 n_candidates =
3588 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3589 exp->elts[pc + 1].block, VAR_DOMAIN,
3590 &candidates);
3591
3592 if (n_candidates > 1)
3593 {
3594 /* Types tend to get re-introduced locally, so if there
3595 are any local symbols that are not types, first filter
3596 out all types. */
3597 int j;
3598 for (j = 0; j < n_candidates; j += 1)
3599 switch (SYMBOL_CLASS (candidates[j].symbol))
3600 {
3601 case LOC_REGISTER:
3602 case LOC_ARG:
3603 case LOC_REF_ARG:
3604 case LOC_REGPARM_ADDR:
3605 case LOC_LOCAL:
3606 case LOC_COMPUTED:
3607 goto FoundNonType;
3608 default:
3609 break;
3610 }
3611 FoundNonType:
3612 if (j < n_candidates)
3613 {
3614 j = 0;
3615 while (j < n_candidates)
3616 {
3617 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3618 {
3619 candidates[j] = candidates[n_candidates - 1];
3620 n_candidates -= 1;
3621 }
3622 else
3623 j += 1;
3624 }
3625 }
3626 }
3627
3628 if (n_candidates == 0)
3629 error (_("No definition found for %s"),
3630 exp->elts[pc + 2].symbol->print_name ());
3631 else if (n_candidates == 1)
3632 i = 0;
3633 else if (deprocedure_p
3634 && !is_nonfunction (candidates.data (), n_candidates))
3635 {
3636 i = ada_resolve_function
3637 (candidates.data (), n_candidates, NULL, 0,
3638 exp->elts[pc + 2].symbol->linkage_name (),
3639 context_type, parse_completion);
3640 if (i < 0)
3641 error (_("Could not find a match for %s"),
3642 exp->elts[pc + 2].symbol->print_name ());
3643 }
3644 else
3645 {
3646 printf_filtered (_("Multiple matches for %s\n"),
3647 exp->elts[pc + 2].symbol->print_name ());
3648 user_select_syms (candidates.data (), n_candidates, 1);
3649 i = 0;
3650 }
3651
3652 exp->elts[pc + 1].block = candidates[i].block;
3653 exp->elts[pc + 2].symbol = candidates[i].symbol;
3654 tracker->update (candidates[i]);
3655 }
3656
3657 if (deprocedure_p
3658 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3659 == TYPE_CODE_FUNC))
3660 {
3661 replace_operator_with_call (expp, pc, 0, 4,
3662 exp->elts[pc + 2].symbol,
3663 exp->elts[pc + 1].block);
3664 exp = expp->get ();
3665 }
3666 break;
3667
3668 case OP_FUNCALL:
3669 {
3670 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3671 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3672 {
3673 std::vector<struct block_symbol> candidates;
3674 int n_candidates;
3675
3676 n_candidates =
3677 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3678 exp->elts[pc + 4].block, VAR_DOMAIN,
3679 &candidates);
3680
3681 if (n_candidates == 1)
3682 i = 0;
3683 else
3684 {
3685 i = ada_resolve_function
3686 (candidates.data (), n_candidates,
3687 argvec, nargs,
3688 exp->elts[pc + 5].symbol->linkage_name (),
3689 context_type, parse_completion);
3690 if (i < 0)
3691 error (_("Could not find a match for %s"),
3692 exp->elts[pc + 5].symbol->print_name ());
3693 }
3694
3695 exp->elts[pc + 4].block = candidates[i].block;
3696 exp->elts[pc + 5].symbol = candidates[i].symbol;
3697 tracker->update (candidates[i]);
3698 }
3699 }
3700 break;
3701 case BINOP_ADD:
3702 case BINOP_SUB:
3703 case BINOP_MUL:
3704 case BINOP_DIV:
3705 case BINOP_REM:
3706 case BINOP_MOD:
3707 case BINOP_CONCAT:
3708 case BINOP_BITWISE_AND:
3709 case BINOP_BITWISE_IOR:
3710 case BINOP_BITWISE_XOR:
3711 case BINOP_EQUAL:
3712 case BINOP_NOTEQUAL:
3713 case BINOP_LESS:
3714 case BINOP_GTR:
3715 case BINOP_LEQ:
3716 case BINOP_GEQ:
3717 case BINOP_EXP:
3718 case UNOP_NEG:
3719 case UNOP_PLUS:
3720 case UNOP_LOGICAL_NOT:
3721 case UNOP_ABS:
3722 if (possible_user_operator_p (op, argvec))
3723 {
3724 std::vector<struct block_symbol> candidates;
3725 int n_candidates;
3726
3727 n_candidates =
3728 ada_lookup_symbol_list (ada_decoded_op_name (op),
3729 NULL, VAR_DOMAIN,
3730 &candidates);
3731
3732 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3733 nargs, ada_decoded_op_name (op), NULL,
3734 parse_completion);
3735 if (i < 0)
3736 break;
3737
3738 replace_operator_with_call (expp, pc, nargs, 1,
3739 candidates[i].symbol,
3740 candidates[i].block);
3741 exp = expp->get ();
3742 }
3743 break;
3744
3745 case OP_TYPE:
3746 case OP_REGISTER:
3747 return NULL;
3748 }
3749
3750 *pos = pc;
3751 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3752 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3753 exp->elts[pc + 1].objfile,
3754 exp->elts[pc + 2].msymbol);
3755 else
3756 return evaluate_subexp_type (exp, pos);
3757 }
3758
3759 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3760 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3761 a non-pointer. */
3762 /* The term "match" here is rather loose. The match is heuristic and
3763 liberal. */
3764
3765 static int
3766 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3767 {
3768 ftype = ada_check_typedef (ftype);
3769 atype = ada_check_typedef (atype);
3770
3771 if (ftype->code () == TYPE_CODE_REF)
3772 ftype = TYPE_TARGET_TYPE (ftype);
3773 if (atype->code () == TYPE_CODE_REF)
3774 atype = TYPE_TARGET_TYPE (atype);
3775
3776 switch (ftype->code ())
3777 {
3778 default:
3779 return ftype->code () == atype->code ();
3780 case TYPE_CODE_PTR:
3781 if (atype->code () == TYPE_CODE_PTR)
3782 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3783 TYPE_TARGET_TYPE (atype), 0);
3784 else
3785 return (may_deref
3786 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3787 case TYPE_CODE_INT:
3788 case TYPE_CODE_ENUM:
3789 case TYPE_CODE_RANGE:
3790 switch (atype->code ())
3791 {
3792 case TYPE_CODE_INT:
3793 case TYPE_CODE_ENUM:
3794 case TYPE_CODE_RANGE:
3795 return 1;
3796 default:
3797 return 0;
3798 }
3799
3800 case TYPE_CODE_ARRAY:
3801 return (atype->code () == TYPE_CODE_ARRAY
3802 || ada_is_array_descriptor_type (atype));
3803
3804 case TYPE_CODE_STRUCT:
3805 if (ada_is_array_descriptor_type (ftype))
3806 return (atype->code () == TYPE_CODE_ARRAY
3807 || ada_is_array_descriptor_type (atype));
3808 else
3809 return (atype->code () == TYPE_CODE_STRUCT
3810 && !ada_is_array_descriptor_type (atype));
3811
3812 case TYPE_CODE_UNION:
3813 case TYPE_CODE_FLT:
3814 return (atype->code () == ftype->code ());
3815 }
3816 }
3817
3818 /* Return non-zero if the formals of FUNC "sufficiently match" the
3819 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3820 may also be an enumeral, in which case it is treated as a 0-
3821 argument function. */
3822
3823 static int
3824 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3825 {
3826 int i;
3827 struct type *func_type = SYMBOL_TYPE (func);
3828
3829 if (SYMBOL_CLASS (func) == LOC_CONST
3830 && func_type->code () == TYPE_CODE_ENUM)
3831 return (n_actuals == 0);
3832 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3833 return 0;
3834
3835 if (func_type->num_fields () != n_actuals)
3836 return 0;
3837
3838 for (i = 0; i < n_actuals; i += 1)
3839 {
3840 if (actuals[i] == NULL)
3841 return 0;
3842 else
3843 {
3844 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3845 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3846
3847 if (!ada_type_match (ftype, atype, 1))
3848 return 0;
3849 }
3850 }
3851 return 1;
3852 }
3853
3854 /* False iff function type FUNC_TYPE definitely does not produce a value
3855 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3856 FUNC_TYPE is not a valid function type with a non-null return type
3857 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3858
3859 static int
3860 return_match (struct type *func_type, struct type *context_type)
3861 {
3862 struct type *return_type;
3863
3864 if (func_type == NULL)
3865 return 1;
3866
3867 if (func_type->code () == TYPE_CODE_FUNC)
3868 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3869 else
3870 return_type = get_base_type (func_type);
3871 if (return_type == NULL)
3872 return 1;
3873
3874 context_type = get_base_type (context_type);
3875
3876 if (return_type->code () == TYPE_CODE_ENUM)
3877 return context_type == NULL || return_type == context_type;
3878 else if (context_type == NULL)
3879 return return_type->code () != TYPE_CODE_VOID;
3880 else
3881 return return_type->code () == context_type->code ();
3882 }
3883
3884
3885 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3886 function (if any) that matches the types of the NARGS arguments in
3887 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3888 that returns that type, then eliminate matches that don't. If
3889 CONTEXT_TYPE is void and there is at least one match that does not
3890 return void, eliminate all matches that do.
3891
3892 Asks the user if there is more than one match remaining. Returns -1
3893 if there is no such symbol or none is selected. NAME is used
3894 solely for messages. May re-arrange and modify SYMS in
3895 the process; the index returned is for the modified vector. */
3896
3897 static int
3898 ada_resolve_function (struct block_symbol syms[],
3899 int nsyms, struct value **args, int nargs,
3900 const char *name, struct type *context_type,
3901 int parse_completion)
3902 {
3903 int fallback;
3904 int k;
3905 int m; /* Number of hits */
3906
3907 m = 0;
3908 /* In the first pass of the loop, we only accept functions matching
3909 context_type. If none are found, we add a second pass of the loop
3910 where every function is accepted. */
3911 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3912 {
3913 for (k = 0; k < nsyms; k += 1)
3914 {
3915 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3916
3917 if (ada_args_match (syms[k].symbol, args, nargs)
3918 && (fallback || return_match (type, context_type)))
3919 {
3920 syms[m] = syms[k];
3921 m += 1;
3922 }
3923 }
3924 }
3925
3926 /* If we got multiple matches, ask the user which one to use. Don't do this
3927 interactive thing during completion, though, as the purpose of the
3928 completion is providing a list of all possible matches. Prompting the
3929 user to filter it down would be completely unexpected in this case. */
3930 if (m == 0)
3931 return -1;
3932 else if (m > 1 && !parse_completion)
3933 {
3934 printf_filtered (_("Multiple matches for %s\n"), name);
3935 user_select_syms (syms, m, 1);
3936 return 0;
3937 }
3938 return 0;
3939 }
3940
3941 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3942 on the function identified by SYM and BLOCK, and taking NARGS
3943 arguments. Update *EXPP as needed to hold more space. */
3944
3945 static void
3946 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3947 int oplen, struct symbol *sym,
3948 const struct block *block)
3949 {
3950 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3951 symbol, -oplen for operator being replaced). */
3952 struct expression *newexp = (struct expression *)
3953 xzalloc (sizeof (struct expression)
3954 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3955 struct expression *exp = expp->get ();
3956
3957 newexp->nelts = exp->nelts + 7 - oplen;
3958 newexp->language_defn = exp->language_defn;
3959 newexp->gdbarch = exp->gdbarch;
3960 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3961 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3962 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3963
3964 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3965 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3966
3967 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3968 newexp->elts[pc + 4].block = block;
3969 newexp->elts[pc + 5].symbol = sym;
3970
3971 expp->reset (newexp);
3972 }
3973
3974 /* Type-class predicates */
3975
3976 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3977 or FLOAT). */
3978
3979 static int
3980 numeric_type_p (struct type *type)
3981 {
3982 if (type == NULL)
3983 return 0;
3984 else
3985 {
3986 switch (type->code ())
3987 {
3988 case TYPE_CODE_INT:
3989 case TYPE_CODE_FLT:
3990 return 1;
3991 case TYPE_CODE_RANGE:
3992 return (type == TYPE_TARGET_TYPE (type)
3993 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3994 default:
3995 return 0;
3996 }
3997 }
3998 }
3999
4000 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4001
4002 static int
4003 integer_type_p (struct type *type)
4004 {
4005 if (type == NULL)
4006 return 0;
4007 else
4008 {
4009 switch (type->code ())
4010 {
4011 case TYPE_CODE_INT:
4012 return 1;
4013 case TYPE_CODE_RANGE:
4014 return (type == TYPE_TARGET_TYPE (type)
4015 || integer_type_p (TYPE_TARGET_TYPE (type)));
4016 default:
4017 return 0;
4018 }
4019 }
4020 }
4021
4022 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4023
4024 static int
4025 scalar_type_p (struct type *type)
4026 {
4027 if (type == NULL)
4028 return 0;
4029 else
4030 {
4031 switch (type->code ())
4032 {
4033 case TYPE_CODE_INT:
4034 case TYPE_CODE_RANGE:
4035 case TYPE_CODE_ENUM:
4036 case TYPE_CODE_FLT:
4037 return 1;
4038 default:
4039 return 0;
4040 }
4041 }
4042 }
4043
4044 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4045
4046 static int
4047 discrete_type_p (struct type *type)
4048 {
4049 if (type == NULL)
4050 return 0;
4051 else
4052 {
4053 switch (type->code ())
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_RANGE:
4057 case TYPE_CODE_ENUM:
4058 case TYPE_CODE_BOOL:
4059 return 1;
4060 default:
4061 return 0;
4062 }
4063 }
4064 }
4065
4066 /* Returns non-zero if OP with operands in the vector ARGS could be
4067 a user-defined function. Errs on the side of pre-defined operators
4068 (i.e., result 0). */
4069
4070 static int
4071 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4072 {
4073 struct type *type0 =
4074 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4075 struct type *type1 =
4076 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4077
4078 if (type0 == NULL)
4079 return 0;
4080
4081 switch (op)
4082 {
4083 default:
4084 return 0;
4085
4086 case BINOP_ADD:
4087 case BINOP_SUB:
4088 case BINOP_MUL:
4089 case BINOP_DIV:
4090 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4091
4092 case BINOP_REM:
4093 case BINOP_MOD:
4094 case BINOP_BITWISE_AND:
4095 case BINOP_BITWISE_IOR:
4096 case BINOP_BITWISE_XOR:
4097 return (!(integer_type_p (type0) && integer_type_p (type1)));
4098
4099 case BINOP_EQUAL:
4100 case BINOP_NOTEQUAL:
4101 case BINOP_LESS:
4102 case BINOP_GTR:
4103 case BINOP_LEQ:
4104 case BINOP_GEQ:
4105 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4106
4107 case BINOP_CONCAT:
4108 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4109
4110 case BINOP_EXP:
4111 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4112
4113 case UNOP_NEG:
4114 case UNOP_PLUS:
4115 case UNOP_LOGICAL_NOT:
4116 case UNOP_ABS:
4117 return (!numeric_type_p (type0));
4118
4119 }
4120 }
4121 \f
4122 /* Renaming */
4123
4124 /* NOTES:
4125
4126 1. In the following, we assume that a renaming type's name may
4127 have an ___XD suffix. It would be nice if this went away at some
4128 point.
4129 2. We handle both the (old) purely type-based representation of
4130 renamings and the (new) variable-based encoding. At some point,
4131 it is devoutly to be hoped that the former goes away
4132 (FIXME: hilfinger-2007-07-09).
4133 3. Subprogram renamings are not implemented, although the XRS
4134 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4135
4136 /* If SYM encodes a renaming,
4137
4138 <renaming> renames <renamed entity>,
4139
4140 sets *LEN to the length of the renamed entity's name,
4141 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4142 the string describing the subcomponent selected from the renamed
4143 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4144 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4145 are undefined). Otherwise, returns a value indicating the category
4146 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4147 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4148 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4149 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4150 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4151 may be NULL, in which case they are not assigned.
4152
4153 [Currently, however, GCC does not generate subprogram renamings.] */
4154
4155 enum ada_renaming_category
4156 ada_parse_renaming (struct symbol *sym,
4157 const char **renamed_entity, int *len,
4158 const char **renaming_expr)
4159 {
4160 enum ada_renaming_category kind;
4161 const char *info;
4162 const char *suffix;
4163
4164 if (sym == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (SYMBOL_CLASS (sym))
4167 {
4168 default:
4169 return ADA_NOT_RENAMING;
4170 case LOC_LOCAL:
4171 case LOC_STATIC:
4172 case LOC_COMPUTED:
4173 case LOC_OPTIMIZED_OUT:
4174 info = strstr (sym->linkage_name (), "___XR");
4175 if (info == NULL)
4176 return ADA_NOT_RENAMING;
4177 switch (info[5])
4178 {
4179 case '_':
4180 kind = ADA_OBJECT_RENAMING;
4181 info += 6;
4182 break;
4183 case 'E':
4184 kind = ADA_EXCEPTION_RENAMING;
4185 info += 7;
4186 break;
4187 case 'P':
4188 kind = ADA_PACKAGE_RENAMING;
4189 info += 7;
4190 break;
4191 case 'S':
4192 kind = ADA_SUBPROGRAM_RENAMING;
4193 info += 7;
4194 break;
4195 default:
4196 return ADA_NOT_RENAMING;
4197 }
4198 }
4199
4200 if (renamed_entity != NULL)
4201 *renamed_entity = info;
4202 suffix = strstr (info, "___XE");
4203 if (suffix == NULL || suffix == info)
4204 return ADA_NOT_RENAMING;
4205 if (len != NULL)
4206 *len = strlen (info) - strlen (suffix);
4207 suffix += 5;
4208 if (renaming_expr != NULL)
4209 *renaming_expr = suffix;
4210 return kind;
4211 }
4212
4213 /* Compute the value of the given RENAMING_SYM, which is expected to
4214 be a symbol encoding a renaming expression. BLOCK is the block
4215 used to evaluate the renaming. */
4216
4217 static struct value *
4218 ada_read_renaming_var_value (struct symbol *renaming_sym,
4219 const struct block *block)
4220 {
4221 const char *sym_name;
4222
4223 sym_name = renaming_sym->linkage_name ();
4224 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4225 return evaluate_expression (expr.get ());
4226 }
4227 \f
4228
4229 /* Evaluation: Function Calls */
4230
4231 /* Return an lvalue containing the value VAL. This is the identity on
4232 lvalues, and otherwise has the side-effect of allocating memory
4233 in the inferior where a copy of the value contents is copied. */
4234
4235 static struct value *
4236 ensure_lval (struct value *val)
4237 {
4238 if (VALUE_LVAL (val) == not_lval
4239 || VALUE_LVAL (val) == lval_internalvar)
4240 {
4241 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4242 const CORE_ADDR addr =
4243 value_as_long (value_allocate_space_in_inferior (len));
4244
4245 VALUE_LVAL (val) = lval_memory;
4246 set_value_address (val, addr);
4247 write_memory (addr, value_contents (val), len);
4248 }
4249
4250 return val;
4251 }
4252
4253 /* Given ARG, a value of type (pointer or reference to a)*
4254 structure/union, extract the component named NAME from the ultimate
4255 target structure/union and return it as a value with its
4256 appropriate type.
4257
4258 The routine searches for NAME among all members of the structure itself
4259 and (recursively) among all members of any wrapper members
4260 (e.g., '_parent').
4261
4262 If NO_ERR, then simply return NULL in case of error, rather than
4263 calling error. */
4264
4265 static struct value *
4266 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4267 {
4268 struct type *t, *t1;
4269 struct value *v;
4270 int check_tag;
4271
4272 v = NULL;
4273 t1 = t = ada_check_typedef (value_type (arg));
4274 if (t->code () == TYPE_CODE_REF)
4275 {
4276 t1 = TYPE_TARGET_TYPE (t);
4277 if (t1 == NULL)
4278 goto BadValue;
4279 t1 = ada_check_typedef (t1);
4280 if (t1->code () == TYPE_CODE_PTR)
4281 {
4282 arg = coerce_ref (arg);
4283 t = t1;
4284 }
4285 }
4286
4287 while (t->code () == TYPE_CODE_PTR)
4288 {
4289 t1 = TYPE_TARGET_TYPE (t);
4290 if (t1 == NULL)
4291 goto BadValue;
4292 t1 = ada_check_typedef (t1);
4293 if (t1->code () == TYPE_CODE_PTR)
4294 {
4295 arg = value_ind (arg);
4296 t = t1;
4297 }
4298 else
4299 break;
4300 }
4301
4302 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4303 goto BadValue;
4304
4305 if (t1 == t)
4306 v = ada_search_struct_field (name, arg, 0, t);
4307 else
4308 {
4309 int bit_offset, bit_size, byte_offset;
4310 struct type *field_type;
4311 CORE_ADDR address;
4312
4313 if (t->code () == TYPE_CODE_PTR)
4314 address = value_address (ada_value_ind (arg));
4315 else
4316 address = value_address (ada_coerce_ref (arg));
4317
4318 /* Check to see if this is a tagged type. We also need to handle
4319 the case where the type is a reference to a tagged type, but
4320 we have to be careful to exclude pointers to tagged types.
4321 The latter should be shown as usual (as a pointer), whereas
4322 a reference should mostly be transparent to the user. */
4323
4324 if (ada_is_tagged_type (t1, 0)
4325 || (t1->code () == TYPE_CODE_REF
4326 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4327 {
4328 /* We first try to find the searched field in the current type.
4329 If not found then let's look in the fixed type. */
4330
4331 if (!find_struct_field (name, t1, 0,
4332 &field_type, &byte_offset, &bit_offset,
4333 &bit_size, NULL))
4334 check_tag = 1;
4335 else
4336 check_tag = 0;
4337 }
4338 else
4339 check_tag = 0;
4340
4341 /* Convert to fixed type in all cases, so that we have proper
4342 offsets to each field in unconstrained record types. */
4343 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4344 address, NULL, check_tag);
4345
4346 if (find_struct_field (name, t1, 0,
4347 &field_type, &byte_offset, &bit_offset,
4348 &bit_size, NULL))
4349 {
4350 if (bit_size != 0)
4351 {
4352 if (t->code () == TYPE_CODE_REF)
4353 arg = ada_coerce_ref (arg);
4354 else
4355 arg = ada_value_ind (arg);
4356 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4357 bit_offset, bit_size,
4358 field_type);
4359 }
4360 else
4361 v = value_at_lazy (field_type, address + byte_offset);
4362 }
4363 }
4364
4365 if (v != NULL || no_err)
4366 return v;
4367 else
4368 error (_("There is no member named %s."), name);
4369
4370 BadValue:
4371 if (no_err)
4372 return NULL;
4373 else
4374 error (_("Attempt to extract a component of "
4375 "a value that is not a record."));
4376 }
4377
4378 /* Return the value ACTUAL, converted to be an appropriate value for a
4379 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4380 allocating any necessary descriptors (fat pointers), or copies of
4381 values not residing in memory, updating it as needed. */
4382
4383 struct value *
4384 ada_convert_actual (struct value *actual, struct type *formal_type0)
4385 {
4386 struct type *actual_type = ada_check_typedef (value_type (actual));
4387 struct type *formal_type = ada_check_typedef (formal_type0);
4388 struct type *formal_target =
4389 formal_type->code () == TYPE_CODE_PTR
4390 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4391 struct type *actual_target =
4392 actual_type->code () == TYPE_CODE_PTR
4393 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4394
4395 if (ada_is_array_descriptor_type (formal_target)
4396 && actual_target->code () == TYPE_CODE_ARRAY)
4397 return make_array_descriptor (formal_type, actual);
4398 else if (formal_type->code () == TYPE_CODE_PTR
4399 || formal_type->code () == TYPE_CODE_REF)
4400 {
4401 struct value *result;
4402
4403 if (formal_target->code () == TYPE_CODE_ARRAY
4404 && ada_is_array_descriptor_type (actual_target))
4405 result = desc_data (actual);
4406 else if (formal_type->code () != TYPE_CODE_PTR)
4407 {
4408 if (VALUE_LVAL (actual) != lval_memory)
4409 {
4410 struct value *val;
4411
4412 actual_type = ada_check_typedef (value_type (actual));
4413 val = allocate_value (actual_type);
4414 memcpy ((char *) value_contents_raw (val),
4415 (char *) value_contents (actual),
4416 TYPE_LENGTH (actual_type));
4417 actual = ensure_lval (val);
4418 }
4419 result = value_addr (actual);
4420 }
4421 else
4422 return actual;
4423 return value_cast_pointers (formal_type, result, 0);
4424 }
4425 else if (actual_type->code () == TYPE_CODE_PTR)
4426 return ada_value_ind (actual);
4427 else if (ada_is_aligner_type (formal_type))
4428 {
4429 /* We need to turn this parameter into an aligner type
4430 as well. */
4431 struct value *aligner = allocate_value (formal_type);
4432 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4433
4434 value_assign_to_component (aligner, component, actual);
4435 return aligner;
4436 }
4437
4438 return actual;
4439 }
4440
4441 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4442 type TYPE. This is usually an inefficient no-op except on some targets
4443 (such as AVR) where the representation of a pointer and an address
4444 differs. */
4445
4446 static CORE_ADDR
4447 value_pointer (struct value *value, struct type *type)
4448 {
4449 struct gdbarch *gdbarch = get_type_arch (type);
4450 unsigned len = TYPE_LENGTH (type);
4451 gdb_byte *buf = (gdb_byte *) alloca (len);
4452 CORE_ADDR addr;
4453
4454 addr = value_address (value);
4455 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4456 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4457 return addr;
4458 }
4459
4460
4461 /* Push a descriptor of type TYPE for array value ARR on the stack at
4462 *SP, updating *SP to reflect the new descriptor. Return either
4463 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4464 to-descriptor type rather than a descriptor type), a struct value *
4465 representing a pointer to this descriptor. */
4466
4467 static struct value *
4468 make_array_descriptor (struct type *type, struct value *arr)
4469 {
4470 struct type *bounds_type = desc_bounds_type (type);
4471 struct type *desc_type = desc_base_type (type);
4472 struct value *descriptor = allocate_value (desc_type);
4473 struct value *bounds = allocate_value (bounds_type);
4474 int i;
4475
4476 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4477 i > 0; i -= 1)
4478 {
4479 modify_field (value_type (bounds), value_contents_writeable (bounds),
4480 ada_array_bound (arr, i, 0),
4481 desc_bound_bitpos (bounds_type, i, 0),
4482 desc_bound_bitsize (bounds_type, i, 0));
4483 modify_field (value_type (bounds), value_contents_writeable (bounds),
4484 ada_array_bound (arr, i, 1),
4485 desc_bound_bitpos (bounds_type, i, 1),
4486 desc_bound_bitsize (bounds_type, i, 1));
4487 }
4488
4489 bounds = ensure_lval (bounds);
4490
4491 modify_field (value_type (descriptor),
4492 value_contents_writeable (descriptor),
4493 value_pointer (ensure_lval (arr),
4494 desc_type->field (0).type ()),
4495 fat_pntr_data_bitpos (desc_type),
4496 fat_pntr_data_bitsize (desc_type));
4497
4498 modify_field (value_type (descriptor),
4499 value_contents_writeable (descriptor),
4500 value_pointer (bounds,
4501 desc_type->field (1).type ()),
4502 fat_pntr_bounds_bitpos (desc_type),
4503 fat_pntr_bounds_bitsize (desc_type));
4504
4505 descriptor = ensure_lval (descriptor);
4506
4507 if (type->code () == TYPE_CODE_PTR)
4508 return value_addr (descriptor);
4509 else
4510 return descriptor;
4511 }
4512 \f
4513 /* Symbol Cache Module */
4514
4515 /* Performance measurements made as of 2010-01-15 indicate that
4516 this cache does bring some noticeable improvements. Depending
4517 on the type of entity being printed, the cache can make it as much
4518 as an order of magnitude faster than without it.
4519
4520 The descriptive type DWARF extension has significantly reduced
4521 the need for this cache, at least when DWARF is being used. However,
4522 even in this case, some expensive name-based symbol searches are still
4523 sometimes necessary - to find an XVZ variable, mostly. */
4524
4525 /* Initialize the contents of SYM_CACHE. */
4526
4527 static void
4528 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4529 {
4530 obstack_init (&sym_cache->cache_space);
4531 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4532 }
4533
4534 /* Free the memory used by SYM_CACHE. */
4535
4536 static void
4537 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4538 {
4539 obstack_free (&sym_cache->cache_space, NULL);
4540 xfree (sym_cache);
4541 }
4542
4543 /* Return the symbol cache associated to the given program space PSPACE.
4544 If not allocated for this PSPACE yet, allocate and initialize one. */
4545
4546 static struct ada_symbol_cache *
4547 ada_get_symbol_cache (struct program_space *pspace)
4548 {
4549 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4550
4551 if (pspace_data->sym_cache == NULL)
4552 {
4553 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4554 ada_init_symbol_cache (pspace_data->sym_cache);
4555 }
4556
4557 return pspace_data->sym_cache;
4558 }
4559
4560 /* Clear all entries from the symbol cache. */
4561
4562 static void
4563 ada_clear_symbol_cache (void)
4564 {
4565 struct ada_symbol_cache *sym_cache
4566 = ada_get_symbol_cache (current_program_space);
4567
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 ada_init_symbol_cache (sym_cache);
4570 }
4571
4572 /* Search our cache for an entry matching NAME and DOMAIN.
4573 Return it if found, or NULL otherwise. */
4574
4575 static struct cache_entry **
4576 find_entry (const char *name, domain_enum domain)
4577 {
4578 struct ada_symbol_cache *sym_cache
4579 = ada_get_symbol_cache (current_program_space);
4580 int h = msymbol_hash (name) % HASH_SIZE;
4581 struct cache_entry **e;
4582
4583 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4584 {
4585 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4586 return e;
4587 }
4588 return NULL;
4589 }
4590
4591 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4592 Return 1 if found, 0 otherwise.
4593
4594 If an entry was found and SYM is not NULL, set *SYM to the entry's
4595 SYM. Same principle for BLOCK if not NULL. */
4596
4597 static int
4598 lookup_cached_symbol (const char *name, domain_enum domain,
4599 struct symbol **sym, const struct block **block)
4600 {
4601 struct cache_entry **e = find_entry (name, domain);
4602
4603 if (e == NULL)
4604 return 0;
4605 if (sym != NULL)
4606 *sym = (*e)->sym;
4607 if (block != NULL)
4608 *block = (*e)->block;
4609 return 1;
4610 }
4611
4612 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4613 in domain DOMAIN, save this result in our symbol cache. */
4614
4615 static void
4616 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4617 const struct block *block)
4618 {
4619 struct ada_symbol_cache *sym_cache
4620 = ada_get_symbol_cache (current_program_space);
4621 int h;
4622 struct cache_entry *e;
4623
4624 /* Symbols for builtin types don't have a block.
4625 For now don't cache such symbols. */
4626 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4627 return;
4628
4629 /* If the symbol is a local symbol, then do not cache it, as a search
4630 for that symbol depends on the context. To determine whether
4631 the symbol is local or not, we check the block where we found it
4632 against the global and static blocks of its associated symtab. */
4633 if (sym
4634 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4635 GLOBAL_BLOCK) != block
4636 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4637 STATIC_BLOCK) != block)
4638 return;
4639
4640 h = msymbol_hash (name) % HASH_SIZE;
4641 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4642 e->next = sym_cache->root[h];
4643 sym_cache->root[h] = e;
4644 e->name = obstack_strdup (&sym_cache->cache_space, name);
4645 e->sym = sym;
4646 e->domain = domain;
4647 e->block = block;
4648 }
4649 \f
4650 /* Symbol Lookup */
4651
4652 /* Return the symbol name match type that should be used used when
4653 searching for all symbols matching LOOKUP_NAME.
4654
4655 LOOKUP_NAME is expected to be a symbol name after transformation
4656 for Ada lookups. */
4657
4658 static symbol_name_match_type
4659 name_match_type_from_name (const char *lookup_name)
4660 {
4661 return (strstr (lookup_name, "__") == NULL
4662 ? symbol_name_match_type::WILD
4663 : symbol_name_match_type::FULL);
4664 }
4665
4666 /* Return the result of a standard (literal, C-like) lookup of NAME in
4667 given DOMAIN, visible from lexical block BLOCK. */
4668
4669 static struct symbol *
4670 standard_lookup (const char *name, const struct block *block,
4671 domain_enum domain)
4672 {
4673 /* Initialize it just to avoid a GCC false warning. */
4674 struct block_symbol sym = {};
4675
4676 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4677 return sym.symbol;
4678 ada_lookup_encoded_symbol (name, block, domain, &sym);
4679 cache_symbol (name, domain, sym.symbol, sym.block);
4680 return sym.symbol;
4681 }
4682
4683
4684 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4685 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4686 since they contend in overloading in the same way. */
4687 static int
4688 is_nonfunction (struct block_symbol syms[], int n)
4689 {
4690 int i;
4691
4692 for (i = 0; i < n; i += 1)
4693 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4694 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4695 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4696 return 1;
4697
4698 return 0;
4699 }
4700
4701 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4702 struct types. Otherwise, they may not. */
4703
4704 static int
4705 equiv_types (struct type *type0, struct type *type1)
4706 {
4707 if (type0 == type1)
4708 return 1;
4709 if (type0 == NULL || type1 == NULL
4710 || type0->code () != type1->code ())
4711 return 0;
4712 if ((type0->code () == TYPE_CODE_STRUCT
4713 || type0->code () == TYPE_CODE_ENUM)
4714 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4715 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4716 return 1;
4717
4718 return 0;
4719 }
4720
4721 /* True iff SYM0 represents the same entity as SYM1, or one that is
4722 no more defined than that of SYM1. */
4723
4724 static int
4725 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4726 {
4727 if (sym0 == sym1)
4728 return 1;
4729 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4730 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4731 return 0;
4732
4733 switch (SYMBOL_CLASS (sym0))
4734 {
4735 case LOC_UNDEF:
4736 return 1;
4737 case LOC_TYPEDEF:
4738 {
4739 struct type *type0 = SYMBOL_TYPE (sym0);
4740 struct type *type1 = SYMBOL_TYPE (sym1);
4741 const char *name0 = sym0->linkage_name ();
4742 const char *name1 = sym1->linkage_name ();
4743 int len0 = strlen (name0);
4744
4745 return
4746 type0->code () == type1->code ()
4747 && (equiv_types (type0, type1)
4748 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4749 && startswith (name1 + len0, "___XV")));
4750 }
4751 case LOC_CONST:
4752 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4753 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4754
4755 case LOC_STATIC:
4756 {
4757 const char *name0 = sym0->linkage_name ();
4758 const char *name1 = sym1->linkage_name ();
4759 return (strcmp (name0, name1) == 0
4760 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4761 }
4762
4763 default:
4764 return 0;
4765 }
4766 }
4767
4768 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4769 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4770
4771 static void
4772 add_defn_to_vec (struct obstack *obstackp,
4773 struct symbol *sym,
4774 const struct block *block)
4775 {
4776 int i;
4777 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4778
4779 /* Do not try to complete stub types, as the debugger is probably
4780 already scanning all symbols matching a certain name at the
4781 time when this function is called. Trying to replace the stub
4782 type by its associated full type will cause us to restart a scan
4783 which may lead to an infinite recursion. Instead, the client
4784 collecting the matching symbols will end up collecting several
4785 matches, with at least one of them complete. It can then filter
4786 out the stub ones if needed. */
4787
4788 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4789 {
4790 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4791 return;
4792 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4793 {
4794 prevDefns[i].symbol = sym;
4795 prevDefns[i].block = block;
4796 return;
4797 }
4798 }
4799
4800 {
4801 struct block_symbol info;
4802
4803 info.symbol = sym;
4804 info.block = block;
4805 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4806 }
4807 }
4808
4809 /* Number of block_symbol structures currently collected in current vector in
4810 OBSTACKP. */
4811
4812 static int
4813 num_defns_collected (struct obstack *obstackp)
4814 {
4815 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4816 }
4817
4818 /* Vector of block_symbol structures currently collected in current vector in
4819 OBSTACKP. If FINISH, close off the vector and return its final address. */
4820
4821 static struct block_symbol *
4822 defns_collected (struct obstack *obstackp, int finish)
4823 {
4824 if (finish)
4825 return (struct block_symbol *) obstack_finish (obstackp);
4826 else
4827 return (struct block_symbol *) obstack_base (obstackp);
4828 }
4829
4830 /* Return a bound minimal symbol matching NAME according to Ada
4831 decoding rules. Returns an invalid symbol if there is no such
4832 minimal symbol. Names prefixed with "standard__" are handled
4833 specially: "standard__" is first stripped off, and only static and
4834 global symbols are searched. */
4835
4836 struct bound_minimal_symbol
4837 ada_lookup_simple_minsym (const char *name)
4838 {
4839 struct bound_minimal_symbol result;
4840
4841 memset (&result, 0, sizeof (result));
4842
4843 symbol_name_match_type match_type = name_match_type_from_name (name);
4844 lookup_name_info lookup_name (name, match_type);
4845
4846 symbol_name_matcher_ftype *match_name
4847 = ada_get_symbol_name_matcher (lookup_name);
4848
4849 for (objfile *objfile : current_program_space->objfiles ())
4850 {
4851 for (minimal_symbol *msymbol : objfile->msymbols ())
4852 {
4853 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4854 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4855 {
4856 result.minsym = msymbol;
4857 result.objfile = objfile;
4858 break;
4859 }
4860 }
4861 }
4862
4863 return result;
4864 }
4865
4866 /* For all subprograms that statically enclose the subprogram of the
4867 selected frame, add symbols matching identifier NAME in DOMAIN
4868 and their blocks to the list of data in OBSTACKP, as for
4869 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4870 with a wildcard prefix. */
4871
4872 static void
4873 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4874 const lookup_name_info &lookup_name,
4875 domain_enum domain)
4876 {
4877 }
4878
4879 /* True if TYPE is definitely an artificial type supplied to a symbol
4880 for which no debugging information was given in the symbol file. */
4881
4882 static int
4883 is_nondebugging_type (struct type *type)
4884 {
4885 const char *name = ada_type_name (type);
4886
4887 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4888 }
4889
4890 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4891 that are deemed "identical" for practical purposes.
4892
4893 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4894 types and that their number of enumerals is identical (in other
4895 words, type1->num_fields () == type2->num_fields ()). */
4896
4897 static int
4898 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4899 {
4900 int i;
4901
4902 /* The heuristic we use here is fairly conservative. We consider
4903 that 2 enumerate types are identical if they have the same
4904 number of enumerals and that all enumerals have the same
4905 underlying value and name. */
4906
4907 /* All enums in the type should have an identical underlying value. */
4908 for (i = 0; i < type1->num_fields (); i++)
4909 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4910 return 0;
4911
4912 /* All enumerals should also have the same name (modulo any numerical
4913 suffix). */
4914 for (i = 0; i < type1->num_fields (); i++)
4915 {
4916 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4917 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4918 int len_1 = strlen (name_1);
4919 int len_2 = strlen (name_2);
4920
4921 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4922 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4923 if (len_1 != len_2
4924 || strncmp (TYPE_FIELD_NAME (type1, i),
4925 TYPE_FIELD_NAME (type2, i),
4926 len_1) != 0)
4927 return 0;
4928 }
4929
4930 return 1;
4931 }
4932
4933 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4934 that are deemed "identical" for practical purposes. Sometimes,
4935 enumerals are not strictly identical, but their types are so similar
4936 that they can be considered identical.
4937
4938 For instance, consider the following code:
4939
4940 type Color is (Black, Red, Green, Blue, White);
4941 type RGB_Color is new Color range Red .. Blue;
4942
4943 Type RGB_Color is a subrange of an implicit type which is a copy
4944 of type Color. If we call that implicit type RGB_ColorB ("B" is
4945 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4946 As a result, when an expression references any of the enumeral
4947 by name (Eg. "print green"), the expression is technically
4948 ambiguous and the user should be asked to disambiguate. But
4949 doing so would only hinder the user, since it wouldn't matter
4950 what choice he makes, the outcome would always be the same.
4951 So, for practical purposes, we consider them as the same. */
4952
4953 static int
4954 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4955 {
4956 int i;
4957
4958 /* Before performing a thorough comparison check of each type,
4959 we perform a series of inexpensive checks. We expect that these
4960 checks will quickly fail in the vast majority of cases, and thus
4961 help prevent the unnecessary use of a more expensive comparison.
