2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269 \f
270
271
272 /* Maximum-sized dynamic type. */
273 static unsigned int varsize_limit;
274
275 /* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277 static char *ada_completer_word_break_characters =
278 #ifdef VMS
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280 #else
281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
282 #endif
283
284 /* The name of the symbol to use to get the name of the main subprogram. */
285 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
286 = "__gnat_ada_main_program_name";
287
288 /* Limit on the number of warnings to raise per expression evaluation. */
289 static int warning_limit = 2;
290
291 /* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293 static int warnings_issued = 0;
294
295 static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
297 };
298
299 static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
301 };
302
303 /* Space for allocating results of ada_lookup_symbol_list. */
304 static struct obstack symbol_list_obstack;
305
306 /* Inferior-specific data. */
307
308 /* Per-inferior data for this module. */
309
310 struct ada_inferior_data
311 {
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
317 };
318
319 /* Our key to this module's inferior data. */
320 static const struct inferior_data *ada_inferior_data;
321
322 /* A cleanup routine for our inferior data. */
323 static void
324 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
325 {
326 struct ada_inferior_data *data;
327
328 data = inferior_data (inf, ada_inferior_data);
329 if (data != NULL)
330 xfree (data);
331 }
332
333 /* Return our inferior data for the given inferior (INF).
334
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
340
341 static struct ada_inferior_data *
342 get_ada_inferior_data (struct inferior *inf)
343 {
344 struct ada_inferior_data *data;
345
346 data = inferior_data (inf, ada_inferior_data);
347 if (data == NULL)
348 {
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
351 }
352
353 return data;
354 }
355
356 /* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
358
359 static void
360 ada_inferior_exit (struct inferior *inf)
361 {
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
364 }
365
366 /* Utilities */
367
368 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
369 all typedef layers have been peeled. Otherwise, return TYPE.
370
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
379
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
383
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
390
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
394
395 static struct type *
396 ada_typedef_target_type (struct type *type)
397 {
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
400 return type;
401 }
402
403 /* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
406
407 static const char *
408 ada_unqualified_name (const char *decoded_name)
409 {
410 const char *result = strrchr (decoded_name, '.');
411
412 if (result != NULL)
413 result++; /* Skip the dot... */
414 else
415 result = decoded_name;
416
417 return result;
418 }
419
420 /* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
422
423 static char *
424 add_angle_brackets (const char *str)
425 {
426 static char *result = NULL;
427
428 xfree (result);
429 result = xstrprintf ("<%s>", str);
430 return result;
431 }
432
433 static char *
434 ada_get_gdb_completer_word_break_characters (void)
435 {
436 return ada_completer_word_break_characters;
437 }
438
439 /* Print an array element index using the Ada syntax. */
440
441 static void
442 ada_print_array_index (struct value *index_value, struct ui_file *stream,
443 const struct value_print_options *options)
444 {
445 LA_VALUE_PRINT (index_value, stream, options);
446 fprintf_filtered (stream, " => ");
447 }
448
449 /* Assuming VECT points to an array of *SIZE objects of size
450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
451 updating *SIZE as necessary and returning the (new) array. */
452
453 void *
454 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
455 {
456 if (*size < min_size)
457 {
458 *size *= 2;
459 if (*size < min_size)
460 *size = min_size;
461 vect = xrealloc (vect, *size * element_size);
462 }
463 return vect;
464 }
465
466 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
467 suffix of FIELD_NAME beginning "___". */
468
469 static int
470 field_name_match (const char *field_name, const char *target)
471 {
472 int len = strlen (target);
473
474 return
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
478 && strcmp (field_name + strlen (field_name) - 6,
479 "___XVN") != 0)));
480 }
481
482
483 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
490
491 int
492 ada_get_field_index (const struct type *type, const char *field_name,
493 int maybe_missing)
494 {
495 int fieldno;
496 struct type *struct_type = check_typedef ((struct type *) type);
497
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
500 return fieldno;
501
502 if (!maybe_missing)
503 error (_("Unable to find field %s in struct %s. Aborting"),
504 field_name, TYPE_NAME (struct_type));
505
506 return -1;
507 }
508
509 /* The length of the prefix of NAME prior to any "___" suffix. */
510
511 int
512 ada_name_prefix_len (const char *name)
513 {
514 if (name == NULL)
515 return 0;
516 else
517 {
518 const char *p = strstr (name, "___");
519
520 if (p == NULL)
521 return strlen (name);
522 else
523 return p - name;
524 }
525 }
526
527 /* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
529
530 static int
531 is_suffix (const char *str, const char *suffix)
532 {
533 int len1, len2;
534
535 if (str == NULL)
536 return 0;
537 len1 = strlen (str);
538 len2 = strlen (suffix);
539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
540 }
541
542 /* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
544
545 static struct value *
546 coerce_unspec_val_to_type (struct value *val, struct type *type)
547 {
548 type = ada_check_typedef (type);
549 if (value_type (val) == type)
550 return val;
551 else
552 {
553 struct value *result;
554
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
557 check_size (type);
558
559 result = allocate_value (type);
560 set_value_component_location (result, val);
561 set_value_bitsize (result, value_bitsize (val));
562 set_value_bitpos (result, value_bitpos (val));
563 set_value_address (result, value_address (val));
564 if (value_lazy (val)
565 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
566 set_value_lazy (result, 1);
567 else
568 memcpy (value_contents_raw (result), value_contents (val),
569 TYPE_LENGTH (type));
570 return result;
571 }
572 }
573
574 static const gdb_byte *
575 cond_offset_host (const gdb_byte *valaddr, long offset)
576 {
577 if (valaddr == NULL)
578 return NULL;
579 else
580 return valaddr + offset;
581 }
582
583 static CORE_ADDR
584 cond_offset_target (CORE_ADDR address, long offset)
585 {
586 if (address == 0)
587 return 0;
588 else
589 return address + offset;
590 }
591
592 /* Issue a warning (as for the definition of warning in utils.c, but
593 with exactly one argument rather than ...), unless the limit on the
594 number of warnings has passed during the evaluation of the current
595 expression. */
596
597 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
598 provided by "complaint". */
599 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
600
601 static void
602 lim_warning (const char *format, ...)
603 {
604 va_list args;
605
606 va_start (args, format);
607 warnings_issued += 1;
608 if (warnings_issued <= warning_limit)
609 vwarning (format, args);
610
611 va_end (args);
612 }
613
614 /* Issue an error if the size of an object of type T is unreasonable,
615 i.e. if it would be a bad idea to allocate a value of this type in
616 GDB. */
617
618 static void
619 check_size (const struct type *type)
620 {
621 if (TYPE_LENGTH (type) > varsize_limit)
622 error (_("object size is larger than varsize-limit"));
623 }
624
625 /* Maximum value of a SIZE-byte signed integer type. */
626 static LONGEST
627 max_of_size (int size)
628 {
629 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
630
631 return top_bit | (top_bit - 1);
632 }
633
634 /* Minimum value of a SIZE-byte signed integer type. */
635 static LONGEST
636 min_of_size (int size)
637 {
638 return -max_of_size (size) - 1;
639 }
640
641 /* Maximum value of a SIZE-byte unsigned integer type. */
642 static ULONGEST
643 umax_of_size (int size)
644 {
645 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Maximum value of integral type T, as a signed quantity. */
651 static LONGEST
652 max_of_type (struct type *t)
653 {
654 if (TYPE_UNSIGNED (t))
655 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
656 else
657 return max_of_size (TYPE_LENGTH (t));
658 }
659
660 /* Minimum value of integral type T, as a signed quantity. */
661 static LONGEST
662 min_of_type (struct type *t)
663 {
664 if (TYPE_UNSIGNED (t))
665 return 0;
666 else
667 return min_of_size (TYPE_LENGTH (t));
668 }
669
670 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
671 LONGEST
672 ada_discrete_type_high_bound (struct type *type)
673 {
674 switch (TYPE_CODE (type))
675 {
676 case TYPE_CODE_RANGE:
677 return TYPE_HIGH_BOUND (type);
678 case TYPE_CODE_ENUM:
679 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
680 case TYPE_CODE_BOOL:
681 return 1;
682 case TYPE_CODE_CHAR:
683 case TYPE_CODE_INT:
684 return max_of_type (type);
685 default:
686 error (_("Unexpected type in ada_discrete_type_high_bound."));
687 }
688 }
689
690 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
691 LONGEST
692 ada_discrete_type_low_bound (struct type *type)
693 {
694 switch (TYPE_CODE (type))
695 {
696 case TYPE_CODE_RANGE:
697 return TYPE_LOW_BOUND (type);
698 case TYPE_CODE_ENUM:
699 return TYPE_FIELD_BITPOS (type, 0);
700 case TYPE_CODE_BOOL:
701 return 0;
702 case TYPE_CODE_CHAR:
703 case TYPE_CODE_INT:
704 return min_of_type (type);
705 default:
706 error (_("Unexpected type in ada_discrete_type_low_bound."));
707 }
708 }
709
710 /* The identity on non-range types. For range types, the underlying
711 non-range scalar type. */
712
713 static struct type *
714 base_type (struct type *type)
715 {
716 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
717 {
718 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
719 return type;
720 type = TYPE_TARGET_TYPE (type);
721 }
722 return type;
723 }
724 \f
725
726 /* Language Selection */
727
728 /* If the main program is in Ada, return language_ada, otherwise return LANG
729 (the main program is in Ada iif the adainit symbol is found). */
730
731 enum language
732 ada_update_initial_language (enum language lang)
733 {
734 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
735 (struct objfile *) NULL) != NULL)
736 return language_ada;
737
738 return lang;
739 }
740
741 /* If the main procedure is written in Ada, then return its name.
742 The result is good until the next call. Return NULL if the main
743 procedure doesn't appear to be in Ada. */
744
745 char *
746 ada_main_name (void)
747 {
748 struct minimal_symbol *msym;
749 static char *main_program_name = NULL;
750
751 /* For Ada, the name of the main procedure is stored in a specific
752 string constant, generated by the binder. Look for that symbol,
753 extract its address, and then read that string. If we didn't find
754 that string, then most probably the main procedure is not written
755 in Ada. */
756 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
757
758 if (msym != NULL)
759 {
760 CORE_ADDR main_program_name_addr;
761 int err_code;
762
763 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
764 if (main_program_name_addr == 0)
765 error (_("Invalid address for Ada main program name."));
766
767 xfree (main_program_name);
768 target_read_string (main_program_name_addr, &main_program_name,
769 1024, &err_code);
770
771 if (err_code != 0)
772 return NULL;
773 return main_program_name;
774 }
775
776 /* The main procedure doesn't seem to be in Ada. */
777 return NULL;
778 }
779 \f
780 /* Symbols */
781
782 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
783 of NULLs. */
784
785 const struct ada_opname_map ada_opname_table[] = {
786 {"Oadd", "\"+\"", BINOP_ADD},
787 {"Osubtract", "\"-\"", BINOP_SUB},
788 {"Omultiply", "\"*\"", BINOP_MUL},
789 {"Odivide", "\"/\"", BINOP_DIV},
790 {"Omod", "\"mod\"", BINOP_MOD},
791 {"Orem", "\"rem\"", BINOP_REM},
792 {"Oexpon", "\"**\"", BINOP_EXP},
793 {"Olt", "\"<\"", BINOP_LESS},
794 {"Ole", "\"<=\"", BINOP_LEQ},
795 {"Ogt", "\">\"", BINOP_GTR},
796 {"Oge", "\">=\"", BINOP_GEQ},
797 {"Oeq", "\"=\"", BINOP_EQUAL},
798 {"One", "\"/=\"", BINOP_NOTEQUAL},
799 {"Oand", "\"and\"", BINOP_BITWISE_AND},
800 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
801 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
802 {"Oconcat", "\"&\"", BINOP_CONCAT},
803 {"Oabs", "\"abs\"", UNOP_ABS},
804 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
805 {"Oadd", "\"+\"", UNOP_PLUS},
806 {"Osubtract", "\"-\"", UNOP_NEG},
807 {NULL, NULL}
808 };
809
810 /* The "encoded" form of DECODED, according to GNAT conventions.
811 The result is valid until the next call to ada_encode. */
812
813 char *
814 ada_encode (const char *decoded)
815 {
816 static char *encoding_buffer = NULL;
817 static size_t encoding_buffer_size = 0;
818 const char *p;
819 int k;
820
821 if (decoded == NULL)
822 return NULL;
823
824 GROW_VECT (encoding_buffer, encoding_buffer_size,
825 2 * strlen (decoded) + 10);
826
827 k = 0;
828 for (p = decoded; *p != '\0'; p += 1)
829 {
830 if (*p == '.')
831 {
832 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
833 k += 2;
834 }
835 else if (*p == '"')
836 {
837 const struct ada_opname_map *mapping;
838
839 for (mapping = ada_opname_table;
840 mapping->encoded != NULL
841 && strncmp (mapping->decoded, p,
842 strlen (mapping->decoded)) != 0; mapping += 1)
843 ;
844 if (mapping->encoded == NULL)
845 error (_("invalid Ada operator name: %s"), p);
846 strcpy (encoding_buffer + k, mapping->encoded);
847 k += strlen (mapping->encoded);
848 break;
849 }
850 else
851 {
852 encoding_buffer[k] = *p;
853 k += 1;
854 }
855 }
856
857 encoding_buffer[k] = '\0';
858 return encoding_buffer;
859 }
860
861 /* Return NAME folded to lower case, or, if surrounded by single
862 quotes, unfolded, but with the quotes stripped away. Result good
863 to next call. */
864
865 char *
866 ada_fold_name (const char *name)
867 {
868 static char *fold_buffer = NULL;
869 static size_t fold_buffer_size = 0;
870
871 int len = strlen (name);
872 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
873
874 if (name[0] == '\'')
875 {
876 strncpy (fold_buffer, name + 1, len - 2);
877 fold_buffer[len - 2] = '\000';
878 }
879 else
880 {
881 int i;
882
883 for (i = 0; i <= len; i += 1)
884 fold_buffer[i] = tolower (name[i]);
885 }
886
887 return fold_buffer;
888 }
889
890 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
891
892 static int
893 is_lower_alphanum (const char c)
894 {
895 return (isdigit (c) || (isalpha (c) && islower (c)));
896 }
897
898 /* Remove either of these suffixes:
899 . .{DIGIT}+
900 . ${DIGIT}+
901 . ___{DIGIT}+
902 . __{DIGIT}+.
903 These are suffixes introduced by the compiler for entities such as
904 nested subprogram for instance, in order to avoid name clashes.
905 They do not serve any purpose for the debugger. */
906
907 static void
908 ada_remove_trailing_digits (const char *encoded, int *len)
909 {
910 if (*len > 1 && isdigit (encoded[*len - 1]))
911 {
912 int i = *len - 2;
913
914 while (i > 0 && isdigit (encoded[i]))
915 i--;
916 if (i >= 0 && encoded[i] == '.')
917 *len = i;
918 else if (i >= 0 && encoded[i] == '$')
919 *len = i;
920 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
921 *len = i - 2;
922 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
923 *len = i - 1;
924 }
925 }
926
927 /* Remove the suffix introduced by the compiler for protected object
928 subprograms. */
929
930 static void
931 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
932 {
933 /* Remove trailing N. */
934
935 /* Protected entry subprograms are broken into two
936 separate subprograms: The first one is unprotected, and has
937 a 'N' suffix; the second is the protected version, and has
938 the 'P' suffix. The second calls the first one after handling
939 the protection. Since the P subprograms are internally generated,
940 we leave these names undecoded, giving the user a clue that this
941 entity is internal. */
942
943 if (*len > 1
944 && encoded[*len - 1] == 'N'
945 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
946 *len = *len - 1;
947 }
948
949 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
950
951 static void
952 ada_remove_Xbn_suffix (const char *encoded, int *len)
953 {
954 int i = *len - 1;
955
956 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
957 i--;
958
959 if (encoded[i] != 'X')
960 return;
961
962 if (i == 0)
963 return;
964
965 if (isalnum (encoded[i-1]))
966 *len = i;
967 }
968
969 /* If ENCODED follows the GNAT entity encoding conventions, then return
970 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
971 replaced by ENCODED.
972
973 The resulting string is valid until the next call of ada_decode.
974 If the string is unchanged by decoding, the original string pointer
975 is returned. */
976
977 const char *
978 ada_decode (const char *encoded)
979 {
980 int i, j;
981 int len0;
982 const char *p;
983 char *decoded;
984 int at_start_name;
985 static char *decoding_buffer = NULL;
986 static size_t decoding_buffer_size = 0;
987
988 /* The name of the Ada main procedure starts with "_ada_".
989 This prefix is not part of the decoded name, so skip this part
990 if we see this prefix. */
991 if (strncmp (encoded, "_ada_", 5) == 0)
992 encoded += 5;
993
994 /* If the name starts with '_', then it is not a properly encoded
995 name, so do not attempt to decode it. Similarly, if the name
996 starts with '<', the name should not be decoded. */
997 if (encoded[0] == '_' || encoded[0] == '<')
998 goto Suppress;
999
1000 len0 = strlen (encoded);
1001
1002 ada_remove_trailing_digits (encoded, &len0);
1003 ada_remove_po_subprogram_suffix (encoded, &len0);
1004
1005 /* Remove the ___X.* suffix if present. Do not forget to verify that
1006 the suffix is located before the current "end" of ENCODED. We want
1007 to avoid re-matching parts of ENCODED that have previously been
1008 marked as discarded (by decrementing LEN0). */
1009 p = strstr (encoded, "___");
1010 if (p != NULL && p - encoded < len0 - 3)
1011 {
1012 if (p[3] == 'X')
1013 len0 = p - encoded;
1014 else
1015 goto Suppress;
1016 }
1017
1018 /* Remove any trailing TKB suffix. It tells us that this symbol
1019 is for the body of a task, but that information does not actually
1020 appear in the decoded name. */
1021
1022 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1023 len0 -= 3;
1024
1025 /* Remove any trailing TB suffix. The TB suffix is slightly different
1026 from the TKB suffix because it is used for non-anonymous task
1027 bodies. */
1028
1029 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1030 len0 -= 2;
1031
1032 /* Remove trailing "B" suffixes. */
1033 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1034
1035 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1036 len0 -= 1;
1037
1038 /* Make decoded big enough for possible expansion by operator name. */
1039
1040 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1041 decoded = decoding_buffer;
1042
1043 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1044
1045 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1046 {
1047 i = len0 - 2;
1048 while ((i >= 0 && isdigit (encoded[i]))
1049 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1050 i -= 1;
1051 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1052 len0 = i - 1;
1053 else if (encoded[i] == '$')
1054 len0 = i;
1055 }
1056
1057 /* The first few characters that are not alphabetic are not part
1058 of any encoding we use, so we can copy them over verbatim. */
1059
1060 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1061 decoded[j] = encoded[i];
1062
1063 at_start_name = 1;
1064 while (i < len0)
1065 {
1066 /* Is this a symbol function? */
1067 if (at_start_name && encoded[i] == 'O')
1068 {
1069 int k;
1070
1071 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1072 {
1073 int op_len = strlen (ada_opname_table[k].encoded);
1074 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1075 op_len - 1) == 0)
1076 && !isalnum (encoded[i + op_len]))
1077 {
1078 strcpy (decoded + j, ada_opname_table[k].decoded);
1079 at_start_name = 0;
1080 i += op_len;
1081 j += strlen (ada_opname_table[k].decoded);
1082 break;
1083 }
1084 }
1085 if (ada_opname_table[k].encoded != NULL)
1086 continue;
1087 }
1088 at_start_name = 0;
1089
1090 /* Replace "TK__" with "__", which will eventually be translated
1091 into "." (just below). */
1092
1093 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1094 i += 2;
1095
1096 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1097 be translated into "." (just below). These are internal names
1098 generated for anonymous blocks inside which our symbol is nested. */
1099
1100 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1101 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1102 && isdigit (encoded [i+4]))
1103 {
1104 int k = i + 5;
1105
1106 while (k < len0 && isdigit (encoded[k]))
1107 k++; /* Skip any extra digit. */
1108
1109 /* Double-check that the "__B_{DIGITS}+" sequence we found
1110 is indeed followed by "__". */
1111 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1112 i = k;
1113 }
1114
1115 /* Remove _E{DIGITS}+[sb] */
1116
1117 /* Just as for protected object subprograms, there are 2 categories
1118 of subprograms created by the compiler for each entry. The first
1119 one implements the actual entry code, and has a suffix following
1120 the convention above; the second one implements the barrier and
1121 uses the same convention as above, except that the 'E' is replaced
1122 by a 'B'.
1123
1124 Just as above, we do not decode the name of barrier functions
1125 to give the user a clue that the code he is debugging has been
1126 internally generated. */
1127
1128 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1129 && isdigit (encoded[i+2]))
1130 {
1131 int k = i + 3;
1132
1133 while (k < len0 && isdigit (encoded[k]))
1134 k++;
1135
1136 if (k < len0
1137 && (encoded[k] == 'b' || encoded[k] == 's'))
1138 {
1139 k++;
1140 /* Just as an extra precaution, make sure that if this
1141 suffix is followed by anything else, it is a '_'.
1142 Otherwise, we matched this sequence by accident. */
1143 if (k == len0
1144 || (k < len0 && encoded[k] == '_'))
1145 i = k;
1146 }
1147 }
1148
1149 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1150 the GNAT front-end in protected object subprograms. */
1151
1152 if (i < len0 + 3
1153 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1154 {
1155 /* Backtrack a bit up until we reach either the begining of
1156 the encoded name, or "__". Make sure that we only find
1157 digits or lowercase characters. */
1158 const char *ptr = encoded + i - 1;
1159
1160 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1161 ptr--;
1162 if (ptr < encoded
1163 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1164 i++;
1165 }
1166
1167 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1168 {
1169 /* This is a X[bn]* sequence not separated from the previous
1170 part of the name with a non-alpha-numeric character (in other
1171 words, immediately following an alpha-numeric character), then
1172 verify that it is placed at the end of the encoded name. If
1173 not, then the encoding is not valid and we should abort the
1174 decoding. Otherwise, just skip it, it is used in body-nested
1175 package names. */
1176 do
1177 i += 1;
1178 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1179 if (i < len0)
1180 goto Suppress;
1181 }
1182 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1183 {
1184 /* Replace '__' by '.'. */
1185 decoded[j] = '.';
1186 at_start_name = 1;
1187 i += 2;
1188 j += 1;
1189 }
1190 else
1191 {
1192 /* It's a character part of the decoded name, so just copy it
1193 over. */
1194 decoded[j] = encoded[i];
1195 i += 1;
1196 j += 1;
1197 }
1198 }
1199 decoded[j] = '\000';
1200
1201 /* Decoded names should never contain any uppercase character.
