DWARF: handle non-local references in nested functions
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470 }
471
472 /* The cleanup callback for this module's per-program-space data. */
473
474 static void
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 {
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482 }
483
484 /* Utilities */
485
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487 all typedef layers have been peeled. Otherwise, return TYPE.
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513 static struct type *
514 ada_typedef_target_type (struct type *type)
515 {
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519 }
520
521 /* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525 static const char *
526 ada_unqualified_name (const char *decoded_name)
527 {
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544 }
545
546 /* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549 static char *
550 add_angle_brackets (const char *str)
551 {
552 static char *result = NULL;
553
554 xfree (result);
555 result = xstrprintf ("<%s>", str);
556 return result;
557 }
558
559 static char *
560 ada_get_gdb_completer_word_break_characters (void)
561 {
562 return ada_completer_word_break_characters;
563 }
564
565 /* Print an array element index using the Ada syntax. */
566
567 static void
568 ada_print_array_index (struct value *index_value, struct ui_file *stream,
569 const struct value_print_options *options)
570 {
571 LA_VALUE_PRINT (index_value, stream, options);
572 fprintf_filtered (stream, " => ");
573 }
574
575 /* Assuming VECT points to an array of *SIZE objects of size
576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
577 updating *SIZE as necessary and returning the (new) array. */
578
579 void *
580 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
581 {
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
586 *size = min_size;
587 vect = xrealloc (vect, *size * element_size);
588 }
589 return vect;
590 }
591
592 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
593 suffix of FIELD_NAME beginning "___". */
594
595 static int
596 field_name_match (const char *field_name, const char *target)
597 {
598 int len = strlen (target);
599
600 return
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
603 || (startswith (field_name + len, "___")
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
606 }
607
608
609 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
616
617 int
618 ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620 {
621 int fieldno;
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
626 return fieldno;
627
628 if (!maybe_missing)
629 error (_("Unable to find field %s in struct %s. Aborting"),
630 field_name, TYPE_NAME (struct_type));
631
632 return -1;
633 }
634
635 /* The length of the prefix of NAME prior to any "___" suffix. */
636
637 int
638 ada_name_prefix_len (const char *name)
639 {
640 if (name == NULL)
641 return 0;
642 else
643 {
644 const char *p = strstr (name, "___");
645
646 if (p == NULL)
647 return strlen (name);
648 else
649 return p - name;
650 }
651 }
652
653 /* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
656 static int
657 is_suffix (const char *str, const char *suffix)
658 {
659 int len1, len2;
660
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 }
667
668 /* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
670
671 static struct value *
672 coerce_unspec_val_to_type (struct value *val, struct type *type)
673 {
674 type = ada_check_typedef (type);
675 if (value_type (val) == type)
676 return val;
677 else
678 {
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
683 ada_ensure_varsize_limit (type);
684
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
692 }
693 set_value_component_location (result, val);
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
696 set_value_address (result, value_address (val));
697 return result;
698 }
699 }
700
701 static const gdb_byte *
702 cond_offset_host (const gdb_byte *valaddr, long offset)
703 {
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708 }
709
710 static CORE_ADDR
711 cond_offset_target (CORE_ADDR address, long offset)
712 {
713 if (address == 0)
714 return 0;
715 else
716 return address + offset;
717 }
718
719 /* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
723
724 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
726 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727
728 static void
729 lim_warning (const char *format, ...)
730 {
731 va_list args;
732
733 va_start (args, format);
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
736 vwarning (format, args);
737
738 va_end (args);
739 }
740
741 /* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
745 void
746 ada_ensure_varsize_limit (const struct type *type)
747 {
748 if (TYPE_LENGTH (type) > varsize_limit)
749 error (_("object size is larger than varsize-limit"));
750 }
751
752 /* Maximum value of a SIZE-byte signed integer type. */
753 static LONGEST
754 max_of_size (int size)
755 {
756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
757
758 return top_bit | (top_bit - 1);
759 }
760
761 /* Minimum value of a SIZE-byte signed integer type. */
762 static LONGEST
763 min_of_size (int size)
764 {
765 return -max_of_size (size) - 1;
766 }
767
768 /* Maximum value of a SIZE-byte unsigned integer type. */
769 static ULONGEST
770 umax_of_size (int size)
771 {
772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
773
774 return top_bit | (top_bit - 1);
775 }
776
777 /* Maximum value of integral type T, as a signed quantity. */
778 static LONGEST
779 max_of_type (struct type *t)
780 {
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785 }
786
787 /* Minimum value of integral type T, as a signed quantity. */
788 static LONGEST
789 min_of_type (struct type *t)
790 {
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
795 }
796
797 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
798 LONGEST
799 ada_discrete_type_high_bound (struct type *type)
800 {
801 type = resolve_dynamic_type (type, NULL, 0);
802 switch (TYPE_CODE (type))
803 {
804 case TYPE_CODE_RANGE:
805 return TYPE_HIGH_BOUND (type);
806 case TYPE_CODE_ENUM:
807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
811 case TYPE_CODE_INT:
812 return max_of_type (type);
813 default:
814 error (_("Unexpected type in ada_discrete_type_high_bound."));
815 }
816 }
817
818 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
819 LONGEST
820 ada_discrete_type_low_bound (struct type *type)
821 {
822 type = resolve_dynamic_type (type, NULL, 0);
823 switch (TYPE_CODE (type))
824 {
825 case TYPE_CODE_RANGE:
826 return TYPE_LOW_BOUND (type);
827 case TYPE_CODE_ENUM:
828 return TYPE_FIELD_ENUMVAL (type, 0);
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
832 case TYPE_CODE_INT:
833 return min_of_type (type);
834 default:
835 error (_("Unexpected type in ada_discrete_type_low_bound."));
836 }
837 }
838
839 /* The identity on non-range types. For range types, the underlying
840 non-range scalar type. */
841
842 static struct type *
843 get_base_type (struct type *type)
844 {
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
852 }
853
854 /* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859 struct value *
860 ada_get_decoded_value (struct value *value)
861 {
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877 }
878
879 /* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884 struct type *
885 ada_get_decoded_type (struct type *type)
886 {
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891 }
892
893 \f
894
895 /* Language Selection */
896
897 /* If the main program is in Ada, return language_ada, otherwise return LANG
898 (the main program is in Ada iif the adainit symbol is found). */
899
900 enum language
901 ada_update_initial_language (enum language lang)
902 {
903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
904 (struct objfile *) NULL).minsym != NULL)
905 return language_ada;
906
907 return lang;
908 }
909
910 /* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914 char *
915 ada_main_name (void)
916 {
917 struct bound_minimal_symbol msym;
918 static char *main_program_name = NULL;
919
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
927 if (msym.minsym != NULL)
928 {
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
933 if (main_program_name_addr == 0)
934 error (_("Invalid address for Ada main program name."));
935
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947 }
948 \f
949 /* Symbols */
950
951 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
953
954 const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
977 };
978
979 /* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
982 char *
983 ada_encode (const char *decoded)
984 {
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
987 const char *p;
988 int k;
989
990 if (decoded == NULL)
991 return NULL;
992
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
995
996 k = 0;
997 for (p = decoded; *p != '\0'; p += 1)
998 {
999 if (*p == '.')
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
1004 else if (*p == '"')
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1009 mapping->encoded != NULL
1010 && !startswith (p, mapping->decoded); mapping += 1)
1011 ;
1012 if (mapping->encoded == NULL)
1013 error (_("invalid Ada operator name: %s"), p);
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
1018 else
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
1023 }
1024
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
1027 }
1028
1029 /* Return NAME folded to lower case, or, if surrounded by single
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
1033 char *
1034 ada_fold_name (const char *name)
1035 {
1036 static char *fold_buffer = NULL;
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1041
1042 if (name[0] == '\'')
1043 {
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
1046 }
1047 else
1048 {
1049 int i;
1050
1051 for (i = 0; i <= len; i += 1)
1052 fold_buffer[i] = tolower (name[i]);
1053 }
1054
1055 return fold_buffer;
1056 }
1057
1058 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060 static int
1061 is_lower_alphanum (const char c)
1062 {
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064 }
1065
1066 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
1073
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078 static void
1079 ada_remove_trailing_digits (const char *encoded, int *len)
1080 {
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
1084
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1092 *len = i - 2;
1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1094 *len = i - 1;
1095 }
1096 }
1097
1098 /* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101 static void
1102 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103 {
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
1109 the 'P' suffix. The second calls the first one after handling
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118 }
1119
1120 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122 static void
1123 ada_remove_Xbn_suffix (const char *encoded, int *len)
1124 {
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138 }
1139
1140 /* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
1143
1144 The resulting string is valid until the next call of ada_decode.
1145 If the string is unchanged by decoding, the original string pointer
1146 is returned. */
1147
1148 const char *
1149 ada_decode (const char *encoded)
1150 {
1151 int i, j;
1152 int len0;
1153 const char *p;
1154 char *decoded;
1155 int at_start_name;
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
1158
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
1162 if (startswith (encoded, "_ada_"))
1163 encoded += 5;
1164
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
1168 if (encoded[0] == '_' || encoded[0] == '<')
1169 goto Suppress;
1170
1171 len0 = strlen (encoded);
1172
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
1175
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
1182 {
1183 if (p[3] == 'X')
1184 len0 = p - encoded;
1185 else
1186 goto Suppress;
1187 }
1188
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1194 len0 -= 3;
1195
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1201 len0 -= 2;
1202
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1207 len0 -= 1;
1208
1209 /* Make decoded big enough for possible expansion by operator name. */
1210
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
1213
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1217 {
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
1226 }
1227
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
1237 /* Is this a symbol function? */
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
1241
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
1259 at_start_name = 0;
1260
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1265 i += 2;
1266
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
1289 of subprograms created by the compiler for each entry. The first
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354 {
1355 /* Replace '__' by '.'. */
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
1361 else
1362 {
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
1369 }
1370 decoded[j] = '\000';
1371
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
1377 goto Suppress;
1378
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
1383
1384 Suppress:
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
1389 else
1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1391 return decoded;
1392
1393 }
1394
1395 /* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400 static struct htab *decoded_names_store;
1401
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
1407 GSYMBOL).
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
1410 when a decoded name is cached in it. */
1411
1412 const char *
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1414 {
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.mangled_lang.demangled_name;
1418
1419 if (!gsymbol->ada_mangled)
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
1422 struct obstack *obstack = gsymbol->language_specific.obstack;
1423
1424 gsymbol->ada_mangled = 1;
1425
1426 if (obstack != NULL)
1427 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1428 else
1429 {
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
1437
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
1442 }
1443
1444 return *resultp;
1445 }
1446
1447 static char *
1448 ada_la_decode (const char *encoded, int options)
1449 {
1450 return xstrdup (ada_decode (encoded));
1451 }
1452
1453 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1454 suffixes that encode debugging information or leading _ada_ on
1455 SYM_NAME (see is_name_suffix commentary for the debugging
1456 information that is ignored). If WILD, then NAME need only match a
1457 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1458 either argument is NULL. */
1459
1460 static int
1461 match_name (const char *sym_name, const char *name, int wild)
1462 {
1463 if (sym_name == NULL || name == NULL)
1464 return 0;
1465 else if (wild)
1466 return wild_match (sym_name, name) == 0;
1467 else
1468 {
1469 int len_name = strlen (name);
1470
1471 return (strncmp (sym_name, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name))
1473 || (startswith (sym_name, "_ada_")
1474 && strncmp (sym_name + 5, name, len_name) == 0
1475 && is_name_suffix (sym_name + len_name + 5));
1476 }
1477 }
1478 \f
1479
1480 /* Arrays */
1481
1482 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1483 generated by the GNAT compiler to describe the index type used
1484 for each dimension of an array, check whether it follows the latest
1485 known encoding. If not, fix it up to conform to the latest encoding.
1486 Otherwise, do nothing. This function also does nothing if
1487 INDEX_DESC_TYPE is NULL.
1488
1489 The GNAT encoding used to describle the array index type evolved a bit.
1490 Initially, the information would be provided through the name of each
1491 field of the structure type only, while the type of these fields was
1492 described as unspecified and irrelevant. The debugger was then expected
1493 to perform a global type lookup using the name of that field in order
1494 to get access to the full index type description. Because these global
1495 lookups can be very expensive, the encoding was later enhanced to make
1496 the global lookup unnecessary by defining the field type as being
1497 the full index type description.
1498
1499 The purpose of this routine is to allow us to support older versions
1500 of the compiler by detecting the use of the older encoding, and by
1501 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1502 we essentially replace each field's meaningless type by the associated
1503 index subtype). */
1504
1505 void
1506 ada_fixup_array_indexes_type (struct type *index_desc_type)
1507 {
1508 int i;
1509
1510 if (index_desc_type == NULL)
1511 return;
1512 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1513
1514 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1515 to check one field only, no need to check them all). If not, return
1516 now.
1517
1518 If our INDEX_DESC_TYPE was generated using the older encoding,
1519 the field type should be a meaningless integer type whose name
1520 is not equal to the field name. */
1521 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1522 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1523 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1524 return;
1525
1526 /* Fixup each field of INDEX_DESC_TYPE. */
1527 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1528 {
1529 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1530 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1531
1532 if (raw_type)
1533 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1534 }
1535 }
1536
1537 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1538
1539 static char *bound_name[] = {
1540 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1541 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1542 };
1543
1544 /* Maximum number of array dimensions we are prepared to handle. */
1545
1546 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1547
1548
1549 /* The desc_* routines return primitive portions of array descriptors
1550 (fat pointers). */
1551
1552 /* The descriptor or array type, if any, indicated by TYPE; removes
1553 level of indirection, if needed. */
1554
1555 static struct type *
1556 desc_base_type (struct type *type)
1557 {
1558 if (type == NULL)
1559 return NULL;
1560 type = ada_check_typedef (type);
1561 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1562 type = ada_typedef_target_type (type);
1563
1564 if (type != NULL
1565 && (TYPE_CODE (type) == TYPE_CODE_PTR
1566 || TYPE_CODE (type) == TYPE_CODE_REF))
1567 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1568 else
1569 return type;
1570 }
1571
1572 /* True iff TYPE indicates a "thin" array pointer type. */
1573
1574 static int
1575 is_thin_pntr (struct type *type)
1576 {
1577 return
1578 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1579 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1580 }
1581
1582 /* The descriptor type for thin pointer type TYPE. */
1583
1584 static struct type *
1585 thin_descriptor_type (struct type *type)
1586 {
1587 struct type *base_type = desc_base_type (type);
1588
1589 if (base_type == NULL)
1590 return NULL;
1591 if (is_suffix (ada_type_name (base_type), "___XVE"))
1592 return base_type;
1593 else
1594 {
1595 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1596
1597 if (alt_type == NULL)
1598 return base_type;
1599 else
1600 return alt_type;
1601 }
1602 }
1603
1604 /* A pointer to the array data for thin-pointer value VAL. */
1605
1606 static struct value *
1607 thin_data_pntr (struct value *val)
1608 {
1609 struct type *type = ada_check_typedef (value_type (val));
1610 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1611
1612 data_type = lookup_pointer_type (data_type);
1613
1614 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1615 return value_cast (data_type, value_copy (val));
1616 else
1617 return value_from_longest (data_type, value_address (val));
1618 }
1619
1620 /* True iff TYPE indicates a "thick" array pointer type. */
1621
1622 static int
1623 is_thick_pntr (struct type *type)
1624 {
1625 type = desc_base_type (type);
1626 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1627 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1628 }
1629
1630 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1631 pointer to one, the type of its bounds data; otherwise, NULL. */
1632
1633 static struct type *
1634 desc_bounds_type (struct type *type)
1635 {
1636 struct type *r;
1637
1638 type = desc_base_type (type);
1639
1640 if (type == NULL)
1641 return NULL;
1642 else if (is_thin_pntr (type))
1643 {
1644 type = thin_descriptor_type (type);
1645 if (type == NULL)
1646 return NULL;
1647 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (r);
1650 }
1651 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1652 {
1653 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1654 if (r != NULL)
1655 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1656 }
1657 return NULL;
1658 }
1659
1660 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1661 one, a pointer to its bounds data. Otherwise NULL. */
1662
1663 static struct value *
1664 desc_bounds (struct value *arr)
1665 {
1666 struct type *type = ada_check_typedef (value_type (arr));
1667
1668 if (is_thin_pntr (type))
1669 {
1670 struct type *bounds_type =
1671 desc_bounds_type (thin_descriptor_type (type));
1672 LONGEST addr;
1673
1674 if (bounds_type == NULL)
1675 error (_("Bad GNAT array descriptor"));
1676
1677 /* NOTE: The following calculation is not really kosher, but
1678 since desc_type is an XVE-encoded type (and shouldn't be),
1679 the correct calculation is a real pain. FIXME (and fix GCC). */
1680 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1681 addr = value_as_long (arr);
1682 else
1683 addr = value_address (arr);
1684
1685 return
1686 value_from_longest (lookup_pointer_type (bounds_type),
1687 addr - TYPE_LENGTH (bounds_type));
1688 }
1689
1690 else if (is_thick_pntr (type))
1691 {
1692 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1693 _("Bad GNAT array descriptor"));
1694 struct type *p_bounds_type = value_type (p_bounds);
1695
1696 if (p_bounds_type
1697 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1698 {
1699 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1700
1701 if (TYPE_STUB (target_type))
1702 p_bounds = value_cast (lookup_pointer_type
1703 (ada_check_typedef (target_type)),
1704 p_bounds);
1705 }
1706 else
1707 error (_("Bad GNAT array descriptor"));
1708
1709 return p_bounds;
1710 }
1711 else
1712 return NULL;
1713 }
1714
1715 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 position of the field containing the address of the bounds data. */
1717
1718 static int
1719 fat_pntr_bounds_bitpos (struct type *type)
1720 {
1721 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1722 }
1723
1724 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1725 size of the field containing the address of the bounds data. */
1726
1727 static int
1728 fat_pntr_bounds_bitsize (struct type *type)
1729 {
1730 type = desc_base_type (type);
1731
1732 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1733 return TYPE_FIELD_BITSIZE (type, 1);
1734 else
1735 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1736 }
1737
1738 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1739 pointer to one, the type of its array data (a array-with-no-bounds type);
1740 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1741 data. */
1742
1743 static struct type *
1744 desc_data_target_type (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 /* NOTE: The following is bogus; see comment in desc_bounds. */
1749 if (is_thin_pntr (type))
1750 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1751 else if (is_thick_pntr (type))
1752 {
1753 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1754
1755 if (data_type
1756 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1757 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1758 }
1759
1760 return NULL;
1761 }
1762
1763 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1764 its array data. */
1765
1766 static struct value *
1767 desc_data (struct value *arr)
1768 {
1769 struct type *type = value_type (arr);
1770
1771 if (is_thin_pntr (type))
1772 return thin_data_pntr (arr);
1773 else if (is_thick_pntr (type))
1774 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1775 _("Bad GNAT array descriptor"));
1776 else
1777 return NULL;
1778 }
1779
1780
1781 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1782 position of the field containing the address of the data. */
1783
1784 static int
1785 fat_pntr_data_bitpos (struct type *type)
1786 {
1787 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1788 }
1789
1790 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1791 size of the field containing the address of the data. */
1792
1793 static int
1794 fat_pntr_data_bitsize (struct type *type)
1795 {
1796 type = desc_base_type (type);
1797
1798 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1799 return TYPE_FIELD_BITSIZE (type, 0);
1800 else
1801 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1802 }
1803
1804 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1805 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1806 bound, if WHICH is 1. The first bound is I=1. */
1807
1808 static struct value *
1809 desc_one_bound (struct value *bounds, int i, int which)
1810 {
1811 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1812 _("Bad GNAT array descriptor bounds"));
1813 }
1814
1815 /* If BOUNDS is an array-bounds structure type, return the bit position
1816 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1817 bound, if WHICH is 1. The first bound is I=1. */
1818
1819 static int
1820 desc_bound_bitpos (struct type *type, int i, int which)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1823 }
1824
1825 /* If BOUNDS is an array-bounds structure type, return the bit field size
1826 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1827 bound, if WHICH is 1. The first bound is I=1. */
1828
1829 static int
1830 desc_bound_bitsize (struct type *type, int i, int which)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1835 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1836 else
1837 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1838 }
1839
1840 /* If TYPE is the type of an array-bounds structure, the type of its
1841 Ith bound (numbering from 1). Otherwise, NULL. */
1842
1843 static struct type *
1844 desc_index_type (struct type *type, int i)
1845 {
1846 type = desc_base_type (type);
1847
1848 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1849 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1850 else
1851 return NULL;
1852 }
1853
1854 /* The number of index positions in the array-bounds type TYPE.
1855 Return 0 if TYPE is NULL. */
1856
1857 static int
1858 desc_arity (struct type *type)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (type != NULL)
1863 return TYPE_NFIELDS (type) / 2;
1864 return 0;
1865 }
1866
1867 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1868 an array descriptor type (representing an unconstrained array
1869 type). */
1870
1871 static int
1872 ada_is_direct_array_type (struct type *type)
1873 {
1874 if (type == NULL)
1875 return 0;
1876 type = ada_check_typedef (type);
1877 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1878 || ada_is_array_descriptor_type (type));
1879 }
1880
1881 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1882 * to one. */
1883
1884 static int
1885 ada_is_array_type (struct type *type)
1886 {
1887 while (type != NULL
1888 && (TYPE_CODE (type) == TYPE_CODE_PTR
1889 || TYPE_CODE (type) == TYPE_CODE_REF))
1890 type = TYPE_TARGET_TYPE (type);
1891 return ada_is_direct_array_type (type);
1892 }
1893
1894 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1895
1896 int
1897 ada_is_simple_array_type (struct type *type)
1898 {
1899 if (type == NULL)
1900 return 0;
1901 type = ada_check_typedef (type);
1902 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1903 || (TYPE_CODE (type) == TYPE_CODE_PTR
1904 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1905 == TYPE_CODE_ARRAY));
1906 }
1907
1908 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1909
1910 int
1911 ada_is_array_descriptor_type (struct type *type)
1912 {
1913 struct type *data_type = desc_data_target_type (type);
1914
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (data_type != NULL
1919 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1920 && desc_arity (desc_bounds_type (type)) > 0);
1921 }
1922
1923 /* Non-zero iff type is a partially mal-formed GNAT array
1924 descriptor. FIXME: This is to compensate for some problems with
1925 debugging output from GNAT. Re-examine periodically to see if it
1926 is still needed. */
1927
1928 int
1929 ada_is_bogus_array_descriptor (struct type *type)
1930 {
1931 return
1932 type != NULL
1933 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1934 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1935 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1936 && !ada_is_array_descriptor_type (type);
1937 }
1938
1939
1940 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1941 (fat pointer) returns the type of the array data described---specifically,
1942 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1943 in from the descriptor; otherwise, they are left unspecified. If
1944 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1945 returns NULL. The result is simply the type of ARR if ARR is not
1946 a descriptor. */
1947 struct type *
1948 ada_type_of_array (struct value *arr, int bounds)
1949 {
1950 if (ada_is_constrained_packed_array_type (value_type (arr)))
1951 return decode_constrained_packed_array_type (value_type (arr));
1952
1953 if (!ada_is_array_descriptor_type (value_type (arr)))
1954 return value_type (arr);
1955
1956 if (!bounds)
1957 {
1958 struct type *array_type =
1959 ada_check_typedef (desc_data_target_type (value_type (arr)));
1960
1961 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1962 TYPE_FIELD_BITSIZE (array_type, 0) =
1963 decode_packed_array_bitsize (value_type (arr));
1964
1965 return array_type;
1966 }
1967 else
1968 {
1969 struct type *elt_type;
1970 int arity;
1971 struct value *descriptor;
1972
1973 elt_type = ada_array_element_type (value_type (arr), -1);
1974 arity = ada_array_arity (value_type (arr));
1975
1976 if (elt_type == NULL || arity == 0)
1977 return ada_check_typedef (value_type (arr));
1978
1979 descriptor = desc_bounds (arr);
1980 if (value_as_long (descriptor) == 0)
1981 return NULL;
1982 while (arity > 0)
1983 {
1984 struct type *range_type = alloc_type_copy (value_type (arr));
1985 struct type *array_type = alloc_type_copy (value_type (arr));
1986 struct value *low = desc_one_bound (descriptor, arity, 0);
1987 struct value *high = desc_one_bound (descriptor, arity, 1);
1988
1989 arity -= 1;
1990 create_static_range_type (range_type, value_type (low),
1991 longest_to_int (value_as_long (low)),
1992 longest_to_int (value_as_long (high)));
1993 elt_type = create_array_type (array_type, elt_type, range_type);
1994
1995 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1996 {
1997 /* We need to store the element packed bitsize, as well as
1998 recompute the array size, because it was previously
1999 computed based on the unpacked element size. */
2000 LONGEST lo = value_as_long (low);
2001 LONGEST hi = value_as_long (high);
2002
2003 TYPE_FIELD_BITSIZE (elt_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005 /* If the array has no element, then the size is already
2006 zero, and does not need to be recomputed. */
2007 if (lo < hi)
2008 {
2009 int array_bitsize =
2010 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2011
2012 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2013 }
2014 }
2015 }
2016
2017 return lookup_pointer_type (elt_type);
2018 }
2019 }
2020
2021 /* If ARR does not represent an array, returns ARR unchanged.
2022 Otherwise, returns either a standard GDB array with bounds set
2023 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2024 GDB array. Returns NULL if ARR is a null fat pointer. */
2025
2026 struct value *
2027 ada_coerce_to_simple_array_ptr (struct value *arr)
2028 {
2029 if (ada_is_array_descriptor_type (value_type (arr)))
2030 {
2031 struct type *arrType = ada_type_of_array (arr, 1);
2032
2033 if (arrType == NULL)
2034 return NULL;
2035 return value_cast (arrType, value_copy (desc_data (arr)));
2036 }
2037 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2038 return decode_constrained_packed_array (arr);
2039 else
2040 return arr;
2041 }
2042
2043 /* If ARR does not represent an array, returns ARR unchanged.
2044 Otherwise, returns a standard GDB array describing ARR (which may
2045 be ARR itself if it already is in the proper form). */
2046
2047 struct value *
2048 ada_coerce_to_simple_array (struct value *arr)
2049 {
2050 if (ada_is_array_descriptor_type (value_type (arr)))
2051 {
2052 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2053
2054 if (arrVal == NULL)
2055 error (_("Bounds unavailable for null array pointer."));
2056 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2057 return value_ind (arrVal);
2058 }
2059 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2060 return decode_constrained_packed_array (arr);
2061 else
2062 return arr;
2063 }
2064
2065 /* If TYPE represents a GNAT array type, return it translated to an
2066 ordinary GDB array type (possibly with BITSIZE fields indicating
2067 packing). For other types, is the identity. */
2068
2069 struct type *
2070 ada_coerce_to_simple_array_type (struct type *type)
2071 {
2072 if (ada_is_constrained_packed_array_type (type))
2073 return decode_constrained_packed_array_type (type);
2074
2075 if (ada_is_array_descriptor_type (type))
2076 return ada_check_typedef (desc_data_target_type (type));
2077
2078 return type;
2079 }
2080
2081 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2082
2083 static int
2084 ada_is_packed_array_type (struct type *type)
2085 {
2086 if (type == NULL)
2087 return 0;
2088 type = desc_base_type (type);
2089 type = ada_check_typedef (type);
2090 return
2091 ada_type_name (type) != NULL
2092 && strstr (ada_type_name (type), "___XP") != NULL;
2093 }
2094
2095 /* Non-zero iff TYPE represents a standard GNAT constrained
2096 packed-array type. */
2097
2098 int
2099 ada_is_constrained_packed_array_type (struct type *type)
2100 {
2101 return ada_is_packed_array_type (type)
2102 && !ada_is_array_descriptor_type (type);
2103 }
2104
2105 /* Non-zero iff TYPE represents an array descriptor for a
2106 unconstrained packed-array type. */
2107
2108 static int
2109 ada_is_unconstrained_packed_array_type (struct type *type)
2110 {
2111 return ada_is_packed_array_type (type)
2112 && ada_is_array_descriptor_type (type);
2113 }
2114
2115 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2116 return the size of its elements in bits. */
2117
2118 static long
2119 decode_packed_array_bitsize (struct type *type)
2120 {
2121 const char *raw_name;
2122 const char *tail;
2123 long bits;
2124
2125 /* Access to arrays implemented as fat pointers are encoded as a typedef
2126 of the fat pointer type. We need the name of the fat pointer type
2127 to do the decoding, so strip the typedef layer. */
2128 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2129 type = ada_typedef_target_type (type);
2130
2131 raw_name = ada_type_name (ada_check_typedef (type));
2132 if (!raw_name)
2133 raw_name = ada_type_name (desc_base_type (type));
2134
2135 if (!raw_name)
2136 return 0;
2137
2138 tail = strstr (raw_name, "___XP");
2139 gdb_assert (tail != NULL);
2140
2141 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2142 {
2143 lim_warning
2144 (_("could not understand bit size information on packed array"));
2145 return 0;
2146 }
2147
2148 return bits;
2149 }
2150
2151 /* Given that TYPE is a standard GDB array type with all bounds filled
2152 in, and that the element size of its ultimate scalar constituents
2153 (that is, either its elements, or, if it is an array of arrays, its
2154 elements' elements, etc.) is *ELT_BITS, return an identical type,
2155 but with the bit sizes of its elements (and those of any
2156 constituent arrays) recorded in the BITSIZE components of its
2157 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2158 in bits.
2159
2160 Note that, for arrays whose index type has an XA encoding where
2161 a bound references a record discriminant, getting that discriminant,
2162 and therefore the actual value of that bound, is not possible
2163 because none of the given parameters gives us access to the record.
2164 This function assumes that it is OK in the context where it is being
2165 used to return an array whose bounds are still dynamic and where
2166 the length is arbitrary. */
2167
2168 static struct type *
2169 constrained_packed_array_type (struct type *type, long *elt_bits)
2170 {
2171 struct type *new_elt_type;
2172 struct type *new_type;
2173 struct type *index_type_desc;
2174 struct type *index_type;
2175 LONGEST low_bound, high_bound;
2176
2177 type = ada_check_typedef (type);
2178 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2179 return type;
2180
2181 index_type_desc = ada_find_parallel_type (type, "___XA");
2182 if (index_type_desc)
2183 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2184 NULL);
2185 else
2186 index_type = TYPE_INDEX_TYPE (type);
2187
2188 new_type = alloc_type_copy (type);
2189 new_elt_type =
2190 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2191 elt_bits);
2192 create_array_type (new_type, new_elt_type, index_type);
2193 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2194 TYPE_NAME (new_type) = ada_type_name (type);
2195
2196 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2197 && is_dynamic_type (check_typedef (index_type)))
2198 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2199 low_bound = high_bound = 0;
2200 if (high_bound < low_bound)
2201 *elt_bits = TYPE_LENGTH (new_type) = 0;
2202 else
2203 {
2204 *elt_bits *= (high_bound - low_bound + 1);
2205 TYPE_LENGTH (new_type) =
2206 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2207 }
2208
2209 TYPE_FIXED_INSTANCE (new_type) = 1;
2210 return new_type;
2211 }
2212
2213 /* The array type encoded by TYPE, where
2214 ada_is_constrained_packed_array_type (TYPE). */
2215
2216 static struct type *
2217 decode_constrained_packed_array_type (struct type *type)
2218 {
2219 const char *raw_name = ada_type_name (ada_check_typedef (type));
2220 char *name;
2221 const char *tail;
2222 struct type *shadow_type;
2223 long bits;
2224
2225 if (!raw_name)
2226 raw_name = ada_type_name (desc_base_type (type));
2227
2228 if (!raw_name)
2229 return NULL;
2230
2231 name = (char *) alloca (strlen (raw_name) + 1);
2232 tail = strstr (raw_name, "___XP");
2233 type = desc_base_type (type);
2234
2235 memcpy (name, raw_name, tail - raw_name);
2236 name[tail - raw_name] = '\000';
2237
2238 shadow_type = ada_find_parallel_type_with_name (type, name);
2239
2240 if (shadow_type == NULL)
2241 {
2242 lim_warning (_("could not find bounds information on packed array"));
2243 return NULL;
2244 }
2245 shadow_type = check_typedef (shadow_type);
2246
2247 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2248 {
2249 lim_warning (_("could not understand bounds "
2250 "information on packed array"));
2251 return NULL;
2252 }
2253
2254 bits = decode_packed_array_bitsize (type);
2255 return constrained_packed_array_type (shadow_type, &bits);
2256 }
2257
2258 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2259 array, returns a simple array that denotes that array. Its type is a
2260 standard GDB array type except that the BITSIZEs of the array
2261 target types are set to the number of bits in each element, and the
2262 type length is set appropriately. */
2263
2264 static struct value *
2265 decode_constrained_packed_array (struct value *arr)
2266 {
2267 struct type *type;
2268
2269 /* If our value is a pointer, then dereference it. Likewise if
2270 the value is a reference. Make sure that this operation does not
2271 cause the target type to be fixed, as this would indirectly cause
2272 this array to be decoded. The rest of the routine assumes that
2273 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2274 and "value_ind" routines to perform the dereferencing, as opposed
2275 to using "ada_coerce_ref" or "ada_value_ind". */
2276 arr = coerce_ref (arr);
2277 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2278 arr = value_ind (arr);
2279
2280 type = decode_constrained_packed_array_type (value_type (arr));
2281 if (type == NULL)
2282 {
2283 error (_("can't unpack array"));
2284 return NULL;
2285 }
2286
2287 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2288 && ada_is_modular_type (value_type (arr)))
2289 {
2290 /* This is a (right-justified) modular type representing a packed
2291 array with no wrapper. In order to interpret the value through
2292 the (left-justified) packed array type we just built, we must
2293 first left-justify it. */
2294 int bit_size, bit_pos;
2295 ULONGEST mod;
2296
2297 mod = ada_modulus (value_type (arr)) - 1;
2298 bit_size = 0;
2299 while (mod > 0)
2300 {
2301 bit_size += 1;
2302 mod >>= 1;
2303 }
2304 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2305 arr = ada_value_primitive_packed_val (arr, NULL,
2306 bit_pos / HOST_CHAR_BIT,
2307 bit_pos % HOST_CHAR_BIT,
2308 bit_size,
2309 type);
2310 }
2311
2312 return coerce_unspec_val_to_type (arr, type);
2313 }
2314
2315
2316 /* The value of the element of packed array ARR at the ARITY indices
2317 given in IND. ARR must be a simple array. */
2318
2319 static struct value *
2320 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2321 {
2322 int i;
2323 int bits, elt_off, bit_off;
2324 long elt_total_bit_offset;
2325 struct type *elt_type;
2326 struct value *v;
2327
2328 bits = 0;
2329 elt_total_bit_offset = 0;
2330 elt_type = ada_check_typedef (value_type (arr));
2331 for (i = 0; i < arity; i += 1)
2332 {
2333 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2334 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2335 error
2336 (_("attempt to do packed indexing of "
2337 "something other than a packed array"));
2338 else
2339 {
2340 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2341 LONGEST lowerbound, upperbound;
2342 LONGEST idx;
2343
2344 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2345 {
2346 lim_warning (_("don't know bounds of array"));
2347 lowerbound = upperbound = 0;
2348 }
2349
2350 idx = pos_atr (ind[i]);
2351 if (idx < lowerbound || idx > upperbound)
2352 lim_warning (_("packed array index %ld out of bounds"),
2353 (long) idx);
2354 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2355 elt_total_bit_offset += (idx - lowerbound) * bits;
2356 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2357 }
2358 }
2359 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2360 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2361
2362 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2363 bits, elt_type);
2364 return v;
2365 }
2366
2367 /* Non-zero iff TYPE includes negative integer values. */
2368
2369 static int
2370 has_negatives (struct type *type)
2371 {
2372 switch (TYPE_CODE (type))
2373 {
2374 default:
2375 return 0;
2376 case TYPE_CODE_INT:
2377 return !TYPE_UNSIGNED (type);
2378 case TYPE_CODE_RANGE:
2379 return TYPE_LOW_BOUND (type) < 0;
2380 }
2381 }
2382
2383
2384 /* Create a new value of type TYPE from the contents of OBJ starting
2385 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2386 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2387 assigning through the result will set the field fetched from.
2388 VALADDR is ignored unless OBJ is NULL, in which case,
2389 VALADDR+OFFSET must address the start of storage containing the
2390 packed value. The value returned in this case is never an lval.
2391 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2392
2393 struct value *
2394 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2395 long offset, int bit_offset, int bit_size,
2396 struct type *type)
2397 {
2398 struct value *v;
2399 int src, /* Index into the source area */
2400 targ, /* Index into the target area */
2401 srcBitsLeft, /* Number of source bits left to move */
2402 nsrc, ntarg, /* Number of source and target bytes */
2403 unusedLS, /* Number of bits in next significant
2404 byte of source that are unused */
2405 accumSize; /* Number of meaningful bits in accum */
2406 unsigned char *bytes; /* First byte containing data to unpack */
2407 unsigned char *unpacked;
2408 unsigned long accum; /* Staging area for bits being transferred */
2409 unsigned char sign;
2410 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2411 /* Transmit bytes from least to most significant; delta is the direction
2412 the indices move. */
2413 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2414
2415 type = ada_check_typedef (type);
2416
2417 if (obj == NULL)
2418 {
2419 v = allocate_value (type);
2420 bytes = (unsigned char *) (valaddr + offset);
2421 }
2422 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2423 {
2424 v = value_at (type, value_address (obj) + offset);
2425 type = value_type (v);
2426 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2427 {
2428 /* This can happen in the case of an array of dynamic objects,
2429 where the size of each element changes from element to element.
2430 In that case, we're initially given the array stride, but
2431 after resolving the element type, we find that its size is
2432 less than this stride. In that case, adjust bit_size to
2433 match TYPE's length, and recompute LEN accordingly. */
2434 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2435 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 }
2437 bytes = (unsigned char *) alloca (len);
2438 read_memory (value_address (v), bytes, len);
2439 }
2440 else
2441 {
2442 v = allocate_value (type);
2443 bytes = (unsigned char *) value_contents (obj) + offset;
2444 }
2445
2446 if (obj != NULL)
2447 {
2448 long new_offset = offset;
2449
2450 set_value_component_location (v, obj);
2451 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2452 set_value_bitsize (v, bit_size);
2453 if (value_bitpos (v) >= HOST_CHAR_BIT)
2454 {
2455 ++new_offset;
2456 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2457 }
2458 set_value_offset (v, new_offset);
2459
2460 /* Also set the parent value. This is needed when trying to
2461 assign a new value (in inferior memory). */
2462 set_value_parent (v, obj);
2463 }
2464 else
2465 set_value_bitsize (v, bit_size);
2466 unpacked = (unsigned char *) value_contents (v);
2467
2468 srcBitsLeft = bit_size;
2469 nsrc = len;
2470 ntarg = TYPE_LENGTH (type);
2471 sign = 0;
2472 if (bit_size == 0)
2473 {
2474 memset (unpacked, 0, TYPE_LENGTH (type));
2475 return v;
2476 }
2477 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2478 {
2479 src = len - 1;
2480 if (has_negatives (type)
2481 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2482 sign = ~0;
2483
2484 unusedLS =
2485 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2486 % HOST_CHAR_BIT;
2487
2488 switch (TYPE_CODE (type))
2489 {
2490 case TYPE_CODE_ARRAY:
2491 case TYPE_CODE_UNION:
2492 case TYPE_CODE_STRUCT:
2493 /* Non-scalar values must be aligned at a byte boundary... */
2494 accumSize =
2495 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2496 /* ... And are placed at the beginning (most-significant) bytes
2497 of the target. */
2498 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2499 ntarg = targ + 1;
2500 break;
2501 default:
2502 accumSize = 0;
2503 targ = TYPE_LENGTH (type) - 1;
2504 break;
2505 }
2506 }
2507 else
2508 {
2509 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2510
2511 src = targ = 0;
2512 unusedLS = bit_offset;
2513 accumSize = 0;
2514
2515 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2516 sign = ~0;
2517 }
2518
2519 accum = 0;
2520 while (nsrc > 0)
2521 {
2522 /* Mask for removing bits of the next source byte that are not
2523 part of the value. */
2524 unsigned int unusedMSMask =
2525 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2526 1;
2527 /* Sign-extend bits for this byte. */
2528 unsigned int signMask = sign & ~unusedMSMask;
2529
2530 accum |=
2531 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2532 accumSize += HOST_CHAR_BIT - unusedLS;
2533 if (accumSize >= HOST_CHAR_BIT)
2534 {
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2542 unusedLS = 0;
2543 nsrc -= 1;
2544 src += delta;
2545 }
2546 while (ntarg > 0)
2547 {
2548 accum |= sign << accumSize;
2549 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2550 accumSize -= HOST_CHAR_BIT;
2551 if (accumSize < 0)
2552 accumSize = 0;
2553 accum >>= HOST_CHAR_BIT;
2554 ntarg -= 1;
2555 targ += delta;
2556 }
2557
2558 if (is_dynamic_type (value_type (v)))
2559 v = value_from_contents_and_address (value_type (v), value_contents (v),
2560 0);
2561 return v;
2562 }
2563
2564 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2565 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2566 not overlap. */
2567 static void
2568 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2569 int src_offset, int n, int bits_big_endian_p)
2570 {
2571 unsigned int accum, mask;
2572 int accum_bits, chunk_size;
2573
2574 target += targ_offset / HOST_CHAR_BIT;
2575 targ_offset %= HOST_CHAR_BIT;
2576 source += src_offset / HOST_CHAR_BIT;
2577 src_offset %= HOST_CHAR_BIT;
2578 if (bits_big_endian_p)
2579 {
2580 accum = (unsigned char) *source;
2581 source += 1;
2582 accum_bits = HOST_CHAR_BIT - src_offset;
2583
2584 while (n > 0)
2585 {
2586 int unused_right;
2587
2588 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2589 accum_bits += HOST_CHAR_BIT;
2590 source += 1;
2591 chunk_size = HOST_CHAR_BIT - targ_offset;
2592 if (chunk_size > n)
2593 chunk_size = n;
2594 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2595 mask = ((1 << chunk_size) - 1) << unused_right;
2596 *target =
2597 (*target & ~mask)
2598 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2599 n -= chunk_size;
2600 accum_bits -= chunk_size;
2601 target += 1;
2602 targ_offset = 0;
2603 }
2604 }
2605 else
2606 {
2607 accum = (unsigned char) *source >> src_offset;
2608 source += 1;
2609 accum_bits = HOST_CHAR_BIT - src_offset;
2610
2611 while (n > 0)
2612 {
2613 accum = accum + ((unsigned char) *source << accum_bits);
2614 accum_bits += HOST_CHAR_BIT;
2615 source += 1;
2616 chunk_size = HOST_CHAR_BIT - targ_offset;
2617 if (chunk_size > n)
2618 chunk_size = n;
2619 mask = ((1 << chunk_size) - 1) << targ_offset;
2620 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2621 n -= chunk_size;
2622 accum_bits -= chunk_size;
2623 accum >>= chunk_size;
2624 target += 1;
2625 targ_offset = 0;
2626 }
2627 }
2628 }
2629
2630 /* Store the contents of FROMVAL into the location of TOVAL.
2631 Return a new value with the location of TOVAL and contents of
2632 FROMVAL. Handles assignment into packed fields that have
2633 floating-point or non-scalar types. */
2634
2635 static struct value *
2636 ada_value_assign (struct value *toval, struct value *fromval)
2637 {
2638 struct type *type = value_type (toval);
2639 int bits = value_bitsize (toval);
2640
2641 toval = ada_coerce_ref (toval);
2642 fromval = ada_coerce_ref (fromval);
2643
2644 if (ada_is_direct_array_type (value_type (toval)))
2645 toval = ada_coerce_to_simple_array (toval);
2646 if (ada_is_direct_array_type (value_type (fromval)))
2647 fromval = ada_coerce_to_simple_array (fromval);
2648
2649 if (!deprecated_value_modifiable (toval))
2650 error (_("Left operand of assignment is not a modifiable lvalue."));
2651
2652 if (VALUE_LVAL (toval) == lval_memory
2653 && bits > 0
2654 && (TYPE_CODE (type) == TYPE_CODE_FLT
2655 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2656 {
2657 int len = (value_bitpos (toval)
2658 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2659 int from_size;
2660 gdb_byte *buffer = alloca (len);
2661 struct value *val;
2662 CORE_ADDR to_addr = value_address (toval);
2663
2664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2665 fromval = value_cast (type, fromval);
2666
2667 read_memory (to_addr, buffer, len);
2668 from_size = value_bitsize (fromval);
2669 if (from_size == 0)
2670 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2671 if (gdbarch_bits_big_endian (get_type_arch (type)))
2672 move_bits (buffer, value_bitpos (toval),
2673 value_contents (fromval), from_size - bits, bits, 1);
2674 else
2675 move_bits (buffer, value_bitpos (toval),
2676 value_contents (fromval), 0, bits, 0);
2677 write_memory_with_notification (to_addr, buffer, len);
2678
2679 val = value_copy (toval);
2680 memcpy (value_contents_raw (val), value_contents (fromval),
2681 TYPE_LENGTH (type));
2682 deprecated_set_value_type (val, type);
2683
2684 return val;
2685 }
2686
2687 return value_assign (toval, fromval);
2688 }
2689
2690
2691 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2692 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2693 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2694 COMPONENT, and not the inferior's memory. The current contents
2695 of COMPONENT are ignored.
2696
2697 Although not part of the initial design, this function also works
2698 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2699 had a null address, and COMPONENT had an address which is equal to
2700 its offset inside CONTAINER. */
2701
2702 static void
2703 value_assign_to_component (struct value *container, struct value *component,
2704 struct value *val)
2705 {
2706 LONGEST offset_in_container =
2707 (LONGEST) (value_address (component) - value_address (container));
2708 int bit_offset_in_container =
2709 value_bitpos (component) - value_bitpos (container);
2710 int bits;
2711
2712 val = value_cast (value_type (component), val);
2713
2714 if (value_bitsize (component) == 0)
2715 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2716 else
2717 bits = value_bitsize (component);
2718
2719 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2720 move_bits (value_contents_writeable (container) + offset_in_container,
2721 value_bitpos (container) + bit_offset_in_container,
2722 value_contents (val),
2723 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2724 bits, 1);
2725 else
2726 move_bits (value_contents_writeable (container) + offset_in_container,
2727 value_bitpos (container) + bit_offset_in_container,
2728 value_contents (val), 0, bits, 0);
2729 }
2730
2731 /* The value of the element of array ARR at the ARITY indices given in IND.
2732 ARR may be either a simple array, GNAT array descriptor, or pointer
2733 thereto. */
2734
2735 struct value *
2736 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2737 {
2738 int k;
2739 struct value *elt;
2740 struct type *elt_type;
2741
2742 elt = ada_coerce_to_simple_array (arr);
2743
2744 elt_type = ada_check_typedef (value_type (elt));
2745 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2746 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2747 return value_subscript_packed (elt, arity, ind);
2748
2749 for (k = 0; k < arity; k += 1)
2750 {
2751 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2752 error (_("too many subscripts (%d expected)"), k);
2753 elt = value_subscript (elt, pos_atr (ind[k]));
2754 }
2755 return elt;
2756 }
2757
2758 /* Assuming ARR is a pointer to a GDB array, the value of the element
2759 of *ARR at the ARITY indices given in IND.