4962 Said comparison also expects us to make some of these checks
4963 (see ada_identical_enum_types_p). */
4964
4965 /* Quick check: All symbols should have an enum type. */
4966 for (i = 0; i < syms.size (); i++)
4967 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4968 return 0;
4969
4970 /* Quick check: They should all have the same value. */
4971 for (i = 1; i < syms.size (); i++)
4972 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4973 return 0;
4974
4975 /* Quick check: They should all have the same number of enumerals. */
4976 for (i = 1; i < syms.size (); i++)
4977 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4978 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4979 return 0;
4980
4981 /* All the sanity checks passed, so we might have a set of
4982 identical enumeration types. Perform a more complete
4983 comparison of the type of each symbol. */
4984 for (i = 1; i < syms.size (); i++)
4985 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4986 SYMBOL_TYPE (syms[0].symbol)))
4987 return 0;
4988
4989 return 1;
4990 }
4991
4992 /* Remove any non-debugging symbols in SYMS that definitely
4993 duplicate other symbols in the list (The only case I know of where
4994 this happens is when object files containing stabs-in-ecoff are
4995 linked with files containing ordinary ecoff debugging symbols (or no
4996 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4997 Returns the number of items in the modified list. */
4998
4999 static int
5000 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5001 {
5002 int i, j;
5003
5004 /* We should never be called with less than 2 symbols, as there
5005 cannot be any extra symbol in that case. But it's easy to
5006 handle, since we have nothing to do in that case. */
5007 if (syms->size () < 2)
5008 return syms->size ();
5009
5010 i = 0;
5011 while (i < syms->size ())
5012 {
5013 int remove_p = 0;
5014
5015 /* If two symbols have the same name and one of them is a stub type,
5016 the get rid of the stub. */
5017
5018 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5019 && (*syms)[i].symbol->linkage_name () != NULL)
5020 {
5021 for (j = 0; j < syms->size (); j++)
5022 {
5023 if (j != i
5024 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5025 && (*syms)[j].symbol->linkage_name () != NULL
5026 && strcmp ((*syms)[i].symbol->linkage_name (),
5027 (*syms)[j].symbol->linkage_name ()) == 0)
5028 remove_p = 1;
5029 }
5030 }
5031
5032 /* Two symbols with the same name, same class and same address
5033 should be identical. */
5034
5035 else if ((*syms)[i].symbol->linkage_name () != NULL
5036 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5037 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5038 {
5039 for (j = 0; j < syms->size (); j += 1)
5040 {
5041 if (i != j
5042 && (*syms)[j].symbol->linkage_name () != NULL
5043 && strcmp ((*syms)[i].symbol->linkage_name (),
5044 (*syms)[j].symbol->linkage_name ()) == 0
5045 && SYMBOL_CLASS ((*syms)[i].symbol)
5046 == SYMBOL_CLASS ((*syms)[j].symbol)
5047 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5048 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5049 remove_p = 1;
5050 }
5051 }
5052
5053 if (remove_p)
5054 syms->erase (syms->begin () + i);
5055
5056 i += 1;
5057 }
5058
5059 /* If all the remaining symbols are identical enumerals, then
5060 just keep the first one and discard the rest.
5061
5062 Unlike what we did previously, we do not discard any entry
5063 unless they are ALL identical. This is because the symbol
5064 comparison is not a strict comparison, but rather a practical
5065 comparison. If all symbols are considered identical, then
5066 we can just go ahead and use the first one and discard the rest.
5067 But if we cannot reduce the list to a single element, we have
5068 to ask the user to disambiguate anyways. And if we have to
5069 present a multiple-choice menu, it's less confusing if the list
5070 isn't missing some choices that were identical and yet distinct. */
5071 if (symbols_are_identical_enums (*syms))
5072 syms->resize (1);
5073
5074 return syms->size ();
5075 }
5076
5077 /* Given a type that corresponds to a renaming entity, use the type name
5078 to extract the scope (package name or function name, fully qualified,
5079 and following the GNAT encoding convention) where this renaming has been
5080 defined. */
5081
5082 static std::string
5083 xget_renaming_scope (struct type *renaming_type)
5084 {
5085 /* The renaming types adhere to the following convention:
5086 <scope>__<rename>___<XR extension>.
5087 So, to extract the scope, we search for the "___XR" extension,
5088 and then backtrack until we find the first "__". */
5089
5090 const char *name = renaming_type->name ();
5091 const char *suffix = strstr (name, "___XR");
5092 const char *last;
5093
5094 /* Now, backtrack a bit until we find the first "__". Start looking
5095 at suffix - 3, as the <rename> part is at least one character long. */
5096
5097 for (last = suffix - 3; last > name; last--)
5098 if (last[0] == '_' && last[1] == '_')
5099 break;
5100
5101 /* Make a copy of scope and return it. */
5102 return std::string (name, last);
5103 }
5104
5105 /* Return nonzero if NAME corresponds to a package name. */
5106
5107 static int
5108 is_package_name (const char *name)
5109 {
5110 /* Here, We take advantage of the fact that no symbols are generated
5111 for packages, while symbols are generated for each function.
5112 So the condition for NAME represent a package becomes equivalent
5113 to NAME not existing in our list of symbols. There is only one
5114 small complication with library-level functions (see below). */
5115
5116 /* If it is a function that has not been defined at library level,
5117 then we should be able to look it up in the symbols. */
5118 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5119 return 0;
5120
5121 /* Library-level function names start with "_ada_". See if function
5122 "_ada_" followed by NAME can be found. */
5123
5124 /* Do a quick check that NAME does not contain "__", since library-level
5125 functions names cannot contain "__" in them. */
5126 if (strstr (name, "__") != NULL)
5127 return 0;
5128
5129 std::string fun_name = string_printf ("_ada_%s", name);
5130
5131 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5132 }
5133
5134 /* Return nonzero if SYM corresponds to a renaming entity that is
5135 not visible from FUNCTION_NAME. */
5136
5137 static int
5138 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5139 {
5140 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5141 return 0;
5142
5143 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5144
5145 /* If the rename has been defined in a package, then it is visible. */
5146 if (is_package_name (scope.c_str ()))
5147 return 0;
5148
5149 /* Check that the rename is in the current function scope by checking
5150 that its name starts with SCOPE. */
5151
5152 /* If the function name starts with "_ada_", it means that it is
5153 a library-level function. Strip this prefix before doing the
5154 comparison, as the encoding for the renaming does not contain
5155 this prefix. */
5156 if (startswith (function_name, "_ada_"))
5157 function_name += 5;
5158
5159 return !startswith (function_name, scope.c_str ());
5160 }
5161
5162 /* Remove entries from SYMS that corresponds to a renaming entity that
5163 is not visible from the function associated with CURRENT_BLOCK or
5164 that is superfluous due to the presence of more specific renaming
5165 information. Places surviving symbols in the initial entries of
5166 SYMS and returns the number of surviving symbols.
5167
5168 Rationale:
5169 First, in cases where an object renaming is implemented as a
5170 reference variable, GNAT may produce both the actual reference
5171 variable and the renaming encoding. In this case, we discard the
5172 latter.
5173
5174 Second, GNAT emits a type following a specified encoding for each renaming
5175 entity. Unfortunately, STABS currently does not support the definition
5176 of types that are local to a given lexical block, so all renamings types
5177 are emitted at library level. As a consequence, if an application
5178 contains two renaming entities using the same name, and a user tries to
5179 print the value of one of these entities, the result of the ada symbol
5180 lookup will also contain the wrong renaming type.
5181
5182 This function partially covers for this limitation by attempting to
5183 remove from the SYMS list renaming symbols that should be visible
5184 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5185 method with the current information available. The implementation
5186 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5187
5188 - When the user tries to print a rename in a function while there
5189 is another rename entity defined in a package: Normally, the
5190 rename in the function has precedence over the rename in the
5191 package, so the latter should be removed from the list. This is
5192 currently not the case.
5193
5194 - This function will incorrectly remove valid renames if
5195 the CURRENT_BLOCK corresponds to a function which symbol name
5196 has been changed by an "Export" pragma. As a consequence,
5197 the user will be unable to print such rename entities. */
5198
5199 static int
5200 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5201 const struct block *current_block)
5202 {
5203 struct symbol *current_function;
5204 const char *current_function_name;
5205 int i;
5206 int is_new_style_renaming;
5207
5208 /* If there is both a renaming foo___XR... encoded as a variable and
5209 a simple variable foo in the same block, discard the latter.
5210 First, zero out such symbols, then compress. */
5211 is_new_style_renaming = 0;
5212 for (i = 0; i < syms->size (); i += 1)
5213 {
5214 struct symbol *sym = (*syms)[i].symbol;
5215 const struct block *block = (*syms)[i].block;
5216 const char *name;
5217 const char *suffix;
5218
5219 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5220 continue;
5221 name = sym->linkage_name ();
5222 suffix = strstr (name, "___XR");
5223
5224 if (suffix != NULL)
5225 {
5226 int name_len = suffix - name;
5227 int j;
5228
5229 is_new_style_renaming = 1;
5230 for (j = 0; j < syms->size (); j += 1)
5231 if (i != j && (*syms)[j].symbol != NULL
5232 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5233 name_len) == 0
5234 && block == (*syms)[j].block)
5235 (*syms)[j].symbol = NULL;
5236 }
5237 }
5238 if (is_new_style_renaming)
5239 {
5240 int j, k;
5241
5242 for (j = k = 0; j < syms->size (); j += 1)
5243 if ((*syms)[j].symbol != NULL)
5244 {
5245 (*syms)[k] = (*syms)[j];
5246 k += 1;
5247 }
5248 return k;
5249 }
5250
5251 /* Extract the function name associated to CURRENT_BLOCK.
5252 Abort if unable to do so. */
5253
5254 if (current_block == NULL)
5255 return syms->size ();
5256
5257 current_function = block_linkage_function (current_block);
5258 if (current_function == NULL)
5259 return syms->size ();
5260
5261 current_function_name = current_function->linkage_name ();
5262 if (current_function_name == NULL)
5263 return syms->size ();
5264
5265 /* Check each of the symbols, and remove it from the list if it is
5266 a type corresponding to a renaming that is out of the scope of
5267 the current block. */
5268
5269 i = 0;
5270 while (i < syms->size ())
5271 {
5272 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5273 == ADA_OBJECT_RENAMING
5274 && old_renaming_is_invisible ((*syms)[i].symbol,
5275 current_function_name))
5276 syms->erase (syms->begin () + i);
5277 else
5278 i += 1;
5279 }
5280
5281 return syms->size ();
5282 }
5283
5284 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5285 whose name and domain match NAME and DOMAIN respectively.
5286 If no match was found, then extend the search to "enclosing"
5287 routines (in other words, if we're inside a nested function,
5288 search the symbols defined inside the enclosing functions).
5289 If WILD_MATCH_P is nonzero, perform the naming matching in
5290 "wild" mode (see function "wild_match" for more info).
5291
5292 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5293
5294 static void
5295 ada_add_local_symbols (struct obstack *obstackp,
5296 const lookup_name_info &lookup_name,
5297 const struct block *block, domain_enum domain)
5298 {
5299 int block_depth = 0;
5300
5301 while (block != NULL)
5302 {
5303 block_depth += 1;
5304 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5305
5306 /* If we found a non-function match, assume that's the one. */
5307 if (is_nonfunction (defns_collected (obstackp, 0),
5308 num_defns_collected (obstackp)))
5309 return;
5310
5311 block = BLOCK_SUPERBLOCK (block);
5312 }
5313
5314 /* If no luck so far, try to find NAME as a local symbol in some lexically
5315 enclosing subprogram. */
5316 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5317 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5318 }
5319
5320 /* An object of this type is used as the user_data argument when
5321 calling the map_matching_symbols method. */
5322
5323 struct match_data
5324 {
5325 struct objfile *objfile;
5326 struct obstack *obstackp;
5327 struct symbol *arg_sym;
5328 int found_sym;
5329 };
5330
5331 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5332 to a list of symbols. DATA is a pointer to a struct match_data *
5333 containing the obstack that collects the symbol list, the file that SYM
5334 must come from, a flag indicating whether a non-argument symbol has
5335 been found in the current block, and the last argument symbol
5336 passed in SYM within the current block (if any). When SYM is null,
5337 marking the end of a block, the argument symbol is added if no
5338 other has been found. */
5339
5340 static bool
5341 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5342 struct match_data *data)
5343 {
5344 const struct block *block = bsym->block;
5345 struct symbol *sym = bsym->symbol;
5346
5347 if (sym == NULL)
5348 {
5349 if (!data->found_sym && data->arg_sym != NULL)
5350 add_defn_to_vec (data->obstackp,
5351 fixup_symbol_section (data->arg_sym, data->objfile),
5352 block);
5353 data->found_sym = 0;
5354 data->arg_sym = NULL;
5355 }
5356 else
5357 {
5358 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5359 return true;
5360 else if (SYMBOL_IS_ARGUMENT (sym))
5361 data->arg_sym = sym;
5362 else
5363 {
5364 data->found_sym = 1;
5365 add_defn_to_vec (data->obstackp,
5366 fixup_symbol_section (sym, data->objfile),
5367 block);
5368 }
5369 }
5370 return true;
5371 }
5372
5373 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5374 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5375 symbols to OBSTACKP. Return whether we found such symbols. */
5376
5377 static int
5378 ada_add_block_renamings (struct obstack *obstackp,
5379 const struct block *block,
5380 const lookup_name_info &lookup_name,
5381 domain_enum domain)
5382 {
5383 struct using_direct *renaming;
5384 int defns_mark = num_defns_collected (obstackp);
5385
5386 symbol_name_matcher_ftype *name_match
5387 = ada_get_symbol_name_matcher (lookup_name);
5388
5389 for (renaming = block_using (block);
5390 renaming != NULL;
5391 renaming = renaming->next)
5392 {
5393 const char *r_name;
5394
5395 /* Avoid infinite recursions: skip this renaming if we are actually
5396 already traversing it.
5397
5398 Currently, symbol lookup in Ada don't use the namespace machinery from
5399 C++/Fortran support: skip namespace imports that use them. */
5400 if (renaming->searched
5401 || (renaming->import_src != NULL
5402 && renaming->import_src[0] != '\0')
5403 || (renaming->import_dest != NULL
5404 && renaming->import_dest[0] != '\0'))
5405 continue;
5406 renaming->searched = 1;
5407
5408 /* TODO: here, we perform another name-based symbol lookup, which can
5409 pull its own multiple overloads. In theory, we should be able to do
5410 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5411 not a simple name. But in order to do this, we would need to enhance
5412 the DWARF reader to associate a symbol to this renaming, instead of a
5413 name. So, for now, we do something simpler: re-use the C++/Fortran
5414 namespace machinery. */
5415 r_name = (renaming->alias != NULL
5416 ? renaming->alias
5417 : renaming->declaration);
5418 if (name_match (r_name, lookup_name, NULL))
5419 {
5420 lookup_name_info decl_lookup_name (renaming->declaration,
5421 lookup_name.match_type ());
5422 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5423 1, NULL);
5424 }
5425 renaming->searched = 0;
5426 }
5427 return num_defns_collected (obstackp) != defns_mark;
5428 }
5429
5430 /* Implements compare_names, but only applying the comparision using
5431 the given CASING. */
5432
5433 static int
5434 compare_names_with_case (const char *string1, const char *string2,
5435 enum case_sensitivity casing)
5436 {
5437 while (*string1 != '\0' && *string2 != '\0')
5438 {
5439 char c1, c2;
5440
5441 if (isspace (*string1) || isspace (*string2))
5442 return strcmp_iw_ordered (string1, string2);
5443
5444 if (casing == case_sensitive_off)
5445 {
5446 c1 = tolower (*string1);
5447 c2 = tolower (*string2);
5448 }
5449 else
5450 {
5451 c1 = *string1;
5452 c2 = *string2;
5453 }
5454 if (c1 != c2)
5455 break;
5456
5457 string1 += 1;
5458 string2 += 1;
5459 }
5460
5461 switch (*string1)
5462 {
5463 case '(':
5464 return strcmp_iw_ordered (string1, string2);
5465 case '_':
5466 if (*string2 == '\0')
5467 {
5468 if (is_name_suffix (string1))
5469 return 0;
5470 else
5471 return 1;
5472 }
5473 /* FALLTHROUGH */
5474 default:
5475 if (*string2 == '(')
5476 return strcmp_iw_ordered (string1, string2);
5477 else
5478 {
5479 if (casing == case_sensitive_off)
5480 return tolower (*string1) - tolower (*string2);
5481 else
5482 return *string1 - *string2;
5483 }
5484 }
5485 }
5486
5487 /* Compare STRING1 to STRING2, with results as for strcmp.
5488 Compatible with strcmp_iw_ordered in that...
5489
5490 strcmp_iw_ordered (STRING1, STRING2) <= 0
5491
5492 ... implies...
5493
5494 compare_names (STRING1, STRING2) <= 0
5495
5496 (they may differ as to what symbols compare equal). */
5497
5498 static int
5499 compare_names (const char *string1, const char *string2)
5500 {
5501 int result;
5502
5503 /* Similar to what strcmp_iw_ordered does, we need to perform
5504 a case-insensitive comparison first, and only resort to
5505 a second, case-sensitive, comparison if the first one was
5506 not sufficient to differentiate the two strings. */
5507
5508 result = compare_names_with_case (string1, string2, case_sensitive_off);
5509 if (result == 0)
5510 result = compare_names_with_case (string1, string2, case_sensitive_on);
5511
5512 return result;
5513 }
5514
5515 /* Convenience function to get at the Ada encoded lookup name for
5516 LOOKUP_NAME, as a C string. */
5517
5518 static const char *
5519 ada_lookup_name (const lookup_name_info &lookup_name)
5520 {
5521 return lookup_name.ada ().lookup_name ().c_str ();
5522 }
5523
5524 /* Add to OBSTACKP all non-local symbols whose name and domain match
5525 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5526 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5527 symbols otherwise. */
5528
5529 static void
5530 add_nonlocal_symbols (struct obstack *obstackp,
5531 const lookup_name_info &lookup_name,
5532 domain_enum domain, int global)
5533 {
5534 struct match_data data;
5535
5536 memset (&data, 0, sizeof data);
5537 data.obstackp = obstackp;
5538
5539 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5540
5541 auto callback = [&] (struct block_symbol *bsym)
5542 {
5543 return aux_add_nonlocal_symbols (bsym, &data);
5544 };
5545
5546 for (objfile *objfile : current_program_space->objfiles ())
5547 {
5548 data.objfile = objfile;
5549
5550 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5551 domain, global, callback,
5552 (is_wild_match
5553 ? NULL : compare_names));
5554
5555 for (compunit_symtab *cu : objfile->compunits ())
5556 {
5557 const struct block *global_block
5558 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5559
5560 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5561 domain))
5562 data.found_sym = 1;
5563 }
5564 }
5565
5566 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5567 {
5568 const char *name = ada_lookup_name (lookup_name);
5569 std::string bracket_name = std::string ("<_ada_") + name + '>';
5570 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5571
5572 for (objfile *objfile : current_program_space->objfiles ())
5573 {
5574 data.objfile = objfile;
5575 objfile->sf->qf->map_matching_symbols (objfile, name1,
5576 domain, global, callback,
5577 compare_names);
5578 }
5579 }
5580 }
5581
5582 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5583 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5584 returning the number of matches. Add these to OBSTACKP.
5585
5586 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5587 symbol match within the nest of blocks whose innermost member is BLOCK,
5588 is the one match returned (no other matches in that or
5589 enclosing blocks is returned). If there are any matches in or
5590 surrounding BLOCK, then these alone are returned.
5591
5592 Names prefixed with "standard__" are handled specially:
5593 "standard__" is first stripped off (by the lookup_name
5594 constructor), and only static and global symbols are searched.
5595
5596 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5597 to lookup global symbols. */
5598
5599 static void
5600 ada_add_all_symbols (struct obstack *obstackp,
5601 const struct block *block,
5602 const lookup_name_info &lookup_name,
5603 domain_enum domain,
5604 int full_search,
5605 int *made_global_lookup_p)
5606 {
5607 struct symbol *sym;
5608
5609 if (made_global_lookup_p)
5610 *made_global_lookup_p = 0;
5611
5612 /* Special case: If the user specifies a symbol name inside package
5613 Standard, do a non-wild matching of the symbol name without
5614 the "standard__" prefix. This was primarily introduced in order
5615 to allow the user to specifically access the standard exceptions
5616 using, for instance, Standard.Constraint_Error when Constraint_Error
5617 is ambiguous (due to the user defining its own Constraint_Error
5618 entity inside its program). */
5619 if (lookup_name.ada ().standard_p ())
5620 block = NULL;
5621
5622 /* Check the non-global symbols. If we have ANY match, then we're done. */
5623
5624 if (block != NULL)
5625 {
5626 if (full_search)
5627 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5628 else
5629 {
5630 /* In the !full_search case we're are being called by
5631 iterate_over_symbols, and we don't want to search
5632 superblocks. */
5633 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5634 }
5635 if (num_defns_collected (obstackp) > 0 || !full_search)
5636 return;
5637 }
5638
5639 /* No non-global symbols found. Check our cache to see if we have
5640 already performed this search before. If we have, then return
5641 the same result. */
5642
5643 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5644 domain, &sym, &block))
5645 {
5646 if (sym != NULL)
5647 add_defn_to_vec (obstackp, sym, block);
5648 return;
5649 }
5650
5651 if (made_global_lookup_p)
5652 *made_global_lookup_p = 1;
5653
5654 /* Search symbols from all global blocks. */
5655
5656 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5657
5658 /* Now add symbols from all per-file blocks if we've gotten no hits
5659 (not strictly correct, but perhaps better than an error). */
5660
5661 if (num_defns_collected (obstackp) == 0)
5662 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5663 }
5664
5665 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5666 is non-zero, enclosing scope and in global scopes, returning the number of
5667 matches.
5668 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5669 found and the blocks and symbol tables (if any) in which they were
5670 found.
5671
5672 When full_search is non-zero, any non-function/non-enumeral
5673 symbol match within the nest of blocks whose innermost member is BLOCK,
5674 is the one match returned (no other matches in that or
5675 enclosing blocks is returned). If there are any matches in or
5676 surrounding BLOCK, then these alone are returned.
5677
5678 Names prefixed with "standard__" are handled specially: "standard__"
5679 is first stripped off, and only static and global symbols are searched. */
5680
5681 static int
5682 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5683 const struct block *block,
5684 domain_enum domain,
5685 std::vector<struct block_symbol> *results,
5686 int full_search)
5687 {
5688 int syms_from_global_search;
5689 int ndefns;
5690 auto_obstack obstack;
5691
5692 ada_add_all_symbols (&obstack, block, lookup_name,
5693 domain, full_search, &syms_from_global_search);
5694
5695 ndefns = num_defns_collected (&obstack);
5696
5697 struct block_symbol *base = defns_collected (&obstack, 1);
5698 for (int i = 0; i < ndefns; ++i)
5699 results->push_back (base[i]);
5700
5701 ndefns = remove_extra_symbols (results);
5702
5703 if (ndefns == 0 && full_search && syms_from_global_search)
5704 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5705
5706 if (ndefns == 1 && full_search && syms_from_global_search)
5707 cache_symbol (ada_lookup_name (lookup_name), domain,
5708 (*results)[0].symbol, (*results)[0].block);
5709
5710 ndefns = remove_irrelevant_renamings (results, block);
5711
5712 return ndefns;
5713 }
5714
5715 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5716 in global scopes, returning the number of matches, and filling *RESULTS
5717 with (SYM,BLOCK) tuples.
5718
5719 See ada_lookup_symbol_list_worker for further details. */
5720
5721 int
5722 ada_lookup_symbol_list (const char *name, const struct block *block,
5723 domain_enum domain,
5724 std::vector<struct block_symbol> *results)
5725 {
5726 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5727 lookup_name_info lookup_name (name, name_match_type);
5728
5729 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5730 }
5731
5732 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5733 to 1, but choosing the first symbol found if there are multiple
5734 choices.
5735
5736 The result is stored in *INFO, which must be non-NULL.
5737 If no match is found, INFO->SYM is set to NULL. */
5738
5739 void
5740 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5741 domain_enum domain,
5742 struct block_symbol *info)
5743 {
5744 /* Since we already have an encoded name, wrap it in '<>' to force a
5745 verbatim match. Otherwise, if the name happens to not look like
5746 an encoded name (because it doesn't include a "__"),
5747 ada_lookup_name_info would re-encode/fold it again, and that
5748 would e.g., incorrectly lowercase object renaming names like
5749 "R28b" -> "r28b". */
5750 std::string verbatim = std::string ("<") + name + '>';
5751
5752 gdb_assert (info != NULL);
5753 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5754 }
5755
5756 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5757 scope and in global scopes, or NULL if none. NAME is folded and
5758 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5759 choosing the first symbol if there are multiple choices. */
5760
5761 struct block_symbol
5762 ada_lookup_symbol (const char *name, const struct block *block0,
5763 domain_enum domain)
5764 {
5765 std::vector<struct block_symbol> candidates;
5766 int n_candidates;
5767
5768 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5769
5770 if (n_candidates == 0)
5771 return {};
5772
5773 block_symbol info = candidates[0];
5774 info.symbol = fixup_symbol_section (info.symbol, NULL);
5775 return info;
5776 }
5777
5778 static struct block_symbol
5779 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5780 const char *name,
5781 const struct block *block,
5782 const domain_enum domain)
5783 {
5784 struct block_symbol sym;
5785
5786 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5787 if (sym.symbol != NULL)
5788 return sym;
5789
5790 /* If we haven't found a match at this point, try the primitive
5791 types. In other languages, this search is performed before
5792 searching for global symbols in order to short-circuit that
5793 global-symbol search if it happens that the name corresponds
5794 to a primitive type. But we cannot do the same in Ada, because
5795 it is perfectly legitimate for a program to declare a type which
5796 has the same name as a standard type. If looking up a type in
5797 that situation, we have traditionally ignored the primitive type
5798 in favor of user-defined types. This is why, unlike most other
5799 languages, we search the primitive types this late and only after
5800 having searched the global symbols without success. */
5801
5802 if (domain == VAR_DOMAIN)
5803 {
5804 struct gdbarch *gdbarch;
5805
5806 if (block == NULL)
5807 gdbarch = target_gdbarch ();
5808 else
5809 gdbarch = block_gdbarch (block);
5810 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5811 if (sym.symbol != NULL)
5812 return sym;
5813 }
5814
5815 return {};
5816 }
5817
5818
5819 /* True iff STR is a possible encoded suffix of a normal Ada name
5820 that is to be ignored for matching purposes. Suffixes of parallel
5821 names (e.g., XVE) are not included here. Currently, the possible suffixes
5822 are given by any of the regular expressions:
5823
5824 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5825 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5826 TKB [subprogram suffix for task bodies]
5827 _E[0-9]+[bs]$ [protected object entry suffixes]
5828 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5829
5830 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5831 match is performed. This sequence is used to differentiate homonyms,
5832 is an optional part of a valid name suffix. */
5833
5834 static int
5835 is_name_suffix (const char *str)
5836 {
5837 int k;
5838 const char *matching;
5839 const int len = strlen (str);
5840
5841 /* Skip optional leading __[0-9]+. */
5842
5843 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5844 {
5845 str += 3;
5846 while (isdigit (str[0]))
5847 str += 1;
5848 }
5849
5850 /* [.$][0-9]+ */
5851
5852 if (str[0] == '.' || str[0] == '$')
5853 {
5854 matching = str + 1;
5855 while (isdigit (matching[0]))
5856 matching += 1;
5857 if (matching[0] == '\0')
5858 return 1;
5859 }
5860
5861 /* ___[0-9]+ */
5862
5863 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5864 {
5865 matching = str + 3;
5866 while (isdigit (matching[0]))
5867 matching += 1;
5868 if (matching[0] == '\0')
5869 return 1;
5870 }
5871
5872 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5873
5874 if (strcmp (str, "TKB") == 0)
5875 return 1;
5876
5877 #if 0
5878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5879 with a N at the end. Unfortunately, the compiler uses the same
5880 convention for other internal types it creates. So treating
5881 all entity names that end with an "N" as a name suffix causes
5882 some regressions. For instance, consider the case of an enumerated
5883 type. To support the 'Image attribute, it creates an array whose
5884 name ends with N.
5885 Having a single character like this as a suffix carrying some
5886 information is a bit risky. Perhaps we should change the encoding
5887 to be something like "_N" instead. In the meantime, do not do
5888 the following check. */
5889 /* Protected Object Subprograms */
5890 if (len == 1 && str [0] == 'N')
5891 return 1;
5892 #endif
5893
5894 /* _E[0-9]+[bs]$ */
5895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5896 {
5897 matching = str + 3;
5898 while (isdigit (matching[0]))
5899 matching += 1;
5900 if ((matching[0] == 'b' || matching[0] == 's')
5901 && matching [1] == '\0')
5902 return 1;
5903 }
5904
5905 /* ??? We should not modify STR directly, as we are doing below. This
5906 is fine in this case, but may become problematic later if we find
5907 that this alternative did not work, and want to try matching
5908 another one from the begining of STR. Since we modified it, we
5909 won't be able to find the begining of the string anymore! */
5910 if (str[0] == 'X')
5911 {
5912 str += 1;
5913 while (str[0] != '_' && str[0] != '\0')
5914 {
5915 if (str[0] != 'n' && str[0] != 'b')
5916 return 0;
5917 str += 1;
5918 }
5919 }
5920
5921 if (str[0] == '\000')
5922 return 1;
5923
5924 if (str[0] == '_')
5925 {
5926 if (str[1] != '_' || str[2] == '\000')
5927 return 0;
5928 if (str[2] == '_')
5929 {
5930 if (strcmp (str + 3, "JM") == 0)
5931 return 1;
5932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5933 the LJM suffix in favor of the JM one. But we will
5934 still accept LJM as a valid suffix for a reasonable
5935 amount of time, just to allow ourselves to debug programs
5936 compiled using an older version of GNAT. */
5937 if (strcmp (str + 3, "LJM") == 0)
5938 return 1;
5939 if (str[3] != 'X')
5940 return 0;
5941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5942 || str[4] == 'U' || str[4] == 'P')
5943 return 1;
5944 if (str[4] == 'R' && str[5] != 'T')
5945 return 1;
5946 return 0;
5947 }
5948 if (!isdigit (str[2]))
5949 return 0;
5950 for (k = 3; str[k] != '\0'; k += 1)
5951 if (!isdigit (str[k]) && str[k] != '_')
5952 return 0;
5953 return 1;
5954 }
5955 if (str[0] == '$' && isdigit (str[1]))
5956 {
5957 for (k = 2; str[k] != '\0'; k += 1)
5958 if (!isdigit (str[k]) && str[k] != '_')
5959 return 0;
5960 return 1;
5961 }
5962 return 0;
5963 }
5964
5965 /* Return non-zero if the string starting at NAME and ending before
5966 NAME_END contains no capital letters. */
5967
5968 static int
5969 is_valid_name_for_wild_match (const char *name0)
5970 {
5971 std::string decoded_name = ada_decode (name0);
5972 int i;
5973
5974 /* If the decoded name starts with an angle bracket, it means that
5975 NAME0 does not follow the GNAT encoding format. It should then
5976 not be allowed as a possible wild match. */
5977 if (decoded_name[0] == '<')
5978 return 0;
5979
5980 for (i=0; decoded_name[i] != '\0'; i++)
5981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5982 return 0;
5983
5984 return 1;
5985 }
5986
5987 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5988 that could start a simple name. Assumes that *NAMEP points into
5989 the string beginning at NAME0. */
5990
5991 static int
5992 advance_wild_match (const char **namep, const char *name0, int target0)
5993 {
5994 const char *name = *namep;
5995
5996 while (1)
5997 {
5998 int t0, t1;
5999
6000 t0 = *name;
6001 if (t0 == '_')
6002 {
6003 t1 = name[1];
6004 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6005 {
6006 name += 1;
6007 if (name == name0 + 5 && startswith (name0, "_ada"))
6008 break;
6009 else
6010 name += 1;
6011 }
6012 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6013 || name[2] == target0))
6014 {
6015 name += 2;
6016 break;
6017 }
6018 else
6019 return 0;
6020 }
6021 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6022 name += 1;
6023 else
6024 return 0;
6025 }
6026
6027 *namep = name;
6028 return 1;
6029 }
6030
6031 /* Return true iff NAME encodes a name of the form prefix.PATN.
6032 Ignores any informational suffixes of NAME (i.e., for which
6033 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6034 simple name. */
6035
6036 static bool
6037 wild_match (const char *name, const char *patn)
6038 {
6039 const char *p;
6040 const char *name0 = name;
6041
6042 while (1)
6043 {
6044 const char *match = name;
6045
6046 if (*name == *patn)
6047 {
6048 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6049 if (*p != *name)
6050 break;
6051 if (*p == '\0' && is_name_suffix (name))
6052 return match == name0 || is_valid_name_for_wild_match (name0);
6053
6054 if (name[-1] == '_')
6055 name -= 1;
6056 }
6057 if (!advance_wild_match (&name, name0, *patn))
6058 return false;
6059 }
6060 }
6061
6062 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6063 any trailing suffixes that encode debugging information or leading
6064 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6065 information that is ignored). */
6066
6067 static bool
6068 full_match (const char *sym_name, const char *search_name)
6069 {
6070 size_t search_name_len = strlen (search_name);
6071
6072 if (strncmp (sym_name, search_name, search_name_len) == 0
6073 && is_name_suffix (sym_name + search_name_len))
6074 return true;
6075
6076 if (startswith (sym_name, "_ada_")
6077 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6078 && is_name_suffix (sym_name + search_name_len + 5))
6079 return true;
6080
6081 return false;
6082 }
6083
6084 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6085 *defn_symbols, updating the list of symbols in OBSTACKP (if
6086 necessary). OBJFILE is the section containing BLOCK. */
6087
6088 static void
6089 ada_add_block_symbols (struct obstack *obstackp,
6090 const struct block *block,
6091 const lookup_name_info &lookup_name,
6092 domain_enum domain, struct objfile *objfile)
6093 {
6094 struct block_iterator iter;
6095 /* A matching argument symbol, if any. */
6096 struct symbol *arg_sym;
6097 /* Set true when we find a matching non-argument symbol. */
6098 int found_sym;
6099 struct symbol *sym;
6100
6101 arg_sym = NULL;
6102 found_sym = 0;
6103 for (sym = block_iter_match_first (block, lookup_name, &iter);
6104 sym != NULL;
6105 sym = block_iter_match_next (lookup_name, &iter))
6106 {
6107 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6108 {
6109 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6110 {
6111 if (SYMBOL_IS_ARGUMENT (sym))
6112 arg_sym = sym;
6113 else
6114 {
6115 found_sym = 1;
6116 add_defn_to_vec (obstackp,
6117 fixup_symbol_section (sym, objfile),
6118 block);
6119 }
6120 }
6121 }
6122 }
6123
6124 /* Handle renamings. */
6125
6126 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6127 found_sym = 1;
6128
6129 if (!found_sym && arg_sym != NULL)
6130 {
6131 add_defn_to_vec (obstackp,
6132 fixup_symbol_section (arg_sym, objfile),
6133 block);
6134 }
6135
6136 if (!lookup_name.ada ().wild_match_p ())
6137 {
6138 arg_sym = NULL;
6139 found_sym = 0;
6140 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6141 const char *name = ada_lookup_name.c_str ();
6142 size_t name_len = ada_lookup_name.size ();
6143
6144 ALL_BLOCK_SYMBOLS (block, iter, sym)
6145 {
6146 if (symbol_matches_domain (sym->language (),
6147 SYMBOL_DOMAIN (sym), domain))
6148 {
6149 int cmp;
6150
6151 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6152 if (cmp == 0)
6153 {
6154 cmp = !startswith (sym->linkage_name (), "_ada_");
6155 if (cmp == 0)
6156 cmp = strncmp (name, sym->linkage_name () + 5,
6157 name_len);
6158 }
6159
6160 if (cmp == 0
6161 && is_name_suffix (sym->linkage_name () + name_len + 5))
6162 {
6163 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6164 {
6165 if (SYMBOL_IS_ARGUMENT (sym))
6166 arg_sym = sym;
6167 else
6168 {
6169 found_sym = 1;
6170 add_defn_to_vec (obstackp,
6171 fixup_symbol_section (sym, objfile),
6172 block);
6173 }
6174 }
6175 }
6176 }
6177 }
6178
6179 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6180 They aren't parameters, right? */
6181 if (!found_sym && arg_sym != NULL)
6182 {
6183 add_defn_to_vec (obstackp,
6184 fixup_symbol_section (arg_sym, objfile),
6185 block);
6186 }
6187 }
6188 }
6189 \f
6190
6191 /* Symbol Completion */
6192
6193 /* See symtab.h. */
6194
6195 bool
6196 ada_lookup_name_info::matches
6197 (const char *sym_name,
6198 symbol_name_match_type match_type,
6199 completion_match_result *comp_match_res) const
6200 {
6201 bool match = false;
6202 const char *text = m_encoded_name.c_str ();
6203 size_t text_len = m_encoded_name.size ();
6204
6205 /* First, test against the fully qualified name of the symbol. */
6206
6207 if (strncmp (sym_name, text, text_len) == 0)
6208 match = true;
6209
6210 std::string decoded_name = ada_decode (sym_name);
6211 if (match && !m_encoded_p)
6212 {
6213 /* One needed check before declaring a positive match is to verify
6214 that iff we are doing a verbatim match, the decoded version
6215 of the symbol name starts with '<'. Otherwise, this symbol name
6216 is not a suitable completion. */
6217
6218 bool has_angle_bracket = (decoded_name[0] == '<');
6219 match = (has_angle_bracket == m_verbatim_p);
6220 }
6221
6222 if (match && !m_verbatim_p)
6223 {
6224 /* When doing non-verbatim match, another check that needs to
6225 be done is to verify that the potentially matching symbol name
6226 does not include capital letters, because the ada-mode would
6227 not be able to understand these symbol names without the
6228 angle bracket notation. */
6229 const char *tmp;
6230
6231 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6232 if (*tmp != '\0')
6233 match = false;
6234 }
6235
6236 /* Second: Try wild matching... */
6237
6238 if (!match && m_wild_match_p)
6239 {
6240 /* Since we are doing wild matching, this means that TEXT
6241 may represent an unqualified symbol name. We therefore must
6242 also compare TEXT against the unqualified name of the symbol. */
6243 sym_name = ada_unqualified_name (decoded_name.c_str ());
6244
6245 if (strncmp (sym_name, text, text_len) == 0)
6246 match = true;
6247 }
6248
6249 /* Finally: If we found a match, prepare the result to return. */
6250
6251 if (!match)
6252 return false;
6253
6254 if (comp_match_res != NULL)
6255 {
6256 std::string &match_str = comp_match_res->match.storage ();
6257
6258 if (!m_encoded_p)
6259 match_str = ada_decode (sym_name);
6260 else
6261 {
6262 if (m_verbatim_p)
6263 match_str = add_angle_brackets (sym_name);
6264 else
6265 match_str = sym_name;
6266
6267 }
6268
6269 comp_match_res->set_match (match_str.c_str ());
6270 }
6271
6272 return true;
6273 }
6274
6275 /* Field Access */
6276
6277 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6278 for tagged types. */
6279
6280 static int
6281 ada_is_dispatch_table_ptr_type (struct type *type)
6282 {
6283 const char *name;
6284
6285 if (type->code () != TYPE_CODE_PTR)
6286 return 0;
6287
6288 name = TYPE_TARGET_TYPE (type)->name ();
6289 if (name == NULL)
6290 return 0;
6291
6292 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6293 }
6294
6295 /* Return non-zero if TYPE is an interface tag. */
6296
6297 static int
6298 ada_is_interface_tag (struct type *type)
6299 {
6300 const char *name = type->name ();
6301
6302 if (name == NULL)
6303 return 0;
6304
6305 return (strcmp (name, "ada__tags__interface_tag") == 0);
6306 }
6307
6308 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6309 to be invisible to users. */
6310
6311 int
6312 ada_is_ignored_field (struct type *type, int field_num)
6313 {
6314 if (field_num < 0 || field_num > type->num_fields ())
6315 return 1;
6316
6317 /* Check the name of that field. */
6318 {
6319 const char *name = TYPE_FIELD_NAME (type, field_num);
6320
6321 /* Anonymous field names should not be printed.