1202 Double-check this, and abort the decoding if we find one. */
1203
1204 for (i = 0; decoded[i] != '\0'; i += 1)
1205 if (isupper (decoded[i]) || decoded[i] == ' ')
1206 goto Suppress;
1207
1208 if (strcmp (decoded, encoded) == 0)
1209 return encoded;
1210 else
1211 return decoded;
1212
1213 Suppress:
1214 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1215 decoded = decoding_buffer;
1216 if (encoded[0] == '<')
1217 strcpy (decoded, encoded);
1218 else
1219 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1220 return decoded;
1221
1222 }
1223
1224 /* Table for keeping permanent unique copies of decoded names. Once
1225 allocated, names in this table are never released. While this is a
1226 storage leak, it should not be significant unless there are massive
1227 changes in the set of decoded names in successive versions of a
1228 symbol table loaded during a single session. */
1229 static struct htab *decoded_names_store;
1230
1231 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1232 in the language-specific part of GSYMBOL, if it has not been
1233 previously computed. Tries to save the decoded name in the same
1234 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1235 in any case, the decoded symbol has a lifetime at least that of
1236 GSYMBOL).
1237 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1238 const, but nevertheless modified to a semantically equivalent form
1239 when a decoded name is cached in it. */
1240
1241 char *
1242 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1243 {
1244 char **resultp =
1245 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1246
1247 if (*resultp == NULL)
1248 {
1249 const char *decoded = ada_decode (gsymbol->name);
1250
1251 if (gsymbol->obj_section != NULL)
1252 {
1253 struct objfile *objf = gsymbol->obj_section->objfile;
1254
1255 *resultp = obsavestring (decoded, strlen (decoded),
1256 &objf->objfile_obstack);
1257 }
1258 /* Sometimes, we can't find a corresponding objfile, in which
1259 case, we put the result on the heap. Since we only decode
1260 when needed, we hope this usually does not cause a
1261 significant memory leak (FIXME). */
1262 if (*resultp == NULL)
1263 {
1264 char **slot = (char **) htab_find_slot (decoded_names_store,
1265 decoded, INSERT);
1266
1267 if (*slot == NULL)
1268 *slot = xstrdup (decoded);
1269 *resultp = *slot;
1270 }
1271 }
1272
1273 return *resultp;
1274 }
1275
1276 static char *
1277 ada_la_decode (const char *encoded, int options)
1278 {
1279 return xstrdup (ada_decode (encoded));
1280 }
1281
1282 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1283 suffixes that encode debugging information or leading _ada_ on
1284 SYM_NAME (see is_name_suffix commentary for the debugging
1285 information that is ignored). If WILD, then NAME need only match a
1286 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1287 either argument is NULL. */
1288
1289 static int
1290 match_name (const char *sym_name, const char *name, int wild)
1291 {
1292 if (sym_name == NULL || name == NULL)
1293 return 0;
1294 else if (wild)
1295 return wild_match (sym_name, name) == 0;
1296 else
1297 {
1298 int len_name = strlen (name);
1299
1300 return (strncmp (sym_name, name, len_name) == 0
1301 && is_name_suffix (sym_name + len_name))
1302 || (strncmp (sym_name, "_ada_", 5) == 0
1303 && strncmp (sym_name + 5, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name + 5));
1305 }
1306 }
1307 \f
1308
1309 /* Arrays */
1310
1311 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1312 generated by the GNAT compiler to describe the index type used
1313 for each dimension of an array, check whether it follows the latest
1314 known encoding. If not, fix it up to conform to the latest encoding.
1315 Otherwise, do nothing. This function also does nothing if
1316 INDEX_DESC_TYPE is NULL.
1317
1318 The GNAT encoding used to describle the array index type evolved a bit.
1319 Initially, the information would be provided through the name of each
1320 field of the structure type only, while the type of these fields was
1321 described as unspecified and irrelevant. The debugger was then expected
1322 to perform a global type lookup using the name of that field in order
1323 to get access to the full index type description. Because these global
1324 lookups can be very expensive, the encoding was later enhanced to make
1325 the global lookup unnecessary by defining the field type as being
1326 the full index type description.
1327
1328 The purpose of this routine is to allow us to support older versions
1329 of the compiler by detecting the use of the older encoding, and by
1330 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1331 we essentially replace each field's meaningless type by the associated
1332 index subtype). */
1333
1334 void
1335 ada_fixup_array_indexes_type (struct type *index_desc_type)
1336 {
1337 int i;
1338
1339 if (index_desc_type == NULL)
1340 return;
1341 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1342
1343 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1344 to check one field only, no need to check them all). If not, return
1345 now.
1346
1347 If our INDEX_DESC_TYPE was generated using the older encoding,
1348 the field type should be a meaningless integer type whose name
1349 is not equal to the field name. */
1350 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1351 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1352 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1353 return;
1354
1355 /* Fixup each field of INDEX_DESC_TYPE. */
1356 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1357 {
1358 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1359 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1360
1361 if (raw_type)
1362 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1363 }
1364 }
1365
1366 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1367
1368 static char *bound_name[] = {
1369 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1370 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1371 };
1372
1373 /* Maximum number of array dimensions we are prepared to handle. */
1374
1375 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1376
1377
1378 /* The desc_* routines return primitive portions of array descriptors
1379 (fat pointers). */
1380
1381 /* The descriptor or array type, if any, indicated by TYPE; removes
1382 level of indirection, if needed. */
1383
1384 static struct type *
1385 desc_base_type (struct type *type)
1386 {
1387 if (type == NULL)
1388 return NULL;
1389 type = ada_check_typedef (type);
1390 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1391 type = ada_typedef_target_type (type);
1392
1393 if (type != NULL
1394 && (TYPE_CODE (type) == TYPE_CODE_PTR
1395 || TYPE_CODE (type) == TYPE_CODE_REF))
1396 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1397 else
1398 return type;
1399 }
1400
1401 /* True iff TYPE indicates a "thin" array pointer type. */
1402
1403 static int
1404 is_thin_pntr (struct type *type)
1405 {
1406 return
1407 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1408 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1409 }
1410
1411 /* The descriptor type for thin pointer type TYPE. */
1412
1413 static struct type *
1414 thin_descriptor_type (struct type *type)
1415 {
1416 struct type *base_type = desc_base_type (type);
1417
1418 if (base_type == NULL)
1419 return NULL;
1420 if (is_suffix (ada_type_name (base_type), "___XVE"))
1421 return base_type;
1422 else
1423 {
1424 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1425
1426 if (alt_type == NULL)
1427 return base_type;
1428 else
1429 return alt_type;
1430 }
1431 }
1432
1433 /* A pointer to the array data for thin-pointer value VAL. */
1434
1435 static struct value *
1436 thin_data_pntr (struct value *val)
1437 {
1438 struct type *type = value_type (val);
1439 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1440
1441 data_type = lookup_pointer_type (data_type);
1442
1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1444 return value_cast (data_type, value_copy (val));
1445 else
1446 return value_from_longest (data_type, value_address (val));
1447 }
1448
1449 /* True iff TYPE indicates a "thick" array pointer type. */
1450
1451 static int
1452 is_thick_pntr (struct type *type)
1453 {
1454 type = desc_base_type (type);
1455 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1456 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1457 }
1458
1459 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1460 pointer to one, the type of its bounds data; otherwise, NULL. */
1461
1462 static struct type *
1463 desc_bounds_type (struct type *type)
1464 {
1465 struct type *r;
1466
1467 type = desc_base_type (type);
1468
1469 if (type == NULL)
1470 return NULL;
1471 else if (is_thin_pntr (type))
1472 {
1473 type = thin_descriptor_type (type);
1474 if (type == NULL)
1475 return NULL;
1476 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1477 if (r != NULL)
1478 return ada_check_typedef (r);
1479 }
1480 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1481 {
1482 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1483 if (r != NULL)
1484 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1485 }
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1490 one, a pointer to its bounds data. Otherwise NULL. */
1491
1492 static struct value *
1493 desc_bounds (struct value *arr)
1494 {
1495 struct type *type = ada_check_typedef (value_type (arr));
1496
1497 if (is_thin_pntr (type))
1498 {
1499 struct type *bounds_type =
1500 desc_bounds_type (thin_descriptor_type (type));
1501 LONGEST addr;
1502
1503 if (bounds_type == NULL)
1504 error (_("Bad GNAT array descriptor"));
1505
1506 /* NOTE: The following calculation is not really kosher, but
1507 since desc_type is an XVE-encoded type (and shouldn't be),
1508 the correct calculation is a real pain. FIXME (and fix GCC). */
1509 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1510 addr = value_as_long (arr);
1511 else
1512 addr = value_address (arr);
1513
1514 return
1515 value_from_longest (lookup_pointer_type (bounds_type),
1516 addr - TYPE_LENGTH (bounds_type));
1517 }
1518
1519 else if (is_thick_pntr (type))
1520 {
1521 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1522 _("Bad GNAT array descriptor"));
1523 struct type *p_bounds_type = value_type (p_bounds);
1524
1525 if (p_bounds_type
1526 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1527 {
1528 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1529
1530 if (TYPE_STUB (target_type))
1531 p_bounds = value_cast (lookup_pointer_type
1532 (ada_check_typedef (target_type)),
1533 p_bounds);
1534 }
1535 else
1536 error (_("Bad GNAT array descriptor"));
1537
1538 return p_bounds;
1539 }
1540 else
1541 return NULL;
1542 }
1543
1544 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1545 position of the field containing the address of the bounds data. */
1546
1547 static int
1548 fat_pntr_bounds_bitpos (struct type *type)
1549 {
1550 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1551 }
1552
1553 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1554 size of the field containing the address of the bounds data. */
1555
1556 static int
1557 fat_pntr_bounds_bitsize (struct type *type)
1558 {
1559 type = desc_base_type (type);
1560
1561 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1562 return TYPE_FIELD_BITSIZE (type, 1);
1563 else
1564 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1565 }
1566
1567 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1568 pointer to one, the type of its array data (a array-with-no-bounds type);
1569 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1570 data. */
1571
1572 static struct type *
1573 desc_data_target_type (struct type *type)
1574 {
1575 type = desc_base_type (type);
1576
1577 /* NOTE: The following is bogus; see comment in desc_bounds. */
1578 if (is_thin_pntr (type))
1579 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1580 else if (is_thick_pntr (type))
1581 {
1582 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1583
1584 if (data_type
1585 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1586 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1587 }
1588
1589 return NULL;
1590 }
1591
1592 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1593 its array data. */
1594
1595 static struct value *
1596 desc_data (struct value *arr)
1597 {
1598 struct type *type = value_type (arr);
1599
1600 if (is_thin_pntr (type))
1601 return thin_data_pntr (arr);
1602 else if (is_thick_pntr (type))
1603 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1604 _("Bad GNAT array descriptor"));
1605 else
1606 return NULL;
1607 }
1608
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 position of the field containing the address of the data. */
1612
1613 static int
1614 fat_pntr_data_bitpos (struct type *type)
1615 {
1616 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1617 }
1618
1619 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1620 size of the field containing the address of the data. */
1621
1622 static int
1623 fat_pntr_data_bitsize (struct type *type)
1624 {
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 0);
1629 else
1630 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1631 }
1632
1633 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1634 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1635 bound, if WHICH is 1. The first bound is I=1. */
1636
1637 static struct value *
1638 desc_one_bound (struct value *bounds, int i, int which)
1639 {
1640 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1641 _("Bad GNAT array descriptor bounds"));
1642 }
1643
1644 /* If BOUNDS is an array-bounds structure type, return the bit position
1645 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1646 bound, if WHICH is 1. The first bound is I=1. */
1647
1648 static int
1649 desc_bound_bitpos (struct type *type, int i, int which)
1650 {
1651 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1652 }
1653
1654 /* If BOUNDS is an array-bounds structure type, return the bit field size
1655 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1656 bound, if WHICH is 1. The first bound is I=1. */
1657
1658 static int
1659 desc_bound_bitsize (struct type *type, int i, int which)
1660 {
1661 type = desc_base_type (type);
1662
1663 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1664 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1665 else
1666 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1667 }
1668
1669 /* If TYPE is the type of an array-bounds structure, the type of its
1670 Ith bound (numbering from 1). Otherwise, NULL. */
1671
1672 static struct type *
1673 desc_index_type (struct type *type, int i)
1674 {
1675 type = desc_base_type (type);
1676
1677 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1678 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1679 else
1680 return NULL;
1681 }
1682
1683 /* The number of index positions in the array-bounds type TYPE.
1684 Return 0 if TYPE is NULL. */
1685
1686 static int
1687 desc_arity (struct type *type)
1688 {
1689 type = desc_base_type (type);
1690
1691 if (type != NULL)
1692 return TYPE_NFIELDS (type) / 2;
1693 return 0;
1694 }
1695
1696 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1697 an array descriptor type (representing an unconstrained array
1698 type). */
1699
1700 static int
1701 ada_is_direct_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1707 || ada_is_array_descriptor_type (type));
1708 }
1709
1710 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1711 * to one. */
1712
1713 static int
1714 ada_is_array_type (struct type *type)
1715 {
1716 while (type != NULL
1717 && (TYPE_CODE (type) == TYPE_CODE_PTR
1718 || TYPE_CODE (type) == TYPE_CODE_REF))
1719 type = TYPE_TARGET_TYPE (type);
1720 return ada_is_direct_array_type (type);
1721 }
1722
1723 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1724
1725 int
1726 ada_is_simple_array_type (struct type *type)
1727 {
1728 if (type == NULL)
1729 return 0;
1730 type = ada_check_typedef (type);
1731 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1732 || (TYPE_CODE (type) == TYPE_CODE_PTR
1733 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1734 }
1735
1736 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1737
1738 int
1739 ada_is_array_descriptor_type (struct type *type)
1740 {
1741 struct type *data_type = desc_data_target_type (type);
1742
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (data_type != NULL
1747 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1748 && desc_arity (desc_bounds_type (type)) > 0);
1749 }
1750
1751 /* Non-zero iff type is a partially mal-formed GNAT array
1752 descriptor. FIXME: This is to compensate for some problems with
1753 debugging output from GNAT. Re-examine periodically to see if it
1754 is still needed. */
1755
1756 int
1757 ada_is_bogus_array_descriptor (struct type *type)
1758 {
1759 return
1760 type != NULL
1761 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1762 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1763 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1764 && !ada_is_array_descriptor_type (type);
1765 }
1766
1767
1768 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1769 (fat pointer) returns the type of the array data described---specifically,
1770 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1771 in from the descriptor; otherwise, they are left unspecified. If
1772 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1773 returns NULL. The result is simply the type of ARR if ARR is not
1774 a descriptor. */
1775 struct type *
1776 ada_type_of_array (struct value *arr, int bounds)
1777 {
1778 if (ada_is_constrained_packed_array_type (value_type (arr)))
1779 return decode_constrained_packed_array_type (value_type (arr));
1780
1781 if (!ada_is_array_descriptor_type (value_type (arr)))
1782 return value_type (arr);
1783
1784 if (!bounds)
1785 {
1786 struct type *array_type =
1787 ada_check_typedef (desc_data_target_type (value_type (arr)));
1788
1789 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1790 TYPE_FIELD_BITSIZE (array_type, 0) =
1791 decode_packed_array_bitsize (value_type (arr));
1792
1793 return array_type;
1794 }
1795 else
1796 {
1797 struct type *elt_type;
1798 int arity;
1799 struct value *descriptor;
1800
1801 elt_type = ada_array_element_type (value_type (arr), -1);
1802 arity = ada_array_arity (value_type (arr));
1803
1804 if (elt_type == NULL || arity == 0)
1805 return ada_check_typedef (value_type (arr));
1806
1807 descriptor = desc_bounds (arr);
1808 if (value_as_long (descriptor) == 0)
1809 return NULL;
1810 while (arity > 0)
1811 {
1812 struct type *range_type = alloc_type_copy (value_type (arr));
1813 struct type *array_type = alloc_type_copy (value_type (arr));
1814 struct value *low = desc_one_bound (descriptor, arity, 0);
1815 struct value *high = desc_one_bound (descriptor, arity, 1);
1816
1817 arity -= 1;
1818 create_range_type (range_type, value_type (low),
1819 longest_to_int (value_as_long (low)),
1820 longest_to_int (value_as_long (high)));
1821 elt_type = create_array_type (array_type, elt_type, range_type);
1822
1823 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1824 TYPE_FIELD_BITSIZE (elt_type, 0) =
1825 decode_packed_array_bitsize (value_type (arr));
1826 }
1827
1828 return lookup_pointer_type (elt_type);
1829 }
1830 }
1831
1832 /* If ARR does not represent an array, returns ARR unchanged.
1833 Otherwise, returns either a standard GDB array with bounds set
1834 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1835 GDB array. Returns NULL if ARR is a null fat pointer. */
1836
1837 struct value *
1838 ada_coerce_to_simple_array_ptr (struct value *arr)
1839 {
1840 if (ada_is_array_descriptor_type (value_type (arr)))
1841 {
1842 struct type *arrType = ada_type_of_array (arr, 1);
1843
1844 if (arrType == NULL)
1845 return NULL;
1846 return value_cast (arrType, value_copy (desc_data (arr)));
1847 }
1848 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array (arr);
1850 else
1851 return arr;
1852 }
1853
1854 /* If ARR does not represent an array, returns ARR unchanged.