2760 Does not read the entire array into memory. */
2761
2762 static struct value *
2763 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2764 {
2765 int k;
2766 struct type *type
2767 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2768
2769 for (k = 0; k < arity; k += 1)
2770 {
2771 LONGEST lwb, upb;
2772 struct value *lwb_value;
2773
2774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2775 error (_("too many subscripts (%d expected)"), k);
2776 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2777 value_copy (arr));
2778 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2779 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2780 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2781 type = TYPE_TARGET_TYPE (type);
2782 }
2783
2784 return value_ind (arr);
2785 }
2786
2787 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2788 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2789 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2790 this array is LOW, as per Ada rules. */
2791 static struct value *
2792 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2793 int low, int high)
2794 {
2795 struct type *type0 = ada_check_typedef (type);
2796 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2797 struct type *index_type
2798 = create_static_range_type (NULL, base_index_type, low, high);
2799 struct type *slice_type =
2800 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2801 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2802 LONGEST base_low_pos, low_pos;
2803 CORE_ADDR base;
2804
2805 if (!discrete_position (base_index_type, low, &low_pos)
2806 || !discrete_position (base_index_type, base_low, &base_low_pos))
2807 {
2808 warning (_("unable to get positions in slice, use bounds instead"));
2809 low_pos = low;
2810 base_low_pos = base_low;
2811 }
2812
2813 base = value_as_address (array_ptr)
2814 + ((low_pos - base_low_pos)
2815 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2816 return value_at_lazy (slice_type, base);
2817 }
2818
2819
2820 static struct value *
2821 ada_value_slice (struct value *array, int low, int high)
2822 {
2823 struct type *type = ada_check_typedef (value_type (array));
2824 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2825 struct type *index_type
2826 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2827 struct type *slice_type =
2828 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2829 LONGEST low_pos, high_pos;
2830
2831 if (!discrete_position (base_index_type, low, &low_pos)
2832 || !discrete_position (base_index_type, high, &high_pos))
2833 {
2834 warning (_("unable to get positions in slice, use bounds instead"));
2835 low_pos = low;
2836 high_pos = high;
2837 }
2838
2839 return value_cast (slice_type,
2840 value_slice (array, low, high_pos - low_pos + 1));
2841 }
2842
2843 /* If type is a record type in the form of a standard GNAT array
2844 descriptor, returns the number of dimensions for type. If arr is a
2845 simple array, returns the number of "array of"s that prefix its
2846 type designation. Otherwise, returns 0. */
2847
2848 int
2849 ada_array_arity (struct type *type)
2850 {
2851 int arity;
2852
2853 if (type == NULL)
2854 return 0;
2855
2856 type = desc_base_type (type);
2857
2858 arity = 0;
2859 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2860 return desc_arity (desc_bounds_type (type));
2861 else
2862 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2863 {
2864 arity += 1;
2865 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2866 }
2867
2868 return arity;
2869 }
2870
2871 /* If TYPE is a record type in the form of a standard GNAT array
2872 descriptor or a simple array type, returns the element type for
2873 TYPE after indexing by NINDICES indices, or by all indices if
2874 NINDICES is -1. Otherwise, returns NULL. */
2875
2876 struct type *
2877 ada_array_element_type (struct type *type, int nindices)
2878 {
2879 type = desc_base_type (type);
2880
2881 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2882 {
2883 int k;
2884 struct type *p_array_type;
2885
2886 p_array_type = desc_data_target_type (type);
2887
2888 k = ada_array_arity (type);
2889 if (k == 0)
2890 return NULL;
2891
2892 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2893 if (nindices >= 0 && k > nindices)
2894 k = nindices;
2895 while (k > 0 && p_array_type != NULL)
2896 {
2897 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2898 k -= 1;
2899 }
2900 return p_array_type;
2901 }
2902 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2903 {
2904 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2905 {
2906 type = TYPE_TARGET_TYPE (type);
2907 nindices -= 1;
2908 }
2909 return type;
2910 }
2911
2912 return NULL;
2913 }
2914
2915 /* The type of nth index in arrays of given type (n numbering from 1).
2916 Does not examine memory. Throws an error if N is invalid or TYPE
2917 is not an array type. NAME is the name of the Ada attribute being
2918 evaluated ('range, 'first, 'last, or 'length); it is used in building
2919 the error message. */
2920
2921 static struct type *
2922 ada_index_type (struct type *type, int n, const char *name)
2923 {
2924 struct type *result_type;
2925
2926 type = desc_base_type (type);
2927
2928 if (n < 0 || n > ada_array_arity (type))
2929 error (_("invalid dimension number to '%s"), name);
2930
2931 if (ada_is_simple_array_type (type))
2932 {
2933 int i;
2934
2935 for (i = 1; i < n; i += 1)
2936 type = TYPE_TARGET_TYPE (type);
2937 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2938 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2939 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2940 perhaps stabsread.c would make more sense. */
2941 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2942 result_type = NULL;
2943 }
2944 else
2945 {
2946 result_type = desc_index_type (desc_bounds_type (type), n);
2947 if (result_type == NULL)
2948 error (_("attempt to take bound of something that is not an array"));
2949 }
2950
2951 return result_type;
2952 }
2953
2954 /* Given that arr is an array type, returns the lower bound of the
2955 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2956 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2957 array-descriptor type. It works for other arrays with bounds supplied
2958 by run-time quantities other than discriminants. */
2959
2960 static LONGEST
2961 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2962 {
2963 struct type *type, *index_type_desc, *index_type;
2964 int i;
2965
2966 gdb_assert (which == 0 || which == 1);
2967
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 arr_type = decode_constrained_packed_array_type (arr_type);
2970
2971 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2972 return (LONGEST) - which;
2973
2974 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2975 type = TYPE_TARGET_TYPE (arr_type);
2976 else
2977 type = arr_type;
2978
2979 if (TYPE_FIXED_INSTANCE (type))
2980 {
2981 /* The array has already been fixed, so we do not need to
2982 check the parallel ___XA type again. That encoding has
2983 already been applied, so ignore it now. */
2984 index_type_desc = NULL;
2985 }
2986 else
2987 {
2988 index_type_desc = ada_find_parallel_type (type, "___XA");
2989 ada_fixup_array_indexes_type (index_type_desc);
2990 }
2991
2992 if (index_type_desc != NULL)
2993 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2994 NULL);
2995 else
2996 {
2997 struct type *elt_type = check_typedef (type);
2998
2999 for (i = 1; i < n; i++)
3000 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3001
3002 index_type = TYPE_INDEX_TYPE (elt_type);
3003 }
3004
3005 return
3006 (LONGEST) (which == 0
3007 ? ada_discrete_type_low_bound (index_type)
3008 : ada_discrete_type_high_bound (index_type));
3009 }
3010
3011 /* Given that arr is an array value, returns the lower bound of the
3012 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3013 WHICH is 1. This routine will also work for arrays with bounds
3014 supplied by run-time quantities other than discriminants. */
3015
3016 static LONGEST
3017 ada_array_bound (struct value *arr, int n, int which)
3018 {
3019 struct type *arr_type;
3020
3021 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3022 arr = value_ind (arr);
3023 arr_type = value_enclosing_type (arr);
3024
3025 if (ada_is_constrained_packed_array_type (arr_type))
3026 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3027 else if (ada_is_simple_array_type (arr_type))
3028 return ada_array_bound_from_type (arr_type, n, which);
3029 else
3030 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3031 }
3032
3033 /* Given that arr is an array value, returns the length of the
3034 nth index. This routine will also work for arrays with bounds
3035 supplied by run-time quantities other than discriminants.
3036 Does not work for arrays indexed by enumeration types with representation
3037 clauses at the moment. */
3038
3039 static LONGEST
3040 ada_array_length (struct value *arr, int n)
3041 {
3042 struct type *arr_type, *index_type;
3043 int low, high;
3044
3045 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3046 arr = value_ind (arr);
3047 arr_type = value_enclosing_type (arr);
3048
3049 if (ada_is_constrained_packed_array_type (arr_type))
3050 return ada_array_length (decode_constrained_packed_array (arr), n);
3051
3052 if (ada_is_simple_array_type (arr_type))
3053 {
3054 low = ada_array_bound_from_type (arr_type, n, 0);
3055 high = ada_array_bound_from_type (arr_type, n, 1);
3056 }
3057 else
3058 {
3059 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3060 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3061 }
3062
3063 arr_type = check_typedef (arr_type);
3064 index_type = TYPE_INDEX_TYPE (arr_type);
3065 if (index_type != NULL)
3066 {
3067 struct type *base_type;
3068 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3069 base_type = TYPE_TARGET_TYPE (index_type);
3070 else
3071 base_type = index_type;
3072
3073 low = pos_atr (value_from_longest (base_type, low));
3074 high = pos_atr (value_from_longest (base_type, high));
3075 }
3076 return high - low + 1;
3077 }
3078
3079 /* An empty array whose type is that of ARR_TYPE (an array type),
3080 with bounds LOW to LOW-1. */
3081
3082 static struct value *
3083 empty_array (struct type *arr_type, int low)
3084 {
3085 struct type *arr_type0 = ada_check_typedef (arr_type);
3086 struct type *index_type
3087 = create_static_range_type
3088 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3089 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3090
3091 return allocate_value (create_array_type (NULL, elt_type, index_type));
3092 }
3093 \f
3094
3095 /* Name resolution */
3096
3097 /* The "decoded" name for the user-definable Ada operator corresponding
3098 to OP. */
3099
3100 static const char *
3101 ada_decoded_op_name (enum exp_opcode op)
3102 {
3103 int i;
3104
3105 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3106 {
3107 if (ada_opname_table[i].op == op)
3108 return ada_opname_table[i].decoded;
3109 }
3110 error (_("Could not find operator name for opcode"));
3111 }
3112
3113
3114 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3115 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3116 undefined namespace) and converts operators that are
3117 user-defined into appropriate function calls. If CONTEXT_TYPE is
3118 non-null, it provides a preferred result type [at the moment, only
3119 type void has any effect---causing procedures to be preferred over
3120 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3121 return type is preferred. May change (expand) *EXP. */
3122
3123 static void
3124 resolve (struct expression **expp, int void_context_p)
3125 {
3126 struct type *context_type = NULL;
3127 int pc = 0;
3128
3129 if (void_context_p)
3130 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3131
3132 resolve_subexp (expp, &pc, 1, context_type);
3133 }
3134
3135 /* Resolve the operator of the subexpression beginning at
3136 position *POS of *EXPP. "Resolving" consists of replacing
3137 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3138 with their resolutions, replacing built-in operators with
3139 function calls to user-defined operators, where appropriate, and,
3140 when DEPROCEDURE_P is non-zero, converting function-valued variables
3141 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3142 are as in ada_resolve, above. */
3143
3144 static struct value *
3145 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3146 struct type *context_type)
3147 {
3148 int pc = *pos;
3149 int i;
3150 struct expression *exp; /* Convenience: == *expp. */
3151 enum exp_opcode op = (*expp)->elts[pc].opcode;
3152 struct value **argvec; /* Vector of operand types (alloca'ed). */
3153 int nargs; /* Number of operands. */
3154 int oplen;
3155
3156 argvec = NULL;
3157 nargs = 0;
3158 exp = *expp;
3159
3160 /* Pass one: resolve operands, saving their types and updating *pos,
3161 if needed. */
3162 switch (op)
3163 {
3164 case OP_FUNCALL:
3165 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3166 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3167 *pos += 7;
3168 else
3169 {
3170 *pos += 3;
3171 resolve_subexp (expp, pos, 0, NULL);
3172 }
3173 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3174 break;
3175
3176 case UNOP_ADDR:
3177 *pos += 1;
3178 resolve_subexp (expp, pos, 0, NULL);
3179 break;
3180
3181 case UNOP_QUAL:
3182 *pos += 3;
3183 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3184 break;
3185
3186 case OP_ATR_MODULUS:
3187 case OP_ATR_SIZE:
3188 case OP_ATR_TAG:
3189 case OP_ATR_FIRST:
3190 case OP_ATR_LAST:
3191 case OP_ATR_LENGTH:
3192 case OP_ATR_POS:
3193 case OP_ATR_VAL:
3194 case OP_ATR_MIN:
3195 case OP_ATR_MAX:
3196 case TERNOP_IN_RANGE:
3197 case BINOP_IN_BOUNDS:
3198 case UNOP_IN_RANGE:
3199 case OP_AGGREGATE:
3200 case OP_OTHERS:
3201 case OP_CHOICES:
3202 case OP_POSITIONAL:
3203 case OP_DISCRETE_RANGE:
3204 case OP_NAME:
3205 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3206 *pos += oplen;
3207 break;
3208
3209 case BINOP_ASSIGN:
3210 {
3211 struct value *arg1;
3212
3213 *pos += 1;
3214 arg1 = resolve_subexp (expp, pos, 0, NULL);
3215 if (arg1 == NULL)
3216 resolve_subexp (expp, pos, 1, NULL);
3217 else
3218 resolve_subexp (expp, pos, 1, value_type (arg1));
3219 break;
3220 }
3221
3222 case UNOP_CAST:
3223 *pos += 3;
3224 nargs = 1;
3225 break;
3226
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_EXP:
3234 case BINOP_CONCAT:
3235 case BINOP_LOGICAL_AND:
3236 case BINOP_LOGICAL_OR:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
3240
3241 case BINOP_EQUAL:
3242 case BINOP_NOTEQUAL:
3243 case BINOP_LESS:
3244 case BINOP_GTR:
3245 case BINOP_LEQ:
3246 case BINOP_GEQ:
3247
3248 case BINOP_REPEAT:
3249 case BINOP_SUBSCRIPT:
3250 case BINOP_COMMA:
3251 *pos += 1;
3252 nargs = 2;
3253 break;
3254
3255 case UNOP_NEG:
3256 case UNOP_PLUS:
3257 case UNOP_LOGICAL_NOT:
3258 case UNOP_ABS:
3259 case UNOP_IND:
3260 *pos += 1;
3261 nargs = 1;
3262 break;
3263
3264 case OP_LONG:
3265 case OP_DOUBLE:
3266 case OP_VAR_VALUE:
3267 *pos += 4;
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_BOOL:
3272 case OP_LAST:
3273 case OP_INTERNALVAR:
3274 *pos += 3;
3275 break;
3276
3277 case UNOP_MEMVAL:
3278 *pos += 3;
3279 nargs = 1;
3280 break;
3281
3282 case OP_REGISTER:
3283 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3284 break;
3285
3286 case STRUCTOP_STRUCT:
3287 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3288 nargs = 1;
3289 break;
3290
3291 case TERNOP_SLICE:
3292 *pos += 1;
3293 nargs = 3;
3294 break;
3295
3296 case OP_STRING:
3297 break;
3298
3299 default:
3300 error (_("Unexpected operator during name resolution"));
3301 }
3302
3303 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3304 for (i = 0; i < nargs; i += 1)
3305 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3306 argvec[i] = NULL;
3307 exp = *expp;
3308
3309 /* Pass two: perform any resolution on principal operator. */
3310 switch (op)
3311 {
3312 default:
3313 break;
3314
3315 case OP_VAR_VALUE:
3316 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3317 {
3318 struct block_symbol *candidates;
3319 int n_candidates;
3320
3321 n_candidates =
3322 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3323 (exp->elts[pc + 2].symbol),
3324 exp->elts[pc + 1].block, VAR_DOMAIN,
3325 &candidates);
3326
3327 if (n_candidates > 1)
3328 {
3329 /* Types tend to get re-introduced locally, so if there
3330 are any local symbols that are not types, first filter
3331 out all types. */
3332 int j;
3333 for (j = 0; j < n_candidates; j += 1)
3334 switch (SYMBOL_CLASS (candidates[j].symbol))
3335 {
3336 case LOC_REGISTER:
3337 case LOC_ARG:
3338 case LOC_REF_ARG:
3339 case LOC_REGPARM_ADDR:
3340 case LOC_LOCAL:
3341 case LOC_COMPUTED:
3342 goto FoundNonType;
3343 default:
3344 break;
3345 }
3346 FoundNonType:
3347 if (j < n_candidates)
3348 {
3349 j = 0;
3350 while (j < n_candidates)
3351 {
3352 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3353 {
3354 candidates[j] = candidates[n_candidates - 1];
3355 n_candidates -= 1;
3356 }
3357 else
3358 j += 1;
3359 }
3360 }
3361 }
3362
3363 if (n_candidates == 0)
3364 error (_("No definition found for %s"),
3365 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3366 else if (n_candidates == 1)
3367 i = 0;
3368 else if (deprocedure_p
3369 && !is_nonfunction (candidates, n_candidates))
3370 {
3371 i = ada_resolve_function
3372 (candidates, n_candidates, NULL, 0,
3373 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3374 context_type);
3375 if (i < 0)
3376 error (_("Could not find a match for %s"),
3377 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3378 }
3379 else
3380 {
3381 printf_filtered (_("Multiple matches for %s\n"),
3382 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3383 user_select_syms (candidates, n_candidates, 1);
3384 i = 0;
3385 }
3386
3387 exp->elts[pc + 1].block = candidates[i].block;
3388 exp->elts[pc + 2].symbol = candidates[i].symbol;
3389 if (innermost_block == NULL
3390 || contained_in (candidates[i].block, innermost_block))
3391 innermost_block = candidates[i].block;
3392 }
3393
3394 if (deprocedure_p
3395 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3396 == TYPE_CODE_FUNC))
3397 {
3398 replace_operator_with_call (expp, pc, 0, 0,
3399 exp->elts[pc + 2].symbol,
3400 exp->elts[pc + 1].block);
3401 exp = *expp;
3402 }
3403 break;
3404
3405 case OP_FUNCALL:
3406 {
3407 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3408 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3409 {
3410 struct block_symbol *candidates;
3411 int n_candidates;
3412
3413 n_candidates =
3414 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3415 (exp->elts[pc + 5].symbol),
3416 exp->elts[pc + 4].block, VAR_DOMAIN,
3417 &candidates);
3418 if (n_candidates == 1)
3419 i = 0;
3420 else
3421 {
3422 i = ada_resolve_function
3423 (candidates, n_candidates,
3424 argvec, nargs,
3425 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3426 context_type);
3427 if (i < 0)
3428 error (_("Could not find a match for %s"),
3429 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3430 }
3431
3432 exp->elts[pc + 4].block = candidates[i].block;
3433 exp->elts[pc + 5].symbol = candidates[i].symbol;
3434 if (innermost_block == NULL
3435 || contained_in (candidates[i].block, innermost_block))
3436 innermost_block = candidates[i].block;
3437 }
3438 }
3439 break;
3440 case BINOP_ADD:
3441 case BINOP_SUB:
3442 case BINOP_MUL:
3443 case BINOP_DIV:
3444 case BINOP_REM:
3445 case BINOP_MOD:
3446 case BINOP_CONCAT:
3447 case BINOP_BITWISE_AND:
3448 case BINOP_BITWISE_IOR:
3449 case BINOP_BITWISE_XOR:
3450 case BINOP_EQUAL:
3451 case BINOP_NOTEQUAL:
3452 case BINOP_LESS:
3453 case BINOP_GTR:
3454 case BINOP_LEQ:
3455 case BINOP_GEQ:
3456 case BINOP_EXP:
3457 case UNOP_NEG:
3458 case UNOP_PLUS:
3459 case UNOP_LOGICAL_NOT:
3460 case UNOP_ABS:
3461 if (possible_user_operator_p (op, argvec))
3462 {
3463 struct block_symbol *candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3468 (struct block *) NULL, VAR_DOMAIN,
3469 &candidates);
3470 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3471 ada_decoded_op_name (op), NULL);
3472 if (i < 0)
3473 break;
3474
3475 replace_operator_with_call (expp, pc, nargs, 1,
3476 candidates[i].symbol,
3477 candidates[i].block);
3478 exp = *expp;
3479 }
3480 break;
3481
3482 case OP_TYPE:
3483 case OP_REGISTER:
3484 return NULL;
3485 }
3486
3487 *pos = pc;
3488 return evaluate_subexp_type (exp, pos);
3489 }
3490
3491 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3492 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3493 a non-pointer. */
3494 /* The term "match" here is rather loose. The match is heuristic and
3495 liberal. */
3496
3497 static int
3498 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3499 {
3500 ftype = ada_check_typedef (ftype);
3501 atype = ada_check_typedef (atype);
3502
3503 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3504 ftype = TYPE_TARGET_TYPE (ftype);
3505 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3506 atype = TYPE_TARGET_TYPE (atype);
3507
3508 switch (TYPE_CODE (ftype))
3509 {
3510 default:
3511 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3512 case TYPE_CODE_PTR:
3513 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3514 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3515 TYPE_TARGET_TYPE (atype), 0);
3516 else
3517 return (may_deref
3518 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3519 case TYPE_CODE_INT:
3520 case TYPE_CODE_ENUM:
3521 case TYPE_CODE_RANGE:
3522 switch (TYPE_CODE (atype))
3523 {
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 return 1;
3528 default:
3529 return 0;
3530 }
3531
3532 case TYPE_CODE_ARRAY:
3533 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3534 || ada_is_array_descriptor_type (atype));
3535
3536 case TYPE_CODE_STRUCT:
3537 if (ada_is_array_descriptor_type (ftype))
3538 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
3540 else
3541 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3542 && !ada_is_array_descriptor_type (atype));
3543
3544 case TYPE_CODE_UNION:
3545 case TYPE_CODE_FLT:
3546 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3547 }
3548 }
3549
3550 /* Return non-zero if the formals of FUNC "sufficiently match" the
3551 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3552 may also be an enumeral, in which case it is treated as a 0-
3553 argument function. */
3554
3555 static int
3556 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3557 {
3558 int i;
3559 struct type *func_type = SYMBOL_TYPE (func);
3560
3561 if (SYMBOL_CLASS (func) == LOC_CONST
3562 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3563 return (n_actuals == 0);
3564 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3565 return 0;
3566
3567 if (TYPE_NFIELDS (func_type) != n_actuals)
3568 return 0;
3569
3570 for (i = 0; i < n_actuals; i += 1)
3571 {
3572 if (actuals[i] == NULL)
3573 return 0;
3574 else
3575 {
3576 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3577 i));
3578 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3579
3580 if (!ada_type_match (ftype, atype, 1))
3581 return 0;
3582 }
3583 }
3584 return 1;
3585 }
3586
3587 /* False iff function type FUNC_TYPE definitely does not produce a value
3588 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3589 FUNC_TYPE is not a valid function type with a non-null return type
3590 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3591
3592 static int
3593 return_match (struct type *func_type, struct type *context_type)
3594 {
3595 struct type *return_type;
3596
3597 if (func_type == NULL)
3598 return 1;
3599
3600 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3601 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3602 else
3603 return_type = get_base_type (func_type);
3604 if (return_type == NULL)
3605 return 1;
3606
3607 context_type = get_base_type (context_type);
3608
3609 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3610 return context_type == NULL || return_type == context_type;
3611 else if (context_type == NULL)
3612 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3613 else
3614 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3615 }
3616
3617
3618 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3619 function (if any) that matches the types of the NARGS arguments in
3620 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3621 that returns that type, then eliminate matches that don't. If
3622 CONTEXT_TYPE is void and there is at least one match that does not
3623 return void, eliminate all matches that do.
3624
3625 Asks the user if there is more than one match remaining. Returns -1
3626 if there is no such symbol or none is selected. NAME is used
3627 solely for messages. May re-arrange and modify SYMS in
3628 the process; the index returned is for the modified vector. */
3629
3630 static int
3631 ada_resolve_function (struct block_symbol syms[],
3632 int nsyms, struct value **args, int nargs,
3633 const char *name, struct type *context_type)
3634 {
3635 int fallback;
3636 int k;
3637 int m; /* Number of hits */
3638
3639 m = 0;
3640 /* In the first pass of the loop, we only accept functions matching
3641 context_type. If none are found, we add a second pass of the loop
3642 where every function is accepted. */
3643 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3644 {
3645 for (k = 0; k < nsyms; k += 1)
3646 {
3647 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3648
3649 if (ada_args_match (syms[k].symbol, args, nargs)
3650 && (fallback || return_match (type, context_type)))
3651 {
3652 syms[m] = syms[k];
3653 m += 1;
3654 }
3655 }
3656 }
3657
3658 if (m == 0)
3659 return -1;
3660 else if (m > 1)
3661 {
3662 printf_filtered (_("Multiple matches for %s\n"), name);
3663 user_select_syms (syms, m, 1);
3664 return 0;
3665 }
3666 return 0;
3667 }
3668
3669 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3670 in a listing of choices during disambiguation (see sort_choices, below).
3671 The idea is that overloadings of a subprogram name from the
3672 same package should sort in their source order. We settle for ordering
3673 such symbols by their trailing number (__N or $N). */
3674
3675 static int
3676 encoded_ordered_before (const char *N0, const char *N1)
3677 {
3678 if (N1 == NULL)
3679 return 0;
3680 else if (N0 == NULL)
3681 return 1;
3682 else
3683 {
3684 int k0, k1;
3685
3686 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3687 ;
3688 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3689 ;
3690 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3691 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3692 {
3693 int n0, n1;
3694
3695 n0 = k0;
3696 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3697 n0 -= 1;
3698 n1 = k1;
3699 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3700 n1 -= 1;
3701 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3702 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3703 }
3704 return (strcmp (N0, N1) < 0);
3705 }
3706 }
3707
3708 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3709 encoded names. */
3710
3711 static void
3712 sort_choices (struct block_symbol syms[], int nsyms)
3713 {
3714 int i;
3715
3716 for (i = 1; i < nsyms; i += 1)
3717 {
3718 struct block_symbol sym = syms[i];
3719 int j;
3720
3721 for (j = i - 1; j >= 0; j -= 1)
3722 {
3723 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3724 SYMBOL_LINKAGE_NAME (sym.symbol)))
3725 break;
3726 syms[j + 1] = syms[j];
3727 }
3728 syms[j + 1] = sym;
3729 }
3730 }
3731
3732 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3733 by asking the user (if necessary), returning the number selected,
3734 and setting the first elements of SYMS items. Error if no symbols
3735 selected. */
3736
3737 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3738 to be re-integrated one of these days. */
3739
3740 int
3741 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3742 {
3743 int i;
3744 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3745 int n_chosen;
3746 int first_choice = (max_results == 1) ? 1 : 2;
3747 const char *select_mode = multiple_symbols_select_mode ();
3748
3749 if (max_results < 1)
3750 error (_("Request to select 0 symbols!"));
3751 if (nsyms <= 1)
3752 return nsyms;
3753
3754 if (select_mode == multiple_symbols_cancel)
3755 error (_("\
3756 canceled because the command is ambiguous\n\
3757 See set/show multiple-symbol."));
3758
3759 /* If select_mode is "all", then return all possible symbols.
3760 Only do that if more than one symbol can be selected, of course.
3761 Otherwise, display the menu as usual. */
3762 if (select_mode == multiple_symbols_all && max_results > 1)
3763 return nsyms;
3764
3765 printf_unfiltered (_("[0] cancel\n"));
3766 if (max_results > 1)
3767 printf_unfiltered (_("[1] all\n"));
3768
3769 sort_choices (syms, nsyms);
3770
3771 for (i = 0; i < nsyms; i += 1)
3772 {
3773 if (syms[i].symbol == NULL)
3774 continue;
3775
3776 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3777 {
3778 struct symtab_and_line sal =
3779 find_function_start_sal (syms[i].symbol, 1);
3780
3781 if (sal.symtab == NULL)
3782 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3783 i + first_choice,
3784 SYMBOL_PRINT_NAME (syms[i].symbol),
3785 sal.line);
3786 else
3787 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3788 SYMBOL_PRINT_NAME (syms[i].symbol),
3789 symtab_to_filename_for_display (sal.symtab),
3790 sal.line);
3791 continue;
3792 }
3793 else
3794 {
3795 int is_enumeral =
3796 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3797 && SYMBOL_TYPE (syms[i].symbol) != NULL
3798 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3799 struct symtab *symtab = NULL;
3800
3801 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3802 symtab = symbol_symtab (syms[i].symbol);
3803
3804 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3805 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3806 i + first_choice,
3807 SYMBOL_PRINT_NAME (syms[i].symbol),
3808 symtab_to_filename_for_display (symtab),
3809 SYMBOL_LINE (syms[i].symbol));
3810 else if (is_enumeral
3811 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3812 {
3813 printf_unfiltered (("[%d] "), i + first_choice);
3814 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3815 gdb_stdout, -1, 0, &type_print_raw_options);
3816 printf_unfiltered (_("'(%s) (enumeral)\n"),
3817 SYMBOL_PRINT_NAME (syms[i].symbol));
3818 }
3819 else if (symtab != NULL)
3820 printf_unfiltered (is_enumeral
3821 ? _("[%d] %s in %s (enumeral)\n")
3822 : _("[%d] %s at %s:?\n"),
3823 i + first_choice,
3824 SYMBOL_PRINT_NAME (syms[i].symbol),
3825 symtab_to_filename_for_display (symtab));
3826 else
3827 printf_unfiltered (is_enumeral
3828 ? _("[%d] %s (enumeral)\n")
3829 : _("[%d] %s at ?\n"),
3830 i + first_choice,
3831 SYMBOL_PRINT_NAME (syms[i].symbol));
3832 }
3833 }
3834
3835 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3836 "overload-choice");
3837
3838 for (i = 0; i < n_chosen; i += 1)
3839 syms[i] = syms[chosen[i]];
3840
3841 return n_chosen;
3842 }
3843
3844 /* Read and validate a set of numeric choices from the user in the
3845 range 0 .. N_CHOICES-1. Place the results in increasing
3846 order in CHOICES[0 .. N-1], and return N.
3847
3848 The user types choices as a sequence of numbers on one line
3849 separated by blanks, encoding them as follows:
3850
3851 + A choice of 0 means to cancel the selection, throwing an error.
3852 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3853 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3854
3855 The user is not allowed to choose more than MAX_RESULTS values.
3856
3857 ANNOTATION_SUFFIX, if present, is used to annotate the input
3858 prompts (for use with the -f switch). */
3859
3860 int
3861 get_selections (int *choices, int n_choices, int max_results,
3862 int is_all_choice, char *annotation_suffix)
3863 {
3864 char *args;
3865 char *prompt;
3866 int n_chosen;
3867 int first_choice = is_all_choice ? 2 : 1;
3868
3869 prompt = getenv ("PS2");
3870 if (prompt == NULL)
3871 prompt = "> ";
3872
3873 args = command_line_input (prompt, 0, annotation_suffix);
3874
3875 if (args == NULL)
3876 error_no_arg (_("one or more choice numbers"));
3877
3878 n_chosen = 0;
3879
3880 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3881 order, as given in args. Choices are validated. */
3882 while (1)
3883 {
3884 char *args2;
3885 int choice, j;
3886
3887 args = skip_spaces (args);
3888 if (*args == '\0' && n_chosen == 0)
3889 error_no_arg (_("one or more choice numbers"));
3890 else if (*args == '\0')
3891 break;
3892
3893 choice = strtol (args, &args2, 10);
3894 if (args == args2 || choice < 0
3895 || choice > n_choices + first_choice - 1)
3896 error (_("Argument must be choice number"));
3897 args = args2;
3898
3899 if (choice == 0)
3900 error (_("cancelled"));
3901
3902 if (choice < first_choice)
3903 {
3904 n_chosen = n_choices;
3905 for (j = 0; j < n_choices; j += 1)
3906 choices[j] = j;
3907 break;
3908 }
3909 choice -= first_choice;
3910
3911 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3912 {
3913 }
3914
3915 if (j < 0 || choice != choices[j])
3916 {
3917 int k;
3918
3919 for (k = n_chosen - 1; k > j; k -= 1)
3920 choices[k + 1] = choices[k];
3921 choices[j + 1] = choice;
3922 n_chosen += 1;
3923 }
3924 }
3925
3926 if (n_chosen > max_results)
3927 error (_("Select no more than %d of the above"), max_results);
3928
3929 return n_chosen;
3930 }
3931
3932 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3933 on the function identified by SYM and BLOCK, and taking NARGS
3934 arguments. Update *EXPP as needed to hold more space. */
3935
3936 static void
3937 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3938 int oplen, struct symbol *sym,
3939 const struct block *block)
3940 {
3941 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3942 symbol, -oplen for operator being replaced). */
3943 struct expression *newexp = (struct expression *)
3944 xzalloc (sizeof (struct expression)
3945 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3946 struct expression *exp = *expp;
3947
3948 newexp->nelts = exp->nelts + 7 - oplen;
3949 newexp->language_defn = exp->language_defn;
3950 newexp->gdbarch = exp->gdbarch;
3951 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3952 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3953 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3954
3955 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3956 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3957
3958 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3959 newexp->elts[pc + 4].block = block;
3960 newexp->elts[pc + 5].symbol = sym;
3961
3962 *expp = newexp;
3963 xfree (exp);
3964 }
3965
3966 /* Type-class predicates */
3967
3968 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3969 or FLOAT). */
3970
3971 static int
3972 numeric_type_p (struct type *type)
3973 {
3974 if (type == NULL)
3975 return 0;
3976 else
3977 {
3978 switch (TYPE_CODE (type))
3979 {
3980 case TYPE_CODE_INT:
3981 case TYPE_CODE_FLT:
3982 return 1;
3983 case TYPE_CODE_RANGE:
3984 return (type == TYPE_TARGET_TYPE (type)
3985 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3986 default:
3987 return 0;
3988 }
3989 }
3990 }
3991
3992 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3993
3994 static int
3995 integer_type_p (struct type *type)
3996 {
3997 if (type == NULL)
3998 return 0;
3999 else
4000 {
4001 switch (TYPE_CODE (type))
4002 {
4003 case TYPE_CODE_INT:
4004 return 1;
4005 case TYPE_CODE_RANGE:
4006 return (type == TYPE_TARGET_TYPE (type)
4007 || integer_type_p (TYPE_TARGET_TYPE (type)));
4008 default:
4009 return 0;
4010 }
4011 }
4012 }
4013
4014 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4015
4016 static int
4017 scalar_type_p (struct type *type)
4018 {
4019 if (type == NULL)
4020 return 0;
4021 else
4022 {
4023 switch (TYPE_CODE (type))
4024 {
4025 case TYPE_CODE_INT:
4026 case TYPE_CODE_RANGE:
4027 case TYPE_CODE_ENUM:
4028 case TYPE_CODE_FLT:
4029 return 1;
4030 default:
4031 return 0;
4032 }
4033 }
4034 }
4035
4036 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4037
4038 static int
4039 discrete_type_p (struct type *type)
4040 {
4041 if (type == NULL)
4042 return 0;
4043 else
4044 {
4045 switch (TYPE_CODE (type))
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_RANGE:
4049 case TYPE_CODE_ENUM:
4050 case TYPE_CODE_BOOL:
4051 return 1;
4052 default:
4053 return 0;
4054 }
4055 }
4056 }
4057
4058 /* Returns non-zero if OP with operands in the vector ARGS could be
4059 a user-defined function. Errs on the side of pre-defined operators
4060 (i.e., result 0). */
4061
4062 static int
4063 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4064 {
4065 struct type *type0 =
4066 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4067 struct type *type1 =
4068 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4069
4070 if (type0 == NULL)
4071 return 0;
4072
4073 switch (op)
4074 {
4075 default:
4076 return 0;
4077
4078 case BINOP_ADD:
4079 case BINOP_SUB:
4080 case BINOP_MUL:
4081 case BINOP_DIV:
4082 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4083
4084 case BINOP_REM:
4085 case BINOP_MOD:
4086 case BINOP_BITWISE_AND:
4087 case BINOP_BITWISE_IOR:
4088 case BINOP_BITWISE_XOR:
4089 return (!(integer_type_p (type0) && integer_type_p (type1)));
4090
4091 case BINOP_EQUAL:
4092 case BINOP_NOTEQUAL:
4093 case BINOP_LESS:
4094 case BINOP_GTR:
4095 case BINOP_LEQ:
4096 case BINOP_GEQ:
4097 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4098
4099 case BINOP_CONCAT:
4100 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4101
4102 case BINOP_EXP:
4103 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4104
4105 case UNOP_NEG:
4106 case UNOP_PLUS:
4107 case UNOP_LOGICAL_NOT:
4108 case UNOP_ABS:
4109 return (!numeric_type_p (type0));
4110
4111 }
4112 }
4113 \f
4114 /* Renaming */
4115
4116 /* NOTES:
4117
4118 1. In the following, we assume that a renaming type's name may
4119 have an ___XD suffix. It would be nice if this went away at some
4120 point.
4121 2. We handle both the (old) purely type-based representation of
4122 renamings and the (new) variable-based encoding. At some point,
4123 it is devoutly to be hoped that the former goes away
4124 (FIXME: hilfinger-2007-07-09).
4125 3. Subprogram renamings are not implemented, although the XRS
4126 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4127
4128 /* If SYM encodes a renaming,
4129
4130 <renaming> renames <renamed entity>,
4131
4132 sets *LEN to the length of the renamed entity's name,
4133 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4134 the string describing the subcomponent selected from the renamed
4135 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4136 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4137 are undefined). Otherwise, returns a value indicating the category
4138 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4139 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4140 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4141 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4142 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4143 may be NULL, in which case they are not assigned.
4144
4145 [Currently, however, GCC does not generate subprogram renamings.] */
4146
4147 enum ada_renaming_category
4148 ada_parse_renaming (struct symbol *sym,
4149 const char **renamed_entity, int *len,
4150 const char **renaming_expr)
4151 {
4152 enum ada_renaming_category kind;
4153 const char *info;
4154 const char *suffix;
4155
4156 if (sym == NULL)
4157 return ADA_NOT_RENAMING;
4158 switch (SYMBOL_CLASS (sym))
4159 {
4160 default:
4161 return ADA_NOT_RENAMING;
4162 case LOC_TYPEDEF:
4163 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4164 renamed_entity, len, renaming_expr);
4165 case LOC_LOCAL:
4166 case LOC_STATIC:
4167 case LOC_COMPUTED:
4168 case LOC_OPTIMIZED_OUT:
4169 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4170 if (info == NULL)
4171 return ADA_NOT_RENAMING;
4172 switch (info[5])
4173 {
4174 case '_':
4175 kind = ADA_OBJECT_RENAMING;
4176 info += 6;
4177 break;
4178 case 'E':
4179 kind = ADA_EXCEPTION_RENAMING;
4180 info += 7;
4181 break;
4182 case 'P':
4183 kind = ADA_PACKAGE_RENAMING;
4184 info += 7;
4185 break;
4186 case 'S':
4187 kind = ADA_SUBPROGRAM_RENAMING;
4188 info += 7;
4189 break;
4190 default:
4191 return ADA_NOT_RENAMING;
4192 }
4193 }
4194
4195 if (renamed_entity != NULL)
4196 *renamed_entity = info;
4197 suffix = strstr (info, "___XE");
4198 if (suffix == NULL || suffix == info)
4199 return ADA_NOT_RENAMING;
4200 if (len != NULL)
4201 *len = strlen (info) - strlen (suffix);
4202 suffix += 5;
4203 if (renaming_expr != NULL)
4204 *renaming_expr = suffix;
4205 return kind;
4206 }
4207
4208 /* Assuming TYPE encodes a renaming according to the old encoding in
4209 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4210 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4211 ADA_NOT_RENAMING otherwise. */
4212 static enum ada_renaming_category
4213 parse_old_style_renaming (struct type *type,
4214 const char **renamed_entity, int *len,
4215 const char **renaming_expr)
4216 {
4217 enum ada_renaming_category kind;
4218 const char *name;
4219 const char *info;
4220 const char *suffix;
4221
4222 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4223 || TYPE_NFIELDS (type) != 1)
4224 return ADA_NOT_RENAMING;
4225
4226 name = type_name_no_tag (type);
4227 if (name == NULL)
4228 return ADA_NOT_RENAMING;
4229
4230 name = strstr (name, "___XR");
4231 if (name == NULL)
4232 return ADA_NOT_RENAMING;
4233 switch (name[5])
4234 {
4235 case '\0':
4236 case '_':
4237 kind = ADA_OBJECT_RENAMING;
4238 break;
4239 case 'E':
4240 kind = ADA_EXCEPTION_RENAMING;
4241 break;
4242 case 'P':
4243 kind = ADA_PACKAGE_RENAMING;
4244 break;
4245 case 'S':
4246 kind = ADA_SUBPROGRAM_RENAMING;
4247 break;
4248 default:
4249 return ADA_NOT_RENAMING;
4250 }
4251
4252 info = TYPE_FIELD_NAME (type, 0);
4253 if (info == NULL)
4254 return ADA_NOT_RENAMING;
4255 if (renamed_entity != NULL)
4256 *renamed_entity = info;
4257 suffix = strstr (info, "___XE");
4258 if (renaming_expr != NULL)
4259 *renaming_expr = suffix + 5;
4260 if (suffix == NULL || suffix == info)
4261 return ADA_NOT_RENAMING;
4262 if (len != NULL)
4263 *len = suffix - info;
4264 return kind;
4265 }
4266
4267 /* Compute the value of the given RENAMING_SYM, which is expected to
4268 be a symbol encoding a renaming expression. BLOCK is the block
4269 used to evaluate the renaming. */
4270
4271 static struct value *
4272 ada_read_renaming_var_value (struct symbol *renaming_sym,
4273 const struct block *block)
4274 {
4275 const char *sym_name;
4276 struct expression *expr;
4277 struct value *value;
4278 struct cleanup *old_chain = NULL;
4279
4280 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4281 expr = parse_exp_1 (&sym_name, 0, block, 0);
4282 old_chain = make_cleanup (free_current_contents, &expr);
4283 value = evaluate_expression (expr);
4284
4285 do_cleanups (old_chain);
4286 return value;
4287 }
4288 \f
4289
4290 /* Evaluation: Function Calls */
4291
4292 /* Return an lvalue containing the value VAL. This is the identity on
4293 lvalues, and otherwise has the side-effect of allocating memory
4294 in the inferior where a copy of the value contents is copied. */
4295
4296 static struct value *
4297 ensure_lval (struct value *val)
4298 {
4299 if (VALUE_LVAL (val) == not_lval
4300 || VALUE_LVAL (val) == lval_internalvar)
4301 {
4302 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4303 const CORE_ADDR addr =
4304 value_as_long (value_allocate_space_in_inferior (len));
4305
4306 set_value_address (val, addr);
4307 VALUE_LVAL (val) = lval_memory;
4308 write_memory (addr, value_contents (val), len);
4309 }
4310
4311 return val;
4312 }
4313
4314 /* Return the value ACTUAL, converted to be an appropriate value for a
4315 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4316 allocating any necessary descriptors (fat pointers), or copies of
4317 values not residing in memory, updating it as needed. */
4318
4319 struct value *
4320 ada_convert_actual (struct value *actual, struct type *formal_type0)
4321 {
4322 struct type *actual_type = ada_check_typedef (value_type (actual));
4323 struct type *formal_type = ada_check_typedef (formal_type0);
4324 struct type *formal_target =
4325 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4326 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4327 struct type *actual_target =
4328 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4329 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4330
4331 if (ada_is_array_descriptor_type (formal_target)
4332 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4333 return make_array_descriptor (formal_type, actual);
4334 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4335 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4336 {
4337 struct value *result;
4338
4339 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4340 && ada_is_array_descriptor_type (actual_target))
4341 result = desc_data (actual);
4342 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4343 {
4344 if (VALUE_LVAL (actual) != lval_memory)
4345 {
4346 struct value *val;
4347
4348 actual_type = ada_check_typedef (value_type (actual));
4349 val = allocate_value (actual_type);
4350 memcpy ((char *) value_contents_raw (val),
4351 (char *) value_contents (actual),
4352 TYPE_LENGTH (actual_type));
4353 actual = ensure_lval (val);
4354 }
4355 result = value_addr (actual);
4356 }
4357 else
4358 return actual;
4359 return value_cast_pointers (formal_type, result, 0);
4360 }
4361 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4362 return ada_value_ind (actual);
4363 else if (ada_is_aligner_type (formal_type))
4364 {
4365 /* We need to turn this parameter into an aligner type
4366 as well. */
4367 struct value *aligner = allocate_value (formal_type);
4368 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4369
4370 value_assign_to_component (aligner, component, actual);
4371 return aligner;
4372 }
4373
4374 return actual;
4375 }
4376
4377 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4378 type TYPE. This is usually an inefficient no-op except on some targets
4379 (such as AVR) where the representation of a pointer and an address
4380 differs. */
4381
4382 static CORE_ADDR
4383 value_pointer (struct value *value, struct type *type)
4384 {
4385 struct gdbarch *gdbarch = get_type_arch (type);
4386 unsigned len = TYPE_LENGTH (type);
4387 gdb_byte *buf = alloca (len);
4388 CORE_ADDR addr;
4389
4390 addr = value_address (value);
4391 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4392 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4393 return addr;
4394 }
4395
4396
4397 /* Push a descriptor of type TYPE for array value ARR on the stack at
4398 *SP, updating *SP to reflect the new descriptor. Return either
4399 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4400 to-descriptor type rather than a descriptor type), a struct value *
4401 representing a pointer to this descriptor. */
4402
4403 static struct value *
4404 make_array_descriptor (struct type *type, struct value *arr)
4405 {
4406 struct type *bounds_type = desc_bounds_type (type);
4407 struct type *desc_type = desc_base_type (type);
4408 struct value *descriptor = allocate_value (desc_type);
4409 struct value *bounds = allocate_value (bounds_type);
4410 int i;
4411
4412 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4413 i > 0; i -= 1)
4414 {
4415 modify_field (value_type (bounds), value_contents_writeable (bounds),
4416 ada_array_bound (arr, i, 0),
4417 desc_bound_bitpos (bounds_type, i, 0),
4418 desc_bound_bitsize (bounds_type, i, 0));
4419 modify_field (value_type (bounds), value_contents_writeable (bounds),
4420 ada_array_bound (arr, i, 1),
4421 desc_bound_bitpos (bounds_type, i, 1),
4422 desc_bound_bitsize (bounds_type, i, 1));
4423 }
4424
4425 bounds = ensure_lval (bounds);
4426
4427 modify_field (value_type (descriptor),
4428 value_contents_writeable (descriptor),
4429 value_pointer (ensure_lval (arr),
4430 TYPE_FIELD_TYPE (desc_type, 0)),
4431 fat_pntr_data_bitpos (desc_type),
4432 fat_pntr_data_bitsize (desc_type));
4433
4434 modify_field (value_type (descriptor),
4435 value_contents_writeable (descriptor),
4436 value_pointer (bounds,
4437 TYPE_FIELD_TYPE (desc_type, 1)),
4438 fat_pntr_bounds_bitpos (desc_type),
4439 fat_pntr_bounds_bitsize (desc_type));
4440
4441 descriptor = ensure_lval (descriptor);
4442
4443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4444 return value_addr (descriptor);
4445 else
4446 return descriptor;
4447 }
4448 \f
4449 /* Symbol Cache Module */
4450
4451 /* Performance measurements made as of 2010-01-15 indicate that
4452 this cache does bring some noticeable improvements. Depending
4453 on the type of entity being printed, the cache can make it as much
4454 as an order of magnitude faster than without it.