6322 brobecker/2007-02-20: I don't think this can actually happen
6323 but we don't want to print the value of anonymous fields anyway. */
6324 if (name == NULL)
6325 return 1;
6326
6327 /* Normally, fields whose name start with an underscore ("_")
6328 are fields that have been internally generated by the compiler,
6329 and thus should not be printed. The "_parent" field is special,
6330 however: This is a field internally generated by the compiler
6331 for tagged types, and it contains the components inherited from
6332 the parent type. This field should not be printed as is, but
6333 should not be ignored either. */
6334 if (name[0] == '_' && !startswith (name, "_parent"))
6335 return 1;
6336 }
6337
6338 /* If this is the dispatch table of a tagged type or an interface tag,
6339 then ignore. */
6340 if (ada_is_tagged_type (type, 1)
6341 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6342 || ada_is_interface_tag (type->field (field_num).type ())))
6343 return 1;
6344
6345 /* Not a special field, so it should not be ignored. */
6346 return 0;
6347 }
6348
6349 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6350 pointer or reference type whose ultimate target has a tag field. */
6351
6352 int
6353 ada_is_tagged_type (struct type *type, int refok)
6354 {
6355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6356 }
6357
6358 /* True iff TYPE represents the type of X'Tag */
6359
6360 int
6361 ada_is_tag_type (struct type *type)
6362 {
6363 type = ada_check_typedef (type);
6364
6365 if (type == NULL || type->code () != TYPE_CODE_PTR)
6366 return 0;
6367 else
6368 {
6369 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6370
6371 return (name != NULL
6372 && strcmp (name, "ada__tags__dispatch_table") == 0);
6373 }
6374 }
6375
6376 /* The type of the tag on VAL. */
6377
6378 static struct type *
6379 ada_tag_type (struct value *val)
6380 {
6381 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6382 }
6383
6384 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6385 retired at Ada 05). */
6386
6387 static int
6388 is_ada95_tag (struct value *tag)
6389 {
6390 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6391 }
6392
6393 /* The value of the tag on VAL. */
6394
6395 static struct value *
6396 ada_value_tag (struct value *val)
6397 {
6398 return ada_value_struct_elt (val, "_tag", 0);
6399 }
6400
6401 /* The value of the tag on the object of type TYPE whose contents are
6402 saved at VALADDR, if it is non-null, or is at memory address
6403 ADDRESS. */
6404
6405 static struct value *
6406 value_tag_from_contents_and_address (struct type *type,
6407 const gdb_byte *valaddr,
6408 CORE_ADDR address)
6409 {
6410 int tag_byte_offset;
6411 struct type *tag_type;
6412
6413 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6414 NULL, NULL, NULL))
6415 {
6416 const gdb_byte *valaddr1 = ((valaddr == NULL)
6417 ? NULL
6418 : valaddr + tag_byte_offset);
6419 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6420
6421 return value_from_contents_and_address (tag_type, valaddr1, address1);
6422 }
6423 return NULL;
6424 }
6425
6426 static struct type *
6427 type_from_tag (struct value *tag)
6428 {
6429 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6430
6431 if (type_name != NULL)
6432 return ada_find_any_type (ada_encode (type_name.get ()));
6433 return NULL;
6434 }
6435
6436 /* Given a value OBJ of a tagged type, return a value of this
6437 type at the base address of the object. The base address, as
6438 defined in Ada.Tags, it is the address of the primary tag of
6439 the object, and therefore where the field values of its full
6440 view can be fetched. */
6441
6442 struct value *
6443 ada_tag_value_at_base_address (struct value *obj)
6444 {
6445 struct value *val;
6446 LONGEST offset_to_top = 0;
6447 struct type *ptr_type, *obj_type;
6448 struct value *tag;
6449 CORE_ADDR base_address;
6450
6451 obj_type = value_type (obj);
6452
6453 /* It is the responsability of the caller to deref pointers. */
6454
6455 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6456 return obj;
6457
6458 tag = ada_value_tag (obj);
6459 if (!tag)
6460 return obj;
6461
6462 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6463
6464 if (is_ada95_tag (tag))
6465 return obj;
6466
6467 ptr_type = language_lookup_primitive_type
6468 (language_def (language_ada), target_gdbarch(), "storage_offset");
6469 ptr_type = lookup_pointer_type (ptr_type);
6470 val = value_cast (ptr_type, tag);
6471 if (!val)
6472 return obj;
6473
6474 /* It is perfectly possible that an exception be raised while
6475 trying to determine the base address, just like for the tag;
6476 see ada_tag_name for more details. We do not print the error
6477 message for the same reason. */
6478
6479 try
6480 {
6481 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6482 }
6483
6484 catch (const gdb_exception_error &e)
6485 {
6486 return obj;
6487 }
6488
6489 /* If offset is null, nothing to do. */
6490
6491 if (offset_to_top == 0)
6492 return obj;
6493
6494 /* -1 is a special case in Ada.Tags; however, what should be done
6495 is not quite clear from the documentation. So do nothing for
6496 now. */
6497
6498 if (offset_to_top == -1)
6499 return obj;
6500
6501 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6502 from the base address. This was however incompatible with
6503 C++ dispatch table: C++ uses a *negative* value to *add*
6504 to the base address. Ada's convention has therefore been
6505 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6506 use the same convention. Here, we support both cases by
6507 checking the sign of OFFSET_TO_TOP. */
6508
6509 if (offset_to_top > 0)
6510 offset_to_top = -offset_to_top;
6511
6512 base_address = value_address (obj) + offset_to_top;
6513 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6514
6515 /* Make sure that we have a proper tag at the new address.
6516 Otherwise, offset_to_top is bogus (which can happen when
6517 the object is not initialized yet). */
6518
6519 if (!tag)
6520 return obj;
6521
6522 obj_type = type_from_tag (tag);
6523
6524 if (!obj_type)
6525 return obj;
6526
6527 return value_from_contents_and_address (obj_type, NULL, base_address);
6528 }
6529
6530 /* Return the "ada__tags__type_specific_data" type. */
6531
6532 static struct type *
6533 ada_get_tsd_type (struct inferior *inf)
6534 {
6535 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6536
6537 if (data->tsd_type == 0)
6538 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6539 return data->tsd_type;
6540 }
6541
6542 /* Return the TSD (type-specific data) associated to the given TAG.
6543 TAG is assumed to be the tag of a tagged-type entity.
6544
6545 May return NULL if we are unable to get the TSD. */
6546
6547 static struct value *
6548 ada_get_tsd_from_tag (struct value *tag)
6549 {
6550 struct value *val;
6551 struct type *type;
6552
6553 /* First option: The TSD is simply stored as a field of our TAG.
6554 Only older versions of GNAT would use this format, but we have
6555 to test it first, because there are no visible markers for
6556 the current approach except the absence of that field. */
6557
6558 val = ada_value_struct_elt (tag, "tsd", 1);
6559 if (val)
6560 return val;
6561
6562 /* Try the second representation for the dispatch table (in which
6563 there is no explicit 'tsd' field in the referent of the tag pointer,
6564 and instead the tsd pointer is stored just before the dispatch
6565 table. */
6566
6567 type = ada_get_tsd_type (current_inferior());
6568 if (type == NULL)
6569 return NULL;
6570 type = lookup_pointer_type (lookup_pointer_type (type));
6571 val = value_cast (type, tag);
6572 if (val == NULL)
6573 return NULL;
6574 return value_ind (value_ptradd (val, -1));
6575 }
6576
6577 /* Given the TSD of a tag (type-specific data), return a string
6578 containing the name of the associated type.
6579
6580 May return NULL if we are unable to determine the tag name. */
6581
6582 static gdb::unique_xmalloc_ptr<char>
6583 ada_tag_name_from_tsd (struct value *tsd)
6584 {
6585 char *p;
6586 struct value *val;
6587
6588 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6589 if (val == NULL)
6590 return NULL;
6591 gdb::unique_xmalloc_ptr<char> buffer
6592 = target_read_string (value_as_address (val), INT_MAX);
6593 if (buffer == nullptr)
6594 return nullptr;
6595
6596 for (p = buffer.get (); *p != '\0'; ++p)
6597 {
6598 if (isalpha (*p))
6599 *p = tolower (*p);
6600 }
6601
6602 return buffer;
6603 }
6604
6605 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6606 a C string.
6607
6608 Return NULL if the TAG is not an Ada tag, or if we were unable to
6609 determine the name of that tag. */
6610
6611 gdb::unique_xmalloc_ptr<char>
6612 ada_tag_name (struct value *tag)
6613 {
6614 gdb::unique_xmalloc_ptr<char> name;
6615
6616 if (!ada_is_tag_type (value_type (tag)))
6617 return NULL;
6618
6619 /* It is perfectly possible that an exception be raised while trying
6620 to determine the TAG's name, even under normal circumstances:
6621 The associated variable may be uninitialized or corrupted, for
6622 instance. We do not let any exception propagate past this point.
6623 instead we return NULL.
6624
6625 We also do not print the error message either (which often is very
6626 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6627 the caller print a more meaningful message if necessary. */
6628 try
6629 {
6630 struct value *tsd = ada_get_tsd_from_tag (tag);
6631
6632 if (tsd != NULL)
6633 name = ada_tag_name_from_tsd (tsd);
6634 }
6635 catch (const gdb_exception_error &e)
6636 {
6637 }
6638
6639 return name;
6640 }
6641
6642 /* The parent type of TYPE, or NULL if none. */
6643
6644 struct type *
6645 ada_parent_type (struct type *type)
6646 {
6647 int i;
6648
6649 type = ada_check_typedef (type);
6650
6651 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6652 return NULL;
6653
6654 for (i = 0; i < type->num_fields (); i += 1)
6655 if (ada_is_parent_field (type, i))
6656 {
6657 struct type *parent_type = type->field (i).type ();
6658
6659 /* If the _parent field is a pointer, then dereference it. */
6660 if (parent_type->code () == TYPE_CODE_PTR)
6661 parent_type = TYPE_TARGET_TYPE (parent_type);
6662 /* If there is a parallel XVS type, get the actual base type. */
6663 parent_type = ada_get_base_type (parent_type);
6664
6665 return ada_check_typedef (parent_type);
6666 }
6667
6668 return NULL;
6669 }
6670
6671 /* True iff field number FIELD_NUM of structure type TYPE contains the
6672 parent-type (inherited) fields of a derived type. Assumes TYPE is
6673 a structure type with at least FIELD_NUM+1 fields. */
6674
6675 int
6676 ada_is_parent_field (struct type *type, int field_num)
6677 {
6678 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6679
6680 return (name != NULL
6681 && (startswith (name, "PARENT")
6682 || startswith (name, "_parent")));
6683 }
6684
6685 /* True iff field number FIELD_NUM of structure type TYPE is a
6686 transparent wrapper field (which should be silently traversed when doing
6687 field selection and flattened when printing). Assumes TYPE is a
6688 structure type with at least FIELD_NUM+1 fields. Such fields are always
6689 structures. */
6690
6691 int
6692 ada_is_wrapper_field (struct type *type, int field_num)
6693 {
6694 const char *name = TYPE_FIELD_NAME (type, field_num);
6695
6696 if (name != NULL && strcmp (name, "RETVAL") == 0)
6697 {
6698 /* This happens in functions with "out" or "in out" parameters
6699 which are passed by copy. For such functions, GNAT describes
6700 the function's return type as being a struct where the return
6701 value is in a field called RETVAL, and where the other "out"
6702 or "in out" parameters are fields of that struct. This is not
6703 a wrapper. */
6704 return 0;
6705 }
6706
6707 return (name != NULL
6708 && (startswith (name, "PARENT")
6709 || strcmp (name, "REP") == 0
6710 || startswith (name, "_parent")
6711 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6712 }
6713
6714 /* True iff field number FIELD_NUM of structure or union type TYPE
6715 is a variant wrapper. Assumes TYPE is a structure type with at least
6716 FIELD_NUM+1 fields. */
6717
6718 int
6719 ada_is_variant_part (struct type *type, int field_num)
6720 {
6721 /* Only Ada types are eligible. */
6722 if (!ADA_TYPE_P (type))
6723 return 0;
6724
6725 struct type *field_type = type->field (field_num).type ();
6726
6727 return (field_type->code () == TYPE_CODE_UNION
6728 || (is_dynamic_field (type, field_num)
6729 && (TYPE_TARGET_TYPE (field_type)->code ()
6730 == TYPE_CODE_UNION)));
6731 }
6732
6733 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6734 whose discriminants are contained in the record type OUTER_TYPE,
6735 returns the type of the controlling discriminant for the variant.
6736 May return NULL if the type could not be found. */
6737
6738 struct type *
6739 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6740 {
6741 const char *name = ada_variant_discrim_name (var_type);
6742
6743 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6744 }
6745
6746 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6747 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6748 represents a 'when others' clause; otherwise 0. */
6749
6750 static int
6751 ada_is_others_clause (struct type *type, int field_num)
6752 {
6753 const char *name = TYPE_FIELD_NAME (type, field_num);
6754
6755 return (name != NULL && name[0] == 'O');
6756 }
6757
6758 /* Assuming that TYPE0 is the type of the variant part of a record,
6759 returns the name of the discriminant controlling the variant.
6760 The value is valid until the next call to ada_variant_discrim_name. */
6761
6762 const char *
6763 ada_variant_discrim_name (struct type *type0)
6764 {
6765 static char *result = NULL;
6766 static size_t result_len = 0;
6767 struct type *type;
6768 const char *name;
6769 const char *discrim_end;
6770 const char *discrim_start;
6771
6772 if (type0->code () == TYPE_CODE_PTR)
6773 type = TYPE_TARGET_TYPE (type0);
6774 else
6775 type = type0;
6776
6777 name = ada_type_name (type);
6778
6779 if (name == NULL || name[0] == '\000')
6780 return "";
6781
6782 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6783 discrim_end -= 1)
6784 {
6785 if (startswith (discrim_end, "___XVN"))
6786 break;
6787 }
6788 if (discrim_end == name)
6789 return "";
6790
6791 for (discrim_start = discrim_end; discrim_start != name + 3;
6792 discrim_start -= 1)
6793 {
6794 if (discrim_start == name + 1)
6795 return "";
6796 if ((discrim_start > name + 3
6797 && startswith (discrim_start - 3, "___"))
6798 || discrim_start[-1] == '.')
6799 break;
6800 }
6801
6802 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6803 strncpy (result, discrim_start, discrim_end - discrim_start);
6804 result[discrim_end - discrim_start] = '\0';
6805 return result;
6806 }
6807
6808 /* Scan STR for a subtype-encoded number, beginning at position K.
6809 Put the position of the character just past the number scanned in
6810 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6811 Return 1 if there was a valid number at the given position, and 0
6812 otherwise. A "subtype-encoded" number consists of the absolute value
6813 in decimal, followed by the letter 'm' to indicate a negative number.
6814 Assumes 0m does not occur. */
6815
6816 int
6817 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6818 {
6819 ULONGEST RU;
6820
6821 if (!isdigit (str[k]))
6822 return 0;
6823
6824 /* Do it the hard way so as not to make any assumption about
6825 the relationship of unsigned long (%lu scan format code) and
6826 LONGEST. */
6827 RU = 0;
6828 while (isdigit (str[k]))
6829 {
6830 RU = RU * 10 + (str[k] - '0');
6831 k += 1;
6832 }
6833
6834 if (str[k] == 'm')
6835 {
6836 if (R != NULL)
6837 *R = (-(LONGEST) (RU - 1)) - 1;
6838 k += 1;
6839 }
6840 else if (R != NULL)
6841 *R = (LONGEST) RU;
6842
6843 /* NOTE on the above: Technically, C does not say what the results of
6844 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6845 number representable as a LONGEST (although either would probably work
6846 in most implementations). When RU>0, the locution in the then branch
6847 above is always equivalent to the negative of RU. */
6848
6849 if (new_k != NULL)
6850 *new_k = k;
6851 return 1;
6852 }
6853
6854 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6855 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6856 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6857
6858 static int
6859 ada_in_variant (LONGEST val, struct type *type, int field_num)
6860 {
6861 const char *name = TYPE_FIELD_NAME (type, field_num);
6862 int p;
6863
6864 p = 0;
6865 while (1)
6866 {
6867 switch (name[p])
6868 {
6869 case '\0':
6870 return 0;
6871 case 'S':
6872 {
6873 LONGEST W;
6874
6875 if (!ada_scan_number (name, p + 1, &W, &p))
6876 return 0;
6877 if (val == W)
6878 return 1;
6879 break;
6880 }
6881 case 'R':
6882 {
6883 LONGEST L, U;
6884
6885 if (!ada_scan_number (name, p + 1, &L, &p)
6886 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6887 return 0;
6888 if (val >= L && val <= U)
6889 return 1;
6890 break;
6891 }
6892 case 'O':
6893 return 1;
6894 default:
6895 return 0;
6896 }
6897 }
6898 }
6899
6900 /* FIXME: Lots of redundancy below. Try to consolidate. */
6901
6902 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6903 ARG_TYPE, extract and return the value of one of its (non-static)
6904 fields. FIELDNO says which field. Differs from value_primitive_field
6905 only in that it can handle packed values of arbitrary type. */
6906
6907 struct value *
6908 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6909 struct type *arg_type)
6910 {
6911 struct type *type;
6912
6913 arg_type = ada_check_typedef (arg_type);
6914 type = arg_type->field (fieldno).type ();
6915
6916 /* Handle packed fields. It might be that the field is not packed
6917 relative to its containing structure, but the structure itself is
6918 packed; in this case we must take the bit-field path. */
6919 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6920 {
6921 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6922 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6923
6924 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6925 offset + bit_pos / 8,
6926 bit_pos % 8, bit_size, type);
6927 }
6928 else
6929 return value_primitive_field (arg1, offset, fieldno, arg_type);
6930 }
6931
6932 /* Find field with name NAME in object of type TYPE. If found,
6933 set the following for each argument that is non-null:
6934 - *FIELD_TYPE_P to the field's type;
6935 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6936 an object of that type;
6937 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6938 - *BIT_SIZE_P to its size in bits if the field is packed, and
6939 0 otherwise;
6940 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6941 fields up to but not including the desired field, or by the total
6942 number of fields if not found. A NULL value of NAME never
6943 matches; the function just counts visible fields in this case.
6944
6945 Notice that we need to handle when a tagged record hierarchy
6946 has some components with the same name, like in this scenario:
6947
6948 type Top_T is tagged record
6949 N : Integer := 1;
6950 U : Integer := 974;
6951 A : Integer := 48;
6952 end record;
6953
6954 type Middle_T is new Top.Top_T with record
6955 N : Character := 'a';
6956 C : Integer := 3;
6957 end record;
6958
6959 type Bottom_T is new Middle.Middle_T with record
6960 N : Float := 4.0;
6961 C : Character := '5';
6962 X : Integer := 6;
6963 A : Character := 'J';
6964 end record;
6965
6966 Let's say we now have a variable declared and initialized as follow:
6967
6968 TC : Top_A := new Bottom_T;
6969
6970 And then we use this variable to call this function
6971
6972 procedure Assign (Obj: in out Top_T; TV : Integer);
6973
6974 as follow:
6975
6976 Assign (Top_T (B), 12);
6977
6978 Now, we're in the debugger, and we're inside that procedure
6979 then and we want to print the value of obj.c:
6980
6981 Usually, the tagged record or one of the parent type owns the
6982 component to print and there's no issue but in this particular
6983 case, what does it mean to ask for Obj.C? Since the actual
6984 type for object is type Bottom_T, it could mean two things: type
6985 component C from the Middle_T view, but also component C from
6986 Bottom_T. So in that "undefined" case, when the component is
6987 not found in the non-resolved type (which includes all the
6988 components of the parent type), then resolve it and see if we
6989 get better luck once expanded.
6990
6991 In the case of homonyms in the derived tagged type, we don't
6992 guaranty anything, and pick the one that's easiest for us
6993 to program.
6994
6995 Returns 1 if found, 0 otherwise. */
6996
6997 static int
6998 find_struct_field (const char *name, struct type *type, int offset,
6999 struct type **field_type_p,
7000 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7001 int *index_p)
7002 {
7003 int i;
7004 int parent_offset = -1;
7005
7006 type = ada_check_typedef (type);
7007
7008 if (field_type_p != NULL)
7009 *field_type_p = NULL;
7010 if (byte_offset_p != NULL)
7011 *byte_offset_p = 0;
7012 if (bit_offset_p != NULL)
7013 *bit_offset_p = 0;
7014 if (bit_size_p != NULL)
7015 *bit_size_p = 0;
7016
7017 for (i = 0; i < type->num_fields (); i += 1)
7018 {
7019 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7020 int fld_offset = offset + bit_pos / 8;
7021 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7022
7023 if (t_field_name == NULL)
7024 continue;
7025
7026 else if (ada_is_parent_field (type, i))
7027 {
7028 /* This is a field pointing us to the parent type of a tagged
7029 type. As hinted in this function's documentation, we give
7030 preference to fields in the current record first, so what
7031 we do here is just record the index of this field before
7032 we skip it. If it turns out we couldn't find our field
7033 in the current record, then we'll get back to it and search
7034 inside it whether the field might exist in the parent. */
7035
7036 parent_offset = i;
7037 continue;
7038 }
7039
7040 else if (name != NULL && field_name_match (t_field_name, name))
7041 {
7042 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7043
7044 if (field_type_p != NULL)
7045 *field_type_p = type->field (i).type ();
7046 if (byte_offset_p != NULL)
7047 *byte_offset_p = fld_offset;
7048 if (bit_offset_p != NULL)
7049 *bit_offset_p = bit_pos % 8;
7050 if (bit_size_p != NULL)
7051 *bit_size_p = bit_size;
7052 return 1;
7053 }
7054 else if (ada_is_wrapper_field (type, i))
7055 {
7056 if (find_struct_field (name, type->field (i).type (), fld_offset,
7057 field_type_p, byte_offset_p, bit_offset_p,
7058 bit_size_p, index_p))
7059 return 1;
7060 }
7061 else if (ada_is_variant_part (type, i))
7062 {
7063 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7064 fixed type?? */
7065 int j;
7066 struct type *field_type
7067 = ada_check_typedef (type->field (i).type ());
7068
7069 for (j = 0; j < field_type->num_fields (); j += 1)
7070 {
7071 if (find_struct_field (name, field_type->field (j).type (),
7072 fld_offset
7073 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7074 field_type_p, byte_offset_p,
7075 bit_offset_p, bit_size_p, index_p))
7076 return 1;
7077 }
7078 }
7079 else if (index_p != NULL)
7080 *index_p += 1;
7081 }
7082
7083 /* Field not found so far. If this is a tagged type which
7084 has a parent, try finding that field in the parent now. */
7085
7086 if (parent_offset != -1)
7087 {
7088 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7089 int fld_offset = offset + bit_pos / 8;
7090
7091 if (find_struct_field (name, type->field (parent_offset).type (),
7092 fld_offset, field_type_p, byte_offset_p,
7093 bit_offset_p, bit_size_p, index_p))
7094 return 1;
7095 }
7096
7097 return 0;
7098 }
7099
7100 /* Number of user-visible fields in record type TYPE. */
7101
7102 static int
7103 num_visible_fields (struct type *type)
7104 {
7105 int n;
7106
7107 n = 0;
7108 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7109 return n;
7110 }
7111
7112 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7113 and search in it assuming it has (class) type TYPE.
7114 If found, return value, else return NULL.
7115
7116 Searches recursively through wrapper fields (e.g., '_parent').
7117
7118 In the case of homonyms in the tagged types, please refer to the
7119 long explanation in find_struct_field's function documentation. */
7120
7121 static struct value *
7122 ada_search_struct_field (const char *name, struct value *arg, int offset,
7123 struct type *type)
7124 {
7125 int i;
7126 int parent_offset = -1;
7127
7128 type = ada_check_typedef (type);
7129 for (i = 0; i < type->num_fields (); i += 1)
7130 {
7131 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7132
7133 if (t_field_name == NULL)
7134 continue;
7135
7136 else if (ada_is_parent_field (type, i))
7137 {
7138 /* This is a field pointing us to the parent type of a tagged
7139 type. As hinted in this function's documentation, we give
7140 preference to fields in the current record first, so what
7141 we do here is just record the index of this field before
7142 we skip it. If it turns out we couldn't find our field
7143 in the current record, then we'll get back to it and search
7144 inside it whether the field might exist in the parent. */
7145
7146 parent_offset = i;
7147 continue;
7148 }
7149
7150 else if (field_name_match (t_field_name, name))
7151 return ada_value_primitive_field (arg, offset, i, type);
7152
7153 else if (ada_is_wrapper_field (type, i))
7154 {
7155 struct value *v = /* Do not let indent join lines here. */
7156 ada_search_struct_field (name, arg,
7157 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7158 type->field (i).type ());
7159
7160 if (v != NULL)
7161 return v;
7162 }
7163
7164 else if (ada_is_variant_part (type, i))
7165 {
7166 /* PNH: Do we ever get here? See find_struct_field. */
7167 int j;
7168 struct type *field_type = ada_check_typedef (type->field (i).type ());
7169 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7170
7171 for (j = 0; j < field_type->num_fields (); j += 1)
7172 {
7173 struct value *v = ada_search_struct_field /* Force line
7174 break. */
7175 (name, arg,
7176 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7177 field_type->field (j).type ());
7178
7179 if (v != NULL)
7180 return v;
7181 }
7182 }
7183 }
7184
7185 /* Field not found so far. If this is a tagged type which
7186 has a parent, try finding that field in the parent now. */
7187
7188 if (parent_offset != -1)
7189 {
7190 struct value *v = ada_search_struct_field (
7191 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7192 type->field (parent_offset).type ());
7193
7194 if (v != NULL)
7195 return v;
7196 }
7197
7198 return NULL;
7199 }
7200
7201 static struct value *ada_index_struct_field_1 (int *, struct value *,
7202 int, struct type *);
7203
7204
7205 /* Return field #INDEX in ARG, where the index is that returned by
7206 * find_struct_field through its INDEX_P argument. Adjust the address
7207 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7208 * If found, return value, else return NULL. */
7209
7210 static struct value *
7211 ada_index_struct_field (int index, struct value *arg, int offset,
7212 struct type *type)
7213 {
7214 return ada_index_struct_field_1 (&index, arg, offset, type);
7215 }
7216
7217
7218 /* Auxiliary function for ada_index_struct_field. Like
7219 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7220 * *INDEX_P. */
7221
7222 static struct value *
7223 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7224 struct type *type)
7225 {
7226 int i;
7227 type = ada_check_typedef (type);
7228
7229 for (i = 0; i < type->num_fields (); i += 1)
7230 {
7231 if (TYPE_FIELD_NAME (type, i) == NULL)
7232 continue;
7233 else if (ada_is_wrapper_field (type, i))
7234 {
7235 struct value *v = /* Do not let indent join lines here. */
7236 ada_index_struct_field_1 (index_p, arg,
7237 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7238 type->field (i).type ());
7239
7240 if (v != NULL)
7241 return v;
7242 }
7243
7244 else if (ada_is_variant_part (type, i))
7245 {
7246 /* PNH: Do we ever get here? See ada_search_struct_field,
7247 find_struct_field. */
7248 error (_("Cannot assign this kind of variant record"));
7249 }
7250 else if (*index_p == 0)
7251 return ada_value_primitive_field (arg, offset, i, type);
7252 else
7253 *index_p -= 1;
7254 }
7255 return NULL;
7256 }
7257
7258 /* Return a string representation of type TYPE. */
7259
7260 static std::string
7261 type_as_string (struct type *type)
7262 {
7263 string_file tmp_stream;
7264
7265 type_print (type, "", &tmp_stream, -1);
7266
7267 return std::move (tmp_stream.string ());
7268 }
7269
7270 /* Given a type TYPE, look up the type of the component of type named NAME.
7271 If DISPP is non-null, add its byte displacement from the beginning of a
7272 structure (pointed to by a value) of type TYPE to *DISPP (does not
7273 work for packed fields).
7274
7275 Matches any field whose name has NAME as a prefix, possibly
7276 followed by "___".
7277
7278 TYPE can be either a struct or union. If REFOK, TYPE may also
7279 be a (pointer or reference)+ to a struct or union, and the
7280 ultimate target type will be searched.
7281
7282 Looks recursively into variant clauses and parent types.
7283
7284 In the case of homonyms in the tagged types, please refer to the
7285 long explanation in find_struct_field's function documentation.
7286
7287 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7288 TYPE is not a type of the right kind. */
7289
7290 static struct type *
7291 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7292 int noerr)
7293 {
7294 int i;
7295 int parent_offset = -1;
7296
7297 if (name == NULL)
7298 goto BadName;
7299
7300 if (refok && type != NULL)
7301 while (1)
7302 {
7303 type = ada_check_typedef (type);
7304 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7305 break;
7306 type = TYPE_TARGET_TYPE (type);
7307 }
7308
7309 if (type == NULL
7310 || (type->code () != TYPE_CODE_STRUCT
7311 && type->code () != TYPE_CODE_UNION))
7312 {
7313 if (noerr)
7314 return NULL;
7315
7316 error (_("Type %s is not a structure or union type"),
7317 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7318 }
7319
7320 type = to_static_fixed_type (type);
7321
7322 for (i = 0; i < type->num_fields (); i += 1)
7323 {
7324 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7325 struct type *t;
7326
7327 if (t_field_name == NULL)
7328 continue;
7329
7330 else if (ada_is_parent_field (type, i))
7331 {
7332 /* This is a field pointing us to the parent type of a tagged
7333 type. As hinted in this function's documentation, we give
7334 preference to fields in the current record first, so what
7335 we do here is just record the index of this field before
7336 we skip it. If it turns out we couldn't find our field
7337 in the current record, then we'll get back to it and search
7338 inside it whether the field might exist in the parent. */
7339
7340 parent_offset = i;
7341 continue;
7342 }
7343
7344 else if (field_name_match (t_field_name, name))
7345 return type->field (i).type ();
7346
7347 else if (ada_is_wrapper_field (type, i))
7348 {
7349 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7350 0, 1);
7351 if (t != NULL)
7352 return t;
7353 }
7354
7355 else if (ada_is_variant_part (type, i))
7356 {
7357 int j;
7358 struct type *field_type = ada_check_typedef (type->field (i).type ());
7359
7360 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7361 {
7362 /* FIXME pnh 2008/01/26: We check for a field that is
7363 NOT wrapped in a struct, since the compiler sometimes
7364 generates these for unchecked variant types. Revisit
7365 if the compiler changes this practice. */
7366 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7367
7368 if (v_field_name != NULL
7369 && field_name_match (v_field_name, name))
7370 t = field_type->field (j).type ();
7371 else
7372 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7373 name, 0, 1);
7374
7375 if (t != NULL)
7376 return t;
7377 }
7378 }
7379
7380 }
7381
7382 /* Field not found so far. If this is a tagged type which
7383 has a parent, try finding that field in the parent now. */
7384
7385 if (parent_offset != -1)
7386 {
7387 struct type *t;
7388
7389 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7390 name, 0, 1);
7391 if (t != NULL)
7392 return t;
7393 }
7394
7395 BadName:
7396 if (!noerr)
7397 {
7398 const char *name_str = name != NULL ? name : _("<null>");
7399
7400 error (_("Type %s has no component named %s"),
7401 type_as_string (type).c_str (), name_str);
7402 }
7403
7404 return NULL;
7405 }
7406
7407 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7408 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7409 represents an unchecked union (that is, the variant part of a
7410 record that is named in an Unchecked_Union pragma). */
7411
7412 static int
7413 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7414 {
7415 const char *discrim_name = ada_variant_discrim_name (var_type);
7416
7417 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7418 }
7419
7420
7421 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7422 within OUTER, determine which variant clause (field number in VAR_TYPE,
7423 numbering from 0) is applicable. Returns -1 if none are. */
7424
7425 int
7426 ada_which_variant_applies (struct type *var_type, struct value *outer)
7427 {
7428 int others_clause;
7429 int i;
7430 const char *discrim_name = ada_variant_discrim_name (var_type);
7431 struct value *discrim;
7432 LONGEST discrim_val;
7433
7434 /* Using plain value_from_contents_and_address here causes problems
7435 because we will end up trying to resolve a type that is currently
7436 being constructed. */
7437 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7438 if (discrim == NULL)
7439 return -1;
7440 discrim_val = value_as_long (discrim);
7441
7442 others_clause = -1;
7443 for (i = 0; i < var_type->num_fields (); i += 1)
7444 {
7445 if (ada_is_others_clause (var_type, i))
7446 others_clause = i;
7447 else if (ada_in_variant (discrim_val, var_type, i))
7448 return i;
7449 }
7450
7451 return others_clause;
7452 }
7453 \f
7454
7455
7456 /* Dynamic-Sized Records */
7457
7458 /* Strategy: The type ostensibly attached to a value with dynamic size
7459 (i.e., a size that is not statically recorded in the debugging
7460 data) does not accurately reflect the size or layout of the value.
7461 Our strategy is to convert these values to values with accurate,
7462 conventional types that are constructed on the fly. */
7463
7464 /* There is a subtle and tricky problem here. In general, we cannot
7465 determine the size of dynamic records without its data. However,
7466 the 'struct value' data structure, which GDB uses to represent
7467 quantities in the inferior process (the target), requires the size
7468 of the type at the time of its allocation in order to reserve space
7469 for GDB's internal copy of the data. That's why the
7470 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7471 rather than struct value*s.
7472
7473 However, GDB's internal history variables ($1, $2, etc.) are
7474 struct value*s containing internal copies of the data that are not, in
7475 general, the same as the data at their corresponding addresses in
7476 the target. Fortunately, the types we give to these values are all
7477 conventional, fixed-size types (as per the strategy described
7478 above), so that we don't usually have to perform the
7479 'to_fixed_xxx_type' conversions to look at their values.
7480 Unfortunately, there is one exception: if one of the internal
7481 history variables is an array whose elements are unconstrained
7482 records, then we will need to create distinct fixed types for each
7483 element selected. */
7484
7485 /* The upshot of all of this is that many routines take a (type, host
7486 address, target address) triple as arguments to represent a value.
7487 The host address, if non-null, is supposed to contain an internal
7488 copy of the relevant data; otherwise, the program is to consult the
7489 target at the target address. */
7490
7491 /* Assuming that VAL0 represents a pointer value, the result of
7492 dereferencing it. Differs from value_ind in its treatment of
7493 dynamic-sized types. */
7494
7495 struct value *
7496 ada_value_ind (struct value *val0)
7497 {
7498 struct value *val = value_ind (val0);
7499
7500 if (ada_is_tagged_type (value_type (val), 0))
7501 val = ada_tag_value_at_base_address (val);
7502
7503 return ada_to_fixed_value (val);
7504 }
7505
7506 /* The value resulting from dereferencing any "reference to"
7507 qualifiers on VAL0. */
7508
7509 static struct value *
7510 ada_coerce_ref (struct value *val0)
7511 {
7512 if (value_type (val0)->code () == TYPE_CODE_REF)
7513 {
7514 struct value *val = val0;
7515
7516 val = coerce_ref (val);
7517
7518 if (ada_is_tagged_type (value_type (val), 0))
7519 val = ada_tag_value_at_base_address (val);
7520
7521 return ada_to_fixed_value (val);
7522 }
7523 else
7524 return val0;
7525 }
7526
7527 /* Return the bit alignment required for field #F of template type TYPE. */
7528
7529 static unsigned int
7530 field_alignment (struct type *type, int f)
7531 {
7532 const char *name = TYPE_FIELD_NAME (type, f);
7533 int len;
7534 int align_offset;
7535
7536 /* The field name should never be null, unless the debugging information
7537 is somehow malformed. In this case, we assume the field does not
7538 require any alignment. */
7539 if (name == NULL)
7540 return 1;
7541
7542 len = strlen (name);
7543
7544 if (!isdigit (name[len - 1]))
7545 return 1;
7546
7547 if (isdigit (name[len - 2]))
7548 align_offset = len - 2;
7549 else
7550 align_offset = len - 1;
7551
7552 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7553 return TARGET_CHAR_BIT;
7554
7555 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7556 }
7557
7558 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7559
7560 static struct symbol *
7561 ada_find_any_type_symbol (const char *name)
7562 {
7563 struct symbol *sym;
7564
7565 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7566 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7567 return sym;
7568
7569 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7570 return sym;
7571 }
7572
7573 /* Find a type named NAME. Ignores ambiguity. This routine will look
7574 solely for types defined by debug info, it will not search the GDB
7575 primitive types. */
7576
7577 static struct type *
7578 ada_find_any_type (const char *name)
7579 {
7580 struct symbol *sym = ada_find_any_type_symbol (name);
7581
7582 if (sym != NULL)
7583 return SYMBOL_TYPE (sym);
7584
7585 return NULL;
7586 }
7587
7588 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7589 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7590 symbol, in which case it is returned. Otherwise, this looks for
7591 symbols whose name is that of NAME_SYM suffixed with "___XR".
7592 Return symbol if found, and NULL otherwise. */
7593
7594 static bool
7595 ada_is_renaming_symbol (struct symbol *name_sym)
7596 {
7597 const char *name = name_sym->linkage_name ();
7598 return strstr (name, "___XR") != NULL;
7599 }
7600
7601 /* Because of GNAT encoding conventions, several GDB symbols may match a
7602 given type name. If the type denoted by TYPE0 is to be preferred to
7603 that of TYPE1 for purposes of type printing, return non-zero;
7604 otherwise return 0. */
7605
7606 int
7607 ada_prefer_type (struct type *type0, struct type *type1)
7608 {
7609 if (type1 == NULL)
7610 return 1;
7611 else if (type0 == NULL)
7612 return 0;
7613 else if (type1->code () == TYPE_CODE_VOID)
7614 return 1;
7615 else if (type0->code () == TYPE_CODE_VOID)
7616 return 0;
7617 else if (type1->name () == NULL && type0->name () != NULL)
7618 return 1;
7619 else if (ada_is_constrained_packed_array_type (type0))
7620 return 1;
7621 else if (ada_is_array_descriptor_type (type0)
7622 && !ada_is_array_descriptor_type (type1))
7623 return 1;
7624 else
7625 {
7626 const char *type0_name = type0->name ();
7627 const char *type1_name = type1->name ();
7628
7629 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7630 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7631 return 1;
7632 }
7633 return 0;
7634 }
7635
7636 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7637 null. */
7638
7639 const char *
7640 ada_type_name (struct type *type)
7641 {
7642 if (type == NULL)
7643 return NULL;
7644 return type->name ();
7645 }
7646
7647 /* Search the list of "descriptive" types associated to TYPE for a type
7648 whose name is NAME. */
7649
7650 static struct type *
7651 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7652 {
7653 struct type *result, *tmp;
7654
7655 if (ada_ignore_descriptive_types_p)
7656 return NULL;
7657
7658 /* If there no descriptive-type info, then there is no parallel type
7659 to be found. */
7660 if (!HAVE_GNAT_AUX_INFO (type))
7661 return NULL;
7662
7663 result = TYPE_DESCRIPTIVE_TYPE (type);
7664 while (result != NULL)
7665 {
7666 const char *result_name = ada_type_name (result);
7667
7668 if (result_name == NULL)
7669 {
7670 warning (_("unexpected null name on descriptive type"));
7671 return NULL;
7672 }
7673
7674 /* If the names match, stop. */
7675 if (strcmp (result_name, name) == 0)
7676 break;
7677
7678 /* Otherwise, look at the next item on the list, if any. */
7679 if (HAVE_GNAT_AUX_INFO (result))
7680 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7681 else
7682 tmp = NULL;
7683
7684 /* If not found either, try after having resolved the typedef. */
7685 if (tmp != NULL)
7686 result = tmp;
7687 else
7688 {
7689 result = check_typedef (result);
7690 if (HAVE_GNAT_AUX_INFO (result))
7691 result = TYPE_DESCRIPTIVE_TYPE (result);
7692 else
7693 result = NULL;
7694 }
7695 }
7696
7697 /* If we didn't find a match, see whether this is a packed array. With
7698 older compilers, the descriptive type information is either absent or
7699 irrelevant when it comes to packed arrays so the above lookup fails.