1855 Otherwise, returns a standard GDB array describing ARR (which may
1856 be ARR itself if it already is in the proper form). */
1857
1858 struct value *
1859 ada_coerce_to_simple_array (struct value *arr)
1860 {
1861 if (ada_is_array_descriptor_type (value_type (arr)))
1862 {
1863 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1864
1865 if (arrVal == NULL)
1866 error (_("Bounds unavailable for null array pointer."));
1867 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1868 return value_ind (arrVal);
1869 }
1870 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1871 return decode_constrained_packed_array (arr);
1872 else
1873 return arr;
1874 }
1875
1876 /* If TYPE represents a GNAT array type, return it translated to an
1877 ordinary GDB array type (possibly with BITSIZE fields indicating
1878 packing). For other types, is the identity. */
1879
1880 struct type *
1881 ada_coerce_to_simple_array_type (struct type *type)
1882 {
1883 if (ada_is_constrained_packed_array_type (type))
1884 return decode_constrained_packed_array_type (type);
1885
1886 if (ada_is_array_descriptor_type (type))
1887 return ada_check_typedef (desc_data_target_type (type));
1888
1889 return type;
1890 }
1891
1892 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1893
1894 static int
1895 ada_is_packed_array_type (struct type *type)
1896 {
1897 if (type == NULL)
1898 return 0;
1899 type = desc_base_type (type);
1900 type = ada_check_typedef (type);
1901 return
1902 ada_type_name (type) != NULL
1903 && strstr (ada_type_name (type), "___XP") != NULL;
1904 }
1905
1906 /* Non-zero iff TYPE represents a standard GNAT constrained
1907 packed-array type. */
1908
1909 int
1910 ada_is_constrained_packed_array_type (struct type *type)
1911 {
1912 return ada_is_packed_array_type (type)
1913 && !ada_is_array_descriptor_type (type);
1914 }
1915
1916 /* Non-zero iff TYPE represents an array descriptor for a
1917 unconstrained packed-array type. */
1918
1919 static int
1920 ada_is_unconstrained_packed_array_type (struct type *type)
1921 {
1922 return ada_is_packed_array_type (type)
1923 && ada_is_array_descriptor_type (type);
1924 }
1925
1926 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1927 return the size of its elements in bits. */
1928
1929 static long
1930 decode_packed_array_bitsize (struct type *type)
1931 {
1932 char *raw_name;
1933 char *tail;
1934 long bits;
1935
1936 /* Access to arrays implemented as fat pointers are encoded as a typedef
1937 of the fat pointer type. We need the name of the fat pointer type
1938 to do the decoding, so strip the typedef layer. */
1939 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1940 type = ada_typedef_target_type (type);
1941
1942 raw_name = ada_type_name (ada_check_typedef (type));
1943 if (!raw_name)
1944 raw_name = ada_type_name (desc_base_type (type));
1945
1946 if (!raw_name)
1947 return 0;
1948
1949 tail = strstr (raw_name, "___XP");
1950 gdb_assert (tail != NULL);
1951
1952 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1953 {
1954 lim_warning
1955 (_("could not understand bit size information on packed array"));
1956 return 0;
1957 }
1958
1959 return bits;
1960 }
1961
1962 /* Given that TYPE is a standard GDB array type with all bounds filled
1963 in, and that the element size of its ultimate scalar constituents
1964 (that is, either its elements, or, if it is an array of arrays, its
1965 elements' elements, etc.) is *ELT_BITS, return an identical type,
1966 but with the bit sizes of its elements (and those of any
1967 constituent arrays) recorded in the BITSIZE components of its
1968 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1969 in bits. */
1970
1971 static struct type *
1972 constrained_packed_array_type (struct type *type, long *elt_bits)
1973 {
1974 struct type *new_elt_type;
1975 struct type *new_type;
1976 LONGEST low_bound, high_bound;
1977
1978 type = ada_check_typedef (type);
1979 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1980 return type;
1981
1982 new_type = alloc_type_copy (type);
1983 new_elt_type =
1984 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1985 elt_bits);
1986 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1987 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1988 TYPE_NAME (new_type) = ada_type_name (type);
1989
1990 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1991 &low_bound, &high_bound) < 0)
1992 low_bound = high_bound = 0;
1993 if (high_bound < low_bound)
1994 *elt_bits = TYPE_LENGTH (new_type) = 0;
1995 else
1996 {
1997 *elt_bits *= (high_bound - low_bound + 1);
1998 TYPE_LENGTH (new_type) =
1999 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2000 }
2001
2002 TYPE_FIXED_INSTANCE (new_type) = 1;
2003 return new_type;
2004 }
2005
2006 /* The array type encoded by TYPE, where
2007 ada_is_constrained_packed_array_type (TYPE). */
2008
2009 static struct type *
2010 decode_constrained_packed_array_type (struct type *type)
2011 {
2012 char *raw_name = ada_type_name (ada_check_typedef (type));
2013 char *name;
2014 char *tail;
2015 struct type *shadow_type;
2016 long bits;
2017
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return NULL;
2023
2024 name = (char *) alloca (strlen (raw_name) + 1);
2025 tail = strstr (raw_name, "___XP");
2026 type = desc_base_type (type);
2027
2028 memcpy (name, raw_name, tail - raw_name);
2029 name[tail - raw_name] = '\000';
2030
2031 shadow_type = ada_find_parallel_type_with_name (type, name);
2032
2033 if (shadow_type == NULL)
2034 {
2035 lim_warning (_("could not find bounds information on packed array"));
2036 return NULL;
2037 }
2038 CHECK_TYPEDEF (shadow_type);
2039
2040 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2041 {
2042 lim_warning (_("could not understand bounds "
2043 "information on packed array"));
2044 return NULL;
2045 }
2046
2047 bits = decode_packed_array_bitsize (type);
2048 return constrained_packed_array_type (shadow_type, &bits);
2049 }
2050
2051 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2052 array, returns a simple array that denotes that array. Its type is a
2053 standard GDB array type except that the BITSIZEs of the array
2054 target types are set to the number of bits in each element, and the
2055 type length is set appropriately. */
2056
2057 static struct value *
2058 decode_constrained_packed_array (struct value *arr)
2059 {
2060 struct type *type;
2061
2062 arr = ada_coerce_ref (arr);
2063
2064 /* If our value is a pointer, then dererence it. Make sure that
2065 this operation does not cause the target type to be fixed, as
2066 this would indirectly cause this array to be decoded. The rest
2067 of the routine assumes that the array hasn't been decoded yet,
2068 so we use the basic "value_ind" routine to perform the dereferencing,
2069 as opposed to using "ada_value_ind". */
2070 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2071 arr = value_ind (arr);
2072
2073 type = decode_constrained_packed_array_type (value_type (arr));
2074 if (type == NULL)
2075 {
2076 error (_("can't unpack array"));
2077 return NULL;
2078 }
2079
2080 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2081 && ada_is_modular_type (value_type (arr)))
2082 {
2083 /* This is a (right-justified) modular type representing a packed
2084 array with no wrapper. In order to interpret the value through
2085 the (left-justified) packed array type we just built, we must
2086 first left-justify it. */
2087 int bit_size, bit_pos;
2088 ULONGEST mod;
2089
2090 mod = ada_modulus (value_type (arr)) - 1;
2091 bit_size = 0;
2092 while (mod > 0)
2093 {
2094 bit_size += 1;
2095 mod >>= 1;
2096 }
2097 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2098 arr = ada_value_primitive_packed_val (arr, NULL,
2099 bit_pos / HOST_CHAR_BIT,
2100 bit_pos % HOST_CHAR_BIT,
2101 bit_size,
2102 type);
2103 }
2104
2105 return coerce_unspec_val_to_type (arr, type);
2106 }
2107
2108
2109 /* The value of the element of packed array ARR at the ARITY indices
2110 given in IND. ARR must be a simple array. */
2111
2112 static struct value *
2113 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2114 {
2115 int i;
2116 int bits, elt_off, bit_off;
2117 long elt_total_bit_offset;
2118 struct type *elt_type;
2119 struct value *v;
2120
2121 bits = 0;
2122 elt_total_bit_offset = 0;
2123 elt_type = ada_check_typedef (value_type (arr));
2124 for (i = 0; i < arity; i += 1)
2125 {
2126 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2127 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2128 error
2129 (_("attempt to do packed indexing of "
2130 "something other than a packed array"));
2131 else
2132 {
2133 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2134 LONGEST lowerbound, upperbound;
2135 LONGEST idx;
2136
2137 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2138 {
2139 lim_warning (_("don't know bounds of array"));
2140 lowerbound = upperbound = 0;
2141 }
2142
2143 idx = pos_atr (ind[i]);
2144 if (idx < lowerbound || idx > upperbound)
2145 lim_warning (_("packed array index %ld out of bounds"),
2146 (long) idx);
2147 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2148 elt_total_bit_offset += (idx - lowerbound) * bits;
2149 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2150 }
2151 }
2152 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2153 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2154
2155 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2156 bits, elt_type);
2157 return v;
2158 }
2159
2160 /* Non-zero iff TYPE includes negative integer values. */
2161
2162 static int
2163 has_negatives (struct type *type)
2164 {
2165 switch (TYPE_CODE (type))
2166 {
2167 default:
2168 return 0;
2169 case TYPE_CODE_INT:
2170 return !TYPE_UNSIGNED (type);
2171 case TYPE_CODE_RANGE:
2172 return TYPE_LOW_BOUND (type) < 0;
2173 }
2174 }
2175
2176
2177 /* Create a new value of type TYPE from the contents of OBJ starting
2178 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2179 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2180 assigning through the result will set the field fetched from.
2181 VALADDR is ignored unless OBJ is NULL, in which case,
2182 VALADDR+OFFSET must address the start of storage containing the
2183 packed value. The value returned in this case is never an lval.
2184 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2185
2186 struct value *
2187 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2188 long offset, int bit_offset, int bit_size,
2189 struct type *type)
2190 {
2191 struct value *v;
2192 int src, /* Index into the source area */
2193 targ, /* Index into the target area */
2194 srcBitsLeft, /* Number of source bits left to move */
2195 nsrc, ntarg, /* Number of source and target bytes */
2196 unusedLS, /* Number of bits in next significant
2197 byte of source that are unused */
2198 accumSize; /* Number of meaningful bits in accum */
2199 unsigned char *bytes; /* First byte containing data to unpack */
2200 unsigned char *unpacked;
2201 unsigned long accum; /* Staging area for bits being transferred */
2202 unsigned char sign;
2203 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2204 /* Transmit bytes from least to most significant; delta is the direction
2205 the indices move. */
2206 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2207
2208 type = ada_check_typedef (type);
2209
2210 if (obj == NULL)
2211 {
2212 v = allocate_value (type);
2213 bytes = (unsigned char *) (valaddr + offset);
2214 }
2215 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2216 {
2217 v = value_at (type,
2218 value_address (obj) + offset);
2219 bytes = (unsigned char *) alloca (len);
2220 read_memory (value_address (v), bytes, len);
2221 }
2222 else
2223 {
2224 v = allocate_value (type);
2225 bytes = (unsigned char *) value_contents (obj) + offset;
2226 }
2227
2228 if (obj != NULL)
2229 {
2230 CORE_ADDR new_addr;
2231
2232 set_value_component_location (v, obj);
2233 new_addr = value_address (obj) + offset;
2234 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2235 set_value_bitsize (v, bit_size);
2236 if (value_bitpos (v) >= HOST_CHAR_BIT)
2237 {
2238 ++new_addr;
2239 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2240 }
2241 set_value_address (v, new_addr);
2242 }
2243 else
2244 set_value_bitsize (v, bit_size);
2245 unpacked = (unsigned char *) value_contents (v);
2246
2247 srcBitsLeft = bit_size;
2248 nsrc = len;
2249 ntarg = TYPE_LENGTH (type);
2250 sign = 0;
2251 if (bit_size == 0)
2252 {
2253 memset (unpacked, 0, TYPE_LENGTH (type));
2254 return v;
2255 }
2256 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2257 {
2258 src = len - 1;
2259 if (has_negatives (type)
2260 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2261 sign = ~0;
2262
2263 unusedLS =
2264 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2265 % HOST_CHAR_BIT;
2266
2267 switch (TYPE_CODE (type))
2268 {
2269 case TYPE_CODE_ARRAY:
2270 case TYPE_CODE_UNION:
2271 case TYPE_CODE_STRUCT:
2272 /* Non-scalar values must be aligned at a byte boundary... */
2273 accumSize =
2274 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2275 /* ... And are placed at the beginning (most-significant) bytes
2276 of the target. */
2277 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2278 ntarg = targ + 1;
2279 break;
2280 default:
2281 accumSize = 0;
2282 targ = TYPE_LENGTH (type) - 1;
2283 break;
2284 }
2285 }
2286 else
2287 {
2288 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2289
2290 src = targ = 0;
2291 unusedLS = bit_offset;
2292 accumSize = 0;
2293
2294 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2295 sign = ~0;
2296 }
2297
2298 accum = 0;
2299 while (nsrc > 0)
2300 {
2301 /* Mask for removing bits of the next source byte that are not
2302 part of the value. */
2303 unsigned int unusedMSMask =
2304 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2305 1;
2306 /* Sign-extend bits for this byte. */
2307 unsigned int signMask = sign & ~unusedMSMask;
2308
2309 accum |=
2310 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2311 accumSize += HOST_CHAR_BIT - unusedLS;
2312 if (accumSize >= HOST_CHAR_BIT)
2313 {
2314 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2315 accumSize -= HOST_CHAR_BIT;
2316 accum >>= HOST_CHAR_BIT;
2317 ntarg -= 1;
2318 targ += delta;
2319 }
2320 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2321 unusedLS = 0;
2322 nsrc -= 1;
2323 src += delta;
2324 }
2325 while (ntarg > 0)
2326 {
2327 accum |= sign << accumSize;
2328 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2329 accumSize -= HOST_CHAR_BIT;
2330 accum >>= HOST_CHAR_BIT;
2331 ntarg -= 1;
2332 targ += delta;
2333 }
2334
2335 return v;
2336 }
2337
2338 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2339 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2340 not overlap. */
2341 static void
2342 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2343 int src_offset, int n, int bits_big_endian_p)
2344 {
2345 unsigned int accum, mask;
2346 int accum_bits, chunk_size;
2347
2348 target += targ_offset / HOST_CHAR_BIT;
2349 targ_offset %= HOST_CHAR_BIT;
2350 source += src_offset / HOST_CHAR_BIT;
2351 src_offset %= HOST_CHAR_BIT;
2352 if (bits_big_endian_p)
2353 {
2354 accum = (unsigned char) *source;
2355 source += 1;
2356 accum_bits = HOST_CHAR_BIT - src_offset;
2357
2358 while (n > 0)
2359 {
2360 int unused_right;
2361
2362 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2363 accum_bits += HOST_CHAR_BIT;
2364 source += 1;
2365 chunk_size = HOST_CHAR_BIT - targ_offset;
2366 if (chunk_size > n)
2367 chunk_size = n;
2368 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2369 mask = ((1 << chunk_size) - 1) << unused_right;
2370 *target =
2371 (*target & ~mask)
2372 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2373 n -= chunk_size;
2374 accum_bits -= chunk_size;
2375 target += 1;
2376 targ_offset = 0;
2377 }
2378 }
2379 else
2380 {
2381 accum = (unsigned char) *source >> src_offset;
2382 source += 1;
2383 accum_bits = HOST_CHAR_BIT - src_offset;
2384
2385 while (n > 0)
2386 {
2387 accum = accum + ((unsigned char) *source << accum_bits);
2388 accum_bits += HOST_CHAR_BIT;
2389 source += 1;
2390 chunk_size = HOST_CHAR_BIT - targ_offset;
2391 if (chunk_size > n)
2392 chunk_size = n;
2393 mask = ((1 << chunk_size) - 1) << targ_offset;
2394 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2395 n -= chunk_size;
2396 accum_bits -= chunk_size;
2397 accum >>= chunk_size;
2398 target += 1;
2399 targ_offset = 0;
2400 }
2401 }
2402 }
2403
2404 /* Store the contents of FROMVAL into the location of TOVAL.
2405 Return a new value with the location of TOVAL and contents of
2406 FROMVAL. Handles assignment into packed fields that have
2407 floating-point or non-scalar types. */
2408
2409 static struct value *
2410 ada_value_assign (struct value *toval, struct value *fromval)
2411 {
2412 struct type *type = value_type (toval);
2413 int bits = value_bitsize (toval);
2414
2415 toval = ada_coerce_ref (toval);
2416 fromval = ada_coerce_ref (fromval);
2417
2418 if (ada_is_direct_array_type (value_type (toval)))
2419 toval = ada_coerce_to_simple_array (toval);
2420 if (ada_is_direct_array_type (value_type (fromval)))
2421 fromval = ada_coerce_to_simple_array (fromval);
2422
2423 if (!deprecated_value_modifiable (toval))
2424 error (_("Left operand of assignment is not a modifiable lvalue."));
2425
2426 if (VALUE_LVAL (toval) == lval_memory
2427 && bits > 0
2428 && (TYPE_CODE (type) == TYPE_CODE_FLT
2429 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2430 {
2431 int len = (value_bitpos (toval)
2432 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2433 int from_size;
2434 char *buffer = (char *) alloca (len);
2435 struct value *val;
2436 CORE_ADDR to_addr = value_address (toval);
2437
2438 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2439 fromval = value_cast (type, fromval);
2440
2441 read_memory (to_addr, buffer, len);
2442 from_size = value_bitsize (fromval);
2443 if (from_size == 0)
2444 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2445 if (gdbarch_bits_big_endian (get_type_arch (type)))
2446 move_bits (buffer, value_bitpos (toval),
2447 value_contents (fromval), from_size - bits, bits, 1);
2448 else
2449 move_bits (buffer, value_bitpos (toval),
2450 value_contents (fromval), 0, bits, 0);
2451 write_memory (to_addr, buffer, len);
2452 observer_notify_memory_changed (to_addr, len, buffer);
2453
2454 val = value_copy (toval);
2455 memcpy (value_contents_raw (val), value_contents (fromval),
2456 TYPE_LENGTH (type));
2457 deprecated_set_value_type (val, type);
2458
2459 return val;
2460 }
2461
2462 return value_assign (toval, fromval);
2463 }
2464
2465
2466 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2467 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2468 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2469 * COMPONENT, and not the inferior's memory. The current contents
2470 * of COMPONENT are ignored. */
2471 static void
2472 value_assign_to_component (struct value *container, struct value *component,
2473 struct value *val)
2474 {
2475 LONGEST offset_in_container =
2476 (LONGEST) (value_address (component) - value_address (container));
2477 int bit_offset_in_container =
2478 value_bitpos (component) - value_bitpos (container);
2479 int bits;
2480
2481 val = value_cast (value_type (component), val);
2482
2483 if (value_bitsize (component) == 0)
2484 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2485 else
2486 bits = value_bitsize (component);
2487
2488 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2489 move_bits (value_contents_writeable (container) + offset_in_container,
2490 value_bitpos (container) + bit_offset_in_container,
2491 value_contents (val),
2492 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2493 bits, 1);
2494 else
2495 move_bits (value_contents_writeable (container) + offset_in_container,
2496 value_bitpos (container) + bit_offset_in_container,
2497 value_contents (val), 0, bits, 0);
2498 }
2499
2500 /* The value of the element of array ARR at the ARITY indices given in IND.
2501 ARR may be either a simple array, GNAT array descriptor, or pointer
2502 thereto. */
2503
2504 struct value *
2505 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2506 {
2507 int k;
2508 struct value *elt;
2509 struct type *elt_type;
2510
2511 elt = ada_coerce_to_simple_array (arr);
2512
2513 elt_type = ada_check_typedef (value_type (elt));
2514 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2515 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2516 return value_subscript_packed (elt, arity, ind);
2517
2518 for (k = 0; k < arity; k += 1)
2519 {
2520 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2521 error (_("too many subscripts (%d expected)"), k);
2522 elt = value_subscript (elt, pos_atr (ind[k]));
2523 }
2524 return elt;
2525 }
2526
2527 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2528 value of the element of *ARR at the ARITY indices given in
2529 IND. Does not read the entire array into memory. */
2530
2531 static struct value *
2532 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2533 struct value **ind)
2534 {
2535 int k;
2536
2537 for (k = 0; k < arity; k += 1)
2538 {
2539 LONGEST lwb, upb;
2540
2541 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2542 error (_("too many subscripts (%d expected)"), k);
2543 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2544 value_copy (arr));
2545 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2546 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2547 type = TYPE_TARGET_TYPE (type);
2548 }
2549
2550 return value_ind (arr);
2551 }
2552
2553 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2554 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2555 elements starting at index LOW. The lower bound of this array is LOW, as
2556 per Ada rules. */
2557 static struct value *
2558 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2559 int low, int high)
2560 {
2561 CORE_ADDR base = value_as_address (array_ptr)
2562 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2563 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2564 struct type *index_type =
2565 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2566 low, high);
2567 struct type *slice_type =
2568 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2569
2570 return value_at_lazy (slice_type, base);
2571 }
2572
2573
2574 static struct value *
2575 ada_value_slice (struct value *array, int low, int high)
2576 {
2577 struct type *type = value_type (array);
2578 struct type *index_type =
2579 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2580 struct type *slice_type =
2581 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2582
2583 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2584 }
2585
2586 /* If type is a record type in the form of a standard GNAT array
2587 descriptor, returns the number of dimensions for type. If arr is a
2588 simple array, returns the number of "array of"s that prefix its
2589 type designation. Otherwise, returns 0. */
2590
2591 int
2592 ada_array_arity (struct type *type)
2593 {
2594 int arity;
2595
2596 if (type == NULL)
2597 return 0;
2598
2599 type = desc_base_type (type);
2600
2601 arity = 0;
2602 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2603 return desc_arity (desc_bounds_type (type));
2604 else
2605 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 {
2607 arity += 1;
2608 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2609 }
2610
2611 return arity;
2612 }
2613
2614 /* If TYPE is a record type in the form of a standard GNAT array
2615 descriptor or a simple array type, returns the element type for
2616 TYPE after indexing by NINDICES indices, or by all indices if
2617 NINDICES is -1. Otherwise, returns NULL. */
2618
2619 struct type *
2620 ada_array_element_type (struct type *type, int nindices)
2621 {
2622 type = desc_base_type (type);
2623
2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2625 {
2626 int k;
2627 struct type *p_array_type;
2628
2629 p_array_type = desc_data_target_type (type);
2630
2631 k = ada_array_arity (type);
2632 if (k == 0)
2633 return NULL;
2634
2635 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2636 if (nindices >= 0 && k > nindices)
2637 k = nindices;
2638 while (k > 0 && p_array_type != NULL)
2639 {
2640 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2641 k -= 1;
2642 }
2643 return p_array_type;
2644 }
2645 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2646 {
2647 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2648 {
2649 type = TYPE_TARGET_TYPE (type);
2650 nindices -= 1;
2651 }
2652 return type;
2653 }
2654
2655 return NULL;
2656 }
2657
2658 /* The type of nth index in arrays of given type (n numbering from 1).
2659 Does not examine memory. Throws an error if N is invalid or TYPE
2660 is not an array type. NAME is the name of the Ada attribute being
2661 evaluated ('range, 'first, 'last, or 'length); it is used in building
2662 the error message. */
2663
2664 static struct type *
2665 ada_index_type (struct type *type, int n, const char *name)
2666 {
2667 struct type *result_type;
2668
2669 type = desc_base_type (type);
2670
2671 if (n < 0 || n > ada_array_arity (type))
2672 error (_("invalid dimension number to '%s"), name);
2673
2674 if (ada_is_simple_array_type (type))
2675 {
2676 int i;
2677
2678 for (i = 1; i < n; i += 1)
2679 type = TYPE_TARGET_TYPE (type);
2680 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2681 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2682 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2683 perhaps stabsread.c would make more sense. */
2684 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2685 result_type = NULL;
2686 }
2687 else
2688 {
2689 result_type = desc_index_type (desc_bounds_type (type), n);
2690 if (result_type == NULL)
2691 error (_("attempt to take bound of something that is not an array"));
2692 }
2693
2694 return result_type;
2695 }
2696
2697 /* Given that arr is an array type, returns the lower bound of the
2698 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2699 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2700 array-descriptor type. It works for other arrays with bounds supplied
2701 by run-time quantities other than discriminants. */
2702
2703 static LONGEST
2704 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2705 {
2706 struct type *type, *elt_type, *index_type_desc, *index_type;
2707 int i;
2708
2709 gdb_assert (which == 0 || which == 1);
2710
2711 if (ada_is_constrained_packed_array_type (arr_type))
2712 arr_type = decode_constrained_packed_array_type (arr_type);
2713
2714 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2715 return (LONGEST) - which;
2716
2717 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2718 type = TYPE_TARGET_TYPE (arr_type);
2719 else
2720 type = arr_type;
2721
2722 elt_type = type;
2723 for (i = n; i > 1; i--)
2724 elt_type = TYPE_TARGET_TYPE (type);
2725
2726 index_type_desc = ada_find_parallel_type (type, "___XA");
2727 ada_fixup_array_indexes_type (index_type_desc);
2728 if (index_type_desc != NULL)
2729 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2730 NULL);
2731 else
2732 index_type = TYPE_INDEX_TYPE (elt_type);
2733
2734 return
2735 (LONGEST) (which == 0
2736 ? ada_discrete_type_low_bound (index_type)
2737 : ada_discrete_type_high_bound (index_type));
2738 }
2739
2740 /* Given that arr is an array value, returns the lower bound of the
2741 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2742 WHICH is 1. This routine will also work for arrays with bounds
2743 supplied by run-time quantities other than discriminants. */
2744
2745 static LONGEST
2746 ada_array_bound (struct value *arr, int n, int which)
2747 {
2748 struct type *arr_type = value_type (arr);
2749
2750 if (ada_is_constrained_packed_array_type (arr_type))
2751 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2752 else if (ada_is_simple_array_type (arr_type))
2753 return ada_array_bound_from_type (arr_type, n, which);
2754 else
2755 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2756 }
2757
2758 /* Given that arr is an array value, returns the length of the
2759 nth index. This routine will also work for arrays with bounds
2760 supplied by run-time quantities other than discriminants.