4455
4456 The descriptive type DWARF extension has significantly reduced
4457 the need for this cache, at least when DWARF is being used. However,
4458 even in this case, some expensive name-based symbol searches are still
4459 sometimes necessary - to find an XVZ variable, mostly. */
4460
4461 /* Initialize the contents of SYM_CACHE. */
4462
4463 static void
4464 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4465 {
4466 obstack_init (&sym_cache->cache_space);
4467 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4468 }
4469
4470 /* Free the memory used by SYM_CACHE. */
4471
4472 static void
4473 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4474 {
4475 obstack_free (&sym_cache->cache_space, NULL);
4476 xfree (sym_cache);
4477 }
4478
4479 /* Return the symbol cache associated to the given program space PSPACE.
4480 If not allocated for this PSPACE yet, allocate and initialize one. */
4481
4482 static struct ada_symbol_cache *
4483 ada_get_symbol_cache (struct program_space *pspace)
4484 {
4485 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4486
4487 if (pspace_data->sym_cache == NULL)
4488 {
4489 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4490 ada_init_symbol_cache (pspace_data->sym_cache);
4491 }
4492
4493 return pspace_data->sym_cache;
4494 }
4495
4496 /* Clear all entries from the symbol cache. */
4497
4498 static void
4499 ada_clear_symbol_cache (void)
4500 {
4501 struct ada_symbol_cache *sym_cache
4502 = ada_get_symbol_cache (current_program_space);
4503
4504 obstack_free (&sym_cache->cache_space, NULL);
4505 ada_init_symbol_cache (sym_cache);
4506 }
4507
4508 /* Search our cache for an entry matching NAME and DOMAIN.
4509 Return it if found, or NULL otherwise. */
4510
4511 static struct cache_entry **
4512 find_entry (const char *name, domain_enum domain)
4513 {
4514 struct ada_symbol_cache *sym_cache
4515 = ada_get_symbol_cache (current_program_space);
4516 int h = msymbol_hash (name) % HASH_SIZE;
4517 struct cache_entry **e;
4518
4519 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4520 {
4521 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4522 return e;
4523 }
4524 return NULL;
4525 }
4526
4527 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4528 Return 1 if found, 0 otherwise.
4529
4530 If an entry was found and SYM is not NULL, set *SYM to the entry's
4531 SYM. Same principle for BLOCK if not NULL. */
4532
4533 static int
4534 lookup_cached_symbol (const char *name, domain_enum domain,
4535 struct symbol **sym, const struct block **block)
4536 {
4537 struct cache_entry **e = find_entry (name, domain);
4538
4539 if (e == NULL)
4540 return 0;
4541 if (sym != NULL)
4542 *sym = (*e)->sym;
4543 if (block != NULL)
4544 *block = (*e)->block;
4545 return 1;
4546 }
4547
4548 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4549 in domain DOMAIN, save this result in our symbol cache. */
4550
4551 static void
4552 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4553 const struct block *block)
4554 {
4555 struct ada_symbol_cache *sym_cache
4556 = ada_get_symbol_cache (current_program_space);
4557 int h;
4558 char *copy;
4559 struct cache_entry *e;
4560
4561 /* Symbols for builtin types don't have a block.
4562 For now don't cache such symbols. */
4563 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4564 return;
4565
4566 /* If the symbol is a local symbol, then do not cache it, as a search
4567 for that symbol depends on the context. To determine whether
4568 the symbol is local or not, we check the block where we found it
4569 against the global and static blocks of its associated symtab. */
4570 if (sym
4571 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4572 GLOBAL_BLOCK) != block
4573 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4574 STATIC_BLOCK) != block)
4575 return;
4576
4577 h = msymbol_hash (name) % HASH_SIZE;
4578 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4579 sizeof (*e));
4580 e->next = sym_cache->root[h];
4581 sym_cache->root[h] = e;
4582 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4583 strcpy (copy, name);
4584 e->sym = sym;
4585 e->domain = domain;
4586 e->block = block;
4587 }
4588 \f
4589 /* Symbol Lookup */
4590
4591 /* Return nonzero if wild matching should be used when searching for
4592 all symbols matching LOOKUP_NAME.
4593
4594 LOOKUP_NAME is expected to be a symbol name after transformation
4595 for Ada lookups (see ada_name_for_lookup). */
4596
4597 static int
4598 should_use_wild_match (const char *lookup_name)
4599 {
4600 return (strstr (lookup_name, "__") == NULL);
4601 }
4602
4603 /* Return the result of a standard (literal, C-like) lookup of NAME in
4604 given DOMAIN, visible from lexical block BLOCK. */
4605
4606 static struct symbol *
4607 standard_lookup (const char *name, const struct block *block,
4608 domain_enum domain)
4609 {
4610 /* Initialize it just to avoid a GCC false warning. */
4611 struct block_symbol sym = {NULL, NULL};
4612
4613 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4614 return sym.symbol;
4615 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4616 cache_symbol (name, domain, sym.symbol, sym.block);
4617 return sym.symbol;
4618 }
4619
4620
4621 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4622 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4623 since they contend in overloading in the same way. */
4624 static int
4625 is_nonfunction (struct block_symbol syms[], int n)
4626 {
4627 int i;
4628
4629 for (i = 0; i < n; i += 1)
4630 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4631 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4632 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4633 return 1;
4634
4635 return 0;
4636 }
4637
4638 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4639 struct types. Otherwise, they may not. */
4640
4641 static int
4642 equiv_types (struct type *type0, struct type *type1)
4643 {
4644 if (type0 == type1)
4645 return 1;
4646 if (type0 == NULL || type1 == NULL
4647 || TYPE_CODE (type0) != TYPE_CODE (type1))
4648 return 0;
4649 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4650 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4651 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4652 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4653 return 1;
4654
4655 return 0;
4656 }
4657
4658 /* True iff SYM0 represents the same entity as SYM1, or one that is
4659 no more defined than that of SYM1. */
4660
4661 static int
4662 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4663 {
4664 if (sym0 == sym1)
4665 return 1;
4666 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4667 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4668 return 0;
4669
4670 switch (SYMBOL_CLASS (sym0))
4671 {
4672 case LOC_UNDEF:
4673 return 1;
4674 case LOC_TYPEDEF:
4675 {
4676 struct type *type0 = SYMBOL_TYPE (sym0);
4677 struct type *type1 = SYMBOL_TYPE (sym1);
4678 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4679 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4680 int len0 = strlen (name0);
4681
4682 return
4683 TYPE_CODE (type0) == TYPE_CODE (type1)
4684 && (equiv_types (type0, type1)
4685 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4686 && startswith (name1 + len0, "___XV")));
4687 }
4688 case LOC_CONST:
4689 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4690 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4691 default:
4692 return 0;
4693 }
4694 }
4695
4696 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4697 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4698
4699 static void
4700 add_defn_to_vec (struct obstack *obstackp,
4701 struct symbol *sym,
4702 const struct block *block)
4703 {
4704 int i;
4705 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4706
4707 /* Do not try to complete stub types, as the debugger is probably
4708 already scanning all symbols matching a certain name at the
4709 time when this function is called. Trying to replace the stub
4710 type by its associated full type will cause us to restart a scan
4711 which may lead to an infinite recursion. Instead, the client
4712 collecting the matching symbols will end up collecting several
4713 matches, with at least one of them complete. It can then filter
4714 out the stub ones if needed. */
4715
4716 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4717 {
4718 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4719 return;
4720 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4721 {
4722 prevDefns[i].symbol = sym;
4723 prevDefns[i].block = block;
4724 return;
4725 }
4726 }
4727
4728 {
4729 struct block_symbol info;
4730
4731 info.symbol = sym;
4732 info.block = block;
4733 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4734 }
4735 }
4736
4737 /* Number of block_symbol structures currently collected in current vector in
4738 OBSTACKP. */
4739
4740 static int
4741 num_defns_collected (struct obstack *obstackp)
4742 {
4743 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4744 }
4745
4746 /* Vector of block_symbol structures currently collected in current vector in
4747 OBSTACKP. If FINISH, close off the vector and return its final address. */
4748
4749 static struct block_symbol *
4750 defns_collected (struct obstack *obstackp, int finish)
4751 {
4752 if (finish)
4753 return obstack_finish (obstackp);
4754 else
4755 return (struct block_symbol *) obstack_base (obstackp);
4756 }
4757
4758 /* Return a bound minimal symbol matching NAME according to Ada
4759 decoding rules. Returns an invalid symbol if there is no such
4760 minimal symbol. Names prefixed with "standard__" are handled
4761 specially: "standard__" is first stripped off, and only static and
4762 global symbols are searched. */
4763
4764 struct bound_minimal_symbol
4765 ada_lookup_simple_minsym (const char *name)
4766 {
4767 struct bound_minimal_symbol result;
4768 struct objfile *objfile;
4769 struct minimal_symbol *msymbol;
4770 const int wild_match_p = should_use_wild_match (name);
4771
4772 memset (&result, 0, sizeof (result));
4773
4774 /* Special case: If the user specifies a symbol name inside package
4775 Standard, do a non-wild matching of the symbol name without
4776 the "standard__" prefix. This was primarily introduced in order
4777 to allow the user to specifically access the standard exceptions
4778 using, for instance, Standard.Constraint_Error when Constraint_Error
4779 is ambiguous (due to the user defining its own Constraint_Error
4780 entity inside its program). */
4781 if (startswith (name, "standard__"))
4782 name += sizeof ("standard__") - 1;
4783
4784 ALL_MSYMBOLS (objfile, msymbol)
4785 {
4786 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4787 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4788 {
4789 result.minsym = msymbol;
4790 result.objfile = objfile;
4791 break;
4792 }
4793 }
4794
4795 return result;
4796 }
4797
4798 /* For all subprograms that statically enclose the subprogram of the
4799 selected frame, add symbols matching identifier NAME in DOMAIN
4800 and their blocks to the list of data in OBSTACKP, as for
4801 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4802 with a wildcard prefix. */
4803
4804 static void
4805 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4806 const char *name, domain_enum domain,
4807 int wild_match_p)
4808 {
4809 }
4810
4811 /* True if TYPE is definitely an artificial type supplied to a symbol
4812 for which no debugging information was given in the symbol file. */
4813
4814 static int
4815 is_nondebugging_type (struct type *type)
4816 {
4817 const char *name = ada_type_name (type);
4818
4819 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4820 }
4821
4822 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4823 that are deemed "identical" for practical purposes.
4824
4825 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4826 types and that their number of enumerals is identical (in other
4827 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4828
4829 static int
4830 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4831 {
4832 int i;
4833
4834 /* The heuristic we use here is fairly conservative. We consider
4835 that 2 enumerate types are identical if they have the same
4836 number of enumerals and that all enumerals have the same
4837 underlying value and name. */
4838
4839 /* All enums in the type should have an identical underlying value. */
4840 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4841 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4842 return 0;
4843
4844 /* All enumerals should also have the same name (modulo any numerical
4845 suffix). */
4846 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4847 {
4848 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4849 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4850 int len_1 = strlen (name_1);
4851 int len_2 = strlen (name_2);
4852
4853 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4854 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4855 if (len_1 != len_2
4856 || strncmp (TYPE_FIELD_NAME (type1, i),
4857 TYPE_FIELD_NAME (type2, i),
4858 len_1) != 0)
4859 return 0;
4860 }
4861
4862 return 1;
4863 }
4864
4865 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4866 that are deemed "identical" for practical purposes. Sometimes,
4867 enumerals are not strictly identical, but their types are so similar
4868 that they can be considered identical.
4869
4870 For instance, consider the following code:
4871
4872 type Color is (Black, Red, Green, Blue, White);
4873 type RGB_Color is new Color range Red .. Blue;
4874
4875 Type RGB_Color is a subrange of an implicit type which is a copy
4876 of type Color. If we call that implicit type RGB_ColorB ("B" is
4877 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4878 As a result, when an expression references any of the enumeral
4879 by name (Eg. "print green"), the expression is technically
4880 ambiguous and the user should be asked to disambiguate. But
4881 doing so would only hinder the user, since it wouldn't matter
4882 what choice he makes, the outcome would always be the same.
4883 So, for practical purposes, we consider them as the same. */
4884
4885 static int
4886 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4887 {
4888 int i;
4889
4890 /* Before performing a thorough comparison check of each type,
4891 we perform a series of inexpensive checks. We expect that these
4892 checks will quickly fail in the vast majority of cases, and thus
4893 help prevent the unnecessary use of a more expensive comparison.
4894 Said comparison also expects us to make some of these checks
4895 (see ada_identical_enum_types_p). */
4896
4897 /* Quick check: All symbols should have an enum type. */
4898 for (i = 0; i < nsyms; i++)
4899 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4900 return 0;
4901
4902 /* Quick check: They should all have the same value. */
4903 for (i = 1; i < nsyms; i++)
4904 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4905 return 0;
4906
4907 /* Quick check: They should all have the same number of enumerals. */
4908 for (i = 1; i < nsyms; i++)
4909 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4910 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4911 return 0;
4912
4913 /* All the sanity checks passed, so we might have a set of
4914 identical enumeration types. Perform a more complete
4915 comparison of the type of each symbol. */
4916 for (i = 1; i < nsyms; i++)
4917 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4918 SYMBOL_TYPE (syms[0].symbol)))
4919 return 0;
4920
4921 return 1;
4922 }
4923
4924 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4925 duplicate other symbols in the list (The only case I know of where
4926 this happens is when object files containing stabs-in-ecoff are
4927 linked with files containing ordinary ecoff debugging symbols (or no
4928 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4929 Returns the number of items in the modified list. */
4930
4931 static int
4932 remove_extra_symbols (struct block_symbol *syms, int nsyms)
4933 {
4934 int i, j;
4935
4936 /* We should never be called with less than 2 symbols, as there
4937 cannot be any extra symbol in that case. But it's easy to
4938 handle, since we have nothing to do in that case. */
4939 if (nsyms < 2)
4940 return nsyms;
4941
4942 i = 0;
4943 while (i < nsyms)
4944 {
4945 int remove_p = 0;
4946
4947 /* If two symbols have the same name and one of them is a stub type,
4948 the get rid of the stub. */
4949
4950 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4951 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4952 {
4953 for (j = 0; j < nsyms; j++)
4954 {
4955 if (j != i
4956 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4957 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4958 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4959 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4960 remove_p = 1;
4961 }
4962 }
4963
4964 /* Two symbols with the same name, same class and same address
4965 should be identical. */
4966
4967 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4968 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4969 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4970 {
4971 for (j = 0; j < nsyms; j += 1)
4972 {
4973 if (i != j
4974 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4975 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4976 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4977 && SYMBOL_CLASS (syms[i].symbol)
4978 == SYMBOL_CLASS (syms[j].symbol)
4979 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
4980 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
4981 remove_p = 1;
4982 }
4983 }
4984
4985 if (remove_p)
4986 {
4987 for (j = i + 1; j < nsyms; j += 1)
4988 syms[j - 1] = syms[j];
4989 nsyms -= 1;
4990 }
4991
4992 i += 1;
4993 }
4994
4995 /* If all the remaining symbols are identical enumerals, then
4996 just keep the first one and discard the rest.
4997
4998 Unlike what we did previously, we do not discard any entry
4999 unless they are ALL identical. This is because the symbol
5000 comparison is not a strict comparison, but rather a practical
5001 comparison. If all symbols are considered identical, then
5002 we can just go ahead and use the first one and discard the rest.
5003 But if we cannot reduce the list to a single element, we have
5004 to ask the user to disambiguate anyways. And if we have to
5005 present a multiple-choice menu, it's less confusing if the list
5006 isn't missing some choices that were identical and yet distinct. */
5007 if (symbols_are_identical_enums (syms, nsyms))
5008 nsyms = 1;
5009
5010 return nsyms;
5011 }
5012
5013 /* Given a type that corresponds to a renaming entity, use the type name
5014 to extract the scope (package name or function name, fully qualified,
5015 and following the GNAT encoding convention) where this renaming has been
5016 defined. The string returned needs to be deallocated after use. */
5017
5018 static char *
5019 xget_renaming_scope (struct type *renaming_type)
5020 {
5021 /* The renaming types adhere to the following convention:
5022 <scope>__<rename>___<XR extension>.
5023 So, to extract the scope, we search for the "___XR" extension,
5024 and then backtrack until we find the first "__". */
5025
5026 const char *name = type_name_no_tag (renaming_type);
5027 char *suffix = strstr (name, "___XR");
5028 char *last;
5029 int scope_len;
5030 char *scope;
5031
5032 /* Now, backtrack a bit until we find the first "__". Start looking
5033 at suffix - 3, as the <rename> part is at least one character long. */
5034
5035 for (last = suffix - 3; last > name; last--)
5036 if (last[0] == '_' && last[1] == '_')
5037 break;
5038
5039 /* Make a copy of scope and return it. */
5040
5041 scope_len = last - name;
5042 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5043
5044 strncpy (scope, name, scope_len);
5045 scope[scope_len] = '\0';
5046
5047 return scope;
5048 }
5049
5050 /* Return nonzero if NAME corresponds to a package name. */
5051
5052 static int
5053 is_package_name (const char *name)
5054 {
5055 /* Here, We take advantage of the fact that no symbols are generated
5056 for packages, while symbols are generated for each function.
5057 So the condition for NAME represent a package becomes equivalent
5058 to NAME not existing in our list of symbols. There is only one
5059 small complication with library-level functions (see below). */
5060
5061 char *fun_name;
5062
5063 /* If it is a function that has not been defined at library level,
5064 then we should be able to look it up in the symbols. */
5065 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5066 return 0;
5067
5068 /* Library-level function names start with "_ada_". See if function
5069 "_ada_" followed by NAME can be found. */
5070
5071 /* Do a quick check that NAME does not contain "__", since library-level
5072 functions names cannot contain "__" in them. */
5073 if (strstr (name, "__") != NULL)
5074 return 0;
5075
5076 fun_name = xstrprintf ("_ada_%s", name);
5077
5078 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5079 }
5080
5081 /* Return nonzero if SYM corresponds to a renaming entity that is
5082 not visible from FUNCTION_NAME. */
5083
5084 static int
5085 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5086 {
5087 char *scope;
5088 struct cleanup *old_chain;
5089
5090 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5091 return 0;
5092
5093 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5094 old_chain = make_cleanup (xfree, scope);
5095
5096 /* If the rename has been defined in a package, then it is visible. */
5097 if (is_package_name (scope))
5098 {
5099 do_cleanups (old_chain);
5100 return 0;
5101 }
5102
5103 /* Check that the rename is in the current function scope by checking
5104 that its name starts with SCOPE. */
5105
5106 /* If the function name starts with "_ada_", it means that it is
5107 a library-level function. Strip this prefix before doing the
5108 comparison, as the encoding for the renaming does not contain
5109 this prefix. */
5110 if (startswith (function_name, "_ada_"))
5111 function_name += 5;
5112
5113 {
5114 int is_invisible = !startswith (function_name, scope);
5115
5116 do_cleanups (old_chain);
5117 return is_invisible;
5118 }
5119 }
5120
5121 /* Remove entries from SYMS that corresponds to a renaming entity that
5122 is not visible from the function associated with CURRENT_BLOCK or
5123 that is superfluous due to the presence of more specific renaming
5124 information. Places surviving symbols in the initial entries of
5125 SYMS and returns the number of surviving symbols.
5126
5127 Rationale:
5128 First, in cases where an object renaming is implemented as a
5129 reference variable, GNAT may produce both the actual reference
5130 variable and the renaming encoding. In this case, we discard the
5131 latter.
5132
5133 Second, GNAT emits a type following a specified encoding for each renaming
5134 entity. Unfortunately, STABS currently does not support the definition
5135 of types that are local to a given lexical block, so all renamings types
5136 are emitted at library level. As a consequence, if an application
5137 contains two renaming entities using the same name, and a user tries to
5138 print the value of one of these entities, the result of the ada symbol
5139 lookup will also contain the wrong renaming type.
5140
5141 This function partially covers for this limitation by attempting to
5142 remove from the SYMS list renaming symbols that should be visible
5143 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5144 method with the current information available. The implementation
5145 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5146
5147 - When the user tries to print a rename in a function while there
5148 is another rename entity defined in a package: Normally, the
5149 rename in the function has precedence over the rename in the
5150 package, so the latter should be removed from the list. This is
5151 currently not the case.
5152
5153 - This function will incorrectly remove valid renames if
5154 the CURRENT_BLOCK corresponds to a function which symbol name
5155 has been changed by an "Export" pragma. As a consequence,
5156 the user will be unable to print such rename entities. */
5157
5158 static int
5159 remove_irrelevant_renamings (struct block_symbol *syms,
5160 int nsyms, const struct block *current_block)
5161 {
5162 struct symbol *current_function;
5163 const char *current_function_name;
5164 int i;
5165 int is_new_style_renaming;
5166
5167 /* If there is both a renaming foo___XR... encoded as a variable and
5168 a simple variable foo in the same block, discard the latter.
5169 First, zero out such symbols, then compress. */
5170 is_new_style_renaming = 0;
5171 for (i = 0; i < nsyms; i += 1)
5172 {
5173 struct symbol *sym = syms[i].symbol;
5174 const struct block *block = syms[i].block;
5175 const char *name;
5176 const char *suffix;
5177
5178 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5179 continue;
5180 name = SYMBOL_LINKAGE_NAME (sym);
5181 suffix = strstr (name, "___XR");
5182
5183 if (suffix != NULL)
5184 {
5185 int name_len = suffix - name;
5186 int j;
5187
5188 is_new_style_renaming = 1;
5189 for (j = 0; j < nsyms; j += 1)
5190 if (i != j && syms[j].symbol != NULL
5191 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5192 name_len) == 0
5193 && block == syms[j].block)
5194 syms[j].symbol = NULL;
5195 }
5196 }
5197 if (is_new_style_renaming)
5198 {
5199 int j, k;
5200
5201 for (j = k = 0; j < nsyms; j += 1)
5202 if (syms[j].symbol != NULL)
5203 {
5204 syms[k] = syms[j];
5205 k += 1;
5206 }
5207 return k;
5208 }
5209
5210 /* Extract the function name associated to CURRENT_BLOCK.
5211 Abort if unable to do so. */
5212
5213 if (current_block == NULL)
5214 return nsyms;
5215
5216 current_function = block_linkage_function (current_block);
5217 if (current_function == NULL)
5218 return nsyms;
5219
5220 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5221 if (current_function_name == NULL)
5222 return nsyms;
5223
5224 /* Check each of the symbols, and remove it from the list if it is
5225 a type corresponding to a renaming that is out of the scope of
5226 the current block. */
5227
5228 i = 0;
5229 while (i < nsyms)
5230 {
5231 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5232 == ADA_OBJECT_RENAMING
5233 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5234 {
5235 int j;
5236
5237 for (j = i + 1; j < nsyms; j += 1)
5238 syms[j - 1] = syms[j];
5239 nsyms -= 1;
5240 }
5241 else
5242 i += 1;
5243 }
5244
5245 return nsyms;
5246 }
5247
5248 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5249 whose name and domain match NAME and DOMAIN respectively.
5250 If no match was found, then extend the search to "enclosing"
5251 routines (in other words, if we're inside a nested function,
5252 search the symbols defined inside the enclosing functions).
5253 If WILD_MATCH_P is nonzero, perform the naming matching in
5254 "wild" mode (see function "wild_match" for more info).
5255
5256 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5257
5258 static void
5259 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5260 const struct block *block, domain_enum domain,
5261 int wild_match_p)
5262 {
5263 int block_depth = 0;
5264
5265 while (block != NULL)
5266 {
5267 block_depth += 1;
5268 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5269 wild_match_p);
5270
5271 /* If we found a non-function match, assume that's the one. */
5272 if (is_nonfunction (defns_collected (obstackp, 0),
5273 num_defns_collected (obstackp)))
5274 return;
5275
5276 block = BLOCK_SUPERBLOCK (block);
5277 }
5278
5279 /* If no luck so far, try to find NAME as a local symbol in some lexically
5280 enclosing subprogram. */
5281 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5282 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5283 }
5284
5285 /* An object of this type is used as the user_data argument when
5286 calling the map_matching_symbols method. */
5287
5288 struct match_data
5289 {
5290 struct objfile *objfile;
5291 struct obstack *obstackp;
5292 struct symbol *arg_sym;
5293 int found_sym;
5294 };
5295
5296 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5297 to a list of symbols. DATA0 is a pointer to a struct match_data *
5298 containing the obstack that collects the symbol list, the file that SYM
5299 must come from, a flag indicating whether a non-argument symbol has
5300 been found in the current block, and the last argument symbol
5301 passed in SYM within the current block (if any). When SYM is null,
5302 marking the end of a block, the argument symbol is added if no
5303 other has been found. */
5304
5305 static int
5306 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5307 {
5308 struct match_data *data = (struct match_data *) data0;
5309
5310 if (sym == NULL)
5311 {
5312 if (!data->found_sym && data->arg_sym != NULL)
5313 add_defn_to_vec (data->obstackp,
5314 fixup_symbol_section (data->arg_sym, data->objfile),
5315 block);
5316 data->found_sym = 0;
5317 data->arg_sym = NULL;
5318 }
5319 else
5320 {
5321 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5322 return 0;
5323 else if (SYMBOL_IS_ARGUMENT (sym))
5324 data->arg_sym = sym;
5325 else
5326 {
5327 data->found_sym = 1;
5328 add_defn_to_vec (data->obstackp,
5329 fixup_symbol_section (sym, data->objfile),
5330 block);
5331 }
5332 }
5333 return 0;
5334 }
5335
5336 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5337 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5338 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5339 function "wild_match" for more information). Return whether we found such
5340 symbols. */
5341
5342 static int
5343 ada_add_block_renamings (struct obstack *obstackp,
5344 const struct block *block,
5345 const char *name,
5346 domain_enum domain,
5347 int wild_match_p)
5348 {
5349 struct using_direct *renaming;
5350 int defns_mark = num_defns_collected (obstackp);
5351
5352 for (renaming = block_using (block);
5353 renaming != NULL;
5354 renaming = renaming->next)
5355 {
5356 const char *r_name;
5357 int name_match;
5358
5359 /* Avoid infinite recursions: skip this renaming if we are actually
5360 already traversing it.
5361
5362 Currently, symbol lookup in Ada don't use the namespace machinery from
5363 C++/Fortran support: skip namespace imports that use them. */
5364 if (renaming->searched
5365 || (renaming->import_src != NULL
5366 && renaming->import_src[0] != '\0')
5367 || (renaming->import_dest != NULL
5368 && renaming->import_dest[0] != '\0'))
5369 continue;
5370 renaming->searched = 1;
5371
5372 /* TODO: here, we perform another name-based symbol lookup, which can
5373 pull its own multiple overloads. In theory, we should be able to do
5374 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5375 not a simple name. But in order to do this, we would need to enhance
5376 the DWARF reader to associate a symbol to this renaming, instead of a
5377 name. So, for now, we do something simpler: re-use the C++/Fortran
5378 namespace machinery. */
5379 r_name = (renaming->alias != NULL
5380 ? renaming->alias
5381 : renaming->declaration);
5382 name_match
5383 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5384 if (name_match == 0)
5385 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5386 1, NULL);
5387 renaming->searched = 0;
5388 }
5389 return num_defns_collected (obstackp) != defns_mark;
5390 }
5391
5392 /* Implements compare_names, but only applying the comparision using
5393 the given CASING. */
5394
5395 static int
5396 compare_names_with_case (const char *string1, const char *string2,
5397 enum case_sensitivity casing)
5398 {
5399 while (*string1 != '\0' && *string2 != '\0')
5400 {
5401 char c1, c2;
5402
5403 if (isspace (*string1) || isspace (*string2))
5404 return strcmp_iw_ordered (string1, string2);
5405
5406 if (casing == case_sensitive_off)
5407 {
5408 c1 = tolower (*string1);
5409 c2 = tolower (*string2);
5410 }
5411 else
5412 {
5413 c1 = *string1;
5414 c2 = *string2;
5415 }
5416 if (c1 != c2)
5417 break;
5418
5419 string1 += 1;
5420 string2 += 1;
5421 }
5422
5423 switch (*string1)
5424 {
5425 case '(':
5426 return strcmp_iw_ordered (string1, string2);
5427 case '_':
5428 if (*string2 == '\0')
5429 {
5430 if (is_name_suffix (string1))
5431 return 0;
5432 else
5433 return 1;
5434 }
5435 /* FALLTHROUGH */
5436 default:
5437 if (*string2 == '(')
5438 return strcmp_iw_ordered (string1, string2);
5439 else
5440 {
5441 if (casing == case_sensitive_off)
5442 return tolower (*string1) - tolower (*string2);
5443 else
5444 return *string1 - *string2;
5445 }
5446 }
5447 }
5448
5449 /* Compare STRING1 to STRING2, with results as for strcmp.
5450 Compatible with strcmp_iw_ordered in that...
5451
5452 strcmp_iw_ordered (STRING1, STRING2) <= 0
5453
5454 ... implies...
5455
5456 compare_names (STRING1, STRING2) <= 0
5457
5458 (they may differ as to what symbols compare equal). */
5459
5460 static int
5461 compare_names (const char *string1, const char *string2)
5462 {
5463 int result;
5464
5465 /* Similar to what strcmp_iw_ordered does, we need to perform
5466 a case-insensitive comparison first, and only resort to
5467 a second, case-sensitive, comparison if the first one was
5468 not sufficient to differentiate the two strings. */
5469
5470 result = compare_names_with_case (string1, string2, case_sensitive_off);
5471 if (result == 0)
5472 result = compare_names_with_case (string1, string2, case_sensitive_on);
5473
5474 return result;
5475 }
5476
5477 /* Add to OBSTACKP all non-local symbols whose name and domain match
5478 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5479 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5480
5481 static void
5482 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5483 domain_enum domain, int global,
5484 int is_wild_match)
5485 {
5486 struct objfile *objfile;
5487 struct compunit_symtab *cu;
5488 struct match_data data;
5489
5490 memset (&data, 0, sizeof data);
5491 data.obstackp = obstackp;
5492
5493 ALL_OBJFILES (objfile)
5494 {
5495 data.objfile = objfile;
5496
5497 if (is_wild_match)
5498 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5499 aux_add_nonlocal_symbols, &data,
5500 wild_match, NULL);
5501 else
5502 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5503 aux_add_nonlocal_symbols, &data,
5504 full_match, compare_names);
5505
5506 ALL_OBJFILE_COMPUNITS (objfile, cu)
5507 {
5508 const struct block *global_block
5509 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5510
5511 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5512 is_wild_match))
5513 data.found_sym = 1;
5514 }
5515 }
5516
5517 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5518 {
5519 ALL_OBJFILES (objfile)
5520 {
5521 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5522 strcpy (name1, "_ada_");
5523 strcpy (name1 + sizeof ("_ada_") - 1, name);
5524 data.objfile = objfile;
5525 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5526 global,
5527 aux_add_nonlocal_symbols,
5528 &data,
5529 full_match, compare_names);
5530 }
5531 }
5532 }
5533
5534 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5535 non-zero, enclosing scope and in global scopes, returning the number of
5536 matches. Add these to OBSTACKP.
5537
5538 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5539 symbol match within the nest of blocks whose innermost member is BLOCK,
5540 is the one match returned (no other matches in that or
5541 enclosing blocks is returned). If there are any matches in or
5542 surrounding BLOCK, then these alone are returned.
5543
5544 Names prefixed with "standard__" are handled specially: "standard__"
5545 is first stripped off, and only static and global symbols are searched.
5546
5547 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5548 to lookup global symbols. */
5549
5550 static void
5551 ada_add_all_symbols (struct obstack *obstackp,
5552 const struct block *block,
5553 const char *name,
5554 domain_enum domain,
5555 int full_search,
5556 int *made_global_lookup_p)
5557 {
5558 struct symbol *sym;
5559 const int wild_match_p = should_use_wild_match (name);
5560
5561 if (made_global_lookup_p)
5562 *made_global_lookup_p = 0;
5563
5564 /* Special case: If the user specifies a symbol name inside package
5565 Standard, do a non-wild matching of the symbol name without
5566 the "standard__" prefix. This was primarily introduced in order
5567 to allow the user to specifically access the standard exceptions
5568 using, for instance, Standard.Constraint_Error when Constraint_Error
5569 is ambiguous (due to the user defining its own Constraint_Error
5570 entity inside its program). */
5571 if (startswith (name, "standard__"))
5572 {
5573 block = NULL;
5574 name = name + sizeof ("standard__") - 1;
5575 }
5576
5577 /* Check the non-global symbols. If we have ANY match, then we're done. */
5578
5579 if (block != NULL)
5580 {
5581 if (full_search)
5582 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5583 else
5584 {
5585 /* In the !full_search case we're are being called by
5586 ada_iterate_over_symbols, and we don't want to search
5587 superblocks. */
5588 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5589 wild_match_p);
5590 }
5591 if (num_defns_collected (obstackp) > 0 || !full_search)
5592 return;
5593 }
5594
5595 /* No non-global symbols found. Check our cache to see if we have
5596 already performed this search before. If we have, then return
5597 the same result. */
5598
5599 if (lookup_cached_symbol (name, domain, &sym, &block))
5600 {
5601 if (sym != NULL)
5602 add_defn_to_vec (obstackp, sym, block);
5603 return;
5604 }
5605
5606 if (made_global_lookup_p)
5607 *made_global_lookup_p = 1;
5608
5609 /* Search symbols from all global blocks. */
5610
5611 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5612
5613 /* Now add symbols from all per-file blocks if we've gotten no hits
5614 (not strictly correct, but perhaps better than an error). */
5615
5616 if (num_defns_collected (obstackp) == 0)
5617 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5618 }
5619
5620 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5621 non-zero, enclosing scope and in global scopes, returning the number of
5622 matches.
5623 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5624 indicating the symbols found and the blocks and symbol tables (if
5625 any) in which they were found. This vector is transient---good only to
5626 the next call of ada_lookup_symbol_list.
5627
5628 When full_search is non-zero, any non-function/non-enumeral
5629 symbol match within the nest of blocks whose innermost member is BLOCK,
5630 is the one match returned (no other matches in that or
5631 enclosing blocks is returned). If there are any matches in or
5632 surrounding BLOCK, then these alone are returned.
5633
5634 Names prefixed with "standard__" are handled specially: "standard__"
5635 is first stripped off, and only static and global symbols are searched. */
5636
5637 static int
5638 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5639 domain_enum domain,
5640 struct block_symbol **results,
5641 int full_search)
5642 {
5643 const int wild_match_p = should_use_wild_match (name);
5644 int syms_from_global_search;
5645 int ndefns;
5646
5647 obstack_free (&symbol_list_obstack, NULL);
5648 obstack_init (&symbol_list_obstack);
5649 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5650 full_search, &syms_from_global_search);
5651
5652 ndefns = num_defns_collected (&symbol_list_obstack);
5653 *results = defns_collected (&symbol_list_obstack, 1);
5654
5655 ndefns = remove_extra_symbols (*results, ndefns);
5656
5657 if (ndefns == 0 && full_search && syms_from_global_search)
5658 cache_symbol (name, domain, NULL, NULL);
5659
5660 if (ndefns == 1 && full_search && syms_from_global_search)
5661 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5662
5663 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5664 return ndefns;
5665 }
5666
5667 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5668 in global scopes, returning the number of matches, and setting *RESULTS
5669 to a vector of (SYM,BLOCK) tuples.
5670 See ada_lookup_symbol_list_worker for further details. */
5671
5672 int
5673 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5674 domain_enum domain, struct block_symbol **results)
5675 {
5676 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5677 }
5678
5679 /* Implementation of the la_iterate_over_symbols method. */
5680
5681 static void
5682 ada_iterate_over_symbols (const struct block *block,
5683 const char *name, domain_enum domain,
5684 symbol_found_callback_ftype *callback,
5685 void *data)
5686 {
5687 int ndefs, i;
5688 struct block_symbol *results;
5689
5690 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5691 for (i = 0; i < ndefs; ++i)
5692 {
5693 if (! (*callback) (results[i].symbol, data))
5694 break;
5695 }
5696 }
5697
5698 /* If NAME is the name of an entity, return a string that should
5699 be used to look that entity up in Ada units. This string should
5700 be deallocated after use using xfree.
5701
5702 NAME can have any form that the "break" or "print" commands might
5703 recognize. In other words, it does not have to be the "natural"
5704 name, or the "encoded" name. */
5705
5706 char *
5707 ada_name_for_lookup (const char *name)
5708 {
5709 char *canon;
5710 int nlen = strlen (name);
5711
5712 if (name[0] == '<' && name[nlen - 1] == '>')
5713 {
5714 canon = xmalloc (nlen - 1);
5715 memcpy (canon, name + 1, nlen - 2);
5716 canon[nlen - 2] = '\0';
5717 }
5718 else
5719 canon = xstrdup (ada_encode (ada_fold_name (name)));
5720 return canon;
5721 }
5722
5723 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5724 to 1, but choosing the first symbol found if there are multiple
5725 choices.
5726
5727 The result is stored in *INFO, which must be non-NULL.
5728 If no match is found, INFO->SYM is set to NULL. */
5729
5730 void
5731 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5732 domain_enum domain,
5733 struct block_symbol *info)
5734 {
5735 struct block_symbol *candidates;
5736 int n_candidates;
5737
5738 gdb_assert (info != NULL);
5739 memset (info, 0, sizeof (struct block_symbol));
5740
5741 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5742 if (n_candidates == 0)
5743 return;
5744
5745 *info = candidates[0];
5746 info->symbol = fixup_symbol_section (info->symbol, NULL);
5747 }
5748
5749 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5750 scope and in global scopes, or NULL if none. NAME is folded and
5751 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5752 choosing the first symbol if there are multiple choices.
5753 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5754
5755 struct block_symbol
5756 ada_lookup_symbol (const char *name, const struct block *block0,
5757 domain_enum domain, int *is_a_field_of_this)
5758 {
5759 struct block_symbol info;
5760
5761 if (is_a_field_of_this != NULL)
5762 *is_a_field_of_this = 0;
5763
5764 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5765 block0, domain, &info);
5766 return info;
5767 }
5768
5769 static struct block_symbol
5770 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5771 const char *name,
5772 const struct block *block,
5773 const domain_enum domain)
5774 {
5775 struct block_symbol sym;
5776
5777 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5778 if (sym.symbol != NULL)
5779 return sym;
5780
5781 /* If we haven't found a match at this point, try the primitive
5782 types. In other languages, this search is performed before
5783 searching for global symbols in order to short-circuit that
5784 global-symbol search if it happens that the name corresponds
5785 to a primitive type. But we cannot do the same in Ada, because
5786 it is perfectly legitimate for a program to declare a type which
5787 has the same name as a standard type. If looking up a type in
5788 that situation, we have traditionally ignored the primitive type
5789 in favor of user-defined types. This is why, unlike most other
5790 languages, we search the primitive types this late and only after
5791 having searched the global symbols without success. */
5792
5793 if (domain == VAR_DOMAIN)
5794 {
5795 struct gdbarch *gdbarch;
5796
5797 if (block == NULL)
5798 gdbarch = target_gdbarch ();
5799 else
5800 gdbarch = block_gdbarch (block);
5801 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5802 if (sym.symbol != NULL)
5803 return sym;
5804 }
5805
5806 return (struct block_symbol) {NULL, NULL};
5807 }
5808
5809
5810 /* True iff STR is a possible encoded suffix of a normal Ada name
5811 that is to be ignored for matching purposes. Suffixes of parallel
5812 names (e.g., XVE) are not included here. Currently, the possible suffixes
5813 are given by any of the regular expressions:
5814
5815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5817 TKB [subprogram suffix for task bodies]
5818 _E[0-9]+[bs]$ [protected object entry suffixes]
5819 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5820
5821 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5822 match is performed. This sequence is used to differentiate homonyms,
5823 is an optional part of a valid name suffix. */
5824
5825 static int
5826 is_name_suffix (const char *str)
5827 {
5828 int k;
5829 const char *matching;
5830 const int len = strlen (str);
5831
5832 /* Skip optional leading __[0-9]+. */
5833
5834 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5835 {
5836 str += 3;
5837 while (isdigit (str[0]))
5838 str += 1;
5839 }
5840
5841 /* [.$][0-9]+ */
5842
5843 if (str[0] == '.' || str[0] == '$')
5844 {
5845 matching = str + 1;
5846 while (isdigit (matching[0]))
5847 matching += 1;
5848 if (matching[0] == '\0')
5849 return 1;
5850 }
5851
5852 /* ___[0-9]+ */
5853
5854 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5855 {
5856 matching = str + 3;
5857 while (isdigit (matching[0]))
5858 matching += 1;
5859 if (matching[0] == '\0')
5860 return 1;
5861 }
5862
5863 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5864
5865 if (strcmp (str, "TKB") == 0)
5866 return 1;
5867
5868 #if 0
5869 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5870 with a N at the end. Unfortunately, the compiler uses the same
5871 convention for other internal types it creates. So treating
5872 all entity names that end with an "N" as a name suffix causes
5873 some regressions. For instance, consider the case of an enumerated
5874 type. To support the 'Image attribute, it creates an array whose
5875 name ends with N.
5876 Having a single character like this as a suffix carrying some
5877 information is a bit risky. Perhaps we should change the encoding
5878 to be something like "_N" instead. In the meantime, do not do
5879 the following check. */
5880 /* Protected Object Subprograms */
5881 if (len == 1 && str [0] == 'N')
5882 return 1;
5883 #endif
5884
5885 /* _E[0-9]+[bs]$ */
5886 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5887 {
5888 matching = str + 3;
5889 while (isdigit (matching[0]))
5890 matching += 1;
5891 if ((matching[0] == 'b' || matching[0] == 's')
5892 && matching [1] == '\0')
5893 return 1;
5894 }
5895
5896 /* ??? We should not modify STR directly, as we are doing below. This
5897 is fine in this case, but may become problematic later if we find
5898 that this alternative did not work, and want to try matching
5899 another one from the begining of STR. Since we modified it, we
5900 won't be able to find the begining of the string anymore! */
5901 if (str[0] == 'X')
5902 {
5903 str += 1;
5904 while (str[0] != '_' && str[0] != '\0')
5905 {
5906 if (str[0] != 'n' && str[0] != 'b')
5907 return 0;
5908 str += 1;
5909 }
5910 }
5911
5912 if (str[0] == '\000')
5913 return 1;
5914
5915 if (str[0] == '_')
5916 {
5917 if (str[1] != '_' || str[2] == '\000')
5918 return 0;
5919 if (str[2] == '_')
5920 {
5921 if (strcmp (str + 3, "JM") == 0)
5922 return 1;
5923 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5924 the LJM suffix in favor of the JM one. But we will
5925 still accept LJM as a valid suffix for a reasonable
5926 amount of time, just to allow ourselves to debug programs
5927 compiled using an older version of GNAT. */
5928 if (strcmp (str + 3, "LJM") == 0)
5929 return 1;
5930 if (str[3] != 'X')
5931 return 0;
5932 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5933 || str[4] == 'U' || str[4] == 'P')
5934 return 1;
5935 if (str[4] == 'R' && str[5] != 'T')
5936 return 1;
5937 return 0;
5938 }
5939 if (!isdigit (str[2]))
5940 return 0;
5941 for (k = 3; str[k] != '\0'; k += 1)
5942 if (!isdigit (str[k]) && str[k] != '_')
5943 return 0;
5944 return 1;
5945 }
5946 if (str[0] == '$' && isdigit (str[1]))
5947 {
5948 for (k = 2; str[k] != '\0'; k += 1)
5949 if (!isdigit (str[k]) && str[k] != '_')
5950 return 0;
5951 return 1;
5952 }
5953 return 0;
5954 }
5955
5956 /* Return non-zero if the string starting at NAME and ending before
5957 NAME_END contains no capital letters. */
5958
5959 static int
5960 is_valid_name_for_wild_match (const char *name0)
5961 {
5962 const char *decoded_name = ada_decode (name0);
5963 int i;
5964
5965 /* If the decoded name starts with an angle bracket, it means that
5966 NAME0 does not follow the GNAT encoding format. It should then
5967 not be allowed as a possible wild match. */
5968 if (decoded_name[0] == '<')
5969 return 0;
5970
5971 for (i=0; decoded_name[i] != '\0'; i++)
5972 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5973 return 0;
5974
5975 return 1;
5976 }
5977
5978 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5979 that could start a simple name. Assumes that *NAMEP points into
5980 the string beginning at NAME0. */
5981
5982 static int
5983 advance_wild_match (const char **namep, const char *name0, int target0)
5984 {
5985 const char *name = *namep;
5986
5987 while (1)
5988 {
5989 int t0, t1;
5990
5991 t0 = *name;
5992 if (t0 == '_')
5993 {
5994 t1 = name[1];
5995 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5996 {
5997 name += 1;
5998 if (name == name0 + 5 && startswith (name0, "_ada"))
5999 break;
6000 else
6001 name += 1;
6002 }
6003 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6004 || name[2] == target0))
6005 {
6006 name += 2;
6007 break;
6008 }
6009 else
6010 return 0;
6011 }
6012 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6013 name += 1;
6014 else
6015 return 0;
6016 }
6017
6018 *namep = name;
6019 return 1;
6020 }
6021
6022 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6023 informational suffixes of NAME (i.e., for which is_name_suffix is
6024 true). Assumes that PATN is a lower-cased Ada simple name. */
6025
6026 static int
6027 wild_match (const char *name, const char *patn)
6028 {
6029 const char *p;
6030 const char *name0 = name;
6031
6032 while (1)
6033 {
6034 const char *match = name;
6035
6036 if (*name == *patn)
6037 {
6038 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6039 if (*p != *name)
6040 break;
6041 if (*p == '\0' && is_name_suffix (name))
6042 return match != name0 && !is_valid_name_for_wild_match (name0);
6043
6044 if (name[-1] == '_')
6045 name -= 1;
6046 }
6047 if (!advance_wild_match (&name, name0, *patn))
6048 return 1;
6049 }
6050 }
6051
6052 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6053 informational suffix. */
6054
6055 static int
6056 full_match (const char *sym_name, const char *search_name)
6057 {
6058 return !match_name (sym_name, search_name, 0);
6059 }
6060
6061
6062 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6063 vector *defn_symbols, updating the list of symbols in OBSTACKP
6064 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6065 OBJFILE is the section containing BLOCK. */
6066
6067 static void
6068 ada_add_block_symbols (struct obstack *obstackp,
6069 const struct block *block, const char *name,
6070 domain_enum domain, struct objfile *objfile,
6071 int wild)
6072 {
6073 struct block_iterator iter;
6074 int name_len = strlen (name);
6075 /* A matching argument symbol, if any. */
6076 struct symbol *arg_sym;
6077 /* Set true when we find a matching non-argument symbol. */
6078 int found_sym;
6079 struct symbol *sym;
6080
6081 arg_sym = NULL;
6082 found_sym = 0;
6083 if (wild)
6084 {
6085 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6086 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6087 {
6088 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6089 SYMBOL_DOMAIN (sym), domain)
6090 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6091 {
6092 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6093 continue;
6094 else if (SYMBOL_IS_ARGUMENT (sym))
6095 arg_sym = sym;
6096 else
6097 {
6098 found_sym = 1;
6099 add_defn_to_vec (obstackp,
6100 fixup_symbol_section (sym, objfile),
6101 block);
6102 }
6103 }
6104 }
6105 }
6106 else
6107 {
6108 for (sym = block_iter_match_first (block, name, full_match, &iter);
6109 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6110 {
6111 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6112 SYMBOL_DOMAIN (sym), domain))
6113 {
6114 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6115 {
6116 if (SYMBOL_IS_ARGUMENT (sym))
6117 arg_sym = sym;
6118 else
6119 {
6120 found_sym = 1;
6121 add_defn_to_vec (obstackp,
6122 fixup_symbol_section (sym, objfile),
6123 block);
6124 }
6125 }
6126 }
6127 }
6128 }
6129
6130 /* Handle renamings. */
6131
6132 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6133 found_sym = 1;
6134
6135 if (!found_sym && arg_sym != NULL)
6136 {
6137 add_defn_to_vec (obstackp,
6138 fixup_symbol_section (arg_sym, objfile),
6139 block);
6140 }
6141
6142 if (!wild)
6143 {
6144 arg_sym = NULL;
6145 found_sym = 0;
6146
6147 ALL_BLOCK_SYMBOLS (block, iter, sym)
6148 {
6149 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6150 SYMBOL_DOMAIN (sym), domain))
6151 {
6152 int cmp;
6153
6154 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6155 if (cmp == 0)
6156 {
6157 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6158 if (cmp == 0)
6159 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6160 name_len);
6161 }
6162
6163 if (cmp == 0
6164 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6165 {
6166 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6167 {
6168 if (SYMBOL_IS_ARGUMENT (sym))
6169 arg_sym = sym;
6170 else
6171 {
6172 found_sym = 1;
6173 add_defn_to_vec (obstackp,
6174 fixup_symbol_section (sym, objfile),
6175 block);
6176 }
6177 }
6178 }
6179 }
6180 }
6181
6182 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6183 They aren't parameters, right? */
6184 if (!found_sym && arg_sym != NULL)
6185 {
6186 add_defn_to_vec (obstackp,
6187 fixup_symbol_section (arg_sym, objfile),
6188 block);
6189 }
6190 }
6191 }
6192 \f
6193
6194 /* Symbol Completion */
6195
6196 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6197 name in a form that's appropriate for the completion. The result
6198 does not need to be deallocated, but is only good until the next call.