7700 Fall back to using a parallel lookup by name in this case. */
7701 if (result == NULL && ada_is_constrained_packed_array_type (type))
7702 return ada_find_any_type (name);
7703
7704 return result;
7705 }
7706
7707 /* Find a parallel type to TYPE with the specified NAME, using the
7708 descriptive type taken from the debugging information, if available,
7709 and otherwise using the (slower) name-based method. */
7710
7711 static struct type *
7712 ada_find_parallel_type_with_name (struct type *type, const char *name)
7713 {
7714 struct type *result = NULL;
7715
7716 if (HAVE_GNAT_AUX_INFO (type))
7717 result = find_parallel_type_by_descriptive_type (type, name);
7718 else
7719 result = ada_find_any_type (name);
7720
7721 return result;
7722 }
7723
7724 /* Same as above, but specify the name of the parallel type by appending
7725 SUFFIX to the name of TYPE. */
7726
7727 struct type *
7728 ada_find_parallel_type (struct type *type, const char *suffix)
7729 {
7730 char *name;
7731 const char *type_name = ada_type_name (type);
7732 int len;
7733
7734 if (type_name == NULL)
7735 return NULL;
7736
7737 len = strlen (type_name);
7738
7739 name = (char *) alloca (len + strlen (suffix) + 1);
7740
7741 strcpy (name, type_name);
7742 strcpy (name + len, suffix);
7743
7744 return ada_find_parallel_type_with_name (type, name);
7745 }
7746
7747 /* If TYPE is a variable-size record type, return the corresponding template
7748 type describing its fields. Otherwise, return NULL. */
7749
7750 static struct type *
7751 dynamic_template_type (struct type *type)
7752 {
7753 type = ada_check_typedef (type);
7754
7755 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7756 || ada_type_name (type) == NULL)
7757 return NULL;
7758 else
7759 {
7760 int len = strlen (ada_type_name (type));
7761
7762 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7763 return type;
7764 else
7765 return ada_find_parallel_type (type, "___XVE");
7766 }
7767 }
7768
7769 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7770 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7771
7772 static int
7773 is_dynamic_field (struct type *templ_type, int field_num)
7774 {
7775 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7776
7777 return name != NULL
7778 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7779 && strstr (name, "___XVL") != NULL;
7780 }
7781
7782 /* The index of the variant field of TYPE, or -1 if TYPE does not
7783 represent a variant record type. */
7784
7785 static int
7786 variant_field_index (struct type *type)
7787 {
7788 int f;
7789
7790 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7791 return -1;
7792
7793 for (f = 0; f < type->num_fields (); f += 1)
7794 {
7795 if (ada_is_variant_part (type, f))
7796 return f;
7797 }
7798 return -1;
7799 }
7800
7801 /* A record type with no fields. */
7802
7803 static struct type *
7804 empty_record (struct type *templ)
7805 {
7806 struct type *type = alloc_type_copy (templ);
7807
7808 type->set_code (TYPE_CODE_STRUCT);
7809 INIT_NONE_SPECIFIC (type);
7810 type->set_name ("<empty>");
7811 TYPE_LENGTH (type) = 0;
7812 return type;
7813 }
7814
7815 /* An ordinary record type (with fixed-length fields) that describes
7816 the value of type TYPE at VALADDR or ADDRESS (see comments at
7817 the beginning of this section) VAL according to GNAT conventions.
7818 DVAL0 should describe the (portion of a) record that contains any
7819 necessary discriminants. It should be NULL if value_type (VAL) is
7820 an outer-level type (i.e., as opposed to a branch of a variant.) A
7821 variant field (unless unchecked) is replaced by a particular branch
7822 of the variant.
7823
7824 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7825 length are not statically known are discarded. As a consequence,
7826 VALADDR, ADDRESS and DVAL0 are ignored.
7827
7828 NOTE: Limitations: For now, we assume that dynamic fields and
7829 variants occupy whole numbers of bytes. However, they need not be
7830 byte-aligned. */
7831
7832 struct type *
7833 ada_template_to_fixed_record_type_1 (struct type *type,
7834 const gdb_byte *valaddr,
7835 CORE_ADDR address, struct value *dval0,
7836 int keep_dynamic_fields)
7837 {
7838 struct value *mark = value_mark ();
7839 struct value *dval;
7840 struct type *rtype;
7841 int nfields, bit_len;
7842 int variant_field;
7843 long off;
7844 int fld_bit_len;
7845 int f;
7846
7847 /* Compute the number of fields in this record type that are going
7848 to be processed: unless keep_dynamic_fields, this includes only
7849 fields whose position and length are static will be processed. */
7850 if (keep_dynamic_fields)
7851 nfields = type->num_fields ();
7852 else
7853 {
7854 nfields = 0;
7855 while (nfields < type->num_fields ()
7856 && !ada_is_variant_part (type, nfields)
7857 && !is_dynamic_field (type, nfields))
7858 nfields++;
7859 }
7860
7861 rtype = alloc_type_copy (type);
7862 rtype->set_code (TYPE_CODE_STRUCT);
7863 INIT_NONE_SPECIFIC (rtype);
7864 rtype->set_num_fields (nfields);
7865 rtype->set_fields
7866 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7867 rtype->set_name (ada_type_name (type));
7868 TYPE_FIXED_INSTANCE (rtype) = 1;
7869
7870 off = 0;
7871 bit_len = 0;
7872 variant_field = -1;
7873
7874 for (f = 0; f < nfields; f += 1)
7875 {
7876 off = align_up (off, field_alignment (type, f))
7877 + TYPE_FIELD_BITPOS (type, f);
7878 SET_FIELD_BITPOS (rtype->field (f), off);
7879 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7880
7881 if (ada_is_variant_part (type, f))
7882 {
7883 variant_field = f;
7884 fld_bit_len = 0;
7885 }
7886 else if (is_dynamic_field (type, f))
7887 {
7888 const gdb_byte *field_valaddr = valaddr;
7889 CORE_ADDR field_address = address;
7890 struct type *field_type =
7891 TYPE_TARGET_TYPE (type->field (f).type ());
7892
7893 if (dval0 == NULL)
7894 {
7895 /* rtype's length is computed based on the run-time
7896 value of discriminants. If the discriminants are not
7897 initialized, the type size may be completely bogus and
7898 GDB may fail to allocate a value for it. So check the
7899 size first before creating the value. */
7900 ada_ensure_varsize_limit (rtype);
7901 /* Using plain value_from_contents_and_address here
7902 causes problems because we will end up trying to
7903 resolve a type that is currently being
7904 constructed. */
7905 dval = value_from_contents_and_address_unresolved (rtype,
7906 valaddr,
7907 address);
7908 rtype = value_type (dval);
7909 }
7910 else
7911 dval = dval0;
7912
7913 /* If the type referenced by this field is an aligner type, we need
7914 to unwrap that aligner type, because its size might not be set.
7915 Keeping the aligner type would cause us to compute the wrong
7916 size for this field, impacting the offset of the all the fields
7917 that follow this one. */
7918 if (ada_is_aligner_type (field_type))
7919 {
7920 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7921
7922 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7923 field_address = cond_offset_target (field_address, field_offset);
7924 field_type = ada_aligned_type (field_type);
7925 }
7926
7927 field_valaddr = cond_offset_host (field_valaddr,
7928 off / TARGET_CHAR_BIT);
7929 field_address = cond_offset_target (field_address,
7930 off / TARGET_CHAR_BIT);
7931
7932 /* Get the fixed type of the field. Note that, in this case,
7933 we do not want to get the real type out of the tag: if
7934 the current field is the parent part of a tagged record,
7935 we will get the tag of the object. Clearly wrong: the real
7936 type of the parent is not the real type of the child. We
7937 would end up in an infinite loop. */
7938 field_type = ada_get_base_type (field_type);
7939 field_type = ada_to_fixed_type (field_type, field_valaddr,
7940 field_address, dval, 0);
7941 /* If the field size is already larger than the maximum
7942 object size, then the record itself will necessarily
7943 be larger than the maximum object size. We need to make
7944 this check now, because the size might be so ridiculously
7945 large (due to an uninitialized variable in the inferior)
7946 that it would cause an overflow when adding it to the
7947 record size. */
7948 ada_ensure_varsize_limit (field_type);
7949
7950 rtype->field (f).set_type (field_type);
7951 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7952 /* The multiplication can potentially overflow. But because
7953 the field length has been size-checked just above, and
7954 assuming that the maximum size is a reasonable value,
7955 an overflow should not happen in practice. So rather than
7956 adding overflow recovery code to this already complex code,
7957 we just assume that it's not going to happen. */
7958 fld_bit_len =
7959 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7960 }
7961 else
7962 {
7963 /* Note: If this field's type is a typedef, it is important
7964 to preserve the typedef layer.
7965
7966 Otherwise, we might be transforming a typedef to a fat
7967 pointer (encoding a pointer to an unconstrained array),
7968 into a basic fat pointer (encoding an unconstrained
7969 array). As both types are implemented using the same
7970 structure, the typedef is the only clue which allows us
7971 to distinguish between the two options. Stripping it
7972 would prevent us from printing this field appropriately. */
7973 rtype->field (f).set_type (type->field (f).type ());
7974 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7975 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7976 fld_bit_len =
7977 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7978 else
7979 {
7980 struct type *field_type = type->field (f).type ();
7981
7982 /* We need to be careful of typedefs when computing
7983 the length of our field. If this is a typedef,
7984 get the length of the target type, not the length
7985 of the typedef. */
7986 if (field_type->code () == TYPE_CODE_TYPEDEF)
7987 field_type = ada_typedef_target_type (field_type);
7988
7989 fld_bit_len =
7990 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7991 }
7992 }
7993 if (off + fld_bit_len > bit_len)
7994 bit_len = off + fld_bit_len;
7995 off += fld_bit_len;
7996 TYPE_LENGTH (rtype) =
7997 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7998 }
7999
8000 /* We handle the variant part, if any, at the end because of certain
8001 odd cases in which it is re-ordered so as NOT to be the last field of
8002 the record. This can happen in the presence of representation
8003 clauses. */
8004 if (variant_field >= 0)
8005 {
8006 struct type *branch_type;
8007
8008 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8009
8010 if (dval0 == NULL)
8011 {
8012 /* Using plain value_from_contents_and_address here causes
8013 problems because we will end up trying to resolve a type
8014 that is currently being constructed. */
8015 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8016 address);
8017 rtype = value_type (dval);
8018 }
8019 else
8020 dval = dval0;
8021
8022 branch_type =
8023 to_fixed_variant_branch_type
8024 (type->field (variant_field).type (),
8025 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8026 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8027 if (branch_type == NULL)
8028 {
8029 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8030 rtype->field (f - 1) = rtype->field (f);
8031 rtype->set_num_fields (rtype->num_fields () - 1);
8032 }
8033 else
8034 {
8035 rtype->field (variant_field).set_type (branch_type);
8036 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8037 fld_bit_len =
8038 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8039 TARGET_CHAR_BIT;
8040 if (off + fld_bit_len > bit_len)
8041 bit_len = off + fld_bit_len;
8042 TYPE_LENGTH (rtype) =
8043 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8044 }
8045 }
8046
8047 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8048 should contain the alignment of that record, which should be a strictly
8049 positive value. If null or negative, then something is wrong, most
8050 probably in the debug info. In that case, we don't round up the size
8051 of the resulting type. If this record is not part of another structure,
8052 the current RTYPE length might be good enough for our purposes. */
8053 if (TYPE_LENGTH (type) <= 0)
8054 {
8055 if (rtype->name ())
8056 warning (_("Invalid type size for `%s' detected: %s."),
8057 rtype->name (), pulongest (TYPE_LENGTH (type)));
8058 else
8059 warning (_("Invalid type size for <unnamed> detected: %s."),
8060 pulongest (TYPE_LENGTH (type)));
8061 }
8062 else
8063 {
8064 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8065 TYPE_LENGTH (type));
8066 }
8067
8068 value_free_to_mark (mark);
8069 if (TYPE_LENGTH (rtype) > varsize_limit)
8070 error (_("record type with dynamic size is larger than varsize-limit"));
8071 return rtype;
8072 }
8073
8074 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8075 of 1. */
8076
8077 static struct type *
8078 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8079 CORE_ADDR address, struct value *dval0)
8080 {
8081 return ada_template_to_fixed_record_type_1 (type, valaddr,
8082 address, dval0, 1);
8083 }
8084
8085 /* An ordinary record type in which ___XVL-convention fields and
8086 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8087 static approximations, containing all possible fields. Uses
8088 no runtime values. Useless for use in values, but that's OK,
8089 since the results are used only for type determinations. Works on both
8090 structs and unions. Representation note: to save space, we memorize
8091 the result of this function in the TYPE_TARGET_TYPE of the
8092 template type. */
8093
8094 static struct type *
8095 template_to_static_fixed_type (struct type *type0)
8096 {
8097 struct type *type;
8098 int nfields;
8099 int f;
8100
8101 /* No need no do anything if the input type is already fixed. */
8102 if (TYPE_FIXED_INSTANCE (type0))
8103 return type0;
8104
8105 /* Likewise if we already have computed the static approximation. */
8106 if (TYPE_TARGET_TYPE (type0) != NULL)
8107 return TYPE_TARGET_TYPE (type0);
8108
8109 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8110 type = type0;
8111 nfields = type0->num_fields ();
8112
8113 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8114 recompute all over next time. */
8115 TYPE_TARGET_TYPE (type0) = type;
8116
8117 for (f = 0; f < nfields; f += 1)
8118 {
8119 struct type *field_type = type0->field (f).type ();
8120 struct type *new_type;
8121
8122 if (is_dynamic_field (type0, f))
8123 {
8124 field_type = ada_check_typedef (field_type);
8125 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8126 }
8127 else
8128 new_type = static_unwrap_type (field_type);
8129
8130 if (new_type != field_type)
8131 {
8132 /* Clone TYPE0 only the first time we get a new field type. */
8133 if (type == type0)
8134 {
8135 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8136 type->set_code (type0->code ());
8137 INIT_NONE_SPECIFIC (type);
8138 type->set_num_fields (nfields);
8139
8140 field *fields =
8141 ((struct field *)
8142 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8143 memcpy (fields, type0->fields (),
8144 sizeof (struct field) * nfields);
8145 type->set_fields (fields);
8146
8147 type->set_name (ada_type_name (type0));
8148 TYPE_FIXED_INSTANCE (type) = 1;
8149 TYPE_LENGTH (type) = 0;
8150 }
8151 type->field (f).set_type (new_type);
8152 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8153 }
8154 }
8155
8156 return type;
8157 }
8158
8159 /* Given an object of type TYPE whose contents are at VALADDR and
8160 whose address in memory is ADDRESS, returns a revision of TYPE,
8161 which should be a non-dynamic-sized record, in which the variant
8162 part, if any, is replaced with the appropriate branch. Looks
8163 for discriminant values in DVAL0, which can be NULL if the record
8164 contains the necessary discriminant values. */
8165
8166 static struct type *
8167 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8168 CORE_ADDR address, struct value *dval0)
8169 {
8170 struct value *mark = value_mark ();
8171 struct value *dval;
8172 struct type *rtype;
8173 struct type *branch_type;
8174 int nfields = type->num_fields ();
8175 int variant_field = variant_field_index (type);
8176
8177 if (variant_field == -1)
8178 return type;
8179
8180 if (dval0 == NULL)
8181 {
8182 dval = value_from_contents_and_address (type, valaddr, address);
8183 type = value_type (dval);
8184 }
8185 else
8186 dval = dval0;
8187
8188 rtype = alloc_type_copy (type);
8189 rtype->set_code (TYPE_CODE_STRUCT);
8190 INIT_NONE_SPECIFIC (rtype);
8191 rtype->set_num_fields (nfields);
8192
8193 field *fields =
8194 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8195 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8196 rtype->set_fields (fields);
8197
8198 rtype->set_name (ada_type_name (type));
8199 TYPE_FIXED_INSTANCE (rtype) = 1;
8200 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8201
8202 branch_type = to_fixed_variant_branch_type
8203 (type->field (variant_field).type (),
8204 cond_offset_host (valaddr,
8205 TYPE_FIELD_BITPOS (type, variant_field)
8206 / TARGET_CHAR_BIT),
8207 cond_offset_target (address,
8208 TYPE_FIELD_BITPOS (type, variant_field)
8209 / TARGET_CHAR_BIT), dval);
8210 if (branch_type == NULL)
8211 {
8212 int f;
8213
8214 for (f = variant_field + 1; f < nfields; f += 1)
8215 rtype->field (f - 1) = rtype->field (f);
8216 rtype->set_num_fields (rtype->num_fields () - 1);
8217 }
8218 else
8219 {
8220 rtype->field (variant_field).set_type (branch_type);
8221 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8222 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8223 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8224 }
8225 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8226
8227 value_free_to_mark (mark);
8228 return rtype;
8229 }
8230
8231 /* An ordinary record type (with fixed-length fields) that describes
8232 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8233 beginning of this section]. Any necessary discriminants' values
8234 should be in DVAL, a record value; it may be NULL if the object
8235 at ADDR itself contains any necessary discriminant values.
8236 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8237 values from the record are needed. Except in the case that DVAL,
8238 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8239 unchecked) is replaced by a particular branch of the variant.
8240
8241 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8242 is questionable and may be removed. It can arise during the
8243 processing of an unconstrained-array-of-record type where all the
8244 variant branches have exactly the same size. This is because in
8245 such cases, the compiler does not bother to use the XVS convention
8246 when encoding the record. I am currently dubious of this
8247 shortcut and suspect the compiler should be altered. FIXME. */
8248
8249 static struct type *
8250 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8251 CORE_ADDR address, struct value *dval)
8252 {
8253 struct type *templ_type;
8254
8255 if (TYPE_FIXED_INSTANCE (type0))
8256 return type0;
8257
8258 templ_type = dynamic_template_type (type0);
8259
8260 if (templ_type != NULL)
8261 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8262 else if (variant_field_index (type0) >= 0)
8263 {
8264 if (dval == NULL && valaddr == NULL && address == 0)
8265 return type0;
8266 return to_record_with_fixed_variant_part (type0, valaddr, address,
8267 dval);
8268 }
8269 else
8270 {
8271 TYPE_FIXED_INSTANCE (type0) = 1;
8272 return type0;
8273 }
8274
8275 }
8276
8277 /* An ordinary record type (with fixed-length fields) that describes
8278 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8279 union type. Any necessary discriminants' values should be in DVAL,
8280 a record value. That is, this routine selects the appropriate
8281 branch of the union at ADDR according to the discriminant value
8282 indicated in the union's type name. Returns VAR_TYPE0 itself if
8283 it represents a variant subject to a pragma Unchecked_Union. */
8284
8285 static struct type *
8286 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8287 CORE_ADDR address, struct value *dval)
8288 {
8289 int which;
8290 struct type *templ_type;
8291 struct type *var_type;
8292
8293 if (var_type0->code () == TYPE_CODE_PTR)
8294 var_type = TYPE_TARGET_TYPE (var_type0);
8295 else
8296 var_type = var_type0;
8297
8298 templ_type = ada_find_parallel_type (var_type, "___XVU");
8299
8300 if (templ_type != NULL)
8301 var_type = templ_type;
8302
8303 if (is_unchecked_variant (var_type, value_type (dval)))
8304 return var_type0;
8305 which = ada_which_variant_applies (var_type, dval);
8306
8307 if (which < 0)
8308 return empty_record (var_type);
8309 else if (is_dynamic_field (var_type, which))
8310 return to_fixed_record_type
8311 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8312 valaddr, address, dval);
8313 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8314 return
8315 to_fixed_record_type
8316 (var_type->field (which).type (), valaddr, address, dval);
8317 else
8318 return var_type->field (which).type ();
8319 }
8320
8321 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8322 ENCODING_TYPE, a type following the GNAT conventions for discrete
8323 type encodings, only carries redundant information. */
8324
8325 static int
8326 ada_is_redundant_range_encoding (struct type *range_type,
8327 struct type *encoding_type)
8328 {
8329 const char *bounds_str;
8330 int n;
8331 LONGEST lo, hi;
8332
8333 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8334
8335 if (get_base_type (range_type)->code ()
8336 != get_base_type (encoding_type)->code ())
8337 {
8338 /* The compiler probably used a simple base type to describe
8339 the range type instead of the range's actual base type,
8340 expecting us to get the real base type from the encoding
8341 anyway. In this situation, the encoding cannot be ignored
8342 as redundant. */
8343 return 0;
8344 }
8345
8346 if (is_dynamic_type (range_type))
8347 return 0;
8348
8349 if (encoding_type->name () == NULL)
8350 return 0;
8351
8352 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8353 if (bounds_str == NULL)
8354 return 0;
8355
8356 n = 8; /* Skip "___XDLU_". */
8357 if (!ada_scan_number (bounds_str, n, &lo, &n))
8358 return 0;
8359 if (TYPE_LOW_BOUND (range_type) != lo)
8360 return 0;
8361
8362 n += 2; /* Skip the "__" separator between the two bounds. */
8363 if (!ada_scan_number (bounds_str, n, &hi, &n))
8364 return 0;
8365 if (TYPE_HIGH_BOUND (range_type) != hi)
8366 return 0;
8367
8368 return 1;
8369 }
8370
8371 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8372 a type following the GNAT encoding for describing array type
8373 indices, only carries redundant information. */
8374
8375 static int
8376 ada_is_redundant_index_type_desc (struct type *array_type,
8377 struct type *desc_type)
8378 {
8379 struct type *this_layer = check_typedef (array_type);
8380 int i;
8381
8382 for (i = 0; i < desc_type->num_fields (); i++)
8383 {
8384 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8385 desc_type->field (i).type ()))
8386 return 0;
8387 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8388 }
8389
8390 return 1;
8391 }
8392
8393 /* Assuming that TYPE0 is an array type describing the type of a value
8394 at ADDR, and that DVAL describes a record containing any
8395 discriminants used in TYPE0, returns a type for the value that
8396 contains no dynamic components (that is, no components whose sizes
8397 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8398 true, gives an error message if the resulting type's size is over
8399 varsize_limit. */
8400
8401 static struct type *
8402 to_fixed_array_type (struct type *type0, struct value *dval,
8403 int ignore_too_big)
8404 {
8405 struct type *index_type_desc;
8406 struct type *result;
8407 int constrained_packed_array_p;
8408 static const char *xa_suffix = "___XA";
8409
8410 type0 = ada_check_typedef (type0);
8411 if (TYPE_FIXED_INSTANCE (type0))
8412 return type0;
8413
8414 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8415 if (constrained_packed_array_p)
8416 type0 = decode_constrained_packed_array_type (type0);
8417
8418 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8419
8420 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8421 encoding suffixed with 'P' may still be generated. If so,
8422 it should be used to find the XA type. */
8423
8424 if (index_type_desc == NULL)
8425 {
8426 const char *type_name = ada_type_name (type0);
8427
8428 if (type_name != NULL)
8429 {
8430 const int len = strlen (type_name);
8431 char *name = (char *) alloca (len + strlen (xa_suffix));
8432
8433 if (type_name[len - 1] == 'P')
8434 {
8435 strcpy (name, type_name);
8436 strcpy (name + len - 1, xa_suffix);
8437 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8438 }
8439 }
8440 }
8441
8442 ada_fixup_array_indexes_type (index_type_desc);
8443 if (index_type_desc != NULL
8444 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8445 {
8446 /* Ignore this ___XA parallel type, as it does not bring any
8447 useful information. This allows us to avoid creating fixed
8448 versions of the array's index types, which would be identical
8449 to the original ones. This, in turn, can also help avoid
8450 the creation of fixed versions of the array itself. */
8451 index_type_desc = NULL;
8452 }
8453
8454 if (index_type_desc == NULL)
8455 {
8456 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8457
8458 /* NOTE: elt_type---the fixed version of elt_type0---should never
8459 depend on the contents of the array in properly constructed
8460 debugging data. */
8461 /* Create a fixed version of the array element type.
8462 We're not providing the address of an element here,
8463 and thus the actual object value cannot be inspected to do
8464 the conversion. This should not be a problem, since arrays of
8465 unconstrained objects are not allowed. In particular, all
8466 the elements of an array of a tagged type should all be of
8467 the same type specified in the debugging info. No need to
8468 consult the object tag. */
8469 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8470
8471 /* Make sure we always create a new array type when dealing with
8472 packed array types, since we're going to fix-up the array
8473 type length and element bitsize a little further down. */
8474 if (elt_type0 == elt_type && !constrained_packed_array_p)
8475 result = type0;
8476 else
8477 result = create_array_type (alloc_type_copy (type0),
8478 elt_type, type0->index_type ());
8479 }
8480 else
8481 {
8482 int i;
8483 struct type *elt_type0;
8484
8485 elt_type0 = type0;
8486 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8487 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8488
8489 /* NOTE: result---the fixed version of elt_type0---should never
8490 depend on the contents of the array in properly constructed
8491 debugging data. */
8492 /* Create a fixed version of the array element type.
8493 We're not providing the address of an element here,
8494 and thus the actual object value cannot be inspected to do
8495 the conversion. This should not be a problem, since arrays of
8496 unconstrained objects are not allowed. In particular, all
8497 the elements of an array of a tagged type should all be of
8498 the same type specified in the debugging info. No need to
8499 consult the object tag. */
8500 result =
8501 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8502
8503 elt_type0 = type0;
8504 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8505 {
8506 struct type *range_type =
8507 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8508
8509 result = create_array_type (alloc_type_copy (elt_type0),
8510 result, range_type);
8511 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8512 }
8513 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8514 error (_("array type with dynamic size is larger than varsize-limit"));
8515 }
8516
8517 /* We want to preserve the type name. This can be useful when
8518 trying to get the type name of a value that has already been
8519 printed (for instance, if the user did "print VAR; whatis $". */
8520 result->set_name (type0->name ());
8521
8522 if (constrained_packed_array_p)
8523 {
8524 /* So far, the resulting type has been created as if the original
8525 type was a regular (non-packed) array type. As a result, the
8526 bitsize of the array elements needs to be set again, and the array
8527 length needs to be recomputed based on that bitsize. */
8528 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8529 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8530
8531 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8532 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8533 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8534 TYPE_LENGTH (result)++;
8535 }
8536
8537 TYPE_FIXED_INSTANCE (result) = 1;
8538 return result;
8539 }
8540
8541
8542 /* A standard type (containing no dynamically sized components)
8543 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8544 DVAL describes a record containing any discriminants used in TYPE0,
8545 and may be NULL if there are none, or if the object of type TYPE at
8546 ADDRESS or in VALADDR contains these discriminants.
8547
8548 If CHECK_TAG is not null, in the case of tagged types, this function
8549 attempts to locate the object's tag and use it to compute the actual
8550 type. However, when ADDRESS is null, we cannot use it to determine the
8551 location of the tag, and therefore compute the tagged type's actual type.
8552 So we return the tagged type without consulting the tag. */
8553
8554 static struct type *
8555 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8556 CORE_ADDR address, struct value *dval, int check_tag)
8557 {
8558 type = ada_check_typedef (type);
8559
8560 /* Only un-fixed types need to be handled here. */
8561 if (!HAVE_GNAT_AUX_INFO (type))
8562 return type;
8563
8564 switch (type->code ())
8565 {
8566 default:
8567 return type;
8568 case TYPE_CODE_STRUCT:
8569 {
8570 struct type *static_type = to_static_fixed_type (type);
8571 struct type *fixed_record_type =
8572 to_fixed_record_type (type, valaddr, address, NULL);
8573
8574 /* If STATIC_TYPE is a tagged type and we know the object's address,
8575 then we can determine its tag, and compute the object's actual
8576 type from there. Note that we have to use the fixed record
8577 type (the parent part of the record may have dynamic fields
8578 and the way the location of _tag is expressed may depend on
8579 them). */
8580
8581 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8582 {
8583 struct value *tag =
8584 value_tag_from_contents_and_address
8585 (fixed_record_type,
8586 valaddr,
8587 address);
8588 struct type *real_type = type_from_tag (tag);
8589 struct value *obj =
8590 value_from_contents_and_address (fixed_record_type,
8591 valaddr,
8592 address);
8593 fixed_record_type = value_type (obj);
8594 if (real_type != NULL)
8595 return to_fixed_record_type
8596 (real_type, NULL,
8597 value_address (ada_tag_value_at_base_address (obj)), NULL);
8598 }
8599
8600 /* Check to see if there is a parallel ___XVZ variable.
8601 If there is, then it provides the actual size of our type. */
8602 else if (ada_type_name (fixed_record_type) != NULL)
8603 {
8604 const char *name = ada_type_name (fixed_record_type);
8605 char *xvz_name
8606 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8607 bool xvz_found = false;
8608 LONGEST size;
8609
8610 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8611 try
8612 {
8613 xvz_found = get_int_var_value (xvz_name, size);
8614 }
8615 catch (const gdb_exception_error &except)
8616 {
8617 /* We found the variable, but somehow failed to read
8618 its value. Rethrow the same error, but with a little
8619 bit more information, to help the user understand
8620 what went wrong (Eg: the variable might have been
8621 optimized out). */
8622 throw_error (except.error,
8623 _("unable to read value of %s (%s)"),
8624 xvz_name, except.what ());
8625 }
8626
8627 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8628 {
8629 fixed_record_type = copy_type (fixed_record_type);
8630 TYPE_LENGTH (fixed_record_type) = size;
8631
8632 /* The FIXED_RECORD_TYPE may have be a stub. We have
8633 observed this when the debugging info is STABS, and
8634 apparently it is something that is hard to fix.
8635
8636 In practice, we don't need the actual type definition
8637 at all, because the presence of the XVZ variable allows us
8638 to assume that there must be a XVS type as well, which we
8639 should be able to use later, when we need the actual type
8640 definition.
8641
8642 In the meantime, pretend that the "fixed" type we are
8643 returning is NOT a stub, because this can cause trouble
8644 when using this type to create new types targeting it.
8645 Indeed, the associated creation routines often check
8646 whether the target type is a stub and will try to replace
8647 it, thus using a type with the wrong size. This, in turn,
8648 might cause the new type to have the wrong size too.
8649 Consider the case of an array, for instance, where the size
8650 of the array is computed from the number of elements in
8651 our array multiplied by the size of its element. */
8652 TYPE_STUB (fixed_record_type) = 0;
8653 }
8654 }
8655 return fixed_record_type;
8656 }
8657 case TYPE_CODE_ARRAY:
8658 return to_fixed_array_type (type, dval, 1);
8659 case TYPE_CODE_UNION:
8660 if (dval == NULL)
8661 return type;
8662 else
8663 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8664 }
8665 }
8666
8667 /* The same as ada_to_fixed_type_1, except that it preserves the type
8668 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8669
8670 The typedef layer needs be preserved in order to differentiate between
8671 arrays and array pointers when both types are implemented using the same
8672 fat pointer. In the array pointer case, the pointer is encoded as
8673 a typedef of the pointer type. For instance, considering:
8674
8675 type String_Access is access String;
8676 S1 : String_Access := null;
8677
8678 To the debugger, S1 is defined as a typedef of type String. But
8679 to the user, it is a pointer. So if the user tries to print S1,
8680 we should not dereference the array, but print the array address
8681 instead.
8682
8683 If we didn't preserve the typedef layer, we would lose the fact that
8684 the type is to be presented as a pointer (needs de-reference before
8685 being printed). And we would also use the source-level type name. */
8686
8687 struct type *
8688 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8689 CORE_ADDR address, struct value *dval, int check_tag)
8690
8691 {
8692 struct type *fixed_type =
8693 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8694
8695 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8696 then preserve the typedef layer.
8697
8698 Implementation note: We can only check the main-type portion of
8699 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8700 from TYPE now returns a type that has the same instance flags
8701 as TYPE. For instance, if TYPE is a "typedef const", and its
8702 target type is a "struct", then the typedef elimination will return
8703 a "const" version of the target type. See check_typedef for more
8704 details about how the typedef layer elimination is done.
8705
8706 brobecker/2010-11-19: It seems to me that the only case where it is
8707 useful to preserve the typedef layer is when dealing with fat pointers.
8708 Perhaps, we could add a check for that and preserve the typedef layer
8709 only in that situation. But this seems unnecessary so far, probably
8710 because we call check_typedef/ada_check_typedef pretty much everywhere.
8711 */
8712 if (type->code () == TYPE_CODE_TYPEDEF
8713 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8714 == TYPE_MAIN_TYPE (fixed_type)))
8715 return type;
8716
8717 return fixed_type;
8718 }
8719
8720 /* A standard (static-sized) type corresponding as well as possible to
8721 TYPE0, but based on no runtime data. */
8722
8723 static struct type *
8724 to_static_fixed_type (struct type *type0)
8725 {
8726 struct type *type;
8727
8728 if (type0 == NULL)
8729 return NULL;
8730
8731 if (TYPE_FIXED_INSTANCE (type0))
8732 return type0;
8733
8734 type0 = ada_check_typedef (type0);
8735
8736 switch (type0->code ())
8737 {
8738 default:
8739 return type0;
8740 case TYPE_CODE_STRUCT:
8741 type = dynamic_template_type (type0);
8742 if (type != NULL)
8743 return template_to_static_fixed_type (type);
8744 else
8745 return template_to_static_fixed_type (type0);
8746 case TYPE_CODE_UNION:
8747 type = ada_find_parallel_type (type0, "___XVU");
8748 if (type != NULL)
8749 return template_to_static_fixed_type (type);
8750 else
8751 return template_to_static_fixed_type (type0);
8752 }
8753 }
8754
8755 /* A static approximation of TYPE with all type wrappers removed. */
8756
8757 static struct type *
8758 static_unwrap_type (struct type *type)
8759 {
8760 if (ada_is_aligner_type (type))
8761 {
8762 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8763 if (ada_type_name (type1) == NULL)
8764 type1->set_name (ada_type_name (type));
8765
8766 return static_unwrap_type (type1);
8767 }
8768 else
8769 {
8770 struct type *raw_real_type = ada_get_base_type (type);
8771
8772 if (raw_real_type == type)
8773 return type;
8774 else
8775 return to_static_fixed_type (raw_real_type);
8776 }
8777 }
8778
8779 /* In some cases, incomplete and private types require
8780 cross-references that are not resolved as records (for example,
8781 type Foo;
8782 type FooP is access Foo;
8783 V: FooP;
8784 type Foo is array ...;
8785 ). In these cases, since there is no mechanism for producing
8786 cross-references to such types, we instead substitute for FooP a
8787 stub enumeration type that is nowhere resolved, and whose tag is
8788 the name of the actual type. Call these types "non-record stubs". */
8789
8790 /* A type equivalent to TYPE that is not a non-record stub, if one
8791 exists, otherwise TYPE. */
8792
8793 struct type *
8794 ada_check_typedef (struct type *type)
8795 {
8796 if (type == NULL)
8797 return NULL;
8798
8799 /* If our type is an access to an unconstrained array, which is encoded
8800 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8801 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8802 what allows us to distinguish between fat pointers that represent
8803 array types, and fat pointers that represent array access types
8804 (in both cases, the compiler implements them as fat pointers). */
8805 if (ada_is_access_to_unconstrained_array (type))
8806 return type;
8807
8808 type = check_typedef (type);
8809 if (type == NULL || type->code () != TYPE_CODE_ENUM
8810 || !TYPE_STUB (type)
8811 || type->name () == NULL)
8812 return type;
8813 else
8814 {
8815 const char *name = type->name ();
8816 struct type *type1 = ada_find_any_type (name);
8817
8818 if (type1 == NULL)
8819 return type;
8820
8821 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8822 stubs pointing to arrays, as we don't create symbols for array
8823 types, only for the typedef-to-array types). If that's the case,
8824 strip the typedef layer. */
8825 if (type1->code () == TYPE_CODE_TYPEDEF)
8826 type1 = ada_check_typedef (type1);
8827
8828 return type1;
8829 }
8830 }
8831
8832 /* A value representing the data at VALADDR/ADDRESS as described by
8833 type TYPE0, but with a standard (static-sized) type that correctly
8834 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8835 type, then return VAL0 [this feature is simply to avoid redundant
8836 creation of struct values]. */
8837
8838 static struct value *
8839 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8840 struct value *val0)
8841 {
8842 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8843
8844 if (type == type0 && val0 != NULL)
8845 return val0;
8846
8847 if (VALUE_LVAL (val0) != lval_memory)
8848 {
8849 /* Our value does not live in memory; it could be a convenience
8850 variable, for instance. Create a not_lval value using val0's
8851 contents. */
8852 return value_from_contents (type, value_contents (val0));
8853 }
8854
8855 return value_from_contents_and_address (type, 0, address);
8856 }
8857
8858 /* A value representing VAL, but with a standard (static-sized) type
8859 that correctly describes it. Does not necessarily create a new
8860 value. */
8861
8862 struct value *
8863 ada_to_fixed_value (struct value *val)
8864 {
8865 val = unwrap_value (val);
8866 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8867 return val;
8868 }
8869 \f
8870
8871 /* Attributes */
8872
8873 /* Table mapping attribute numbers to names.
8874 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8875
8876 static const char *attribute_names[] = {
8877 "<?>",
8878
8879 "first",
8880 "last",
8881 "length",
8882 "image",
8883 "max",
8884 "min",
8885 "modulus",
8886 "pos",
8887 "size",
8888 "tag",
8889 "val",
8890 0
8891 };
8892
8893 static const char *
8894 ada_attribute_name (enum exp_opcode n)
8895 {
8896 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8897 return attribute_names[n - OP_ATR_FIRST + 1];
8898 else
8899 return attribute_names[0];
8900 }
8901
8902 /* Evaluate the 'POS attribute applied to ARG. */
8903
8904 static LONGEST
8905 pos_atr (struct value *arg)
8906 {
8907 struct value *val = coerce_ref (arg);
8908 struct type *type = value_type (val);
8909 LONGEST result;
8910
8911 if (!discrete_type_p (type))
8912 error (_("'POS only defined on discrete types"));
8913
8914 if (!discrete_position (type, value_as_long (val), &result))
8915 error (_("enumeration value is invalid: can't find 'POS"));
8916
8917 return result;
8918 }
8919
8920 static struct value *
8921 value_pos_atr (struct type *type, struct value *arg)
8922 {
8923 return value_from_longest (type, pos_atr (arg));
8924 }
8925
8926 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8927
8928 static struct value *
8929 val_atr (struct type *type, LONGEST val)
8930 {
8931 gdb_assert (discrete_type_p (type));
8932 if (type->code () == TYPE_CODE_RANGE)
8933 type = TYPE_TARGET_TYPE (type);
8934 if (type->code () == TYPE_CODE_ENUM)
8935 {
8936 if (val < 0 || val >= type->num_fields ())
8937 error (_("argument to 'VAL out of range"));
8938 val = TYPE_FIELD_ENUMVAL (type, val);
8939 }
8940 return value_from_longest (type, val);
8941 }
8942
8943 static struct value *
8944 value_val_atr (struct type *type, struct value *arg)
8945 {
8946 if (!discrete_type_p (type))
8947 error (_("'VAL only defined on discrete types"));
8948 if (!integer_type_p (value_type (arg)))
8949 error (_("'VAL requires integral argument"));
8950
8951 return val_atr (type, value_as_long (arg));
8952 }
8953 \f
8954
8955 /* Evaluation */
8956
8957 /* True if TYPE appears to be an Ada character type.
8958 [At the moment, this is true only for Character and Wide_Character;
8959 It is a heuristic test that could stand improvement]. */
8960
8961 bool
8962 ada_is_character_type (struct type *type)
8963 {
8964 const char *name;
8965
8966 /* If the type code says it's a character, then assume it really is,
8967 and don't check any further. */
8968 if (type->code () == TYPE_CODE_CHAR)
8969 return true;
8970
8971 /* Otherwise, assume it's a character type iff it is a discrete type
8972 with a known character type name. */
8973 name = ada_type_name (type);
8974 return (name != NULL
8975 && (type->code () == TYPE_CODE_INT
8976 || type->code () == TYPE_CODE_RANGE)
8977 && (strcmp (name, "character") == 0
8978 || strcmp (name, "wide_character") == 0
8979 || strcmp (name, "wide_wide_character") == 0
8980 || strcmp (name, "unsigned char") == 0));
8981 }
8982
8983 /* True if TYPE appears to be an Ada string type. */
8984
8985 bool
8986 ada_is_string_type (struct type *type)
8987 {
8988 type = ada_check_typedef (type);
8989 if (type != NULL
8990 && type->code () != TYPE_CODE_PTR
8991 && (ada_is_simple_array_type (type)
8992 || ada_is_array_descriptor_type (type))
8993 && ada_array_arity (type) == 1)
8994 {
8995 struct type *elttype = ada_array_element_type (type, 1);
8996
8997 return ada_is_character_type (elttype);
8998 }
8999 else
9000 return false;
9001 }
9002
9003 /* The compiler sometimes provides a parallel XVS type for a given
9004 PAD type. Normally, it is safe to follow the PAD type directly,
9005 but older versions of the compiler have a bug that causes the offset
9006 of its "F" field to be wrong. Following that field in that case
9007 would lead to incorrect results, but this can be worked around
9008 by ignoring the PAD type and using the associated XVS type instead.