2761 Does not work for arrays indexed by enumeration types with representation
2762 clauses at the moment. */
2763
2764 static LONGEST
2765 ada_array_length (struct value *arr, int n)
2766 {
2767 struct type *arr_type = ada_check_typedef (value_type (arr));
2768
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_length (decode_constrained_packed_array (arr), n);
2771
2772 if (ada_is_simple_array_type (arr_type))
2773 return (ada_array_bound_from_type (arr_type, n, 1)
2774 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2775 else
2776 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2777 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2778 }
2779
2780 /* An empty array whose type is that of ARR_TYPE (an array type),
2781 with bounds LOW to LOW-1. */
2782
2783 static struct value *
2784 empty_array (struct type *arr_type, int low)
2785 {
2786 struct type *index_type =
2787 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2788 low, low - 1);
2789 struct type *elt_type = ada_array_element_type (arr_type, 1);
2790
2791 return allocate_value (create_array_type (NULL, elt_type, index_type));
2792 }
2793 \f
2794
2795 /* Name resolution */
2796
2797 /* The "decoded" name for the user-definable Ada operator corresponding
2798 to OP. */
2799
2800 static const char *
2801 ada_decoded_op_name (enum exp_opcode op)
2802 {
2803 int i;
2804
2805 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2806 {
2807 if (ada_opname_table[i].op == op)
2808 return ada_opname_table[i].decoded;
2809 }
2810 error (_("Could not find operator name for opcode"));
2811 }
2812
2813
2814 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2815 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2816 undefined namespace) and converts operators that are
2817 user-defined into appropriate function calls. If CONTEXT_TYPE is
2818 non-null, it provides a preferred result type [at the moment, only
2819 type void has any effect---causing procedures to be preferred over
2820 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2821 return type is preferred. May change (expand) *EXP. */
2822
2823 static void
2824 resolve (struct expression **expp, int void_context_p)
2825 {
2826 struct type *context_type = NULL;
2827 int pc = 0;
2828
2829 if (void_context_p)
2830 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2831
2832 resolve_subexp (expp, &pc, 1, context_type);
2833 }
2834
2835 /* Resolve the operator of the subexpression beginning at
2836 position *POS of *EXPP. "Resolving" consists of replacing
2837 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2838 with their resolutions, replacing built-in operators with
2839 function calls to user-defined operators, where appropriate, and,
2840 when DEPROCEDURE_P is non-zero, converting function-valued variables
2841 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2842 are as in ada_resolve, above. */
2843
2844 static struct value *
2845 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2846 struct type *context_type)
2847 {
2848 int pc = *pos;
2849 int i;
2850 struct expression *exp; /* Convenience: == *expp. */
2851 enum exp_opcode op = (*expp)->elts[pc].opcode;
2852 struct value **argvec; /* Vector of operand types (alloca'ed). */
2853 int nargs; /* Number of operands. */
2854 int oplen;
2855
2856 argvec = NULL;
2857 nargs = 0;
2858 exp = *expp;
2859
2860 /* Pass one: resolve operands, saving their types and updating *pos,
2861 if needed. */
2862 switch (op)
2863 {
2864 case OP_FUNCALL:
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 *pos += 7;
2868 else
2869 {
2870 *pos += 3;
2871 resolve_subexp (expp, pos, 0, NULL);
2872 }
2873 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2874 break;
2875
2876 case UNOP_ADDR:
2877 *pos += 1;
2878 resolve_subexp (expp, pos, 0, NULL);
2879 break;
2880
2881 case UNOP_QUAL:
2882 *pos += 3;
2883 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2884 break;
2885
2886 case OP_ATR_MODULUS:
2887 case OP_ATR_SIZE:
2888 case OP_ATR_TAG:
2889 case OP_ATR_FIRST:
2890 case OP_ATR_LAST:
2891 case OP_ATR_LENGTH:
2892 case OP_ATR_POS:
2893 case OP_ATR_VAL:
2894 case OP_ATR_MIN:
2895 case OP_ATR_MAX:
2896 case TERNOP_IN_RANGE:
2897 case BINOP_IN_BOUNDS:
2898 case UNOP_IN_RANGE:
2899 case OP_AGGREGATE:
2900 case OP_OTHERS:
2901 case OP_CHOICES:
2902 case OP_POSITIONAL:
2903 case OP_DISCRETE_RANGE:
2904 case OP_NAME:
2905 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2906 *pos += oplen;
2907 break;
2908
2909 case BINOP_ASSIGN:
2910 {
2911 struct value *arg1;
2912
2913 *pos += 1;
2914 arg1 = resolve_subexp (expp, pos, 0, NULL);
2915 if (arg1 == NULL)
2916 resolve_subexp (expp, pos, 1, NULL);
2917 else
2918 resolve_subexp (expp, pos, 1, value_type (arg1));
2919 break;
2920 }
2921
2922 case UNOP_CAST:
2923 *pos += 3;
2924 nargs = 1;
2925 break;
2926
2927 case BINOP_ADD:
2928 case BINOP_SUB:
2929 case BINOP_MUL:
2930 case BINOP_DIV:
2931 case BINOP_REM:
2932 case BINOP_MOD:
2933 case BINOP_EXP:
2934 case BINOP_CONCAT:
2935 case BINOP_LOGICAL_AND:
2936 case BINOP_LOGICAL_OR:
2937 case BINOP_BITWISE_AND:
2938 case BINOP_BITWISE_IOR:
2939 case BINOP_BITWISE_XOR:
2940
2941 case BINOP_EQUAL:
2942 case BINOP_NOTEQUAL:
2943 case BINOP_LESS:
2944 case BINOP_GTR:
2945 case BINOP_LEQ:
2946 case BINOP_GEQ:
2947
2948 case BINOP_REPEAT:
2949 case BINOP_SUBSCRIPT:
2950 case BINOP_COMMA:
2951 *pos += 1;
2952 nargs = 2;
2953 break;
2954
2955 case UNOP_NEG:
2956 case UNOP_PLUS:
2957 case UNOP_LOGICAL_NOT:
2958 case UNOP_ABS:
2959 case UNOP_IND:
2960 *pos += 1;
2961 nargs = 1;
2962 break;
2963
2964 case OP_LONG:
2965 case OP_DOUBLE:
2966 case OP_VAR_VALUE:
2967 *pos += 4;
2968 break;
2969
2970 case OP_TYPE:
2971 case OP_BOOL:
2972 case OP_LAST:
2973 case OP_INTERNALVAR:
2974 *pos += 3;
2975 break;
2976
2977 case UNOP_MEMVAL:
2978 *pos += 3;
2979 nargs = 1;
2980 break;
2981
2982 case OP_REGISTER:
2983 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2984 break;
2985
2986 case STRUCTOP_STRUCT:
2987 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2988 nargs = 1;
2989 break;
2990
2991 case TERNOP_SLICE:
2992 *pos += 1;
2993 nargs = 3;
2994 break;
2995
2996 case OP_STRING:
2997 break;
2998
2999 default:
3000 error (_("Unexpected operator during name resolution"));
3001 }
3002
3003 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3004 for (i = 0; i < nargs; i += 1)
3005 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3006 argvec[i] = NULL;
3007 exp = *expp;
3008
3009 /* Pass two: perform any resolution on principal operator. */
3010 switch (op)
3011 {
3012 default:
3013 break;
3014
3015 case OP_VAR_VALUE:
3016 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3017 {
3018 struct ada_symbol_info *candidates;
3019 int n_candidates;
3020
3021 n_candidates =
3022 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3023 (exp->elts[pc + 2].symbol),
3024 exp->elts[pc + 1].block, VAR_DOMAIN,
3025 &candidates);
3026
3027 if (n_candidates > 1)
3028 {
3029 /* Types tend to get re-introduced locally, so if there
3030 are any local symbols that are not types, first filter
3031 out all types. */
3032 int j;
3033 for (j = 0; j < n_candidates; j += 1)
3034 switch (SYMBOL_CLASS (candidates[j].sym))
3035 {
3036 case LOC_REGISTER:
3037 case LOC_ARG:
3038 case LOC_REF_ARG:
3039 case LOC_REGPARM_ADDR:
3040 case LOC_LOCAL:
3041 case LOC_COMPUTED:
3042 goto FoundNonType;
3043 default:
3044 break;
3045 }
3046 FoundNonType:
3047 if (j < n_candidates)
3048 {
3049 j = 0;
3050 while (j < n_candidates)
3051 {
3052 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3053 {
3054 candidates[j] = candidates[n_candidates - 1];
3055 n_candidates -= 1;
3056 }
3057 else
3058 j += 1;
3059 }
3060 }
3061 }
3062
3063 if (n_candidates == 0)
3064 error (_("No definition found for %s"),
3065 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3066 else if (n_candidates == 1)
3067 i = 0;
3068 else if (deprocedure_p
3069 && !is_nonfunction (candidates, n_candidates))
3070 {
3071 i = ada_resolve_function
3072 (candidates, n_candidates, NULL, 0,
3073 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3074 context_type);
3075 if (i < 0)
3076 error (_("Could not find a match for %s"),
3077 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3078 }
3079 else
3080 {
3081 printf_filtered (_("Multiple matches for %s\n"),
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3083 user_select_syms (candidates, n_candidates, 1);
3084 i = 0;
3085 }
3086
3087 exp->elts[pc + 1].block = candidates[i].block;
3088 exp->elts[pc + 2].symbol = candidates[i].sym;
3089 if (innermost_block == NULL
3090 || contained_in (candidates[i].block, innermost_block))
3091 innermost_block = candidates[i].block;
3092 }
3093
3094 if (deprocedure_p
3095 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3096 == TYPE_CODE_FUNC))
3097 {
3098 replace_operator_with_call (expp, pc, 0, 0,
3099 exp->elts[pc + 2].symbol,
3100 exp->elts[pc + 1].block);
3101 exp = *expp;
3102 }
3103 break;
3104
3105 case OP_FUNCALL:
3106 {
3107 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3108 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3109 {
3110 struct ada_symbol_info *candidates;
3111 int n_candidates;
3112
3113 n_candidates =
3114 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3115 (exp->elts[pc + 5].symbol),
3116 exp->elts[pc + 4].block, VAR_DOMAIN,
3117 &candidates);
3118 if (n_candidates == 1)
3119 i = 0;
3120 else
3121 {
3122 i = ada_resolve_function
3123 (candidates, n_candidates,
3124 argvec, nargs,
3125 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3126 context_type);
3127 if (i < 0)
3128 error (_("Could not find a match for %s"),
3129 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3130 }
3131
3132 exp->elts[pc + 4].block = candidates[i].block;
3133 exp->elts[pc + 5].symbol = candidates[i].sym;
3134 if (innermost_block == NULL
3135 || contained_in (candidates[i].block, innermost_block))
3136 innermost_block = candidates[i].block;
3137 }
3138 }
3139 break;
3140 case BINOP_ADD:
3141 case BINOP_SUB:
3142 case BINOP_MUL:
3143 case BINOP_DIV:
3144 case BINOP_REM:
3145 case BINOP_MOD:
3146 case BINOP_CONCAT:
3147 case BINOP_BITWISE_AND:
3148 case BINOP_BITWISE_IOR:
3149 case BINOP_BITWISE_XOR:
3150 case BINOP_EQUAL:
3151 case BINOP_NOTEQUAL:
3152 case BINOP_LESS:
3153 case BINOP_GTR:
3154 case BINOP_LEQ:
3155 case BINOP_GEQ:
3156 case BINOP_EXP:
3157 case UNOP_NEG:
3158 case UNOP_PLUS:
3159 case UNOP_LOGICAL_NOT:
3160 case UNOP_ABS:
3161 if (possible_user_operator_p (op, argvec))
3162 {
3163 struct ada_symbol_info *candidates;
3164 int n_candidates;
3165
3166 n_candidates =
3167 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3168 (struct block *) NULL, VAR_DOMAIN,
3169 &candidates);
3170 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3171 ada_decoded_op_name (op), NULL);
3172 if (i < 0)
3173 break;
3174
3175 replace_operator_with_call (expp, pc, nargs, 1,
3176 candidates[i].sym, candidates[i].block);
3177 exp = *expp;
3178 }
3179 break;
3180
3181 case OP_TYPE:
3182 case OP_REGISTER:
3183 return NULL;
3184 }
3185
3186 *pos = pc;
3187 return evaluate_subexp_type (exp, pos);
3188 }
3189
3190 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3191 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3192 a non-pointer. */
3193 /* The term "match" here is rather loose. The match is heuristic and
3194 liberal. */
3195
3196 static int
3197 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3198 {
3199 ftype = ada_check_typedef (ftype);
3200 atype = ada_check_typedef (atype);
3201
3202 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3203 ftype = TYPE_TARGET_TYPE (ftype);
3204 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3205 atype = TYPE_TARGET_TYPE (atype);
3206
3207 switch (TYPE_CODE (ftype))
3208 {
3209 default:
3210 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3211 case TYPE_CODE_PTR:
3212 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3213 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3214 TYPE_TARGET_TYPE (atype), 0);
3215 else
3216 return (may_deref
3217 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3218 case TYPE_CODE_INT:
3219 case TYPE_CODE_ENUM:
3220 case TYPE_CODE_RANGE:
3221 switch (TYPE_CODE (atype))
3222 {
3223 case TYPE_CODE_INT:
3224 case TYPE_CODE_ENUM:
3225 case TYPE_CODE_RANGE:
3226 return 1;
3227 default:
3228 return 0;
3229 }
3230
3231 case TYPE_CODE_ARRAY:
3232 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3233 || ada_is_array_descriptor_type (atype));
3234
3235 case TYPE_CODE_STRUCT:
3236 if (ada_is_array_descriptor_type (ftype))
3237 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3238 || ada_is_array_descriptor_type (atype));
3239 else
3240 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3241 && !ada_is_array_descriptor_type (atype));
3242
3243 case TYPE_CODE_UNION:
3244 case TYPE_CODE_FLT:
3245 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3246 }
3247 }
3248
3249 /* Return non-zero if the formals of FUNC "sufficiently match" the
3250 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3251 may also be an enumeral, in which case it is treated as a 0-
3252 argument function. */
3253
3254 static int
3255 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3256 {
3257 int i;
3258 struct type *func_type = SYMBOL_TYPE (func);
3259
3260 if (SYMBOL_CLASS (func) == LOC_CONST
3261 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3262 return (n_actuals == 0);
3263 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3264 return 0;
3265
3266 if (TYPE_NFIELDS (func_type) != n_actuals)
3267 return 0;
3268
3269 for (i = 0; i < n_actuals; i += 1)
3270 {
3271 if (actuals[i] == NULL)
3272 return 0;
3273 else
3274 {
3275 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3276 i));
3277 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3278
3279 if (!ada_type_match (ftype, atype, 1))
3280 return 0;
3281 }
3282 }
3283 return 1;
3284 }
3285
3286 /* False iff function type FUNC_TYPE definitely does not produce a value
3287 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3288 FUNC_TYPE is not a valid function type with a non-null return type
3289 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3290
3291 static int
3292 return_match (struct type *func_type, struct type *context_type)
3293 {
3294 struct type *return_type;
3295
3296 if (func_type == NULL)
3297 return 1;
3298
3299 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3300 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3301 else
3302 return_type = base_type (func_type);
3303 if (return_type == NULL)
3304 return 1;
3305
3306 context_type = base_type (context_type);
3307
3308 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3309 return context_type == NULL || return_type == context_type;
3310 else if (context_type == NULL)
3311 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3312 else
3313 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3314 }
3315
3316
3317 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3318 function (if any) that matches the types of the NARGS arguments in
3319 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3320 that returns that type, then eliminate matches that don't. If
3321 CONTEXT_TYPE is void and there is at least one match that does not
3322 return void, eliminate all matches that do.
3323
3324 Asks the user if there is more than one match remaining. Returns -1
3325 if there is no such symbol or none is selected. NAME is used
3326 solely for messages. May re-arrange and modify SYMS in
3327 the process; the index returned is for the modified vector. */
3328
3329 static int
3330 ada_resolve_function (struct ada_symbol_info syms[],
3331 int nsyms, struct value **args, int nargs,
3332 const char *name, struct type *context_type)
3333 {
3334 int fallback;
3335 int k;
3336 int m; /* Number of hits */
3337
3338 m = 0;
3339 /* In the first pass of the loop, we only accept functions matching
3340 context_type. If none are found, we add a second pass of the loop
3341 where every function is accepted. */
3342 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3343 {
3344 for (k = 0; k < nsyms; k += 1)
3345 {
3346 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3347
3348 if (ada_args_match (syms[k].sym, args, nargs)
3349 && (fallback || return_match (type, context_type)))
3350 {
3351 syms[m] = syms[k];
3352 m += 1;
3353 }
3354 }
3355 }
3356
3357 if (m == 0)
3358 return -1;
3359 else if (m > 1)
3360 {
3361 printf_filtered (_("Multiple matches for %s\n"), name);
3362 user_select_syms (syms, m, 1);
3363 return 0;
3364 }
3365 return 0;
3366 }
3367
3368 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3369 in a listing of choices during disambiguation (see sort_choices, below).
3370 The idea is that overloadings of a subprogram name from the
3371 same package should sort in their source order. We settle for ordering
3372 such symbols by their trailing number (__N or $N). */
3373
3374 static int
3375 encoded_ordered_before (char *N0, char *N1)
3376 {
3377 if (N1 == NULL)
3378 return 0;
3379 else if (N0 == NULL)
3380 return 1;
3381 else
3382 {
3383 int k0, k1;
3384
3385 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3386 ;
3387 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3388 ;
3389 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3390 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3391 {
3392 int n0, n1;
3393
3394 n0 = k0;
3395 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3396 n0 -= 1;
3397 n1 = k1;
3398 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3399 n1 -= 1;
3400 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3401 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3402 }
3403 return (strcmp (N0, N1) < 0);
3404 }
3405 }
3406
3407 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3408 encoded names. */
3409
3410 static void
3411 sort_choices (struct ada_symbol_info syms[], int nsyms)
3412 {
3413 int i;
3414
3415 for (i = 1; i < nsyms; i += 1)
3416 {
3417 struct ada_symbol_info sym = syms[i];
3418 int j;
3419
3420 for (j = i - 1; j >= 0; j -= 1)
3421 {
3422 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3423 SYMBOL_LINKAGE_NAME (sym.sym)))
3424 break;
3425 syms[j + 1] = syms[j];
3426 }
3427 syms[j + 1] = sym;
3428 }
3429 }
3430
3431 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3432 by asking the user (if necessary), returning the number selected,
3433 and setting the first elements of SYMS items. Error if no symbols
3434 selected. */
3435
3436 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3437 to be re-integrated one of these days. */
3438
3439 int
3440 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3441 {
3442 int i;
3443 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3444 int n_chosen;
3445 int first_choice = (max_results == 1) ? 1 : 2;
3446 const char *select_mode = multiple_symbols_select_mode ();
3447
3448 if (max_results < 1)
3449 error (_("Request to select 0 symbols!"));
3450 if (nsyms <= 1)
3451 return nsyms;
3452
3453 if (select_mode == multiple_symbols_cancel)
3454 error (_("\
3455 canceled because the command is ambiguous\n\
3456 See set/show multiple-symbol."));
3457
3458 /* If select_mode is "all", then return all possible symbols.
3459 Only do that if more than one symbol can be selected, of course.
3460 Otherwise, display the menu as usual. */
3461 if (select_mode == multiple_symbols_all && max_results > 1)
3462 return nsyms;
3463
3464 printf_unfiltered (_("[0] cancel\n"));
3465 if (max_results > 1)
3466 printf_unfiltered (_("[1] all\n"));
3467
3468 sort_choices (syms, nsyms);
3469
3470 for (i = 0; i < nsyms; i += 1)
3471 {
3472 if (syms[i].sym == NULL)
3473 continue;
3474
3475 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3476 {
3477 struct symtab_and_line sal =
3478 find_function_start_sal (syms[i].sym, 1);
3479
3480 if (sal.symtab == NULL)
3481 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3482 i + first_choice,
3483 SYMBOL_PRINT_NAME (syms[i].sym),
3484 sal.line);
3485 else
3486 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3487 SYMBOL_PRINT_NAME (syms[i].sym),
3488 sal.symtab->filename, sal.line);
3489 continue;
3490 }
3491 else
3492 {
3493 int is_enumeral =
3494 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3495 && SYMBOL_TYPE (syms[i].sym) != NULL
3496 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3497 struct symtab *symtab = syms[i].sym->symtab;
3498
3499 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3500 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3501 i + first_choice,
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3503 symtab->filename, SYMBOL_LINE (syms[i].sym));
3504 else if (is_enumeral
3505 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3506 {
3507 printf_unfiltered (("[%d] "), i + first_choice);
3508 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3509 gdb_stdout, -1, 0);
3510 printf_unfiltered (_("'(%s) (enumeral)\n"),
3511 SYMBOL_PRINT_NAME (syms[i].sym));
3512 }
3513 else if (symtab != NULL)
3514 printf_unfiltered (is_enumeral
3515 ? _("[%d] %s in %s (enumeral)\n")
3516 : _("[%d] %s at %s:?\n"),
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 symtab->filename);
3520 else
3521 printf_unfiltered (is_enumeral
3522 ? _("[%d] %s (enumeral)\n")
3523 : _("[%d] %s at ?\n"),
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym));
3526 }
3527 }
3528
3529 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3530 "overload-choice");
3531
3532 for (i = 0; i < n_chosen; i += 1)
3533 syms[i] = syms[chosen[i]];
3534
3535 return n_chosen;
3536 }
3537
3538 /* Read and validate a set of numeric choices from the user in the
3539 range 0 .. N_CHOICES-1. Place the results in increasing
3540 order in CHOICES[0 .. N-1], and return N.
3541
3542 The user types choices as a sequence of numbers on one line
3543 separated by blanks, encoding them as follows:
3544
3545 + A choice of 0 means to cancel the selection, throwing an error.