6199
6200 TEXT_LEN is equal to the length of TEXT.
6201 Perform a wild match if WILD_MATCH_P is set.
6202 ENCODED_P should be set if TEXT represents the start of a symbol name
6203 in its encoded form. */
6204
6205 static const char *
6206 symbol_completion_match (const char *sym_name,
6207 const char *text, int text_len,
6208 int wild_match_p, int encoded_p)
6209 {
6210 const int verbatim_match = (text[0] == '<');
6211 int match = 0;
6212
6213 if (verbatim_match)
6214 {
6215 /* Strip the leading angle bracket. */
6216 text = text + 1;
6217 text_len--;
6218 }
6219
6220 /* First, test against the fully qualified name of the symbol. */
6221
6222 if (strncmp (sym_name, text, text_len) == 0)
6223 match = 1;
6224
6225 if (match && !encoded_p)
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
6231 const char *sym_name_copy = sym_name;
6232 int has_angle_bracket;
6233
6234 sym_name = ada_decode (sym_name);
6235 has_angle_bracket = (sym_name[0] == '<');
6236 match = (has_angle_bracket == verbatim_match);
6237 sym_name = sym_name_copy;
6238 }
6239
6240 if (match && !verbatim_match)
6241 {
6242 /* When doing non-verbatim match, another check that needs to
6243 be done is to verify that the potentially matching symbol name
6244 does not include capital letters, because the ada-mode would
6245 not be able to understand these symbol names without the
6246 angle bracket notation. */
6247 const char *tmp;
6248
6249 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6250 if (*tmp != '\0')
6251 match = 0;
6252 }
6253
6254 /* Second: Try wild matching... */
6255
6256 if (!match && wild_match_p)
6257 {
6258 /* Since we are doing wild matching, this means that TEXT
6259 may represent an unqualified symbol name. We therefore must
6260 also compare TEXT against the unqualified name of the symbol. */
6261 sym_name = ada_unqualified_name (ada_decode (sym_name));
6262
6263 if (strncmp (sym_name, text, text_len) == 0)
6264 match = 1;
6265 }
6266
6267 /* Finally: If we found a mach, prepare the result to return. */
6268
6269 if (!match)
6270 return NULL;
6271
6272 if (verbatim_match)
6273 sym_name = add_angle_brackets (sym_name);
6274
6275 if (!encoded_p)
6276 sym_name = ada_decode (sym_name);
6277
6278 return sym_name;
6279 }
6280
6281 /* A companion function to ada_make_symbol_completion_list().
6282 Check if SYM_NAME represents a symbol which name would be suitable
6283 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6284 it is appended at the end of the given string vector SV.
6285
6286 ORIG_TEXT is the string original string from the user command
6287 that needs to be completed. WORD is the entire command on which
6288 completion should be performed. These two parameters are used to
6289 determine which part of the symbol name should be added to the
6290 completion vector.
6291 if WILD_MATCH_P is set, then wild matching is performed.
6292 ENCODED_P should be set if TEXT represents a symbol name in its
6293 encoded formed (in which case the completion should also be
6294 encoded). */
6295
6296 static void
6297 symbol_completion_add (VEC(char_ptr) **sv,
6298 const char *sym_name,
6299 const char *text, int text_len,
6300 const char *orig_text, const char *word,
6301 int wild_match_p, int encoded_p)
6302 {
6303 const char *match = symbol_completion_match (sym_name, text, text_len,
6304 wild_match_p, encoded_p);
6305 char *completion;
6306
6307 if (match == NULL)
6308 return;
6309
6310 /* We found a match, so add the appropriate completion to the given
6311 string vector. */
6312
6313 if (word == orig_text)
6314 {
6315 completion = xmalloc (strlen (match) + 5);
6316 strcpy (completion, match);
6317 }
6318 else if (word > orig_text)
6319 {
6320 /* Return some portion of sym_name. */
6321 completion = xmalloc (strlen (match) + 5);
6322 strcpy (completion, match + (word - orig_text));
6323 }
6324 else
6325 {
6326 /* Return some of ORIG_TEXT plus sym_name. */
6327 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6328 strncpy (completion, word, orig_text - word);
6329 completion[orig_text - word] = '\0';
6330 strcat (completion, match);
6331 }
6332
6333 VEC_safe_push (char_ptr, *sv, completion);
6334 }
6335
6336 /* An object of this type is passed as the user_data argument to the
6337 expand_symtabs_matching method. */
6338 struct add_partial_datum
6339 {
6340 VEC(char_ptr) **completions;
6341 const char *text;
6342 int text_len;
6343 const char *text0;
6344 const char *word;
6345 int wild_match;
6346 int encoded;
6347 };
6348
6349 /* A callback for expand_symtabs_matching. */
6350
6351 static int
6352 ada_complete_symbol_matcher (const char *name, void *user_data)
6353 {
6354 struct add_partial_datum *data = user_data;
6355
6356 return symbol_completion_match (name, data->text, data->text_len,
6357 data->wild_match, data->encoded) != NULL;
6358 }
6359
6360 /* Return a list of possible symbol names completing TEXT0. WORD is
6361 the entire command on which completion is made. */
6362
6363 static VEC (char_ptr) *
6364 ada_make_symbol_completion_list (const char *text0, const char *word,
6365 enum type_code code)
6366 {
6367 char *text;
6368 int text_len;
6369 int wild_match_p;
6370 int encoded_p;
6371 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6372 struct symbol *sym;
6373 struct compunit_symtab *s;
6374 struct minimal_symbol *msymbol;
6375 struct objfile *objfile;
6376 const struct block *b, *surrounding_static_block = 0;
6377 int i;
6378 struct block_iterator iter;
6379 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6380
6381 gdb_assert (code == TYPE_CODE_UNDEF);
6382
6383 if (text0[0] == '<')
6384 {
6385 text = xstrdup (text0);
6386 make_cleanup (xfree, text);
6387 text_len = strlen (text);
6388 wild_match_p = 0;
6389 encoded_p = 1;
6390 }
6391 else
6392 {
6393 text = xstrdup (ada_encode (text0));
6394 make_cleanup (xfree, text);
6395 text_len = strlen (text);
6396 for (i = 0; i < text_len; i++)
6397 text[i] = tolower (text[i]);
6398
6399 encoded_p = (strstr (text0, "__") != NULL);
6400 /* If the name contains a ".", then the user is entering a fully
6401 qualified entity name, and the match must not be done in wild
6402 mode. Similarly, if the user wants to complete what looks like
6403 an encoded name, the match must not be done in wild mode. */
6404 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6405 }
6406
6407 /* First, look at the partial symtab symbols. */
6408 {
6409 struct add_partial_datum data;
6410
6411 data.completions = &completions;
6412 data.text = text;
6413 data.text_len = text_len;
6414 data.text0 = text0;
6415 data.word = word;
6416 data.wild_match = wild_match_p;
6417 data.encoded = encoded_p;
6418 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6419 ALL_DOMAIN, &data);
6420 }
6421
6422 /* At this point scan through the misc symbol vectors and add each
6423 symbol you find to the list. Eventually we want to ignore
6424 anything that isn't a text symbol (everything else will be
6425 handled by the psymtab code above). */
6426
6427 ALL_MSYMBOLS (objfile, msymbol)
6428 {
6429 QUIT;
6430 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6431 text, text_len, text0, word, wild_match_p,
6432 encoded_p);
6433 }
6434
6435 /* Search upwards from currently selected frame (so that we can
6436 complete on local vars. */
6437
6438 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6439 {
6440 if (!BLOCK_SUPERBLOCK (b))
6441 surrounding_static_block = b; /* For elmin of dups */
6442
6443 ALL_BLOCK_SYMBOLS (b, iter, sym)
6444 {
6445 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6446 text, text_len, text0, word,
6447 wild_match_p, encoded_p);
6448 }
6449 }
6450
6451 /* Go through the symtabs and check the externs and statics for
6452 symbols which match. */
6453
6454 ALL_COMPUNITS (objfile, s)
6455 {
6456 QUIT;
6457 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6458 ALL_BLOCK_SYMBOLS (b, iter, sym)
6459 {
6460 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6461 text, text_len, text0, word,
6462 wild_match_p, encoded_p);
6463 }
6464 }
6465
6466 ALL_COMPUNITS (objfile, s)
6467 {
6468 QUIT;
6469 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6470 /* Don't do this block twice. */
6471 if (b == surrounding_static_block)
6472 continue;
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6474 {
6475 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6476 text, text_len, text0, word,
6477 wild_match_p, encoded_p);
6478 }
6479 }
6480
6481 do_cleanups (old_chain);
6482 return completions;
6483 }
6484
6485 /* Field Access */
6486
6487 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6488 for tagged types. */
6489
6490 static int
6491 ada_is_dispatch_table_ptr_type (struct type *type)
6492 {
6493 const char *name;
6494
6495 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6496 return 0;
6497
6498 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6499 if (name == NULL)
6500 return 0;
6501
6502 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6503 }
6504
6505 /* Return non-zero if TYPE is an interface tag. */
6506
6507 static int
6508 ada_is_interface_tag (struct type *type)
6509 {
6510 const char *name = TYPE_NAME (type);
6511
6512 if (name == NULL)
6513 return 0;
6514
6515 return (strcmp (name, "ada__tags__interface_tag") == 0);
6516 }
6517
6518 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6519 to be invisible to users. */
6520
6521 int
6522 ada_is_ignored_field (struct type *type, int field_num)
6523 {
6524 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6525 return 1;
6526
6527 /* Check the name of that field. */
6528 {
6529 const char *name = TYPE_FIELD_NAME (type, field_num);
6530
6531 /* Anonymous field names should not be printed.
6532 brobecker/2007-02-20: I don't think this can actually happen
6533 but we don't want to print the value of annonymous fields anyway. */
6534 if (name == NULL)
6535 return 1;
6536
6537 /* Normally, fields whose name start with an underscore ("_")
6538 are fields that have been internally generated by the compiler,
6539 and thus should not be printed. The "_parent" field is special,
6540 however: This is a field internally generated by the compiler
6541 for tagged types, and it contains the components inherited from
6542 the parent type. This field should not be printed as is, but
6543 should not be ignored either. */
6544 if (name[0] == '_' && !startswith (name, "_parent"))
6545 return 1;
6546 }
6547
6548 /* If this is the dispatch table of a tagged type or an interface tag,
6549 then ignore. */
6550 if (ada_is_tagged_type (type, 1)
6551 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6552 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6553 return 1;
6554
6555 /* Not a special field, so it should not be ignored. */
6556 return 0;
6557 }
6558
6559 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6560 pointer or reference type whose ultimate target has a tag field. */
6561
6562 int
6563 ada_is_tagged_type (struct type *type, int refok)
6564 {
6565 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6566 }
6567
6568 /* True iff TYPE represents the type of X'Tag */
6569
6570 int
6571 ada_is_tag_type (struct type *type)
6572 {
6573 type = ada_check_typedef (type);
6574
6575 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6576 return 0;
6577 else
6578 {
6579 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6580
6581 return (name != NULL
6582 && strcmp (name, "ada__tags__dispatch_table") == 0);
6583 }
6584 }
6585
6586 /* The type of the tag on VAL. */
6587
6588 struct type *
6589 ada_tag_type (struct value *val)
6590 {
6591 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6592 }
6593
6594 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6595 retired at Ada 05). */
6596
6597 static int
6598 is_ada95_tag (struct value *tag)
6599 {
6600 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6601 }
6602
6603 /* The value of the tag on VAL. */
6604
6605 struct value *
6606 ada_value_tag (struct value *val)
6607 {
6608 return ada_value_struct_elt (val, "_tag", 0);
6609 }
6610
6611 /* The value of the tag on the object of type TYPE whose contents are
6612 saved at VALADDR, if it is non-null, or is at memory address
6613 ADDRESS. */
6614
6615 static struct value *
6616 value_tag_from_contents_and_address (struct type *type,
6617 const gdb_byte *valaddr,
6618 CORE_ADDR address)
6619 {
6620 int tag_byte_offset;
6621 struct type *tag_type;
6622
6623 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6624 NULL, NULL, NULL))
6625 {
6626 const gdb_byte *valaddr1 = ((valaddr == NULL)
6627 ? NULL
6628 : valaddr + tag_byte_offset);
6629 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6630
6631 return value_from_contents_and_address (tag_type, valaddr1, address1);
6632 }
6633 return NULL;
6634 }
6635
6636 static struct type *
6637 type_from_tag (struct value *tag)
6638 {
6639 const char *type_name = ada_tag_name (tag);
6640
6641 if (type_name != NULL)
6642 return ada_find_any_type (ada_encode (type_name));
6643 return NULL;
6644 }
6645
6646 /* Given a value OBJ of a tagged type, return a value of this
6647 type at the base address of the object. The base address, as
6648 defined in Ada.Tags, it is the address of the primary tag of
6649 the object, and therefore where the field values of its full
6650 view can be fetched. */
6651
6652 struct value *
6653 ada_tag_value_at_base_address (struct value *obj)
6654 {
6655 struct value *val;
6656 LONGEST offset_to_top = 0;
6657 struct type *ptr_type, *obj_type;
6658 struct value *tag;
6659 CORE_ADDR base_address;
6660
6661 obj_type = value_type (obj);
6662
6663 /* It is the responsability of the caller to deref pointers. */
6664
6665 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6666 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6667 return obj;
6668
6669 tag = ada_value_tag (obj);
6670 if (!tag)
6671 return obj;
6672
6673 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6674
6675 if (is_ada95_tag (tag))
6676 return obj;
6677
6678 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6679 ptr_type = lookup_pointer_type (ptr_type);
6680 val = value_cast (ptr_type, tag);
6681 if (!val)
6682 return obj;
6683
6684 /* It is perfectly possible that an exception be raised while
6685 trying to determine the base address, just like for the tag;
6686 see ada_tag_name for more details. We do not print the error
6687 message for the same reason. */
6688
6689 TRY
6690 {
6691 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6692 }
6693
6694 CATCH (e, RETURN_MASK_ERROR)
6695 {
6696 return obj;
6697 }
6698 END_CATCH
6699
6700 /* If offset is null, nothing to do. */
6701
6702 if (offset_to_top == 0)
6703 return obj;
6704
6705 /* -1 is a special case in Ada.Tags; however, what should be done
6706 is not quite clear from the documentation. So do nothing for
6707 now. */
6708
6709 if (offset_to_top == -1)
6710 return obj;
6711
6712 base_address = value_address (obj) - offset_to_top;
6713 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6714
6715 /* Make sure that we have a proper tag at the new address.
6716 Otherwise, offset_to_top is bogus (which can happen when
6717 the object is not initialized yet). */
6718
6719 if (!tag)
6720 return obj;
6721
6722 obj_type = type_from_tag (tag);
6723
6724 if (!obj_type)
6725 return obj;
6726
6727 return value_from_contents_and_address (obj_type, NULL, base_address);
6728 }
6729
6730 /* Return the "ada__tags__type_specific_data" type. */
6731
6732 static struct type *
6733 ada_get_tsd_type (struct inferior *inf)
6734 {
6735 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6736
6737 if (data->tsd_type == 0)
6738 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6739 return data->tsd_type;
6740 }
6741
6742 /* Return the TSD (type-specific data) associated to the given TAG.
6743 TAG is assumed to be the tag of a tagged-type entity.
6744
6745 May return NULL if we are unable to get the TSD. */
6746
6747 static struct value *
6748 ada_get_tsd_from_tag (struct value *tag)
6749 {
6750 struct value *val;
6751 struct type *type;
6752
6753 /* First option: The TSD is simply stored as a field of our TAG.
6754 Only older versions of GNAT would use this format, but we have
6755 to test it first, because there are no visible markers for
6756 the current approach except the absence of that field. */
6757
6758 val = ada_value_struct_elt (tag, "tsd", 1);
6759 if (val)
6760 return val;
6761
6762 /* Try the second representation for the dispatch table (in which
6763 there is no explicit 'tsd' field in the referent of the tag pointer,
6764 and instead the tsd pointer is stored just before the dispatch
6765 table. */
6766
6767 type = ada_get_tsd_type (current_inferior());
6768 if (type == NULL)
6769 return NULL;
6770 type = lookup_pointer_type (lookup_pointer_type (type));
6771 val = value_cast (type, tag);
6772 if (val == NULL)
6773 return NULL;
6774 return value_ind (value_ptradd (val, -1));
6775 }
6776
6777 /* Given the TSD of a tag (type-specific data), return a string
6778 containing the name of the associated type.
6779
6780 The returned value is good until the next call. May return NULL
6781 if we are unable to determine the tag name. */
6782
6783 static char *
6784 ada_tag_name_from_tsd (struct value *tsd)
6785 {
6786 static char name[1024];
6787 char *p;
6788 struct value *val;
6789
6790 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6791 if (val == NULL)
6792 return NULL;
6793 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6794 for (p = name; *p != '\0'; p += 1)
6795 if (isalpha (*p))
6796 *p = tolower (*p);
6797 return name;
6798 }
6799
6800 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6801 a C string.
6802
6803 Return NULL if the TAG is not an Ada tag, or if we were unable to
6804 determine the name of that tag. The result is good until the next
6805 call. */
6806
6807 const char *
6808 ada_tag_name (struct value *tag)
6809 {
6810 char *name = NULL;
6811
6812 if (!ada_is_tag_type (value_type (tag)))
6813 return NULL;
6814
6815 /* It is perfectly possible that an exception be raised while trying
6816 to determine the TAG's name, even under normal circumstances:
6817 The associated variable may be uninitialized or corrupted, for
6818 instance. We do not let any exception propagate past this point.
6819 instead we return NULL.
6820
6821 We also do not print the error message either (which often is very
6822 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6823 the caller print a more meaningful message if necessary. */
6824 TRY
6825 {
6826 struct value *tsd = ada_get_tsd_from_tag (tag);
6827
6828 if (tsd != NULL)
6829 name = ada_tag_name_from_tsd (tsd);
6830 }
6831 CATCH (e, RETURN_MASK_ERROR)
6832 {
6833 }
6834 END_CATCH
6835
6836 return name;
6837 }
6838
6839 /* The parent type of TYPE, or NULL if none. */
6840
6841 struct type *
6842 ada_parent_type (struct type *type)
6843 {
6844 int i;
6845
6846 type = ada_check_typedef (type);
6847
6848 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6849 return NULL;
6850
6851 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6852 if (ada_is_parent_field (type, i))
6853 {
6854 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6855
6856 /* If the _parent field is a pointer, then dereference it. */
6857 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6858 parent_type = TYPE_TARGET_TYPE (parent_type);
6859 /* If there is a parallel XVS type, get the actual base type. */
6860 parent_type = ada_get_base_type (parent_type);
6861
6862 return ada_check_typedef (parent_type);
6863 }
6864
6865 return NULL;
6866 }
6867
6868 /* True iff field number FIELD_NUM of structure type TYPE contains the
6869 parent-type (inherited) fields of a derived type. Assumes TYPE is
6870 a structure type with at least FIELD_NUM+1 fields. */
6871
6872 int
6873 ada_is_parent_field (struct type *type, int field_num)
6874 {
6875 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6876
6877 return (name != NULL
6878 && (startswith (name, "PARENT")
6879 || startswith (name, "_parent")));
6880 }
6881
6882 /* True iff field number FIELD_NUM of structure type TYPE is a
6883 transparent wrapper field (which should be silently traversed when doing
6884 field selection and flattened when printing). Assumes TYPE is a
6885 structure type with at least FIELD_NUM+1 fields. Such fields are always
6886 structures. */
6887
6888 int
6889 ada_is_wrapper_field (struct type *type, int field_num)
6890 {
6891 const char *name = TYPE_FIELD_NAME (type, field_num);
6892
6893 return (name != NULL
6894 && (startswith (name, "PARENT")
6895 || strcmp (name, "REP") == 0
6896 || startswith (name, "_parent")
6897 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6898 }
6899
6900 /* True iff field number FIELD_NUM of structure or union type TYPE
6901 is a variant wrapper. Assumes TYPE is a structure type with at least
6902 FIELD_NUM+1 fields. */
6903
6904 int
6905 ada_is_variant_part (struct type *type, int field_num)
6906 {
6907 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6908
6909 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6910 || (is_dynamic_field (type, field_num)
6911 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6912 == TYPE_CODE_UNION)));
6913 }
6914
6915 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6916 whose discriminants are contained in the record type OUTER_TYPE,
6917 returns the type of the controlling discriminant for the variant.
6918 May return NULL if the type could not be found. */
6919
6920 struct type *
6921 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6922 {
6923 char *name = ada_variant_discrim_name (var_type);
6924
6925 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6926 }
6927
6928 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6929 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6930 represents a 'when others' clause; otherwise 0. */
6931
6932 int
6933 ada_is_others_clause (struct type *type, int field_num)
6934 {
6935 const char *name = TYPE_FIELD_NAME (type, field_num);
6936
6937 return (name != NULL && name[0] == 'O');
6938 }
6939
6940 /* Assuming that TYPE0 is the type of the variant part of a record,
6941 returns the name of the discriminant controlling the variant.
6942 The value is valid until the next call to ada_variant_discrim_name. */
6943
6944 char *
6945 ada_variant_discrim_name (struct type *type0)
6946 {
6947 static char *result = NULL;
6948 static size_t result_len = 0;
6949 struct type *type;
6950 const char *name;
6951 const char *discrim_end;
6952 const char *discrim_start;
6953
6954 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6955 type = TYPE_TARGET_TYPE (type0);
6956 else
6957 type = type0;
6958
6959 name = ada_type_name (type);
6960
6961 if (name == NULL || name[0] == '\000')
6962 return "";
6963
6964 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6965 discrim_end -= 1)
6966 {
6967 if (startswith (discrim_end, "___XVN"))
6968 break;
6969 }
6970 if (discrim_end == name)
6971 return "";
6972
6973 for (discrim_start = discrim_end; discrim_start != name + 3;
6974 discrim_start -= 1)
6975 {
6976 if (discrim_start == name + 1)
6977 return "";
6978 if ((discrim_start > name + 3
6979 && startswith (discrim_start - 3, "___"))
6980 || discrim_start[-1] == '.')
6981 break;
6982 }
6983
6984 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6985 strncpy (result, discrim_start, discrim_end - discrim_start);
6986 result[discrim_end - discrim_start] = '\0';
6987 return result;
6988 }
6989
6990 /* Scan STR for a subtype-encoded number, beginning at position K.
6991 Put the position of the character just past the number scanned in
6992 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6993 Return 1 if there was a valid number at the given position, and 0
6994 otherwise. A "subtype-encoded" number consists of the absolute value
6995 in decimal, followed by the letter 'm' to indicate a negative number.
6996 Assumes 0m does not occur. */
6997
6998 int
6999 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7000 {
7001 ULONGEST RU;
7002
7003 if (!isdigit (str[k]))
7004 return 0;
7005
7006 /* Do it the hard way so as not to make any assumption about
7007 the relationship of unsigned long (%lu scan format code) and
7008 LONGEST. */
7009 RU = 0;
7010 while (isdigit (str[k]))
7011 {
7012 RU = RU * 10 + (str[k] - '0');
7013 k += 1;
7014 }
7015
7016 if (str[k] == 'm')
7017 {
7018 if (R != NULL)
7019 *R = (-(LONGEST) (RU - 1)) - 1;
7020 k += 1;
7021 }
7022 else if (R != NULL)
7023 *R = (LONGEST) RU;
7024
7025 /* NOTE on the above: Technically, C does not say what the results of
7026 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7027 number representable as a LONGEST (although either would probably work
7028 in most implementations). When RU>0, the locution in the then branch
7029 above is always equivalent to the negative of RU. */
7030
7031 if (new_k != NULL)
7032 *new_k = k;
7033 return 1;
7034 }
7035
7036 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7037 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7038 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7039
7040 int
7041 ada_in_variant (LONGEST val, struct type *type, int field_num)
7042 {
7043 const char *name = TYPE_FIELD_NAME (type, field_num);
7044 int p;
7045
7046 p = 0;
7047 while (1)
7048 {
7049 switch (name[p])
7050 {
7051 case '\0':
7052 return 0;
7053 case 'S':
7054 {
7055 LONGEST W;
7056
7057 if (!ada_scan_number (name, p + 1, &W, &p))
7058 return 0;
7059 if (val == W)
7060 return 1;
7061 break;
7062 }
7063 case 'R':
7064 {
7065 LONGEST L, U;
7066
7067 if (!ada_scan_number (name, p + 1, &L, &p)
7068 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7069 return 0;
7070 if (val >= L && val <= U)
7071 return 1;
7072 break;
7073 }
7074 case 'O':
7075 return 1;
7076 default:
7077 return 0;
7078 }
7079 }
7080 }
7081
7082 /* FIXME: Lots of redundancy below. Try to consolidate. */
7083
7084 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7085 ARG_TYPE, extract and return the value of one of its (non-static)
7086 fields. FIELDNO says which field. Differs from value_primitive_field
7087 only in that it can handle packed values of arbitrary type. */
7088
7089 static struct value *
7090 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7091 struct type *arg_type)
7092 {
7093 struct type *type;
7094
7095 arg_type = ada_check_typedef (arg_type);
7096 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7097
7098 /* Handle packed fields. */
7099
7100 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7101 {
7102 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7103 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7104
7105 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7106 offset + bit_pos / 8,
7107 bit_pos % 8, bit_size, type);
7108 }
7109 else
7110 return value_primitive_field (arg1, offset, fieldno, arg_type);
7111 }
7112
7113 /* Find field with name NAME in object of type TYPE. If found,
7114 set the following for each argument that is non-null:
7115 - *FIELD_TYPE_P to the field's type;
7116 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7117 an object of that type;
7118 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7119 - *BIT_SIZE_P to its size in bits if the field is packed, and
7120 0 otherwise;
7121 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7122 fields up to but not including the desired field, or by the total
7123 number of fields if not found. A NULL value of NAME never
7124 matches; the function just counts visible fields in this case.
7125
7126 Returns 1 if found, 0 otherwise. */
7127
7128 static int
7129 find_struct_field (const char *name, struct type *type, int offset,
7130 struct type **field_type_p,
7131 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7132 int *index_p)
7133 {
7134 int i;
7135
7136 type = ada_check_typedef (type);
7137
7138 if (field_type_p != NULL)
7139 *field_type_p = NULL;
7140 if (byte_offset_p != NULL)
7141 *byte_offset_p = 0;
7142 if (bit_offset_p != NULL)
7143 *bit_offset_p = 0;
7144 if (bit_size_p != NULL)
7145 *bit_size_p = 0;
7146
7147 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7148 {
7149 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7150 int fld_offset = offset + bit_pos / 8;
7151 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7152
7153 if (t_field_name == NULL)
7154 continue;
7155
7156 else if (name != NULL && field_name_match (t_field_name, name))
7157 {
7158 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7159
7160 if (field_type_p != NULL)
7161 *field_type_p = TYPE_FIELD_TYPE (type, i);
7162 if (byte_offset_p != NULL)
7163 *byte_offset_p = fld_offset;
7164 if (bit_offset_p != NULL)
7165 *bit_offset_p = bit_pos % 8;
7166 if (bit_size_p != NULL)
7167 *bit_size_p = bit_size;
7168 return 1;
7169 }
7170 else if (ada_is_wrapper_field (type, i))
7171 {
7172 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7173 field_type_p, byte_offset_p, bit_offset_p,
7174 bit_size_p, index_p))
7175 return 1;
7176 }
7177 else if (ada_is_variant_part (type, i))
7178 {
7179 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7180 fixed type?? */
7181 int j;
7182 struct type *field_type
7183 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7184
7185 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7186 {
7187 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7188 fld_offset
7189 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7190 field_type_p, byte_offset_p,
7191 bit_offset_p, bit_size_p, index_p))
7192 return 1;
7193 }
7194 }
7195 else if (index_p != NULL)
7196 *index_p += 1;
7197 }
7198 return 0;
7199 }
7200
7201 /* Number of user-visible fields in record type TYPE. */
7202
7203 static int
7204 num_visible_fields (struct type *type)
7205 {
7206 int n;
7207
7208 n = 0;
7209 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7210 return n;
7211 }
7212
7213 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7214 and search in it assuming it has (class) type TYPE.
7215 If found, return value, else return NULL.
7216
7217 Searches recursively through wrapper fields (e.g., '_parent'). */
7218
7219 static struct value *
7220 ada_search_struct_field (char *name, struct value *arg, int offset,
7221 struct type *type)
7222 {
7223 int i;
7224
7225 type = ada_check_typedef (type);
7226 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7227 {
7228 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7229
7230 if (t_field_name == NULL)
7231 continue;
7232
7233 else if (field_name_match (t_field_name, name))
7234 return ada_value_primitive_field (arg, offset, i, type);
7235
7236 else if (ada_is_wrapper_field (type, i))
7237 {
7238 struct value *v = /* Do not let indent join lines here. */
7239 ada_search_struct_field (name, arg,
7240 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7241 TYPE_FIELD_TYPE (type, i));
7242
7243 if (v != NULL)
7244 return v;
7245 }
7246
7247 else if (ada_is_variant_part (type, i))
7248 {
7249 /* PNH: Do we ever get here? See find_struct_field. */
7250 int j;
7251 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7252 i));
7253 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7254
7255 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7256 {
7257 struct value *v = ada_search_struct_field /* Force line
7258 break. */
7259 (name, arg,
7260 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7261 TYPE_FIELD_TYPE (field_type, j));
7262
7263 if (v != NULL)
7264 return v;
7265 }
7266 }
7267 }
7268 return NULL;
7269 }
7270
7271 static struct value *ada_index_struct_field_1 (int *, struct value *,
7272 int, struct type *);
7273
7274
7275 /* Return field #INDEX in ARG, where the index is that returned by
7276 * find_struct_field through its INDEX_P argument. Adjust the address
7277 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7278 * If found, return value, else return NULL. */
7279
7280 static struct value *
7281 ada_index_struct_field (int index, struct value *arg, int offset,
7282 struct type *type)
7283 {
7284 return ada_index_struct_field_1 (&index, arg, offset, type);
7285 }
7286
7287
7288 /* Auxiliary function for ada_index_struct_field. Like
7289 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7290 * *INDEX_P. */
7291
7292 static struct value *
7293 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7294 struct type *type)
7295 {
7296 int i;
7297 type = ada_check_typedef (type);
7298
7299 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7300 {
7301 if (TYPE_FIELD_NAME (type, i) == NULL)
7302 continue;
7303 else if (ada_is_wrapper_field (type, i))
7304 {
7305 struct value *v = /* Do not let indent join lines here. */
7306 ada_index_struct_field_1 (index_p, arg,
7307 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7308 TYPE_FIELD_TYPE (type, i));
7309
7310 if (v != NULL)
7311 return v;
7312 }
7313
7314 else if (ada_is_variant_part (type, i))
7315 {
7316 /* PNH: Do we ever get here? See ada_search_struct_field,
7317 find_struct_field. */
7318 error (_("Cannot assign this kind of variant record"));
7319 }
7320 else if (*index_p == 0)
7321 return ada_value_primitive_field (arg, offset, i, type);
7322 else
7323 *index_p -= 1;
7324 }
7325 return NULL;
7326 }
7327
7328 /* Given ARG, a value of type (pointer or reference to a)*
7329 structure/union, extract the component named NAME from the ultimate
7330 target structure/union and return it as a value with its
7331 appropriate type.
7332
7333 The routine searches for NAME among all members of the structure itself
7334 and (recursively) among all members of any wrapper members
7335 (e.g., '_parent').
7336
7337 If NO_ERR, then simply return NULL in case of error, rather than
7338 calling error. */
7339
7340 struct value *
7341 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7342 {
7343 struct type *t, *t1;
7344 struct value *v;
7345
7346 v = NULL;
7347 t1 = t = ada_check_typedef (value_type (arg));
7348 if (TYPE_CODE (t) == TYPE_CODE_REF)
7349 {
7350 t1 = TYPE_TARGET_TYPE (t);
7351 if (t1 == NULL)
7352 goto BadValue;
7353 t1 = ada_check_typedef (t1);
7354 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7355 {
7356 arg = coerce_ref (arg);
7357 t = t1;
7358 }
7359 }
7360
7361 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7362 {
7363 t1 = TYPE_TARGET_TYPE (t);
7364 if (t1 == NULL)
7365 goto BadValue;
7366 t1 = ada_check_typedef (t1);
7367 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7368 {
7369 arg = value_ind (arg);
7370 t = t1;
7371 }
7372 else
7373 break;
7374 }
7375
7376 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7377 goto BadValue;
7378
7379 if (t1 == t)
7380 v = ada_search_struct_field (name, arg, 0, t);
7381 else
7382 {
7383 int bit_offset, bit_size, byte_offset;
7384 struct type *field_type;
7385 CORE_ADDR address;
7386
7387 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7388 address = value_address (ada_value_ind (arg));
7389 else
7390 address = value_address (ada_coerce_ref (arg));
7391
7392 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7393 if (find_struct_field (name, t1, 0,
7394 &field_type, &byte_offset, &bit_offset,
7395 &bit_size, NULL))
7396 {
7397 if (bit_size != 0)
7398 {
7399 if (TYPE_CODE (t) == TYPE_CODE_REF)
7400 arg = ada_coerce_ref (arg);
7401 else
7402 arg = ada_value_ind (arg);
7403 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7404 bit_offset, bit_size,
7405 field_type);
7406 }
7407 else
7408 v = value_at_lazy (field_type, address + byte_offset);
7409 }
7410 }
7411
7412 if (v != NULL || no_err)
7413 return v;
7414 else
7415 error (_("There is no member named %s."), name);
7416
7417 BadValue:
7418 if (no_err)
7419 return NULL;
7420 else
7421 error (_("Attempt to extract a component of "
7422 "a value that is not a record."));
7423 }
7424
7425 /* Given a type TYPE, look up the type of the component of type named NAME.
7426 If DISPP is non-null, add its byte displacement from the beginning of a
7427 structure (pointed to by a value) of type TYPE to *DISPP (does not
7428 work for packed fields).
7429
7430 Matches any field whose name has NAME as a prefix, possibly
7431 followed by "___".
7432
7433 TYPE can be either a struct or union. If REFOK, TYPE may also
7434 be a (pointer or reference)+ to a struct or union, and the
7435 ultimate target type will be searched.
7436
7437 Looks recursively into variant clauses and parent types.
7438
7439 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7440 TYPE is not a type of the right kind. */
7441
7442 static struct type *
7443 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7444 int noerr, int *dispp)
7445 {
7446 int i;
7447
7448 if (name == NULL)
7449 goto BadName;
7450
7451 if (refok && type != NULL)
7452 while (1)
7453 {
7454 type = ada_check_typedef (type);
7455 if (TYPE_CODE (type) != TYPE_CODE_PTR
7456 && TYPE_CODE (type) != TYPE_CODE_REF)
7457 break;
7458 type = TYPE_TARGET_TYPE (type);
7459 }
7460
7461 if (type == NULL
7462 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7463 && TYPE_CODE (type) != TYPE_CODE_UNION))
7464 {
7465 if (noerr)
7466 return NULL;
7467 else
7468 {
7469 target_terminal_ours ();
7470 gdb_flush (gdb_stdout);
7471 if (type == NULL)
7472 error (_("Type (null) is not a structure or union type"));
7473 else
7474 {
7475 /* XXX: type_sprint */
7476 fprintf_unfiltered (gdb_stderr, _("Type "));
7477 type_print (type, "", gdb_stderr, -1);
7478 error (_(" is not a structure or union type"));
7479 }
7480 }
7481 }
7482
7483 type = to_static_fixed_type (type);
7484
7485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7486 {
7487 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7488 struct type *t;
7489 int disp;
7490
7491 if (t_field_name == NULL)
7492 continue;
7493
7494 else if (field_name_match (t_field_name, name))
7495 {
7496 if (dispp != NULL)
7497 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7498 return TYPE_FIELD_TYPE (type, i);
7499 }
7500
7501 else if (ada_is_wrapper_field (type, i))
7502 {
7503 disp = 0;
7504 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7505 0, 1, &disp);
7506 if (t != NULL)
7507 {
7508 if (dispp != NULL)
7509 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7510 return t;
7511 }
7512 }
7513
7514 else if (ada_is_variant_part (type, i))
7515 {
7516 int j;
7517 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7518 i));
7519
7520 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7521 {
7522 /* FIXME pnh 2008/01/26: We check for a field that is
7523 NOT wrapped in a struct, since the compiler sometimes
7524 generates these for unchecked variant types. Revisit
7525 if the compiler changes this practice. */
7526 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7527 disp = 0;
7528 if (v_field_name != NULL
7529 && field_name_match (v_field_name, name))
7530 t = TYPE_FIELD_TYPE (field_type, j);
7531 else
7532 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7533 j),
7534 name, 0, 1, &disp);
7535
7536 if (t != NULL)
7537 {
7538 if (dispp != NULL)
7539 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7540 return t;
7541 }
7542 }
7543 }
7544
7545 }
7546
7547 BadName:
7548 if (!noerr)
7549 {
7550 target_terminal_ours ();
7551 gdb_flush (gdb_stdout);
7552 if (name == NULL)
7553 {
7554 /* XXX: type_sprint */
7555 fprintf_unfiltered (gdb_stderr, _("Type "));
7556 type_print (type, "", gdb_stderr, -1);
7557 error (_(" has no component named <null>"));
7558 }
7559 else
7560 {
7561 /* XXX: type_sprint */
7562 fprintf_unfiltered (gdb_stderr, _("Type "));
7563 type_print (type, "", gdb_stderr, -1);
7564 error (_(" has no component named %s"), name);
7565 }
7566 }
7567
7568 return NULL;
7569 }
7570
7571 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7572 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7573 represents an unchecked union (that is, the variant part of a
7574 record that is named in an Unchecked_Union pragma). */
7575
7576 static int
7577 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7578 {
7579 char *discrim_name = ada_variant_discrim_name (var_type);
7580
7581 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7582 == NULL);
7583 }
7584
7585
7586 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7587 within a value of type OUTER_TYPE that is stored in GDB at
7588 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7589 numbering from 0) is applicable. Returns -1 if none are. */
7590
7591 int
7592 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7593 const gdb_byte *outer_valaddr)
7594 {
7595 int others_clause;
7596 int i;
7597 char *discrim_name = ada_variant_discrim_name (var_type);
7598 struct value *outer;
7599 struct value *discrim;
7600 LONGEST discrim_val;
7601
7602 /* Using plain value_from_contents_and_address here causes problems
7603 because we will end up trying to resolve a type that is currently
7604 being constructed. */
7605 outer = value_from_contents_and_address_unresolved (outer_type,
7606 outer_valaddr, 0);
7607 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7608 if (discrim == NULL)
7609 return -1;
7610 discrim_val = value_as_long (discrim);
7611
7612 others_clause = -1;
7613 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7614 {
7615 if (ada_is_others_clause (var_type, i))
7616 others_clause = i;
7617 else if (ada_in_variant (discrim_val, var_type, i))
7618 return i;
7619 }
7620
7621 return others_clause;
7622 }
7623 \f
7624
7625
7626 /* Dynamic-Sized Records */
7627
7628 /* Strategy: The type ostensibly attached to a value with dynamic size
7629 (i.e., a size that is not statically recorded in the debugging
7630 data) does not accurately reflect the size or layout of the value.
7631 Our strategy is to convert these values to values with accurate,
7632 conventional types that are constructed on the fly. */
7633
7634 /* There is a subtle and tricky problem here. In general, we cannot
7635 determine the size of dynamic records without its data. However,
7636 the 'struct value' data structure, which GDB uses to represent
7637 quantities in the inferior process (the target), requires the size
7638 of the type at the time of its allocation in order to reserve space
7639 for GDB's internal copy of the data. That's why the
7640 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7641 rather than struct value*s.
7642
7643 However, GDB's internal history variables ($1, $2, etc.) are
7644 struct value*s containing internal copies of the data that are not, in
7645 general, the same as the data at their corresponding addresses in
7646 the target. Fortunately, the types we give to these values are all
7647 conventional, fixed-size types (as per the strategy described
7648 above), so that we don't usually have to perform the
7649 'to_fixed_xxx_type' conversions to look at their values.
7650 Unfortunately, there is one exception: if one of the internal
7651 history variables is an array whose elements are unconstrained
7652 records, then we will need to create distinct fixed types for each
7653 element selected. */
7654
7655 /* The upshot of all of this is that many routines take a (type, host
7656 address, target address) triple as arguments to represent a value.
7657 The host address, if non-null, is supposed to contain an internal
7658 copy of the relevant data; otherwise, the program is to consult the
7659 target at the target address. */
7660
7661 /* Assuming that VAL0 represents a pointer value, the result of
7662 dereferencing it. Differs from value_ind in its treatment of
7663 dynamic-sized types. */
7664
7665 struct value *
7666 ada_value_ind (struct value *val0)
7667 {
7668 struct value *val = value_ind (val0);
7669
7670 if (ada_is_tagged_type (value_type (val), 0))
7671 val = ada_tag_value_at_base_address (val);
7672
7673 return ada_to_fixed_value (val);
7674 }
7675
7676 /* The value resulting from dereferencing any "reference to"
7677 qualifiers on VAL0. */
7678
7679 static struct value *
7680 ada_coerce_ref (struct value *val0)
7681 {
7682 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7683 {
7684 struct value *val = val0;
7685
7686 val = coerce_ref (val);
7687
7688 if (ada_is_tagged_type (value_type (val), 0))
7689 val = ada_tag_value_at_base_address (val);
7690
7691 return ada_to_fixed_value (val);
7692 }
7693 else
7694 return val0;
7695 }
7696
7697 /* Return OFF rounded upward if necessary to a multiple of
7698 ALIGNMENT (a power of 2). */
7699
7700 static unsigned int
7701 align_value (unsigned int off, unsigned int alignment)
7702 {
7703 return (off + alignment - 1) & ~(alignment - 1);
7704 }
7705
7706 /* Return the bit alignment required for field #F of template type TYPE. */
7707
7708 static unsigned int
7709 field_alignment (struct type *type, int f)
7710 {
7711 const char *name = TYPE_FIELD_NAME (type, f);
7712 int len;
7713 int align_offset;
7714
7715 /* The field name should never be null, unless the debugging information
7716 is somehow malformed. In this case, we assume the field does not
7717 require any alignment. */
7718 if (name == NULL)
7719 return 1;
7720
7721 len = strlen (name);
7722
7723 if (!isdigit (name[len - 1]))
7724 return 1;
7725
7726 if (isdigit (name[len - 2]))
7727 align_offset = len - 2;
7728 else
7729 align_offset = len - 1;
7730
7731 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7732 return TARGET_CHAR_BIT;
7733
7734 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7735 }
7736
7737 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7738
7739 static struct symbol *
7740 ada_find_any_type_symbol (const char *name)
7741 {
7742 struct symbol *sym;
7743
7744 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7745 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7746 return sym;
7747
7748 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7749 return sym;
7750 }
7751
7752 /* Find a type named NAME. Ignores ambiguity. This routine will look
7753 solely for types defined by debug info, it will not search the GDB
7754 primitive types. */
7755
7756 static struct type *
7757 ada_find_any_type (const char *name)
7758 {
7759 struct symbol *sym = ada_find_any_type_symbol (name);
7760
7761 if (sym != NULL)
7762 return SYMBOL_TYPE (sym);
7763
7764 return NULL;
7765 }
7766
7767 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7768 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7769 symbol, in which case it is returned. Otherwise, this looks for
7770 symbols whose name is that of NAME_SYM suffixed with "___XR".