9009
9010 Set to True if the debugger should trust the contents of PAD types.
9011 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9012 static bool trust_pad_over_xvs = true;
9013
9014 /* True if TYPE is a struct type introduced by the compiler to force the
9015 alignment of a value. Such types have a single field with a
9016 distinctive name. */
9017
9018 int
9019 ada_is_aligner_type (struct type *type)
9020 {
9021 type = ada_check_typedef (type);
9022
9023 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9024 return 0;
9025
9026 return (type->code () == TYPE_CODE_STRUCT
9027 && type->num_fields () == 1
9028 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9029 }
9030
9031 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9032 the parallel type. */
9033
9034 struct type *
9035 ada_get_base_type (struct type *raw_type)
9036 {
9037 struct type *real_type_namer;
9038 struct type *raw_real_type;
9039
9040 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9041 return raw_type;
9042
9043 if (ada_is_aligner_type (raw_type))
9044 /* The encoding specifies that we should always use the aligner type.
9045 So, even if this aligner type has an associated XVS type, we should
9046 simply ignore it.
9047
9048 According to the compiler gurus, an XVS type parallel to an aligner
9049 type may exist because of a stabs limitation. In stabs, aligner
9050 types are empty because the field has a variable-sized type, and
9051 thus cannot actually be used as an aligner type. As a result,
9052 we need the associated parallel XVS type to decode the type.
9053 Since the policy in the compiler is to not change the internal
9054 representation based on the debugging info format, we sometimes
9055 end up having a redundant XVS type parallel to the aligner type. */
9056 return raw_type;
9057
9058 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9059 if (real_type_namer == NULL
9060 || real_type_namer->code () != TYPE_CODE_STRUCT
9061 || real_type_namer->num_fields () != 1)
9062 return raw_type;
9063
9064 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9065 {
9066 /* This is an older encoding form where the base type needs to be
9067 looked up by name. We prefer the newer encoding because it is
9068 more efficient. */
9069 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9070 if (raw_real_type == NULL)
9071 return raw_type;
9072 else
9073 return raw_real_type;
9074 }
9075
9076 /* The field in our XVS type is a reference to the base type. */
9077 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9078 }
9079
9080 /* The type of value designated by TYPE, with all aligners removed. */
9081
9082 struct type *
9083 ada_aligned_type (struct type *type)
9084 {
9085 if (ada_is_aligner_type (type))
9086 return ada_aligned_type (type->field (0).type ());
9087 else
9088 return ada_get_base_type (type);
9089 }
9090
9091
9092 /* The address of the aligned value in an object at address VALADDR
9093 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9094
9095 const gdb_byte *
9096 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9097 {
9098 if (ada_is_aligner_type (type))
9099 return ada_aligned_value_addr (type->field (0).type (),
9100 valaddr +
9101 TYPE_FIELD_BITPOS (type,
9102 0) / TARGET_CHAR_BIT);
9103 else
9104 return valaddr;
9105 }
9106
9107
9108
9109 /* The printed representation of an enumeration literal with encoded
9110 name NAME. The value is good to the next call of ada_enum_name. */
9111 const char *
9112 ada_enum_name (const char *name)
9113 {
9114 static char *result;
9115 static size_t result_len = 0;
9116 const char *tmp;
9117
9118 /* First, unqualify the enumeration name:
9119 1. Search for the last '.' character. If we find one, then skip
9120 all the preceding characters, the unqualified name starts
9121 right after that dot.
9122 2. Otherwise, we may be debugging on a target where the compiler
9123 translates dots into "__". Search forward for double underscores,
9124 but stop searching when we hit an overloading suffix, which is
9125 of the form "__" followed by digits. */
9126
9127 tmp = strrchr (name, '.');
9128 if (tmp != NULL)
9129 name = tmp + 1;
9130 else
9131 {
9132 while ((tmp = strstr (name, "__")) != NULL)
9133 {
9134 if (isdigit (tmp[2]))
9135 break;
9136 else
9137 name = tmp + 2;
9138 }
9139 }
9140
9141 if (name[0] == 'Q')
9142 {
9143 int v;
9144
9145 if (name[1] == 'U' || name[1] == 'W')
9146 {
9147 if (sscanf (name + 2, "%x", &v) != 1)
9148 return name;
9149 }
9150 else if (((name[1] >= '0' && name[1] <= '9')
9151 || (name[1] >= 'a' && name[1] <= 'z'))
9152 && name[2] == '\0')
9153 {
9154 GROW_VECT (result, result_len, 4);
9155 xsnprintf (result, result_len, "'%c'", name[1]);
9156 return result;
9157 }
9158 else
9159 return name;
9160
9161 GROW_VECT (result, result_len, 16);
9162 if (isascii (v) && isprint (v))
9163 xsnprintf (result, result_len, "'%c'", v);
9164 else if (name[1] == 'U')
9165 xsnprintf (result, result_len, "[\"%02x\"]", v);
9166 else
9167 xsnprintf (result, result_len, "[\"%04x\"]", v);
9168
9169 return result;
9170 }
9171 else
9172 {
9173 tmp = strstr (name, "__");
9174 if (tmp == NULL)
9175 tmp = strstr (name, "$");
9176 if (tmp != NULL)
9177 {
9178 GROW_VECT (result, result_len, tmp - name + 1);
9179 strncpy (result, name, tmp - name);
9180 result[tmp - name] = '\0';
9181 return result;
9182 }
9183
9184 return name;
9185 }
9186 }
9187
9188 /* Evaluate the subexpression of EXP starting at *POS as for
9189 evaluate_type, updating *POS to point just past the evaluated
9190 expression. */
9191
9192 static struct value *
9193 evaluate_subexp_type (struct expression *exp, int *pos)
9194 {
9195 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9196 }
9197
9198 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9199 value it wraps. */
9200
9201 static struct value *
9202 unwrap_value (struct value *val)
9203 {
9204 struct type *type = ada_check_typedef (value_type (val));
9205
9206 if (ada_is_aligner_type (type))
9207 {
9208 struct value *v = ada_value_struct_elt (val, "F", 0);
9209 struct type *val_type = ada_check_typedef (value_type (v));
9210
9211 if (ada_type_name (val_type) == NULL)
9212 val_type->set_name (ada_type_name (type));
9213
9214 return unwrap_value (v);
9215 }
9216 else
9217 {
9218 struct type *raw_real_type =
9219 ada_check_typedef (ada_get_base_type (type));
9220
9221 /* If there is no parallel XVS or XVE type, then the value is
9222 already unwrapped. Return it without further modification. */
9223 if ((type == raw_real_type)
9224 && ada_find_parallel_type (type, "___XVE") == NULL)
9225 return val;
9226
9227 return
9228 coerce_unspec_val_to_type
9229 (val, ada_to_fixed_type (raw_real_type, 0,
9230 value_address (val),
9231 NULL, 1));
9232 }
9233 }
9234
9235 static struct value *
9236 cast_from_fixed (struct type *type, struct value *arg)
9237 {
9238 struct value *scale = ada_scaling_factor (value_type (arg));
9239 arg = value_cast (value_type (scale), arg);
9240
9241 arg = value_binop (arg, scale, BINOP_MUL);
9242 return value_cast (type, arg);
9243 }
9244
9245 static struct value *
9246 cast_to_fixed (struct type *type, struct value *arg)
9247 {
9248 if (type == value_type (arg))
9249 return arg;
9250
9251 struct value *scale = ada_scaling_factor (type);
9252 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9253 arg = cast_from_fixed (value_type (scale), arg);
9254 else
9255 arg = value_cast (value_type (scale), arg);
9256
9257 arg = value_binop (arg, scale, BINOP_DIV);
9258 return value_cast (type, arg);
9259 }
9260
9261 /* Given two array types T1 and T2, return nonzero iff both arrays
9262 contain the same number of elements. */
9263
9264 static int
9265 ada_same_array_size_p (struct type *t1, struct type *t2)
9266 {
9267 LONGEST lo1, hi1, lo2, hi2;
9268
9269 /* Get the array bounds in order to verify that the size of
9270 the two arrays match. */
9271 if (!get_array_bounds (t1, &lo1, &hi1)
9272 || !get_array_bounds (t2, &lo2, &hi2))
9273 error (_("unable to determine array bounds"));
9274
9275 /* To make things easier for size comparison, normalize a bit
9276 the case of empty arrays by making sure that the difference
9277 between upper bound and lower bound is always -1. */
9278 if (lo1 > hi1)
9279 hi1 = lo1 - 1;
9280 if (lo2 > hi2)
9281 hi2 = lo2 - 1;
9282
9283 return (hi1 - lo1 == hi2 - lo2);
9284 }
9285
9286 /* Assuming that VAL is an array of integrals, and TYPE represents
9287 an array with the same number of elements, but with wider integral
9288 elements, return an array "casted" to TYPE. In practice, this
9289 means that the returned array is built by casting each element
9290 of the original array into TYPE's (wider) element type. */
9291
9292 static struct value *
9293 ada_promote_array_of_integrals (struct type *type, struct value *val)
9294 {
9295 struct type *elt_type = TYPE_TARGET_TYPE (type);
9296 LONGEST lo, hi;
9297 struct value *res;
9298 LONGEST i;
9299
9300 /* Verify that both val and type are arrays of scalars, and
9301 that the size of val's elements is smaller than the size
9302 of type's element. */
9303 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9304 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9305 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9306 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9307 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9308 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9309
9310 if (!get_array_bounds (type, &lo, &hi))
9311 error (_("unable to determine array bounds"));
9312
9313 res = allocate_value (type);
9314
9315 /* Promote each array element. */
9316 for (i = 0; i < hi - lo + 1; i++)
9317 {
9318 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9319
9320 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9321 value_contents_all (elt), TYPE_LENGTH (elt_type));
9322 }
9323
9324 return res;
9325 }
9326
9327 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9328 return the converted value. */
9329
9330 static struct value *
9331 coerce_for_assign (struct type *type, struct value *val)
9332 {
9333 struct type *type2 = value_type (val);
9334
9335 if (type == type2)
9336 return val;
9337
9338 type2 = ada_check_typedef (type2);
9339 type = ada_check_typedef (type);
9340
9341 if (type2->code () == TYPE_CODE_PTR
9342 && type->code () == TYPE_CODE_ARRAY)
9343 {
9344 val = ada_value_ind (val);
9345 type2 = value_type (val);
9346 }
9347
9348 if (type2->code () == TYPE_CODE_ARRAY
9349 && type->code () == TYPE_CODE_ARRAY)
9350 {
9351 if (!ada_same_array_size_p (type, type2))
9352 error (_("cannot assign arrays of different length"));
9353
9354 if (is_integral_type (TYPE_TARGET_TYPE (type))
9355 && is_integral_type (TYPE_TARGET_TYPE (type2))
9356 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9357 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9358 {
9359 /* Allow implicit promotion of the array elements to
9360 a wider type. */
9361 return ada_promote_array_of_integrals (type, val);
9362 }
9363
9364 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9365 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9366 error (_("Incompatible types in assignment"));
9367 deprecated_set_value_type (val, type);
9368 }
9369 return val;
9370 }
9371
9372 static struct value *
9373 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9374 {
9375 struct value *val;
9376 struct type *type1, *type2;
9377 LONGEST v, v1, v2;
9378
9379 arg1 = coerce_ref (arg1);
9380 arg2 = coerce_ref (arg2);
9381 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9382 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9383
9384 if (type1->code () != TYPE_CODE_INT
9385 || type2->code () != TYPE_CODE_INT)
9386 return value_binop (arg1, arg2, op);
9387
9388 switch (op)
9389 {
9390 case BINOP_MOD:
9391 case BINOP_DIV:
9392 case BINOP_REM:
9393 break;
9394 default:
9395 return value_binop (arg1, arg2, op);
9396 }
9397
9398 v2 = value_as_long (arg2);
9399 if (v2 == 0)
9400 error (_("second operand of %s must not be zero."), op_string (op));
9401
9402 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9403 return value_binop (arg1, arg2, op);
9404
9405 v1 = value_as_long (arg1);
9406 switch (op)
9407 {
9408 case BINOP_DIV:
9409 v = v1 / v2;
9410 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9411 v += v > 0 ? -1 : 1;
9412 break;
9413 case BINOP_REM:
9414 v = v1 % v2;
9415 if (v * v1 < 0)
9416 v -= v2;
9417 break;
9418 default:
9419 /* Should not reach this point. */
9420 v = 0;
9421 }
9422
9423 val = allocate_value (type1);
9424 store_unsigned_integer (value_contents_raw (val),
9425 TYPE_LENGTH (value_type (val)),
9426 type_byte_order (type1), v);
9427 return val;
9428 }
9429
9430 static int
9431 ada_value_equal (struct value *arg1, struct value *arg2)
9432 {
9433 if (ada_is_direct_array_type (value_type (arg1))
9434 || ada_is_direct_array_type (value_type (arg2)))
9435 {
9436 struct type *arg1_type, *arg2_type;
9437
9438 /* Automatically dereference any array reference before
9439 we attempt to perform the comparison. */
9440 arg1 = ada_coerce_ref (arg1);
9441 arg2 = ada_coerce_ref (arg2);
9442
9443 arg1 = ada_coerce_to_simple_array (arg1);
9444 arg2 = ada_coerce_to_simple_array (arg2);
9445
9446 arg1_type = ada_check_typedef (value_type (arg1));
9447 arg2_type = ada_check_typedef (value_type (arg2));
9448
9449 if (arg1_type->code () != TYPE_CODE_ARRAY
9450 || arg2_type->code () != TYPE_CODE_ARRAY)
9451 error (_("Attempt to compare array with non-array"));
9452 /* FIXME: The following works only for types whose
9453 representations use all bits (no padding or undefined bits)
9454 and do not have user-defined equality. */
9455 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9456 && memcmp (value_contents (arg1), value_contents (arg2),
9457 TYPE_LENGTH (arg1_type)) == 0);
9458 }
9459 return value_equal (arg1, arg2);
9460 }
9461
9462 /* Total number of component associations in the aggregate starting at
9463 index PC in EXP. Assumes that index PC is the start of an
9464 OP_AGGREGATE. */
9465
9466 static int
9467 num_component_specs (struct expression *exp, int pc)
9468 {
9469 int n, m, i;
9470
9471 m = exp->elts[pc + 1].longconst;
9472 pc += 3;
9473 n = 0;
9474 for (i = 0; i < m; i += 1)
9475 {
9476 switch (exp->elts[pc].opcode)
9477 {
9478 default:
9479 n += 1;
9480 break;
9481 case OP_CHOICES:
9482 n += exp->elts[pc + 1].longconst;
9483 break;
9484 }
9485 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9486 }
9487 return n;
9488 }
9489
9490 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9491 component of LHS (a simple array or a record), updating *POS past
9492 the expression, assuming that LHS is contained in CONTAINER. Does
9493 not modify the inferior's memory, nor does it modify LHS (unless
9494 LHS == CONTAINER). */
9495
9496 static void
9497 assign_component (struct value *container, struct value *lhs, LONGEST index,
9498 struct expression *exp, int *pos)
9499 {
9500 struct value *mark = value_mark ();
9501 struct value *elt;
9502 struct type *lhs_type = check_typedef (value_type (lhs));
9503
9504 if (lhs_type->code () == TYPE_CODE_ARRAY)
9505 {
9506 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9507 struct value *index_val = value_from_longest (index_type, index);
9508
9509 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9510 }
9511 else
9512 {
9513 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9514 elt = ada_to_fixed_value (elt);
9515 }
9516
9517 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9518 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9519 else
9520 value_assign_to_component (container, elt,
9521 ada_evaluate_subexp (NULL, exp, pos,
9522 EVAL_NORMAL));
9523
9524 value_free_to_mark (mark);
9525 }
9526
9527 /* Assuming that LHS represents an lvalue having a record or array
9528 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9529 of that aggregate's value to LHS, advancing *POS past the
9530 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9531 lvalue containing LHS (possibly LHS itself). Does not modify
9532 the inferior's memory, nor does it modify the contents of
9533 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9534
9535 static struct value *
9536 assign_aggregate (struct value *container,
9537 struct value *lhs, struct expression *exp,
9538 int *pos, enum noside noside)
9539 {
9540 struct type *lhs_type;
9541 int n = exp->elts[*pos+1].longconst;
9542 LONGEST low_index, high_index;
9543 int num_specs;
9544 LONGEST *indices;
9545 int max_indices, num_indices;
9546 int i;
9547
9548 *pos += 3;
9549 if (noside != EVAL_NORMAL)
9550 {
9551 for (i = 0; i < n; i += 1)
9552 ada_evaluate_subexp (NULL, exp, pos, noside);
9553 return container;
9554 }
9555
9556 container = ada_coerce_ref (container);
9557 if (ada_is_direct_array_type (value_type (container)))
9558 container = ada_coerce_to_simple_array (container);
9559 lhs = ada_coerce_ref (lhs);
9560 if (!deprecated_value_modifiable (lhs))
9561 error (_("Left operand of assignment is not a modifiable lvalue."));
9562
9563 lhs_type = check_typedef (value_type (lhs));
9564 if (ada_is_direct_array_type (lhs_type))
9565 {
9566 lhs = ada_coerce_to_simple_array (lhs);
9567 lhs_type = check_typedef (value_type (lhs));
9568 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9569 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9570 }
9571 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9572 {
9573 low_index = 0;
9574 high_index = num_visible_fields (lhs_type) - 1;
9575 }
9576 else
9577 error (_("Left-hand side must be array or record."));
9578
9579 num_specs = num_component_specs (exp, *pos - 3);
9580 max_indices = 4 * num_specs + 4;
9581 indices = XALLOCAVEC (LONGEST, max_indices);
9582 indices[0] = indices[1] = low_index - 1;
9583 indices[2] = indices[3] = high_index + 1;
9584 num_indices = 4;
9585
9586 for (i = 0; i < n; i += 1)
9587 {
9588 switch (exp->elts[*pos].opcode)
9589 {
9590 case OP_CHOICES:
9591 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9592 &num_indices, max_indices,
9593 low_index, high_index);
9594 break;
9595 case OP_POSITIONAL:
9596 aggregate_assign_positional (container, lhs, exp, pos, indices,
9597 &num_indices, max_indices,
9598 low_index, high_index);
9599 break;
9600 case OP_OTHERS:
9601 if (i != n-1)
9602 error (_("Misplaced 'others' clause"));
9603 aggregate_assign_others (container, lhs, exp, pos, indices,
9604 num_indices, low_index, high_index);
9605 break;
9606 default:
9607 error (_("Internal error: bad aggregate clause"));
9608 }
9609 }
9610
9611 return container;
9612 }
9613
9614 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9615 construct at *POS, updating *POS past the construct, given that
9616 the positions are relative to lower bound LOW, where HIGH is the
9617 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9618 updating *NUM_INDICES as needed. CONTAINER is as for
9619 assign_aggregate. */
9620 static void
9621 aggregate_assign_positional (struct value *container,
9622 struct value *lhs, struct expression *exp,
9623 int *pos, LONGEST *indices, int *num_indices,
9624 int max_indices, LONGEST low, LONGEST high)
9625 {
9626 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9627
9628 if (ind - 1 == high)
9629 warning (_("Extra components in aggregate ignored."));
9630 if (ind <= high)
9631 {
9632 add_component_interval (ind, ind, indices, num_indices, max_indices);
9633 *pos += 3;
9634 assign_component (container, lhs, ind, exp, pos);
9635 }
9636 else
9637 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9638 }
9639
9640 /* Assign into the components of LHS indexed by the OP_CHOICES
9641 construct at *POS, updating *POS past the construct, given that
9642 the allowable indices are LOW..HIGH. Record the indices assigned
9643 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9644 needed. CONTAINER is as for assign_aggregate. */
9645 static void
9646 aggregate_assign_from_choices (struct value *container,
9647 struct value *lhs, struct expression *exp,
9648 int *pos, LONGEST *indices, int *num_indices,
9649 int max_indices, LONGEST low, LONGEST high)
9650 {
9651 int j;
9652 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9653 int choice_pos, expr_pc;
9654 int is_array = ada_is_direct_array_type (value_type (lhs));
9655
9656 choice_pos = *pos += 3;
9657
9658 for (j = 0; j < n_choices; j += 1)
9659 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9660 expr_pc = *pos;
9661 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9662
9663 for (j = 0; j < n_choices; j += 1)
9664 {
9665 LONGEST lower, upper;
9666 enum exp_opcode op = exp->elts[choice_pos].opcode;
9667
9668 if (op == OP_DISCRETE_RANGE)
9669 {
9670 choice_pos += 1;
9671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9672 EVAL_NORMAL));
9673 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9674 EVAL_NORMAL));
9675 }
9676 else if (is_array)
9677 {
9678 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9679 EVAL_NORMAL));
9680 upper = lower;
9681 }
9682 else
9683 {
9684 int ind;
9685 const char *name;
9686
9687 switch (op)
9688 {
9689 case OP_NAME:
9690 name = &exp->elts[choice_pos + 2].string;
9691 break;
9692 case OP_VAR_VALUE:
9693 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9694 break;
9695 default:
9696 error (_("Invalid record component association."));
9697 }
9698 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9699 ind = 0;
9700 if (! find_struct_field (name, value_type (lhs), 0,
9701 NULL, NULL, NULL, NULL, &ind))
9702 error (_("Unknown component name: %s."), name);
9703 lower = upper = ind;
9704 }
9705
9706 if (lower <= upper && (lower < low || upper > high))
9707 error (_("Index in component association out of bounds."));
9708
9709 add_component_interval (lower, upper, indices, num_indices,
9710 max_indices);
9711 while (lower <= upper)
9712 {
9713 int pos1;
9714
9715 pos1 = expr_pc;
9716 assign_component (container, lhs, lower, exp, &pos1);
9717 lower += 1;
9718 }
9719 }
9720 }
9721
9722 /* Assign the value of the expression in the OP_OTHERS construct in
9723 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9724 have not been previously assigned. The index intervals already assigned
9725 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9726 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9727 static void
9728 aggregate_assign_others (struct value *container,
9729 struct value *lhs, struct expression *exp,
9730 int *pos, LONGEST *indices, int num_indices,
9731 LONGEST low, LONGEST high)
9732 {
9733 int i;
9734 int expr_pc = *pos + 1;
9735
9736 for (i = 0; i < num_indices - 2; i += 2)
9737 {
9738 LONGEST ind;
9739
9740 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9741 {
9742 int localpos;
9743
9744 localpos = expr_pc;
9745 assign_component (container, lhs, ind, exp, &localpos);
9746 }
9747 }
9748 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9749 }
9750
9751 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9752 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9753 modifying *SIZE as needed. It is an error if *SIZE exceeds
9754 MAX_SIZE. The resulting intervals do not overlap. */
9755 static void
9756 add_component_interval (LONGEST low, LONGEST high,
9757 LONGEST* indices, int *size, int max_size)
9758 {
9759 int i, j;
9760
9761 for (i = 0; i < *size; i += 2) {
9762 if (high >= indices[i] && low <= indices[i + 1])
9763 {
9764 int kh;
9765
9766 for (kh = i + 2; kh < *size; kh += 2)
9767 if (high < indices[kh])
9768 break;
9769 if (low < indices[i])
9770 indices[i] = low;
9771 indices[i + 1] = indices[kh - 1];
9772 if (high > indices[i + 1])
9773 indices[i + 1] = high;
9774 memcpy (indices + i + 2, indices + kh, *size - kh);
9775 *size -= kh - i - 2;
9776 return;
9777 }
9778 else if (high < indices[i])
9779 break;
9780 }
9781
9782 if (*size == max_size)
9783 error (_("Internal error: miscounted aggregate components."));
9784 *size += 2;
9785 for (j = *size-1; j >= i+2; j -= 1)
9786 indices[j] = indices[j - 2];
9787 indices[i] = low;
9788 indices[i + 1] = high;
9789 }
9790
9791 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9792 is different. */
9793
9794 static struct value *
9795 ada_value_cast (struct type *type, struct value *arg2)
9796 {
9797 if (type == ada_check_typedef (value_type (arg2)))
9798 return arg2;
9799
9800 if (ada_is_gnat_encoded_fixed_point_type (type))
9801 return cast_to_fixed (type, arg2);
9802
9803 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9804 return cast_from_fixed (type, arg2);
9805
9806 return value_cast (type, arg2);
9807 }
9808
9809 /* Evaluating Ada expressions, and printing their result.
9810 ------------------------------------------------------
9811
9812 1. Introduction:
9813 ----------------
9814
9815 We usually evaluate an Ada expression in order to print its value.
9816 We also evaluate an expression in order to print its type, which
9817 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9818 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9819 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9820 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9821 similar.
9822
9823 Evaluating expressions is a little more complicated for Ada entities
9824 than it is for entities in languages such as C. The main reason for
9825 this is that Ada provides types whose definition might be dynamic.
9826 One example of such types is variant records. Or another example
9827 would be an array whose bounds can only be known at run time.
9828
9829 The following description is a general guide as to what should be
9830 done (and what should NOT be done) in order to evaluate an expression
9831 involving such types, and when. This does not cover how the semantic
9832 information is encoded by GNAT as this is covered separatly. For the
9833 document used as the reference for the GNAT encoding, see exp_dbug.ads
9834 in the GNAT sources.
9835
9836 Ideally, we should embed each part of this description next to its
9837 associated code. Unfortunately, the amount of code is so vast right
9838 now that it's hard to see whether the code handling a particular
9839 situation might be duplicated or not. One day, when the code is
9840 cleaned up, this guide might become redundant with the comments
9841 inserted in the code, and we might want to remove it.
9842
9843 2. ``Fixing'' an Entity, the Simple Case:
9844 -----------------------------------------
9845
9846 When evaluating Ada expressions, the tricky issue is that they may
9847 reference entities whose type contents and size are not statically
9848 known. Consider for instance a variant record:
9849
9850 type Rec (Empty : Boolean := True) is record
9851 case Empty is
9852 when True => null;
9853 when False => Value : Integer;
9854 end case;
9855 end record;
9856 Yes : Rec := (Empty => False, Value => 1);
9857 No : Rec := (empty => True);
9858
9859 The size and contents of that record depends on the value of the
9860 descriminant (Rec.Empty). At this point, neither the debugging
9861 information nor the associated type structure in GDB are able to
9862 express such dynamic types. So what the debugger does is to create
9863 "fixed" versions of the type that applies to the specific object.
9864 We also informally refer to this operation as "fixing" an object,
9865 which means creating its associated fixed type.
9866
9867 Example: when printing the value of variable "Yes" above, its fixed
9868 type would look like this:
9869
9870 type Rec is record
9871 Empty : Boolean;
9872 Value : Integer;
9873 end record;
9874
9875 On the other hand, if we printed the value of "No", its fixed type
9876 would become:
9877
9878 type Rec is record
9879 Empty : Boolean;
9880 end record;
9881
9882 Things become a little more complicated when trying to fix an entity
9883 with a dynamic type that directly contains another dynamic type,
9884 such as an array of variant records, for instance. There are
9885 two possible cases: Arrays, and records.
9886
9887 3. ``Fixing'' Arrays:
9888 ---------------------
9889
9890 The type structure in GDB describes an array in terms of its bounds,
9891 and the type of its elements. By design, all elements in the array
9892 have the same type and we cannot represent an array of variant elements
9893 using the current type structure in GDB. When fixing an array,
9894 we cannot fix the array element, as we would potentially need one
9895 fixed type per element of the array. As a result, the best we can do
9896 when fixing an array is to produce an array whose bounds and size
9897 are correct (allowing us to read it from memory), but without having
9898 touched its element type. Fixing each element will be done later,
9899 when (if) necessary.
9900
9901 Arrays are a little simpler to handle than records, because the same
9902 amount of memory is allocated for each element of the array, even if
9903 the amount of space actually used by each element differs from element
9904 to element. Consider for instance the following array of type Rec:
9905
9906 type Rec_Array is array (1 .. 2) of Rec;
9907
9908 The actual amount of memory occupied by each element might be different
9909 from element to element, depending on the value of their discriminant.
9910 But the amount of space reserved for each element in the array remains
9911 fixed regardless. So we simply need to compute that size using
9912 the debugging information available, from which we can then determine
9913 the array size (we multiply the number of elements of the array by
9914 the size of each element).
9915
9916 The simplest case is when we have an array of a constrained element
9917 type. For instance, consider the following type declarations:
9918
9919 type Bounded_String (Max_Size : Integer) is
9920 Length : Integer;
9921 Buffer : String (1 .. Max_Size);
9922 end record;
9923 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9924
9925 In this case, the compiler describes the array as an array of
9926 variable-size elements (identified by its XVS suffix) for which
9927 the size can be read in the parallel XVZ variable.
9928
9929 In the case of an array of an unconstrained element type, the compiler
9930 wraps the array element inside a private PAD type. This type should not
9931 be shown to the user, and must be "unwrap"'ed before printing. Note
9932 that we also use the adjective "aligner" in our code to designate
9933 these wrapper types.
9934
9935 In some cases, the size allocated for each element is statically
9936 known. In that case, the PAD type already has the correct size,
9937 and the array element should remain unfixed.
9938
9939 But there are cases when this size is not statically known.
9940 For instance, assuming that "Five" is an integer variable:
9941
9942 type Dynamic is array (1 .. Five) of Integer;
9943 type Wrapper (Has_Length : Boolean := False) is record
9944 Data : Dynamic;
9945 case Has_Length is
9946 when True => Length : Integer;
9947 when False => null;
9948 end case;
9949 end record;
9950 type Wrapper_Array is array (1 .. 2) of Wrapper;
9951
9952 Hello : Wrapper_Array := (others => (Has_Length => True,
9953 Data => (others => 17),
9954 Length => 1));
9955
9956
9957 The debugging info would describe variable Hello as being an
9958 array of a PAD type. The size of that PAD type is not statically
9959 known, but can be determined using a parallel XVZ variable.
9960 In that case, a copy of the PAD type with the correct size should
9961 be used for the fixed array.
9962
9963 3. ``Fixing'' record type objects:
9964 ----------------------------------
9965
9966 Things are slightly different from arrays in the case of dynamic
9967 record types. In this case, in order to compute the associated
9968 fixed type, we need to determine the size and offset of each of
9969 its components. This, in turn, requires us to compute the fixed
9970 type of each of these components.
9971
9972 Consider for instance the example:
9973
9974 type Bounded_String (Max_Size : Natural) is record
9975 Str : String (1 .. Max_Size);
9976 Length : Natural;
9977 end record;
9978 My_String : Bounded_String (Max_Size => 10);
9979
9980 In that case, the position of field "Length" depends on the size
9981 of field Str, which itself depends on the value of the Max_Size
9982 discriminant. In order to fix the type of variable My_String,
9983 we need to fix the type of field Str. Therefore, fixing a variant
9984 record requires us to fix each of its components.
9985
9986 However, if a component does not have a dynamic size, the component
9987 should not be fixed. In particular, fields that use a PAD type
9988 should not fixed. Here is an example where this might happen
9989 (assuming type Rec above):
9990
9991 type Container (Big : Boolean) is record
9992 First : Rec;
9993 After : Integer;
9994 case Big is
9995 when True => Another : Integer;
9996 when False => null;
9997 end case;
9998 end record;
9999 My_Container : Container := (Big => False,
10000 First => (Empty => True),
10001 After => 42);
10002
10003 In that example, the compiler creates a PAD type for component First,
10004 whose size is constant, and then positions the component After just
10005 right after it. The offset of component After is therefore constant
10006 in this case.
10007
10008 The debugger computes the position of each field based on an algorithm
10009 that uses, among other things, the actual position and size of the field
10010 preceding it. Let's now imagine that the user is trying to print
10011 the value of My_Container. If the type fixing was recursive, we would
10012 end up computing the offset of field After based on the size of the
10013 fixed version of field First. And since in our example First has
10014 only one actual field, the size of the fixed type is actually smaller
10015 than the amount of space allocated to that field, and thus we would
10016 compute the wrong offset of field After.
10017
10018 To make things more complicated, we need to watch out for dynamic
10019 components of variant records (identified by the ___XVL suffix in
10020 the component name). Even if the target type is a PAD type, the size
10021 of that type might not be statically known. So the PAD type needs
10022 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10023 we might end up with the wrong size for our component. This can be
10024 observed with the following type declarations:
10025
10026 type Octal is new Integer range 0 .. 7;
10027 type Octal_Array is array (Positive range <>) of Octal;
10028 pragma Pack (Octal_Array);
10029
10030 type Octal_Buffer (Size : Positive) is record
10031 Buffer : Octal_Array (1 .. Size);
10032 Length : Integer;
10033 end record;
10034
10035 In that case, Buffer is a PAD type whose size is unset and needs
10036 to be computed by fixing the unwrapped type.
10037
10038 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10039 ----------------------------------------------------------
10040
10041 Lastly, when should the sub-elements of an entity that remained unfixed
10042 thus far, be actually fixed?
10043
10044 The answer is: Only when referencing that element. For instance
10045 when selecting one component of a record, this specific component
10046 should be fixed at that point in time. Or when printing the value
10047 of a record, each component should be fixed before its value gets
10048 printed. Similarly for arrays, the element of the array should be
10049 fixed when printing each element of the array, or when extracting
10050 one element out of that array. On the other hand, fixing should
10051 not be performed on the elements when taking a slice of an array!
10052
10053 Note that one of the side effects of miscomputing the offset and
10054 size of each field is that we end up also miscomputing the size
10055 of the containing type. This can have adverse results when computing
10056 the value of an entity. GDB fetches the value of an entity based
10057 on the size of its type, and thus a wrong size causes GDB to fetch
10058 the wrong amount of memory. In the case where the computed size is
10059 too small, GDB fetches too little data to print the value of our
10060 entity. Results in this case are unpredictable, as we usually read
10061 past the buffer containing the data =:-o. */
10062
10063 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10064 for that subexpression cast to TO_TYPE. Advance *POS over the
10065 subexpression. */
10066
10067 static value *
10068 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10069 enum noside noside, struct type *to_type)
10070 {
10071 int pc = *pos;
10072
10073 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10074 || exp->elts[pc].opcode == OP_VAR_VALUE)
10075 {
10076 (*pos) += 4;
10077
10078 value *val;
10079 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10080 {
10081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10082 return value_zero (to_type, not_lval);
10083
10084 val = evaluate_var_msym_value (noside,
10085 exp->elts[pc + 1].objfile,
10086 exp->elts[pc + 2].msymbol);
10087 }
10088 else
10089 val = evaluate_var_value (noside,
10090 exp->elts[pc + 1].block,
10091 exp->elts[pc + 2].symbol);
10092
10093 if (noside == EVAL_SKIP)
10094 return eval_skip_value (exp);
10095
10096 val = ada_value_cast (to_type, val);
10097
10098 /* Follow the Ada language semantics that do not allow taking
10099 an address of the result of a cast (view conversion in Ada). */
10100 if (VALUE_LVAL (val) == lval_memory)
10101 {
10102 if (value_lazy (val))
10103 value_fetch_lazy (val);
10104 VALUE_LVAL (val) = not_lval;
10105 }
10106 return val;
10107 }
10108
10109 value *val = evaluate_subexp (to_type, exp, pos, noside);
10110 if (noside == EVAL_SKIP)
10111 return eval_skip_value (exp);
10112 return ada_value_cast (to_type, val);
10113 }
10114
10115 /* Implement the evaluate_exp routine in the exp_descriptor structure
10116 for the Ada language. */
10117
10118 static struct value *
10119 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10120 int *pos, enum noside noside)
10121 {
10122 enum exp_opcode op;
10123 int tem;
10124 int pc;
10125 int preeval_pos;
10126 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10127 struct type *type;
10128 int nargs, oplen;
10129 struct value **argvec;
10130
10131 pc = *pos;
10132 *pos += 1;
10133 op = exp->elts[pc].opcode;
10134
10135 switch (op)
10136 {
10137 default:
10138 *pos -= 1;
10139 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10140
10141 if (noside == EVAL_NORMAL)
10142 arg1 = unwrap_value (arg1);
10143
10144 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10145 then we need to perform the conversion manually, because
10146 evaluate_subexp_standard doesn't do it. This conversion is
10147 necessary in Ada because the different kinds of float/fixed
10148 types in Ada have different representations.
10149
10150 Similarly, we need to perform the conversion from OP_LONG
10151 ourselves. */
10152 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10153 arg1 = ada_value_cast (expect_type, arg1);
10154
10155 return arg1;
10156
10157 case OP_STRING:
10158 {
10159 struct value *result;
10160
10161 *pos -= 1;
10162 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10163 /* The result type will have code OP_STRING, bashed there from
10164 OP_ARRAY. Bash it back. */
10165 if (value_type (result)->code () == TYPE_CODE_STRING)
10166 value_type (result)->set_code (TYPE_CODE_ARRAY);
10167 return result;
10168 }
10169
10170 case UNOP_CAST:
10171 (*pos) += 2;
10172 type = exp->elts[pc + 1].type;
10173 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10174
10175 case UNOP_QUAL:
10176 (*pos) += 2;
10177 type = exp->elts[pc + 1].type;
10178 return ada_evaluate_subexp (type, exp, pos, noside);
10179
10180 case BINOP_ASSIGN:
10181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10182 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10183 {
10184 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10185 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10186 return arg1;
10187 return ada_value_assign (arg1, arg1);
10188 }
10189 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10190 except if the lhs of our assignment is a convenience variable.
10191 In the case of assigning to a convenience variable, the lhs
10192 should be exactly the result of the evaluation of the rhs. */
10193 type = value_type (arg1);
10194 if (VALUE_LVAL (arg1) == lval_internalvar)
10195 type = NULL;
10196 arg2 = evaluate_subexp (type, exp, pos, noside);
10197 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10198 return arg1;
10199 if (VALUE_LVAL (arg1) == lval_internalvar)
10200 {
10201 /* Nothing. */
10202 }
10203 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10204 arg2 = cast_to_fixed (value_type (arg1), arg2);
10205 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10206 error
10207 (_("Fixed-point values must be assigned to fixed-point variables"));
10208 else
10209 arg2 = coerce_for_assign (value_type (arg1), arg2);
10210 return ada_value_assign (arg1, arg2);
10211
10212 case BINOP_ADD:
10213 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10214 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10215 if (noside == EVAL_SKIP)
10216 goto nosideret;
10217 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10218 return (value_from_longest
10219 (value_type (arg1),
10220 value_as_long (arg1) + value_as_long (arg2)));
10221 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10222 return (value_from_longest
10223 (value_type (arg2),
10224 value_as_long (arg1) + value_as_long (arg2)));
10225 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10226 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10227 && value_type (arg1) != value_type (arg2))
10228 error (_("Operands of fixed-point addition must have the same type"));
10229 /* Do the addition, and cast the result to the type of the first
10230 argument. We cannot cast the result to a reference type, so if
10231 ARG1 is a reference type, find its underlying type. */
10232 type = value_type (arg1);
10233 while (type->code () == TYPE_CODE_REF)
10234 type = TYPE_TARGET_TYPE (type);
10235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10236 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10237
10238 case BINOP_SUB:
10239 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10240 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10241 if (noside == EVAL_SKIP)
10242 goto nosideret;
10243 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10244 return (value_from_longest
10245 (value_type (arg1),
10246 value_as_long (arg1) - value_as_long (arg2)));
10247 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10248 return (value_from_longest
10249 (value_type (arg2),
10250 value_as_long (arg1) - value_as_long (arg2)));
10251 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10252 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10253 && value_type (arg1) != value_type (arg2))
10254 error (_("Operands of fixed-point subtraction "
10255 "must have the same type"));
10256 /* Do the substraction, and cast the result to the type of the first
10257 argument. We cannot cast the result to a reference type, so if
10258 ARG1 is a reference type, find its underlying type. */
10259 type = value_type (arg1);
10260 while (type->code () == TYPE_CODE_REF)
10261 type = TYPE_TARGET_TYPE (type);
10262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10263 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10264
10265 case BINOP_MUL:
10266 case BINOP_DIV:
10267 case BINOP_REM:
10268 case BINOP_MOD:
10269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10270 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10271 if (noside == EVAL_SKIP)
10272 goto nosideret;
10273 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10274 {
10275 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10276 return value_zero (value_type (arg1), not_lval);
10277 }
10278 else
10279 {
10280 type = builtin_type (exp->gdbarch)->builtin_double;
10281 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10282 arg1 = cast_from_fixed (type, arg1);
10283 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10284 arg2 = cast_from_fixed (type, arg2);
10285 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10286 return ada_value_binop (arg1, arg2, op);
10287 }
10288
10289 case BINOP_EQUAL:
10290 case BINOP_NOTEQUAL:
10291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10292 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10293 if (noside == EVAL_SKIP)
10294 goto nosideret;
10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10296 tem = 0;
10297 else
10298 {
10299 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10300 tem = ada_value_equal (arg1, arg2);
10301 }
10302 if (op == BINOP_NOTEQUAL)
10303 tem = !tem;
10304 type = language_bool_type (exp->language_defn, exp->gdbarch);
10305 return value_from_longest (type, (LONGEST) tem);
10306
10307 case UNOP_NEG:
10308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10309 if (noside == EVAL_SKIP)
10310 goto nosideret;
10311 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10312 return value_cast (value_type (arg1), value_neg (arg1));
10313 else
10314 {
10315 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10316 return value_neg (arg1);
10317 }
10318
10319 case BINOP_LOGICAL_AND:
10320 case BINOP_LOGICAL_OR:
10321 case UNOP_LOGICAL_NOT:
10322 {
10323 struct value *val;
10324
10325 *pos -= 1;
10326 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10327 type = language_bool_type (exp->language_defn, exp->gdbarch);
10328 return value_cast (type, val);
10329 }
10330
10331 case BINOP_BITWISE_AND:
10332 case BINOP_BITWISE_IOR:
10333 case BINOP_BITWISE_XOR:
10334 {
10335 struct value *val;
10336
10337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10338 *pos = pc;
10339 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10340
10341 return value_cast (value_type (arg1), val);
10342 }
10343
10344 case OP_VAR_VALUE:
10345 *pos -= 1;
10346
10347 if (noside == EVAL_SKIP)
10348 {
10349 *pos += 4;
10350 goto nosideret;
10351 }
10352
10353 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10354 /* Only encountered when an unresolved symbol occurs in a
10355 context other than a function call, in which case, it is
10356 invalid. */
10357 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10358 exp->elts[pc + 2].symbol->print_name ());
10359
10360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10361 {
10362 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10363 /* Check to see if this is a tagged type. We also need to handle
10364 the case where the type is a reference to a tagged type, but
10365 we have to be careful to exclude pointers to tagged types.