3546 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3547 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3548
3549 The user is not allowed to choose more than MAX_RESULTS values.
3550
3551 ANNOTATION_SUFFIX, if present, is used to annotate the input
3552 prompts (for use with the -f switch). */
3553
3554 int
3555 get_selections (int *choices, int n_choices, int max_results,
3556 int is_all_choice, char *annotation_suffix)
3557 {
3558 char *args;
3559 char *prompt;
3560 int n_chosen;
3561 int first_choice = is_all_choice ? 2 : 1;
3562
3563 prompt = getenv ("PS2");
3564 if (prompt == NULL)
3565 prompt = "> ";
3566
3567 args = command_line_input (prompt, 0, annotation_suffix);
3568
3569 if (args == NULL)
3570 error_no_arg (_("one or more choice numbers"));
3571
3572 n_chosen = 0;
3573
3574 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3575 order, as given in args. Choices are validated. */
3576 while (1)
3577 {
3578 char *args2;
3579 int choice, j;
3580
3581 while (isspace (*args))
3582 args += 1;
3583 if (*args == '\0' && n_chosen == 0)
3584 error_no_arg (_("one or more choice numbers"));
3585 else if (*args == '\0')
3586 break;
3587
3588 choice = strtol (args, &args2, 10);
3589 if (args == args2 || choice < 0
3590 || choice > n_choices + first_choice - 1)
3591 error (_("Argument must be choice number"));
3592 args = args2;
3593
3594 if (choice == 0)
3595 error (_("cancelled"));
3596
3597 if (choice < first_choice)
3598 {
3599 n_chosen = n_choices;
3600 for (j = 0; j < n_choices; j += 1)
3601 choices[j] = j;
3602 break;
3603 }
3604 choice -= first_choice;
3605
3606 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3607 {
3608 }
3609
3610 if (j < 0 || choice != choices[j])
3611 {
3612 int k;
3613
3614 for (k = n_chosen - 1; k > j; k -= 1)
3615 choices[k + 1] = choices[k];
3616 choices[j + 1] = choice;
3617 n_chosen += 1;
3618 }
3619 }
3620
3621 if (n_chosen > max_results)
3622 error (_("Select no more than %d of the above"), max_results);
3623
3624 return n_chosen;
3625 }
3626
3627 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3628 on the function identified by SYM and BLOCK, and taking NARGS
3629 arguments. Update *EXPP as needed to hold more space. */
3630
3631 static void
3632 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3633 int oplen, struct symbol *sym,
3634 struct block *block)
3635 {
3636 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3637 symbol, -oplen for operator being replaced). */
3638 struct expression *newexp = (struct expression *)
3639 xmalloc (sizeof (struct expression)
3640 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3641 struct expression *exp = *expp;
3642
3643 newexp->nelts = exp->nelts + 7 - oplen;
3644 newexp->language_defn = exp->language_defn;
3645 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3646 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3647 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3648
3649 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3650 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3651
3652 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3653 newexp->elts[pc + 4].block = block;
3654 newexp->elts[pc + 5].symbol = sym;
3655
3656 *expp = newexp;
3657 xfree (exp);
3658 }
3659
3660 /* Type-class predicates */
3661
3662 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3663 or FLOAT). */
3664
3665 static int
3666 numeric_type_p (struct type *type)
3667 {
3668 if (type == NULL)
3669 return 0;
3670 else
3671 {
3672 switch (TYPE_CODE (type))
3673 {
3674 case TYPE_CODE_INT:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 case TYPE_CODE_RANGE:
3678 return (type == TYPE_TARGET_TYPE (type)
3679 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3680 default:
3681 return 0;
3682 }
3683 }
3684 }
3685
3686 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3687
3688 static int
3689 integer_type_p (struct type *type)
3690 {
3691 if (type == NULL)
3692 return 0;
3693 else
3694 {
3695 switch (TYPE_CODE (type))
3696 {
3697 case TYPE_CODE_INT:
3698 return 1;
3699 case TYPE_CODE_RANGE:
3700 return (type == TYPE_TARGET_TYPE (type)
3701 || integer_type_p (TYPE_TARGET_TYPE (type)));
3702 default:
3703 return 0;
3704 }
3705 }
3706 }
3707
3708 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3709
3710 static int
3711 scalar_type_p (struct type *type)
3712 {
3713 if (type == NULL)
3714 return 0;
3715 else
3716 {
3717 switch (TYPE_CODE (type))
3718 {
3719 case TYPE_CODE_INT:
3720 case TYPE_CODE_RANGE:
3721 case TYPE_CODE_ENUM:
3722 case TYPE_CODE_FLT:
3723 return 1;
3724 default:
3725 return 0;
3726 }
3727 }
3728 }
3729
3730 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3731
3732 static int
3733 discrete_type_p (struct type *type)
3734 {
3735 if (type == NULL)
3736 return 0;
3737 else
3738 {
3739 switch (TYPE_CODE (type))
3740 {
3741 case TYPE_CODE_INT:
3742 case TYPE_CODE_RANGE:
3743 case TYPE_CODE_ENUM:
3744 case TYPE_CODE_BOOL:
3745 return 1;
3746 default:
3747 return 0;
3748 }
3749 }
3750 }
3751
3752 /* Returns non-zero if OP with operands in the vector ARGS could be
3753 a user-defined function. Errs on the side of pre-defined operators
3754 (i.e., result 0). */
3755
3756 static int
3757 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3758 {
3759 struct type *type0 =
3760 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3761 struct type *type1 =
3762 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3763
3764 if (type0 == NULL)
3765 return 0;
3766
3767 switch (op)
3768 {
3769 default:
3770 return 0;
3771
3772 case BINOP_ADD:
3773 case BINOP_SUB:
3774 case BINOP_MUL:
3775 case BINOP_DIV:
3776 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3777
3778 case BINOP_REM:
3779 case BINOP_MOD:
3780 case BINOP_BITWISE_AND:
3781 case BINOP_BITWISE_IOR:
3782 case BINOP_BITWISE_XOR:
3783 return (!(integer_type_p (type0) && integer_type_p (type1)));
3784
3785 case BINOP_EQUAL:
3786 case BINOP_NOTEQUAL:
3787 case BINOP_LESS:
3788 case BINOP_GTR:
3789 case BINOP_LEQ:
3790 case BINOP_GEQ:
3791 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3792
3793 case BINOP_CONCAT:
3794 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3795
3796 case BINOP_EXP:
3797 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3798
3799 case UNOP_NEG:
3800 case UNOP_PLUS:
3801 case UNOP_LOGICAL_NOT:
3802 case UNOP_ABS:
3803 return (!numeric_type_p (type0));
3804
3805 }
3806 }
3807 \f
3808 /* Renaming */
3809
3810 /* NOTES:
3811
3812 1. In the following, we assume that a renaming type's name may
3813 have an ___XD suffix. It would be nice if this went away at some
3814 point.
3815 2. We handle both the (old) purely type-based representation of
3816 renamings and the (new) variable-based encoding. At some point,
3817 it is devoutly to be hoped that the former goes away
3818 (FIXME: hilfinger-2007-07-09).
3819 3. Subprogram renamings are not implemented, although the XRS
3820 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3821
3822 /* If SYM encodes a renaming,
3823
3824 <renaming> renames <renamed entity>,
3825
3826 sets *LEN to the length of the renamed entity's name,
3827 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3828 the string describing the subcomponent selected from the renamed
3829 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3830 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3831 are undefined). Otherwise, returns a value indicating the category
3832 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3833 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3834 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3835 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3836 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3837 may be NULL, in which case they are not assigned.
3838
3839 [Currently, however, GCC does not generate subprogram renamings.] */
3840
3841 enum ada_renaming_category
3842 ada_parse_renaming (struct symbol *sym,
3843 const char **renamed_entity, int *len,
3844 const char **renaming_expr)
3845 {
3846 enum ada_renaming_category kind;
3847 const char *info;
3848 const char *suffix;
3849
3850 if (sym == NULL)
3851 return ADA_NOT_RENAMING;
3852 switch (SYMBOL_CLASS (sym))
3853 {
3854 default:
3855 return ADA_NOT_RENAMING;
3856 case LOC_TYPEDEF:
3857 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3858 renamed_entity, len, renaming_expr);
3859 case LOC_LOCAL:
3860 case LOC_STATIC:
3861 case LOC_COMPUTED:
3862 case LOC_OPTIMIZED_OUT:
3863 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3864 if (info == NULL)
3865 return ADA_NOT_RENAMING;
3866 switch (info[5])
3867 {
3868 case '_':
3869 kind = ADA_OBJECT_RENAMING;
3870 info += 6;
3871 break;
3872 case 'E':
3873 kind = ADA_EXCEPTION_RENAMING;
3874 info += 7;
3875 break;
3876 case 'P':
3877 kind = ADA_PACKAGE_RENAMING;
3878 info += 7;
3879 break;
3880 case 'S':
3881 kind = ADA_SUBPROGRAM_RENAMING;
3882 info += 7;
3883 break;
3884 default:
3885 return ADA_NOT_RENAMING;
3886 }
3887 }
3888
3889 if (renamed_entity != NULL)
3890 *renamed_entity = info;
3891 suffix = strstr (info, "___XE");
3892 if (suffix == NULL || suffix == info)
3893 return ADA_NOT_RENAMING;
3894 if (len != NULL)
3895 *len = strlen (info) - strlen (suffix);
3896 suffix += 5;
3897 if (renaming_expr != NULL)
3898 *renaming_expr = suffix;
3899 return kind;
3900 }
3901
3902 /* Assuming TYPE encodes a renaming according to the old encoding in
3903 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3904 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3905 ADA_NOT_RENAMING otherwise. */
3906 static enum ada_renaming_category
3907 parse_old_style_renaming (struct type *type,
3908 const char **renamed_entity, int *len,
3909 const char **renaming_expr)
3910 {
3911 enum ada_renaming_category kind;
3912 const char *name;
3913 const char *info;
3914 const char *suffix;
3915
3916 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3917 || TYPE_NFIELDS (type) != 1)
3918 return ADA_NOT_RENAMING;
3919
3920 name = type_name_no_tag (type);
3921 if (name == NULL)
3922 return ADA_NOT_RENAMING;
3923
3924 name = strstr (name, "___XR");
3925 if (name == NULL)
3926 return ADA_NOT_RENAMING;
3927 switch (name[5])
3928 {
3929 case '\0':
3930 case '_':
3931 kind = ADA_OBJECT_RENAMING;
3932 break;
3933 case 'E':
3934 kind = ADA_EXCEPTION_RENAMING;
3935 break;
3936 case 'P':
3937 kind = ADA_PACKAGE_RENAMING;
3938 break;
3939 case 'S':
3940 kind = ADA_SUBPROGRAM_RENAMING;
3941 break;
3942 default:
3943 return ADA_NOT_RENAMING;
3944 }
3945
3946 info = TYPE_FIELD_NAME (type, 0);
3947 if (info == NULL)
3948 return ADA_NOT_RENAMING;
3949 if (renamed_entity != NULL)
3950 *renamed_entity = info;
3951 suffix = strstr (info, "___XE");
3952 if (renaming_expr != NULL)
3953 *renaming_expr = suffix + 5;
3954 if (suffix == NULL || suffix == info)
3955 return ADA_NOT_RENAMING;
3956 if (len != NULL)
3957 *len = suffix - info;
3958 return kind;
3959 }
3960
3961 \f
3962
3963 /* Evaluation: Function Calls */
3964
3965 /* Return an lvalue containing the value VAL. This is the identity on
3966 lvalues, and otherwise has the side-effect of allocating memory
3967 in the inferior where a copy of the value contents is copied. */
3968
3969 static struct value *
3970 ensure_lval (struct value *val)
3971 {
3972 if (VALUE_LVAL (val) == not_lval
3973 || VALUE_LVAL (val) == lval_internalvar)
3974 {
3975 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3976 const CORE_ADDR addr =
3977 value_as_long (value_allocate_space_in_inferior (len));
3978
3979 set_value_address (val, addr);
3980 VALUE_LVAL (val) = lval_memory;
3981 write_memory (addr, value_contents (val), len);
3982 }
3983
3984 return val;
3985 }
3986
3987 /* Return the value ACTUAL, converted to be an appropriate value for a
3988 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3989 allocating any necessary descriptors (fat pointers), or copies of
3990 values not residing in memory, updating it as needed. */
3991
3992 struct value *
3993 ada_convert_actual (struct value *actual, struct type *formal_type0)
3994 {
3995 struct type *actual_type = ada_check_typedef (value_type (actual));
3996 struct type *formal_type = ada_check_typedef (formal_type0);
3997 struct type *formal_target =
3998 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3999 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4000 struct type *actual_target =
4001 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4002 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4003
4004 if (ada_is_array_descriptor_type (formal_target)
4005 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4006 return make_array_descriptor (formal_type, actual);
4007 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4008 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4009 {
4010 struct value *result;
4011
4012 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4013 && ada_is_array_descriptor_type (actual_target))
4014 result = desc_data (actual);
4015 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4016 {
4017 if (VALUE_LVAL (actual) != lval_memory)
4018 {
4019 struct value *val;
4020
4021 actual_type = ada_check_typedef (value_type (actual));
4022 val = allocate_value (actual_type);
4023 memcpy ((char *) value_contents_raw (val),
4024 (char *) value_contents (actual),
4025 TYPE_LENGTH (actual_type));
4026 actual = ensure_lval (val);
4027 }
4028 result = value_addr (actual);
4029 }
4030 else
4031 return actual;
4032 return value_cast_pointers (formal_type, result);
4033 }
4034 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4035 return ada_value_ind (actual);
4036
4037 return actual;
4038 }
4039
4040 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4041 type TYPE. This is usually an inefficient no-op except on some targets
4042 (such as AVR) where the representation of a pointer and an address
4043 differs. */
4044
4045 static CORE_ADDR
4046 value_pointer (struct value *value, struct type *type)
4047 {
4048 struct gdbarch *gdbarch = get_type_arch (type);
4049 unsigned len = TYPE_LENGTH (type);
4050 gdb_byte *buf = alloca (len);
4051 CORE_ADDR addr;
4052
4053 addr = value_address (value);
4054 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4055 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4056 return addr;
4057 }
4058
4059
4060 /* Push a descriptor of type TYPE for array value ARR on the stack at
4061 *SP, updating *SP to reflect the new descriptor. Return either
4062 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4063 to-descriptor type rather than a descriptor type), a struct value *
4064 representing a pointer to this descriptor. */
4065
4066 static struct value *
4067 make_array_descriptor (struct type *type, struct value *arr)
4068 {
4069 struct type *bounds_type = desc_bounds_type (type);
4070 struct type *desc_type = desc_base_type (type);
4071 struct value *descriptor = allocate_value (desc_type);
4072 struct value *bounds = allocate_value (bounds_type);
4073 int i;
4074
4075 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4076 i > 0; i -= 1)
4077 {
4078 modify_field (value_type (bounds), value_contents_writeable (bounds),
4079 ada_array_bound (arr, i, 0),
4080 desc_bound_bitpos (bounds_type, i, 0),
4081 desc_bound_bitsize (bounds_type, i, 0));
4082 modify_field (value_type (bounds), value_contents_writeable (bounds),
4083 ada_array_bound (arr, i, 1),
4084 desc_bound_bitpos (bounds_type, i, 1),
4085 desc_bound_bitsize (bounds_type, i, 1));
4086 }
4087
4088 bounds = ensure_lval (bounds);
4089
4090 modify_field (value_type (descriptor),
4091 value_contents_writeable (descriptor),
4092 value_pointer (ensure_lval (arr),
4093 TYPE_FIELD_TYPE (desc_type, 0)),
4094 fat_pntr_data_bitpos (desc_type),
4095 fat_pntr_data_bitsize (desc_type));
4096
4097 modify_field (value_type (descriptor),
4098 value_contents_writeable (descriptor),
4099 value_pointer (bounds,
4100 TYPE_FIELD_TYPE (desc_type, 1)),
4101 fat_pntr_bounds_bitpos (desc_type),
4102 fat_pntr_bounds_bitsize (desc_type));
4103
4104 descriptor = ensure_lval (descriptor);
4105
4106 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4107 return value_addr (descriptor);
4108 else
4109 return descriptor;
4110 }
4111 \f
4112 /* Dummy definitions for an experimental caching module that is not
4113 * used in the public sources. */
4114
4115 static int
4116 lookup_cached_symbol (const char *name, domain_enum namespace,
4117 struct symbol **sym, struct block **block)
4118 {
4119 return 0;
4120 }
4121
4122 static void
4123 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4124 struct block *block)
4125 {
4126 }
4127 \f
4128 /* Symbol Lookup */
4129
4130 /* Return the result of a standard (literal, C-like) lookup of NAME in
4131 given DOMAIN, visible from lexical block BLOCK. */
4132
4133 static struct symbol *
4134 standard_lookup (const char *name, const struct block *block,
4135 domain_enum domain)
4136 {
4137 struct symbol *sym;
4138
4139 if (lookup_cached_symbol (name, domain, &sym, NULL))
4140 return sym;
4141 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4142 cache_symbol (name, domain, sym, block_found);
4143 return sym;
4144 }
4145
4146
4147 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4148 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4149 since they contend in overloading in the same way. */
4150 static int
4151 is_nonfunction (struct ada_symbol_info syms[], int n)
4152 {
4153 int i;
4154
4155 for (i = 0; i < n; i += 1)
4156 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4157 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4158 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4159 return 1;
4160
4161 return 0;
4162 }
4163
4164 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4165 struct types. Otherwise, they may not. */
4166
4167 static int
4168 equiv_types (struct type *type0, struct type *type1)
4169 {
4170 if (type0 == type1)
4171 return 1;
4172 if (type0 == NULL || type1 == NULL
4173 || TYPE_CODE (type0) != TYPE_CODE (type1))
4174 return 0;
4175 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4176 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4177 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4178 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4179 return 1;
4180
4181 return 0;
4182 }
4183
4184 /* True iff SYM0 represents the same entity as SYM1, or one that is
4185 no more defined than that of SYM1. */
4186
4187 static int
4188 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4189 {
4190 if (sym0 == sym1)
4191 return 1;
4192 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4193 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4194 return 0;
4195
4196 switch (SYMBOL_CLASS (sym0))
4197 {
4198 case LOC_UNDEF:
4199 return 1;
4200 case LOC_TYPEDEF:
4201 {
4202 struct type *type0 = SYMBOL_TYPE (sym0);
4203 struct type *type1 = SYMBOL_TYPE (sym1);
4204 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4205 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4206 int len0 = strlen (name0);
4207
4208 return
4209 TYPE_CODE (type0) == TYPE_CODE (type1)
4210 && (equiv_types (type0, type1)
4211 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4212 && strncmp (name1 + len0, "___XV", 5) == 0));
4213 }
4214 case LOC_CONST:
4215 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4216 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4217 default:
4218 return 0;
4219 }
4220 }
4221
4222 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4223 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4224
4225 static void
4226 add_defn_to_vec (struct obstack *obstackp,
4227 struct symbol *sym,
4228 struct block *block)
4229 {
4230 int i;
4231 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4232
4233 /* Do not try to complete stub types, as the debugger is probably
4234 already scanning all symbols matching a certain name at the
4235 time when this function is called. Trying to replace the stub
4236 type by its associated full type will cause us to restart a scan
4237 which may lead to an infinite recursion. Instead, the client
4238 collecting the matching symbols will end up collecting several
4239 matches, with at least one of them complete. It can then filter
4240 out the stub ones if needed. */
4241
4242 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4243 {
4244 if (lesseq_defined_than (sym, prevDefns[i].sym))
4245 return;
4246 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4247 {
4248 prevDefns[i].sym = sym;
4249 prevDefns[i].block = block;
4250 return;
4251 }
4252 }
4253
4254 {
4255 struct ada_symbol_info info;
4256
4257 info.sym = sym;
4258 info.block = block;
4259 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4260 }
4261 }
4262
4263 /* Number of ada_symbol_info structures currently collected in
4264 current vector in *OBSTACKP. */
4265
4266 static int
4267 num_defns_collected (struct obstack *obstackp)
4268 {
4269 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4270 }
4271
4272 /* Vector of ada_symbol_info structures currently collected in current
4273 vector in *OBSTACKP. If FINISH, close off the vector and return
4274 its final address. */
4275
4276 static struct ada_symbol_info *
4277 defns_collected (struct obstack *obstackp, int finish)
4278 {
4279 if (finish)
4280 return obstack_finish (obstackp);
4281 else
4282 return (struct ada_symbol_info *) obstack_base (obstackp);
4283 }
4284
4285 /* Return a minimal symbol matching NAME according to Ada decoding
4286 rules. Returns NULL if there is no such minimal symbol. Names
4287 prefixed with "standard__" are handled specially: "standard__" is
4288 first stripped off, and only static and global symbols are searched. */
4289
4290 struct minimal_symbol *
4291 ada_lookup_simple_minsym (const char *name)
4292 {
4293 struct objfile *objfile;
4294 struct minimal_symbol *msymbol;
4295 int wild_match;
4296
4297 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4298 {
4299 name += sizeof ("standard__") - 1;
4300 wild_match = 0;
4301 }
4302 else
4303 wild_match = (strstr (name, "__") == NULL);
4304
4305 ALL_MSYMBOLS (objfile, msymbol)
4306 {
4307 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4308 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4309 return msymbol;
4310 }
4311
4312 return NULL;
4313 }
4314
4315 /* For all subprograms that statically enclose the subprogram of the
4316 selected frame, add symbols matching identifier NAME in DOMAIN
4317 and their blocks to the list of data in OBSTACKP, as for
4318 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4319 wildcard prefix. */
4320
4321 static void
4322 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4323 const char *name, domain_enum namespace,
4324 int wild_match)
4325 {
4326 }
4327
4328 /* True if TYPE is definitely an artificial type supplied to a symbol
4329 for which no debugging information was given in the symbol file. */
4330
4331 static int
4332 is_nondebugging_type (struct type *type)
4333 {
4334 char *name = ada_type_name (type);
4335
4336 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4337 }
4338
4339 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4340 duplicate other symbols in the list (The only case I know of where
4341 this happens is when object files containing stabs-in-ecoff are
4342 linked with files containing ordinary ecoff debugging symbols (or no
4343 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4344 Returns the number of items in the modified list. */
4345
4346 static int
4347 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4348 {
4349 int i, j;
4350
4351 i = 0;
4352 while (i < nsyms)
4353 {
4354 int remove = 0;
4355
4356 /* If two symbols have the same name and one of them is a stub type,
4357 the get rid of the stub. */
4358
4359 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4360 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4361 {
4362 for (j = 0; j < nsyms; j++)
4363 {
4364 if (j != i
4365 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4366 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4367 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4368 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4369 remove = 1;
4370 }
4371 }
4372
4373 /* Two symbols with the same name, same class and same address
4374 should be identical. */
4375
4376 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4377 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4378 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4379 {
4380 for (j = 0; j < nsyms; j += 1)
4381 {
4382 if (i != j
4383 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4384 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4385 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4386 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4387 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4388 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4389 remove = 1;
4390 }
4391 }
4392
4393 if (remove)
4394 {
4395 for (j = i + 1; j < nsyms; j += 1)
4396 syms[j - 1] = syms[j];
4397 nsyms -= 1;
4398 }
4399
4400 i += 1;
4401 }
4402 return nsyms;
4403 }
4404
4405 /* Given a type that corresponds to a renaming entity, use the type name
4406 to extract the scope (package name or function name, fully qualified,
4407 and following the GNAT encoding convention) where this renaming has been
4408 defined. The string returned needs to be deallocated after use. */
4409
4410 static char *
4411 xget_renaming_scope (struct type *renaming_type)
4412 {
4413 /* The renaming types adhere to the following convention:
4414 <scope>__<rename>___<XR extension>.