7771 Return symbol if found, and NULL otherwise. */
7772
7773 struct symbol *
7774 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7775 {
7776 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7777 struct symbol *sym;
7778
7779 if (strstr (name, "___XR") != NULL)
7780 return name_sym;
7781
7782 sym = find_old_style_renaming_symbol (name, block);
7783
7784 if (sym != NULL)
7785 return sym;
7786
7787 /* Not right yet. FIXME pnh 7/20/2007. */
7788 sym = ada_find_any_type_symbol (name);
7789 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7790 return sym;
7791 else
7792 return NULL;
7793 }
7794
7795 static struct symbol *
7796 find_old_style_renaming_symbol (const char *name, const struct block *block)
7797 {
7798 const struct symbol *function_sym = block_linkage_function (block);
7799 char *rename;
7800
7801 if (function_sym != NULL)
7802 {
7803 /* If the symbol is defined inside a function, NAME is not fully
7804 qualified. This means we need to prepend the function name
7805 as well as adding the ``___XR'' suffix to build the name of
7806 the associated renaming symbol. */
7807 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7808 /* Function names sometimes contain suffixes used
7809 for instance to qualify nested subprograms. When building
7810 the XR type name, we need to make sure that this suffix is
7811 not included. So do not include any suffix in the function
7812 name length below. */
7813 int function_name_len = ada_name_prefix_len (function_name);
7814 const int rename_len = function_name_len + 2 /* "__" */
7815 + strlen (name) + 6 /* "___XR\0" */ ;
7816
7817 /* Strip the suffix if necessary. */
7818 ada_remove_trailing_digits (function_name, &function_name_len);
7819 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7820 ada_remove_Xbn_suffix (function_name, &function_name_len);
7821
7822 /* Library-level functions are a special case, as GNAT adds
7823 a ``_ada_'' prefix to the function name to avoid namespace
7824 pollution. However, the renaming symbols themselves do not
7825 have this prefix, so we need to skip this prefix if present. */
7826 if (function_name_len > 5 /* "_ada_" */
7827 && strstr (function_name, "_ada_") == function_name)
7828 {
7829 function_name += 5;
7830 function_name_len -= 5;
7831 }
7832
7833 rename = (char *) alloca (rename_len * sizeof (char));
7834 strncpy (rename, function_name, function_name_len);
7835 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7836 "__%s___XR", name);
7837 }
7838 else
7839 {
7840 const int rename_len = strlen (name) + 6;
7841
7842 rename = (char *) alloca (rename_len * sizeof (char));
7843 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7844 }
7845
7846 return ada_find_any_type_symbol (rename);
7847 }
7848
7849 /* Because of GNAT encoding conventions, several GDB symbols may match a
7850 given type name. If the type denoted by TYPE0 is to be preferred to
7851 that of TYPE1 for purposes of type printing, return non-zero;
7852 otherwise return 0. */
7853
7854 int
7855 ada_prefer_type (struct type *type0, struct type *type1)
7856 {
7857 if (type1 == NULL)
7858 return 1;
7859 else if (type0 == NULL)
7860 return 0;
7861 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7862 return 1;
7863 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7864 return 0;
7865 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7866 return 1;
7867 else if (ada_is_constrained_packed_array_type (type0))
7868 return 1;
7869 else if (ada_is_array_descriptor_type (type0)
7870 && !ada_is_array_descriptor_type (type1))
7871 return 1;
7872 else
7873 {
7874 const char *type0_name = type_name_no_tag (type0);
7875 const char *type1_name = type_name_no_tag (type1);
7876
7877 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7878 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7879 return 1;
7880 }
7881 return 0;
7882 }
7883
7884 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7885 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7886
7887 const char *
7888 ada_type_name (struct type *type)
7889 {
7890 if (type == NULL)
7891 return NULL;
7892 else if (TYPE_NAME (type) != NULL)
7893 return TYPE_NAME (type);
7894 else
7895 return TYPE_TAG_NAME (type);
7896 }
7897
7898 /* Search the list of "descriptive" types associated to TYPE for a type
7899 whose name is NAME. */
7900
7901 static struct type *
7902 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7903 {
7904 struct type *result, *tmp;
7905
7906 if (ada_ignore_descriptive_types_p)
7907 return NULL;
7908
7909 /* If there no descriptive-type info, then there is no parallel type
7910 to be found. */
7911 if (!HAVE_GNAT_AUX_INFO (type))
7912 return NULL;
7913
7914 result = TYPE_DESCRIPTIVE_TYPE (type);
7915 while (result != NULL)
7916 {
7917 const char *result_name = ada_type_name (result);
7918
7919 if (result_name == NULL)
7920 {
7921 warning (_("unexpected null name on descriptive type"));
7922 return NULL;
7923 }
7924
7925 /* If the names match, stop. */
7926 if (strcmp (result_name, name) == 0)
7927 break;
7928
7929 /* Otherwise, look at the next item on the list, if any. */
7930 if (HAVE_GNAT_AUX_INFO (result))
7931 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7932 else
7933 tmp = NULL;
7934
7935 /* If not found either, try after having resolved the typedef. */
7936 if (tmp != NULL)
7937 result = tmp;
7938 else
7939 {
7940 result = check_typedef (result);
7941 if (HAVE_GNAT_AUX_INFO (result))
7942 result = TYPE_DESCRIPTIVE_TYPE (result);
7943 else
7944 result = NULL;
7945 }
7946 }
7947
7948 /* If we didn't find a match, see whether this is a packed array. With
7949 older compilers, the descriptive type information is either absent or
7950 irrelevant when it comes to packed arrays so the above lookup fails.
7951 Fall back to using a parallel lookup by name in this case. */
7952 if (result == NULL && ada_is_constrained_packed_array_type (type))
7953 return ada_find_any_type (name);
7954
7955 return result;
7956 }
7957
7958 /* Find a parallel type to TYPE with the specified NAME, using the
7959 descriptive type taken from the debugging information, if available,
7960 and otherwise using the (slower) name-based method. */
7961
7962 static struct type *
7963 ada_find_parallel_type_with_name (struct type *type, const char *name)
7964 {
7965 struct type *result = NULL;
7966
7967 if (HAVE_GNAT_AUX_INFO (type))
7968 result = find_parallel_type_by_descriptive_type (type, name);
7969 else
7970 result = ada_find_any_type (name);
7971
7972 return result;
7973 }
7974
7975 /* Same as above, but specify the name of the parallel type by appending
7976 SUFFIX to the name of TYPE. */
7977
7978 struct type *
7979 ada_find_parallel_type (struct type *type, const char *suffix)
7980 {
7981 char *name;
7982 const char *type_name = ada_type_name (type);
7983 int len;
7984
7985 if (type_name == NULL)
7986 return NULL;
7987
7988 len = strlen (type_name);
7989
7990 name = (char *) alloca (len + strlen (suffix) + 1);
7991
7992 strcpy (name, type_name);
7993 strcpy (name + len, suffix);
7994
7995 return ada_find_parallel_type_with_name (type, name);
7996 }
7997
7998 /* If TYPE is a variable-size record type, return the corresponding template
7999 type describing its fields. Otherwise, return NULL. */
8000
8001 static struct type *
8002 dynamic_template_type (struct type *type)
8003 {
8004 type = ada_check_typedef (type);
8005
8006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8007 || ada_type_name (type) == NULL)
8008 return NULL;
8009 else
8010 {
8011 int len = strlen (ada_type_name (type));
8012
8013 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8014 return type;
8015 else
8016 return ada_find_parallel_type (type, "___XVE");
8017 }
8018 }
8019
8020 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8021 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8022
8023 static int
8024 is_dynamic_field (struct type *templ_type, int field_num)
8025 {
8026 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8027
8028 return name != NULL
8029 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8030 && strstr (name, "___XVL") != NULL;
8031 }
8032
8033 /* The index of the variant field of TYPE, or -1 if TYPE does not
8034 represent a variant record type. */
8035
8036 static int
8037 variant_field_index (struct type *type)
8038 {
8039 int f;
8040
8041 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8042 return -1;
8043
8044 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8045 {
8046 if (ada_is_variant_part (type, f))
8047 return f;
8048 }
8049 return -1;
8050 }
8051
8052 /* A record type with no fields. */
8053
8054 static struct type *
8055 empty_record (struct type *templ)
8056 {
8057 struct type *type = alloc_type_copy (templ);
8058
8059 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8060 TYPE_NFIELDS (type) = 0;
8061 TYPE_FIELDS (type) = NULL;
8062 INIT_CPLUS_SPECIFIC (type);
8063 TYPE_NAME (type) = "<empty>";
8064 TYPE_TAG_NAME (type) = NULL;
8065 TYPE_LENGTH (type) = 0;
8066 return type;
8067 }
8068
8069 /* An ordinary record type (with fixed-length fields) that describes
8070 the value of type TYPE at VALADDR or ADDRESS (see comments at
8071 the beginning of this section) VAL according to GNAT conventions.
8072 DVAL0 should describe the (portion of a) record that contains any
8073 necessary discriminants. It should be NULL if value_type (VAL) is
8074 an outer-level type (i.e., as opposed to a branch of a variant.) A
8075 variant field (unless unchecked) is replaced by a particular branch
8076 of the variant.
8077
8078 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8079 length are not statically known are discarded. As a consequence,
8080 VALADDR, ADDRESS and DVAL0 are ignored.
8081
8082 NOTE: Limitations: For now, we assume that dynamic fields and
8083 variants occupy whole numbers of bytes. However, they need not be
8084 byte-aligned. */
8085
8086 struct type *
8087 ada_template_to_fixed_record_type_1 (struct type *type,
8088 const gdb_byte *valaddr,
8089 CORE_ADDR address, struct value *dval0,
8090 int keep_dynamic_fields)
8091 {
8092 struct value *mark = value_mark ();
8093 struct value *dval;
8094 struct type *rtype;
8095 int nfields, bit_len;
8096 int variant_field;
8097 long off;
8098 int fld_bit_len;
8099 int f;
8100
8101 /* Compute the number of fields in this record type that are going
8102 to be processed: unless keep_dynamic_fields, this includes only
8103 fields whose position and length are static will be processed. */
8104 if (keep_dynamic_fields)
8105 nfields = TYPE_NFIELDS (type);
8106 else
8107 {
8108 nfields = 0;
8109 while (nfields < TYPE_NFIELDS (type)
8110 && !ada_is_variant_part (type, nfields)
8111 && !is_dynamic_field (type, nfields))
8112 nfields++;
8113 }
8114
8115 rtype = alloc_type_copy (type);
8116 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8117 INIT_CPLUS_SPECIFIC (rtype);
8118 TYPE_NFIELDS (rtype) = nfields;
8119 TYPE_FIELDS (rtype) = (struct field *)
8120 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8121 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8122 TYPE_NAME (rtype) = ada_type_name (type);
8123 TYPE_TAG_NAME (rtype) = NULL;
8124 TYPE_FIXED_INSTANCE (rtype) = 1;
8125
8126 off = 0;
8127 bit_len = 0;
8128 variant_field = -1;
8129
8130 for (f = 0; f < nfields; f += 1)
8131 {
8132 off = align_value (off, field_alignment (type, f))
8133 + TYPE_FIELD_BITPOS (type, f);
8134 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8135 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8136
8137 if (ada_is_variant_part (type, f))
8138 {
8139 variant_field = f;
8140 fld_bit_len = 0;
8141 }
8142 else if (is_dynamic_field (type, f))
8143 {
8144 const gdb_byte *field_valaddr = valaddr;
8145 CORE_ADDR field_address = address;
8146 struct type *field_type =
8147 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8148
8149 if (dval0 == NULL)
8150 {
8151 /* rtype's length is computed based on the run-time
8152 value of discriminants. If the discriminants are not
8153 initialized, the type size may be completely bogus and
8154 GDB may fail to allocate a value for it. So check the
8155 size first before creating the value. */
8156 ada_ensure_varsize_limit (rtype);
8157 /* Using plain value_from_contents_and_address here
8158 causes problems because we will end up trying to
8159 resolve a type that is currently being
8160 constructed. */
8161 dval = value_from_contents_and_address_unresolved (rtype,
8162 valaddr,
8163 address);
8164 rtype = value_type (dval);
8165 }
8166 else
8167 dval = dval0;
8168
8169 /* If the type referenced by this field is an aligner type, we need
8170 to unwrap that aligner type, because its size might not be set.
8171 Keeping the aligner type would cause us to compute the wrong
8172 size for this field, impacting the offset of the all the fields
8173 that follow this one. */
8174 if (ada_is_aligner_type (field_type))
8175 {
8176 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8177
8178 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8179 field_address = cond_offset_target (field_address, field_offset);
8180 field_type = ada_aligned_type (field_type);
8181 }
8182
8183 field_valaddr = cond_offset_host (field_valaddr,
8184 off / TARGET_CHAR_BIT);
8185 field_address = cond_offset_target (field_address,
8186 off / TARGET_CHAR_BIT);
8187
8188 /* Get the fixed type of the field. Note that, in this case,
8189 we do not want to get the real type out of the tag: if
8190 the current field is the parent part of a tagged record,
8191 we will get the tag of the object. Clearly wrong: the real
8192 type of the parent is not the real type of the child. We
8193 would end up in an infinite loop. */
8194 field_type = ada_get_base_type (field_type);
8195 field_type = ada_to_fixed_type (field_type, field_valaddr,
8196 field_address, dval, 0);
8197 /* If the field size is already larger than the maximum
8198 object size, then the record itself will necessarily
8199 be larger than the maximum object size. We need to make
8200 this check now, because the size might be so ridiculously
8201 large (due to an uninitialized variable in the inferior)
8202 that it would cause an overflow when adding it to the
8203 record size. */
8204 ada_ensure_varsize_limit (field_type);
8205
8206 TYPE_FIELD_TYPE (rtype, f) = field_type;
8207 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8208 /* The multiplication can potentially overflow. But because
8209 the field length has been size-checked just above, and
8210 assuming that the maximum size is a reasonable value,
8211 an overflow should not happen in practice. So rather than
8212 adding overflow recovery code to this already complex code,
8213 we just assume that it's not going to happen. */
8214 fld_bit_len =
8215 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8216 }
8217 else
8218 {
8219 /* Note: If this field's type is a typedef, it is important
8220 to preserve the typedef layer.
8221
8222 Otherwise, we might be transforming a typedef to a fat
8223 pointer (encoding a pointer to an unconstrained array),
8224 into a basic fat pointer (encoding an unconstrained
8225 array). As both types are implemented using the same
8226 structure, the typedef is the only clue which allows us
8227 to distinguish between the two options. Stripping it
8228 would prevent us from printing this field appropriately. */
8229 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8230 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8231 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8232 fld_bit_len =
8233 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8234 else
8235 {
8236 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8237
8238 /* We need to be careful of typedefs when computing
8239 the length of our field. If this is a typedef,
8240 get the length of the target type, not the length
8241 of the typedef. */
8242 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8243 field_type = ada_typedef_target_type (field_type);
8244
8245 fld_bit_len =
8246 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8247 }
8248 }
8249 if (off + fld_bit_len > bit_len)
8250 bit_len = off + fld_bit_len;
8251 off += fld_bit_len;
8252 TYPE_LENGTH (rtype) =
8253 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8254 }
8255
8256 /* We handle the variant part, if any, at the end because of certain
8257 odd cases in which it is re-ordered so as NOT to be the last field of
8258 the record. This can happen in the presence of representation
8259 clauses. */
8260 if (variant_field >= 0)
8261 {
8262 struct type *branch_type;
8263
8264 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8265
8266 if (dval0 == NULL)
8267 {
8268 /* Using plain value_from_contents_and_address here causes
8269 problems because we will end up trying to resolve a type
8270 that is currently being constructed. */
8271 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8272 address);
8273 rtype = value_type (dval);
8274 }
8275 else
8276 dval = dval0;
8277
8278 branch_type =
8279 to_fixed_variant_branch_type
8280 (TYPE_FIELD_TYPE (type, variant_field),
8281 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8282 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8283 if (branch_type == NULL)
8284 {
8285 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8286 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8287 TYPE_NFIELDS (rtype) -= 1;
8288 }
8289 else
8290 {
8291 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8292 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8293 fld_bit_len =
8294 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8295 TARGET_CHAR_BIT;
8296 if (off + fld_bit_len > bit_len)
8297 bit_len = off + fld_bit_len;
8298 TYPE_LENGTH (rtype) =
8299 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8300 }
8301 }
8302
8303 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8304 should contain the alignment of that record, which should be a strictly
8305 positive value. If null or negative, then something is wrong, most
8306 probably in the debug info. In that case, we don't round up the size
8307 of the resulting type. If this record is not part of another structure,
8308 the current RTYPE length might be good enough for our purposes. */
8309 if (TYPE_LENGTH (type) <= 0)
8310 {
8311 if (TYPE_NAME (rtype))
8312 warning (_("Invalid type size for `%s' detected: %d."),
8313 TYPE_NAME (rtype), TYPE_LENGTH (type));
8314 else
8315 warning (_("Invalid type size for <unnamed> detected: %d."),
8316 TYPE_LENGTH (type));
8317 }
8318 else
8319 {
8320 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8321 TYPE_LENGTH (type));
8322 }
8323
8324 value_free_to_mark (mark);
8325 if (TYPE_LENGTH (rtype) > varsize_limit)
8326 error (_("record type with dynamic size is larger than varsize-limit"));
8327 return rtype;
8328 }
8329
8330 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8331 of 1. */
8332
8333 static struct type *
8334 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8335 CORE_ADDR address, struct value *dval0)
8336 {
8337 return ada_template_to_fixed_record_type_1 (type, valaddr,
8338 address, dval0, 1);
8339 }
8340
8341 /* An ordinary record type in which ___XVL-convention fields and
8342 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8343 static approximations, containing all possible fields. Uses
8344 no runtime values. Useless for use in values, but that's OK,
8345 since the results are used only for type determinations. Works on both
8346 structs and unions. Representation note: to save space, we memorize
8347 the result of this function in the TYPE_TARGET_TYPE of the
8348 template type. */
8349
8350 static struct type *
8351 template_to_static_fixed_type (struct type *type0)
8352 {
8353 struct type *type;
8354 int nfields;
8355 int f;
8356
8357 /* No need no do anything if the input type is already fixed. */
8358 if (TYPE_FIXED_INSTANCE (type0))
8359 return type0;
8360
8361 /* Likewise if we already have computed the static approximation. */
8362 if (TYPE_TARGET_TYPE (type0) != NULL)
8363 return TYPE_TARGET_TYPE (type0);
8364
8365 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8366 type = type0;
8367 nfields = TYPE_NFIELDS (type0);
8368
8369 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8370 recompute all over next time. */
8371 TYPE_TARGET_TYPE (type0) = type;
8372
8373 for (f = 0; f < nfields; f += 1)
8374 {
8375 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8376 struct type *new_type;
8377
8378 if (is_dynamic_field (type0, f))
8379 {
8380 field_type = ada_check_typedef (field_type);
8381 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8382 }
8383 else
8384 new_type = static_unwrap_type (field_type);
8385
8386 if (new_type != field_type)
8387 {
8388 /* Clone TYPE0 only the first time we get a new field type. */
8389 if (type == type0)
8390 {
8391 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8392 TYPE_CODE (type) = TYPE_CODE (type0);
8393 INIT_CPLUS_SPECIFIC (type);
8394 TYPE_NFIELDS (type) = nfields;
8395 TYPE_FIELDS (type) = (struct field *)
8396 TYPE_ALLOC (type, nfields * sizeof (struct field));
8397 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8398 sizeof (struct field) * nfields);
8399 TYPE_NAME (type) = ada_type_name (type0);
8400 TYPE_TAG_NAME (type) = NULL;
8401 TYPE_FIXED_INSTANCE (type) = 1;
8402 TYPE_LENGTH (type) = 0;
8403 }
8404 TYPE_FIELD_TYPE (type, f) = new_type;
8405 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8406 }
8407 }
8408
8409 return type;
8410 }
8411
8412 /* Given an object of type TYPE whose contents are at VALADDR and
8413 whose address in memory is ADDRESS, returns a revision of TYPE,
8414 which should be a non-dynamic-sized record, in which the variant
8415 part, if any, is replaced with the appropriate branch. Looks
8416 for discriminant values in DVAL0, which can be NULL if the record
8417 contains the necessary discriminant values. */
8418
8419 static struct type *
8420 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8421 CORE_ADDR address, struct value *dval0)
8422 {
8423 struct value *mark = value_mark ();
8424 struct value *dval;
8425 struct type *rtype;
8426 struct type *branch_type;
8427 int nfields = TYPE_NFIELDS (type);
8428 int variant_field = variant_field_index (type);
8429
8430 if (variant_field == -1)
8431 return type;
8432
8433 if (dval0 == NULL)
8434 {
8435 dval = value_from_contents_and_address (type, valaddr, address);
8436 type = value_type (dval);
8437 }
8438 else
8439 dval = dval0;
8440
8441 rtype = alloc_type_copy (type);
8442 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8443 INIT_CPLUS_SPECIFIC (rtype);
8444 TYPE_NFIELDS (rtype) = nfields;
8445 TYPE_FIELDS (rtype) =
8446 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8448 sizeof (struct field) * nfields);
8449 TYPE_NAME (rtype) = ada_type_name (type);
8450 TYPE_TAG_NAME (rtype) = NULL;
8451 TYPE_FIXED_INSTANCE (rtype) = 1;
8452 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8453
8454 branch_type = to_fixed_variant_branch_type
8455 (TYPE_FIELD_TYPE (type, variant_field),
8456 cond_offset_host (valaddr,
8457 TYPE_FIELD_BITPOS (type, variant_field)
8458 / TARGET_CHAR_BIT),
8459 cond_offset_target (address,
8460 TYPE_FIELD_BITPOS (type, variant_field)
8461 / TARGET_CHAR_BIT), dval);
8462 if (branch_type == NULL)
8463 {
8464 int f;
8465
8466 for (f = variant_field + 1; f < nfields; f += 1)
8467 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8468 TYPE_NFIELDS (rtype) -= 1;
8469 }
8470 else
8471 {
8472 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8473 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8474 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8475 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8476 }
8477 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8478
8479 value_free_to_mark (mark);
8480 return rtype;
8481 }
8482
8483 /* An ordinary record type (with fixed-length fields) that describes
8484 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8485 beginning of this section]. Any necessary discriminants' values
8486 should be in DVAL, a record value; it may be NULL if the object
8487 at ADDR itself contains any necessary discriminant values.
8488 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8489 values from the record are needed. Except in the case that DVAL,
8490 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8491 unchecked) is replaced by a particular branch of the variant.
8492
8493 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8494 is questionable and may be removed. It can arise during the
8495 processing of an unconstrained-array-of-record type where all the
8496 variant branches have exactly the same size. This is because in
8497 such cases, the compiler does not bother to use the XVS convention
8498 when encoding the record. I am currently dubious of this
8499 shortcut and suspect the compiler should be altered. FIXME. */
8500
8501 static struct type *
8502 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8503 CORE_ADDR address, struct value *dval)
8504 {
8505 struct type *templ_type;
8506
8507 if (TYPE_FIXED_INSTANCE (type0))
8508 return type0;
8509
8510 templ_type = dynamic_template_type (type0);
8511
8512 if (templ_type != NULL)
8513 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8514 else if (variant_field_index (type0) >= 0)
8515 {
8516 if (dval == NULL && valaddr == NULL && address == 0)
8517 return type0;
8518 return to_record_with_fixed_variant_part (type0, valaddr, address,
8519 dval);
8520 }
8521 else
8522 {
8523 TYPE_FIXED_INSTANCE (type0) = 1;
8524 return type0;
8525 }
8526
8527 }
8528
8529 /* An ordinary record type (with fixed-length fields) that describes
8530 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8531 union type. Any necessary discriminants' values should be in DVAL,
8532 a record value. That is, this routine selects the appropriate
8533 branch of the union at ADDR according to the discriminant value
8534 indicated in the union's type name. Returns VAR_TYPE0 itself if
8535 it represents a variant subject to a pragma Unchecked_Union. */
8536
8537 static struct type *
8538 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8539 CORE_ADDR address, struct value *dval)
8540 {
8541 int which;
8542 struct type *templ_type;
8543 struct type *var_type;
8544
8545 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8546 var_type = TYPE_TARGET_TYPE (var_type0);
8547 else
8548 var_type = var_type0;
8549
8550 templ_type = ada_find_parallel_type (var_type, "___XVU");
8551
8552 if (templ_type != NULL)
8553 var_type = templ_type;
8554
8555 if (is_unchecked_variant (var_type, value_type (dval)))
8556 return var_type0;
8557 which =
8558 ada_which_variant_applies (var_type,
8559 value_type (dval), value_contents (dval));
8560
8561 if (which < 0)
8562 return empty_record (var_type);
8563 else if (is_dynamic_field (var_type, which))
8564 return to_fixed_record_type
8565 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8566 valaddr, address, dval);
8567 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8568 return
8569 to_fixed_record_type
8570 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8571 else
8572 return TYPE_FIELD_TYPE (var_type, which);
8573 }
8574
8575 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8576 ENCODING_TYPE, a type following the GNAT conventions for discrete
8577 type encodings, only carries redundant information. */
8578
8579 static int
8580 ada_is_redundant_range_encoding (struct type *range_type,
8581 struct type *encoding_type)
8582 {
8583 struct type *fixed_range_type;
8584 char *bounds_str;
8585 int n;
8586 LONGEST lo, hi;
8587
8588 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8589
8590 if (TYPE_CODE (get_base_type (range_type))
8591 != TYPE_CODE (get_base_type (encoding_type)))
8592 {
8593 /* The compiler probably used a simple base type to describe
8594 the range type instead of the range's actual base type,
8595 expecting us to get the real base type from the encoding
8596 anyway. In this situation, the encoding cannot be ignored
8597 as redundant. */
8598 return 0;
8599 }
8600
8601 if (is_dynamic_type (range_type))
8602 return 0;
8603
8604 if (TYPE_NAME (encoding_type) == NULL)
8605 return 0;
8606
8607 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8608 if (bounds_str == NULL)
8609 return 0;
8610
8611 n = 8; /* Skip "___XDLU_". */
8612 if (!ada_scan_number (bounds_str, n, &lo, &n))
8613 return 0;
8614 if (TYPE_LOW_BOUND (range_type) != lo)
8615 return 0;
8616
8617 n += 2; /* Skip the "__" separator between the two bounds. */
8618 if (!ada_scan_number (bounds_str, n, &hi, &n))
8619 return 0;
8620 if (TYPE_HIGH_BOUND (range_type) != hi)
8621 return 0;
8622
8623 return 1;
8624 }
8625
8626 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8627 a type following the GNAT encoding for describing array type
8628 indices, only carries redundant information. */
8629
8630 static int
8631 ada_is_redundant_index_type_desc (struct type *array_type,
8632 struct type *desc_type)
8633 {
8634 struct type *this_layer = check_typedef (array_type);
8635 int i;
8636
8637 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8638 {
8639 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8640 TYPE_FIELD_TYPE (desc_type, i)))
8641 return 0;
8642 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8643 }
8644
8645 return 1;
8646 }
8647
8648 /* Assuming that TYPE0 is an array type describing the type of a value
8649 at ADDR, and that DVAL describes a record containing any
8650 discriminants used in TYPE0, returns a type for the value that
8651 contains no dynamic components (that is, no components whose sizes
8652 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8653 true, gives an error message if the resulting type's size is over
8654 varsize_limit. */
8655
8656 static struct type *
8657 to_fixed_array_type (struct type *type0, struct value *dval,
8658 int ignore_too_big)
8659 {
8660 struct type *index_type_desc;
8661 struct type *result;
8662 int constrained_packed_array_p;
8663 static const char *xa_suffix = "___XA";
8664
8665 type0 = ada_check_typedef (type0);
8666 if (TYPE_FIXED_INSTANCE (type0))
8667 return type0;
8668
8669 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8670 if (constrained_packed_array_p)
8671 type0 = decode_constrained_packed_array_type (type0);
8672
8673 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8674
8675 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8676 encoding suffixed with 'P' may still be generated. If so,
8677 it should be used to find the XA type. */
8678
8679 if (index_type_desc == NULL)
8680 {
8681 const char *type_name = ada_type_name (type0);
8682
8683 if (type_name != NULL)
8684 {
8685 const int len = strlen (type_name);
8686 char *name = (char *) alloca (len + strlen (xa_suffix));
8687
8688 if (type_name[len - 1] == 'P')
8689 {
8690 strcpy (name, type_name);
8691 strcpy (name + len - 1, xa_suffix);
8692 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8693 }
8694 }
8695 }
8696
8697 ada_fixup_array_indexes_type (index_type_desc);
8698 if (index_type_desc != NULL
8699 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8700 {
8701 /* Ignore this ___XA parallel type, as it does not bring any
8702 useful information. This allows us to avoid creating fixed
8703 versions of the array's index types, which would be identical
8704 to the original ones. This, in turn, can also help avoid
8705 the creation of fixed versions of the array itself. */
8706 index_type_desc = NULL;
8707 }
8708
8709 if (index_type_desc == NULL)
8710 {
8711 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8712
8713 /* NOTE: elt_type---the fixed version of elt_type0---should never
8714 depend on the contents of the array in properly constructed
8715 debugging data. */
8716 /* Create a fixed version of the array element type.
8717 We're not providing the address of an element here,
8718 and thus the actual object value cannot be inspected to do
8719 the conversion. This should not be a problem, since arrays of
8720 unconstrained objects are not allowed. In particular, all
8721 the elements of an array of a tagged type should all be of
8722 the same type specified in the debugging info. No need to
8723 consult the object tag. */
8724 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8725
8726 /* Make sure we always create a new array type when dealing with
8727 packed array types, since we're going to fix-up the array
8728 type length and element bitsize a little further down. */
8729 if (elt_type0 == elt_type && !constrained_packed_array_p)
8730 result = type0;
8731 else
8732 result = create_array_type (alloc_type_copy (type0),
8733 elt_type, TYPE_INDEX_TYPE (type0));
8734 }
8735 else
8736 {
8737 int i;
8738 struct type *elt_type0;
8739
8740 elt_type0 = type0;
8741 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8742 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8743
8744 /* NOTE: result---the fixed version of elt_type0---should never
8745 depend on the contents of the array in properly constructed
8746 debugging data. */
8747 /* Create a fixed version of the array element type.
8748 We're not providing the address of an element here,
8749 and thus the actual object value cannot be inspected to do
8750 the conversion. This should not be a problem, since arrays of
8751 unconstrained objects are not allowed. In particular, all
8752 the elements of an array of a tagged type should all be of
8753 the same type specified in the debugging info. No need to
8754 consult the object tag. */
8755 result =
8756 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8757
8758 elt_type0 = type0;
8759 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8760 {
8761 struct type *range_type =
8762 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8763
8764 result = create_array_type (alloc_type_copy (elt_type0),
8765 result, range_type);
8766 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8767 }
8768 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8769 error (_("array type with dynamic size is larger than varsize-limit"));
8770 }
8771
8772 /* We want to preserve the type name. This can be useful when
8773 trying to get the type name of a value that has already been
8774 printed (for instance, if the user did "print VAR; whatis $". */
8775 TYPE_NAME (result) = TYPE_NAME (type0);
8776
8777 if (constrained_packed_array_p)
8778 {
8779 /* So far, the resulting type has been created as if the original
8780 type was a regular (non-packed) array type. As a result, the
8781 bitsize of the array elements needs to be set again, and the array
8782 length needs to be recomputed based on that bitsize. */
8783 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8784 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8785
8786 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8787 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8788 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8789 TYPE_LENGTH (result)++;
8790 }
8791
8792 TYPE_FIXED_INSTANCE (result) = 1;
8793 return result;
8794 }
8795
8796
8797 /* A standard type (containing no dynamically sized components)
8798 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8799 DVAL describes a record containing any discriminants used in TYPE0,
8800 and may be NULL if there are none, or if the object of type TYPE at
8801 ADDRESS or in VALADDR contains these discriminants.
8802
8803 If CHECK_TAG is not null, in the case of tagged types, this function
8804 attempts to locate the object's tag and use it to compute the actual
8805 type. However, when ADDRESS is null, we cannot use it to determine the
8806 location of the tag, and therefore compute the tagged type's actual type.
8807 So we return the tagged type without consulting the tag. */
8808
8809 static struct type *
8810 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8811 CORE_ADDR address, struct value *dval, int check_tag)
8812 {
8813 type = ada_check_typedef (type);
8814 switch (TYPE_CODE (type))
8815 {
8816 default:
8817 return type;
8818 case TYPE_CODE_STRUCT:
8819 {
8820 struct type *static_type = to_static_fixed_type (type);
8821 struct type *fixed_record_type =
8822 to_fixed_record_type (type, valaddr, address, NULL);
8823
8824 /* If STATIC_TYPE is a tagged type and we know the object's address,
8825 then we can determine its tag, and compute the object's actual
8826 type from there. Note that we have to use the fixed record
8827 type (the parent part of the record may have dynamic fields
8828 and the way the location of _tag is expressed may depend on
8829 them). */
8830
8831 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8832 {
8833 struct value *tag =
8834 value_tag_from_contents_and_address
8835 (fixed_record_type,
8836 valaddr,
8837 address);
8838 struct type *real_type = type_from_tag (tag);
8839 struct value *obj =
8840 value_from_contents_and_address (fixed_record_type,
8841 valaddr,
8842 address);
8843 fixed_record_type = value_type (obj);
8844 if (real_type != NULL)
8845 return to_fixed_record_type
8846 (real_type, NULL,
8847 value_address (ada_tag_value_at_base_address (obj)), NULL);
8848 }
8849
8850 /* Check to see if there is a parallel ___XVZ variable.
8851 If there is, then it provides the actual size of our type. */
8852 else if (ada_type_name (fixed_record_type) != NULL)
8853 {
8854 const char *name = ada_type_name (fixed_record_type);
8855 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8856 int xvz_found = 0;
8857 LONGEST size;
8858
8859 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8860 size = get_int_var_value (xvz_name, &xvz_found);
8861 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8862 {
8863 fixed_record_type = copy_type (fixed_record_type);
8864 TYPE_LENGTH (fixed_record_type) = size;
8865
8866 /* The FIXED_RECORD_TYPE may have be a stub. We have
8867 observed this when the debugging info is STABS, and
8868 apparently it is something that is hard to fix.
8869
8870 In practice, we don't need the actual type definition
8871 at all, because the presence of the XVZ variable allows us
8872 to assume that there must be a XVS type as well, which we
8873 should be able to use later, when we need the actual type
8874 definition.
8875
8876 In the meantime, pretend that the "fixed" type we are
8877 returning is NOT a stub, because this can cause trouble
8878 when using this type to create new types targeting it.
8879 Indeed, the associated creation routines often check
8880 whether the target type is a stub and will try to replace
8881 it, thus using a type with the wrong size. This, in turn,
8882 might cause the new type to have the wrong size too.
8883 Consider the case of an array, for instance, where the size
8884 of the array is computed from the number of elements in
8885 our array multiplied by the size of its element. */
8886 TYPE_STUB (fixed_record_type) = 0;
8887 }
8888 }
8889 return fixed_record_type;
8890 }
8891 case TYPE_CODE_ARRAY:
8892 return to_fixed_array_type (type, dval, 1);
8893 case TYPE_CODE_UNION:
8894 if (dval == NULL)
8895 return type;
8896 else
8897 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8898 }
8899 }
8900
8901 /* The same as ada_to_fixed_type_1, except that it preserves the type
8902 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8903
8904 The typedef layer needs be preserved in order to differentiate between
8905 arrays and array pointers when both types are implemented using the same
8906 fat pointer. In the array pointer case, the pointer is encoded as
8907 a typedef of the pointer type. For instance, considering:
8908
8909 type String_Access is access String;
8910 S1 : String_Access := null;
8911
8912 To the debugger, S1 is defined as a typedef of type String. But
8913 to the user, it is a pointer. So if the user tries to print S1,
8914 we should not dereference the array, but print the array address
8915 instead.
8916
8917 If we didn't preserve the typedef layer, we would lose the fact that
8918 the type is to be presented as a pointer (needs de-reference before
8919 being printed). And we would also use the source-level type name. */
8920
8921 struct type *
8922 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8923 CORE_ADDR address, struct value *dval, int check_tag)
8924
8925 {
8926 struct type *fixed_type =
8927 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8928
8929 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8930 then preserve the typedef layer.
8931
8932 Implementation note: We can only check the main-type portion of
8933 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8934 from TYPE now returns a type that has the same instance flags
8935 as TYPE. For instance, if TYPE is a "typedef const", and its
8936 target type is a "struct", then the typedef elimination will return
8937 a "const" version of the target type. See check_typedef for more
8938 details about how the typedef layer elimination is done.
8939
8940 brobecker/2010-11-19: It seems to me that the only case where it is
8941 useful to preserve the typedef layer is when dealing with fat pointers.
8942 Perhaps, we could add a check for that and preserve the typedef layer
8943 only in that situation. But this seems unecessary so far, probably
8944 because we call check_typedef/ada_check_typedef pretty much everywhere.
8945 */
8946 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8947 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8948 == TYPE_MAIN_TYPE (fixed_type)))
8949 return type;
8950
8951 return fixed_type;
8952 }
8953
8954 /* A standard (static-sized) type corresponding as well as possible to
8955 TYPE0, but based on no runtime data. */
8956
8957 static struct type *
8958 to_static_fixed_type (struct type *type0)
8959 {
8960 struct type *type;
8961
8962 if (type0 == NULL)
8963 return NULL;
8964
8965 if (TYPE_FIXED_INSTANCE (type0))
8966 return type0;
8967
8968 type0 = ada_check_typedef (type0);
8969
8970 switch (TYPE_CODE (type0))
8971 {
8972 default:
8973 return type0;
8974 case TYPE_CODE_STRUCT:
8975 type = dynamic_template_type (type0);
8976 if (type != NULL)
8977 return template_to_static_fixed_type (type);
8978 else
8979 return template_to_static_fixed_type (type0);
8980 case TYPE_CODE_UNION:
8981 type = ada_find_parallel_type (type0, "___XVU");
8982 if (type != NULL)
8983 return template_to_static_fixed_type (type);
8984 else
8985 return template_to_static_fixed_type (type0);
8986 }
8987 }
8988
8989 /* A static approximation of TYPE with all type wrappers removed. */
8990
8991 static struct type *
8992 static_unwrap_type (struct type *type)
8993 {
8994 if (ada_is_aligner_type (type))
8995 {
8996 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8997 if (ada_type_name (type1) == NULL)
8998 TYPE_NAME (type1) = ada_type_name (type);
8999
9000 return static_unwrap_type (type1);
9001 }
9002 else
9003 {
9004 struct type *raw_real_type = ada_get_base_type (type);
9005
9006 if (raw_real_type == type)
9007 return type;
9008 else
9009 return to_static_fixed_type (raw_real_type);
9010 }
9011 }
9012
9013 /* In some cases, incomplete and private types require
9014 cross-references that are not resolved as records (for example,
9015 type Foo;
9016 type FooP is access Foo;
9017 V: FooP;
9018 type Foo is array ...;
9019 ). In these cases, since there is no mechanism for producing
9020 cross-references to such types, we instead substitute for FooP a
9021 stub enumeration type that is nowhere resolved, and whose tag is
9022 the name of the actual type. Call these types "non-record stubs". */
9023
9024 /* A type equivalent to TYPE that is not a non-record stub, if one
9025 exists, otherwise TYPE. */
9026
9027 struct type *
9028 ada_check_typedef (struct type *type)
9029 {
9030 if (type == NULL)
9031 return NULL;
9032
9033 /* If our type is a typedef type of a fat pointer, then we're done.
9034 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9035 what allows us to distinguish between fat pointers that represent
9036 array types, and fat pointers that represent array access types
9037 (in both cases, the compiler implements them as fat pointers). */
9038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9039 && is_thick_pntr (ada_typedef_target_type (type)))
9040 return type;
9041
9042 type = check_typedef (type);
9043 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9044 || !TYPE_STUB (type)
9045 || TYPE_TAG_NAME (type) == NULL)
9046 return type;
9047 else
9048 {
9049 const char *name = TYPE_TAG_NAME (type);
9050 struct type *type1 = ada_find_any_type (name);
9051
9052 if (type1 == NULL)
9053 return type;
9054
9055 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9056 stubs pointing to arrays, as we don't create symbols for array
9057 types, only for the typedef-to-array types). If that's the case,
9058 strip the typedef layer. */
9059 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9060 type1 = ada_check_typedef (type1);
9061
9062 return type1;
9063 }
9064 }
9065
9066 /* A value representing the data at VALADDR/ADDRESS as described by
9067 type TYPE0, but with a standard (static-sized) type that correctly
9068 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9069 type, then return VAL0 [this feature is simply to avoid redundant
9070 creation of struct values]. */
9071
9072 static struct value *
9073 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9074 struct value *val0)
9075 {
9076 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9077
9078 if (type == type0 && val0 != NULL)
9079 return val0;
9080 else
9081 return value_from_contents_and_address (type, 0, address);
9082 }
9083
9084 /* A value representing VAL, but with a standard (static-sized) type
9085 that correctly describes it. Does not necessarily create a new
9086 value. */
9087
9088 struct value *
9089 ada_to_fixed_value (struct value *val)
9090 {
9091 val = unwrap_value (val);
9092 val = ada_to_fixed_value_create (value_type (val),
9093 value_address (val),
9094 val);
9095 return val;
9096 }
9097 \f
9098
9099 /* Attributes */
9100
9101 /* Table mapping attribute numbers to names.
9102 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9103
9104 static const char *attribute_names[] = {
9105 "<?>",
9106
9107 "first",
9108 "last",
9109 "length",
9110 "image",
9111 "max",
9112 "min",
9113 "modulus",
9114 "pos",
9115 "size",
9116 "tag",
9117 "val",
9118 0
9119 };
9120
9121 const char *
9122 ada_attribute_name (enum exp_opcode n)
9123 {
9124 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9125 return attribute_names[n - OP_ATR_FIRST + 1];
9126 else
9127 return attribute_names[0];
9128 }
9129
9130 /* Evaluate the 'POS attribute applied to ARG. */
9131
9132 static LONGEST
9133 pos_atr (struct value *arg)
9134 {
9135 struct value *val = coerce_ref (arg);
9136 struct type *type = value_type (val);
9137 LONGEST result;
9138
9139 if (!discrete_type_p (type))
9140 error (_("'POS only defined on discrete types"));
9141
9142 if (!discrete_position (type, value_as_long (val), &result))
9143 error (_("enumeration value is invalid: can't find 'POS"));
9144
9145 return result;
9146 }
9147
9148 static struct value *
9149 value_pos_atr (struct type *type, struct value *arg)
9150 {
9151 return value_from_longest (type, pos_atr (arg));
9152 }
9153
9154 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9155
9156 static struct value *
9157 value_val_atr (struct type *type, struct value *arg)
9158 {
9159 if (!discrete_type_p (type))
9160 error (_("'VAL only defined on discrete types"));
9161 if (!integer_type_p (value_type (arg)))
9162 error (_("'VAL requires integral argument"));
9163
9164 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9165 {
9166 long pos = value_as_long (arg);
9167
9168 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9169 error (_("argument to 'VAL out of range"));
9170 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9171 }
9172 else
9173 return value_from_longest (type, value_as_long (arg));
9174 }
9175 \f
9176
9177 /* Evaluation */
9178
9179 /* True if TYPE appears to be an Ada character type.
9180 [At the moment, this is true only for Character and Wide_Character;
9181 It is a heuristic test that could stand improvement]. */
9182
9183 int
9184 ada_is_character_type (struct type *type)
9185 {
9186 const char *name;
9187
9188 /* If the type code says it's a character, then assume it really is,
9189 and don't check any further. */
9190 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9191 return 1;
9192
9193 /* Otherwise, assume it's a character type iff it is a discrete type
9194 with a known character type name. */
9195 name = ada_type_name (type);
9196 return (name != NULL
9197 && (TYPE_CODE (type) == TYPE_CODE_INT
9198 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9199 && (strcmp (name, "character") == 0
9200 || strcmp (name, "wide_character") == 0
9201 || strcmp (name, "wide_wide_character") == 0
9202 || strcmp (name, "unsigned char") == 0));
9203 }
9204
9205 /* True if TYPE appears to be an Ada string type. */
9206
9207 int
9208 ada_is_string_type (struct type *type)
9209 {
9210 type = ada_check_typedef (type);
9211 if (type != NULL
9212 && TYPE_CODE (type) != TYPE_CODE_PTR
9213 && (ada_is_simple_array_type (type)
9214 || ada_is_array_descriptor_type (type))
9215 && ada_array_arity (type) == 1)
9216 {
9217 struct type *elttype = ada_array_element_type (type, 1);
9218
9219 return ada_is_character_type (elttype);
9220 }
9221 else
9222 return 0;
9223 }
9224
9225 /* The compiler sometimes provides a parallel XVS type for a given
9226 PAD type. Normally, it is safe to follow the PAD type directly,
9227 but older versions of the compiler have a bug that causes the offset
9228 of its "F" field to be wrong. Following that field in that case
9229 would lead to incorrect results, but this can be worked around
9230 by ignoring the PAD type and using the associated XVS type instead.
9231
9232 Set to True if the debugger should trust the contents of PAD types.
9233 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9234 static int trust_pad_over_xvs = 1;
9235
9236 /* True if TYPE is a struct type introduced by the compiler to force the
9237 alignment of a value. Such types have a single field with a
9238 distinctive name. */
9239
9240 int
9241 ada_is_aligner_type (struct type *type)
9242 {
9243 type = ada_check_typedef (type);
9244
9245 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9246 return 0;
9247
9248 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9249 && TYPE_NFIELDS (type) == 1
9250 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9251 }
9252
9253 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9254 the parallel type. */
9255
9256 struct type *
9257 ada_get_base_type (struct type *raw_type)
9258 {
9259 struct type *real_type_namer;
9260 struct type *raw_real_type;
9261
9262 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9263 return raw_type;
9264
9265 if (ada_is_aligner_type (raw_type))
9266 /* The encoding specifies that we should always use the aligner type.
9267 So, even if this aligner type has an associated XVS type, we should
9268 simply ignore it.
9269
9270 According to the compiler gurus, an XVS type parallel to an aligner
9271 type may exist because of a stabs limitation. In stabs, aligner
9272 types are empty because the field has a variable-sized type, and
9273 thus cannot actually be used as an aligner type. As a result,
9274 we need the associated parallel XVS type to decode the type.
9275 Since the policy in the compiler is to not change the internal
9276 representation based on the debugging info format, we sometimes
9277 end up having a redundant XVS type parallel to the aligner type. */
9278 return raw_type;
9279
9280 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9281 if (real_type_namer == NULL
9282 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9283 || TYPE_NFIELDS (real_type_namer) != 1)
9284 return raw_type;
9285
9286 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9287 {
9288 /* This is an older encoding form where the base type needs to be
9289 looked up by name. We prefer the newer enconding because it is
9290 more efficient. */
9291 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9292 if (raw_real_type == NULL)
9293 return raw_type;
9294 else
9295 return raw_real_type;
9296 }
9297
9298 /* The field in our XVS type is a reference to the base type. */
9299 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9300 }
9301
9302 /* The type of value designated by TYPE, with all aligners removed. */
9303
9304 struct type *
9305 ada_aligned_type (struct type *type)
9306 {
9307 if (ada_is_aligner_type (type))
9308 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9309 else
9310 return ada_get_base_type (type);
9311 }
9312
9313
9314 /* The address of the aligned value in an object at address VALADDR
9315 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9316
9317 const gdb_byte *
9318 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9319 {
9320 if (ada_is_aligner_type (type))
9321 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9322 valaddr +
9323 TYPE_FIELD_BITPOS (type,
9324 0) / TARGET_CHAR_BIT);
9325 else
9326 return valaddr;
9327 }
9328
9329
9330
9331 /* The printed representation of an enumeration literal with encoded
9332 name NAME. The value is good to the next call of ada_enum_name. */
9333 const char *
9334 ada_enum_name (const char *name)
9335 {
9336 static char *result;
9337 static size_t result_len = 0;
9338 char *tmp;
9339
9340 /* First, unqualify the enumeration name:
9341 1. Search for the last '.' character. If we find one, then skip
9342 all the preceding characters, the unqualified name starts
9343 right after that dot.