10366 The latter should be shown as usual (as a pointer), whereas
10367 a reference should mostly be transparent to the user. */
10368 if (ada_is_tagged_type (type, 0)
10369 || (type->code () == TYPE_CODE_REF
10370 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10371 {
10372 /* Tagged types are a little special in the fact that the real
10373 type is dynamic and can only be determined by inspecting the
10374 object's tag. This means that we need to get the object's
10375 value first (EVAL_NORMAL) and then extract the actual object
10376 type from its tag.
10377
10378 Note that we cannot skip the final step where we extract
10379 the object type from its tag, because the EVAL_NORMAL phase
10380 results in dynamic components being resolved into fixed ones.
10381 This can cause problems when trying to print the type
10382 description of tagged types whose parent has a dynamic size:
10383 We use the type name of the "_parent" component in order
10384 to print the name of the ancestor type in the type description.
10385 If that component had a dynamic size, the resolution into
10386 a fixed type would result in the loss of that type name,
10387 thus preventing us from printing the name of the ancestor
10388 type in the type description. */
10389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10390
10391 if (type->code () != TYPE_CODE_REF)
10392 {
10393 struct type *actual_type;
10394
10395 actual_type = type_from_tag (ada_value_tag (arg1));
10396 if (actual_type == NULL)
10397 /* If, for some reason, we were unable to determine
10398 the actual type from the tag, then use the static
10399 approximation that we just computed as a fallback.
10400 This can happen if the debugging information is
10401 incomplete, for instance. */
10402 actual_type = type;
10403 return value_zero (actual_type, not_lval);
10404 }
10405 else
10406 {
10407 /* In the case of a ref, ada_coerce_ref takes care
10408 of determining the actual type. But the evaluation
10409 should return a ref as it should be valid to ask
10410 for its address; so rebuild a ref after coerce. */
10411 arg1 = ada_coerce_ref (arg1);
10412 return value_ref (arg1, TYPE_CODE_REF);
10413 }
10414 }
10415
10416 /* Records and unions for which GNAT encodings have been
10417 generated need to be statically fixed as well.
10418 Otherwise, non-static fixing produces a type where
10419 all dynamic properties are removed, which prevents "ptype"
10420 from being able to completely describe the type.
10421 For instance, a case statement in a variant record would be
10422 replaced by the relevant components based on the actual
10423 value of the discriminants. */
10424 if ((type->code () == TYPE_CODE_STRUCT
10425 && dynamic_template_type (type) != NULL)
10426 || (type->code () == TYPE_CODE_UNION
10427 && ada_find_parallel_type (type, "___XVU") != NULL))
10428 {
10429 *pos += 4;
10430 return value_zero (to_static_fixed_type (type), not_lval);
10431 }
10432 }
10433
10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10435 return ada_to_fixed_value (arg1);
10436
10437 case OP_FUNCALL:
10438 (*pos) += 2;
10439
10440 /* Allocate arg vector, including space for the function to be
10441 called in argvec[0] and a terminating NULL. */
10442 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10443 argvec = XALLOCAVEC (struct value *, nargs + 2);
10444
10445 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10446 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10447 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10448 exp->elts[pc + 5].symbol->print_name ());
10449 else
10450 {
10451 for (tem = 0; tem <= nargs; tem += 1)
10452 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10453 argvec[tem] = 0;
10454
10455 if (noside == EVAL_SKIP)
10456 goto nosideret;
10457 }
10458
10459 if (ada_is_constrained_packed_array_type
10460 (desc_base_type (value_type (argvec[0]))))
10461 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10462 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10463 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10464 /* This is a packed array that has already been fixed, and
10465 therefore already coerced to a simple array. Nothing further
10466 to do. */
10467 ;
10468 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10469 {
10470 /* Make sure we dereference references so that all the code below
10471 feels like it's really handling the referenced value. Wrapping
10472 types (for alignment) may be there, so make sure we strip them as
10473 well. */
10474 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10475 }
10476 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10477 && VALUE_LVAL (argvec[0]) == lval_memory)
10478 argvec[0] = value_addr (argvec[0]);
10479
10480 type = ada_check_typedef (value_type (argvec[0]));
10481
10482 /* Ada allows us to implicitly dereference arrays when subscripting
10483 them. So, if this is an array typedef (encoding use for array
10484 access types encoded as fat pointers), strip it now. */
10485 if (type->code () == TYPE_CODE_TYPEDEF)
10486 type = ada_typedef_target_type (type);
10487
10488 if (type->code () == TYPE_CODE_PTR)
10489 {
10490 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10491 {
10492 case TYPE_CODE_FUNC:
10493 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10494 break;
10495 case TYPE_CODE_ARRAY:
10496 break;
10497 case TYPE_CODE_STRUCT:
10498 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10499 argvec[0] = ada_value_ind (argvec[0]);
10500 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10501 break;
10502 default:
10503 error (_("cannot subscript or call something of type `%s'"),
10504 ada_type_name (value_type (argvec[0])));
10505 break;
10506 }
10507 }
10508
10509 switch (type->code ())
10510 {
10511 case TYPE_CODE_FUNC:
10512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10513 {
10514 if (TYPE_TARGET_TYPE (type) == NULL)
10515 error_call_unknown_return_type (NULL);
10516 return allocate_value (TYPE_TARGET_TYPE (type));
10517 }
10518 return call_function_by_hand (argvec[0], NULL,
10519 gdb::make_array_view (argvec + 1,
10520 nargs));
10521 case TYPE_CODE_INTERNAL_FUNCTION:
10522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10523 /* We don't know anything about what the internal
10524 function might return, but we have to return
10525 something. */
10526 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10527 not_lval);
10528 else
10529 return call_internal_function (exp->gdbarch, exp->language_defn,
10530 argvec[0], nargs, argvec + 1);
10531
10532 case TYPE_CODE_STRUCT:
10533 {
10534 int arity;
10535
10536 arity = ada_array_arity (type);
10537 type = ada_array_element_type (type, nargs);
10538 if (type == NULL)
10539 error (_("cannot subscript or call a record"));
10540 if (arity != nargs)
10541 error (_("wrong number of subscripts; expecting %d"), arity);
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 return value_zero (ada_aligned_type (type), lval_memory);
10544 return
10545 unwrap_value (ada_value_subscript
10546 (argvec[0], nargs, argvec + 1));
10547 }
10548 case TYPE_CODE_ARRAY:
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 {
10551 type = ada_array_element_type (type, nargs);
10552 if (type == NULL)
10553 error (_("element type of array unknown"));
10554 else
10555 return value_zero (ada_aligned_type (type), lval_memory);
10556 }
10557 return
10558 unwrap_value (ada_value_subscript
10559 (ada_coerce_to_simple_array (argvec[0]),
10560 nargs, argvec + 1));
10561 case TYPE_CODE_PTR: /* Pointer to array */
10562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10563 {
10564 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10565 type = ada_array_element_type (type, nargs);
10566 if (type == NULL)
10567 error (_("element type of array unknown"));
10568 else
10569 return value_zero (ada_aligned_type (type), lval_memory);
10570 }
10571 return
10572 unwrap_value (ada_value_ptr_subscript (argvec[0],
10573 nargs, argvec + 1));
10574
10575 default:
10576 error (_("Attempt to index or call something other than an "
10577 "array or function"));
10578 }
10579
10580 case TERNOP_SLICE:
10581 {
10582 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10583 struct value *low_bound_val =
10584 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10585 struct value *high_bound_val =
10586 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 LONGEST low_bound;
10588 LONGEST high_bound;
10589
10590 low_bound_val = coerce_ref (low_bound_val);
10591 high_bound_val = coerce_ref (high_bound_val);
10592 low_bound = value_as_long (low_bound_val);
10593 high_bound = value_as_long (high_bound_val);
10594
10595 if (noside == EVAL_SKIP)
10596 goto nosideret;
10597
10598 /* If this is a reference to an aligner type, then remove all
10599 the aligners. */
10600 if (value_type (array)->code () == TYPE_CODE_REF
10601 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10602 TYPE_TARGET_TYPE (value_type (array)) =
10603 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10604
10605 if (ada_is_constrained_packed_array_type (value_type (array)))
10606 error (_("cannot slice a packed array"));
10607
10608 /* If this is a reference to an array or an array lvalue,
10609 convert to a pointer. */
10610 if (value_type (array)->code () == TYPE_CODE_REF
10611 || (value_type (array)->code () == TYPE_CODE_ARRAY
10612 && VALUE_LVAL (array) == lval_memory))
10613 array = value_addr (array);
10614
10615 if (noside == EVAL_AVOID_SIDE_EFFECTS
10616 && ada_is_array_descriptor_type (ada_check_typedef
10617 (value_type (array))))
10618 return empty_array (ada_type_of_array (array, 0), low_bound,
10619 high_bound);
10620
10621 array = ada_coerce_to_simple_array_ptr (array);
10622
10623 /* If we have more than one level of pointer indirection,
10624 dereference the value until we get only one level. */
10625 while (value_type (array)->code () == TYPE_CODE_PTR
10626 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10627 == TYPE_CODE_PTR))
10628 array = value_ind (array);
10629
10630 /* Make sure we really do have an array type before going further,
10631 to avoid a SEGV when trying to get the index type or the target
10632 type later down the road if the debug info generated by
10633 the compiler is incorrect or incomplete. */
10634 if (!ada_is_simple_array_type (value_type (array)))
10635 error (_("cannot take slice of non-array"));
10636
10637 if (ada_check_typedef (value_type (array))->code ()
10638 == TYPE_CODE_PTR)
10639 {
10640 struct type *type0 = ada_check_typedef (value_type (array));
10641
10642 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10643 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10644 else
10645 {
10646 struct type *arr_type0 =
10647 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10648
10649 return ada_value_slice_from_ptr (array, arr_type0,
10650 longest_to_int (low_bound),
10651 longest_to_int (high_bound));
10652 }
10653 }
10654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10655 return array;
10656 else if (high_bound < low_bound)
10657 return empty_array (value_type (array), low_bound, high_bound);
10658 else
10659 return ada_value_slice (array, longest_to_int (low_bound),
10660 longest_to_int (high_bound));
10661 }
10662
10663 case UNOP_IN_RANGE:
10664 (*pos) += 2;
10665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10666 type = check_typedef (exp->elts[pc + 1].type);
10667
10668 if (noside == EVAL_SKIP)
10669 goto nosideret;
10670
10671 switch (type->code ())
10672 {
10673 default:
10674 lim_warning (_("Membership test incompletely implemented; "
10675 "always returns true"));
10676 type = language_bool_type (exp->language_defn, exp->gdbarch);
10677 return value_from_longest (type, (LONGEST) 1);
10678
10679 case TYPE_CODE_RANGE:
10680 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10681 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10682 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10684 type = language_bool_type (exp->language_defn, exp->gdbarch);
10685 return
10686 value_from_longest (type,
10687 (value_less (arg1, arg3)
10688 || value_equal (arg1, arg3))
10689 && (value_less (arg2, arg1)
10690 || value_equal (arg2, arg1)));
10691 }
10692
10693 case BINOP_IN_BOUNDS:
10694 (*pos) += 2;
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697
10698 if (noside == EVAL_SKIP)
10699 goto nosideret;
10700
10701 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10702 {
10703 type = language_bool_type (exp->language_defn, exp->gdbarch);
10704 return value_zero (type, not_lval);
10705 }
10706
10707 tem = longest_to_int (exp->elts[pc + 1].longconst);
10708
10709 type = ada_index_type (value_type (arg2), tem, "range");
10710 if (!type)
10711 type = value_type (arg1);
10712
10713 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10714 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10715
10716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10717 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10718 type = language_bool_type (exp->language_defn, exp->gdbarch);
10719 return
10720 value_from_longest (type,
10721 (value_less (arg1, arg3)
10722 || value_equal (arg1, arg3))
10723 && (value_less (arg2, arg1)
10724 || value_equal (arg2, arg1)));
10725
10726 case TERNOP_IN_RANGE:
10727 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730
10731 if (noside == EVAL_SKIP)
10732 goto nosideret;
10733
10734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10736 type = language_bool_type (exp->language_defn, exp->gdbarch);
10737 return
10738 value_from_longest (type,
10739 (value_less (arg1, arg3)
10740 || value_equal (arg1, arg3))
10741 && (value_less (arg2, arg1)
10742 || value_equal (arg2, arg1)));
10743
10744 case OP_ATR_FIRST:
10745 case OP_ATR_LAST:
10746 case OP_ATR_LENGTH:
10747 {
10748 struct type *type_arg;
10749
10750 if (exp->elts[*pos].opcode == OP_TYPE)
10751 {
10752 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10753 arg1 = NULL;
10754 type_arg = check_typedef (exp->elts[pc + 2].type);
10755 }
10756 else
10757 {
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 type_arg = NULL;
10760 }
10761
10762 if (exp->elts[*pos].opcode != OP_LONG)
10763 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10764 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10765 *pos += 4;
10766
10767 if (noside == EVAL_SKIP)
10768 goto nosideret;
10769 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10770 {
10771 if (type_arg == NULL)
10772 type_arg = value_type (arg1);
10773
10774 if (ada_is_constrained_packed_array_type (type_arg))
10775 type_arg = decode_constrained_packed_array_type (type_arg);
10776
10777 if (!discrete_type_p (type_arg))
10778 {
10779 switch (op)
10780 {
10781 default: /* Should never happen. */
10782 error (_("unexpected attribute encountered"));
10783 case OP_ATR_FIRST:
10784 case OP_ATR_LAST:
10785 type_arg = ada_index_type (type_arg, tem,
10786 ada_attribute_name (op));
10787 break;
10788 case OP_ATR_LENGTH:
10789 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10790 break;
10791 }
10792 }
10793
10794 return value_zero (type_arg, not_lval);
10795 }
10796 else if (type_arg == NULL)
10797 {
10798 arg1 = ada_coerce_ref (arg1);
10799
10800 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10801 arg1 = ada_coerce_to_simple_array (arg1);
10802
10803 if (op == OP_ATR_LENGTH)
10804 type = builtin_type (exp->gdbarch)->builtin_int;
10805 else
10806 {
10807 type = ada_index_type (value_type (arg1), tem,
10808 ada_attribute_name (op));
10809 if (type == NULL)
10810 type = builtin_type (exp->gdbarch)->builtin_int;
10811 }
10812
10813 switch (op)
10814 {
10815 default: /* Should never happen. */
10816 error (_("unexpected attribute encountered"));
10817 case OP_ATR_FIRST:
10818 return value_from_longest
10819 (type, ada_array_bound (arg1, tem, 0));
10820 case OP_ATR_LAST:
10821 return value_from_longest
10822 (type, ada_array_bound (arg1, tem, 1));
10823 case OP_ATR_LENGTH:
10824 return value_from_longest
10825 (type, ada_array_length (arg1, tem));
10826 }
10827 }
10828 else if (discrete_type_p (type_arg))
10829 {
10830 struct type *range_type;
10831 const char *name = ada_type_name (type_arg);
10832
10833 range_type = NULL;
10834 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10835 range_type = to_fixed_range_type (type_arg, NULL);
10836 if (range_type == NULL)
10837 range_type = type_arg;
10838 switch (op)
10839 {
10840 default:
10841 error (_("unexpected attribute encountered"));
10842 case OP_ATR_FIRST:
10843 return value_from_longest
10844 (range_type, ada_discrete_type_low_bound (range_type));
10845 case OP_ATR_LAST:
10846 return value_from_longest
10847 (range_type, ada_discrete_type_high_bound (range_type));
10848 case OP_ATR_LENGTH:
10849 error (_("the 'length attribute applies only to array types"));
10850 }
10851 }
10852 else if (type_arg->code () == TYPE_CODE_FLT)
10853 error (_("unimplemented type attribute"));
10854 else
10855 {
10856 LONGEST low, high;
10857
10858 if (ada_is_constrained_packed_array_type (type_arg))
10859 type_arg = decode_constrained_packed_array_type (type_arg);
10860
10861 if (op == OP_ATR_LENGTH)
10862 type = builtin_type (exp->gdbarch)->builtin_int;
10863 else
10864 {
10865 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10866 if (type == NULL)
10867 type = builtin_type (exp->gdbarch)->builtin_int;
10868 }
10869
10870 switch (op)
10871 {
10872 default:
10873 error (_("unexpected attribute encountered"));
10874 case OP_ATR_FIRST:
10875 low = ada_array_bound_from_type (type_arg, tem, 0);
10876 return value_from_longest (type, low);
10877 case OP_ATR_LAST:
10878 high = ada_array_bound_from_type (type_arg, tem, 1);
10879 return value_from_longest (type, high);
10880 case OP_ATR_LENGTH:
10881 low = ada_array_bound_from_type (type_arg, tem, 0);
10882 high = ada_array_bound_from_type (type_arg, tem, 1);
10883 return value_from_longest (type, high - low + 1);
10884 }
10885 }
10886 }
10887
10888 case OP_ATR_TAG:
10889 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10894 return value_zero (ada_tag_type (arg1), not_lval);
10895
10896 return ada_value_tag (arg1);
10897
10898 case OP_ATR_MIN:
10899 case OP_ATR_MAX:
10900 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10902 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10903 if (noside == EVAL_SKIP)
10904 goto nosideret;
10905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10906 return value_zero (value_type (arg1), not_lval);
10907 else
10908 {
10909 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10910 return value_binop (arg1, arg2,
10911 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10912 }
10913
10914 case OP_ATR_MODULUS:
10915 {
10916 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10917
10918 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
10921
10922 if (!ada_is_modular_type (type_arg))
10923 error (_("'modulus must be applied to modular type"));
10924
10925 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10926 ada_modulus (type_arg));
10927 }
10928
10929
10930 case OP_ATR_POS:
10931 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10932 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10933 if (noside == EVAL_SKIP)
10934 goto nosideret;
10935 type = builtin_type (exp->gdbarch)->builtin_int;
10936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10937 return value_zero (type, not_lval);
10938 else
10939 return value_pos_atr (type, arg1);
10940
10941 case OP_ATR_SIZE:
10942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10943 type = value_type (arg1);
10944
10945 /* If the argument is a reference, then dereference its type, since
10946 the user is really asking for the size of the actual object,
10947 not the size of the pointer. */
10948 if (type->code () == TYPE_CODE_REF)
10949 type = TYPE_TARGET_TYPE (type);
10950
10951 if (noside == EVAL_SKIP)
10952 goto nosideret;
10953 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10954 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10955 else
10956 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10957 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10958
10959 case OP_ATR_VAL:
10960 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10962 type = exp->elts[pc + 2].type;
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
10965 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10966 return value_zero (type, not_lval);
10967 else
10968 return value_val_atr (type, arg1);
10969
10970 case BINOP_EXP:
10971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
10975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10976 return value_zero (value_type (arg1), not_lval);
10977 else
10978 {
10979 /* For integer exponentiation operations,
10980 only promote the first argument. */
10981 if (is_integral_type (value_type (arg2)))
10982 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10983 else
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10985
10986 return value_binop (arg1, arg2, op);
10987 }
10988
10989 case UNOP_PLUS:
10990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991 if (noside == EVAL_SKIP)
10992 goto nosideret;
10993 else
10994 return arg1;
10995
10996 case UNOP_ABS:
10997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 if (noside == EVAL_SKIP)
10999 goto nosideret;
11000 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11001 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11002 return value_neg (arg1);
11003 else
11004 return arg1;
11005
11006 case UNOP_IND:
11007 preeval_pos = *pos;
11008 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 if (noside == EVAL_SKIP)
11010 goto nosideret;
11011 type = ada_check_typedef (value_type (arg1));
11012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11013 {
11014 if (ada_is_array_descriptor_type (type))
11015 /* GDB allows dereferencing GNAT array descriptors. */
11016 {
11017 struct type *arrType = ada_type_of_array (arg1, 0);
11018
11019 if (arrType == NULL)
11020 error (_("Attempt to dereference null array pointer."));
11021 return value_at_lazy (arrType, 0);
11022 }
11023 else if (type->code () == TYPE_CODE_PTR
11024 || type->code () == TYPE_CODE_REF
11025 /* In C you can dereference an array to get the 1st elt. */
11026 || type->code () == TYPE_CODE_ARRAY)
11027 {
11028 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11029 only be determined by inspecting the object's tag.
11030 This means that we need to evaluate completely the
11031 expression in order to get its type. */
11032
11033 if ((type->code () == TYPE_CODE_REF
11034 || type->code () == TYPE_CODE_PTR)
11035 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11036 {
11037 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11038 EVAL_NORMAL);
11039 type = value_type (ada_value_ind (arg1));
11040 }
11041 else
11042 {
11043 type = to_static_fixed_type
11044 (ada_aligned_type
11045 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11046 }
11047 ada_ensure_varsize_limit (type);
11048 return value_zero (type, lval_memory);
11049 }
11050 else if (type->code () == TYPE_CODE_INT)
11051 {
11052 /* GDB allows dereferencing an int. */
11053 if (expect_type == NULL)
11054 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11055 lval_memory);
11056 else
11057 {
11058 expect_type =
11059 to_static_fixed_type (ada_aligned_type (expect_type));
11060 return value_zero (expect_type, lval_memory);
11061 }
11062 }
11063 else
11064 error (_("Attempt to take contents of a non-pointer value."));
11065 }
11066 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11067 type = ada_check_typedef (value_type (arg1));
11068
11069 if (type->code () == TYPE_CODE_INT)
11070 /* GDB allows dereferencing an int. If we were given
11071 the expect_type, then use that as the target type.
11072 Otherwise, assume that the target type is an int. */
11073 {
11074 if (expect_type != NULL)
11075 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11076 arg1));
11077 else
11078 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11079 (CORE_ADDR) value_as_address (arg1));
11080 }
11081
11082 if (ada_is_array_descriptor_type (type))
11083 /* GDB allows dereferencing GNAT array descriptors. */
11084 return ada_coerce_to_simple_array (arg1);
11085 else
11086 return ada_value_ind (arg1);
11087
11088 case STRUCTOP_STRUCT:
11089 tem = longest_to_int (exp->elts[pc + 1].longconst);
11090 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11091 preeval_pos = *pos;
11092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11093 if (noside == EVAL_SKIP)
11094 goto nosideret;
11095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11096 {
11097 struct type *type1 = value_type (arg1);
11098
11099 if (ada_is_tagged_type (type1, 1))
11100 {
11101 type = ada_lookup_struct_elt_type (type1,
11102 &exp->elts[pc + 2].string,
11103 1, 1);
11104
11105 /* If the field is not found, check if it exists in the
11106 extension of this object's type. This means that we
11107 need to evaluate completely the expression. */
11108
11109 if (type == NULL)
11110 {
11111 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11112 EVAL_NORMAL);
11113 arg1 = ada_value_struct_elt (arg1,
11114 &exp->elts[pc + 2].string,
11115 0);
11116 arg1 = unwrap_value (arg1);
11117 type = value_type (ada_to_fixed_value (arg1));
11118 }
11119 }
11120 else
11121 type =
11122 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11123 0);
11124
11125 return value_zero (ada_aligned_type (type), lval_memory);
11126 }
11127 else
11128 {
11129 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11130 arg1 = unwrap_value (arg1);
11131 return ada_to_fixed_value (arg1);
11132 }
11133
11134 case OP_TYPE:
11135 /* The value is not supposed to be used. This is here to make it
11136 easier to accommodate expressions that contain types. */
11137 (*pos) += 2;
11138 if (noside == EVAL_SKIP)
11139 goto nosideret;
11140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11141 return allocate_value (exp->elts[pc + 1].type);
11142 else
11143 error (_("Attempt to use a type name as an expression"));
11144
11145 case OP_AGGREGATE:
11146 case OP_CHOICES:
11147 case OP_OTHERS:
11148 case OP_DISCRETE_RANGE:
11149 case OP_POSITIONAL:
11150 case OP_NAME:
11151 if (noside == EVAL_NORMAL)
11152 switch (op)
11153 {
11154 case OP_NAME:
11155 error (_("Undefined name, ambiguous name, or renaming used in "
11156 "component association: %s."), &exp->elts[pc+2].string);
11157 case OP_AGGREGATE:
11158 error (_("Aggregates only allowed on the right of an assignment"));
11159 default:
11160 internal_error (__FILE__, __LINE__,
11161 _("aggregate apparently mangled"));
11162 }
11163
11164 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11165 *pos += oplen - 1;
11166 for (tem = 0; tem < nargs; tem += 1)
11167 ada_evaluate_subexp (NULL, exp, pos, noside);
11168 goto nosideret;
11169 }
11170
11171 nosideret:
11172 return eval_skip_value (exp);
11173 }
11174 \f
11175
11176 /* Fixed point */
11177
11178 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11179 type name that encodes the 'small and 'delta information.
11180 Otherwise, return NULL. */
11181
11182 static const char *
11183 gnat_encoded_fixed_type_info (struct type *type)
11184 {
11185 const char *name = ada_type_name (type);
11186 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11187
11188 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11189 {
11190 const char *tail = strstr (name, "___XF_");
11191
11192 if (tail == NULL)
11193 return NULL;
11194 else
11195 return tail + 5;
11196 }
11197 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11198 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11199 else
11200 return NULL;
11201 }
11202
11203 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11204
11205 int
11206 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11207 {
11208 return gnat_encoded_fixed_type_info (type) != NULL;
11209 }
11210
11211 /* Return non-zero iff TYPE represents a System.Address type. */
11212
11213 int
11214 ada_is_system_address_type (struct type *type)
11215 {
11216 return (type->name () && strcmp (type->name (), "system__address") == 0);
11217 }
11218
11219 /* Assuming that TYPE is the representation of an Ada fixed-point
11220 type, return the target floating-point type to be used to represent
11221 of this type during internal computation. */
11222
11223 static struct type *
11224 ada_scaling_type (struct type *type)
11225 {
11226 return builtin_type (get_type_arch (type))->builtin_long_double;
11227 }
11228
11229 /* Assuming that TYPE is the representation of an Ada fixed-point
11230 type, return its delta, or NULL if the type is malformed and the
11231 delta cannot be determined. */
11232
11233 struct value *
11234 gnat_encoded_fixed_point_delta (struct type *type)
11235 {
11236 const char *encoding = gnat_encoded_fixed_type_info (type);
11237 struct type *scale_type = ada_scaling_type (type);
11238
11239 long long num, den;
11240
11241 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11242 return nullptr;
11243 else
11244 return value_binop (value_from_longest (scale_type, num),
11245 value_from_longest (scale_type, den), BINOP_DIV);
11246 }
11247
11248 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11249 the scaling factor ('SMALL value) associated with the type. */
11250
11251 struct value *
11252 ada_scaling_factor (struct type *type)
11253 {
11254 const char *encoding = gnat_encoded_fixed_type_info (type);
11255 struct type *scale_type = ada_scaling_type (type);
11256
11257 long long num0, den0, num1, den1;
11258 int n;
11259
11260 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11261 &num0, &den0, &num1, &den1);
11262
11263 if (n < 2)
11264 return value_from_longest (scale_type, 1);
11265 else if (n == 4)
11266 return value_binop (value_from_longest (scale_type, num1),
11267 value_from_longest (scale_type, den1), BINOP_DIV);
11268 else
11269 return value_binop (value_from_longest (scale_type, num0),
11270 value_from_longest (scale_type, den0), BINOP_DIV);
11271 }
11272
11273 \f
11274
11275 /* Range types */
11276
11277 /* Scan STR beginning at position K for a discriminant name, and
11278 return the value of that discriminant field of DVAL in *PX. If
11279 PNEW_K is not null, put the position of the character beyond the
11280 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11281 not alter *PX and *PNEW_K if unsuccessful. */
11282
11283 static int
11284 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11285 int *pnew_k)
11286 {
11287 static char *bound_buffer = NULL;
11288 static size_t bound_buffer_len = 0;
11289 const char *pstart, *pend, *bound;
11290 struct value *bound_val;
11291
11292 if (dval == NULL || str == NULL || str[k] == '\0')
11293 return 0;
11294
11295 pstart = str + k;
11296 pend = strstr (pstart, "__");
11297 if (pend == NULL)
11298 {
11299 bound = pstart;
11300 k += strlen (bound);
11301 }
11302 else
11303 {
11304 int len = pend - pstart;
11305
11306 /* Strip __ and beyond. */
11307 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11308 strncpy (bound_buffer, pstart, len);
11309 bound_buffer[len] = '\0';
11310
11311 bound = bound_buffer;
11312 k = pend - str;
11313 }
11314
11315 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11316 if (bound_val == NULL)
11317 return 0;
11318
11319 *px = value_as_long (bound_val);
11320 if (pnew_k != NULL)
11321 *pnew_k = k;
11322 return 1;
11323 }
11324
11325 /* Value of variable named NAME in the current environment. If
11326 no such variable found, then if ERR_MSG is null, returns 0, and
11327 otherwise causes an error with message ERR_MSG. */
11328
11329 static struct value *
11330 get_var_value (const char *name, const char *err_msg)
11331 {
11332 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11333
11334 std::vector<struct block_symbol> syms;
11335 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11336 get_selected_block (0),
11337 VAR_DOMAIN, &syms, 1);
11338
11339 if (nsyms != 1)
11340 {
11341 if (err_msg == NULL)
11342 return 0;
11343 else
11344 error (("%s"), err_msg);
11345 }
11346
11347 return value_of_variable (syms[0].symbol, syms[0].block);
11348 }
11349
11350 /* Value of integer variable named NAME in the current environment.
11351 If no such variable is found, returns false. Otherwise, sets VALUE
11352 to the variable's value and returns true. */
11353
11354 bool
11355 get_int_var_value (const char *name, LONGEST &value)
11356 {
11357 struct value *var_val = get_var_value (name, 0);
11358
11359 if (var_val == 0)
11360 return false;
11361
11362 value = value_as_long (var_val);
11363 return true;
11364 }
11365
11366
11367 /* Return a range type whose base type is that of the range type named
11368 NAME in the current environment, and whose bounds are calculated
11369 from NAME according to the GNAT range encoding conventions.
11370 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11371 corresponding range type from debug information; fall back to using it
11372 if symbol lookup fails. If a new type must be created, allocate it
11373 like ORIG_TYPE was. The bounds information, in general, is encoded
11374 in NAME, the base type given in the named range type. */
11375
11376 static struct type *
11377 to_fixed_range_type (struct type *raw_type, struct value *dval)
11378 {
11379 const char *name;
11380 struct type *base_type;
11381 const char *subtype_info;
11382
11383 gdb_assert (raw_type != NULL);
11384 gdb_assert (raw_type->name () != NULL);
11385
11386 if (raw_type->code () == TYPE_CODE_RANGE)
11387 base_type = TYPE_TARGET_TYPE (raw_type);
11388 else
11389 base_type = raw_type;
11390
11391 name = raw_type->name ();
11392 subtype_info = strstr (name, "___XD");
11393 if (subtype_info == NULL)
11394 {
11395 LONGEST L = ada_discrete_type_low_bound (raw_type);
11396 LONGEST U = ada_discrete_type_high_bound (raw_type);
11397
11398 if (L < INT_MIN || U > INT_MAX)
11399 return raw_type;
11400 else
11401 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11402 L, U);
11403 }
11404 else
11405 {
11406 static char *name_buf = NULL;
11407 static size_t name_len = 0;
11408 int prefix_len = subtype_info - name;
11409 LONGEST L, U;
11410 struct type *type;
11411 const char *bounds_str;
11412 int n;
11413
11414 GROW_VECT (name_buf, name_len, prefix_len + 5);
11415 strncpy (name_buf, name, prefix_len);
11416 name_buf[prefix_len] = '\0';
11417
11418 subtype_info += 5;
11419 bounds_str = strchr (subtype_info, '_');
11420 n = 1;
11421
11422 if (*subtype_info == 'L')
11423 {
11424 if (!ada_scan_number (bounds_str, n, &L, &n)
11425 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11426 return raw_type;
11427 if (bounds_str[n] == '_')
11428 n += 2;
11429 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11430 n += 1;
11431 subtype_info += 1;
11432 }
11433 else
11434 {
11435 strcpy (name_buf + prefix_len, "___L");
11436 if (!get_int_var_value (name_buf, L))
11437 {
11438 lim_warning (_("Unknown lower bound, using 1."));
11439 L = 1;
11440 }
11441 }
11442
11443 if (*subtype_info == 'U')
11444 {
11445 if (!ada_scan_number (bounds_str, n, &U, &n)
11446 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11447 return raw_type;
11448 }
11449 else
11450 {
11451 strcpy (name_buf + prefix_len, "___U");
11452 if (!get_int_var_value (name_buf, U))
11453 {
11454 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11455 U = L;
11456 }
11457 }
11458
11459 type = create_static_range_type (alloc_type_copy (raw_type),
11460 base_type, L, U);
11461 /* create_static_range_type alters the resulting type's length
11462 to match the size of the base_type, which is not what we want.
11463 Set it back to the original range type's length. */
11464 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11465 type->set_name (name);
11466 return type;
11467 }
11468 }
11469
11470 /* True iff NAME is the name of a range type. */
11471
11472 int
11473 ada_is_range_type_name (const char *name)
11474 {
11475 return (name != NULL && strstr (name, "___XD"));
11476 }
11477 \f
11478
11479 /* Modular types */
11480
11481 /* True iff TYPE is an Ada modular type. */
11482
11483 int
11484 ada_is_modular_type (struct type *type)
11485 {
11486 struct type *subranged_type = get_base_type (type);
11487
11488 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11489 && subranged_type->code () == TYPE_CODE_INT
11490 && TYPE_UNSIGNED (subranged_type));
11491 }
11492
11493 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11494
11495 ULONGEST
11496 ada_modulus (struct type *type)
11497 {
11498 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11499 }
11500 \f
11501
11502 /* Ada exception catchpoint support:
11503 ---------------------------------
11504
11505 We support 3 kinds of exception catchpoints:
11506 . catchpoints on Ada exceptions
11507 . catchpoints on unhandled Ada exceptions
11508 . catchpoints on failed assertions
11509
11510 Exceptions raised during failed assertions, or unhandled exceptions
11511 could perfectly be caught with the general catchpoint on Ada exceptions.
11512 However, we can easily differentiate these two special cases, and having
11513 the option to distinguish these two cases from the rest can be useful
11514 to zero-in on certain situations.
11515
11516 Exception catchpoints are a specialized form of breakpoint,
11517 since they rely on inserting breakpoints inside known routines
11518 of the GNAT runtime. The implementation therefore uses a standard
11519 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11520 of breakpoint_ops.
11521
11522 Support in the runtime for exception catchpoints have been changed
11523 a few times already, and these changes affect the implementation
11524 of these catchpoints. In order to be able to support several
11525 variants of the runtime, we use a sniffer that will determine
11526 the runtime variant used by the program being debugged. */
11527
11528 /* Ada's standard exceptions.
11529
11530 The Ada 83 standard also defined Numeric_Error. But there so many
11531 situations where it was unclear from the Ada 83 Reference Manual
11532 (RM) whether Constraint_Error or Numeric_Error should be raised,
11533 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11534 Interpretation saying that anytime the RM says that Numeric_Error
11535 should be raised, the implementation may raise Constraint_Error.
11536 Ada 95 went one step further and pretty much removed Numeric_Error
11537 from the list of standard exceptions (it made it a renaming of
11538 Constraint_Error, to help preserve compatibility when compiling
11539 an Ada83 compiler). As such, we do not include Numeric_Error from
11540 this list of standard exceptions. */
11541
11542 static const char *standard_exc[] = {
11543 "constraint_error",
11544 "program_error",
11545 "storage_error",
11546 "tasking_error"
11547 };
11548
11549 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11550
11551 /* A structure that describes how to support exception catchpoints
11552 for a given executable. */
11553
11554 struct exception_support_info
11555 {
11556 /* The name of the symbol to break on in order to insert
11557 a catchpoint on exceptions. */
11558 const char *catch_exception_sym;
11559
11560 /* The name of the symbol to break on in order to insert
11561 a catchpoint on unhandled exceptions. */
11562 const char *catch_exception_unhandled_sym;
11563
11564 /* The name of the symbol to break on in order to insert
11565 a catchpoint on failed assertions. */
11566 const char *catch_assert_sym;
11567
11568 /* The name of the symbol to break on in order to insert
11569 a catchpoint on exception handling. */
11570 const char *catch_handlers_sym;
11571
11572 /* Assuming that the inferior just triggered an unhandled exception
11573 catchpoint, this function is responsible for returning the address
11574 in inferior memory where the name of that exception is stored.
11575 Return zero if the address could not be computed. */
11576 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11577 };
11578
11579 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11580 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11581
11582 /* The following exception support info structure describes how to
11583 implement exception catchpoints with the latest version of the
11584 Ada runtime (as of 2019-08-??). */
11585
11586 static const struct exception_support_info default_exception_support_info =
11587 {
11588 "__gnat_debug_raise_exception", /* catch_exception_sym */
11589 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11590 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11591 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11592 ada_unhandled_exception_name_addr
11593 };
11594
11595 /* The following exception support info structure describes how to
11596 implement exception catchpoints with an earlier version of the
11597 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11598
11599 static const struct exception_support_info exception_support_info_v0 =
11600 {
11601 "__gnat_debug_raise_exception", /* catch_exception_sym */
11602 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11603 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11604 "__gnat_begin_handler", /* catch_handlers_sym */
11605 ada_unhandled_exception_name_addr
11606 };
11607
11608 /* The following exception support info structure describes how to
11609 implement exception catchpoints with a slightly older version
11610 of the Ada runtime. */
11611
11612 static const struct exception_support_info exception_support_info_fallback =
11613 {
11614 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11615 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11616 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11617 "__gnat_begin_handler", /* catch_handlers_sym */
11618 ada_unhandled_exception_name_addr_from_raise
11619 };
11620
11621 /* Return nonzero if we can detect the exception support routines
11622 described in EINFO.
11623
11624 This function errors out if an abnormal situation is detected
11625 (for instance, if we find the exception support routines, but
11626 that support is found to be incomplete). */
11627
11628 static int
11629 ada_has_this_exception_support (const struct exception_support_info *einfo)
11630 {
11631 struct symbol *sym;
11632
11633 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11634 that should be compiled with debugging information. As a result, we
11635 expect to find that symbol in the symtabs. */
11636
11637 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11638 if (sym == NULL)
11639 {
11640 /* Perhaps we did not find our symbol because the Ada runtime was
11641 compiled without debugging info, or simply stripped of it.