4415 So, to extract the scope, we search for the "___XR" extension,
4416 and then backtrack until we find the first "__". */
4417
4418 const char *name = type_name_no_tag (renaming_type);
4419 char *suffix = strstr (name, "___XR");
4420 char *last;
4421 int scope_len;
4422 char *scope;
4423
4424 /* Now, backtrack a bit until we find the first "__". Start looking
4425 at suffix - 3, as the <rename> part is at least one character long. */
4426
4427 for (last = suffix - 3; last > name; last--)
4428 if (last[0] == '_' && last[1] == '_')
4429 break;
4430
4431 /* Make a copy of scope and return it. */
4432
4433 scope_len = last - name;
4434 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4435
4436 strncpy (scope, name, scope_len);
4437 scope[scope_len] = '\0';
4438
4439 return scope;
4440 }
4441
4442 /* Return nonzero if NAME corresponds to a package name. */
4443
4444 static int
4445 is_package_name (const char *name)
4446 {
4447 /* Here, We take advantage of the fact that no symbols are generated
4448 for packages, while symbols are generated for each function.
4449 So the condition for NAME represent a package becomes equivalent
4450 to NAME not existing in our list of symbols. There is only one
4451 small complication with library-level functions (see below). */
4452
4453 char *fun_name;
4454
4455 /* If it is a function that has not been defined at library level,
4456 then we should be able to look it up in the symbols. */
4457 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4458 return 0;
4459
4460 /* Library-level function names start with "_ada_". See if function
4461 "_ada_" followed by NAME can be found. */
4462
4463 /* Do a quick check that NAME does not contain "__", since library-level
4464 functions names cannot contain "__" in them. */
4465 if (strstr (name, "__") != NULL)
4466 return 0;
4467
4468 fun_name = xstrprintf ("_ada_%s", name);
4469
4470 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4471 }
4472
4473 /* Return nonzero if SYM corresponds to a renaming entity that is
4474 not visible from FUNCTION_NAME. */
4475
4476 static int
4477 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4478 {
4479 char *scope;
4480
4481 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4482 return 0;
4483
4484 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4485
4486 make_cleanup (xfree, scope);
4487
4488 /* If the rename has been defined in a package, then it is visible. */
4489 if (is_package_name (scope))
4490 return 0;
4491
4492 /* Check that the rename is in the current function scope by checking
4493 that its name starts with SCOPE. */
4494
4495 /* If the function name starts with "_ada_", it means that it is
4496 a library-level function. Strip this prefix before doing the
4497 comparison, as the encoding for the renaming does not contain
4498 this prefix. */
4499 if (strncmp (function_name, "_ada_", 5) == 0)
4500 function_name += 5;
4501
4502 return (strncmp (function_name, scope, strlen (scope)) != 0);
4503 }
4504
4505 /* Remove entries from SYMS that corresponds to a renaming entity that
4506 is not visible from the function associated with CURRENT_BLOCK or
4507 that is superfluous due to the presence of more specific renaming
4508 information. Places surviving symbols in the initial entries of
4509 SYMS and returns the number of surviving symbols.
4510
4511 Rationale:
4512 First, in cases where an object renaming is implemented as a
4513 reference variable, GNAT may produce both the actual reference
4514 variable and the renaming encoding. In this case, we discard the
4515 latter.
4516
4517 Second, GNAT emits a type following a specified encoding for each renaming
4518 entity. Unfortunately, STABS currently does not support the definition
4519 of types that are local to a given lexical block, so all renamings types
4520 are emitted at library level. As a consequence, if an application
4521 contains two renaming entities using the same name, and a user tries to
4522 print the value of one of these entities, the result of the ada symbol
4523 lookup will also contain the wrong renaming type.
4524
4525 This function partially covers for this limitation by attempting to
4526 remove from the SYMS list renaming symbols that should be visible
4527 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4528 method with the current information available. The implementation
4529 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4530
4531 - When the user tries to print a rename in a function while there
4532 is another rename entity defined in a package: Normally, the
4533 rename in the function has precedence over the rename in the
4534 package, so the latter should be removed from the list. This is
4535 currently not the case.
4536
4537 - This function will incorrectly remove valid renames if
4538 the CURRENT_BLOCK corresponds to a function which symbol name
4539 has been changed by an "Export" pragma. As a consequence,
4540 the user will be unable to print such rename entities. */
4541
4542 static int
4543 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4544 int nsyms, const struct block *current_block)
4545 {
4546 struct symbol *current_function;
4547 char *current_function_name;
4548 int i;
4549 int is_new_style_renaming;
4550
4551 /* If there is both a renaming foo___XR... encoded as a variable and
4552 a simple variable foo in the same block, discard the latter.
4553 First, zero out such symbols, then compress. */
4554 is_new_style_renaming = 0;
4555 for (i = 0; i < nsyms; i += 1)
4556 {
4557 struct symbol *sym = syms[i].sym;
4558 struct block *block = syms[i].block;
4559 const char *name;
4560 const char *suffix;
4561
4562 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4563 continue;
4564 name = SYMBOL_LINKAGE_NAME (sym);
4565 suffix = strstr (name, "___XR");
4566
4567 if (suffix != NULL)
4568 {
4569 int name_len = suffix - name;
4570 int j;
4571
4572 is_new_style_renaming = 1;
4573 for (j = 0; j < nsyms; j += 1)
4574 if (i != j && syms[j].sym != NULL
4575 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4576 name_len) == 0
4577 && block == syms[j].block)
4578 syms[j].sym = NULL;
4579 }
4580 }
4581 if (is_new_style_renaming)
4582 {
4583 int j, k;
4584
4585 for (j = k = 0; j < nsyms; j += 1)
4586 if (syms[j].sym != NULL)
4587 {
4588 syms[k] = syms[j];
4589 k += 1;
4590 }
4591 return k;
4592 }
4593
4594 /* Extract the function name associated to CURRENT_BLOCK.
4595 Abort if unable to do so. */
4596
4597 if (current_block == NULL)
4598 return nsyms;
4599
4600 current_function = block_linkage_function (current_block);
4601 if (current_function == NULL)
4602 return nsyms;
4603
4604 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4605 if (current_function_name == NULL)
4606 return nsyms;
4607
4608 /* Check each of the symbols, and remove it from the list if it is
4609 a type corresponding to a renaming that is out of the scope of
4610 the current block. */
4611
4612 i = 0;
4613 while (i < nsyms)
4614 {
4615 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4616 == ADA_OBJECT_RENAMING
4617 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4618 {
4619 int j;
4620
4621 for (j = i + 1; j < nsyms; j += 1)
4622 syms[j - 1] = syms[j];
4623 nsyms -= 1;
4624 }
4625 else
4626 i += 1;
4627 }
4628
4629 return nsyms;
4630 }
4631
4632 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4633 whose name and domain match NAME and DOMAIN respectively.
4634 If no match was found, then extend the search to "enclosing"
4635 routines (in other words, if we're inside a nested function,
4636 search the symbols defined inside the enclosing functions).
4637
4638 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4639
4640 static void
4641 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4642 struct block *block, domain_enum domain,
4643 int wild_match)
4644 {
4645 int block_depth = 0;
4646
4647 while (block != NULL)
4648 {
4649 block_depth += 1;
4650 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4651
4652 /* If we found a non-function match, assume that's the one. */
4653 if (is_nonfunction (defns_collected (obstackp, 0),
4654 num_defns_collected (obstackp)))
4655 return;
4656
4657 block = BLOCK_SUPERBLOCK (block);
4658 }
4659
4660 /* If no luck so far, try to find NAME as a local symbol in some lexically
4661 enclosing subprogram. */
4662 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4663 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4664 }
4665
4666 /* An object of this type is used as the user_data argument when
4667 calling the map_matching_symbols method. */
4668
4669 struct match_data
4670 {
4671 struct objfile *objfile;
4672 struct obstack *obstackp;
4673 struct symbol *arg_sym;
4674 int found_sym;
4675 };
4676
4677 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4678 to a list of symbols. DATA0 is a pointer to a struct match_data *
4679 containing the obstack that collects the symbol list, the file that SYM
4680 must come from, a flag indicating whether a non-argument symbol has
4681 been found in the current block, and the last argument symbol
4682 passed in SYM within the current block (if any). When SYM is null,
4683 marking the end of a block, the argument symbol is added if no
4684 other has been found. */
4685
4686 static int
4687 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4688 {
4689 struct match_data *data = (struct match_data *) data0;
4690
4691 if (sym == NULL)
4692 {
4693 if (!data->found_sym && data->arg_sym != NULL)
4694 add_defn_to_vec (data->obstackp,
4695 fixup_symbol_section (data->arg_sym, data->objfile),
4696 block);
4697 data->found_sym = 0;
4698 data->arg_sym = NULL;
4699 }
4700 else
4701 {
4702 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4703 return 0;
4704 else if (SYMBOL_IS_ARGUMENT (sym))
4705 data->arg_sym = sym;
4706 else
4707 {
4708 data->found_sym = 1;
4709 add_defn_to_vec (data->obstackp,
4710 fixup_symbol_section (sym, data->objfile),
4711 block);
4712 }
4713 }
4714 return 0;
4715 }
4716
4717 /* Compare STRING1 to STRING2, with results as for strcmp.
4718 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4719 implies compare_names (STRING1, STRING2) (they may differ as to
4720 what symbols compare equal). */
4721
4722 static int
4723 compare_names (const char *string1, const char *string2)
4724 {
4725 while (*string1 != '\0' && *string2 != '\0')
4726 {
4727 if (isspace (*string1) || isspace (*string2))
4728 return strcmp_iw_ordered (string1, string2);
4729 if (*string1 != *string2)
4730 break;
4731 string1 += 1;
4732 string2 += 1;
4733 }
4734 switch (*string1)
4735 {
4736 case '(':
4737 return strcmp_iw_ordered (string1, string2);
4738 case '_':
4739 if (*string2 == '\0')
4740 {
4741 if (is_name_suffix (string2))
4742 return 0;
4743 else
4744 return -1;
4745 }
4746 default:
4747 if (*string2 == '(')
4748 return strcmp_iw_ordered (string1, string2);
4749 else
4750 return *string1 - *string2;
4751 }
4752 }
4753
4754 /* Add to OBSTACKP all non-local symbols whose name and domain match
4755 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4756 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4757
4758 static void
4759 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4760 domain_enum domain, int global,
4761 int is_wild_match)
4762 {
4763 struct objfile *objfile;
4764 struct match_data data;
4765
4766 data.obstackp = obstackp;
4767 data.arg_sym = NULL;
4768
4769 ALL_OBJFILES (objfile)
4770 {
4771 data.objfile = objfile;
4772
4773 if (is_wild_match)
4774 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4775 aux_add_nonlocal_symbols, &data,
4776 wild_match, NULL);
4777 else
4778 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4779 aux_add_nonlocal_symbols, &data,
4780 full_match, compare_names);
4781 }
4782
4783 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4784 {
4785 ALL_OBJFILES (objfile)
4786 {
4787 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4788 strcpy (name1, "_ada_");
4789 strcpy (name1 + sizeof ("_ada_") - 1, name);
4790 data.objfile = objfile;
4791 objfile->sf->qf->map_matching_symbols (name1, domain,
4792 objfile, global,
4793 aux_add_nonlocal_symbols,
4794 &data,
4795 full_match, compare_names);
4796 }
4797 }
4798 }
4799
4800 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4801 scope and in global scopes, returning the number of matches. Sets
4802 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4803 indicating the symbols found and the blocks and symbol tables (if
4804 any) in which they were found. This vector are transient---good only to
4805 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4806 symbol match within the nest of blocks whose innermost member is BLOCK0,
4807 is the one match returned (no other matches in that or
4808 enclosing blocks is returned). If there are any matches in or
4809 surrounding BLOCK0, then these alone are returned. Otherwise, the
4810 search extends to global and file-scope (static) symbol tables.
4811 Names prefixed with "standard__" are handled specially: "standard__"
4812 is first stripped off, and only static and global symbols are searched. */
4813
4814 int
4815 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4816 domain_enum namespace,
4817 struct ada_symbol_info **results)
4818 {
4819 struct symbol *sym;
4820 struct block *block;
4821 const char *name;
4822 int wild_match;
4823 int cacheIfUnique;
4824 int ndefns;
4825
4826 obstack_free (&symbol_list_obstack, NULL);
4827 obstack_init (&symbol_list_obstack);
4828
4829 cacheIfUnique = 0;
4830
4831 /* Search specified block and its superiors. */
4832
4833 wild_match = (strstr (name0, "__") == NULL);
4834 name = name0;
4835 block = (struct block *) block0; /* FIXME: No cast ought to be
4836 needed, but adding const will
4837 have a cascade effect. */
4838
4839 /* Special case: If the user specifies a symbol name inside package
4840 Standard, do a non-wild matching of the symbol name without
4841 the "standard__" prefix. This was primarily introduced in order
4842 to allow the user to specifically access the standard exceptions
4843 using, for instance, Standard.Constraint_Error when Constraint_Error
4844 is ambiguous (due to the user defining its own Constraint_Error
4845 entity inside its program). */
4846 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4847 {
4848 wild_match = 0;
4849 block = NULL;
4850 name = name0 + sizeof ("standard__") - 1;
4851 }
4852
4853 /* Check the non-global symbols. If we have ANY match, then we're done. */
4854
4855 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4856 wild_match);
4857 if (num_defns_collected (&symbol_list_obstack) > 0)
4858 goto done;
4859
4860 /* No non-global symbols found. Check our cache to see if we have
4861 already performed this search before. If we have, then return
4862 the same result. */
4863
4864 cacheIfUnique = 1;
4865 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4866 {
4867 if (sym != NULL)
4868 add_defn_to_vec (&symbol_list_obstack, sym, block);
4869 goto done;
4870 }
4871
4872 /* Search symbols from all global blocks. */
4873
4874 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4875 wild_match);
4876
4877 /* Now add symbols from all per-file blocks if we've gotten no hits
4878 (not strictly correct, but perhaps better than an error). */
4879
4880 if (num_defns_collected (&symbol_list_obstack) == 0)
4881 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4882 wild_match);
4883
4884 done:
4885 ndefns = num_defns_collected (&symbol_list_obstack);
4886 *results = defns_collected (&symbol_list_obstack, 1);
4887
4888 ndefns = remove_extra_symbols (*results, ndefns);
4889
4890 if (ndefns == 0)
4891 cache_symbol (name0, namespace, NULL, NULL);
4892
4893 if (ndefns == 1 && cacheIfUnique)
4894 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4895
4896 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4897
4898 return ndefns;
4899 }
4900
4901 struct symbol *
4902 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4903 domain_enum namespace, struct block **block_found)
4904 {
4905 struct ada_symbol_info *candidates;
4906 int n_candidates;
4907
4908 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4909
4910 if (n_candidates == 0)
4911 return NULL;
4912
4913 if (block_found != NULL)
4914 *block_found = candidates[0].block;
4915
4916 return fixup_symbol_section (candidates[0].sym, NULL);
4917 }
4918
4919 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4920 scope and in global scopes, or NULL if none. NAME is folded and
4921 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4922 choosing the first symbol if there are multiple choices.
4923 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4924 table in which the symbol was found (in both cases, these
4925 assignments occur only if the pointers are non-null). */
4926 struct symbol *
4927 ada_lookup_symbol (const char *name, const struct block *block0,
4928 domain_enum namespace, int *is_a_field_of_this)
4929 {
4930 if (is_a_field_of_this != NULL)
4931 *is_a_field_of_this = 0;
4932
4933 return
4934 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4935 block0, namespace, NULL);
4936 }
4937
4938 static struct symbol *
4939 ada_lookup_symbol_nonlocal (const char *name,
4940 const struct block *block,
4941 const domain_enum domain)
4942 {
4943 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4944 }
4945
4946
4947 /* True iff STR is a possible encoded suffix of a normal Ada name
4948 that is to be ignored for matching purposes. Suffixes of parallel
4949 names (e.g., XVE) are not included here. Currently, the possible suffixes
4950 are given by any of the regular expressions:
4951
4952 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4953 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4954 _E[0-9]+[bs]$ [protected object entry suffixes]
4955 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4956
4957 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4958 match is performed. This sequence is used to differentiate homonyms,
4959 is an optional part of a valid name suffix. */
4960
4961 static int
4962 is_name_suffix (const char *str)
4963 {
4964 int k;
4965 const char *matching;
4966 const int len = strlen (str);
4967
4968 /* Skip optional leading __[0-9]+. */
4969
4970 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4971 {
4972 str += 3;
4973 while (isdigit (str[0]))
4974 str += 1;
4975 }
4976
4977 /* [.$][0-9]+ */
4978
4979 if (str[0] == '.' || str[0] == '$')
4980 {
4981 matching = str + 1;
4982 while (isdigit (matching[0]))
4983 matching += 1;
4984 if (matching[0] == '\0')
4985 return 1;
4986 }
4987
4988 /* ___[0-9]+ */
4989
4990 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4991 {
4992 matching = str + 3;
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
4999 #if 0
5000 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5001 with a N at the end. Unfortunately, the compiler uses the same
5002 convention for other internal types it creates. So treating
5003 all entity names that end with an "N" as a name suffix causes
5004 some regressions. For instance, consider the case of an enumerated
5005 type. To support the 'Image attribute, it creates an array whose
5006 name ends with N.
5007 Having a single character like this as a suffix carrying some
5008 information is a bit risky. Perhaps we should change the encoding
5009 to be something like "_N" instead. In the meantime, do not do
5010 the following check. */
5011 /* Protected Object Subprograms */
5012 if (len == 1 && str [0] == 'N')
5013 return 1;
5014 #endif
5015
5016 /* _E[0-9]+[bs]$ */
5017 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5018 {
5019 matching = str + 3;
5020 while (isdigit (matching[0]))
5021 matching += 1;
5022 if ((matching[0] == 'b' || matching[0] == 's')
5023 && matching [1] == '\0')
5024 return 1;
5025 }
5026
5027 /* ??? We should not modify STR directly, as we are doing below. This
5028 is fine in this case, but may become problematic later if we find
5029 that this alternative did not work, and want to try matching
5030 another one from the begining of STR. Since we modified it, we
5031 won't be able to find the begining of the string anymore! */
5032 if (str[0] == 'X')
5033 {
5034 str += 1;
5035 while (str[0] != '_' && str[0] != '\0')
5036 {
5037 if (str[0] != 'n' && str[0] != 'b')
5038 return 0;
5039 str += 1;
5040 }
5041 }
5042
5043 if (str[0] == '\000')
5044 return 1;
5045
5046 if (str[0] == '_')
5047 {
5048 if (str[1] != '_' || str[2] == '\000')
5049 return 0;
5050 if (str[2] == '_')
5051 {
5052 if (strcmp (str + 3, "JM") == 0)
5053 return 1;
5054 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5055 the LJM suffix in favor of the JM one. But we will
5056 still accept LJM as a valid suffix for a reasonable
5057 amount of time, just to allow ourselves to debug programs
5058 compiled using an older version of GNAT. */
5059 if (strcmp (str + 3, "LJM") == 0)
5060 return 1;
5061 if (str[3] != 'X')
5062 return 0;
5063 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5064 || str[4] == 'U' || str[4] == 'P')
5065 return 1;
5066 if (str[4] == 'R' && str[5] != 'T')
5067 return 1;
5068 return 0;
5069 }
5070 if (!isdigit (str[2]))
5071 return 0;
5072 for (k = 3; str[k] != '\0'; k += 1)
5073 if (!isdigit (str[k]) && str[k] != '_')
5074 return 0;
5075 return 1;
5076 }
5077 if (str[0] == '$' && isdigit (str[1]))
5078 {
5079 for (k = 2; str[k] != '\0'; k += 1)
5080 if (!isdigit (str[k]) && str[k] != '_')
5081 return 0;
5082 return 1;
5083 }
5084 return 0;
5085 }
5086
5087 /* Return non-zero if the string starting at NAME and ending before
5088 NAME_END contains no capital letters. */
5089
5090 static int
5091 is_valid_name_for_wild_match (const char *name0)
5092 {
5093 const char *decoded_name = ada_decode (name0);
5094 int i;
5095
5096 /* If the decoded name starts with an angle bracket, it means that
5097 NAME0 does not follow the GNAT encoding format. It should then
5098 not be allowed as a possible wild match. */
5099 if (decoded_name[0] == '<')
5100 return 0;
5101
5102 for (i=0; decoded_name[i] != '\0'; i++)
5103 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5104 return 0;
5105
5106 return 1;
5107 }
5108
5109 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5110 that could start a simple name. Assumes that *NAMEP points into
5111 the string beginning at NAME0. */
5112
5113 static int
5114 advance_wild_match (const char **namep, const char *name0, int target0)
5115 {
5116 const char *name = *namep;
5117
5118 while (1)
5119 {
5120 int t0, t1;
5121
5122 t0 = *name;
5123 if (t0 == '_')
5124 {
5125 t1 = name[1];
5126 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5127 {
5128 name += 1;
5129 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5130 break;
5131 else
5132 name += 1;
5133 }
5134 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5135 || name[2] == target0))
5136 {
5137 name += 2;
5138 break;
5139 }
5140 else
5141 return 0;
5142 }
5143 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5144 name += 1;
5145 else
5146 return 0;
5147 }
5148
5149 *namep = name;
5150 return 1;
5151 }
5152
5153 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5154 informational suffixes of NAME (i.e., for which is_name_suffix is
5155 true). Assumes that PATN is a lower-cased Ada simple name. */
5156
5157 static int
5158 wild_match (const char *name, const char *patn)
5159 {
5160 const char *p, *n;
5161 const char *name0 = name;
5162
5163 while (1)
5164 {
5165 const char *match = name;
5166
5167 if (*name == *patn)
5168 {
5169 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5170 if (*p != *name)
5171 break;
5172 if (*p == '\0' && is_name_suffix (name))
5173 return match != name0 && !is_valid_name_for_wild_match (name0);
5174
5175 if (name[-1] == '_')
5176 name -= 1;
5177 }
5178 if (!advance_wild_match (&name, name0, *patn))
5179 return 1;
5180 }
5181 }
5182
5183 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5184 informational suffix. */
5185
5186 static int
5187 full_match (const char *sym_name, const char *search_name)
5188 {
5189 return !match_name (sym_name, search_name, 0);
5190 }
5191
5192
5193 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5194 vector *defn_symbols, updating the list of symbols in OBSTACKP
5195 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5196 OBJFILE is the section containing BLOCK.