9344 2. Otherwise, we may be debugging on a target where the compiler
9345 translates dots into "__". Search forward for double underscores,
9346 but stop searching when we hit an overloading suffix, which is
9347 of the form "__" followed by digits. */
9348
9349 tmp = strrchr (name, '.');
9350 if (tmp != NULL)
9351 name = tmp + 1;
9352 else
9353 {
9354 while ((tmp = strstr (name, "__")) != NULL)
9355 {
9356 if (isdigit (tmp[2]))
9357 break;
9358 else
9359 name = tmp + 2;
9360 }
9361 }
9362
9363 if (name[0] == 'Q')
9364 {
9365 int v;
9366
9367 if (name[1] == 'U' || name[1] == 'W')
9368 {
9369 if (sscanf (name + 2, "%x", &v) != 1)
9370 return name;
9371 }
9372 else
9373 return name;
9374
9375 GROW_VECT (result, result_len, 16);
9376 if (isascii (v) && isprint (v))
9377 xsnprintf (result, result_len, "'%c'", v);
9378 else if (name[1] == 'U')
9379 xsnprintf (result, result_len, "[\"%02x\"]", v);
9380 else
9381 xsnprintf (result, result_len, "[\"%04x\"]", v);
9382
9383 return result;
9384 }
9385 else
9386 {
9387 tmp = strstr (name, "__");
9388 if (tmp == NULL)
9389 tmp = strstr (name, "$");
9390 if (tmp != NULL)
9391 {
9392 GROW_VECT (result, result_len, tmp - name + 1);
9393 strncpy (result, name, tmp - name);
9394 result[tmp - name] = '\0';
9395 return result;
9396 }
9397
9398 return name;
9399 }
9400 }
9401
9402 /* Evaluate the subexpression of EXP starting at *POS as for
9403 evaluate_type, updating *POS to point just past the evaluated
9404 expression. */
9405
9406 static struct value *
9407 evaluate_subexp_type (struct expression *exp, int *pos)
9408 {
9409 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9410 }
9411
9412 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9413 value it wraps. */
9414
9415 static struct value *
9416 unwrap_value (struct value *val)
9417 {
9418 struct type *type = ada_check_typedef (value_type (val));
9419
9420 if (ada_is_aligner_type (type))
9421 {
9422 struct value *v = ada_value_struct_elt (val, "F", 0);
9423 struct type *val_type = ada_check_typedef (value_type (v));
9424
9425 if (ada_type_name (val_type) == NULL)
9426 TYPE_NAME (val_type) = ada_type_name (type);
9427
9428 return unwrap_value (v);
9429 }
9430 else
9431 {
9432 struct type *raw_real_type =
9433 ada_check_typedef (ada_get_base_type (type));
9434
9435 /* If there is no parallel XVS or XVE type, then the value is
9436 already unwrapped. Return it without further modification. */
9437 if ((type == raw_real_type)
9438 && ada_find_parallel_type (type, "___XVE") == NULL)
9439 return val;
9440
9441 return
9442 coerce_unspec_val_to_type
9443 (val, ada_to_fixed_type (raw_real_type, 0,
9444 value_address (val),
9445 NULL, 1));
9446 }
9447 }
9448
9449 static struct value *
9450 cast_to_fixed (struct type *type, struct value *arg)
9451 {
9452 LONGEST val;
9453
9454 if (type == value_type (arg))
9455 return arg;
9456 else if (ada_is_fixed_point_type (value_type (arg)))
9457 val = ada_float_to_fixed (type,
9458 ada_fixed_to_float (value_type (arg),
9459 value_as_long (arg)));
9460 else
9461 {
9462 DOUBLEST argd = value_as_double (arg);
9463
9464 val = ada_float_to_fixed (type, argd);
9465 }
9466
9467 return value_from_longest (type, val);
9468 }
9469
9470 static struct value *
9471 cast_from_fixed (struct type *type, struct value *arg)
9472 {
9473 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9474 value_as_long (arg));
9475
9476 return value_from_double (type, val);
9477 }
9478
9479 /* Given two array types T1 and T2, return nonzero iff both arrays
9480 contain the same number of elements. */
9481
9482 static int
9483 ada_same_array_size_p (struct type *t1, struct type *t2)
9484 {
9485 LONGEST lo1, hi1, lo2, hi2;
9486
9487 /* Get the array bounds in order to verify that the size of
9488 the two arrays match. */
9489 if (!get_array_bounds (t1, &lo1, &hi1)
9490 || !get_array_bounds (t2, &lo2, &hi2))
9491 error (_("unable to determine array bounds"));
9492
9493 /* To make things easier for size comparison, normalize a bit
9494 the case of empty arrays by making sure that the difference
9495 between upper bound and lower bound is always -1. */
9496 if (lo1 > hi1)
9497 hi1 = lo1 - 1;
9498 if (lo2 > hi2)
9499 hi2 = lo2 - 1;
9500
9501 return (hi1 - lo1 == hi2 - lo2);
9502 }
9503
9504 /* Assuming that VAL is an array of integrals, and TYPE represents
9505 an array with the same number of elements, but with wider integral
9506 elements, return an array "casted" to TYPE. In practice, this
9507 means that the returned array is built by casting each element
9508 of the original array into TYPE's (wider) element type. */
9509
9510 static struct value *
9511 ada_promote_array_of_integrals (struct type *type, struct value *val)
9512 {
9513 struct type *elt_type = TYPE_TARGET_TYPE (type);
9514 LONGEST lo, hi;
9515 struct value *res;
9516 LONGEST i;
9517
9518 /* Verify that both val and type are arrays of scalars, and
9519 that the size of val's elements is smaller than the size
9520 of type's element. */
9521 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9522 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9523 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9524 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9525 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9526 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9527
9528 if (!get_array_bounds (type, &lo, &hi))
9529 error (_("unable to determine array bounds"));
9530
9531 res = allocate_value (type);
9532
9533 /* Promote each array element. */
9534 for (i = 0; i < hi - lo + 1; i++)
9535 {
9536 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9537
9538 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9539 value_contents_all (elt), TYPE_LENGTH (elt_type));
9540 }
9541
9542 return res;
9543 }
9544
9545 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9546 return the converted value. */
9547
9548 static struct value *
9549 coerce_for_assign (struct type *type, struct value *val)
9550 {
9551 struct type *type2 = value_type (val);
9552
9553 if (type == type2)
9554 return val;
9555
9556 type2 = ada_check_typedef (type2);
9557 type = ada_check_typedef (type);
9558
9559 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9560 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9561 {
9562 val = ada_value_ind (val);
9563 type2 = value_type (val);
9564 }
9565
9566 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9567 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9568 {
9569 if (!ada_same_array_size_p (type, type2))
9570 error (_("cannot assign arrays of different length"));
9571
9572 if (is_integral_type (TYPE_TARGET_TYPE (type))
9573 && is_integral_type (TYPE_TARGET_TYPE (type2))
9574 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9575 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9576 {
9577 /* Allow implicit promotion of the array elements to
9578 a wider type. */
9579 return ada_promote_array_of_integrals (type, val);
9580 }
9581
9582 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9583 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9584 error (_("Incompatible types in assignment"));
9585 deprecated_set_value_type (val, type);
9586 }
9587 return val;
9588 }
9589
9590 static struct value *
9591 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9592 {
9593 struct value *val;
9594 struct type *type1, *type2;
9595 LONGEST v, v1, v2;
9596
9597 arg1 = coerce_ref (arg1);
9598 arg2 = coerce_ref (arg2);
9599 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9600 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9601
9602 if (TYPE_CODE (type1) != TYPE_CODE_INT
9603 || TYPE_CODE (type2) != TYPE_CODE_INT)
9604 return value_binop (arg1, arg2, op);
9605
9606 switch (op)
9607 {
9608 case BINOP_MOD:
9609 case BINOP_DIV:
9610 case BINOP_REM:
9611 break;
9612 default:
9613 return value_binop (arg1, arg2, op);
9614 }
9615
9616 v2 = value_as_long (arg2);
9617 if (v2 == 0)
9618 error (_("second operand of %s must not be zero."), op_string (op));
9619
9620 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9621 return value_binop (arg1, arg2, op);
9622
9623 v1 = value_as_long (arg1);
9624 switch (op)
9625 {
9626 case BINOP_DIV:
9627 v = v1 / v2;
9628 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9629 v += v > 0 ? -1 : 1;
9630 break;
9631 case BINOP_REM:
9632 v = v1 % v2;
9633 if (v * v1 < 0)
9634 v -= v2;
9635 break;
9636 default:
9637 /* Should not reach this point. */
9638 v = 0;
9639 }
9640
9641 val = allocate_value (type1);
9642 store_unsigned_integer (value_contents_raw (val),
9643 TYPE_LENGTH (value_type (val)),
9644 gdbarch_byte_order (get_type_arch (type1)), v);
9645 return val;
9646 }
9647
9648 static int
9649 ada_value_equal (struct value *arg1, struct value *arg2)
9650 {
9651 if (ada_is_direct_array_type (value_type (arg1))
9652 || ada_is_direct_array_type (value_type (arg2)))
9653 {
9654 /* Automatically dereference any array reference before
9655 we attempt to perform the comparison. */
9656 arg1 = ada_coerce_ref (arg1);
9657 arg2 = ada_coerce_ref (arg2);
9658
9659 arg1 = ada_coerce_to_simple_array (arg1);
9660 arg2 = ada_coerce_to_simple_array (arg2);
9661 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9662 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9663 error (_("Attempt to compare array with non-array"));
9664 /* FIXME: The following works only for types whose
9665 representations use all bits (no padding or undefined bits)
9666 and do not have user-defined equality. */
9667 return
9668 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9669 && memcmp (value_contents (arg1), value_contents (arg2),
9670 TYPE_LENGTH (value_type (arg1))) == 0;
9671 }
9672 return value_equal (arg1, arg2);
9673 }
9674
9675 /* Total number of component associations in the aggregate starting at
9676 index PC in EXP. Assumes that index PC is the start of an
9677 OP_AGGREGATE. */
9678
9679 static int
9680 num_component_specs (struct expression *exp, int pc)
9681 {
9682 int n, m, i;
9683
9684 m = exp->elts[pc + 1].longconst;
9685 pc += 3;
9686 n = 0;
9687 for (i = 0; i < m; i += 1)
9688 {
9689 switch (exp->elts[pc].opcode)
9690 {
9691 default:
9692 n += 1;
9693 break;
9694 case OP_CHOICES:
9695 n += exp->elts[pc + 1].longconst;
9696 break;
9697 }
9698 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9699 }
9700 return n;
9701 }
9702
9703 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9704 component of LHS (a simple array or a record), updating *POS past
9705 the expression, assuming that LHS is contained in CONTAINER. Does
9706 not modify the inferior's memory, nor does it modify LHS (unless
9707 LHS == CONTAINER). */
9708
9709 static void
9710 assign_component (struct value *container, struct value *lhs, LONGEST index,
9711 struct expression *exp, int *pos)
9712 {
9713 struct value *mark = value_mark ();
9714 struct value *elt;
9715
9716 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9717 {
9718 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9719 struct value *index_val = value_from_longest (index_type, index);
9720
9721 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9722 }
9723 else
9724 {
9725 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9726 elt = ada_to_fixed_value (elt);
9727 }
9728
9729 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9730 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9731 else
9732 value_assign_to_component (container, elt,
9733 ada_evaluate_subexp (NULL, exp, pos,
9734 EVAL_NORMAL));
9735
9736 value_free_to_mark (mark);
9737 }
9738
9739 /* Assuming that LHS represents an lvalue having a record or array
9740 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9741 of that aggregate's value to LHS, advancing *POS past the
9742 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9743 lvalue containing LHS (possibly LHS itself). Does not modify
9744 the inferior's memory, nor does it modify the contents of
9745 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9746
9747 static struct value *
9748 assign_aggregate (struct value *container,
9749 struct value *lhs, struct expression *exp,
9750 int *pos, enum noside noside)
9751 {
9752 struct type *lhs_type;
9753 int n = exp->elts[*pos+1].longconst;
9754 LONGEST low_index, high_index;
9755 int num_specs;
9756 LONGEST *indices;
9757 int max_indices, num_indices;
9758 int i;
9759
9760 *pos += 3;
9761 if (noside != EVAL_NORMAL)
9762 {
9763 for (i = 0; i < n; i += 1)
9764 ada_evaluate_subexp (NULL, exp, pos, noside);
9765 return container;
9766 }
9767
9768 container = ada_coerce_ref (container);
9769 if (ada_is_direct_array_type (value_type (container)))
9770 container = ada_coerce_to_simple_array (container);
9771 lhs = ada_coerce_ref (lhs);
9772 if (!deprecated_value_modifiable (lhs))
9773 error (_("Left operand of assignment is not a modifiable lvalue."));
9774
9775 lhs_type = value_type (lhs);
9776 if (ada_is_direct_array_type (lhs_type))
9777 {
9778 lhs = ada_coerce_to_simple_array (lhs);
9779 lhs_type = value_type (lhs);
9780 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9781 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9782 }
9783 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9784 {
9785 low_index = 0;
9786 high_index = num_visible_fields (lhs_type) - 1;
9787 }
9788 else
9789 error (_("Left-hand side must be array or record."));
9790
9791 num_specs = num_component_specs (exp, *pos - 3);
9792 max_indices = 4 * num_specs + 4;
9793 indices = alloca (max_indices * sizeof (indices[0]));
9794 indices[0] = indices[1] = low_index - 1;
9795 indices[2] = indices[3] = high_index + 1;
9796 num_indices = 4;
9797
9798 for (i = 0; i < n; i += 1)
9799 {
9800 switch (exp->elts[*pos].opcode)
9801 {
9802 case OP_CHOICES:
9803 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9804 &num_indices, max_indices,
9805 low_index, high_index);
9806 break;
9807 case OP_POSITIONAL:
9808 aggregate_assign_positional (container, lhs, exp, pos, indices,
9809 &num_indices, max_indices,
9810 low_index, high_index);
9811 break;
9812 case OP_OTHERS:
9813 if (i != n-1)
9814 error (_("Misplaced 'others' clause"));
9815 aggregate_assign_others (container, lhs, exp, pos, indices,
9816 num_indices, low_index, high_index);
9817 break;
9818 default:
9819 error (_("Internal error: bad aggregate clause"));
9820 }
9821 }
9822
9823 return container;
9824 }
9825
9826 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9827 construct at *POS, updating *POS past the construct, given that
9828 the positions are relative to lower bound LOW, where HIGH is the
9829 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9830 updating *NUM_INDICES as needed. CONTAINER is as for
9831 assign_aggregate. */
9832 static void
9833 aggregate_assign_positional (struct value *container,
9834 struct value *lhs, struct expression *exp,
9835 int *pos, LONGEST *indices, int *num_indices,
9836 int max_indices, LONGEST low, LONGEST high)
9837 {
9838 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9839
9840 if (ind - 1 == high)
9841 warning (_("Extra components in aggregate ignored."));
9842 if (ind <= high)
9843 {
9844 add_component_interval (ind, ind, indices, num_indices, max_indices);
9845 *pos += 3;
9846 assign_component (container, lhs, ind, exp, pos);
9847 }
9848 else
9849 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9850 }
9851
9852 /* Assign into the components of LHS indexed by the OP_CHOICES
9853 construct at *POS, updating *POS past the construct, given that
9854 the allowable indices are LOW..HIGH. Record the indices assigned
9855 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9856 needed. CONTAINER is as for assign_aggregate. */
9857 static void
9858 aggregate_assign_from_choices (struct value *container,
9859 struct value *lhs, struct expression *exp,
9860 int *pos, LONGEST *indices, int *num_indices,
9861 int max_indices, LONGEST low, LONGEST high)
9862 {
9863 int j;
9864 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9865 int choice_pos, expr_pc;
9866 int is_array = ada_is_direct_array_type (value_type (lhs));
9867
9868 choice_pos = *pos += 3;
9869
9870 for (j = 0; j < n_choices; j += 1)
9871 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9872 expr_pc = *pos;
9873 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9874
9875 for (j = 0; j < n_choices; j += 1)
9876 {
9877 LONGEST lower, upper;
9878 enum exp_opcode op = exp->elts[choice_pos].opcode;
9879
9880 if (op == OP_DISCRETE_RANGE)
9881 {
9882 choice_pos += 1;
9883 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9884 EVAL_NORMAL));
9885 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9886 EVAL_NORMAL));
9887 }
9888 else if (is_array)
9889 {
9890 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9891 EVAL_NORMAL));
9892 upper = lower;
9893 }
9894 else
9895 {
9896 int ind;
9897 const char *name;
9898
9899 switch (op)
9900 {
9901 case OP_NAME:
9902 name = &exp->elts[choice_pos + 2].string;
9903 break;
9904 case OP_VAR_VALUE:
9905 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9906 break;
9907 default:
9908 error (_("Invalid record component association."));
9909 }
9910 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9911 ind = 0;
9912 if (! find_struct_field (name, value_type (lhs), 0,
9913 NULL, NULL, NULL, NULL, &ind))
9914 error (_("Unknown component name: %s."), name);
9915 lower = upper = ind;
9916 }
9917
9918 if (lower <= upper && (lower < low || upper > high))
9919 error (_("Index in component association out of bounds."));
9920
9921 add_component_interval (lower, upper, indices, num_indices,
9922 max_indices);
9923 while (lower <= upper)
9924 {
9925 int pos1;
9926
9927 pos1 = expr_pc;
9928 assign_component (container, lhs, lower, exp, &pos1);
9929 lower += 1;
9930 }
9931 }
9932 }
9933
9934 /* Assign the value of the expression in the OP_OTHERS construct in
9935 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9936 have not been previously assigned. The index intervals already assigned
9937 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9938 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9939 static void
9940 aggregate_assign_others (struct value *container,
9941 struct value *lhs, struct expression *exp,
9942 int *pos, LONGEST *indices, int num_indices,
9943 LONGEST low, LONGEST high)
9944 {
9945 int i;
9946 int expr_pc = *pos + 1;
9947
9948 for (i = 0; i < num_indices - 2; i += 2)
9949 {
9950 LONGEST ind;
9951
9952 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9953 {
9954 int localpos;
9955
9956 localpos = expr_pc;
9957 assign_component (container, lhs, ind, exp, &localpos);
9958 }
9959 }
9960 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9961 }
9962
9963 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9964 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9965 modifying *SIZE as needed. It is an error if *SIZE exceeds
9966 MAX_SIZE. The resulting intervals do not overlap. */
9967 static void
9968 add_component_interval (LONGEST low, LONGEST high,
9969 LONGEST* indices, int *size, int max_size)
9970 {
9971 int i, j;
9972
9973 for (i = 0; i < *size; i += 2) {
9974 if (high >= indices[i] && low <= indices[i + 1])
9975 {
9976 int kh;
9977
9978 for (kh = i + 2; kh < *size; kh += 2)
9979 if (high < indices[kh])
9980 break;
9981 if (low < indices[i])
9982 indices[i] = low;
9983 indices[i + 1] = indices[kh - 1];
9984 if (high > indices[i + 1])
9985 indices[i + 1] = high;
9986 memcpy (indices + i + 2, indices + kh, *size - kh);
9987 *size -= kh - i - 2;
9988 return;
9989 }
9990 else if (high < indices[i])
9991 break;
9992 }
9993
9994 if (*size == max_size)
9995 error (_("Internal error: miscounted aggregate components."));
9996 *size += 2;
9997 for (j = *size-1; j >= i+2; j -= 1)
9998 indices[j] = indices[j - 2];
9999 indices[i] = low;
10000 indices[i + 1] = high;
10001 }
10002
10003 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10004 is different. */
10005
10006 static struct value *
10007 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10008 {
10009 if (type == ada_check_typedef (value_type (arg2)))
10010 return arg2;
10011
10012 if (ada_is_fixed_point_type (type))
10013 return (cast_to_fixed (type, arg2));
10014
10015 if (ada_is_fixed_point_type (value_type (arg2)))
10016 return cast_from_fixed (type, arg2);
10017
10018 return value_cast (type, arg2);
10019 }
10020
10021 /* Evaluating Ada expressions, and printing their result.
10022 ------------------------------------------------------
10023
10024 1. Introduction:
10025 ----------------
10026
10027 We usually evaluate an Ada expression in order to print its value.
10028 We also evaluate an expression in order to print its type, which
10029 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10030 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10031 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10032 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10033 similar.
10034
10035 Evaluating expressions is a little more complicated for Ada entities
10036 than it is for entities in languages such as C. The main reason for
10037 this is that Ada provides types whose definition might be dynamic.
10038 One example of such types is variant records. Or another example
10039 would be an array whose bounds can only be known at run time.
10040
10041 The following description is a general guide as to what should be
10042 done (and what should NOT be done) in order to evaluate an expression
10043 involving such types, and when. This does not cover how the semantic
10044 information is encoded by GNAT as this is covered separatly. For the
10045 document used as the reference for the GNAT encoding, see exp_dbug.ads
10046 in the GNAT sources.
10047
10048 Ideally, we should embed each part of this description next to its
10049 associated code. Unfortunately, the amount of code is so vast right
10050 now that it's hard to see whether the code handling a particular
10051 situation might be duplicated or not. One day, when the code is
10052 cleaned up, this guide might become redundant with the comments
10053 inserted in the code, and we might want to remove it.
10054
10055 2. ``Fixing'' an Entity, the Simple Case:
10056 -----------------------------------------
10057
10058 When evaluating Ada expressions, the tricky issue is that they may
10059 reference entities whose type contents and size are not statically
10060 known. Consider for instance a variant record:
10061
10062 type Rec (Empty : Boolean := True) is record
10063 case Empty is
10064 when True => null;
10065 when False => Value : Integer;
10066 end case;
10067 end record;
10068 Yes : Rec := (Empty => False, Value => 1);
10069 No : Rec := (empty => True);
10070
10071 The size and contents of that record depends on the value of the
10072 descriminant (Rec.Empty). At this point, neither the debugging
10073 information nor the associated type structure in GDB are able to
10074 express such dynamic types. So what the debugger does is to create
10075 "fixed" versions of the type that applies to the specific object.
10076 We also informally refer to this opperation as "fixing" an object,
10077 which means creating its associated fixed type.
10078
10079 Example: when printing the value of variable "Yes" above, its fixed
10080 type would look like this:
10081
10082 type Rec is record
10083 Empty : Boolean;
10084 Value : Integer;
10085 end record;
10086
10087 On the other hand, if we printed the value of "No", its fixed type
10088 would become:
10089
10090 type Rec is record
10091 Empty : Boolean;
10092 end record;
10093
10094 Things become a little more complicated when trying to fix an entity
10095 with a dynamic type that directly contains another dynamic type,
10096 such as an array of variant records, for instance. There are
10097 two possible cases: Arrays, and records.
10098
10099 3. ``Fixing'' Arrays:
10100 ---------------------
10101
10102 The type structure in GDB describes an array in terms of its bounds,
10103 and the type of its elements. By design, all elements in the array
10104 have the same type and we cannot represent an array of variant elements
10105 using the current type structure in GDB. When fixing an array,
10106 we cannot fix the array element, as we would potentially need one
10107 fixed type per element of the array. As a result, the best we can do
10108 when fixing an array is to produce an array whose bounds and size
10109 are correct (allowing us to read it from memory), but without having
10110 touched its element type. Fixing each element will be done later,
10111 when (if) necessary.
10112
10113 Arrays are a little simpler to handle than records, because the same
10114 amount of memory is allocated for each element of the array, even if
10115 the amount of space actually used by each element differs from element
10116 to element. Consider for instance the following array of type Rec:
10117
10118 type Rec_Array is array (1 .. 2) of Rec;
10119
10120 The actual amount of memory occupied by each element might be different
10121 from element to element, depending on the value of their discriminant.
10122 But the amount of space reserved for each element in the array remains
10123 fixed regardless. So we simply need to compute that size using
10124 the debugging information available, from which we can then determine
10125 the array size (we multiply the number of elements of the array by
10126 the size of each element).
10127
10128 The simplest case is when we have an array of a constrained element
10129 type. For instance, consider the following type declarations:
10130
10131 type Bounded_String (Max_Size : Integer) is
10132 Length : Integer;
10133 Buffer : String (1 .. Max_Size);
10134 end record;
10135 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10136
10137 In this case, the compiler describes the array as an array of
10138 variable-size elements (identified by its XVS suffix) for which
10139 the size can be read in the parallel XVZ variable.
10140
10141 In the case of an array of an unconstrained element type, the compiler
10142 wraps the array element inside a private PAD type. This type should not
10143 be shown to the user, and must be "unwrap"'ed before printing. Note
10144 that we also use the adjective "aligner" in our code to designate
10145 these wrapper types.
10146
10147 In some cases, the size allocated for each element is statically
10148 known. In that case, the PAD type already has the correct size,
10149 and the array element should remain unfixed.
10150
10151 But there are cases when this size is not statically known.
10152 For instance, assuming that "Five" is an integer variable:
10153
10154 type Dynamic is array (1 .. Five) of Integer;
10155 type Wrapper (Has_Length : Boolean := False) is record
10156 Data : Dynamic;
10157 case Has_Length is
10158 when True => Length : Integer;
10159 when False => null;
10160 end case;
10161 end record;
10162 type Wrapper_Array is array (1 .. 2) of Wrapper;
10163
10164 Hello : Wrapper_Array := (others => (Has_Length => True,
10165 Data => (others => 17),
10166 Length => 1));
10167
10168
10169 The debugging info would describe variable Hello as being an
10170 array of a PAD type. The size of that PAD type is not statically
10171 known, but can be determined using a parallel XVZ variable.
10172 In that case, a copy of the PAD type with the correct size should
10173 be used for the fixed array.
10174
10175 3. ``Fixing'' record type objects:
10176 ----------------------------------
10177
10178 Things are slightly different from arrays in the case of dynamic
10179 record types. In this case, in order to compute the associated
10180 fixed type, we need to determine the size and offset of each of
10181 its components. This, in turn, requires us to compute the fixed
10182 type of each of these components.
10183
10184 Consider for instance the example:
10185
10186 type Bounded_String (Max_Size : Natural) is record
10187 Str : String (1 .. Max_Size);
10188 Length : Natural;
10189 end record;
10190 My_String : Bounded_String (Max_Size => 10);
10191
10192 In that case, the position of field "Length" depends on the size
10193 of field Str, which itself depends on the value of the Max_Size
10194 discriminant. In order to fix the type of variable My_String,
10195 we need to fix the type of field Str. Therefore, fixing a variant
10196 record requires us to fix each of its components.
10197
10198 However, if a component does not have a dynamic size, the component
10199 should not be fixed. In particular, fields that use a PAD type
10200 should not fixed. Here is an example where this might happen
10201 (assuming type Rec above):
10202
10203 type Container (Big : Boolean) is record
10204 First : Rec;
10205 After : Integer;
10206 case Big is
10207 when True => Another : Integer;
10208 when False => null;
10209 end case;
10210 end record;
10211 My_Container : Container := (Big => False,
10212 First => (Empty => True),
10213 After => 42);
10214
10215 In that example, the compiler creates a PAD type for component First,
10216 whose size is constant, and then positions the component After just
10217 right after it. The offset of component After is therefore constant
10218 in this case.
10219
10220 The debugger computes the position of each field based on an algorithm
10221 that uses, among other things, the actual position and size of the field
10222 preceding it. Let's now imagine that the user is trying to print
10223 the value of My_Container. If the type fixing was recursive, we would
10224 end up computing the offset of field After based on the size of the
10225 fixed version of field First. And since in our example First has
10226 only one actual field, the size of the fixed type is actually smaller
10227 than the amount of space allocated to that field, and thus we would
10228 compute the wrong offset of field After.
10229
10230 To make things more complicated, we need to watch out for dynamic
10231 components of variant records (identified by the ___XVL suffix in
10232 the component name). Even if the target type is a PAD type, the size
10233 of that type might not be statically known. So the PAD type needs
10234 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10235 we might end up with the wrong size for our component. This can be
10236 observed with the following type declarations:
10237
10238 type Octal is new Integer range 0 .. 7;
10239 type Octal_Array is array (Positive range <>) of Octal;
10240 pragma Pack (Octal_Array);
10241
10242 type Octal_Buffer (Size : Positive) is record
10243 Buffer : Octal_Array (1 .. Size);
10244 Length : Integer;
10245 end record;
10246
10247 In that case, Buffer is a PAD type whose size is unset and needs
10248 to be computed by fixing the unwrapped type.
10249
10250 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10251 ----------------------------------------------------------
10252
10253 Lastly, when should the sub-elements of an entity that remained unfixed
10254 thus far, be actually fixed?
10255
10256 The answer is: Only when referencing that element. For instance
10257 when selecting one component of a record, this specific component
10258 should be fixed at that point in time. Or when printing the value
10259 of a record, each component should be fixed before its value gets
10260 printed. Similarly for arrays, the element of the array should be
10261 fixed when printing each element of the array, or when extracting
10262 one element out of that array. On the other hand, fixing should
10263 not be performed on the elements when taking a slice of an array!
10264
10265 Note that one of the side-effects of miscomputing the offset and
10266 size of each field is that we end up also miscomputing the size
10267 of the containing type. This can have adverse results when computing
10268 the value of an entity. GDB fetches the value of an entity based
10269 on the size of its type, and thus a wrong size causes GDB to fetch
10270 the wrong amount of memory. In the case where the computed size is
10271 too small, GDB fetches too little data to print the value of our
10272 entiry. Results in this case as unpredicatble, as we usually read
10273 past the buffer containing the data =:-o. */
10274
10275 /* Implement the evaluate_exp routine in the exp_descriptor structure
10276 for the Ada language. */
10277
10278 static struct value *
10279 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10280 int *pos, enum noside noside)
10281 {
10282 enum exp_opcode op;
10283 int tem;
10284 int pc;
10285 int preeval_pos;
10286 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10287 struct type *type;
10288 int nargs, oplen;
10289 struct value **argvec;
10290
10291 pc = *pos;
10292 *pos += 1;
10293 op = exp->elts[pc].opcode;
10294
10295 switch (op)
10296 {
10297 default:
10298 *pos -= 1;
10299 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10300
10301 if (noside == EVAL_NORMAL)
10302 arg1 = unwrap_value (arg1);
10303
10304 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10305 then we need to perform the conversion manually, because
10306 evaluate_subexp_standard doesn't do it. This conversion is
10307 necessary in Ada because the different kinds of float/fixed
10308 types in Ada have different representations.
10309
10310 Similarly, we need to perform the conversion from OP_LONG
10311 ourselves. */
10312 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10313 arg1 = ada_value_cast (expect_type, arg1, noside);
10314
10315 return arg1;
10316
10317 case OP_STRING:
10318 {
10319 struct value *result;
10320
10321 *pos -= 1;
10322 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10323 /* The result type will have code OP_STRING, bashed there from
10324 OP_ARRAY. Bash it back. */
10325 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10326 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10327 return result;
10328 }
10329
10330 case UNOP_CAST:
10331 (*pos) += 2;
10332 type = exp->elts[pc + 1].type;
10333 arg1 = evaluate_subexp (type, exp, pos, noside);
10334 if (noside == EVAL_SKIP)
10335 goto nosideret;
10336 arg1 = ada_value_cast (type, arg1, noside);
10337 return arg1;
10338
10339 case UNOP_QUAL:
10340 (*pos) += 2;
10341 type = exp->elts[pc + 1].type;
10342 return ada_evaluate_subexp (type, exp, pos, noside);
10343
10344 case BINOP_ASSIGN:
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10347 {
10348 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10349 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10350 return arg1;
10351 return ada_value_assign (arg1, arg1);
10352 }
10353 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10354 except if the lhs of our assignment is a convenience variable.
10355 In the case of assigning to a convenience variable, the lhs
10356 should be exactly the result of the evaluation of the rhs. */
10357 type = value_type (arg1);
10358 if (VALUE_LVAL (arg1) == lval_internalvar)
10359 type = NULL;
10360 arg2 = evaluate_subexp (type, exp, pos, noside);
10361 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10362 return arg1;
10363 if (ada_is_fixed_point_type (value_type (arg1)))
10364 arg2 = cast_to_fixed (value_type (arg1), arg2);
10365 else if (ada_is_fixed_point_type (value_type (arg2)))
10366 error
10367 (_("Fixed-point values must be assigned to fixed-point variables"));
10368 else
10369 arg2 = coerce_for_assign (value_type (arg1), arg2);
10370 return ada_value_assign (arg1, arg2);
10371
10372 case BINOP_ADD:
10373 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10374 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10375 if (noside == EVAL_SKIP)
10376 goto nosideret;
10377 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10378 return (value_from_longest
10379 (value_type (arg1),
10380 value_as_long (arg1) + value_as_long (arg2)));
10381 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10382 return (value_from_longest
10383 (value_type (arg2),
10384 value_as_long (arg1) + value_as_long (arg2)));
10385 if ((ada_is_fixed_point_type (value_type (arg1))
10386 || ada_is_fixed_point_type (value_type (arg2)))
10387 && value_type (arg1) != value_type (arg2))
10388 error (_("Operands of fixed-point addition must have the same type"));
10389 /* Do the addition, and cast the result to the type of the first
10390 argument. We cannot cast the result to a reference type, so if
10391 ARG1 is a reference type, find its underlying type. */
10392 type = value_type (arg1);
10393 while (TYPE_CODE (type) == TYPE_CODE_REF)
10394 type = TYPE_TARGET_TYPE (type);
10395 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10396 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10397
10398 case BINOP_SUB:
10399 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10400 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10402 goto nosideret;
10403 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10404 return (value_from_longest
10405 (value_type (arg1),
10406 value_as_long (arg1) - value_as_long (arg2)));
10407 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10408 return (value_from_longest
10409 (value_type (arg2),
10410 value_as_long (arg1) - value_as_long (arg2)));
10411 if ((ada_is_fixed_point_type (value_type (arg1))
10412 || ada_is_fixed_point_type (value_type (arg2)))
10413 && value_type (arg1) != value_type (arg2))
10414 error (_("Operands of fixed-point subtraction "
10415 "must have the same type"));
10416 /* Do the substraction, and cast the result to the type of the first
10417 argument. We cannot cast the result to a reference type, so if
10418 ARG1 is a reference type, find its underlying type. */
10419 type = value_type (arg1);
10420 while (TYPE_CODE (type) == TYPE_CODE_REF)
10421 type = TYPE_TARGET_TYPE (type);
10422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10423 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10424
10425 case BINOP_MUL:
10426 case BINOP_DIV:
10427 case BINOP_REM:
10428 case BINOP_MOD:
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10430 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 if (noside == EVAL_SKIP)
10432 goto nosideret;
10433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 {
10435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10436 return value_zero (value_type (arg1), not_lval);
10437 }
10438 else
10439 {
10440 type = builtin_type (exp->gdbarch)->builtin_double;
10441 if (ada_is_fixed_point_type (value_type (arg1)))
10442 arg1 = cast_from_fixed (type, arg1);
10443 if (ada_is_fixed_point_type (value_type (arg2)))
10444 arg2 = cast_from_fixed (type, arg2);
10445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10446 return ada_value_binop (arg1, arg2, op);
10447 }
10448
10449 case BINOP_EQUAL:
10450 case BINOP_NOTEQUAL:
10451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10452 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10453 if (noside == EVAL_SKIP)
10454 goto nosideret;
10455 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10456 tem = 0;
10457 else
10458 {
10459 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10460 tem = ada_value_equal (arg1, arg2);
10461 }
10462 if (op == BINOP_NOTEQUAL)
10463 tem = !tem;
10464 type = language_bool_type (exp->language_defn, exp->gdbarch);
10465 return value_from_longest (type, (LONGEST) tem);
10466
10467 case UNOP_NEG:
10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 if (noside == EVAL_SKIP)
10470 goto nosideret;
10471 else if (ada_is_fixed_point_type (value_type (arg1)))
10472 return value_cast (value_type (arg1), value_neg (arg1));
10473 else
10474 {
10475 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10476 return value_neg (arg1);
10477 }
10478
10479 case BINOP_LOGICAL_AND:
10480 case BINOP_LOGICAL_OR:
10481 case UNOP_LOGICAL_NOT:
10482 {
10483 struct value *val;
10484
10485 *pos -= 1;
10486 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10487 type = language_bool_type (exp->language_defn, exp->gdbarch);
10488 return value_cast (type, val);
10489 }
10490
10491 case BINOP_BITWISE_AND:
10492 case BINOP_BITWISE_IOR:
10493 case BINOP_BITWISE_XOR:
10494 {
10495 struct value *val;
10496
10497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10498 *pos = pc;
10499 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10500
10501 return value_cast (value_type (arg1), val);
10502 }
10503
10504 case OP_VAR_VALUE:
10505 *pos -= 1;
10506
10507 if (noside == EVAL_SKIP)
10508 {
10509 *pos += 4;
10510 goto nosideret;
10511 }
10512
10513 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10514 /* Only encountered when an unresolved symbol occurs in a
10515 context other than a function call, in which case, it is
10516 invalid. */
10517 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10518 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10519
10520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10521 {
10522 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10523 /* Check to see if this is a tagged type. We also need to handle
10524 the case where the type is a reference to a tagged type, but
10525 we have to be careful to exclude pointers to tagged types.
10526 The latter should be shown as usual (as a pointer), whereas
10527 a reference should mostly be transparent to the user. */
10528 if (ada_is_tagged_type (type, 0)
10529 || (TYPE_CODE (type) == TYPE_CODE_REF
10530 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10531 {
10532 /* Tagged types are a little special in the fact that the real
10533 type is dynamic and can only be determined by inspecting the
10534 object's tag. This means that we need to get the object's
10535 value first (EVAL_NORMAL) and then extract the actual object
10536 type from its tag.
10537
10538 Note that we cannot skip the final step where we extract
10539 the object type from its tag, because the EVAL_NORMAL phase
10540 results in dynamic components being resolved into fixed ones.
10541 This can cause problems when trying to print the type
10542 description of tagged types whose parent has a dynamic size:
10543 We use the type name of the "_parent" component in order
10544 to print the name of the ancestor type in the type description.
10545 If that component had a dynamic size, the resolution into
10546 a fixed type would result in the loss of that type name,
10547 thus preventing us from printing the name of the ancestor
10548 type in the type description. */
10549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10550
10551 if (TYPE_CODE (type) != TYPE_CODE_REF)
10552 {
10553 struct type *actual_type;
10554
10555 actual_type = type_from_tag (ada_value_tag (arg1));
10556 if (actual_type == NULL)
10557 /* If, for some reason, we were unable to determine
10558 the actual type from the tag, then use the static
10559 approximation that we just computed as a fallback.
10560 This can happen if the debugging information is
10561 incomplete, for instance. */
10562 actual_type = type;
10563 return value_zero (actual_type, not_lval);
10564 }
10565 else
10566 {
10567 /* In the case of a ref, ada_coerce_ref takes care
10568 of determining the actual type. But the evaluation
10569 should return a ref as it should be valid to ask
10570 for its address; so rebuild a ref after coerce. */
10571 arg1 = ada_coerce_ref (arg1);
10572 return value_ref (arg1);
10573 }
10574 }
10575
10576 /* Records and unions for which GNAT encodings have been
10577 generated need to be statically fixed as well.
10578 Otherwise, non-static fixing produces a type where
10579 all dynamic properties are removed, which prevents "ptype"
10580 from being able to completely describe the type.
10581 For instance, a case statement in a variant record would be
10582 replaced by the relevant components based on the actual
10583 value of the discriminants. */
10584 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10585 && dynamic_template_type (type) != NULL)
10586 || (TYPE_CODE (type) == TYPE_CODE_UNION
10587 && ada_find_parallel_type (type, "___XVU") != NULL))
10588 {
10589 *pos += 4;
10590 return value_zero (to_static_fixed_type (type), not_lval);
10591 }
10592 }
10593
10594 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595 return ada_to_fixed_value (arg1);
10596
10597 case OP_FUNCALL:
10598 (*pos) += 2;
10599
10600 /* Allocate arg vector, including space for the function to be
10601 called in argvec[0] and a terminating NULL. */
10602 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10603 argvec =
10604 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10605
10606 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10608 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10609 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10610 else
10611 {
10612 for (tem = 0; tem <= nargs; tem += 1)
10613 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 argvec[tem] = 0;
10615
10616 if (noside == EVAL_SKIP)
10617 goto nosideret;
10618 }
10619
10620 if (ada_is_constrained_packed_array_type
10621 (desc_base_type (value_type (argvec[0]))))
10622 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10623 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10624 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10625 /* This is a packed array that has already been fixed, and
10626 therefore already coerced to a simple array. Nothing further
10627 to do. */
10628 ;
10629 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10630 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10631 && VALUE_LVAL (argvec[0]) == lval_memory))
10632 argvec[0] = value_addr (argvec[0]);
10633
10634 type = ada_check_typedef (value_type (argvec[0]));
10635
10636 /* Ada allows us to implicitly dereference arrays when subscripting
10637 them. So, if this is an array typedef (encoding use for array
10638 access types encoded as fat pointers), strip it now. */
10639 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10640 type = ada_typedef_target_type (type);
10641
10642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10643 {
10644 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10645 {
10646 case TYPE_CODE_FUNC:
10647 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10648 break;
10649 case TYPE_CODE_ARRAY:
10650 break;
10651 case TYPE_CODE_STRUCT:
10652 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10653 argvec[0] = ada_value_ind (argvec[0]);
10654 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10655 break;
10656 default:
10657 error (_("cannot subscript or call something of type `%s'"),
10658 ada_type_name (value_type (argvec[0])));
10659 break;
10660 }
10661 }
10662
10663 switch (TYPE_CODE (type))
10664 {
10665 case TYPE_CODE_FUNC:
10666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10667 {
10668 struct type *rtype = TYPE_TARGET_TYPE (type);
10669
10670 if (TYPE_GNU_IFUNC (type))
10671 return allocate_value (TYPE_TARGET_TYPE (rtype));
10672 return allocate_value (rtype);
10673 }
10674 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10675 case TYPE_CODE_INTERNAL_FUNCTION:
10676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10677 /* We don't know anything about what the internal
10678 function might return, but we have to return
10679 something. */
10680 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10681 not_lval);
10682 else
10683 return call_internal_function (exp->gdbarch, exp->language_defn,
10684 argvec[0], nargs, argvec + 1);
10685
10686 case TYPE_CODE_STRUCT:
10687 {
10688 int arity;
10689
10690 arity = ada_array_arity (type);
10691 type = ada_array_element_type (type, nargs);
10692 if (type == NULL)
10693 error (_("cannot subscript or call a record"));
10694 if (arity != nargs)
10695 error (_("wrong number of subscripts; expecting %d"), arity);
10696 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 return value_zero (ada_aligned_type (type), lval_memory);
10698 return
10699 unwrap_value (ada_value_subscript
10700 (argvec[0], nargs, argvec + 1));
10701 }
10702 case TYPE_CODE_ARRAY:
10703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 {
10705 type = ada_array_element_type (type, nargs);
10706 if (type == NULL)
10707 error (_("element type of array unknown"));
10708 else
10709 return value_zero (ada_aligned_type (type), lval_memory);
10710 }
10711 return
10712 unwrap_value (ada_value_subscript
10713 (ada_coerce_to_simple_array (argvec[0]),
10714 nargs, argvec + 1));
10715 case TYPE_CODE_PTR: /* Pointer to array */
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 {
10718 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10719 type = ada_array_element_type (type, nargs);
10720 if (type == NULL)
10721 error (_("element type of array unknown"));
10722 else
10723 return value_zero (ada_aligned_type (type), lval_memory);
10724 }
10725 return
10726 unwrap_value (ada_value_ptr_subscript (argvec[0],
10727 nargs, argvec + 1));
10728
10729 default:
10730 error (_("Attempt to index or call something other than an "
10731 "array or function"));
10732 }
10733
10734 case TERNOP_SLICE:
10735 {
10736 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 struct value *low_bound_val =
10738 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10739 struct value *high_bound_val =
10740 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 LONGEST low_bound;
10742 LONGEST high_bound;
10743
10744 low_bound_val = coerce_ref (low_bound_val);
10745 high_bound_val = coerce_ref (high_bound_val);
10746 low_bound = value_as_long (low_bound_val);
10747 high_bound = value_as_long (high_bound_val);
10748
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
10751
10752 /* If this is a reference to an aligner type, then remove all
10753 the aligners. */
10754 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10755 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10756 TYPE_TARGET_TYPE (value_type (array)) =
10757 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10758
10759 if (ada_is_constrained_packed_array_type (value_type (array)))
10760 error (_("cannot slice a packed array"));
10761
10762 /* If this is a reference to an array or an array lvalue,
10763 convert to a pointer. */
10764 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10765 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10766 && VALUE_LVAL (array) == lval_memory))
10767 array = value_addr (array);
10768
10769 if (noside == EVAL_AVOID_SIDE_EFFECTS
10770 && ada_is_array_descriptor_type (ada_check_typedef
10771 (value_type (array))))
10772 return empty_array (ada_type_of_array (array, 0), low_bound);
10773
10774 array = ada_coerce_to_simple_array_ptr (array);
10775
10776 /* If we have more than one level of pointer indirection,
10777 dereference the value until we get only one level. */
10778 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10779 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10780 == TYPE_CODE_PTR))
10781 array = value_ind (array);
10782
10783 /* Make sure we really do have an array type before going further,
10784 to avoid a SEGV when trying to get the index type or the target
10785 type later down the road if the debug info generated by
10786 the compiler is incorrect or incomplete. */
10787 if (!ada_is_simple_array_type (value_type (array)))
10788 error (_("cannot take slice of non-array"));
10789
10790 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10791 == TYPE_CODE_PTR)
10792 {
10793 struct type *type0 = ada_check_typedef (value_type (array));
10794
10795 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10796 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10797 else
10798 {
10799 struct type *arr_type0 =
10800 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10801
10802 return ada_value_slice_from_ptr (array, arr_type0,
10803 longest_to_int (low_bound),
10804 longest_to_int (high_bound));
10805 }
10806 }
10807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10808 return array;
10809 else if (high_bound < low_bound)
10810 return empty_array (value_type (array), low_bound);
10811 else
10812 return ada_value_slice (array, longest_to_int (low_bound),
10813 longest_to_int (high_bound));
10814 }
10815
10816 case UNOP_IN_RANGE:
10817 (*pos) += 2;
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10819 type = check_typedef (exp->elts[pc + 1].type);
10820
10821 if (noside == EVAL_SKIP)
10822 goto nosideret;
10823
10824 switch (TYPE_CODE (type))
10825 {
10826 default:
10827 lim_warning (_("Membership test incompletely implemented; "
10828 "always returns true"));
10829 type = language_bool_type (exp->language_defn, exp->gdbarch);
10830 return value_from_longest (type, (LONGEST) 1);
10831
10832 case TYPE_CODE_RANGE:
10833 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10834 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10837 type = language_bool_type (exp->language_defn, exp->gdbarch);
10838 return
10839 value_from_longest (type,
10840 (value_less (arg1, arg3)
10841 || value_equal (arg1, arg3))
10842 && (value_less (arg2, arg1)
10843 || value_equal (arg2, arg1)));
10844 }
10845
10846 case BINOP_IN_BOUNDS:
10847 (*pos) += 2;
10848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10849 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10850
10851 if (noside == EVAL_SKIP)
10852 goto nosideret;
10853
10854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 {
10856 type = language_bool_type (exp->language_defn, exp->gdbarch);
10857 return value_zero (type, not_lval);
10858 }
10859
10860 tem = longest_to_int (exp->elts[pc + 1].longconst);
10861
10862 type = ada_index_type (value_type (arg2), tem, "range");
10863 if (!type)
10864 type = value_type (arg1);
10865
10866 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10867 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10868
10869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10870 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10871 type = language_bool_type (exp->language_defn, exp->gdbarch);
10872 return
10873 value_from_longest (type,
10874 (value_less (arg1, arg3)
10875 || value_equal (arg1, arg3))
10876 && (value_less (arg2, arg1)
10877 || value_equal (arg2, arg1)));
10878
10879 case TERNOP_IN_RANGE:
10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
10887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10888 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10889 type = language_bool_type (exp->language_defn, exp->gdbarch);
10890 return
10891 value_from_longest (type,
10892 (value_less (arg1, arg3)
10893 || value_equal (arg1, arg3))
10894 && (value_less (arg2, arg1)
10895 || value_equal (arg2, arg1)));
10896
10897 case OP_ATR_FIRST:
10898 case OP_ATR_LAST:
10899 case OP_ATR_LENGTH:
10900 {
10901 struct type *type_arg;
10902
10903 if (exp->elts[*pos].opcode == OP_TYPE)
10904 {
10905 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10906 arg1 = NULL;
10907 type_arg = check_typedef (exp->elts[pc + 2].type);
10908 }
10909 else
10910 {
10911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 type_arg = NULL;
10913 }
10914
10915 if (exp->elts[*pos].opcode != OP_LONG)
10916 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10917 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10918 *pos += 4;
10919
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
10923 if (type_arg == NULL)
10924 {
10925 arg1 = ada_coerce_ref (arg1);
10926
10927 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10928 arg1 = ada_coerce_to_simple_array (arg1);
10929
10930 if (op == OP_ATR_LENGTH)
10931 type = builtin_type (exp->gdbarch)->builtin_int;
10932 else
10933 {
10934 type = ada_index_type (value_type (arg1), tem,
10935 ada_attribute_name (op));
10936 if (type == NULL)
10937 type = builtin_type (exp->gdbarch)->builtin_int;
10938 }
10939
10940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10941 return allocate_value (type);
10942
10943 switch (op)
10944 {
10945 default: /* Should never happen. */
10946 error (_("unexpected attribute encountered"));
10947 case OP_ATR_FIRST:
10948 return value_from_longest
10949 (type, ada_array_bound (arg1, tem, 0));
10950 case OP_ATR_LAST:
10951 return value_from_longest
10952 (type, ada_array_bound (arg1, tem, 1));
10953 case OP_ATR_LENGTH:
10954 return value_from_longest
10955 (type, ada_array_length (arg1, tem));
10956 }
10957 }
10958 else if (discrete_type_p (type_arg))
10959 {
10960 struct type *range_type;
10961 const char *name = ada_type_name (type_arg);
10962
10963 range_type = NULL;
10964 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10965 range_type = to_fixed_range_type (type_arg, NULL);
10966 if (range_type == NULL)
10967 range_type = type_arg;
10968 switch (op)
10969 {
10970 default:
10971 error (_("unexpected attribute encountered"));
10972 case OP_ATR_FIRST:
10973 return value_from_longest
10974 (range_type, ada_discrete_type_low_bound (range_type));
10975 case OP_ATR_LAST:
10976 return value_from_longest
10977 (range_type, ada_discrete_type_high_bound (range_type));
10978 case OP_ATR_LENGTH:
10979 error (_("the 'length attribute applies only to array types"));
10980 }
10981 }
10982 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10983 error (_("unimplemented type attribute"));
10984 else
10985 {
10986 LONGEST low, high;
10987
10988 if (ada_is_constrained_packed_array_type (type_arg))
10989 type_arg = decode_constrained_packed_array_type (type_arg);
10990
10991 if (op == OP_ATR_LENGTH)
10992 type = builtin_type (exp->gdbarch)->builtin_int;
10993 else
10994 {
10995 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10996 if (type == NULL)
10997 type = builtin_type (exp->gdbarch)->builtin_int;
10998 }
10999
11000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11001 return allocate_value (type);
11002
11003 switch (op)
11004 {
11005 default:
11006 error (_("unexpected attribute encountered"));
11007 case OP_ATR_FIRST:
11008 low = ada_array_bound_from_type (type_arg, tem, 0);
11009 return value_from_longest (type, low);
11010 case OP_ATR_LAST:
11011 high = ada_array_bound_from_type (type_arg, tem, 1);
11012 return value_from_longest (type, high);
11013 case OP_ATR_LENGTH:
11014 low = ada_array_bound_from_type (type_arg, tem, 0);
11015 high = ada_array_bound_from_type (type_arg, tem, 1);
11016 return value_from_longest (type, high - low + 1);
11017 }
11018 }
11019 }
11020
11021 case OP_ATR_TAG:
11022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 if (noside == EVAL_SKIP)
11024 goto nosideret;
11025
11026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11027 return value_zero (ada_tag_type (arg1), not_lval);
11028
11029 return ada_value_tag (arg1);
11030
11031 case OP_ATR_MIN:
11032 case OP_ATR_MAX:
11033 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11036 if (noside == EVAL_SKIP)
11037 goto nosideret;
11038 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11039 return value_zero (value_type (arg1), not_lval);
11040 else
11041 {
11042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11043 return value_binop (arg1, arg2,
11044 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11045 }
11046
11047 case OP_ATR_MODULUS:
11048 {
11049 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11050
11051 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11052 if (noside == EVAL_SKIP)
11053 goto nosideret;
11054
11055 if (!ada_is_modular_type (type_arg))
11056 error (_("'modulus must be applied to modular type"));
11057
11058 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11059 ada_modulus (type_arg));
11060 }
11061
11062
11063 case OP_ATR_POS:
11064 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11065 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11066 if (noside == EVAL_SKIP)
11067 goto nosideret;
11068 type = builtin_type (exp->gdbarch)->builtin_int;
11069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11070 return value_zero (type, not_lval);
11071 else
11072 return value_pos_atr (type, arg1);
11073
11074 case OP_ATR_SIZE:
11075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 type = value_type (arg1);
11077
11078 /* If the argument is a reference, then dereference its type, since
11079 the user is really asking for the size of the actual object,
11080 not the size of the pointer. */
11081 if (TYPE_CODE (type) == TYPE_CODE_REF)
11082 type = TYPE_TARGET_TYPE (type);
11083
11084 if (noside == EVAL_SKIP)
11085 goto nosideret;
11086 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11087 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11088 else
11089 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11090 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11091
11092 case OP_ATR_VAL:
11093 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11095 type = exp->elts[pc + 2].type;
11096 if (noside == EVAL_SKIP)
11097 goto nosideret;
11098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 return value_zero (type, not_lval);
11100 else
11101 return value_val_atr (type, arg1);
11102
11103 case BINOP_EXP:
11104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11105 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11106 if (noside == EVAL_SKIP)
11107 goto nosideret;
11108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11109 return value_zero (value_type (arg1), not_lval);
11110 else
11111 {
11112 /* For integer exponentiation operations,
11113 only promote the first argument. */
11114 if (is_integral_type (value_type (arg2)))
11115 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11116 else
11117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11118
11119 return value_binop (arg1, arg2, op);
11120 }
11121
11122 case UNOP_PLUS:
11123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126 else
11127 return arg1;
11128
11129 case UNOP_ABS:
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 if (noside == EVAL_SKIP)
11132 goto nosideret;
11133 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11134 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11135 return value_neg (arg1);
11136 else
11137 return arg1;
11138
11139 case UNOP_IND:
11140 preeval_pos = *pos;
11141 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
11144 type = ada_check_typedef (value_type (arg1));
11145 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11146 {
11147 if (ada_is_array_descriptor_type (type))
11148 /* GDB allows dereferencing GNAT array descriptors. */
11149 {
11150 struct type *arrType = ada_type_of_array (arg1, 0);
11151
11152 if (arrType == NULL)
11153 error (_("Attempt to dereference null array pointer."));
11154 return value_at_lazy (arrType, 0);
11155 }
11156 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11157 || TYPE_CODE (type) == TYPE_CODE_REF
11158 /* In C you can dereference an array to get the 1st elt. */
11159 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11160 {
11161 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11162 only be determined by inspecting the object's tag.