11642 It happens on some GNU/Linux distributions for instance, where
11643 users have to install a separate debug package in order to get
11644 the runtime's debugging info. In that situation, let the user
11645 know why we cannot insert an Ada exception catchpoint.
11646
11647 Note: Just for the purpose of inserting our Ada exception
11648 catchpoint, we could rely purely on the associated minimal symbol.
11649 But we would be operating in degraded mode anyway, since we are
11650 still lacking the debugging info needed later on to extract
11651 the name of the exception being raised (this name is printed in
11652 the catchpoint message, and is also used when trying to catch
11653 a specific exception). We do not handle this case for now. */
11654 struct bound_minimal_symbol msym
11655 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11656
11657 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11658 error (_("Your Ada runtime appears to be missing some debugging "
11659 "information.\nCannot insert Ada exception catchpoint "
11660 "in this configuration."));
11661
11662 return 0;
11663 }
11664
11665 /* Make sure that the symbol we found corresponds to a function. */
11666
11667 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11668 {
11669 error (_("Symbol \"%s\" is not a function (class = %d)"),
11670 sym->linkage_name (), SYMBOL_CLASS (sym));
11671 return 0;
11672 }
11673
11674 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11675 if (sym == NULL)
11676 {
11677 struct bound_minimal_symbol msym
11678 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11679
11680 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11681 error (_("Your Ada runtime appears to be missing some debugging "
11682 "information.\nCannot insert Ada exception catchpoint "
11683 "in this configuration."));
11684
11685 return 0;
11686 }
11687
11688 /* Make sure that the symbol we found corresponds to a function. */
11689
11690 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11691 {
11692 error (_("Symbol \"%s\" is not a function (class = %d)"),
11693 sym->linkage_name (), SYMBOL_CLASS (sym));
11694 return 0;
11695 }
11696
11697 return 1;
11698 }
11699
11700 /* Inspect the Ada runtime and determine which exception info structure
11701 should be used to provide support for exception catchpoints.
11702
11703 This function will always set the per-inferior exception_info,
11704 or raise an error. */
11705
11706 static void
11707 ada_exception_support_info_sniffer (void)
11708 {
11709 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11710
11711 /* If the exception info is already known, then no need to recompute it. */
11712 if (data->exception_info != NULL)
11713 return;
11714
11715 /* Check the latest (default) exception support info. */
11716 if (ada_has_this_exception_support (&default_exception_support_info))
11717 {
11718 data->exception_info = &default_exception_support_info;
11719 return;
11720 }
11721
11722 /* Try the v0 exception suport info. */
11723 if (ada_has_this_exception_support (&exception_support_info_v0))
11724 {
11725 data->exception_info = &exception_support_info_v0;
11726 return;
11727 }
11728
11729 /* Try our fallback exception suport info. */
11730 if (ada_has_this_exception_support (&exception_support_info_fallback))
11731 {
11732 data->exception_info = &exception_support_info_fallback;
11733 return;
11734 }
11735
11736 /* Sometimes, it is normal for us to not be able to find the routine
11737 we are looking for. This happens when the program is linked with
11738 the shared version of the GNAT runtime, and the program has not been
11739 started yet. Inform the user of these two possible causes if
11740 applicable. */
11741
11742 if (ada_update_initial_language (language_unknown) != language_ada)
11743 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11744
11745 /* If the symbol does not exist, then check that the program is
11746 already started, to make sure that shared libraries have been
11747 loaded. If it is not started, this may mean that the symbol is
11748 in a shared library. */
11749
11750 if (inferior_ptid.pid () == 0)
11751 error (_("Unable to insert catchpoint. Try to start the program first."));
11752
11753 /* At this point, we know that we are debugging an Ada program and
11754 that the inferior has been started, but we still are not able to
11755 find the run-time symbols. That can mean that we are in
11756 configurable run time mode, or that a-except as been optimized
11757 out by the linker... In any case, at this point it is not worth
11758 supporting this feature. */
11759
11760 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11761 }
11762
11763 /* True iff FRAME is very likely to be that of a function that is
11764 part of the runtime system. This is all very heuristic, but is
11765 intended to be used as advice as to what frames are uninteresting
11766 to most users. */
11767
11768 static int
11769 is_known_support_routine (struct frame_info *frame)
11770 {
11771 enum language func_lang;
11772 int i;
11773 const char *fullname;
11774
11775 /* If this code does not have any debugging information (no symtab),
11776 This cannot be any user code. */
11777
11778 symtab_and_line sal = find_frame_sal (frame);
11779 if (sal.symtab == NULL)
11780 return 1;
11781
11782 /* If there is a symtab, but the associated source file cannot be
11783 located, then assume this is not user code: Selecting a frame
11784 for which we cannot display the code would not be very helpful
11785 for the user. This should also take care of case such as VxWorks
11786 where the kernel has some debugging info provided for a few units. */
11787
11788 fullname = symtab_to_fullname (sal.symtab);
11789 if (access (fullname, R_OK) != 0)
11790 return 1;
11791
11792 /* Check the unit filename against the Ada runtime file naming.
11793 We also check the name of the objfile against the name of some
11794 known system libraries that sometimes come with debugging info
11795 too. */
11796
11797 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11798 {
11799 re_comp (known_runtime_file_name_patterns[i]);
11800 if (re_exec (lbasename (sal.symtab->filename)))
11801 return 1;
11802 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11803 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11804 return 1;
11805 }
11806
11807 /* Check whether the function is a GNAT-generated entity. */
11808
11809 gdb::unique_xmalloc_ptr<char> func_name
11810 = find_frame_funname (frame, &func_lang, NULL);
11811 if (func_name == NULL)
11812 return 1;
11813
11814 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11815 {
11816 re_comp (known_auxiliary_function_name_patterns[i]);
11817 if (re_exec (func_name.get ()))
11818 return 1;
11819 }
11820
11821 return 0;
11822 }
11823
11824 /* Find the first frame that contains debugging information and that is not
11825 part of the Ada run-time, starting from FI and moving upward. */
11826
11827 void
11828 ada_find_printable_frame (struct frame_info *fi)
11829 {
11830 for (; fi != NULL; fi = get_prev_frame (fi))
11831 {
11832 if (!is_known_support_routine (fi))
11833 {
11834 select_frame (fi);
11835 break;
11836 }
11837 }
11838
11839 }
11840
11841 /* Assuming that the inferior just triggered an unhandled exception
11842 catchpoint, return the address in inferior memory where the name
11843 of the exception is stored.
11844
11845 Return zero if the address could not be computed. */
11846
11847 static CORE_ADDR
11848 ada_unhandled_exception_name_addr (void)
11849 {
11850 return parse_and_eval_address ("e.full_name");
11851 }
11852
11853 /* Same as ada_unhandled_exception_name_addr, except that this function
11854 should be used when the inferior uses an older version of the runtime,
11855 where the exception name needs to be extracted from a specific frame
11856 several frames up in the callstack. */
11857
11858 static CORE_ADDR
11859 ada_unhandled_exception_name_addr_from_raise (void)
11860 {
11861 int frame_level;
11862 struct frame_info *fi;
11863 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11864
11865 /* To determine the name of this exception, we need to select
11866 the frame corresponding to RAISE_SYM_NAME. This frame is
11867 at least 3 levels up, so we simply skip the first 3 frames
11868 without checking the name of their associated function. */
11869 fi = get_current_frame ();
11870 for (frame_level = 0; frame_level < 3; frame_level += 1)
11871 if (fi != NULL)
11872 fi = get_prev_frame (fi);
11873
11874 while (fi != NULL)
11875 {
11876 enum language func_lang;
11877
11878 gdb::unique_xmalloc_ptr<char> func_name
11879 = find_frame_funname (fi, &func_lang, NULL);
11880 if (func_name != NULL)
11881 {
11882 if (strcmp (func_name.get (),
11883 data->exception_info->catch_exception_sym) == 0)
11884 break; /* We found the frame we were looking for... */
11885 }
11886 fi = get_prev_frame (fi);
11887 }
11888
11889 if (fi == NULL)
11890 return 0;
11891
11892 select_frame (fi);
11893 return parse_and_eval_address ("id.full_name");
11894 }
11895
11896 /* Assuming the inferior just triggered an Ada exception catchpoint
11897 (of any type), return the address in inferior memory where the name
11898 of the exception is stored, if applicable.
11899
11900 Assumes the selected frame is the current frame.
11901
11902 Return zero if the address could not be computed, or if not relevant. */
11903
11904 static CORE_ADDR
11905 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11906 struct breakpoint *b)
11907 {
11908 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11909
11910 switch (ex)
11911 {
11912 case ada_catch_exception:
11913 return (parse_and_eval_address ("e.full_name"));
11914 break;
11915
11916 case ada_catch_exception_unhandled:
11917 return data->exception_info->unhandled_exception_name_addr ();
11918 break;
11919
11920 case ada_catch_handlers:
11921 return 0; /* The runtimes does not provide access to the exception
11922 name. */
11923 break;
11924
11925 case ada_catch_assert:
11926 return 0; /* Exception name is not relevant in this case. */
11927 break;
11928
11929 default:
11930 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11931 break;
11932 }
11933
11934 return 0; /* Should never be reached. */
11935 }
11936
11937 /* Assuming the inferior is stopped at an exception catchpoint,
11938 return the message which was associated to the exception, if
11939 available. Return NULL if the message could not be retrieved.
11940
11941 Note: The exception message can be associated to an exception
11942 either through the use of the Raise_Exception function, or
11943 more simply (Ada 2005 and later), via:
11944
11945 raise Exception_Name with "exception message";
11946
11947 */
11948
11949 static gdb::unique_xmalloc_ptr<char>
11950 ada_exception_message_1 (void)
11951 {
11952 struct value *e_msg_val;
11953 int e_msg_len;
11954
11955 /* For runtimes that support this feature, the exception message
11956 is passed as an unbounded string argument called "message". */
11957 e_msg_val = parse_and_eval ("message");
11958 if (e_msg_val == NULL)
11959 return NULL; /* Exception message not supported. */
11960
11961 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11962 gdb_assert (e_msg_val != NULL);
11963 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11964
11965 /* If the message string is empty, then treat it as if there was
11966 no exception message. */
11967 if (e_msg_len <= 0)
11968 return NULL;
11969
11970 return target_read_string (value_address (e_msg_val), INT_MAX);
11971 }
11972
11973 /* Same as ada_exception_message_1, except that all exceptions are
11974 contained here (returning NULL instead). */
11975
11976 static gdb::unique_xmalloc_ptr<char>
11977 ada_exception_message (void)
11978 {
11979 gdb::unique_xmalloc_ptr<char> e_msg;
11980
11981 try
11982 {
11983 e_msg = ada_exception_message_1 ();
11984 }
11985 catch (const gdb_exception_error &e)
11986 {
11987 e_msg.reset (nullptr);
11988 }
11989
11990 return e_msg;
11991 }
11992
11993 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11994 any error that ada_exception_name_addr_1 might cause to be thrown.
11995 When an error is intercepted, a warning with the error message is printed,
11996 and zero is returned. */
11997
11998 static CORE_ADDR
11999 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12000 struct breakpoint *b)
12001 {
12002 CORE_ADDR result = 0;
12003
12004 try
12005 {
12006 result = ada_exception_name_addr_1 (ex, b);
12007 }
12008
12009 catch (const gdb_exception_error &e)
12010 {
12011 warning (_("failed to get exception name: %s"), e.what ());
12012 return 0;
12013 }
12014
12015 return result;
12016 }
12017
12018 static std::string ada_exception_catchpoint_cond_string
12019 (const char *excep_string,
12020 enum ada_exception_catchpoint_kind ex);
12021
12022 /* Ada catchpoints.
12023
12024 In the case of catchpoints on Ada exceptions, the catchpoint will
12025 stop the target on every exception the program throws. When a user
12026 specifies the name of a specific exception, we translate this
12027 request into a condition expression (in text form), and then parse
12028 it into an expression stored in each of the catchpoint's locations.
12029 We then use this condition to check whether the exception that was
12030 raised is the one the user is interested in. If not, then the
12031 target is resumed again. We store the name of the requested
12032 exception, in order to be able to re-set the condition expression
12033 when symbols change. */
12034
12035 /* An instance of this type is used to represent an Ada catchpoint
12036 breakpoint location. */
12037
12038 class ada_catchpoint_location : public bp_location
12039 {
12040 public:
12041 ada_catchpoint_location (breakpoint *owner)
12042 : bp_location (owner, bp_loc_software_breakpoint)
12043 {}
12044
12045 /* The condition that checks whether the exception that was raised
12046 is the specific exception the user specified on catchpoint
12047 creation. */
12048 expression_up excep_cond_expr;
12049 };
12050
12051 /* An instance of this type is used to represent an Ada catchpoint. */
12052
12053 struct ada_catchpoint : public breakpoint
12054 {
12055 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12056 : m_kind (kind)
12057 {
12058 }
12059
12060 /* The name of the specific exception the user specified. */
12061 std::string excep_string;
12062
12063 /* What kind of catchpoint this is. */
12064 enum ada_exception_catchpoint_kind m_kind;
12065 };
12066
12067 /* Parse the exception condition string in the context of each of the
12068 catchpoint's locations, and store them for later evaluation. */
12069
12070 static void
12071 create_excep_cond_exprs (struct ada_catchpoint *c,
12072 enum ada_exception_catchpoint_kind ex)
12073 {
12074 struct bp_location *bl;
12075
12076 /* Nothing to do if there's no specific exception to catch. */
12077 if (c->excep_string.empty ())
12078 return;
12079
12080 /* Same if there are no locations... */
12081 if (c->loc == NULL)
12082 return;
12083
12084 /* Compute the condition expression in text form, from the specific
12085 expection we want to catch. */
12086 std::string cond_string
12087 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12088
12089 /* Iterate over all the catchpoint's locations, and parse an
12090 expression for each. */
12091 for (bl = c->loc; bl != NULL; bl = bl->next)
12092 {
12093 struct ada_catchpoint_location *ada_loc
12094 = (struct ada_catchpoint_location *) bl;
12095 expression_up exp;
12096
12097 if (!bl->shlib_disabled)
12098 {
12099 const char *s;
12100
12101 s = cond_string.c_str ();
12102 try
12103 {
12104 exp = parse_exp_1 (&s, bl->address,
12105 block_for_pc (bl->address),
12106 0);
12107 }
12108 catch (const gdb_exception_error &e)
12109 {
12110 warning (_("failed to reevaluate internal exception condition "
12111 "for catchpoint %d: %s"),
12112 c->number, e.what ());
12113 }
12114 }
12115
12116 ada_loc->excep_cond_expr = std::move (exp);
12117 }
12118 }
12119
12120 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12121 structure for all exception catchpoint kinds. */
12122
12123 static struct bp_location *
12124 allocate_location_exception (struct breakpoint *self)
12125 {
12126 return new ada_catchpoint_location (self);
12127 }
12128
12129 /* Implement the RE_SET method in the breakpoint_ops structure for all
12130 exception catchpoint kinds. */
12131
12132 static void
12133 re_set_exception (struct breakpoint *b)
12134 {
12135 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12136
12137 /* Call the base class's method. This updates the catchpoint's
12138 locations. */
12139 bkpt_breakpoint_ops.re_set (b);
12140
12141 /* Reparse the exception conditional expressions. One for each
12142 location. */
12143 create_excep_cond_exprs (c, c->m_kind);
12144 }
12145
12146 /* Returns true if we should stop for this breakpoint hit. If the
12147 user specified a specific exception, we only want to cause a stop
12148 if the program thrown that exception. */
12149
12150 static int
12151 should_stop_exception (const struct bp_location *bl)
12152 {
12153 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12154 const struct ada_catchpoint_location *ada_loc
12155 = (const struct ada_catchpoint_location *) bl;
12156 int stop;
12157
12158 struct internalvar *var = lookup_internalvar ("_ada_exception");
12159 if (c->m_kind == ada_catch_assert)
12160 clear_internalvar (var);
12161 else
12162 {
12163 try
12164 {
12165 const char *expr;
12166
12167 if (c->m_kind == ada_catch_handlers)
12168 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12169 ".all.occurrence.id");
12170 else
12171 expr = "e";
12172
12173 struct value *exc = parse_and_eval (expr);
12174 set_internalvar (var, exc);
12175 }
12176 catch (const gdb_exception_error &ex)
12177 {
12178 clear_internalvar (var);
12179 }
12180 }
12181
12182 /* With no specific exception, should always stop. */
12183 if (c->excep_string.empty ())
12184 return 1;
12185
12186 if (ada_loc->excep_cond_expr == NULL)
12187 {
12188 /* We will have a NULL expression if back when we were creating
12189 the expressions, this location's had failed to parse. */
12190 return 1;
12191 }
12192
12193 stop = 1;
12194 try
12195 {
12196 struct value *mark;
12197
12198 mark = value_mark ();
12199 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12200 value_free_to_mark (mark);
12201 }
12202 catch (const gdb_exception &ex)
12203 {
12204 exception_fprintf (gdb_stderr, ex,
12205 _("Error in testing exception condition:\n"));
12206 }
12207
12208 return stop;
12209 }
12210
12211 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12212 for all exception catchpoint kinds. */
12213
12214 static void
12215 check_status_exception (bpstat bs)
12216 {
12217 bs->stop = should_stop_exception (bs->bp_location_at);
12218 }
12219
12220 /* Implement the PRINT_IT method in the breakpoint_ops structure
12221 for all exception catchpoint kinds. */
12222
12223 static enum print_stop_action
12224 print_it_exception (bpstat bs)
12225 {
12226 struct ui_out *uiout = current_uiout;
12227 struct breakpoint *b = bs->breakpoint_at;
12228
12229 annotate_catchpoint (b->number);
12230
12231 if (uiout->is_mi_like_p ())
12232 {
12233 uiout->field_string ("reason",
12234 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12235 uiout->field_string ("disp", bpdisp_text (b->disposition));
12236 }
12237
12238 uiout->text (b->disposition == disp_del
12239 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12240 uiout->field_signed ("bkptno", b->number);
12241 uiout->text (", ");
12242
12243 /* ada_exception_name_addr relies on the selected frame being the
12244 current frame. Need to do this here because this function may be
12245 called more than once when printing a stop, and below, we'll
12246 select the first frame past the Ada run-time (see
12247 ada_find_printable_frame). */
12248 select_frame (get_current_frame ());
12249
12250 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12251 switch (c->m_kind)
12252 {
12253 case ada_catch_exception:
12254 case ada_catch_exception_unhandled:
12255 case ada_catch_handlers:
12256 {
12257 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12258 char exception_name[256];
12259
12260 if (addr != 0)
12261 {
12262 read_memory (addr, (gdb_byte *) exception_name,
12263 sizeof (exception_name) - 1);
12264 exception_name [sizeof (exception_name) - 1] = '\0';
12265 }
12266 else
12267 {
12268 /* For some reason, we were unable to read the exception
12269 name. This could happen if the Runtime was compiled
12270 without debugging info, for instance. In that case,
12271 just replace the exception name by the generic string
12272 "exception" - it will read as "an exception" in the
12273 notification we are about to print. */
12274 memcpy (exception_name, "exception", sizeof ("exception"));
12275 }
12276 /* In the case of unhandled exception breakpoints, we print
12277 the exception name as "unhandled EXCEPTION_NAME", to make
12278 it clearer to the user which kind of catchpoint just got
12279 hit. We used ui_out_text to make sure that this extra
12280 info does not pollute the exception name in the MI case. */
12281 if (c->m_kind == ada_catch_exception_unhandled)
12282 uiout->text ("unhandled ");
12283 uiout->field_string ("exception-name", exception_name);
12284 }
12285 break;
12286 case ada_catch_assert:
12287 /* In this case, the name of the exception is not really
12288 important. Just print "failed assertion" to make it clearer
12289 that his program just hit an assertion-failure catchpoint.
12290 We used ui_out_text because this info does not belong in
12291 the MI output. */
12292 uiout->text ("failed assertion");
12293 break;
12294 }
12295
12296 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12297 if (exception_message != NULL)
12298 {
12299 uiout->text (" (");
12300 uiout->field_string ("exception-message", exception_message.get ());
12301 uiout->text (")");
12302 }
12303
12304 uiout->text (" at ");
12305 ada_find_printable_frame (get_current_frame ());
12306
12307 return PRINT_SRC_AND_LOC;
12308 }
12309
12310 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12311 for all exception catchpoint kinds. */
12312
12313 static void
12314 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12315 {
12316 struct ui_out *uiout = current_uiout;
12317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12318 struct value_print_options opts;
12319
12320 get_user_print_options (&opts);
12321
12322 if (opts.addressprint)
12323 uiout->field_skip ("addr");
12324
12325 annotate_field (5);
12326 switch (c->m_kind)
12327 {
12328 case ada_catch_exception:
12329 if (!c->excep_string.empty ())
12330 {
12331 std::string msg = string_printf (_("`%s' Ada exception"),
12332 c->excep_string.c_str ());
12333
12334 uiout->field_string ("what", msg);
12335 }
12336 else
12337 uiout->field_string ("what", "all Ada exceptions");
12338
12339 break;
12340
12341 case ada_catch_exception_unhandled:
12342 uiout->field_string ("what", "unhandled Ada exceptions");
12343 break;
12344
12345 case ada_catch_handlers:
12346 if (!c->excep_string.empty ())
12347 {
12348 uiout->field_fmt ("what",
12349 _("`%s' Ada exception handlers"),
12350 c->excep_string.c_str ());
12351 }
12352 else
12353 uiout->field_string ("what", "all Ada exceptions handlers");
12354 break;
12355
12356 case ada_catch_assert:
12357 uiout->field_string ("what", "failed Ada assertions");
12358 break;
12359
12360 default:
12361 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12362 break;
12363 }
12364 }
12365
12366 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12367 for all exception catchpoint kinds. */
12368
12369 static void
12370 print_mention_exception (struct breakpoint *b)
12371 {
12372 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12373 struct ui_out *uiout = current_uiout;
12374
12375 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12376 : _("Catchpoint "));
12377 uiout->field_signed ("bkptno", b->number);
12378 uiout->text (": ");
12379
12380 switch (c->m_kind)
12381 {
12382 case ada_catch_exception:
12383 if (!c->excep_string.empty ())
12384 {
12385 std::string info = string_printf (_("`%s' Ada exception"),
12386 c->excep_string.c_str ());
12387 uiout->text (info.c_str ());
12388 }
12389 else
12390 uiout->text (_("all Ada exceptions"));
12391 break;
12392
12393 case ada_catch_exception_unhandled:
12394 uiout->text (_("unhandled Ada exceptions"));
12395 break;
12396
12397 case ada_catch_handlers:
12398 if (!c->excep_string.empty ())
12399 {
12400 std::string info
12401 = string_printf (_("`%s' Ada exception handlers"),
12402 c->excep_string.c_str ());
12403 uiout->text (info.c_str ());
12404 }
12405 else
12406 uiout->text (_("all Ada exceptions handlers"));
12407 break;
12408
12409 case ada_catch_assert:
12410 uiout->text (_("failed Ada assertions"));
12411 break;
12412
12413 default:
12414 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12415 break;
12416 }
12417 }
12418
12419 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12420 for all exception catchpoint kinds. */
12421
12422 static void
12423 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12424 {
12425 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12426
12427 switch (c->m_kind)
12428 {
12429 case ada_catch_exception:
12430 fprintf_filtered (fp, "catch exception");
12431 if (!c->excep_string.empty ())
12432 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12433 break;
12434
12435 case ada_catch_exception_unhandled:
12436 fprintf_filtered (fp, "catch exception unhandled");
12437 break;
12438
12439 case ada_catch_handlers:
12440 fprintf_filtered (fp, "catch handlers");
12441 break;
12442
12443 case ada_catch_assert:
12444 fprintf_filtered (fp, "catch assert");
12445 break;
12446
12447 default:
12448 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12449 }
12450 print_recreate_thread (b, fp);
12451 }
12452
12453 /* Virtual tables for various breakpoint types. */
12454 static struct breakpoint_ops catch_exception_breakpoint_ops;
12455 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12456 static struct breakpoint_ops catch_assert_breakpoint_ops;
12457 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12458
12459 /* See ada-lang.h. */
12460
12461 bool
12462 is_ada_exception_catchpoint (breakpoint *bp)
12463 {
12464 return (bp->ops == &catch_exception_breakpoint_ops
12465 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12466 || bp->ops == &catch_assert_breakpoint_ops
12467 || bp->ops == &catch_handlers_breakpoint_ops);
12468 }
12469
12470 /* Split the arguments specified in a "catch exception" command.
12471 Set EX to the appropriate catchpoint type.
12472 Set EXCEP_STRING to the name of the specific exception if
12473 specified by the user.
12474 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12475 "catch handlers" command. False otherwise.
12476 If a condition is found at the end of the arguments, the condition
12477 expression is stored in COND_STRING (memory must be deallocated
12478 after use). Otherwise COND_STRING is set to NULL. */
12479
12480 static void
12481 catch_ada_exception_command_split (const char *args,
12482 bool is_catch_handlers_cmd,
12483 enum ada_exception_catchpoint_kind *ex,
12484 std::string *excep_string,
12485 std::string *cond_string)
12486 {
12487 std::string exception_name;
12488
12489 exception_name = extract_arg (&args);
12490 if (exception_name == "if")
12491 {
12492 /* This is not an exception name; this is the start of a condition
12493 expression for a catchpoint on all exceptions. So, "un-get"
12494 this token, and set exception_name to NULL. */
12495 exception_name.clear ();
12496 args -= 2;
12497 }
12498
12499 /* Check to see if we have a condition. */
12500
12501 args = skip_spaces (args);
12502 if (startswith (args, "if")
12503 && (isspace (args[2]) || args[2] == '\0'))
12504 {
12505 args += 2;
12506 args = skip_spaces (args);
12507
12508 if (args[0] == '\0')
12509 error (_("Condition missing after `if' keyword"));
12510 *cond_string = args;
12511
12512 args += strlen (args);
12513 }
12514
12515 /* Check that we do not have any more arguments. Anything else
12516 is unexpected. */
12517
12518 if (args[0] != '\0')
12519 error (_("Junk at end of expression"));
12520
12521 if (is_catch_handlers_cmd)
12522 {
12523 /* Catch handling of exceptions. */
12524 *ex = ada_catch_handlers;
12525 *excep_string = exception_name;
12526 }
12527 else if (exception_name.empty ())
12528 {
12529 /* Catch all exceptions. */
12530 *ex = ada_catch_exception;
12531 excep_string->clear ();
12532 }
12533 else if (exception_name == "unhandled")
12534 {
12535 /* Catch unhandled exceptions. */
12536 *ex = ada_catch_exception_unhandled;
12537 excep_string->clear ();
12538 }
12539 else
12540 {
12541 /* Catch a specific exception. */
12542 *ex = ada_catch_exception;
12543 *excep_string = exception_name;
12544 }
12545 }
12546
12547 /* Return the name of the symbol on which we should break in order to
12548 implement a catchpoint of the EX kind. */
12549
12550 static const char *
12551 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12552 {
12553 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12554
12555 gdb_assert (data->exception_info != NULL);
12556
12557 switch (ex)
12558 {
12559 case ada_catch_exception:
12560 return (data->exception_info->catch_exception_sym);
12561 break;
12562 case ada_catch_exception_unhandled:
12563 return (data->exception_info->catch_exception_unhandled_sym);
12564 break;
12565 case ada_catch_assert:
12566 return (data->exception_info->catch_assert_sym);
12567 break;
12568 case ada_catch_handlers:
12569 return (data->exception_info->catch_handlers_sym);
12570 break;
12571 default:
12572 internal_error (__FILE__, __LINE__,
12573 _("unexpected catchpoint kind (%d)"), ex);
12574 }
12575 }
12576
12577 /* Return the breakpoint ops "virtual table" used for catchpoints
12578 of the EX kind. */
12579
12580 static const struct breakpoint_ops *
12581 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12582 {
12583 switch (ex)
12584 {
12585 case ada_catch_exception:
12586 return (&catch_exception_breakpoint_ops);
12587 break;
12588 case ada_catch_exception_unhandled:
12589 return (&catch_exception_unhandled_breakpoint_ops);
12590 break;
12591 case ada_catch_assert:
12592 return (&catch_assert_breakpoint_ops);
12593 break;
12594 case ada_catch_handlers:
12595 return (&catch_handlers_breakpoint_ops);
12596 break;
12597 default:
12598 internal_error (__FILE__, __LINE__,
12599 _("unexpected catchpoint kind (%d)"), ex);
12600 }
12601 }
12602
12603 /* Return the condition that will be used to match the current exception
12604 being raised with the exception that the user wants to catch. This
12605 assumes that this condition is used when the inferior just triggered
12606 an exception catchpoint.
12607 EX: the type of catchpoints used for catching Ada exceptions. */
12608
12609 static std::string
12610 ada_exception_catchpoint_cond_string (const char *excep_string,
12611 enum ada_exception_catchpoint_kind ex)
12612 {
12613 int i;
12614 bool is_standard_exc = false;
12615 std::string result;
12616
12617 if (ex == ada_catch_handlers)
12618 {
12619 /* For exception handlers catchpoints, the condition string does
12620 not use the same parameter as for the other exceptions. */
12621 result = ("long_integer (GNAT_GCC_exception_Access"
12622 "(gcc_exception).all.occurrence.id)");
12623 }
12624 else
12625 result = "long_integer (e)";
12626
12627 /* The standard exceptions are a special case. They are defined in
12628 runtime units that have been compiled without debugging info; if
12629 EXCEP_STRING is the not-fully-qualified name of a standard
12630 exception (e.g. "constraint_error") then, during the evaluation
12631 of the condition expression, the symbol lookup on this name would
12632 *not* return this standard exception. The catchpoint condition
12633 may then be set only on user-defined exceptions which have the
12634 same not-fully-qualified name (e.g. my_package.constraint_error).
12635
12636 To avoid this unexcepted behavior, these standard exceptions are
12637 systematically prefixed by "standard". This means that "catch
12638 exception constraint_error" is rewritten into "catch exception
12639 standard.constraint_error".
12640
12641 If an exception named constraint_error is defined in another package of
12642 the inferior program, then the only way to specify this exception as a
12643 breakpoint condition is to use its fully-qualified named:
12644 e.g. my_package.constraint_error. */
12645
12646 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12647 {
12648 if (strcmp (standard_exc [i], excep_string) == 0)
12649 {
12650 is_standard_exc = true;
12651 break;
12652 }
12653 }
12654
12655 result += " = ";
12656
12657 if (is_standard_exc)
12658 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12659 else
12660 string_appendf (result, "long_integer (&%s)", excep_string);
12661
12662 return result;
12663 }
12664
12665 /* Return the symtab_and_line that should be used to insert an exception
12666 catchpoint of the TYPE kind.
12667
12668 ADDR_STRING returns the name of the function where the real
12669 breakpoint that implements the catchpoints is set, depending on the
12670 type of catchpoint we need to create. */
12671
12672 static struct symtab_and_line
12673 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12674 std::string *addr_string, const struct breakpoint_ops **ops)
12675 {
12676 const char *sym_name;
12677 struct symbol *sym;
12678
12679 /* First, find out which exception support info to use. */
12680 ada_exception_support_info_sniffer ();
12681
12682 /* Then lookup the function on which we will break in order to catch
12683 the Ada exceptions requested by the user. */
12684 sym_name = ada_exception_sym_name (ex);
12685 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12686
12687 if (sym == NULL)
12688 error (_("Catchpoint symbol not found: %s"), sym_name);
12689
12690 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12691 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12692
12693 /* Set ADDR_STRING. */
12694 *addr_string = sym_name;
12695
12696 /* Set OPS. */
12697 *ops = ada_exception_breakpoint_ops (ex);
12698
12699 return find_function_start_sal (sym, 1);
12700 }
12701
12702 /* Create an Ada exception catchpoint.
12703
12704 EX_KIND is the kind of exception catchpoint to be created.
12705
12706 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12707 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12708 of the exception to which this catchpoint applies.
12709
12710 COND_STRING, if not empty, is the catchpoint condition.
12711
12712 TEMPFLAG, if nonzero, means that the underlying breakpoint
12713 should be temporary.
12714
12715 FROM_TTY is the usual argument passed to all commands implementations. */
12716
12717 void
12718 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12719 enum ada_exception_catchpoint_kind ex_kind,
12720 const std::string &excep_string,
12721 const std::string &cond_string,
12722 int tempflag,
12723 int disabled,
12724 int from_tty)
12725 {
12726 std::string addr_string;
12727 const struct breakpoint_ops *ops = NULL;
12728 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12729
12730 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12731 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12732 ops, tempflag, disabled, from_tty);
12733 c->excep_string = excep_string;
12734 create_excep_cond_exprs (c.get (), ex_kind);
12735 if (!cond_string.empty ())
12736 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12737 install_breakpoint (0, std::move (c), 1);
12738 }
12739
12740 /* Implement the "catch exception" command. */
12741
12742 static void
12743 catch_ada_exception_command (const char *arg_entry, int from_tty,
12744 struct cmd_list_element *command)
12745 {
12746 const char *arg = arg_entry;
12747 struct gdbarch *gdbarch = get_current_arch ();
12748 int tempflag;
12749 enum ada_exception_catchpoint_kind ex_kind;
12750 std::string excep_string;
12751 std::string cond_string;
12752
12753 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12754
12755 if (!arg)
12756 arg = "";
12757 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12758 &cond_string);
12759 create_ada_exception_catchpoint (gdbarch, ex_kind,
12760 excep_string, cond_string,
12761 tempflag, 1 /* enabled */,
12762 from_tty);
12763 }
12764
12765 /* Implement the "catch handlers" command. */
12766
12767 static void
12768 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12769 struct cmd_list_element *command)
12770 {
12771 const char *arg = arg_entry;
12772 struct gdbarch *gdbarch = get_current_arch ();
12773 int tempflag;
12774 enum ada_exception_catchpoint_kind ex_kind;
12775 std::string excep_string;
12776 std::string cond_string;
12777
12778 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12779
12780 if (!arg)
12781 arg = "";
12782 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12783 &cond_string);
12784 create_ada_exception_catchpoint (gdbarch, ex_kind,
12785 excep_string, cond_string,
12786 tempflag, 1 /* enabled */,
12787 from_tty);
12788 }
12789
12790 /* Completion function for the Ada "catch" commands. */
12791
12792 static void
12793 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12794 const char *text, const char *word)
12795 {
12796 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12797
12798 for (const ada_exc_info &info : exceptions)
12799 {
12800 if (startswith (info.name, word))
12801 tracker.add_completion (make_unique_xstrdup (info.name));
12802 }
12803 }
12804
12805 /* Split the arguments specified in a "catch assert" command.
12806
12807 ARGS contains the command's arguments (or the empty string if
12808 no arguments were passed).
12809
12810 If ARGS contains a condition, set COND_STRING to that condition
12811 (the memory needs to be deallocated after use). */
12812
12813 static void
12814 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12815 {
12816 args = skip_spaces (args);
12817
12818 /* Check whether a condition was provided. */
12819 if (startswith (args, "if")
12820 && (isspace (args[2]) || args[2] == '\0'))
12821 {
12822 args += 2;
12823 args = skip_spaces (args);
12824 if (args[0] == '\0')
12825 error (_("condition missing after `if' keyword"));
12826 cond_string.assign (args);
12827 }
12828
12829 /* Otherwise, there should be no other argument at the end of
12830 the command. */
12831 else if (args[0] != '\0')
12832 error (_("Junk at end of arguments."));
12833 }
12834
12835 /* Implement the "catch assert" command. */
12836
12837 static void
12838 catch_assert_command (const char *arg_entry, int from_tty,
12839 struct cmd_list_element *command)
12840 {
12841 const char *arg = arg_entry;
12842 struct gdbarch *gdbarch = get_current_arch ();
12843 int tempflag;
12844 std::string cond_string;
12845
12846 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12847
12848 if (!arg)
12849 arg = "";
12850 catch_ada_assert_command_split (arg, cond_string);
12851 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12852 "", cond_string,
12853 tempflag, 1 /* enabled */,
12854 from_tty);
12855 }
12856
12857 /* Return non-zero if the symbol SYM is an Ada exception object. */
12858
12859 static int
12860 ada_is_exception_sym (struct symbol *sym)
12861 {
12862 const char *type_name = SYMBOL_TYPE (sym)->name ();
12863
12864 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12865 && SYMBOL_CLASS (sym) != LOC_BLOCK
12866 && SYMBOL_CLASS (sym) != LOC_CONST
12867 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12868 && type_name != NULL && strcmp (type_name, "exception") == 0);
12869 }
12870
12871 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12872 Ada exception object. This matches all exceptions except the ones
12873 defined by the Ada language. */
12874
12875 static int
12876 ada_is_non_standard_exception_sym (struct symbol *sym)
12877 {
12878 int i;
12879
12880 if (!ada_is_exception_sym (sym))
12881 return 0;
12882
12883 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12884 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12885 return 0; /* A standard exception. */
12886
12887 /* Numeric_Error is also a standard exception, so exclude it.
12888 See the STANDARD_EXC description for more details as to why
12889 this exception is not listed in that array. */
12890 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12891 return 0;
12892
12893 return 1;
12894 }
12895
12896 /* A helper function for std::sort, comparing two struct ada_exc_info
12897 objects.
12898
12899 The comparison is determined first by exception name, and then
12900 by exception address. */
12901
12902 bool
12903 ada_exc_info::operator< (const ada_exc_info &other) const
12904 {
12905 int result;
12906
12907 result = strcmp (name, other.name);
12908 if (result < 0)
12909 return true;
12910 if (result == 0 && addr < other.addr)
12911 return true;
12912 return false;
12913 }
12914
12915 bool
12916 ada_exc_info::operator== (const ada_exc_info &other) const
12917 {
12918 return addr == other.addr && strcmp (name, other.name) == 0;
12919 }
12920
12921 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12922 routine, but keeping the first SKIP elements untouched.
12923
12924 All duplicates are also removed. */
12925
12926 static void
12927 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12928 int skip)
12929 {
12930 std::sort (exceptions->begin () + skip, exceptions->end ());
12931 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12932 exceptions->end ());
12933 }
12934
12935 /* Add all exceptions defined by the Ada standard whose name match
12936 a regular expression.
12937
12938 If PREG is not NULL, then this regexp_t object is used to
12939 perform the symbol name matching. Otherwise, no name-based
12940 filtering is performed.
12941
12942 EXCEPTIONS is a vector of exceptions to which matching exceptions
12943 gets pushed. */
12944
12945 static void
12946 ada_add_standard_exceptions (compiled_regex *preg,
12947 std::vector<ada_exc_info> *exceptions)
12948 {
12949 int i;
12950
12951 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12952 {
12953 if (preg == NULL
12954 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12955 {
12956 struct bound_minimal_symbol msymbol
12957 = ada_lookup_simple_minsym (standard_exc[i]);
12958
12959 if (msymbol.minsym != NULL)
12960 {
12961 struct ada_exc_info info
12962 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12963
12964 exceptions->push_back (info);
12965 }
12966 }
12967 }
12968 }
12969
12970 /* Add all Ada exceptions defined locally and accessible from the given
12971 FRAME.
12972
12973 If PREG is not NULL, then this regexp_t object is used to
12974 perform the symbol name matching. Otherwise, no name-based
12975 filtering is performed.
12976
12977 EXCEPTIONS is a vector of exceptions to which matching exceptions
12978 gets pushed. */
12979
12980 static void
12981 ada_add_exceptions_from_frame (compiled_regex *preg,
12982 struct frame_info *frame,
12983 std::vector<ada_exc_info> *exceptions)
12984 {
12985 const struct block *block = get_frame_block (frame, 0);
12986
12987 while (block != 0)
12988 {
12989 struct block_iterator iter;
12990 struct symbol *sym;
12991
12992 ALL_BLOCK_SYMBOLS (block, iter, sym)
12993 {
12994 switch (SYMBOL_CLASS (sym))
12995 {
12996 case LOC_TYPEDEF:
12997 case LOC_BLOCK:
12998 case LOC_CONST:
12999 break;
13000 default:
13001 if (ada_is_exception_sym (sym))
13002 {
13003 struct ada_exc_info info = {sym->print_name (),
13004 SYMBOL_VALUE_ADDRESS (sym)};
13005
13006 exceptions->push_back (info);
13007 }
13008 }
13009 }
13010 if (BLOCK_FUNCTION (block) != NULL)
13011 break;
13012 block = BLOCK_SUPERBLOCK (block);
13013 }
13014 }
13015
13016 /* Return true if NAME matches PREG or if PREG is NULL. */
13017
13018 static bool
13019 name_matches_regex (const char *name, compiled_regex *preg)
13020 {
13021 return (preg == NULL
13022 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13023 }
13024
13025 /* Add all exceptions defined globally whose name name match
13026 a regular expression, excluding standard exceptions.