5197 SYMTAB is recorded with each symbol added. */
5198
5199 static void
5200 ada_add_block_symbols (struct obstack *obstackp,
5201 struct block *block, const char *name,
5202 domain_enum domain, struct objfile *objfile,
5203 int wild)
5204 {
5205 struct dict_iterator iter;
5206 int name_len = strlen (name);
5207 /* A matching argument symbol, if any. */
5208 struct symbol *arg_sym;
5209 /* Set true when we find a matching non-argument symbol. */
5210 int found_sym;
5211 struct symbol *sym;
5212
5213 arg_sym = NULL;
5214 found_sym = 0;
5215 if (wild)
5216 {
5217 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5218 wild_match, &iter);
5219 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5220 {
5221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5222 SYMBOL_DOMAIN (sym), domain)
5223 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5224 {
5225 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5226 continue;
5227 else if (SYMBOL_IS_ARGUMENT (sym))
5228 arg_sym = sym;
5229 else
5230 {
5231 found_sym = 1;
5232 add_defn_to_vec (obstackp,
5233 fixup_symbol_section (sym, objfile),
5234 block);
5235 }
5236 }
5237 }
5238 }
5239 else
5240 {
5241 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5242 full_match, &iter);
5243 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5244 {
5245 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5246 SYMBOL_DOMAIN (sym), domain))
5247 {
5248 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5249 {
5250 if (SYMBOL_IS_ARGUMENT (sym))
5251 arg_sym = sym;
5252 else
5253 {
5254 found_sym = 1;
5255 add_defn_to_vec (obstackp,
5256 fixup_symbol_section (sym, objfile),
5257 block);
5258 }
5259 }
5260 }
5261 }
5262 }
5263
5264 if (!found_sym && arg_sym != NULL)
5265 {
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (arg_sym, objfile),
5268 block);
5269 }
5270
5271 if (!wild)
5272 {
5273 arg_sym = NULL;
5274 found_sym = 0;
5275
5276 ALL_BLOCK_SYMBOLS (block, iter, sym)
5277 {
5278 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5279 SYMBOL_DOMAIN (sym), domain))
5280 {
5281 int cmp;
5282
5283 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5284 if (cmp == 0)
5285 {
5286 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5287 if (cmp == 0)
5288 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5289 name_len);
5290 }
5291
5292 if (cmp == 0
5293 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5294 {
5295 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5296 {
5297 if (SYMBOL_IS_ARGUMENT (sym))
5298 arg_sym = sym;
5299 else
5300 {
5301 found_sym = 1;
5302 add_defn_to_vec (obstackp,
5303 fixup_symbol_section (sym, objfile),
5304 block);
5305 }
5306 }
5307 }
5308 }
5309 }
5310
5311 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5312 They aren't parameters, right? */
5313 if (!found_sym && arg_sym != NULL)
5314 {
5315 add_defn_to_vec (obstackp,
5316 fixup_symbol_section (arg_sym, objfile),
5317 block);
5318 }
5319 }
5320 }
5321 \f
5322
5323 /* Symbol Completion */
5324
5325 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5326 name in a form that's appropriate for the completion. The result
5327 does not need to be deallocated, but is only good until the next call.
5328
5329 TEXT_LEN is equal to the length of TEXT.
5330 Perform a wild match if WILD_MATCH is set.
5331 ENCODED should be set if TEXT represents the start of a symbol name
5332 in its encoded form. */
5333
5334 static const char *
5335 symbol_completion_match (const char *sym_name,
5336 const char *text, int text_len,
5337 int wild_match, int encoded)
5338 {
5339 const int verbatim_match = (text[0] == '<');
5340 int match = 0;
5341
5342 if (verbatim_match)
5343 {
5344 /* Strip the leading angle bracket. */
5345 text = text + 1;
5346 text_len--;
5347 }
5348
5349 /* First, test against the fully qualified name of the symbol. */
5350
5351 if (strncmp (sym_name, text, text_len) == 0)
5352 match = 1;
5353
5354 if (match && !encoded)
5355 {
5356 /* One needed check before declaring a positive match is to verify
5357 that iff we are doing a verbatim match, the decoded version
5358 of the symbol name starts with '<'. Otherwise, this symbol name
5359 is not a suitable completion. */
5360 const char *sym_name_copy = sym_name;
5361 int has_angle_bracket;
5362
5363 sym_name = ada_decode (sym_name);
5364 has_angle_bracket = (sym_name[0] == '<');
5365 match = (has_angle_bracket == verbatim_match);
5366 sym_name = sym_name_copy;
5367 }
5368
5369 if (match && !verbatim_match)
5370 {
5371 /* When doing non-verbatim match, another check that needs to
5372 be done is to verify that the potentially matching symbol name
5373 does not include capital letters, because the ada-mode would
5374 not be able to understand these symbol names without the
5375 angle bracket notation. */
5376 const char *tmp;
5377
5378 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5379 if (*tmp != '\0')
5380 match = 0;
5381 }
5382
5383 /* Second: Try wild matching... */
5384
5385 if (!match && wild_match)
5386 {
5387 /* Since we are doing wild matching, this means that TEXT
5388 may represent an unqualified symbol name. We therefore must
5389 also compare TEXT against the unqualified name of the symbol. */
5390 sym_name = ada_unqualified_name (ada_decode (sym_name));
5391
5392 if (strncmp (sym_name, text, text_len) == 0)
5393 match = 1;
5394 }
5395
5396 /* Finally: If we found a mach, prepare the result to return. */
5397
5398 if (!match)
5399 return NULL;
5400
5401 if (verbatim_match)
5402 sym_name = add_angle_brackets (sym_name);
5403
5404 if (!encoded)
5405 sym_name = ada_decode (sym_name);
5406
5407 return sym_name;
5408 }
5409
5410 DEF_VEC_P (char_ptr);
5411
5412 /* A companion function to ada_make_symbol_completion_list().
5413 Check if SYM_NAME represents a symbol which name would be suitable
5414 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5415 it is appended at the end of the given string vector SV.
5416
5417 ORIG_TEXT is the string original string from the user command
5418 that needs to be completed. WORD is the entire command on which
5419 completion should be performed. These two parameters are used to
5420 determine which part of the symbol name should be added to the
5421 completion vector.
5422 if WILD_MATCH is set, then wild matching is performed.
5423 ENCODED should be set if TEXT represents a symbol name in its
5424 encoded formed (in which case the completion should also be
5425 encoded). */
5426
5427 static void
5428 symbol_completion_add (VEC(char_ptr) **sv,
5429 const char *sym_name,
5430 const char *text, int text_len,
5431 const char *orig_text, const char *word,
5432 int wild_match, int encoded)
5433 {
5434 const char *match = symbol_completion_match (sym_name, text, text_len,
5435 wild_match, encoded);
5436 char *completion;
5437
5438 if (match == NULL)
5439 return;
5440
5441 /* We found a match, so add the appropriate completion to the given
5442 string vector. */
5443
5444 if (word == orig_text)
5445 {
5446 completion = xmalloc (strlen (match) + 5);
5447 strcpy (completion, match);
5448 }
5449 else if (word > orig_text)
5450 {
5451 /* Return some portion of sym_name. */
5452 completion = xmalloc (strlen (match) + 5);
5453 strcpy (completion, match + (word - orig_text));
5454 }
5455 else
5456 {
5457 /* Return some of ORIG_TEXT plus sym_name. */
5458 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5459 strncpy (completion, word, orig_text - word);
5460 completion[orig_text - word] = '\0';
5461 strcat (completion, match);
5462 }
5463
5464 VEC_safe_push (char_ptr, *sv, completion);
5465 }
5466
5467 /* An object of this type is passed as the user_data argument to the
5468 map_partial_symbol_names method. */
5469 struct add_partial_datum
5470 {
5471 VEC(char_ptr) **completions;
5472 char *text;
5473 int text_len;
5474 char *text0;
5475 char *word;
5476 int wild_match;
5477 int encoded;
5478 };
5479
5480 /* A callback for map_partial_symbol_names. */
5481 static void
5482 ada_add_partial_symbol_completions (const char *name, void *user_data)
5483 {
5484 struct add_partial_datum *data = user_data;
5485
5486 symbol_completion_add (data->completions, name,
5487 data->text, data->text_len, data->text0, data->word,
5488 data->wild_match, data->encoded);
5489 }
5490
5491 /* Return a list of possible symbol names completing TEXT0. The list
5492 is NULL terminated. WORD is the entire command on which completion
5493 is made. */
5494
5495 static char **
5496 ada_make_symbol_completion_list (char *text0, char *word)
5497 {
5498 char *text;
5499 int text_len;
5500 int wild_match;
5501 int encoded;
5502 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5503 struct symbol *sym;
5504 struct symtab *s;
5505 struct minimal_symbol *msymbol;
5506 struct objfile *objfile;
5507 struct block *b, *surrounding_static_block = 0;
5508 int i;
5509 struct dict_iterator iter;
5510
5511 if (text0[0] == '<')
5512 {
5513 text = xstrdup (text0);
5514 make_cleanup (xfree, text);
5515 text_len = strlen (text);
5516 wild_match = 0;
5517 encoded = 1;
5518 }
5519 else
5520 {
5521 text = xstrdup (ada_encode (text0));
5522 make_cleanup (xfree, text);
5523 text_len = strlen (text);
5524 for (i = 0; i < text_len; i++)
5525 text[i] = tolower (text[i]);
5526
5527 encoded = (strstr (text0, "__") != NULL);
5528 /* If the name contains a ".", then the user is entering a fully
5529 qualified entity name, and the match must not be done in wild
5530 mode. Similarly, if the user wants to complete what looks like
5531 an encoded name, the match must not be done in wild mode. */
5532 wild_match = (strchr (text0, '.') == NULL && !encoded);
5533 }
5534
5535 /* First, look at the partial symtab symbols. */
5536 {
5537 struct add_partial_datum data;
5538
5539 data.completions = &completions;
5540 data.text = text;
5541 data.text_len = text_len;
5542 data.text0 = text0;
5543 data.word = word;
5544 data.wild_match = wild_match;
5545 data.encoded = encoded;
5546 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5547 }
5548
5549 /* At this point scan through the misc symbol vectors and add each
5550 symbol you find to the list. Eventually we want to ignore
5551 anything that isn't a text symbol (everything else will be
5552 handled by the psymtab code above). */
5553
5554 ALL_MSYMBOLS (objfile, msymbol)
5555 {
5556 QUIT;
5557 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5558 text, text_len, text0, word, wild_match, encoded);
5559 }
5560
5561 /* Search upwards from currently selected frame (so that we can
5562 complete on local vars. */
5563
5564 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5565 {
5566 if (!BLOCK_SUPERBLOCK (b))
5567 surrounding_static_block = b; /* For elmin of dups */
5568
5569 ALL_BLOCK_SYMBOLS (b, iter, sym)
5570 {
5571 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5572 text, text_len, text0, word,
5573 wild_match, encoded);
5574 }
5575 }
5576
5577 /* Go through the symtabs and check the externs and statics for
5578 symbols which match. */
5579
5580 ALL_SYMTABS (objfile, s)
5581 {
5582 QUIT;
5583 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5584 ALL_BLOCK_SYMBOLS (b, iter, sym)
5585 {
5586 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5587 text, text_len, text0, word,
5588 wild_match, encoded);
5589 }
5590 }
5591
5592 ALL_SYMTABS (objfile, s)
5593 {
5594 QUIT;
5595 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5596 /* Don't do this block twice. */
5597 if (b == surrounding_static_block)
5598 continue;
5599 ALL_BLOCK_SYMBOLS (b, iter, sym)
5600 {
5601 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5602 text, text_len, text0, word,
5603 wild_match, encoded);
5604 }
5605 }
5606
5607 /* Append the closing NULL entry. */
5608 VEC_safe_push (char_ptr, completions, NULL);
5609
5610 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5611 return the copy. It's unfortunate that we have to make a copy
5612 of an array that we're about to destroy, but there is nothing much
5613 we can do about it. Fortunately, it's typically not a very large
5614 array. */
5615 {
5616 const size_t completions_size =
5617 VEC_length (char_ptr, completions) * sizeof (char *);
5618 char **result = malloc (completions_size);
5619
5620 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5621
5622 VEC_free (char_ptr, completions);
5623 return result;
5624 }
5625 }
5626
5627 /* Field Access */
5628
5629 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5630 for tagged types. */
5631
5632 static int
5633 ada_is_dispatch_table_ptr_type (struct type *type)
5634 {
5635 char *name;
5636
5637 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5638 return 0;
5639
5640 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5641 if (name == NULL)
5642 return 0;
5643
5644 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5645 }
5646
5647 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5648 to be invisible to users. */
5649
5650 int
5651 ada_is_ignored_field (struct type *type, int field_num)
5652 {
5653 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5654 return 1;
5655
5656 /* Check the name of that field. */
5657 {
5658 const char *name = TYPE_FIELD_NAME (type, field_num);
5659
5660 /* Anonymous field names should not be printed.
5661 brobecker/2007-02-20: I don't think this can actually happen
5662 but we don't want to print the value of annonymous fields anyway. */
5663 if (name == NULL)
5664 return 1;
5665
5666 /* A field named "_parent" is internally generated by GNAT for
5667 tagged types, and should not be printed either. */
5668 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5669 return 1;
5670 }
5671
5672 /* If this is the dispatch table of a tagged type, then ignore. */
5673 if (ada_is_tagged_type (type, 1)
5674 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5675 return 1;
5676
5677 /* Not a special field, so it should not be ignored. */
5678 return 0;
5679 }
5680
5681 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5682 pointer or reference type whose ultimate target has a tag field. */
5683
5684 int
5685 ada_is_tagged_type (struct type *type, int refok)
5686 {
5687 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5688 }
5689
5690 /* True iff TYPE represents the type of X'Tag */
5691
5692 int
5693 ada_is_tag_type (struct type *type)
5694 {
5695 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5696 return 0;
5697 else
5698 {
5699 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5700
5701 return (name != NULL
5702 && strcmp (name, "ada__tags__dispatch_table") == 0);
5703 }
5704 }
5705
5706 /* The type of the tag on VAL. */
5707
5708 struct type *
5709 ada_tag_type (struct value *val)
5710 {
5711 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5712 }
5713
5714 /* The value of the tag on VAL. */
5715
5716 struct value *
5717 ada_value_tag (struct value *val)
5718 {
5719 return ada_value_struct_elt (val, "_tag", 0);
5720 }
5721
5722 /* The value of the tag on the object of type TYPE whose contents are
5723 saved at VALADDR, if it is non-null, or is at memory address
5724 ADDRESS. */
5725
5726 static struct value *
5727 value_tag_from_contents_and_address (struct type *type,
5728 const gdb_byte *valaddr,
5729 CORE_ADDR address)
5730 {
5731 int tag_byte_offset;
5732 struct type *tag_type;
5733
5734 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5735 NULL, NULL, NULL))
5736 {
5737 const gdb_byte *valaddr1 = ((valaddr == NULL)
5738 ? NULL
5739 : valaddr + tag_byte_offset);
5740 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5741
5742 return value_from_contents_and_address (tag_type, valaddr1, address1);
5743 }
5744 return NULL;
5745 }
5746
5747 static struct type *
5748 type_from_tag (struct value *tag)
5749 {
5750 const char *type_name = ada_tag_name (tag);
5751
5752 if (type_name != NULL)
5753 return ada_find_any_type (ada_encode (type_name));
5754 return NULL;
5755 }
5756
5757 struct tag_args
5758 {
5759 struct value *tag;
5760 char *name;
5761 };
5762
5763
5764 static int ada_tag_name_1 (void *);
5765 static int ada_tag_name_2 (struct tag_args *);
5766
5767 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5768 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5769 The value stored in ARGS->name is valid until the next call to
5770 ada_tag_name_1. */
5771
5772 static int
5773 ada_tag_name_1 (void *args0)
5774 {
5775 struct tag_args *args = (struct tag_args *) args0;
5776 static char name[1024];
5777 char *p;
5778 struct value *val;
5779
5780 args->name = NULL;
5781 val = ada_value_struct_elt (args->tag, "tsd", 1);
5782 if (val == NULL)
5783 return ada_tag_name_2 (args);
5784 val = ada_value_struct_elt (val, "expanded_name", 1);
5785 if (val == NULL)
5786 return 0;
5787 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5788 for (p = name; *p != '\0'; p += 1)
5789 if (isalpha (*p))
5790 *p = tolower (*p);
5791 args->name = name;
5792 return 0;
5793 }
5794
5795 /* Return the "ada__tags__type_specific_data" type. */
5796
5797 static struct type *
5798 ada_get_tsd_type (struct inferior *inf)
5799 {
5800 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5801
5802 if (data->tsd_type == 0)
5803 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5804 return data->tsd_type;
5805 }
5806
5807 /* Utility function for ada_tag_name_1 that tries the second
5808 representation for the dispatch table (in which there is no
5809 explicit 'tsd' field in the referent of the tag pointer, and instead
5810 the tsd pointer is stored just before the dispatch table. */
5811
5812 static int
5813 ada_tag_name_2 (struct tag_args *args)
5814 {
5815 struct type *info_type;
5816 static char name[1024];
5817 char *p;
5818 struct value *val, *valp;
5819
5820 args->name = NULL;
5821 info_type = ada_get_tsd_type (current_inferior());
5822 if (info_type == NULL)
5823 return 0;
5824 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5825 valp = value_cast (info_type, args->tag);
5826 if (valp == NULL)
5827 return 0;
5828 val = value_ind (value_ptradd (valp, -1));
5829 if (val == NULL)
5830 return 0;
5831 val = ada_value_struct_elt (val, "expanded_name", 1);
5832 if (val == NULL)
5833 return 0;
5834 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5835 for (p = name; *p != '\0'; p += 1)
5836 if (isalpha (*p))
5837 *p = tolower (*p);
5838 args->name = name;
5839 return 0;
5840 }
5841
5842 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5843 a C string. */
5844
5845 const char *
5846 ada_tag_name (struct value *tag)
5847 {
5848 struct tag_args args;
5849
5850 if (!ada_is_tag_type (value_type (tag)))
5851 return NULL;
5852 args.tag = tag;
5853 args.name = NULL;
5854 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5855 return args.name;
5856 }
5857
5858 /* The parent type of TYPE, or NULL if none. */
5859
5860 struct type *
5861 ada_parent_type (struct type *type)
5862 {
5863 int i;
5864
5865 type = ada_check_typedef (type);
5866
5867 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5868 return NULL;
5869
5870 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5871 if (ada_is_parent_field (type, i))
5872 {
5873 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5874
5875 /* If the _parent field is a pointer, then dereference it. */
5876 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5877 parent_type = TYPE_TARGET_TYPE (parent_type);
5878 /* If there is a parallel XVS type, get the actual base type. */
5879 parent_type = ada_get_base_type (parent_type);
5880
5881 return ada_check_typedef (parent_type);
5882 }
5883
5884 return NULL;
5885 }
5886
5887 /* True iff field number FIELD_NUM of structure type TYPE contains the
5888 parent-type (inherited) fields of a derived type. Assumes TYPE is
5889 a structure type with at least FIELD_NUM+1 fields. */
5890
5891 int
5892 ada_is_parent_field (struct type *type, int field_num)
5893 {
5894 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5895
5896 return (name != NULL
5897 && (strncmp (name, "PARENT", 6) == 0
5898 || strncmp (name, "_parent", 7) == 0));
5899 }
5900
5901 /* True iff field number FIELD_NUM of structure type TYPE is a
5902 transparent wrapper field (which should be silently traversed when doing
5903 field selection and flattened when printing). Assumes TYPE is a
5904 structure type with at least FIELD_NUM+1 fields. Such fields are always
5905 structures. */
5906
5907 int
5908 ada_is_wrapper_field (struct type *type, int field_num)
5909 {
5910 const char *name = TYPE_FIELD_NAME (type, field_num);
5911
5912 return (name != NULL
5913 && (strncmp (name, "PARENT", 6) == 0
5914 || strcmp (name, "REP") == 0
5915 || strncmp (name, "_parent", 7) == 0
5916 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5917 }
5918
5919 /* True iff field number FIELD_NUM of structure or union type TYPE
5920 is a variant wrapper. Assumes TYPE is a structure type with at least
5921 FIELD_NUM+1 fields. */
5922
5923 int
5924 ada_is_variant_part (struct type *type, int field_num)
5925 {
5926 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5927
5928 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5929 || (is_dynamic_field (type, field_num)
5930 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5931 == TYPE_CODE_UNION)));
5932 }
5933
5934 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5935 whose discriminants are contained in the record type OUTER_TYPE,
5936 returns the type of the controlling discriminant for the variant.
5937 May return NULL if the type could not be found. */
5938
5939 struct type *
5940 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5941 {
5942 char *name = ada_variant_discrim_name (var_type);
5943
5944 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5945 }
5946
5947 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5948 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5949 represents a 'when others' clause; otherwise 0. */
5950
5951 int
5952 ada_is_others_clause (struct type *type, int field_num)
5953 {
5954 const char *name = TYPE_FIELD_NAME (type, field_num);
5955
5956 return (name != NULL && name[0] == 'O');
5957 }
5958
5959 /* Assuming that TYPE0 is the type of the variant part of a record,
5960 returns the name of the discriminant controlling the variant.