11163 This means that we need to evaluate completely the
11164 expression in order to get its type. */
11165
11166 if ((TYPE_CODE (type) == TYPE_CODE_REF
11167 || TYPE_CODE (type) == TYPE_CODE_PTR)
11168 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11169 {
11170 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11171 EVAL_NORMAL);
11172 type = value_type (ada_value_ind (arg1));
11173 }
11174 else
11175 {
11176 type = to_static_fixed_type
11177 (ada_aligned_type
11178 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11179 }
11180 ada_ensure_varsize_limit (type);
11181 return value_zero (type, lval_memory);
11182 }
11183 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11184 {
11185 /* GDB allows dereferencing an int. */
11186 if (expect_type == NULL)
11187 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11188 lval_memory);
11189 else
11190 {
11191 expect_type =
11192 to_static_fixed_type (ada_aligned_type (expect_type));
11193 return value_zero (expect_type, lval_memory);
11194 }
11195 }
11196 else
11197 error (_("Attempt to take contents of a non-pointer value."));
11198 }
11199 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11200 type = ada_check_typedef (value_type (arg1));
11201
11202 if (TYPE_CODE (type) == TYPE_CODE_INT)
11203 /* GDB allows dereferencing an int. If we were given
11204 the expect_type, then use that as the target type.
11205 Otherwise, assume that the target type is an int. */
11206 {
11207 if (expect_type != NULL)
11208 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11209 arg1));
11210 else
11211 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11212 (CORE_ADDR) value_as_address (arg1));
11213 }
11214
11215 if (ada_is_array_descriptor_type (type))
11216 /* GDB allows dereferencing GNAT array descriptors. */
11217 return ada_coerce_to_simple_array (arg1);
11218 else
11219 return ada_value_ind (arg1);
11220
11221 case STRUCTOP_STRUCT:
11222 tem = longest_to_int (exp->elts[pc + 1].longconst);
11223 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11224 preeval_pos = *pos;
11225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 {
11230 struct type *type1 = value_type (arg1);
11231
11232 if (ada_is_tagged_type (type1, 1))
11233 {
11234 type = ada_lookup_struct_elt_type (type1,
11235 &exp->elts[pc + 2].string,
11236 1, 1, NULL);
11237
11238 /* If the field is not found, check if it exists in the
11239 extension of this object's type. This means that we
11240 need to evaluate completely the expression. */
11241
11242 if (type == NULL)
11243 {
11244 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11245 EVAL_NORMAL);
11246 arg1 = ada_value_struct_elt (arg1,
11247 &exp->elts[pc + 2].string,
11248 0);
11249 arg1 = unwrap_value (arg1);
11250 type = value_type (ada_to_fixed_value (arg1));
11251 }
11252 }
11253 else
11254 type =
11255 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11256 0, NULL);
11257
11258 return value_zero (ada_aligned_type (type), lval_memory);
11259 }
11260 else
11261 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11262 arg1 = unwrap_value (arg1);
11263 return ada_to_fixed_value (arg1);
11264
11265 case OP_TYPE:
11266 /* The value is not supposed to be used. This is here to make it
11267 easier to accommodate expressions that contain types. */
11268 (*pos) += 2;
11269 if (noside == EVAL_SKIP)
11270 goto nosideret;
11271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11272 return allocate_value (exp->elts[pc + 1].type);
11273 else
11274 error (_("Attempt to use a type name as an expression"));
11275
11276 case OP_AGGREGATE:
11277 case OP_CHOICES:
11278 case OP_OTHERS:
11279 case OP_DISCRETE_RANGE:
11280 case OP_POSITIONAL:
11281 case OP_NAME:
11282 if (noside == EVAL_NORMAL)
11283 switch (op)
11284 {
11285 case OP_NAME:
11286 error (_("Undefined name, ambiguous name, or renaming used in "
11287 "component association: %s."), &exp->elts[pc+2].string);
11288 case OP_AGGREGATE:
11289 error (_("Aggregates only allowed on the right of an assignment"));
11290 default:
11291 internal_error (__FILE__, __LINE__,
11292 _("aggregate apparently mangled"));
11293 }
11294
11295 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11296 *pos += oplen - 1;
11297 for (tem = 0; tem < nargs; tem += 1)
11298 ada_evaluate_subexp (NULL, exp, pos, noside);
11299 goto nosideret;
11300 }
11301
11302 nosideret:
11303 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11304 }
11305 \f
11306
11307 /* Fixed point */
11308
11309 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11310 type name that encodes the 'small and 'delta information.
11311 Otherwise, return NULL. */
11312
11313 static const char *
11314 fixed_type_info (struct type *type)
11315 {
11316 const char *name = ada_type_name (type);
11317 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11318
11319 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11320 {
11321 const char *tail = strstr (name, "___XF_");
11322
11323 if (tail == NULL)
11324 return NULL;
11325 else
11326 return tail + 5;
11327 }
11328 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11329 return fixed_type_info (TYPE_TARGET_TYPE (type));
11330 else
11331 return NULL;
11332 }
11333
11334 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11335
11336 int
11337 ada_is_fixed_point_type (struct type *type)
11338 {
11339 return fixed_type_info (type) != NULL;
11340 }
11341
11342 /* Return non-zero iff TYPE represents a System.Address type. */
11343
11344 int
11345 ada_is_system_address_type (struct type *type)
11346 {
11347 return (TYPE_NAME (type)
11348 && strcmp (TYPE_NAME (type), "system__address") == 0);
11349 }
11350
11351 /* Assuming that TYPE is the representation of an Ada fixed-point
11352 type, return its delta, or -1 if the type is malformed and the
11353 delta cannot be determined. */
11354
11355 DOUBLEST
11356 ada_delta (struct type *type)
11357 {
11358 const char *encoding = fixed_type_info (type);
11359 DOUBLEST num, den;
11360
11361 /* Strictly speaking, num and den are encoded as integer. However,
11362 they may not fit into a long, and they will have to be converted
11363 to DOUBLEST anyway. So scan them as DOUBLEST. */
11364 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11365 &num, &den) < 2)
11366 return -1.0;
11367 else
11368 return num / den;
11369 }
11370
11371 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11372 factor ('SMALL value) associated with the type. */
11373
11374 static DOUBLEST
11375 scaling_factor (struct type *type)
11376 {
11377 const char *encoding = fixed_type_info (type);
11378 DOUBLEST num0, den0, num1, den1;
11379 int n;
11380
11381 /* Strictly speaking, num's and den's are encoded as integer. However,
11382 they may not fit into a long, and they will have to be converted
11383 to DOUBLEST anyway. So scan them as DOUBLEST. */
11384 n = sscanf (encoding,
11385 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11386 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11387 &num0, &den0, &num1, &den1);
11388
11389 if (n < 2)
11390 return 1.0;
11391 else if (n == 4)
11392 return num1 / den1;
11393 else
11394 return num0 / den0;
11395 }
11396
11397
11398 /* Assuming that X is the representation of a value of fixed-point
11399 type TYPE, return its floating-point equivalent. */
11400
11401 DOUBLEST
11402 ada_fixed_to_float (struct type *type, LONGEST x)
11403 {
11404 return (DOUBLEST) x *scaling_factor (type);
11405 }
11406
11407 /* The representation of a fixed-point value of type TYPE
11408 corresponding to the value X. */
11409
11410 LONGEST
11411 ada_float_to_fixed (struct type *type, DOUBLEST x)
11412 {
11413 return (LONGEST) (x / scaling_factor (type) + 0.5);
11414 }
11415
11416 \f
11417
11418 /* Range types */
11419
11420 /* Scan STR beginning at position K for a discriminant name, and
11421 return the value of that discriminant field of DVAL in *PX. If
11422 PNEW_K is not null, put the position of the character beyond the
11423 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11424 not alter *PX and *PNEW_K if unsuccessful. */
11425
11426 static int
11427 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11428 int *pnew_k)
11429 {
11430 static char *bound_buffer = NULL;
11431 static size_t bound_buffer_len = 0;
11432 char *bound;
11433 char *pend;
11434 struct value *bound_val;
11435
11436 if (dval == NULL || str == NULL || str[k] == '\0')
11437 return 0;
11438
11439 pend = strstr (str + k, "__");
11440 if (pend == NULL)
11441 {
11442 bound = str + k;
11443 k += strlen (bound);
11444 }
11445 else
11446 {
11447 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11448 bound = bound_buffer;
11449 strncpy (bound_buffer, str + k, pend - (str + k));
11450 bound[pend - (str + k)] = '\0';
11451 k = pend - str;
11452 }
11453
11454 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11455 if (bound_val == NULL)
11456 return 0;
11457
11458 *px = value_as_long (bound_val);
11459 if (pnew_k != NULL)
11460 *pnew_k = k;
11461 return 1;
11462 }
11463
11464 /* Value of variable named NAME in the current environment. If
11465 no such variable found, then if ERR_MSG is null, returns 0, and
11466 otherwise causes an error with message ERR_MSG. */
11467
11468 static struct value *
11469 get_var_value (char *name, char *err_msg)
11470 {
11471 struct block_symbol *syms;
11472 int nsyms;
11473
11474 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11475 &syms);
11476
11477 if (nsyms != 1)
11478 {
11479 if (err_msg == NULL)
11480 return 0;
11481 else
11482 error (("%s"), err_msg);
11483 }
11484
11485 return value_of_variable (syms[0].symbol, syms[0].block);
11486 }
11487
11488 /* Value of integer variable named NAME in the current environment. If
11489 no such variable found, returns 0, and sets *FLAG to 0. If
11490 successful, sets *FLAG to 1. */
11491
11492 LONGEST
11493 get_int_var_value (char *name, int *flag)
11494 {
11495 struct value *var_val = get_var_value (name, 0);
11496
11497 if (var_val == 0)
11498 {
11499 if (flag != NULL)
11500 *flag = 0;
11501 return 0;
11502 }
11503 else
11504 {
11505 if (flag != NULL)
11506 *flag = 1;
11507 return value_as_long (var_val);
11508 }
11509 }
11510
11511
11512 /* Return a range type whose base type is that of the range type named
11513 NAME in the current environment, and whose bounds are calculated
11514 from NAME according to the GNAT range encoding conventions.
11515 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11516 corresponding range type from debug information; fall back to using it
11517 if symbol lookup fails. If a new type must be created, allocate it
11518 like ORIG_TYPE was. The bounds information, in general, is encoded
11519 in NAME, the base type given in the named range type. */
11520
11521 static struct type *
11522 to_fixed_range_type (struct type *raw_type, struct value *dval)
11523 {
11524 const char *name;
11525 struct type *base_type;
11526 char *subtype_info;
11527
11528 gdb_assert (raw_type != NULL);
11529 gdb_assert (TYPE_NAME (raw_type) != NULL);
11530
11531 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11532 base_type = TYPE_TARGET_TYPE (raw_type);
11533 else
11534 base_type = raw_type;
11535
11536 name = TYPE_NAME (raw_type);
11537 subtype_info = strstr (name, "___XD");
11538 if (subtype_info == NULL)
11539 {
11540 LONGEST L = ada_discrete_type_low_bound (raw_type);
11541 LONGEST U = ada_discrete_type_high_bound (raw_type);
11542
11543 if (L < INT_MIN || U > INT_MAX)
11544 return raw_type;
11545 else
11546 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11547 L, U);
11548 }
11549 else
11550 {
11551 static char *name_buf = NULL;
11552 static size_t name_len = 0;
11553 int prefix_len = subtype_info - name;
11554 LONGEST L, U;
11555 struct type *type;
11556 char *bounds_str;
11557 int n;
11558
11559 GROW_VECT (name_buf, name_len, prefix_len + 5);
11560 strncpy (name_buf, name, prefix_len);
11561 name_buf[prefix_len] = '\0';
11562
11563 subtype_info += 5;
11564 bounds_str = strchr (subtype_info, '_');
11565 n = 1;
11566
11567 if (*subtype_info == 'L')
11568 {
11569 if (!ada_scan_number (bounds_str, n, &L, &n)
11570 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11571 return raw_type;
11572 if (bounds_str[n] == '_')
11573 n += 2;
11574 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11575 n += 1;
11576 subtype_info += 1;
11577 }
11578 else
11579 {
11580 int ok;
11581
11582 strcpy (name_buf + prefix_len, "___L");
11583 L = get_int_var_value (name_buf, &ok);
11584 if (!ok)
11585 {
11586 lim_warning (_("Unknown lower bound, using 1."));
11587 L = 1;
11588 }
11589 }
11590
11591 if (*subtype_info == 'U')
11592 {
11593 if (!ada_scan_number (bounds_str, n, &U, &n)
11594 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11595 return raw_type;
11596 }
11597 else
11598 {
11599 int ok;
11600
11601 strcpy (name_buf + prefix_len, "___U");
11602 U = get_int_var_value (name_buf, &ok);
11603 if (!ok)
11604 {
11605 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11606 U = L;
11607 }
11608 }
11609
11610 type = create_static_range_type (alloc_type_copy (raw_type),
11611 base_type, L, U);
11612 TYPE_NAME (type) = name;
11613 return type;
11614 }
11615 }
11616
11617 /* True iff NAME is the name of a range type. */
11618
11619 int
11620 ada_is_range_type_name (const char *name)
11621 {
11622 return (name != NULL && strstr (name, "___XD"));
11623 }
11624 \f
11625
11626 /* Modular types */
11627
11628 /* True iff TYPE is an Ada modular type. */
11629
11630 int
11631 ada_is_modular_type (struct type *type)
11632 {
11633 struct type *subranged_type = get_base_type (type);
11634
11635 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11636 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11637 && TYPE_UNSIGNED (subranged_type));
11638 }
11639
11640 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11641
11642 ULONGEST
11643 ada_modulus (struct type *type)
11644 {
11645 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11646 }
11647 \f
11648
11649 /* Ada exception catchpoint support:
11650 ---------------------------------
11651
11652 We support 3 kinds of exception catchpoints:
11653 . catchpoints on Ada exceptions
11654 . catchpoints on unhandled Ada exceptions
11655 . catchpoints on failed assertions
11656
11657 Exceptions raised during failed assertions, or unhandled exceptions
11658 could perfectly be caught with the general catchpoint on Ada exceptions.
11659 However, we can easily differentiate these two special cases, and having
11660 the option to distinguish these two cases from the rest can be useful
11661 to zero-in on certain situations.
11662
11663 Exception catchpoints are a specialized form of breakpoint,
11664 since they rely on inserting breakpoints inside known routines
11665 of the GNAT runtime. The implementation therefore uses a standard
11666 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11667 of breakpoint_ops.
11668
11669 Support in the runtime for exception catchpoints have been changed
11670 a few times already, and these changes affect the implementation
11671 of these catchpoints. In order to be able to support several
11672 variants of the runtime, we use a sniffer that will determine
11673 the runtime variant used by the program being debugged. */
11674
11675 /* Ada's standard exceptions.
11676
11677 The Ada 83 standard also defined Numeric_Error. But there so many
11678 situations where it was unclear from the Ada 83 Reference Manual
11679 (RM) whether Constraint_Error or Numeric_Error should be raised,
11680 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11681 Interpretation saying that anytime the RM says that Numeric_Error
11682 should be raised, the implementation may raise Constraint_Error.
11683 Ada 95 went one step further and pretty much removed Numeric_Error
11684 from the list of standard exceptions (it made it a renaming of
11685 Constraint_Error, to help preserve compatibility when compiling
11686 an Ada83 compiler). As such, we do not include Numeric_Error from
11687 this list of standard exceptions. */
11688
11689 static char *standard_exc[] = {
11690 "constraint_error",
11691 "program_error",
11692 "storage_error",
11693 "tasking_error"
11694 };
11695
11696 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11697
11698 /* A structure that describes how to support exception catchpoints
11699 for a given executable. */
11700
11701 struct exception_support_info
11702 {
11703 /* The name of the symbol to break on in order to insert
11704 a catchpoint on exceptions. */
11705 const char *catch_exception_sym;
11706
11707 /* The name of the symbol to break on in order to insert
11708 a catchpoint on unhandled exceptions. */
11709 const char *catch_exception_unhandled_sym;
11710
11711 /* The name of the symbol to break on in order to insert
11712 a catchpoint on failed assertions. */
11713 const char *catch_assert_sym;
11714
11715 /* Assuming that the inferior just triggered an unhandled exception
11716 catchpoint, this function is responsible for returning the address
11717 in inferior memory where the name of that exception is stored.
11718 Return zero if the address could not be computed. */
11719 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11720 };
11721
11722 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11723 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11724
11725 /* The following exception support info structure describes how to
11726 implement exception catchpoints with the latest version of the
11727 Ada runtime (as of 2007-03-06). */
11728
11729 static const struct exception_support_info default_exception_support_info =
11730 {
11731 "__gnat_debug_raise_exception", /* catch_exception_sym */
11732 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11733 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11734 ada_unhandled_exception_name_addr
11735 };
11736
11737 /* The following exception support info structure describes how to
11738 implement exception catchpoints with a slightly older version
11739 of the Ada runtime. */
11740
11741 static const struct exception_support_info exception_support_info_fallback =
11742 {
11743 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11744 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11745 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11746 ada_unhandled_exception_name_addr_from_raise
11747 };
11748
11749 /* Return nonzero if we can detect the exception support routines
11750 described in EINFO.
11751
11752 This function errors out if an abnormal situation is detected
11753 (for instance, if we find the exception support routines, but
11754 that support is found to be incomplete). */
11755
11756 static int
11757 ada_has_this_exception_support (const struct exception_support_info *einfo)
11758 {
11759 struct symbol *sym;
11760
11761 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11762 that should be compiled with debugging information. As a result, we
11763 expect to find that symbol in the symtabs. */
11764
11765 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11766 if (sym == NULL)
11767 {
11768 /* Perhaps we did not find our symbol because the Ada runtime was
11769 compiled without debugging info, or simply stripped of it.
11770 It happens on some GNU/Linux distributions for instance, where
11771 users have to install a separate debug package in order to get
11772 the runtime's debugging info. In that situation, let the user
11773 know why we cannot insert an Ada exception catchpoint.
11774
11775 Note: Just for the purpose of inserting our Ada exception
11776 catchpoint, we could rely purely on the associated minimal symbol.
11777 But we would be operating in degraded mode anyway, since we are
11778 still lacking the debugging info needed later on to extract
11779 the name of the exception being raised (this name is printed in
11780 the catchpoint message, and is also used when trying to catch
11781 a specific exception). We do not handle this case for now. */
11782 struct bound_minimal_symbol msym
11783 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11784
11785 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11786 error (_("Your Ada runtime appears to be missing some debugging "
11787 "information.\nCannot insert Ada exception catchpoint "
11788 "in this configuration."));
11789
11790 return 0;
11791 }
11792
11793 /* Make sure that the symbol we found corresponds to a function. */
11794
11795 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11796 error (_("Symbol \"%s\" is not a function (class = %d)"),
11797 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11798
11799 return 1;
11800 }
11801
11802 /* Inspect the Ada runtime and determine which exception info structure
11803 should be used to provide support for exception catchpoints.
11804
11805 This function will always set the per-inferior exception_info,
11806 or raise an error. */
11807
11808 static void
11809 ada_exception_support_info_sniffer (void)
11810 {
11811 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11812
11813 /* If the exception info is already known, then no need to recompute it. */
11814 if (data->exception_info != NULL)
11815 return;
11816
11817 /* Check the latest (default) exception support info. */
11818 if (ada_has_this_exception_support (&default_exception_support_info))
11819 {
11820 data->exception_info = &default_exception_support_info;
11821 return;
11822 }
11823
11824 /* Try our fallback exception suport info. */
11825 if (ada_has_this_exception_support (&exception_support_info_fallback))
11826 {
11827 data->exception_info = &exception_support_info_fallback;
11828 return;
11829 }
11830
11831 /* Sometimes, it is normal for us to not be able to find the routine
11832 we are looking for. This happens when the program is linked with
11833 the shared version of the GNAT runtime, and the program has not been
11834 started yet. Inform the user of these two possible causes if
11835 applicable. */
11836
11837 if (ada_update_initial_language (language_unknown) != language_ada)
11838 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11839
11840 /* If the symbol does not exist, then check that the program is
11841 already started, to make sure that shared libraries have been
11842 loaded. If it is not started, this may mean that the symbol is
11843 in a shared library. */
11844
11845 if (ptid_get_pid (inferior_ptid) == 0)
11846 error (_("Unable to insert catchpoint. Try to start the program first."));
11847
11848 /* At this point, we know that we are debugging an Ada program and
11849 that the inferior has been started, but we still are not able to
11850 find the run-time symbols. That can mean that we are in
11851 configurable run time mode, or that a-except as been optimized
11852 out by the linker... In any case, at this point it is not worth
11853 supporting this feature. */
11854
11855 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11856 }
11857
11858 /* True iff FRAME is very likely to be that of a function that is
11859 part of the runtime system. This is all very heuristic, but is
11860 intended to be used as advice as to what frames are uninteresting
11861 to most users. */
11862
11863 static int
11864 is_known_support_routine (struct frame_info *frame)
11865 {
11866 struct symtab_and_line sal;
11867 char *func_name;
11868 enum language func_lang;
11869 int i;
11870 const char *fullname;
11871
11872 /* If this code does not have any debugging information (no symtab),
11873 This cannot be any user code. */
11874
11875 find_frame_sal (frame, &sal);
11876 if (sal.symtab == NULL)
11877 return 1;
11878
11879 /* If there is a symtab, but the associated source file cannot be
11880 located, then assume this is not user code: Selecting a frame
11881 for which we cannot display the code would not be very helpful
11882 for the user. This should also take care of case such as VxWorks
11883 where the kernel has some debugging info provided for a few units. */
11884
11885 fullname = symtab_to_fullname (sal.symtab);
11886 if (access (fullname, R_OK) != 0)
11887 return 1;
11888
11889 /* Check the unit filename againt the Ada runtime file naming.
11890 We also check the name of the objfile against the name of some
11891 known system libraries that sometimes come with debugging info
11892 too. */
11893
11894 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11895 {
11896 re_comp (known_runtime_file_name_patterns[i]);
11897 if (re_exec (lbasename (sal.symtab->filename)))
11898 return 1;
11899 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11900 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11901 return 1;
11902 }
11903
11904 /* Check whether the function is a GNAT-generated entity. */
11905
11906 find_frame_funname (frame, &func_name, &func_lang, NULL);
11907 if (func_name == NULL)
11908 return 1;
11909
11910 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11911 {
11912 re_comp (known_auxiliary_function_name_patterns[i]);
11913 if (re_exec (func_name))
11914 {
11915 xfree (func_name);
11916 return 1;
11917 }
11918 }
11919
11920 xfree (func_name);
11921 return 0;
11922 }
11923
11924 /* Find the first frame that contains debugging information and that is not
11925 part of the Ada run-time, starting from FI and moving upward. */
11926
11927 void
11928 ada_find_printable_frame (struct frame_info *fi)
11929 {
11930 for (; fi != NULL; fi = get_prev_frame (fi))
11931 {
11932 if (!is_known_support_routine (fi))
11933 {
11934 select_frame (fi);
11935 break;
11936 }
11937 }
11938
11939 }
11940
11941 /* Assuming that the inferior just triggered an unhandled exception
11942 catchpoint, return the address in inferior memory where the name
11943 of the exception is stored.
11944
11945 Return zero if the address could not be computed. */
11946
11947 static CORE_ADDR
11948 ada_unhandled_exception_name_addr (void)
11949 {
11950 return parse_and_eval_address ("e.full_name");
11951 }
11952
11953 /* Same as ada_unhandled_exception_name_addr, except that this function
11954 should be used when the inferior uses an older version of the runtime,
11955 where the exception name needs to be extracted from a specific frame
11956 several frames up in the callstack. */
11957
11958 static CORE_ADDR
11959 ada_unhandled_exception_name_addr_from_raise (void)
11960 {
11961 int frame_level;
11962 struct frame_info *fi;
11963 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11964 struct cleanup *old_chain;
11965
11966 /* To determine the name of this exception, we need to select
11967 the frame corresponding to RAISE_SYM_NAME. This frame is
11968 at least 3 levels up, so we simply skip the first 3 frames
11969 without checking the name of their associated function. */
11970 fi = get_current_frame ();
11971 for (frame_level = 0; frame_level < 3; frame_level += 1)
11972 if (fi != NULL)
11973 fi = get_prev_frame (fi);
11974
11975 old_chain = make_cleanup (null_cleanup, NULL);
11976 while (fi != NULL)
11977 {
11978 char *func_name;
11979 enum language func_lang;
11980
11981 find_frame_funname (fi, &func_name, &func_lang, NULL);
11982 if (func_name != NULL)
11983 {
11984 make_cleanup (xfree, func_name);
11985
11986 if (strcmp (func_name,
11987 data->exception_info->catch_exception_sym) == 0)
11988 break; /* We found the frame we were looking for... */
11989 fi = get_prev_frame (fi);
11990 }
11991 }
11992 do_cleanups (old_chain);
11993
11994 if (fi == NULL)
11995 return 0;
11996
11997 select_frame (fi);
11998 return parse_and_eval_address ("id.full_name");
11999 }
12000
12001 /* Assuming the inferior just triggered an Ada exception catchpoint
12002 (of any type), return the address in inferior memory where the name
12003 of the exception is stored, if applicable.
12004
12005 Return zero if the address could not be computed, or if not relevant. */
12006
12007 static CORE_ADDR
12008 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12009 struct breakpoint *b)
12010 {
12011 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12012
12013 switch (ex)
12014 {
12015 case ada_catch_exception:
12016 return (parse_and_eval_address ("e.full_name"));
12017 break;
12018
12019 case ada_catch_exception_unhandled:
12020 return data->exception_info->unhandled_exception_name_addr ();
12021 break;
12022
12023 case ada_catch_assert:
12024 return 0; /* Exception name is not relevant in this case. */
12025 break;
12026
12027 default:
12028 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12029 break;
12030 }
12031
12032 return 0; /* Should never be reached. */
12033 }
12034
12035 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12036 any error that ada_exception_name_addr_1 might cause to be thrown.
12037 When an error is intercepted, a warning with the error message is printed,
12038 and zero is returned. */
12039
12040 static CORE_ADDR
12041 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12042 struct breakpoint *b)
12043 {
12044 CORE_ADDR result = 0;
12045
12046 TRY
12047 {
12048 result = ada_exception_name_addr_1 (ex, b);
12049 }
12050
12051 CATCH (e, RETURN_MASK_ERROR)
12052 {
12053 warning (_("failed to get exception name: %s"), e.message);
12054 return 0;
12055 }
12056 END_CATCH
12057
12058 return result;
12059 }
12060
12061 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12062
12063 /* Ada catchpoints.
12064
12065 In the case of catchpoints on Ada exceptions, the catchpoint will
12066 stop the target on every exception the program throws. When a user
12067 specifies the name of a specific exception, we translate this
12068 request into a condition expression (in text form), and then parse
12069 it into an expression stored in each of the catchpoint's locations.
12070 We then use this condition to check whether the exception that was
12071 raised is the one the user is interested in. If not, then the
12072 target is resumed again. We store the name of the requested
12073 exception, in order to be able to re-set the condition expression
12074 when symbols change. */
12075
12076 /* An instance of this type is used to represent an Ada catchpoint
12077 breakpoint location. It includes a "struct bp_location" as a kind
12078 of base class; users downcast to "struct bp_location *" when
12079 needed. */
12080
12081 struct ada_catchpoint_location
12082 {
12083 /* The base class. */
12084 struct bp_location base;
12085
12086 /* The condition that checks whether the exception that was raised
12087 is the specific exception the user specified on catchpoint
12088 creation. */
12089 struct expression *excep_cond_expr;
12090 };
12091
12092 /* Implement the DTOR method in the bp_location_ops structure for all
12093 Ada exception catchpoint kinds. */
12094
12095 static void
12096 ada_catchpoint_location_dtor (struct bp_location *bl)
12097 {
12098 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12099
12100 xfree (al->excep_cond_expr);
12101 }
12102
12103 /* The vtable to be used in Ada catchpoint locations. */
12104
12105 static const struct bp_location_ops ada_catchpoint_location_ops =
12106 {
12107 ada_catchpoint_location_dtor
12108 };
12109
12110 /* An instance of this type is used to represent an Ada catchpoint.
12111 It includes a "struct breakpoint" as a kind of base class; users
12112 downcast to "struct breakpoint *" when needed. */
12113
12114 struct ada_catchpoint
12115 {
12116 /* The base class. */
12117 struct breakpoint base;
12118
12119 /* The name of the specific exception the user specified. */
12120 char *excep_string;
12121 };
12122
12123 /* Parse the exception condition string in the context of each of the
12124 catchpoint's locations, and store them for later evaluation. */
12125
12126 static void
12127 create_excep_cond_exprs (struct ada_catchpoint *c)
12128 {
12129 struct cleanup *old_chain;
12130 struct bp_location *bl;
12131 char *cond_string;
12132
12133 /* Nothing to do if there's no specific exception to catch. */
12134 if (c->excep_string == NULL)
12135 return;
12136
12137 /* Same if there are no locations... */
12138 if (c->base.loc == NULL)
12139 return;
12140
12141 /* Compute the condition expression in text form, from the specific
12142 expection we want to catch. */
12143 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12144 old_chain = make_cleanup (xfree, cond_string);
12145
12146 /* Iterate over all the catchpoint's locations, and parse an
12147 expression for each. */
12148 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12149 {
12150 struct ada_catchpoint_location *ada_loc
12151 = (struct ada_catchpoint_location *) bl;
12152 struct expression *exp = NULL;
12153
12154 if (!bl->shlib_disabled)
12155 {
12156 const char *s;
12157
12158 s = cond_string;
12159 TRY
12160 {
12161 exp = parse_exp_1 (&s, bl->address,
12162 block_for_pc (bl->address), 0);
12163 }
12164 CATCH (e, RETURN_MASK_ERROR)
12165 {
12166 warning (_("failed to reevaluate internal exception condition "
12167 "for catchpoint %d: %s"),
12168 c->base.number, e.message);
12169 /* There is a bug in GCC on sparc-solaris when building with
12170 optimization which causes EXP to change unexpectedly
12171 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12172 The problem should be fixed starting with GCC 4.9.
12173 In the meantime, work around it by forcing EXP back
12174 to NULL. */
12175 exp = NULL;
12176 }
12177 END_CATCH
12178 }
12179
12180 ada_loc->excep_cond_expr = exp;
12181 }
12182
12183 do_cleanups (old_chain);
12184 }
12185
12186 /* Implement the DTOR method in the breakpoint_ops structure for all
12187 exception catchpoint kinds. */
12188
12189 static void
12190 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12191 {
12192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12193
12194 xfree (c->excep_string);
12195
12196 bkpt_breakpoint_ops.dtor (b);
12197 }
12198
12199 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12200 structure for all exception catchpoint kinds. */
12201
12202 static struct bp_location *
12203 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12204 struct breakpoint *self)
12205 {
12206 struct ada_catchpoint_location *loc;
12207
12208 loc = XNEW (struct ada_catchpoint_location);
12209 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12210 loc->excep_cond_expr = NULL;
12211 return &loc->base;
12212 }
12213
12214 /* Implement the RE_SET method in the breakpoint_ops structure for all
12215 exception catchpoint kinds. */
12216
12217 static void
12218 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12219 {
12220 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12221
12222 /* Call the base class's method. This updates the catchpoint's
12223 locations. */
12224 bkpt_breakpoint_ops.re_set (b);
12225
12226 /* Reparse the exception conditional expressions. One for each
12227 location. */
12228 create_excep_cond_exprs (c);
12229 }
12230
12231 /* Returns true if we should stop for this breakpoint hit. If the
12232 user specified a specific exception, we only want to cause a stop
12233 if the program thrown that exception. */
12234
12235 static int
12236 should_stop_exception (const struct bp_location *bl)
12237 {
12238 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12239 const struct ada_catchpoint_location *ada_loc
12240 = (const struct ada_catchpoint_location *) bl;
12241 int stop;
12242
12243 /* With no specific exception, should always stop. */
12244 if (c->excep_string == NULL)
12245 return 1;
12246
12247 if (ada_loc->excep_cond_expr == NULL)
12248 {
12249 /* We will have a NULL expression if back when we were creating
12250 the expressions, this location's had failed to parse. */
12251 return 1;
12252 }
12253
12254 stop = 1;
12255 TRY
12256 {
12257 struct value *mark;
12258
12259 mark = value_mark ();
12260 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12261 value_free_to_mark (mark);
12262 }
12263 CATCH (ex, RETURN_MASK_ALL)
12264 {
12265 exception_fprintf (gdb_stderr, ex,
12266 _("Error in testing exception condition:\n"));
12267 }
12268 END_CATCH
12269
12270 return stop;
12271 }
12272
12273 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12274 for all exception catchpoint kinds. */
12275
12276 static void
12277 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12278 {
12279 bs->stop = should_stop_exception (bs->bp_location_at);
12280 }
12281
12282 /* Implement the PRINT_IT method in the breakpoint_ops structure
12283 for all exception catchpoint kinds. */
12284
12285 static enum print_stop_action
12286 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12287 {
12288 struct ui_out *uiout = current_uiout;
12289 struct breakpoint *b = bs->breakpoint_at;
12290
12291 annotate_catchpoint (b->number);
12292
12293 if (ui_out_is_mi_like_p (uiout))
12294 {
12295 ui_out_field_string (uiout, "reason",
12296 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12297 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12298 }
12299
12300 ui_out_text (uiout,
12301 b->disposition == disp_del ? "\nTemporary catchpoint "
12302 : "\nCatchpoint ");
12303 ui_out_field_int (uiout, "bkptno", b->number);
12304 ui_out_text (uiout, ", ");
12305
12306 switch (ex)
12307 {
12308 case ada_catch_exception:
12309 case ada_catch_exception_unhandled:
12310 {
12311 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12312 char exception_name[256];
12313
12314 if (addr != 0)
12315 {
12316 read_memory (addr, (gdb_byte *) exception_name,
12317 sizeof (exception_name) - 1);
12318 exception_name [sizeof (exception_name) - 1] = '\0';
12319 }
12320 else
12321 {
12322 /* For some reason, we were unable to read the exception
12323 name. This could happen if the Runtime was compiled
12324 without debugging info, for instance. In that case,
12325 just replace the exception name by the generic string
12326 "exception" - it will read as "an exception" in the
12327 notification we are about to print. */
12328 memcpy (exception_name, "exception", sizeof ("exception"));
12329 }
12330 /* In the case of unhandled exception breakpoints, we print
12331 the exception name as "unhandled EXCEPTION_NAME", to make
12332 it clearer to the user which kind of catchpoint just got
12333 hit. We used ui_out_text to make sure that this extra
12334 info does not pollute the exception name in the MI case. */
12335 if (ex == ada_catch_exception_unhandled)
12336 ui_out_text (uiout, "unhandled ");
12337 ui_out_field_string (uiout, "exception-name", exception_name);
12338 }
12339 break;
12340 case ada_catch_assert:
12341 /* In this case, the name of the exception is not really
12342 important. Just print "failed assertion" to make it clearer
12343 that his program just hit an assertion-failure catchpoint.
12344 We used ui_out_text because this info does not belong in
12345 the MI output. */
12346 ui_out_text (uiout, "failed assertion");
12347 break;
12348 }
12349 ui_out_text (uiout, " at ");
12350 ada_find_printable_frame (get_current_frame ());
12351
12352 return PRINT_SRC_AND_LOC;
12353 }
12354
12355 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12356 for all exception catchpoint kinds. */
12357
12358 static void
12359 print_one_exception (enum ada_exception_catchpoint_kind ex,
12360 struct breakpoint *b, struct bp_location **last_loc)
12361 {
12362 struct ui_out *uiout = current_uiout;
12363 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12364 struct value_print_options opts;
12365
12366 get_user_print_options (&opts);
12367 if (opts.addressprint)
12368 {
12369 annotate_field (4);
12370 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12371 }
12372
12373 annotate_field (5);
12374 *last_loc = b->loc;
12375 switch (ex)
12376 {
12377 case ada_catch_exception:
12378 if (c->excep_string != NULL)
12379 {
12380 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12381
12382 ui_out_field_string (uiout, "what", msg);
12383 xfree (msg);
12384 }
12385 else
12386 ui_out_field_string (uiout, "what", "all Ada exceptions");
12387
12388 break;
12389
12390 case ada_catch_exception_unhandled:
12391 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12392 break;
12393
12394 case ada_catch_assert:
12395 ui_out_field_string (uiout, "what", "failed Ada assertions");
12396 break;
12397
12398 default:
12399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12400 break;
12401 }
12402 }
12403
12404 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12405 for all exception catchpoint kinds. */
12406
12407 static void
12408 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12409 struct breakpoint *b)
12410 {
12411 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12412 struct ui_out *uiout = current_uiout;
12413
12414 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12415 : _("Catchpoint "));
12416 ui_out_field_int (uiout, "bkptno", b->number);
12417 ui_out_text (uiout, ": ");
12418
12419 switch (ex)
12420 {
12421 case ada_catch_exception:
12422 if (c->excep_string != NULL)
12423 {
12424 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12425 struct cleanup *old_chain = make_cleanup (xfree, info);
12426
12427 ui_out_text (uiout, info);
12428 do_cleanups (old_chain);
12429 }
12430 else
12431 ui_out_text (uiout, _("all Ada exceptions"));
12432 break;
12433
12434 case ada_catch_exception_unhandled:
12435 ui_out_text (uiout, _("unhandled Ada exceptions"));
12436 break;
12437
12438 case ada_catch_assert:
12439 ui_out_text (uiout, _("failed Ada assertions"));
12440 break;
12441
12442 default:
12443 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12444 break;
12445 }
12446 }
12447
12448 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12449 for all exception catchpoint kinds. */
12450
12451 static void
12452 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12453 struct breakpoint *b, struct ui_file *fp)
12454 {
12455 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12456
12457 switch (ex)
12458 {
12459 case ada_catch_exception:
12460 fprintf_filtered (fp, "catch exception");
12461 if (c->excep_string != NULL)
12462 fprintf_filtered (fp, " %s", c->excep_string);
12463 break;
12464
12465 case ada_catch_exception_unhandled:
12466 fprintf_filtered (fp, "catch exception unhandled");
12467 break;
12468
12469 case ada_catch_assert:
12470 fprintf_filtered (fp, "catch assert");
12471 break;
12472
12473 default:
12474 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12475 }
12476 print_recreate_thread (b, fp);
12477 }
12478
12479 /* Virtual table for "catch exception" breakpoints. */
12480
12481 static void
12482 dtor_catch_exception (struct breakpoint *b)
12483 {
12484 dtor_exception (ada_catch_exception, b);
12485 }
12486
12487 static struct bp_location *
12488 allocate_location_catch_exception (struct breakpoint *self)
12489 {
12490 return allocate_location_exception (ada_catch_exception, self);
12491 }
12492
12493 static void
12494 re_set_catch_exception (struct breakpoint *b)
12495 {
12496 re_set_exception (ada_catch_exception, b);
12497 }
12498
12499 static void
12500 check_status_catch_exception (bpstat bs)
12501 {
12502 check_status_exception (ada_catch_exception, bs);
12503 }
12504
12505 static enum print_stop_action
12506 print_it_catch_exception (bpstat bs)
12507 {
12508 return print_it_exception (ada_catch_exception, bs);
12509 }
12510
12511 static void
12512 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12513 {
12514 print_one_exception (ada_catch_exception, b, last_loc);
12515 }
12516
12517 static void
12518 print_mention_catch_exception (struct breakpoint *b)
12519 {
12520 print_mention_exception (ada_catch_exception, b);
12521 }
12522
12523 static void
12524 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12525 {
12526 print_recreate_exception (ada_catch_exception, b, fp);
12527 }
12528
12529 static struct breakpoint_ops catch_exception_breakpoint_ops;
12530
12531 /* Virtual table for "catch exception unhandled" breakpoints. */
12532
12533 static void
12534 dtor_catch_exception_unhandled (struct breakpoint *b)
12535 {
12536 dtor_exception (ada_catch_exception_unhandled, b);
12537 }
12538
12539 static struct bp_location *
12540 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12541 {
12542 return allocate_location_exception (ada_catch_exception_unhandled, self);
12543 }
12544
12545 static void
12546 re_set_catch_exception_unhandled (struct breakpoint *b)
12547 {
12548 re_set_exception (ada_catch_exception_unhandled, b);
12549 }
12550
12551 static void
12552 check_status_catch_exception_unhandled (bpstat bs)
12553 {
12554 check_status_exception (ada_catch_exception_unhandled, bs);
12555 }
12556
12557 static enum print_stop_action
12558 print_it_catch_exception_unhandled (bpstat bs)
12559 {
12560 return print_it_exception (ada_catch_exception_unhandled, bs);
12561 }
12562
12563 static void
12564 print_one_catch_exception_unhandled (struct breakpoint *b,
12565 struct bp_location **last_loc)
12566 {
12567 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12568 }
12569
12570 static void
12571 print_mention_catch_exception_unhandled (struct breakpoint *b)
12572 {
12573 print_mention_exception (ada_catch_exception_unhandled, b);
12574 }
12575
12576 static void
12577 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12578 struct ui_file *fp)
12579 {
12580 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12581 }
12582
12583 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12584
12585 /* Virtual table for "catch assert" breakpoints. */
12586
12587 static void
12588 dtor_catch_assert (struct breakpoint *b)
12589 {
12590 dtor_exception (ada_catch_assert, b);
12591 }
12592
12593 static struct bp_location *
12594 allocate_location_catch_assert (struct breakpoint *self)
12595 {
12596 return allocate_location_exception (ada_catch_assert, self);
12597 }
12598
12599 static void
12600 re_set_catch_assert (struct breakpoint *b)
12601 {
12602 re_set_exception (ada_catch_assert, b);
12603 }
12604
12605 static void
12606 check_status_catch_assert (bpstat bs)
12607 {
12608 check_status_exception (ada_catch_assert, bs);
12609 }
12610
12611 static enum print_stop_action
12612 print_it_catch_assert (bpstat bs)
12613 {
12614 return print_it_exception (ada_catch_assert, bs);
12615 }
12616
12617 static void
12618 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12619 {
12620 print_one_exception (ada_catch_assert, b, last_loc);
12621 }
12622
12623 static void
12624 print_mention_catch_assert (struct breakpoint *b)
12625 {
12626 print_mention_exception (ada_catch_assert, b);
12627 }
12628
12629 static void
12630 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12631 {
12632 print_recreate_exception (ada_catch_assert, b, fp);
12633 }
12634
12635 static struct breakpoint_ops catch_assert_breakpoint_ops;
12636
12637 /* Return a newly allocated copy of the first space-separated token
12638 in ARGSP, and then adjust ARGSP to point immediately after that
12639 token.