13027
13028 The reason we exclude standard exceptions is that they need
13029 to be handled separately: Standard exceptions are defined inside
13030 a runtime unit which is normally not compiled with debugging info,
13031 and thus usually do not show up in our symbol search. However,
13032 if the unit was in fact built with debugging info, we need to
13033 exclude them because they would duplicate the entry we found
13034 during the special loop that specifically searches for those
13035 standard exceptions.
13036
13037 If PREG is not NULL, then this regexp_t object is used to
13038 perform the symbol name matching. Otherwise, no name-based
13039 filtering is performed.
13040
13041 EXCEPTIONS is a vector of exceptions to which matching exceptions
13042 gets pushed. */
13043
13044 static void
13045 ada_add_global_exceptions (compiled_regex *preg,
13046 std::vector<ada_exc_info> *exceptions)
13047 {
13048 /* In Ada, the symbol "search name" is a linkage name, whereas the
13049 regular expression used to do the matching refers to the natural
13050 name. So match against the decoded name. */
13051 expand_symtabs_matching (NULL,
13052 lookup_name_info::match_any (),
13053 [&] (const char *search_name)
13054 {
13055 std::string decoded = ada_decode (search_name);
13056 return name_matches_regex (decoded.c_str (), preg);
13057 },
13058 NULL,
13059 VARIABLES_DOMAIN);
13060
13061 for (objfile *objfile : current_program_space->objfiles ())
13062 {
13063 for (compunit_symtab *s : objfile->compunits ())
13064 {
13065 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13066 int i;
13067
13068 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13069 {
13070 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13071 struct block_iterator iter;
13072 struct symbol *sym;
13073
13074 ALL_BLOCK_SYMBOLS (b, iter, sym)
13075 if (ada_is_non_standard_exception_sym (sym)
13076 && name_matches_regex (sym->natural_name (), preg))
13077 {
13078 struct ada_exc_info info
13079 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13080
13081 exceptions->push_back (info);
13082 }
13083 }
13084 }
13085 }
13086 }
13087
13088 /* Implements ada_exceptions_list with the regular expression passed
13089 as a regex_t, rather than a string.
13090
13091 If not NULL, PREG is used to filter out exceptions whose names
13092 do not match. Otherwise, all exceptions are listed. */
13093
13094 static std::vector<ada_exc_info>
13095 ada_exceptions_list_1 (compiled_regex *preg)
13096 {
13097 std::vector<ada_exc_info> result;
13098 int prev_len;
13099
13100 /* First, list the known standard exceptions. These exceptions
13101 need to be handled separately, as they are usually defined in
13102 runtime units that have been compiled without debugging info. */
13103
13104 ada_add_standard_exceptions (preg, &result);
13105
13106 /* Next, find all exceptions whose scope is local and accessible
13107 from the currently selected frame. */
13108
13109 if (has_stack_frames ())
13110 {
13111 prev_len = result.size ();
13112 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13113 &result);
13114 if (result.size () > prev_len)
13115 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13116 }
13117
13118 /* Add all exceptions whose scope is global. */
13119
13120 prev_len = result.size ();
13121 ada_add_global_exceptions (preg, &result);
13122 if (result.size () > prev_len)
13123 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13124
13125 return result;
13126 }
13127
13128 /* Return a vector of ada_exc_info.
13129
13130 If REGEXP is NULL, all exceptions are included in the result.
13131 Otherwise, it should contain a valid regular expression,
13132 and only the exceptions whose names match that regular expression
13133 are included in the result.
13134
13135 The exceptions are sorted in the following order:
13136 - Standard exceptions (defined by the Ada language), in
13137 alphabetical order;
13138 - Exceptions only visible from the current frame, in
13139 alphabetical order;
13140 - Exceptions whose scope is global, in alphabetical order. */
13141
13142 std::vector<ada_exc_info>
13143 ada_exceptions_list (const char *regexp)
13144 {
13145 if (regexp == NULL)
13146 return ada_exceptions_list_1 (NULL);
13147
13148 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13149 return ada_exceptions_list_1 (&reg);
13150 }
13151
13152 /* Implement the "info exceptions" command. */
13153
13154 static void
13155 info_exceptions_command (const char *regexp, int from_tty)
13156 {
13157 struct gdbarch *gdbarch = get_current_arch ();
13158
13159 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13160
13161 if (regexp != NULL)
13162 printf_filtered
13163 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13164 else
13165 printf_filtered (_("All defined Ada exceptions:\n"));
13166
13167 for (const ada_exc_info &info : exceptions)
13168 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13169 }
13170
13171 /* Operators */
13172 /* Information about operators given special treatment in functions
13173 below. */
13174 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13175
13176 #define ADA_OPERATORS \
13177 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13178 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13179 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13180 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13181 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13182 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13183 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13184 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13185 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13186 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13187 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13188 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13189 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13190 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13191 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13192 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13193 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13194 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13195 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13196
13197 static void
13198 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13199 int *argsp)
13200 {
13201 switch (exp->elts[pc - 1].opcode)
13202 {
13203 default:
13204 operator_length_standard (exp, pc, oplenp, argsp);
13205 break;
13206
13207 #define OP_DEFN(op, len, args, binop) \
13208 case op: *oplenp = len; *argsp = args; break;
13209 ADA_OPERATORS;
13210 #undef OP_DEFN
13211
13212 case OP_AGGREGATE:
13213 *oplenp = 3;
13214 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13215 break;
13216
13217 case OP_CHOICES:
13218 *oplenp = 3;
13219 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13220 break;
13221 }
13222 }
13223
13224 /* Implementation of the exp_descriptor method operator_check. */
13225
13226 static int
13227 ada_operator_check (struct expression *exp, int pos,
13228 int (*objfile_func) (struct objfile *objfile, void *data),
13229 void *data)
13230 {
13231 const union exp_element *const elts = exp->elts;
13232 struct type *type = NULL;
13233
13234 switch (elts[pos].opcode)
13235 {
13236 case UNOP_IN_RANGE:
13237 case UNOP_QUAL:
13238 type = elts[pos + 1].type;
13239 break;
13240
13241 default:
13242 return operator_check_standard (exp, pos, objfile_func, data);
13243 }
13244
13245 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13246
13247 if (type && TYPE_OBJFILE (type)
13248 && (*objfile_func) (TYPE_OBJFILE (type), data))
13249 return 1;
13250
13251 return 0;
13252 }
13253
13254 static const char *
13255 ada_op_name (enum exp_opcode opcode)
13256 {
13257 switch (opcode)
13258 {
13259 default:
13260 return op_name_standard (opcode);
13261
13262 #define OP_DEFN(op, len, args, binop) case op: return #op;
13263 ADA_OPERATORS;
13264 #undef OP_DEFN
13265
13266 case OP_AGGREGATE:
13267 return "OP_AGGREGATE";
13268 case OP_CHOICES:
13269 return "OP_CHOICES";
13270 case OP_NAME:
13271 return "OP_NAME";
13272 }
13273 }
13274
13275 /* As for operator_length, but assumes PC is pointing at the first
13276 element of the operator, and gives meaningful results only for the
13277 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13278
13279 static void
13280 ada_forward_operator_length (struct expression *exp, int pc,
13281 int *oplenp, int *argsp)
13282 {
13283 switch (exp->elts[pc].opcode)
13284 {
13285 default:
13286 *oplenp = *argsp = 0;
13287 break;
13288
13289 #define OP_DEFN(op, len, args, binop) \
13290 case op: *oplenp = len; *argsp = args; break;
13291 ADA_OPERATORS;
13292 #undef OP_DEFN
13293
13294 case OP_AGGREGATE:
13295 *oplenp = 3;
13296 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13297 break;
13298
13299 case OP_CHOICES:
13300 *oplenp = 3;
13301 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13302 break;
13303
13304 case OP_STRING:
13305 case OP_NAME:
13306 {
13307 int len = longest_to_int (exp->elts[pc + 1].longconst);
13308
13309 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13310 *argsp = 0;
13311 break;
13312 }
13313 }
13314 }
13315
13316 static int
13317 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13318 {
13319 enum exp_opcode op = exp->elts[elt].opcode;
13320 int oplen, nargs;
13321 int pc = elt;
13322 int i;
13323
13324 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13325
13326 switch (op)
13327 {
13328 /* Ada attributes ('Foo). */
13329 case OP_ATR_FIRST:
13330 case OP_ATR_LAST:
13331 case OP_ATR_LENGTH:
13332 case OP_ATR_IMAGE:
13333 case OP_ATR_MAX:
13334 case OP_ATR_MIN:
13335 case OP_ATR_MODULUS:
13336 case OP_ATR_POS:
13337 case OP_ATR_SIZE:
13338 case OP_ATR_TAG:
13339 case OP_ATR_VAL:
13340 break;
13341
13342 case UNOP_IN_RANGE:
13343 case UNOP_QUAL:
13344 /* XXX: gdb_sprint_host_address, type_sprint */
13345 fprintf_filtered (stream, _("Type @"));
13346 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13347 fprintf_filtered (stream, " (");
13348 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13349 fprintf_filtered (stream, ")");
13350 break;
13351 case BINOP_IN_BOUNDS:
13352 fprintf_filtered (stream, " (%d)",
13353 longest_to_int (exp->elts[pc + 2].longconst));
13354 break;
13355 case TERNOP_IN_RANGE:
13356 break;
13357
13358 case OP_AGGREGATE:
13359 case OP_OTHERS:
13360 case OP_DISCRETE_RANGE:
13361 case OP_POSITIONAL:
13362 case OP_CHOICES:
13363 break;
13364
13365 case OP_NAME:
13366 case OP_STRING:
13367 {
13368 char *name = &exp->elts[elt + 2].string;
13369 int len = longest_to_int (exp->elts[elt + 1].longconst);
13370
13371 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13372 break;
13373 }
13374
13375 default:
13376 return dump_subexp_body_standard (exp, stream, elt);
13377 }
13378
13379 elt += oplen;
13380 for (i = 0; i < nargs; i += 1)
13381 elt = dump_subexp (exp, stream, elt);
13382
13383 return elt;
13384 }
13385
13386 /* The Ada extension of print_subexp (q.v.). */
13387
13388 static void
13389 ada_print_subexp (struct expression *exp, int *pos,
13390 struct ui_file *stream, enum precedence prec)
13391 {
13392 int oplen, nargs, i;
13393 int pc = *pos;
13394 enum exp_opcode op = exp->elts[pc].opcode;
13395
13396 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13397
13398 *pos += oplen;
13399 switch (op)
13400 {
13401 default:
13402 *pos -= oplen;
13403 print_subexp_standard (exp, pos, stream, prec);
13404 return;
13405
13406 case OP_VAR_VALUE:
13407 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13408 return;
13409
13410 case BINOP_IN_BOUNDS:
13411 /* XXX: sprint_subexp */
13412 print_subexp (exp, pos, stream, PREC_SUFFIX);
13413 fputs_filtered (" in ", stream);
13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
13415 fputs_filtered ("'range", stream);
13416 if (exp->elts[pc + 1].longconst > 1)
13417 fprintf_filtered (stream, "(%ld)",
13418 (long) exp->elts[pc + 1].longconst);
13419 return;
13420
13421 case TERNOP_IN_RANGE:
13422 if (prec >= PREC_EQUAL)
13423 fputs_filtered ("(", stream);
13424 /* XXX: sprint_subexp */
13425 print_subexp (exp, pos, stream, PREC_SUFFIX);
13426 fputs_filtered (" in ", stream);
13427 print_subexp (exp, pos, stream, PREC_EQUAL);
13428 fputs_filtered (" .. ", stream);
13429 print_subexp (exp, pos, stream, PREC_EQUAL);
13430 if (prec >= PREC_EQUAL)
13431 fputs_filtered (")", stream);
13432 return;
13433
13434 case OP_ATR_FIRST:
13435 case OP_ATR_LAST:
13436 case OP_ATR_LENGTH:
13437 case OP_ATR_IMAGE:
13438 case OP_ATR_MAX:
13439 case OP_ATR_MIN:
13440 case OP_ATR_MODULUS:
13441 case OP_ATR_POS:
13442 case OP_ATR_SIZE:
13443 case OP_ATR_TAG:
13444 case OP_ATR_VAL:
13445 if (exp->elts[*pos].opcode == OP_TYPE)
13446 {
13447 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13448 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13449 &type_print_raw_options);
13450 *pos += 3;
13451 }
13452 else
13453 print_subexp (exp, pos, stream, PREC_SUFFIX);
13454 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13455 if (nargs > 1)
13456 {
13457 int tem;
13458
13459 for (tem = 1; tem < nargs; tem += 1)
13460 {
13461 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13462 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13463 }
13464 fputs_filtered (")", stream);
13465 }
13466 return;
13467
13468 case UNOP_QUAL:
13469 type_print (exp->elts[pc + 1].type, "", stream, 0);
13470 fputs_filtered ("'(", stream);
13471 print_subexp (exp, pos, stream, PREC_PREFIX);
13472 fputs_filtered (")", stream);
13473 return;
13474
13475 case UNOP_IN_RANGE:
13476 /* XXX: sprint_subexp */
13477 print_subexp (exp, pos, stream, PREC_SUFFIX);
13478 fputs_filtered (" in ", stream);
13479 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13480 &type_print_raw_options);
13481 return;
13482
13483 case OP_DISCRETE_RANGE:
13484 print_subexp (exp, pos, stream, PREC_SUFFIX);
13485 fputs_filtered ("..", stream);
13486 print_subexp (exp, pos, stream, PREC_SUFFIX);
13487 return;
13488
13489 case OP_OTHERS:
13490 fputs_filtered ("others => ", stream);
13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
13492 return;
13493
13494 case OP_CHOICES:
13495 for (i = 0; i < nargs-1; i += 1)
13496 {
13497 if (i > 0)
13498 fputs_filtered ("|", stream);
13499 print_subexp (exp, pos, stream, PREC_SUFFIX);
13500 }
13501 fputs_filtered (" => ", stream);
13502 print_subexp (exp, pos, stream, PREC_SUFFIX);
13503 return;
13504
13505 case OP_POSITIONAL:
13506 print_subexp (exp, pos, stream, PREC_SUFFIX);
13507 return;
13508
13509 case OP_AGGREGATE:
13510 fputs_filtered ("(", stream);
13511 for (i = 0; i < nargs; i += 1)
13512 {
13513 if (i > 0)
13514 fputs_filtered (", ", stream);
13515 print_subexp (exp, pos, stream, PREC_SUFFIX);
13516 }
13517 fputs_filtered (")", stream);
13518 return;
13519 }
13520 }
13521
13522 /* Table mapping opcodes into strings for printing operators
13523 and precedences of the operators. */
13524
13525 static const struct op_print ada_op_print_tab[] = {
13526 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13527 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13528 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13529 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13530 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13531 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13532 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13533 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13534 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13535 {">=", BINOP_GEQ, PREC_ORDER, 0},
13536 {">", BINOP_GTR, PREC_ORDER, 0},
13537 {"<", BINOP_LESS, PREC_ORDER, 0},
13538 {">>", BINOP_RSH, PREC_SHIFT, 0},
13539 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13540 {"+", BINOP_ADD, PREC_ADD, 0},
13541 {"-", BINOP_SUB, PREC_ADD, 0},
13542 {"&", BINOP_CONCAT, PREC_ADD, 0},
13543 {"*", BINOP_MUL, PREC_MUL, 0},
13544 {"/", BINOP_DIV, PREC_MUL, 0},
13545 {"rem", BINOP_REM, PREC_MUL, 0},
13546 {"mod", BINOP_MOD, PREC_MUL, 0},
13547 {"**", BINOP_EXP, PREC_REPEAT, 0},
13548 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13549 {"-", UNOP_NEG, PREC_PREFIX, 0},
13550 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13551 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13552 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13553 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13554 {".all", UNOP_IND, PREC_SUFFIX, 1},
13555 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13556 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13557 {NULL, OP_NULL, PREC_SUFFIX, 0}
13558 };
13559 \f
13560 enum ada_primitive_types {
13561 ada_primitive_type_int,
13562 ada_primitive_type_long,
13563 ada_primitive_type_short,
13564 ada_primitive_type_char,
13565 ada_primitive_type_float,
13566 ada_primitive_type_double,
13567 ada_primitive_type_void,
13568 ada_primitive_type_long_long,
13569 ada_primitive_type_long_double,
13570 ada_primitive_type_natural,
13571 ada_primitive_type_positive,
13572 ada_primitive_type_system_address,
13573 ada_primitive_type_storage_offset,
13574 nr_ada_primitive_types
13575 };
13576
13577 \f
13578 /* Language vector */
13579
13580 /* Not really used, but needed in the ada_language_defn. */
13581
13582 static void
13583 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13584 {
13585 ada_emit_char (c, type, stream, quoter, 1);
13586 }
13587
13588 static int
13589 parse (struct parser_state *ps)
13590 {
13591 warnings_issued = 0;
13592 return ada_parse (ps);
13593 }
13594
13595 static const struct exp_descriptor ada_exp_descriptor = {
13596 ada_print_subexp,
13597 ada_operator_length,
13598 ada_operator_check,
13599 ada_op_name,
13600 ada_dump_subexp_body,
13601 ada_evaluate_subexp
13602 };
13603
13604 /* symbol_name_matcher_ftype adapter for wild_match. */
13605
13606 static bool
13607 do_wild_match (const char *symbol_search_name,
13608 const lookup_name_info &lookup_name,
13609 completion_match_result *comp_match_res)
13610 {
13611 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13612 }
13613
13614 /* symbol_name_matcher_ftype adapter for full_match. */
13615
13616 static bool
13617 do_full_match (const char *symbol_search_name,
13618 const lookup_name_info &lookup_name,
13619 completion_match_result *comp_match_res)
13620 {
13621 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13622 }
13623
13624 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13625
13626 static bool
13627 do_exact_match (const char *symbol_search_name,
13628 const lookup_name_info &lookup_name,
13629 completion_match_result *comp_match_res)
13630 {
13631 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13632 }
13633
13634 /* Build the Ada lookup name for LOOKUP_NAME. */
13635
13636 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13637 {
13638 gdb::string_view user_name = lookup_name.name ();
13639
13640 if (user_name[0] == '<')
13641 {
13642 if (user_name.back () == '>')
13643 m_encoded_name
13644 = user_name.substr (1, user_name.size () - 2).to_string ();
13645 else
13646 m_encoded_name
13647 = user_name.substr (1, user_name.size () - 1).to_string ();
13648 m_encoded_p = true;
13649 m_verbatim_p = true;
13650 m_wild_match_p = false;
13651 m_standard_p = false;
13652 }
13653 else
13654 {
13655 m_verbatim_p = false;
13656
13657 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13658
13659 if (!m_encoded_p)
13660 {
13661 const char *folded = ada_fold_name (user_name);
13662 const char *encoded = ada_encode_1 (folded, false);
13663 if (encoded != NULL)
13664 m_encoded_name = encoded;
13665 else
13666 m_encoded_name = user_name.to_string ();
13667 }
13668 else
13669 m_encoded_name = user_name.to_string ();
13670
13671 /* Handle the 'package Standard' special case. See description
13672 of m_standard_p. */
13673 if (startswith (m_encoded_name.c_str (), "standard__"))
13674 {
13675 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13676 m_standard_p = true;
13677 }
13678 else
13679 m_standard_p = false;
13680
13681 /* If the name contains a ".", then the user is entering a fully
13682 qualified entity name, and the match must not be done in wild
13683 mode. Similarly, if the user wants to complete what looks
13684 like an encoded name, the match must not be done in wild
13685 mode. Also, in the standard__ special case always do
13686 non-wild matching. */
13687 m_wild_match_p
13688 = (lookup_name.match_type () != symbol_name_match_type::FULL
13689 && !m_encoded_p
13690 && !m_standard_p
13691 && user_name.find ('.') == std::string::npos);
13692 }
13693 }
13694
13695 /* symbol_name_matcher_ftype method for Ada. This only handles
13696 completion mode. */
13697
13698 static bool
13699 ada_symbol_name_matches (const char *symbol_search_name,
13700 const lookup_name_info &lookup_name,
13701 completion_match_result *comp_match_res)
13702 {
13703 return lookup_name.ada ().matches (symbol_search_name,
13704 lookup_name.match_type (),
13705 comp_match_res);
13706 }
13707
13708 /* A name matcher that matches the symbol name exactly, with
13709 strcmp. */
13710
13711 static bool
13712 literal_symbol_name_matcher (const char *symbol_search_name,
13713 const lookup_name_info &lookup_name,
13714 completion_match_result *comp_match_res)
13715 {
13716 gdb::string_view name_view = lookup_name.name ();
13717
13718 if (lookup_name.completion_mode ()
13719 ? (strncmp (symbol_search_name, name_view.data (),
13720 name_view.size ()) == 0)
13721 : symbol_search_name == name_view)
13722 {
13723 if (comp_match_res != NULL)
13724 comp_match_res->set_match (symbol_search_name);
13725 return true;
13726 }
13727 else
13728 return false;
13729 }
13730
13731 /* Implement the "get_symbol_name_matcher" language_defn method for
13732 Ada. */
13733
13734 static symbol_name_matcher_ftype *
13735 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13736 {
13737 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13738 return literal_symbol_name_matcher;
13739
13740 if (lookup_name.completion_mode ())
13741 return ada_symbol_name_matches;
13742 else
13743 {
13744 if (lookup_name.ada ().wild_match_p ())
13745 return do_wild_match;
13746 else if (lookup_name.ada ().verbatim_p ())
13747 return do_exact_match;
13748 else
13749 return do_full_match;
13750 }
13751 }
13752
13753 static const char *ada_extensions[] =
13754 {
13755 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13756 };
13757
13758 /* Constant data that describes the Ada language. */
13759
13760 extern const struct language_data ada_language_data =
13761 {
13762 "ada", /* Language name */
13763 "Ada",
13764 language_ada,
13765 range_check_off,
13766 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13767 that's not quite what this means. */
13768 array_row_major,
13769 macro_expansion_no,
13770 ada_extensions,
13771 &ada_exp_descriptor,
13772 parse,
13773 resolve,
13774 ada_printchar, /* Print a character constant */
13775 ada_printstr, /* Function to print string constant */
13776 emit_char, /* Function to print single char (not used) */
13777 ada_print_typedef, /* Print a typedef using appropriate syntax */
13778 ada_value_print_inner, /* la_value_print_inner */
13779 ada_value_print, /* Print a top-level value */
13780 NULL, /* name_of_this */
13781 true, /* la_store_sym_names_in_linkage_form_p */
13782 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13783 ada_op_print_tab, /* expression operators for printing */
13784 0, /* c-style arrays */
13785 1, /* String lower bound */
13786 ada_watch_location_expression,
13787 &ada_varobj_ops,
13788 ada_is_string_type,
13789 "(...)" /* la_struct_too_deep_ellipsis */
13790 };
13791
13792 /* Class representing the Ada language. */
13793
13794 class ada_language : public language_defn
13795 {
13796 public:
13797 ada_language ()
13798 : language_defn (language_ada, ada_language_data)
13799 { /* Nothing. */ }
13800
13801 /* Print an array element index using the Ada syntax. */
13802
13803 void print_array_index (struct type *index_type,
13804 LONGEST index,
13805 struct ui_file *stream,
13806 const value_print_options *options) const override
13807 {
13808 struct value *index_value = val_atr (index_type, index);
13809
13810 LA_VALUE_PRINT (index_value, stream, options);
13811 fprintf_filtered (stream, " => ");
13812 }
13813
13814 /* Implement the "read_var_value" language_defn method for Ada. */
13815
13816 struct value *read_var_value (struct symbol *var,
13817 const struct block *var_block,
13818 struct frame_info *frame) const override
13819 {
13820 /* The only case where default_read_var_value is not sufficient
13821 is when VAR is a renaming... */
13822 if (frame != nullptr)
13823 {
13824 const struct block *frame_block = get_frame_block (frame, NULL);
13825 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13826 return ada_read_renaming_var_value (var, frame_block);
13827 }
13828
13829 /* This is a typical case where we expect the default_read_var_value
13830 function to work. */
13831 return language_defn::read_var_value (var, var_block, frame);
13832 }
13833
13834 /* See language.h. */
13835 void language_arch_info (struct gdbarch *gdbarch,
13836 struct language_arch_info *lai) const override
13837 {
13838 const struct builtin_type *builtin = builtin_type (gdbarch);
13839
13840 lai->primitive_type_vector
13841 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13842 struct type *);
13843
13844 lai->primitive_type_vector [ada_primitive_type_int]
13845 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13846 0, "integer");
13847 lai->primitive_type_vector [ada_primitive_type_long]
13848 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13849 0, "long_integer");
13850 lai->primitive_type_vector [ada_primitive_type_short]
13851 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13852 0, "short_integer");
13853 lai->string_char_type
13854 = lai->primitive_type_vector [ada_primitive_type_char]
13855 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13856 lai->primitive_type_vector [ada_primitive_type_float]
13857 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13858 "float", gdbarch_float_format (gdbarch));
13859 lai->primitive_type_vector [ada_primitive_type_double]
13860 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13861 "long_float", gdbarch_double_format (gdbarch));
13862 lai->primitive_type_vector [ada_primitive_type_long_long]
13863 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13864 0, "long_long_integer");
13865 lai->primitive_type_vector [ada_primitive_type_long_double]
13866 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13867 "long_long_float", gdbarch_long_double_format (gdbarch));
13868 lai->primitive_type_vector [ada_primitive_type_natural]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "natural");
13871 lai->primitive_type_vector [ada_primitive_type_positive]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13873 0, "positive");
13874 lai->primitive_type_vector [ada_primitive_type_void]
13875 = builtin->builtin_void;
13876
13877 lai->primitive_type_vector [ada_primitive_type_system_address]
13878 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13879 "void"));
13880 lai->primitive_type_vector [ada_primitive_type_system_address]
13881 ->set_name ("system__address");
13882
13883 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13884 type. This is a signed integral type whose size is the same as
13885 the size of addresses. */
13886 {
13887 unsigned int addr_length = TYPE_LENGTH
13888 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13889
13890 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13891 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13892 "storage_offset");
13893 }
13894
13895 lai->bool_type_symbol = NULL;
13896 lai->bool_type_default = builtin->builtin_bool;
13897 }
13898
13899 /* See language.h. */
13900
13901 bool iterate_over_symbols
13902 (const struct block *block, const lookup_name_info &name,
13903 domain_enum domain,
13904 gdb::function_view<symbol_found_callback_ftype> callback) const override
13905 {
13906 std::vector<struct block_symbol> results;
13907
13908 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13909 for (block_symbol &sym : results)
13910 {
13911 if (!callback (&sym))
13912 return false;
13913 }
13914
13915 return true;
13916 }
13917
13918 /* See language.h. */
13919 bool sniff_from_mangled_name (const char *mangled,
13920 char **out) const override
13921 {
13922 std::string demangled = ada_decode (mangled);
13923
13924 *out = NULL;
13925
13926 if (demangled != mangled && demangled[0] != '<')
13927 {
13928 /* Set the gsymbol language to Ada, but still return 0.
13929 Two reasons for that:
13930
13931 1. For Ada, we prefer computing the symbol's decoded name
13932 on the fly rather than pre-compute it, in order to save
13933 memory (Ada projects are typically very large).
13934
13935 2. There are some areas in the definition of the GNAT
13936 encoding where, with a bit of bad luck, we might be able
13937 to decode a non-Ada symbol, generating an incorrect
13938 demangled name (Eg: names ending with "TB" for instance
13939 are identified as task bodies and so stripped from
13940 the decoded name returned).
13941
13942 Returning true, here, but not setting *DEMANGLED, helps us get
13943 a little bit of the best of both worlds. Because we're last,
13944 we should not affect any of the other languages that were
13945 able to demangle the symbol before us; we get to correctly
13946 tag Ada symbols as such; and even if we incorrectly tagged a
13947 non-Ada symbol, which should be rare, any routing through the
13948 Ada language should be transparent (Ada tries to behave much
13949 like C/C++ with non-Ada symbols). */
13950 return true;
13951 }
13952
13953 return false;
13954 }
13955
13956 /* See language.h. */
13957
13958 char *demangle (const char *mangled, int options) const override
13959 {
13960 return ada_la_decode (mangled, options);
13961 }
13962
13963 /* See language.h. */
13964
13965 void print_type (struct type *type, const char *varstring,
13966 struct ui_file *stream, int show, int level,
13967 const struct type_print_options *flags) const override
13968 {
13969 ada_print_type (type, varstring, stream, show, level, flags);
13970 }
13971
13972 /* See language.h. */
13973
13974 const char *word_break_characters (void) const override
13975 {
13976 return ada_completer_word_break_characters;
13977 }
13978
13979 /* See language.h. */
13980
13981 void collect_symbol_completion_matches (completion_tracker &tracker,
13982 complete_symbol_mode mode,
13983 symbol_name_match_type name_match_type,
13984 const char *text, const char *word,
13985 enum type_code code) const override
13986 {
13987 struct symbol *sym;
13988 const struct block *b, *surrounding_static_block = 0;
13989 struct block_iterator iter;
13990
13991 gdb_assert (code == TYPE_CODE_UNDEF);
13992
13993 lookup_name_info lookup_name (text, name_match_type, true);
13994
13995 /* First, look at the partial symtab symbols. */
13996 expand_symtabs_matching (NULL,
13997 lookup_name,
13998 NULL,
13999 NULL,
14000 ALL_DOMAIN);
14001
14002 /* At this point scan through the misc symbol vectors and add each
14003 symbol you find to the list. Eventually we want to ignore
14004 anything that isn't a text symbol (everything else will be
14005 handled by the psymtab code above). */
14006
14007 for (objfile *objfile : current_program_space->objfiles ())
14008 {
14009 for (minimal_symbol *msymbol : objfile->msymbols ())
14010 {
14011 QUIT;
14012
14013 if (completion_skip_symbol (mode, msymbol))
14014 continue;
14015
14016 language symbol_language = msymbol->language ();
14017
14018 /* Ada minimal symbols won't have their language set to Ada. If
14019 we let completion_list_add_name compare using the
14020 default/C-like matcher, then when completing e.g., symbols in a
14021 package named "pck", we'd match internal Ada symbols like
14022 "pckS", which are invalid in an Ada expression, unless you wrap
14023 them in '<' '>' to request a verbatim match.
14024
14025 Unfortunately, some Ada encoded names successfully demangle as
14026 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14027 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14028 with the wrong language set. Paper over that issue here. */
14029 if (symbol_language == language_auto
14030 || symbol_language == language_cplus)
14031 symbol_language = language_ada;
14032
14033 completion_list_add_name (tracker,
14034 symbol_language,
14035 msymbol->linkage_name (),
14036 lookup_name, text, word);
14037 }
14038 }
14039
14040 /* Search upwards from currently selected frame (so that we can
14041 complete on local vars. */
14042
14043 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14044 {
14045 if (!BLOCK_SUPERBLOCK (b))
14046 surrounding_static_block = b; /* For elmin of dups */
14047
14048 ALL_BLOCK_SYMBOLS (b, iter, sym)
14049 {
14050 if (completion_skip_symbol (mode, sym))
14051 continue;
14052
14053 completion_list_add_name (tracker,
14054 sym->language (),
14055 sym->linkage_name (),
14056 lookup_name, text, word);
14057 }
14058 }
14059
14060 /* Go through the symtabs and check the externs and statics for
14061 symbols which match. */
14062
14063 for (objfile *objfile : current_program_space->objfiles ())
14064 {
14065 for (compunit_symtab *s : objfile->compunits ())
14066 {
14067 QUIT;
14068 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14069 ALL_BLOCK_SYMBOLS (b, iter, sym)
14070 {
14071 if (completion_skip_symbol (mode, sym))
14072 continue;
14073
14074 completion_list_add_name (tracker,
14075 sym->language (),
14076 sym->linkage_name (),
14077 lookup_name, text, word);
14078 }
14079 }
14080 }
14081
14082 for (objfile *objfile : current_program_space->objfiles ())
14083 {
14084 for (compunit_symtab *s : objfile->compunits ())
14085 {
14086 QUIT;
14087 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14088 /* Don't do this block twice. */
14089 if (b == surrounding_static_block)
14090 continue;
14091 ALL_BLOCK_SYMBOLS (b, iter, sym)
14092 {
14093 if (completion_skip_symbol (mode, sym))
14094 continue;
14095
14096 completion_list_add_name (tracker,
14097 sym->language (),
14098 sym->linkage_name (),
14099 lookup_name, text, word);
14100 }
14101 }
14102 }
14103 }
14104
14105 protected:
14106 /* See language.h. */
14107
14108 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14109 (const lookup_name_info &lookup_name) const override
14110 {
14111 return ada_get_symbol_name_matcher (lookup_name);
14112 }
14113 };
14114
14115 /* Single instance of the Ada language class. */
14116
14117 static ada_language ada_language_defn;
14118
14119 /* Command-list for the "set/show ada" prefix command. */
14120 static struct cmd_list_element *set_ada_list;
14121 static struct cmd_list_element *show_ada_list;
14122
14123 static void
14124 initialize_ada_catchpoint_ops (void)
14125 {
14126 struct breakpoint_ops *ops;
14127
14128 initialize_breakpoint_ops ();
14129
14130 ops = &catch_exception_breakpoint_ops;
14131 *ops = bkpt_breakpoint_ops;
14132 ops->allocate_location = allocate_location_exception;
14133 ops->re_set = re_set_exception;
14134 ops->check_status = check_status_exception;
14135 ops->print_it = print_it_exception;
14136 ops->print_one = print_one_exception;
14137 ops->print_mention = print_mention_exception;
14138 ops->print_recreate = print_recreate_exception;
14139
14140 ops = &catch_exception_unhandled_breakpoint_ops;
14141 *ops = bkpt_breakpoint_ops;
14142 ops->allocate_location = allocate_location_exception;
14143 ops->re_set = re_set_exception;
14144 ops->check_status = check_status_exception;
14145 ops->print_it = print_it_exception;
14146 ops->print_one = print_one_exception;
14147 ops->print_mention = print_mention_exception;
14148 ops->print_recreate = print_recreate_exception;
14149
14150 ops = &catch_assert_breakpoint_ops;
14151 *ops = bkpt_breakpoint_ops;
14152 ops->allocate_location = allocate_location_exception;
14153 ops->re_set = re_set_exception;
14154 ops->check_status = check_status_exception;
14155 ops->print_it = print_it_exception;
14156 ops->print_one = print_one_exception;
14157 ops->print_mention = print_mention_exception;
14158 ops->print_recreate = print_recreate_exception;
14159
14160 ops = &catch_handlers_breakpoint_ops;
14161 *ops = bkpt_breakpoint_ops;
14162 ops->allocate_location = allocate_location_exception;
14163 ops->re_set = re_set_exception;
14164 ops->check_status = check_status_exception;
14165 ops->print_it = print_it_exception;
14166 ops->print_one = print_one_exception;
14167 ops->print_mention = print_mention_exception;
14168 ops->print_recreate = print_recreate_exception;
14169 }
14170
14171 /* This module's 'new_objfile' observer. */
14172
14173 static void
14174 ada_new_objfile_observer (struct objfile *objfile)
14175 {
14176 ada_clear_symbol_cache ();
14177 }
14178
14179 /* This module's 'free_objfile' observer. */
14180
14181 static void
14182 ada_free_objfile_observer (struct objfile *objfile)
14183 {
14184 ada_clear_symbol_cache ();
14185 }
14186
14187 void _initialize_ada_language ();
14188 void
14189 _initialize_ada_language ()
14190 {
14191 initialize_ada_catchpoint_ops ();
14192
14193 add_basic_prefix_cmd ("ada", no_class,
14194 _("Prefix command for changing Ada-specific settings."),
14195 &set_ada_list, "set ada ", 0, &setlist);
14196
14197 add_show_prefix_cmd ("ada", no_class,
14198 _("Generic command for showing Ada-specific settings."),
14199 &show_ada_list, "show ada ", 0, &showlist);
14200
14201 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14202 &trust_pad_over_xvs, _("\
14203 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14204 Show whether an optimization trusting PAD types over XVS types is activated."),
14205 _("\
14206 This is related to the encoding used by the GNAT compiler. The debugger\n\
14207 should normally trust the contents of PAD types, but certain older versions\n\
14208 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14209 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14210 work around this bug. It is always safe to turn this option \"off\", but\n\
14211 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14212 this option to \"off\" unless necessary."),
14213 NULL, NULL, &set_ada_list, &show_ada_list);
14214
14215 add_setshow_boolean_cmd ("print-signatures", class_vars,
14216 &print_signatures, _("\
14217 Enable or disable the output of formal and return types for functions in the \
14218 overloads selection menu."), _("\
14219 Show whether the output of formal and return types for functions in the \
14220 overloads selection menu is activated."),
14221 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14222
14223 add_catch_command ("exception", _("\
14224 Catch Ada exceptions, when raised.\n\
14225 Usage: catch exception [ARG] [if CONDITION]\n\
14226 Without any argument, stop when any Ada exception is raised.\n\
14227 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14228 being raised does not have a handler (and will therefore lead to the task's\n\
14229 termination).\n\
14230 Otherwise, the catchpoint only stops when the name of the exception being\n\
14231 raised is the same as ARG.\n\
14232 CONDITION is a boolean expression that is evaluated to see whether the\n\
14233 exception should cause a stop."),
14234 catch_ada_exception_command,
14235 catch_ada_completer,
14236 CATCH_PERMANENT,
14237 CATCH_TEMPORARY);
14238
14239 add_catch_command ("handlers", _("\
14240 Catch Ada exceptions, when handled.\n\
14241 Usage: catch handlers [ARG] [if CONDITION]\n\
14242 Without any argument, stop when any Ada exception is handled.\n\
14243 With an argument, catch only exceptions with the given name.\n\
14244 CONDITION is a boolean expression that is evaluated to see whether the\n\
14245 exception should cause a stop."),
14246 catch_ada_handlers_command,
14247 catch_ada_completer,
14248 CATCH_PERMANENT,
14249 CATCH_TEMPORARY);
14250 add_catch_command ("assert", _("\
14251 Catch failed Ada assertions, when raised.\n\
14252 Usage: catch assert [if CONDITION]\n\
14253 CONDITION is a boolean expression that is evaluated to see whether the\n\
14254 exception should cause a stop."),
14255 catch_assert_command,
14256 NULL,
14257 CATCH_PERMANENT,
14258 CATCH_TEMPORARY);
14259
14260 varsize_limit = 65536;
14261 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14262 &varsize_limit, _("\
14263 Set the maximum number of bytes allowed in a variable-size object."), _("\
14264 Show the maximum number of bytes allowed in a variable-size object."), _("\
14265 Attempts to access an object whose size is not a compile-time constant\n\
14266 and exceeds this limit will cause an error."),
14267 NULL, NULL, &setlist, &showlist);
14268
14269 add_info ("exceptions", info_exceptions_command,
14270 _("\
14271 List all Ada exception names.\n\
14272 Usage: info exceptions [REGEXP]\n\
14273 If a regular expression is passed as an argument, only those matching\n\
14274 the regular expression are listed."));
14275
14276 add_basic_prefix_cmd ("ada", class_maintenance,
14277 _("Set Ada maintenance-related variables."),
14278 &maint_set_ada_cmdlist, "maintenance set ada ",
14279 0/*allow-unknown*/, &maintenance_set_cmdlist);
14280
14281 add_show_prefix_cmd ("ada", class_maintenance,
14282 _("Show Ada maintenance-related variables."),
14283 &maint_show_ada_cmdlist, "maintenance show ada ",
14284 0/*allow-unknown*/, &maintenance_show_cmdlist);
14285
14286 add_setshow_boolean_cmd
14287 ("ignore-descriptive-types", class_maintenance,
14288 &ada_ignore_descriptive_types_p,
14289 _("Set whether descriptive types generated by GNAT should be ignored."),
14290 _("Show whether descriptive types generated by GNAT should be ignored."),
14291 _("\
14292 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14293 DWARF attribute."),
14294 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14295
14296 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14297 NULL, xcalloc, xfree);
14298
14299 /* The ada-lang observers. */
14300 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14301 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14302 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14303 }
This page took 0.425851 seconds and 3 git commands to generate.