12640
12641 Return NULL if ARGPS does not contain any more tokens. */
12642
12643 static char *
12644 ada_get_next_arg (char **argsp)
12645 {
12646 char *args = *argsp;
12647 char *end;
12648 char *result;
12649
12650 args = skip_spaces (args);
12651 if (args[0] == '\0')
12652 return NULL; /* No more arguments. */
12653
12654 /* Find the end of the current argument. */
12655
12656 end = skip_to_space (args);
12657
12658 /* Adjust ARGSP to point to the start of the next argument. */
12659
12660 *argsp = end;
12661
12662 /* Make a copy of the current argument and return it. */
12663
12664 result = xmalloc (end - args + 1);
12665 strncpy (result, args, end - args);
12666 result[end - args] = '\0';
12667
12668 return result;
12669 }
12670
12671 /* Split the arguments specified in a "catch exception" command.
12672 Set EX to the appropriate catchpoint type.
12673 Set EXCEP_STRING to the name of the specific exception if
12674 specified by the user.
12675 If a condition is found at the end of the arguments, the condition
12676 expression is stored in COND_STRING (memory must be deallocated
12677 after use). Otherwise COND_STRING is set to NULL. */
12678
12679 static void
12680 catch_ada_exception_command_split (char *args,
12681 enum ada_exception_catchpoint_kind *ex,
12682 char **excep_string,
12683 char **cond_string)
12684 {
12685 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12686 char *exception_name;
12687 char *cond = NULL;
12688
12689 exception_name = ada_get_next_arg (&args);
12690 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12691 {
12692 /* This is not an exception name; this is the start of a condition
12693 expression for a catchpoint on all exceptions. So, "un-get"
12694 this token, and set exception_name to NULL. */
12695 xfree (exception_name);
12696 exception_name = NULL;
12697 args -= 2;
12698 }
12699 make_cleanup (xfree, exception_name);
12700
12701 /* Check to see if we have a condition. */
12702
12703 args = skip_spaces (args);
12704 if (startswith (args, "if")
12705 && (isspace (args[2]) || args[2] == '\0'))
12706 {
12707 args += 2;
12708 args = skip_spaces (args);
12709
12710 if (args[0] == '\0')
12711 error (_("Condition missing after `if' keyword"));
12712 cond = xstrdup (args);
12713 make_cleanup (xfree, cond);
12714
12715 args += strlen (args);
12716 }
12717
12718 /* Check that we do not have any more arguments. Anything else
12719 is unexpected. */
12720
12721 if (args[0] != '\0')
12722 error (_("Junk at end of expression"));
12723
12724 discard_cleanups (old_chain);
12725
12726 if (exception_name == NULL)
12727 {
12728 /* Catch all exceptions. */
12729 *ex = ada_catch_exception;
12730 *excep_string = NULL;
12731 }
12732 else if (strcmp (exception_name, "unhandled") == 0)
12733 {
12734 /* Catch unhandled exceptions. */
12735 *ex = ada_catch_exception_unhandled;
12736 *excep_string = NULL;
12737 }
12738 else
12739 {
12740 /* Catch a specific exception. */
12741 *ex = ada_catch_exception;
12742 *excep_string = exception_name;
12743 }
12744 *cond_string = cond;
12745 }
12746
12747 /* Return the name of the symbol on which we should break in order to
12748 implement a catchpoint of the EX kind. */
12749
12750 static const char *
12751 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12752 {
12753 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12754
12755 gdb_assert (data->exception_info != NULL);
12756
12757 switch (ex)
12758 {
12759 case ada_catch_exception:
12760 return (data->exception_info->catch_exception_sym);
12761 break;
12762 case ada_catch_exception_unhandled:
12763 return (data->exception_info->catch_exception_unhandled_sym);
12764 break;
12765 case ada_catch_assert:
12766 return (data->exception_info->catch_assert_sym);
12767 break;
12768 default:
12769 internal_error (__FILE__, __LINE__,
12770 _("unexpected catchpoint kind (%d)"), ex);
12771 }
12772 }
12773
12774 /* Return the breakpoint ops "virtual table" used for catchpoints
12775 of the EX kind. */
12776
12777 static const struct breakpoint_ops *
12778 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12779 {
12780 switch (ex)
12781 {
12782 case ada_catch_exception:
12783 return (&catch_exception_breakpoint_ops);
12784 break;
12785 case ada_catch_exception_unhandled:
12786 return (&catch_exception_unhandled_breakpoint_ops);
12787 break;
12788 case ada_catch_assert:
12789 return (&catch_assert_breakpoint_ops);
12790 break;
12791 default:
12792 internal_error (__FILE__, __LINE__,
12793 _("unexpected catchpoint kind (%d)"), ex);
12794 }
12795 }
12796
12797 /* Return the condition that will be used to match the current exception
12798 being raised with the exception that the user wants to catch. This
12799 assumes that this condition is used when the inferior just triggered
12800 an exception catchpoint.
12801
12802 The string returned is a newly allocated string that needs to be
12803 deallocated later. */
12804
12805 static char *
12806 ada_exception_catchpoint_cond_string (const char *excep_string)
12807 {
12808 int i;
12809
12810 /* The standard exceptions are a special case. They are defined in
12811 runtime units that have been compiled without debugging info; if
12812 EXCEP_STRING is the not-fully-qualified name of a standard
12813 exception (e.g. "constraint_error") then, during the evaluation
12814 of the condition expression, the symbol lookup on this name would
12815 *not* return this standard exception. The catchpoint condition
12816 may then be set only on user-defined exceptions which have the
12817 same not-fully-qualified name (e.g. my_package.constraint_error).
12818
12819 To avoid this unexcepted behavior, these standard exceptions are
12820 systematically prefixed by "standard". This means that "catch
12821 exception constraint_error" is rewritten into "catch exception
12822 standard.constraint_error".
12823
12824 If an exception named contraint_error is defined in another package of
12825 the inferior program, then the only way to specify this exception as a
12826 breakpoint condition is to use its fully-qualified named:
12827 e.g. my_package.constraint_error. */
12828
12829 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12830 {
12831 if (strcmp (standard_exc [i], excep_string) == 0)
12832 {
12833 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12834 excep_string);
12835 }
12836 }
12837 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12838 }
12839
12840 /* Return the symtab_and_line that should be used to insert an exception
12841 catchpoint of the TYPE kind.
12842
12843 EXCEP_STRING should contain the name of a specific exception that
12844 the catchpoint should catch, or NULL otherwise.
12845
12846 ADDR_STRING returns the name of the function where the real
12847 breakpoint that implements the catchpoints is set, depending on the
12848 type of catchpoint we need to create. */
12849
12850 static struct symtab_and_line
12851 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12852 char **addr_string, const struct breakpoint_ops **ops)
12853 {
12854 const char *sym_name;
12855 struct symbol *sym;
12856
12857 /* First, find out which exception support info to use. */
12858 ada_exception_support_info_sniffer ();
12859
12860 /* Then lookup the function on which we will break in order to catch
12861 the Ada exceptions requested by the user. */
12862 sym_name = ada_exception_sym_name (ex);
12863 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12864
12865 /* We can assume that SYM is not NULL at this stage. If the symbol
12866 did not exist, ada_exception_support_info_sniffer would have
12867 raised an exception.
12868
12869 Also, ada_exception_support_info_sniffer should have already
12870 verified that SYM is a function symbol. */
12871 gdb_assert (sym != NULL);
12872 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12873
12874 /* Set ADDR_STRING. */
12875 *addr_string = xstrdup (sym_name);
12876
12877 /* Set OPS. */
12878 *ops = ada_exception_breakpoint_ops (ex);
12879
12880 return find_function_start_sal (sym, 1);
12881 }
12882
12883 /* Create an Ada exception catchpoint.
12884
12885 EX_KIND is the kind of exception catchpoint to be created.
12886
12887 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12888 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12889 of the exception to which this catchpoint applies. When not NULL,
12890 the string must be allocated on the heap, and its deallocation
12891 is no longer the responsibility of the caller.
12892
12893 COND_STRING, if not NULL, is the catchpoint condition. This string
12894 must be allocated on the heap, and its deallocation is no longer
12895 the responsibility of the caller.
12896
12897 TEMPFLAG, if nonzero, means that the underlying breakpoint
12898 should be temporary.
12899
12900 FROM_TTY is the usual argument passed to all commands implementations. */
12901
12902 void
12903 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12904 enum ada_exception_catchpoint_kind ex_kind,
12905 char *excep_string,
12906 char *cond_string,
12907 int tempflag,
12908 int disabled,
12909 int from_tty)
12910 {
12911 struct ada_catchpoint *c;
12912 char *addr_string = NULL;
12913 const struct breakpoint_ops *ops = NULL;
12914 struct symtab_and_line sal
12915 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12916
12917 c = XNEW (struct ada_catchpoint);
12918 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12919 ops, tempflag, disabled, from_tty);
12920 c->excep_string = excep_string;
12921 create_excep_cond_exprs (c);
12922 if (cond_string != NULL)
12923 set_breakpoint_condition (&c->base, cond_string, from_tty);
12924 install_breakpoint (0, &c->base, 1);
12925 }
12926
12927 /* Implement the "catch exception" command. */
12928
12929 static void
12930 catch_ada_exception_command (char *arg, int from_tty,
12931 struct cmd_list_element *command)
12932 {
12933 struct gdbarch *gdbarch = get_current_arch ();
12934 int tempflag;
12935 enum ada_exception_catchpoint_kind ex_kind;
12936 char *excep_string = NULL;
12937 char *cond_string = NULL;
12938
12939 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12940
12941 if (!arg)
12942 arg = "";
12943 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12944 &cond_string);
12945 create_ada_exception_catchpoint (gdbarch, ex_kind,
12946 excep_string, cond_string,
12947 tempflag, 1 /* enabled */,
12948 from_tty);
12949 }
12950
12951 /* Split the arguments specified in a "catch assert" command.
12952
12953 ARGS contains the command's arguments (or the empty string if
12954 no arguments were passed).
12955
12956 If ARGS contains a condition, set COND_STRING to that condition
12957 (the memory needs to be deallocated after use). */
12958
12959 static void
12960 catch_ada_assert_command_split (char *args, char **cond_string)
12961 {
12962 args = skip_spaces (args);
12963
12964 /* Check whether a condition was provided. */
12965 if (startswith (args, "if")
12966 && (isspace (args[2]) || args[2] == '\0'))
12967 {
12968 args += 2;
12969 args = skip_spaces (args);
12970 if (args[0] == '\0')
12971 error (_("condition missing after `if' keyword"));
12972 *cond_string = xstrdup (args);
12973 }
12974
12975 /* Otherwise, there should be no other argument at the end of
12976 the command. */
12977 else if (args[0] != '\0')
12978 error (_("Junk at end of arguments."));
12979 }
12980
12981 /* Implement the "catch assert" command. */
12982
12983 static void
12984 catch_assert_command (char *arg, int from_tty,
12985 struct cmd_list_element *command)
12986 {
12987 struct gdbarch *gdbarch = get_current_arch ();
12988 int tempflag;
12989 char *cond_string = NULL;
12990
12991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12992
12993 if (!arg)
12994 arg = "";
12995 catch_ada_assert_command_split (arg, &cond_string);
12996 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12997 NULL, cond_string,
12998 tempflag, 1 /* enabled */,
12999 from_tty);
13000 }
13001
13002 /* Return non-zero if the symbol SYM is an Ada exception object. */
13003
13004 static int
13005 ada_is_exception_sym (struct symbol *sym)
13006 {
13007 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13008
13009 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13010 && SYMBOL_CLASS (sym) != LOC_BLOCK
13011 && SYMBOL_CLASS (sym) != LOC_CONST
13012 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13013 && type_name != NULL && strcmp (type_name, "exception") == 0);
13014 }
13015
13016 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13017 Ada exception object. This matches all exceptions except the ones
13018 defined by the Ada language. */
13019
13020 static int
13021 ada_is_non_standard_exception_sym (struct symbol *sym)
13022 {
13023 int i;
13024
13025 if (!ada_is_exception_sym (sym))
13026 return 0;
13027
13028 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13029 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13030 return 0; /* A standard exception. */
13031
13032 /* Numeric_Error is also a standard exception, so exclude it.
13033 See the STANDARD_EXC description for more details as to why
13034 this exception is not listed in that array. */
13035 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13036 return 0;
13037
13038 return 1;
13039 }
13040
13041 /* A helper function for qsort, comparing two struct ada_exc_info
13042 objects.
13043
13044 The comparison is determined first by exception name, and then
13045 by exception address. */
13046
13047 static int
13048 compare_ada_exception_info (const void *a, const void *b)
13049 {
13050 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13051 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13052 int result;
13053
13054 result = strcmp (exc_a->name, exc_b->name);
13055 if (result != 0)
13056 return result;
13057
13058 if (exc_a->addr < exc_b->addr)
13059 return -1;
13060 if (exc_a->addr > exc_b->addr)
13061 return 1;
13062
13063 return 0;
13064 }
13065
13066 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13067 routine, but keeping the first SKIP elements untouched.
13068
13069 All duplicates are also removed. */
13070
13071 static void
13072 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13073 int skip)
13074 {
13075 struct ada_exc_info *to_sort
13076 = VEC_address (ada_exc_info, *exceptions) + skip;
13077 int to_sort_len
13078 = VEC_length (ada_exc_info, *exceptions) - skip;
13079 int i, j;
13080
13081 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13082 compare_ada_exception_info);
13083
13084 for (i = 1, j = 1; i < to_sort_len; i++)
13085 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13086 to_sort[j++] = to_sort[i];
13087 to_sort_len = j;
13088 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13089 }
13090
13091 /* A function intended as the "name_matcher" callback in the struct
13092 quick_symbol_functions' expand_symtabs_matching method.
13093
13094 SEARCH_NAME is the symbol's search name.
13095
13096 If USER_DATA is not NULL, it is a pointer to a regext_t object
13097 used to match the symbol (by natural name). Otherwise, when USER_DATA
13098 is null, no filtering is performed, and all symbols are a positive
13099 match. */
13100
13101 static int
13102 ada_exc_search_name_matches (const char *search_name, void *user_data)
13103 {
13104 regex_t *preg = user_data;
13105
13106 if (preg == NULL)
13107 return 1;
13108
13109 /* In Ada, the symbol "search name" is a linkage name, whereas
13110 the regular expression used to do the matching refers to
13111 the natural name. So match against the decoded name. */
13112 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13113 }
13114
13115 /* Add all exceptions defined by the Ada standard whose name match
13116 a regular expression.
13117
13118 If PREG is not NULL, then this regexp_t object is used to
13119 perform the symbol name matching. Otherwise, no name-based
13120 filtering is performed.
13121
13122 EXCEPTIONS is a vector of exceptions to which matching exceptions
13123 gets pushed. */
13124
13125 static void
13126 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13127 {
13128 int i;
13129
13130 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13131 {
13132 if (preg == NULL
13133 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13134 {
13135 struct bound_minimal_symbol msymbol
13136 = ada_lookup_simple_minsym (standard_exc[i]);
13137
13138 if (msymbol.minsym != NULL)
13139 {
13140 struct ada_exc_info info
13141 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13142
13143 VEC_safe_push (ada_exc_info, *exceptions, &info);
13144 }
13145 }
13146 }
13147 }
13148
13149 /* Add all Ada exceptions defined locally and accessible from the given
13150 FRAME.
13151
13152 If PREG is not NULL, then this regexp_t object is used to
13153 perform the symbol name matching. Otherwise, no name-based
13154 filtering is performed.
13155
13156 EXCEPTIONS is a vector of exceptions to which matching exceptions
13157 gets pushed. */
13158
13159 static void
13160 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13161 VEC(ada_exc_info) **exceptions)
13162 {
13163 const struct block *block = get_frame_block (frame, 0);
13164
13165 while (block != 0)
13166 {
13167 struct block_iterator iter;
13168 struct symbol *sym;
13169
13170 ALL_BLOCK_SYMBOLS (block, iter, sym)
13171 {
13172 switch (SYMBOL_CLASS (sym))
13173 {
13174 case LOC_TYPEDEF:
13175 case LOC_BLOCK:
13176 case LOC_CONST:
13177 break;
13178 default:
13179 if (ada_is_exception_sym (sym))
13180 {
13181 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13182 SYMBOL_VALUE_ADDRESS (sym)};
13183
13184 VEC_safe_push (ada_exc_info, *exceptions, &info);
13185 }
13186 }
13187 }
13188 if (BLOCK_FUNCTION (block) != NULL)
13189 break;
13190 block = BLOCK_SUPERBLOCK (block);
13191 }
13192 }
13193
13194 /* Add all exceptions defined globally whose name name match
13195 a regular expression, excluding standard exceptions.
13196
13197 The reason we exclude standard exceptions is that they need
13198 to be handled separately: Standard exceptions are defined inside
13199 a runtime unit which is normally not compiled with debugging info,
13200 and thus usually do not show up in our symbol search. However,
13201 if the unit was in fact built with debugging info, we need to
13202 exclude them because they would duplicate the entry we found
13203 during the special loop that specifically searches for those
13204 standard exceptions.
13205
13206 If PREG is not NULL, then this regexp_t object is used to
13207 perform the symbol name matching. Otherwise, no name-based
13208 filtering is performed.
13209
13210 EXCEPTIONS is a vector of exceptions to which matching exceptions
13211 gets pushed. */
13212
13213 static void
13214 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13215 {
13216 struct objfile *objfile;
13217 struct compunit_symtab *s;
13218
13219 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13220 VARIABLES_DOMAIN, preg);
13221
13222 ALL_COMPUNITS (objfile, s)
13223 {
13224 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13225 int i;
13226
13227 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13228 {
13229 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13230 struct block_iterator iter;
13231 struct symbol *sym;
13232
13233 ALL_BLOCK_SYMBOLS (b, iter, sym)
13234 if (ada_is_non_standard_exception_sym (sym)
13235 && (preg == NULL
13236 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13237 0, NULL, 0) == 0))
13238 {
13239 struct ada_exc_info info
13240 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13241
13242 VEC_safe_push (ada_exc_info, *exceptions, &info);
13243 }
13244 }
13245 }
13246 }
13247
13248 /* Implements ada_exceptions_list with the regular expression passed
13249 as a regex_t, rather than a string.
13250
13251 If not NULL, PREG is used to filter out exceptions whose names
13252 do not match. Otherwise, all exceptions are listed. */
13253
13254 static VEC(ada_exc_info) *
13255 ada_exceptions_list_1 (regex_t *preg)
13256 {
13257 VEC(ada_exc_info) *result = NULL;
13258 struct cleanup *old_chain
13259 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13260 int prev_len;
13261
13262 /* First, list the known standard exceptions. These exceptions
13263 need to be handled separately, as they are usually defined in
13264 runtime units that have been compiled without debugging info. */
13265
13266 ada_add_standard_exceptions (preg, &result);
13267
13268 /* Next, find all exceptions whose scope is local and accessible
13269 from the currently selected frame. */
13270
13271 if (has_stack_frames ())
13272 {
13273 prev_len = VEC_length (ada_exc_info, result);
13274 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13275 &result);
13276 if (VEC_length (ada_exc_info, result) > prev_len)
13277 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13278 }
13279
13280 /* Add all exceptions whose scope is global. */
13281
13282 prev_len = VEC_length (ada_exc_info, result);
13283 ada_add_global_exceptions (preg, &result);
13284 if (VEC_length (ada_exc_info, result) > prev_len)
13285 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13286
13287 discard_cleanups (old_chain);
13288 return result;
13289 }
13290
13291 /* Return a vector of ada_exc_info.
13292
13293 If REGEXP is NULL, all exceptions are included in the result.
13294 Otherwise, it should contain a valid regular expression,
13295 and only the exceptions whose names match that regular expression
13296 are included in the result.
13297
13298 The exceptions are sorted in the following order:
13299 - Standard exceptions (defined by the Ada language), in
13300 alphabetical order;
13301 - Exceptions only visible from the current frame, in
13302 alphabetical order;
13303 - Exceptions whose scope is global, in alphabetical order. */
13304
13305 VEC(ada_exc_info) *
13306 ada_exceptions_list (const char *regexp)
13307 {
13308 VEC(ada_exc_info) *result = NULL;
13309 struct cleanup *old_chain = NULL;
13310 regex_t reg;
13311
13312 if (regexp != NULL)
13313 old_chain = compile_rx_or_error (&reg, regexp,
13314 _("invalid regular expression"));
13315
13316 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13317
13318 if (old_chain != NULL)
13319 do_cleanups (old_chain);
13320 return result;
13321 }
13322
13323 /* Implement the "info exceptions" command. */
13324
13325 static void
13326 info_exceptions_command (char *regexp, int from_tty)
13327 {
13328 VEC(ada_exc_info) *exceptions;
13329 struct cleanup *cleanup;
13330 struct gdbarch *gdbarch = get_current_arch ();
13331 int ix;
13332 struct ada_exc_info *info;
13333
13334 exceptions = ada_exceptions_list (regexp);
13335 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13336
13337 if (regexp != NULL)
13338 printf_filtered
13339 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13340 else
13341 printf_filtered (_("All defined Ada exceptions:\n"));
13342
13343 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13344 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13345
13346 do_cleanups (cleanup);
13347 }
13348
13349 /* Operators */
13350 /* Information about operators given special treatment in functions
13351 below. */
13352 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13353
13354 #define ADA_OPERATORS \
13355 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13356 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13357 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13358 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13359 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13360 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13361 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13362 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13363 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13364 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13365 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13366 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13367 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13368 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13369 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13370 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13371 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13372 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13373 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13374
13375 static void
13376 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13377 int *argsp)
13378 {
13379 switch (exp->elts[pc - 1].opcode)
13380 {
13381 default:
13382 operator_length_standard (exp, pc, oplenp, argsp);
13383 break;
13384
13385 #define OP_DEFN(op, len, args, binop) \
13386 case op: *oplenp = len; *argsp = args; break;
13387 ADA_OPERATORS;
13388 #undef OP_DEFN
13389
13390 case OP_AGGREGATE:
13391 *oplenp = 3;
13392 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13393 break;
13394
13395 case OP_CHOICES:
13396 *oplenp = 3;
13397 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13398 break;
13399 }
13400 }
13401
13402 /* Implementation of the exp_descriptor method operator_check. */
13403
13404 static int
13405 ada_operator_check (struct expression *exp, int pos,
13406 int (*objfile_func) (struct objfile *objfile, void *data),
13407 void *data)
13408 {
13409 const union exp_element *const elts = exp->elts;
13410 struct type *type = NULL;
13411
13412 switch (elts[pos].opcode)
13413 {
13414 case UNOP_IN_RANGE:
13415 case UNOP_QUAL:
13416 type = elts[pos + 1].type;
13417 break;
13418
13419 default:
13420 return operator_check_standard (exp, pos, objfile_func, data);
13421 }
13422
13423 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13424
13425 if (type && TYPE_OBJFILE (type)
13426 && (*objfile_func) (TYPE_OBJFILE (type), data))
13427 return 1;
13428
13429 return 0;
13430 }
13431
13432 static char *
13433 ada_op_name (enum exp_opcode opcode)
13434 {
13435 switch (opcode)
13436 {
13437 default:
13438 return op_name_standard (opcode);
13439
13440 #define OP_DEFN(op, len, args, binop) case op: return #op;
13441 ADA_OPERATORS;
13442 #undef OP_DEFN
13443
13444 case OP_AGGREGATE:
13445 return "OP_AGGREGATE";
13446 case OP_CHOICES:
13447 return "OP_CHOICES";
13448 case OP_NAME:
13449 return "OP_NAME";
13450 }
13451 }
13452
13453 /* As for operator_length, but assumes PC is pointing at the first
13454 element of the operator, and gives meaningful results only for the
13455 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13456
13457 static void
13458 ada_forward_operator_length (struct expression *exp, int pc,
13459 int *oplenp, int *argsp)
13460 {
13461 switch (exp->elts[pc].opcode)
13462 {
13463 default:
13464 *oplenp = *argsp = 0;
13465 break;
13466
13467 #define OP_DEFN(op, len, args, binop) \
13468 case op: *oplenp = len; *argsp = args; break;
13469 ADA_OPERATORS;
13470 #undef OP_DEFN
13471
13472 case OP_AGGREGATE:
13473 *oplenp = 3;
13474 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13475 break;
13476
13477 case OP_CHOICES:
13478 *oplenp = 3;
13479 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13480 break;
13481
13482 case OP_STRING:
13483 case OP_NAME:
13484 {
13485 int len = longest_to_int (exp->elts[pc + 1].longconst);
13486
13487 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13488 *argsp = 0;
13489 break;
13490 }
13491 }
13492 }
13493
13494 static int
13495 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13496 {
13497 enum exp_opcode op = exp->elts[elt].opcode;
13498 int oplen, nargs;
13499 int pc = elt;
13500 int i;
13501
13502 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13503
13504 switch (op)
13505 {
13506 /* Ada attributes ('Foo). */
13507 case OP_ATR_FIRST:
13508 case OP_ATR_LAST:
13509 case OP_ATR_LENGTH:
13510 case OP_ATR_IMAGE:
13511 case OP_ATR_MAX:
13512 case OP_ATR_MIN:
13513 case OP_ATR_MODULUS:
13514 case OP_ATR_POS:
13515 case OP_ATR_SIZE:
13516 case OP_ATR_TAG:
13517 case OP_ATR_VAL:
13518 break;
13519
13520 case UNOP_IN_RANGE:
13521 case UNOP_QUAL:
13522 /* XXX: gdb_sprint_host_address, type_sprint */
13523 fprintf_filtered (stream, _("Type @"));
13524 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13525 fprintf_filtered (stream, " (");
13526 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13527 fprintf_filtered (stream, ")");
13528 break;
13529 case BINOP_IN_BOUNDS:
13530 fprintf_filtered (stream, " (%d)",
13531 longest_to_int (exp->elts[pc + 2].longconst));
13532 break;
13533 case TERNOP_IN_RANGE:
13534 break;
13535
13536 case OP_AGGREGATE:
13537 case OP_OTHERS:
13538 case OP_DISCRETE_RANGE:
13539 case OP_POSITIONAL:
13540 case OP_CHOICES:
13541 break;
13542
13543 case OP_NAME:
13544 case OP_STRING:
13545 {
13546 char *name = &exp->elts[elt + 2].string;
13547 int len = longest_to_int (exp->elts[elt + 1].longconst);
13548
13549 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13550 break;
13551 }
13552
13553 default:
13554 return dump_subexp_body_standard (exp, stream, elt);
13555 }
13556
13557 elt += oplen;
13558 for (i = 0; i < nargs; i += 1)
13559 elt = dump_subexp (exp, stream, elt);
13560
13561 return elt;
13562 }
13563
13564 /* The Ada extension of print_subexp (q.v.). */
13565
13566 static void
13567 ada_print_subexp (struct expression *exp, int *pos,
13568 struct ui_file *stream, enum precedence prec)
13569 {
13570 int oplen, nargs, i;
13571 int pc = *pos;
13572 enum exp_opcode op = exp->elts[pc].opcode;
13573
13574 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13575
13576 *pos += oplen;
13577 switch (op)
13578 {
13579 default:
13580 *pos -= oplen;
13581 print_subexp_standard (exp, pos, stream, prec);
13582 return;
13583
13584 case OP_VAR_VALUE:
13585 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13586 return;
13587
13588 case BINOP_IN_BOUNDS:
13589 /* XXX: sprint_subexp */
13590 print_subexp (exp, pos, stream, PREC_SUFFIX);
13591 fputs_filtered (" in ", stream);
13592 print_subexp (exp, pos, stream, PREC_SUFFIX);
13593 fputs_filtered ("'range", stream);
13594 if (exp->elts[pc + 1].longconst > 1)
13595 fprintf_filtered (stream, "(%ld)",
13596 (long) exp->elts[pc + 1].longconst);
13597 return;
13598
13599 case TERNOP_IN_RANGE:
13600 if (prec >= PREC_EQUAL)
13601 fputs_filtered ("(", stream);
13602 /* XXX: sprint_subexp */
13603 print_subexp (exp, pos, stream, PREC_SUFFIX);
13604 fputs_filtered (" in ", stream);
13605 print_subexp (exp, pos, stream, PREC_EQUAL);
13606 fputs_filtered (" .. ", stream);
13607 print_subexp (exp, pos, stream, PREC_EQUAL);
13608 if (prec >= PREC_EQUAL)
13609 fputs_filtered (")", stream);
13610 return;
13611
13612 case OP_ATR_FIRST:
13613 case OP_ATR_LAST:
13614 case OP_ATR_LENGTH:
13615 case OP_ATR_IMAGE:
13616 case OP_ATR_MAX:
13617 case OP_ATR_MIN:
13618 case OP_ATR_MODULUS:
13619 case OP_ATR_POS:
13620 case OP_ATR_SIZE:
13621 case OP_ATR_TAG:
13622 case OP_ATR_VAL:
13623 if (exp->elts[*pos].opcode == OP_TYPE)
13624 {
13625 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13626 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13627 &type_print_raw_options);
13628 *pos += 3;
13629 }
13630 else
13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
13632 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13633 if (nargs > 1)
13634 {
13635 int tem;
13636
13637 for (tem = 1; tem < nargs; tem += 1)
13638 {
13639 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13640 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13641 }
13642 fputs_filtered (")", stream);
13643 }
13644 return;
13645
13646 case UNOP_QUAL:
13647 type_print (exp->elts[pc + 1].type, "", stream, 0);
13648 fputs_filtered ("'(", stream);
13649 print_subexp (exp, pos, stream, PREC_PREFIX);
13650 fputs_filtered (")", stream);
13651 return;
13652
13653 case UNOP_IN_RANGE:
13654 /* XXX: sprint_subexp */
13655 print_subexp (exp, pos, stream, PREC_SUFFIX);
13656 fputs_filtered (" in ", stream);
13657 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13658 &type_print_raw_options);
13659 return;
13660
13661 case OP_DISCRETE_RANGE:
13662 print_subexp (exp, pos, stream, PREC_SUFFIX);
13663 fputs_filtered ("..", stream);
13664 print_subexp (exp, pos, stream, PREC_SUFFIX);
13665 return;
13666
13667 case OP_OTHERS:
13668 fputs_filtered ("others => ", stream);
13669 print_subexp (exp, pos, stream, PREC_SUFFIX);
13670 return;
13671
13672 case OP_CHOICES:
13673 for (i = 0; i < nargs-1; i += 1)
13674 {
13675 if (i > 0)
13676 fputs_filtered ("|", stream);
13677 print_subexp (exp, pos, stream, PREC_SUFFIX);
13678 }
13679 fputs_filtered (" => ", stream);
13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
13681 return;
13682
13683 case OP_POSITIONAL:
13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
13685 return;
13686
13687 case OP_AGGREGATE:
13688 fputs_filtered ("(", stream);
13689 for (i = 0; i < nargs; i += 1)
13690 {
13691 if (i > 0)
13692 fputs_filtered (", ", stream);
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 }
13695 fputs_filtered (")", stream);
13696 return;
13697 }
13698 }
13699
13700 /* Table mapping opcodes into strings for printing operators
13701 and precedences of the operators. */
13702
13703 static const struct op_print ada_op_print_tab[] = {
13704 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13705 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13706 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13707 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13708 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13709 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13710 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13711 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13712 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13713 {">=", BINOP_GEQ, PREC_ORDER, 0},
13714 {">", BINOP_GTR, PREC_ORDER, 0},
13715 {"<", BINOP_LESS, PREC_ORDER, 0},
13716 {">>", BINOP_RSH, PREC_SHIFT, 0},
13717 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13718 {"+", BINOP_ADD, PREC_ADD, 0},
13719 {"-", BINOP_SUB, PREC_ADD, 0},
13720 {"&", BINOP_CONCAT, PREC_ADD, 0},
13721 {"*", BINOP_MUL, PREC_MUL, 0},
13722 {"/", BINOP_DIV, PREC_MUL, 0},
13723 {"rem", BINOP_REM, PREC_MUL, 0},
13724 {"mod", BINOP_MOD, PREC_MUL, 0},
13725 {"**", BINOP_EXP, PREC_REPEAT, 0},
13726 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13727 {"-", UNOP_NEG, PREC_PREFIX, 0},
13728 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13729 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13730 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13731 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13732 {".all", UNOP_IND, PREC_SUFFIX, 1},
13733 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13734 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13735 {NULL, OP_NULL, PREC_SUFFIX, 0}
13736 };
13737 \f
13738 enum ada_primitive_types {
13739 ada_primitive_type_int,
13740 ada_primitive_type_long,
13741 ada_primitive_type_short,
13742 ada_primitive_type_char,
13743 ada_primitive_type_float,
13744 ada_primitive_type_double,
13745 ada_primitive_type_void,
13746 ada_primitive_type_long_long,
13747 ada_primitive_type_long_double,
13748 ada_primitive_type_natural,
13749 ada_primitive_type_positive,
13750 ada_primitive_type_system_address,
13751 nr_ada_primitive_types
13752 };
13753
13754 static void
13755 ada_language_arch_info (struct gdbarch *gdbarch,
13756 struct language_arch_info *lai)
13757 {
13758 const struct builtin_type *builtin = builtin_type (gdbarch);
13759
13760 lai->primitive_type_vector
13761 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13762 struct type *);
13763
13764 lai->primitive_type_vector [ada_primitive_type_int]
13765 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13766 0, "integer");
13767 lai->primitive_type_vector [ada_primitive_type_long]
13768 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13769 0, "long_integer");
13770 lai->primitive_type_vector [ada_primitive_type_short]
13771 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13772 0, "short_integer");
13773 lai->string_char_type
13774 = lai->primitive_type_vector [ada_primitive_type_char]
13775 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13776 lai->primitive_type_vector [ada_primitive_type_float]
13777 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13778 "float", NULL);
13779 lai->primitive_type_vector [ada_primitive_type_double]
13780 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13781 "long_float", NULL);
13782 lai->primitive_type_vector [ada_primitive_type_long_long]
13783 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13784 0, "long_long_integer");
13785 lai->primitive_type_vector [ada_primitive_type_long_double]
13786 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13787 "long_long_float", NULL);
13788 lai->primitive_type_vector [ada_primitive_type_natural]
13789 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13790 0, "natural");
13791 lai->primitive_type_vector [ada_primitive_type_positive]
13792 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13793 0, "positive");
13794 lai->primitive_type_vector [ada_primitive_type_void]
13795 = builtin->builtin_void;
13796
13797 lai->primitive_type_vector [ada_primitive_type_system_address]
13798 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13799 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13800 = "system__address";
13801
13802 lai->bool_type_symbol = NULL;
13803 lai->bool_type_default = builtin->builtin_bool;
13804 }
13805 \f
13806 /* Language vector */
13807
13808 /* Not really used, but needed in the ada_language_defn. */
13809
13810 static void
13811 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13812 {
13813 ada_emit_char (c, type, stream, quoter, 1);
13814 }
13815
13816 static int
13817 parse (struct parser_state *ps)
13818 {
13819 warnings_issued = 0;
13820 return ada_parse (ps);
13821 }
13822
13823 static const struct exp_descriptor ada_exp_descriptor = {
13824 ada_print_subexp,
13825 ada_operator_length,
13826 ada_operator_check,
13827 ada_op_name,
13828 ada_dump_subexp_body,
13829 ada_evaluate_subexp
13830 };
13831
13832 /* Implement the "la_get_symbol_name_cmp" language_defn method
13833 for Ada. */
13834
13835 static symbol_name_cmp_ftype
13836 ada_get_symbol_name_cmp (const char *lookup_name)
13837 {
13838 if (should_use_wild_match (lookup_name))
13839 return wild_match;
13840 else
13841 return compare_names;
13842 }
13843
13844 /* Implement the "la_read_var_value" language_defn method for Ada. */
13845
13846 static struct value *
13847 ada_read_var_value (struct symbol *var, const struct block *var_block,
13848 struct frame_info *frame)
13849 {
13850 const struct block *frame_block = NULL;
13851 struct symbol *renaming_sym = NULL;
13852
13853 /* The only case where default_read_var_value is not sufficient
13854 is when VAR is a renaming... */
13855 if (frame)
13856 frame_block = get_frame_block (frame, NULL);
13857 if (frame_block)
13858 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13859 if (renaming_sym != NULL)
13860 return ada_read_renaming_var_value (renaming_sym, frame_block);
13861
13862 /* This is a typical case where we expect the default_read_var_value
13863 function to work. */
13864 return default_read_var_value (var, var_block, frame);
13865 }
13866
13867 const struct language_defn ada_language_defn = {
13868 "ada", /* Language name */
13869 "Ada",
13870 language_ada,
13871 range_check_off,
13872 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13873 that's not quite what this means. */
13874 array_row_major,
13875 macro_expansion_no,
13876 &ada_exp_descriptor,
13877 parse,
13878 ada_error,
13879 resolve,
13880 ada_printchar, /* Print a character constant */
13881 ada_printstr, /* Function to print string constant */
13882 emit_char, /* Function to print single char (not used) */
13883 ada_print_type, /* Print a type using appropriate syntax */
13884 ada_print_typedef, /* Print a typedef using appropriate syntax */
13885 ada_val_print, /* Print a value using appropriate syntax */
13886 ada_value_print, /* Print a top-level value */
13887 ada_read_var_value, /* la_read_var_value */
13888 NULL, /* Language specific skip_trampoline */
13889 NULL, /* name_of_this */
13890 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13891 basic_lookup_transparent_type, /* lookup_transparent_type */
13892 ada_la_decode, /* Language specific symbol demangler */
13893 NULL, /* Language specific
13894 class_name_from_physname */
13895 ada_op_print_tab, /* expression operators for printing */
13896 0, /* c-style arrays */
13897 1, /* String lower bound */
13898 ada_get_gdb_completer_word_break_characters,
13899 ada_make_symbol_completion_list,
13900 ada_language_arch_info,
13901 ada_print_array_index,
13902 default_pass_by_reference,
13903 c_get_string,
13904 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13905 ada_iterate_over_symbols,
13906 &ada_varobj_ops,
13907 NULL,
13908 NULL,
13909 LANG_MAGIC
13910 };
13911
13912 /* Provide a prototype to silence -Wmissing-prototypes. */
13913 extern initialize_file_ftype _initialize_ada_language;
13914
13915 /* Command-list for the "set/show ada" prefix command. */
13916 static struct cmd_list_element *set_ada_list;
13917 static struct cmd_list_element *show_ada_list;
13918
13919 /* Implement the "set ada" prefix command. */
13920
13921 static void
13922 set_ada_command (char *arg, int from_tty)
13923 {
13924 printf_unfiltered (_(\
13925 "\"set ada\" must be followed by the name of a setting.\n"));
13926 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13927 }
13928
13929 /* Implement the "show ada" prefix command. */
13930
13931 static void
13932 show_ada_command (char *args, int from_tty)
13933 {
13934 cmd_show_list (show_ada_list, from_tty, "");
13935 }
13936
13937 static void
13938 initialize_ada_catchpoint_ops (void)
13939 {
13940 struct breakpoint_ops *ops;
13941
13942 initialize_breakpoint_ops ();
13943
13944 ops = &catch_exception_breakpoint_ops;
13945 *ops = bkpt_breakpoint_ops;
13946 ops->dtor = dtor_catch_exception;
13947 ops->allocate_location = allocate_location_catch_exception;
13948 ops->re_set = re_set_catch_exception;
13949 ops->check_status = check_status_catch_exception;
13950 ops->print_it = print_it_catch_exception;
13951 ops->print_one = print_one_catch_exception;
13952 ops->print_mention = print_mention_catch_exception;
13953 ops->print_recreate = print_recreate_catch_exception;
13954
13955 ops = &catch_exception_unhandled_breakpoint_ops;
13956 *ops = bkpt_breakpoint_ops;
13957 ops->dtor = dtor_catch_exception_unhandled;
13958 ops->allocate_location = allocate_location_catch_exception_unhandled;
13959 ops->re_set = re_set_catch_exception_unhandled;
13960 ops->check_status = check_status_catch_exception_unhandled;
13961 ops->print_it = print_it_catch_exception_unhandled;
13962 ops->print_one = print_one_catch_exception_unhandled;
13963 ops->print_mention = print_mention_catch_exception_unhandled;
13964 ops->print_recreate = print_recreate_catch_exception_unhandled;
13965
13966 ops = &catch_assert_breakpoint_ops;
13967 *ops = bkpt_breakpoint_ops;
13968 ops->dtor = dtor_catch_assert;
13969 ops->allocate_location = allocate_location_catch_assert;
13970 ops->re_set = re_set_catch_assert;
13971 ops->check_status = check_status_catch_assert;
13972 ops->print_it = print_it_catch_assert;
13973 ops->print_one = print_one_catch_assert;
13974 ops->print_mention = print_mention_catch_assert;
13975 ops->print_recreate = print_recreate_catch_assert;
13976 }
13977
13978 /* This module's 'new_objfile' observer. */
13979
13980 static void
13981 ada_new_objfile_observer (struct objfile *objfile)
13982 {
13983 ada_clear_symbol_cache ();
13984 }
13985
13986 /* This module's 'free_objfile' observer. */
13987
13988 static void
13989 ada_free_objfile_observer (struct objfile *objfile)
13990 {
13991 ada_clear_symbol_cache ();
13992 }
13993
13994 void
13995 _initialize_ada_language (void)
13996 {
13997 add_language (&ada_language_defn);
13998
13999 initialize_ada_catchpoint_ops ();
14000
14001 add_prefix_cmd ("ada", no_class, set_ada_command,
14002 _("Prefix command for changing Ada-specfic settings"),
14003 &set_ada_list, "set ada ", 0, &setlist);
14004
14005 add_prefix_cmd ("ada", no_class, show_ada_command,
14006 _("Generic command for showing Ada-specific settings."),
14007 &show_ada_list, "show ada ", 0, &showlist);
14008
14009 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14010 &trust_pad_over_xvs, _("\
14011 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14012 Show whether an optimization trusting PAD types over XVS types is activated"),
14013 _("\
14014 This is related to the encoding used by the GNAT compiler. The debugger\n\
14015 should normally trust the contents of PAD types, but certain older versions\n\
14016 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14017 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14018 work around this bug. It is always safe to turn this option \"off\", but\n\
14019 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14020 this option to \"off\" unless necessary."),
14021 NULL, NULL, &set_ada_list, &show_ada_list);
14022
14023 add_catch_command ("exception", _("\
14024 Catch Ada exceptions, when raised.\n\
14025 With an argument, catch only exceptions with the given name."),
14026 catch_ada_exception_command,
14027 NULL,
14028 CATCH_PERMANENT,
14029 CATCH_TEMPORARY);
14030 add_catch_command ("assert", _("\
14031 Catch failed Ada assertions, when raised.\n\
14032 With an argument, catch only exceptions with the given name."),
14033 catch_assert_command,
14034 NULL,
14035 CATCH_PERMANENT,
14036 CATCH_TEMPORARY);
14037
14038 varsize_limit = 65536;
14039
14040 add_info ("exceptions", info_exceptions_command,
14041 _("\
14042 List all Ada exception names.\n\
14043 If a regular expression is passed as an argument, only those matching\n\
14044 the regular expression are listed."));
14045
14046 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14047 _("Set Ada maintenance-related variables."),
14048 &maint_set_ada_cmdlist, "maintenance set ada ",
14049 0/*allow-unknown*/, &maintenance_set_cmdlist);
14050
14051 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14052 _("Show Ada maintenance-related variables"),
14053 &maint_show_ada_cmdlist, "maintenance show ada ",
14054 0/*allow-unknown*/, &maintenance_show_cmdlist);
14055
14056 add_setshow_boolean_cmd
14057 ("ignore-descriptive-types", class_maintenance,
14058 &ada_ignore_descriptive_types_p,
14059 _("Set whether descriptive types generated by GNAT should be ignored."),
14060 _("Show whether descriptive types generated by GNAT should be ignored."),
14061 _("\
14062 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14063 DWARF attribute."),
14064 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14065
14066 obstack_init (&symbol_list_obstack);
14067
14068 decoded_names_store = htab_create_alloc
14069 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14070 NULL, xcalloc, xfree);
14071
14072 /* The ada-lang observers. */
14073 observer_attach_new_objfile (ada_new_objfile_observer);
14074 observer_attach_free_objfile (ada_free_objfile_observer);
14075 observer_attach_inferior_exit (ada_inferior_exit);
14076
14077 /* Setup various context-specific data. */
14078 ada_inferior_data
14079 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14080 ada_pspace_data_handle
14081 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14082 }
This page took 0.345569 seconds and 4 git commands to generate.