5961 The value is valid until the next call to ada_variant_discrim_name. */
5962
5963 char *
5964 ada_variant_discrim_name (struct type *type0)
5965 {
5966 static char *result = NULL;
5967 static size_t result_len = 0;
5968 struct type *type;
5969 const char *name;
5970 const char *discrim_end;
5971 const char *discrim_start;
5972
5973 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5974 type = TYPE_TARGET_TYPE (type0);
5975 else
5976 type = type0;
5977
5978 name = ada_type_name (type);
5979
5980 if (name == NULL || name[0] == '\000')
5981 return "";
5982
5983 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5984 discrim_end -= 1)
5985 {
5986 if (strncmp (discrim_end, "___XVN", 6) == 0)
5987 break;
5988 }
5989 if (discrim_end == name)
5990 return "";
5991
5992 for (discrim_start = discrim_end; discrim_start != name + 3;
5993 discrim_start -= 1)
5994 {
5995 if (discrim_start == name + 1)
5996 return "";
5997 if ((discrim_start > name + 3
5998 && strncmp (discrim_start - 3, "___", 3) == 0)
5999 || discrim_start[-1] == '.')
6000 break;
6001 }
6002
6003 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6004 strncpy (result, discrim_start, discrim_end - discrim_start);
6005 result[discrim_end - discrim_start] = '\0';
6006 return result;
6007 }
6008
6009 /* Scan STR for a subtype-encoded number, beginning at position K.
6010 Put the position of the character just past the number scanned in
6011 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6012 Return 1 if there was a valid number at the given position, and 0
6013 otherwise. A "subtype-encoded" number consists of the absolute value
6014 in decimal, followed by the letter 'm' to indicate a negative number.
6015 Assumes 0m does not occur. */
6016
6017 int
6018 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6019 {
6020 ULONGEST RU;
6021
6022 if (!isdigit (str[k]))
6023 return 0;
6024
6025 /* Do it the hard way so as not to make any assumption about
6026 the relationship of unsigned long (%lu scan format code) and
6027 LONGEST. */
6028 RU = 0;
6029 while (isdigit (str[k]))
6030 {
6031 RU = RU * 10 + (str[k] - '0');
6032 k += 1;
6033 }
6034
6035 if (str[k] == 'm')
6036 {
6037 if (R != NULL)
6038 *R = (-(LONGEST) (RU - 1)) - 1;
6039 k += 1;
6040 }
6041 else if (R != NULL)
6042 *R = (LONGEST) RU;
6043
6044 /* NOTE on the above: Technically, C does not say what the results of
6045 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6046 number representable as a LONGEST (although either would probably work
6047 in most implementations). When RU>0, the locution in the then branch
6048 above is always equivalent to the negative of RU. */
6049
6050 if (new_k != NULL)
6051 *new_k = k;
6052 return 1;
6053 }
6054
6055 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6056 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6057 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6058
6059 int
6060 ada_in_variant (LONGEST val, struct type *type, int field_num)
6061 {
6062 const char *name = TYPE_FIELD_NAME (type, field_num);
6063 int p;
6064
6065 p = 0;
6066 while (1)
6067 {
6068 switch (name[p])
6069 {
6070 case '\0':
6071 return 0;
6072 case 'S':
6073 {
6074 LONGEST W;
6075
6076 if (!ada_scan_number (name, p + 1, &W, &p))
6077 return 0;
6078 if (val == W)
6079 return 1;
6080 break;
6081 }
6082 case 'R':
6083 {
6084 LONGEST L, U;
6085
6086 if (!ada_scan_number (name, p + 1, &L, &p)
6087 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6088 return 0;
6089 if (val >= L && val <= U)
6090 return 1;
6091 break;
6092 }
6093 case 'O':
6094 return 1;
6095 default:
6096 return 0;
6097 }
6098 }
6099 }
6100
6101 /* FIXME: Lots of redundancy below. Try to consolidate. */
6102
6103 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6104 ARG_TYPE, extract and return the value of one of its (non-static)
6105 fields. FIELDNO says which field. Differs from value_primitive_field
6106 only in that it can handle packed values of arbitrary type. */
6107
6108 static struct value *
6109 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6110 struct type *arg_type)
6111 {
6112 struct type *type;
6113
6114 arg_type = ada_check_typedef (arg_type);
6115 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6116
6117 /* Handle packed fields. */
6118
6119 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6120 {
6121 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6122 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6123
6124 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6125 offset + bit_pos / 8,
6126 bit_pos % 8, bit_size, type);
6127 }
6128 else
6129 return value_primitive_field (arg1, offset, fieldno, arg_type);
6130 }
6131
6132 /* Find field with name NAME in object of type TYPE. If found,
6133 set the following for each argument that is non-null:
6134 - *FIELD_TYPE_P to the field's type;
6135 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6136 an object of that type;
6137 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6138 - *BIT_SIZE_P to its size in bits if the field is packed, and
6139 0 otherwise;
6140 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6141 fields up to but not including the desired field, or by the total
6142 number of fields if not found. A NULL value of NAME never
6143 matches; the function just counts visible fields in this case.
6144
6145 Returns 1 if found, 0 otherwise. */
6146
6147 static int
6148 find_struct_field (char *name, struct type *type, int offset,
6149 struct type **field_type_p,
6150 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6151 int *index_p)
6152 {
6153 int i;
6154
6155 type = ada_check_typedef (type);
6156
6157 if (field_type_p != NULL)
6158 *field_type_p = NULL;
6159 if (byte_offset_p != NULL)
6160 *byte_offset_p = 0;
6161 if (bit_offset_p != NULL)
6162 *bit_offset_p = 0;
6163 if (bit_size_p != NULL)
6164 *bit_size_p = 0;
6165
6166 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6167 {
6168 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6169 int fld_offset = offset + bit_pos / 8;
6170 char *t_field_name = TYPE_FIELD_NAME (type, i);
6171
6172 if (t_field_name == NULL)
6173 continue;
6174
6175 else if (name != NULL && field_name_match (t_field_name, name))
6176 {
6177 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6178
6179 if (field_type_p != NULL)
6180 *field_type_p = TYPE_FIELD_TYPE (type, i);
6181 if (byte_offset_p != NULL)
6182 *byte_offset_p = fld_offset;
6183 if (bit_offset_p != NULL)
6184 *bit_offset_p = bit_pos % 8;
6185 if (bit_size_p != NULL)
6186 *bit_size_p = bit_size;
6187 return 1;
6188 }
6189 else if (ada_is_wrapper_field (type, i))
6190 {
6191 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6192 field_type_p, byte_offset_p, bit_offset_p,
6193 bit_size_p, index_p))
6194 return 1;
6195 }
6196 else if (ada_is_variant_part (type, i))
6197 {
6198 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6199 fixed type?? */
6200 int j;
6201 struct type *field_type
6202 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6203
6204 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6205 {
6206 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6207 fld_offset
6208 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6209 field_type_p, byte_offset_p,
6210 bit_offset_p, bit_size_p, index_p))
6211 return 1;
6212 }
6213 }
6214 else if (index_p != NULL)
6215 *index_p += 1;
6216 }
6217 return 0;
6218 }
6219
6220 /* Number of user-visible fields in record type TYPE. */
6221
6222 static int
6223 num_visible_fields (struct type *type)
6224 {
6225 int n;
6226
6227 n = 0;
6228 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6229 return n;
6230 }
6231
6232 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6233 and search in it assuming it has (class) type TYPE.
6234 If found, return value, else return NULL.
6235
6236 Searches recursively through wrapper fields (e.g., '_parent'). */
6237
6238 static struct value *
6239 ada_search_struct_field (char *name, struct value *arg, int offset,
6240 struct type *type)
6241 {
6242 int i;
6243
6244 type = ada_check_typedef (type);
6245 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6246 {
6247 char *t_field_name = TYPE_FIELD_NAME (type, i);
6248
6249 if (t_field_name == NULL)
6250 continue;
6251
6252 else if (field_name_match (t_field_name, name))
6253 return ada_value_primitive_field (arg, offset, i, type);
6254
6255 else if (ada_is_wrapper_field (type, i))
6256 {
6257 struct value *v = /* Do not let indent join lines here. */
6258 ada_search_struct_field (name, arg,
6259 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6260 TYPE_FIELD_TYPE (type, i));
6261
6262 if (v != NULL)
6263 return v;
6264 }
6265
6266 else if (ada_is_variant_part (type, i))
6267 {
6268 /* PNH: Do we ever get here? See find_struct_field. */
6269 int j;
6270 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6271 i));
6272 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6273
6274 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6275 {
6276 struct value *v = ada_search_struct_field /* Force line
6277 break. */
6278 (name, arg,
6279 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6280 TYPE_FIELD_TYPE (field_type, j));
6281
6282 if (v != NULL)
6283 return v;
6284 }
6285 }
6286 }
6287 return NULL;
6288 }
6289
6290 static struct value *ada_index_struct_field_1 (int *, struct value *,
6291 int, struct type *);
6292
6293
6294 /* Return field #INDEX in ARG, where the index is that returned by
6295 * find_struct_field through its INDEX_P argument. Adjust the address
6296 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6297 * If found, return value, else return NULL. */
6298
6299 static struct value *
6300 ada_index_struct_field (int index, struct value *arg, int offset,
6301 struct type *type)
6302 {
6303 return ada_index_struct_field_1 (&index, arg, offset, type);
6304 }
6305
6306
6307 /* Auxiliary function for ada_index_struct_field. Like
6308 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6309 * *INDEX_P. */
6310
6311 static struct value *
6312 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6313 struct type *type)
6314 {
6315 int i;
6316 type = ada_check_typedef (type);
6317
6318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6319 {
6320 if (TYPE_FIELD_NAME (type, i) == NULL)
6321 continue;
6322 else if (ada_is_wrapper_field (type, i))
6323 {
6324 struct value *v = /* Do not let indent join lines here. */
6325 ada_index_struct_field_1 (index_p, arg,
6326 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6327 TYPE_FIELD_TYPE (type, i));
6328
6329 if (v != NULL)
6330 return v;
6331 }
6332
6333 else if (ada_is_variant_part (type, i))
6334 {
6335 /* PNH: Do we ever get here? See ada_search_struct_field,
6336 find_struct_field. */
6337 error (_("Cannot assign this kind of variant record"));
6338 }
6339 else if (*index_p == 0)
6340 return ada_value_primitive_field (arg, offset, i, type);
6341 else
6342 *index_p -= 1;
6343 }
6344 return NULL;
6345 }
6346
6347 /* Given ARG, a value of type (pointer or reference to a)*
6348 structure/union, extract the component named NAME from the ultimate
6349 target structure/union and return it as a value with its
6350 appropriate type.
6351
6352 The routine searches for NAME among all members of the structure itself
6353 and (recursively) among all members of any wrapper members
6354 (e.g., '_parent').
6355
6356 If NO_ERR, then simply return NULL in case of error, rather than
6357 calling error. */
6358
6359 struct value *
6360 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6361 {
6362 struct type *t, *t1;
6363 struct value *v;
6364
6365 v = NULL;
6366 t1 = t = ada_check_typedef (value_type (arg));
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 {
6369 t1 = TYPE_TARGET_TYPE (t);
6370 if (t1 == NULL)
6371 goto BadValue;
6372 t1 = ada_check_typedef (t1);
6373 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6374 {
6375 arg = coerce_ref (arg);
6376 t = t1;
6377 }
6378 }
6379
6380 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6381 {
6382 t1 = TYPE_TARGET_TYPE (t);
6383 if (t1 == NULL)
6384 goto BadValue;
6385 t1 = ada_check_typedef (t1);
6386 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6387 {
6388 arg = value_ind (arg);
6389 t = t1;
6390 }
6391 else
6392 break;
6393 }
6394
6395 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6396 goto BadValue;
6397
6398 if (t1 == t)
6399 v = ada_search_struct_field (name, arg, 0, t);
6400 else
6401 {
6402 int bit_offset, bit_size, byte_offset;
6403 struct type *field_type;
6404 CORE_ADDR address;
6405
6406 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6407 address = value_as_address (arg);
6408 else
6409 address = unpack_pointer (t, value_contents (arg));
6410
6411 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6412 if (find_struct_field (name, t1, 0,
6413 &field_type, &byte_offset, &bit_offset,
6414 &bit_size, NULL))
6415 {
6416 if (bit_size != 0)
6417 {
6418 if (TYPE_CODE (t) == TYPE_CODE_REF)
6419 arg = ada_coerce_ref (arg);
6420 else
6421 arg = ada_value_ind (arg);
6422 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6423 bit_offset, bit_size,
6424 field_type);
6425 }
6426 else
6427 v = value_at_lazy (field_type, address + byte_offset);
6428 }
6429 }
6430
6431 if (v != NULL || no_err)
6432 return v;
6433 else
6434 error (_("There is no member named %s."), name);
6435
6436 BadValue:
6437 if (no_err)
6438 return NULL;
6439 else
6440 error (_("Attempt to extract a component of "
6441 "a value that is not a record."));
6442 }
6443
6444 /* Given a type TYPE, look up the type of the component of type named NAME.
6445 If DISPP is non-null, add its byte displacement from the beginning of a
6446 structure (pointed to by a value) of type TYPE to *DISPP (does not
6447 work for packed fields).
6448
6449 Matches any field whose name has NAME as a prefix, possibly
6450 followed by "___".
6451
6452 TYPE can be either a struct or union. If REFOK, TYPE may also
6453 be a (pointer or reference)+ to a struct or union, and the
6454 ultimate target type will be searched.
6455
6456 Looks recursively into variant clauses and parent types.
6457
6458 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6459 TYPE is not a type of the right kind. */
6460
6461 static struct type *
6462 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6463 int noerr, int *dispp)
6464 {
6465 int i;
6466
6467 if (name == NULL)
6468 goto BadName;
6469
6470 if (refok && type != NULL)
6471 while (1)
6472 {
6473 type = ada_check_typedef (type);
6474 if (TYPE_CODE (type) != TYPE_CODE_PTR
6475 && TYPE_CODE (type) != TYPE_CODE_REF)
6476 break;
6477 type = TYPE_TARGET_TYPE (type);
6478 }
6479
6480 if (type == NULL
6481 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6482 && TYPE_CODE (type) != TYPE_CODE_UNION))
6483 {
6484 if (noerr)
6485 return NULL;
6486 else
6487 {
6488 target_terminal_ours ();
6489 gdb_flush (gdb_stdout);
6490 if (type == NULL)
6491 error (_("Type (null) is not a structure or union type"));
6492 else
6493 {
6494 /* XXX: type_sprint */
6495 fprintf_unfiltered (gdb_stderr, _("Type "));
6496 type_print (type, "", gdb_stderr, -1);
6497 error (_(" is not a structure or union type"));
6498 }
6499 }
6500 }
6501
6502 type = to_static_fixed_type (type);
6503
6504 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6505 {
6506 char *t_field_name = TYPE_FIELD_NAME (type, i);
6507 struct type *t;
6508 int disp;
6509
6510 if (t_field_name == NULL)
6511 continue;
6512
6513 else if (field_name_match (t_field_name, name))
6514 {
6515 if (dispp != NULL)
6516 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6517 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6518 }
6519
6520 else if (ada_is_wrapper_field (type, i))
6521 {
6522 disp = 0;
6523 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6524 0, 1, &disp);
6525 if (t != NULL)
6526 {
6527 if (dispp != NULL)
6528 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6529 return t;
6530 }
6531 }
6532
6533 else if (ada_is_variant_part (type, i))
6534 {
6535 int j;
6536 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6537 i));
6538
6539 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6540 {
6541 /* FIXME pnh 2008/01/26: We check for a field that is
6542 NOT wrapped in a struct, since the compiler sometimes
6543 generates these for unchecked variant types. Revisit
6544 if the compiler changes this practice. */
6545 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6546 disp = 0;
6547 if (v_field_name != NULL
6548 && field_name_match (v_field_name, name))
6549 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6550 else
6551 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6552 j),
6553 name, 0, 1, &disp);
6554
6555 if (t != NULL)
6556 {
6557 if (dispp != NULL)
6558 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6559 return t;
6560 }
6561 }
6562 }
6563
6564 }
6565
6566 BadName:
6567 if (!noerr)
6568 {
6569 target_terminal_ours ();
6570 gdb_flush (gdb_stdout);
6571 if (name == NULL)
6572 {
6573 /* XXX: type_sprint */
6574 fprintf_unfiltered (gdb_stderr, _("Type "));
6575 type_print (type, "", gdb_stderr, -1);
6576 error (_(" has no component named <null>"));
6577 }
6578 else
6579 {
6580 /* XXX: type_sprint */
6581 fprintf_unfiltered (gdb_stderr, _("Type "));
6582 type_print (type, "", gdb_stderr, -1);
6583 error (_(" has no component named %s"), name);
6584 }
6585 }
6586
6587 return NULL;
6588 }
6589
6590 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6591 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6592 represents an unchecked union (that is, the variant part of a
6593 record that is named in an Unchecked_Union pragma). */
6594
6595 static int
6596 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6597 {
6598 char *discrim_name = ada_variant_discrim_name (var_type);
6599
6600 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6601 == NULL);
6602 }
6603
6604
6605 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6606 within a value of type OUTER_TYPE that is stored in GDB at
6607 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6608 numbering from 0) is applicable. Returns -1 if none are. */
6609
6610 int
6611 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6612 const gdb_byte *outer_valaddr)
6613 {
6614 int others_clause;
6615 int i;
6616 char *discrim_name = ada_variant_discrim_name (var_type);
6617 struct value *outer;
6618 struct value *discrim;
6619 LONGEST discrim_val;
6620
6621 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6622 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6623 if (discrim == NULL)
6624 return -1;
6625 discrim_val = value_as_long (discrim);
6626
6627 others_clause = -1;
6628 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6629 {
6630 if (ada_is_others_clause (var_type, i))
6631 others_clause = i;
6632 else if (ada_in_variant (discrim_val, var_type, i))
6633 return i;
6634 }
6635
6636 return others_clause;
6637 }
6638 \f
6639
6640
6641 /* Dynamic-Sized Records */
6642
6643 /* Strategy: The type ostensibly attached to a value with dynamic size
6644 (i.e., a size that is not statically recorded in the debugging
6645 data) does not accurately reflect the size or layout of the value.
6646 Our strategy is to convert these values to values with accurate,
6647 conventional types that are constructed on the fly. */
6648
6649 /* There is a subtle and tricky problem here. In general, we cannot
6650 determine the size of dynamic records without its data. However,
6651 the 'struct value' data structure, which GDB uses to represent
6652 quantities in the inferior process (the target), requires the size
6653 of the type at the time of its allocation in order to reserve space
6654 for GDB's internal copy of the data. That's why the
6655 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6656 rather than struct value*s.
6657
6658 However, GDB's internal history variables ($1, $2, etc.) are
6659 struct value*s containing internal copies of the data that are not, in
6660 general, the same as the data at their corresponding addresses in
6661 the target. Fortunately, the types we give to these values are all
6662 conventional, fixed-size types (as per the strategy described
6663 above), so that we don't usually have to perform the
6664 'to_fixed_xxx_type' conversions to look at their values.
6665 Unfortunately, there is one exception: if one of the internal
6666 history variables is an array whose elements are unconstrained
6667 records, then we will need to create distinct fixed types for each
6668 element selected. */
6669
6670 /* The upshot of all of this is that many routines take a (type, host
6671 address, target address) triple as arguments to represent a value.
6672 The host address, if non-null, is supposed to contain an internal
6673 copy of the relevant data; otherwise, the program is to consult the
6674 target at the target address. */
6675
6676 /* Assuming that VAL0 represents a pointer value, the result of
6677 dereferencing it. Differs from value_ind in its treatment of
6678 dynamic-sized types. */
6679
6680 struct value *
6681 ada_value_ind (struct value *val0)
6682 {
6683 struct value *val = unwrap_value (value_ind (val0));
6684
6685 return ada_to_fixed_value (val);
6686 }
6687
6688 /* The value resulting from dereferencing any "reference to"
6689 qualifiers on VAL0. */
6690
6691 static struct value *
6692 ada_coerce_ref (struct value *val0)
6693 {
6694 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6695 {
6696 struct value *val = val0;
6697
6698 val = coerce_ref (val);
6699 val = unwrap_value (val);
6700 return ada_to_fixed_value (val);
6701 }
6702 else
6703 return val0;
6704 }
6705
6706 /* Return OFF rounded upward if necessary to a multiple of
6707 ALIGNMENT (a power of 2). */
6708
6709 static unsigned int
6710 align_value (unsigned int off, unsigned int alignment)
6711 {
6712 return (off + alignment - 1) & ~(alignment - 1);
6713 }
6714
6715 /* Return the bit alignment required for field #F of template type TYPE. */
6716
6717 static unsigned int
6718 field_alignment (struct type *type, int f)
6719 {
6720 const char *name = TYPE_FIELD_NAME (type, f);
6721 int len;
6722 int align_offset;
6723
6724 /* The field name should never be null, unless the debugging information
6725 is somehow malformed. In this case, we assume the field does not
6726 require any alignment. */
6727 if (name == NULL)
6728 return 1;
6729
6730 len = strlen (name);
6731
6732 if (!isdigit (name[len - 1]))
6733 return 1;
6734
6735 if (isdigit (name[len - 2]))
6736 align_offset = len - 2;
6737 else
6738 align_offset = len - 1;
6739
6740 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6741 return TARGET_CHAR_BIT;
6742
6743 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6744 }
6745
6746 /* Find a symbol named NAME. Ignores ambiguity. */
6747
6748 struct symbol *
6749 ada_find_any_symbol (const char *name)
6750 {
6751 struct symbol *sym;
6752
6753 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6754 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6755 return sym;
6756
6757 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6758 return sym;
6759 }
6760
6761 /* Find a type named NAME. Ignores ambiguity. This routine will look
6762 solely for types defined by debug info, it will not search the GDB
6763 primitive types. */
6764
6765 struct type *
6766 ada_find_any_type (const char *name)
6767 {
6768 struct symbol *sym = ada_find_any_symbol (name);
6769
6770 if (sym != NULL)
6771 return SYMBOL_TYPE (sym);
6772
6773 return NULL;
6774 }
6775
6776 /* Given NAME and an associated BLOCK, search all symbols for
6777 NAME suffixed with "___XR", which is the ``renaming'' symbol
6778 associated to NAME. Return this symbol if found, return
6779 NULL otherwise. */
6780
6781 struct symbol *
6782 ada_find_renaming_symbol (const char *name, struct block *block)
6783 {
6784 struct symbol *sym;
6785
6786 sym = find_old_style_renaming_symbol (name, block);
6787
6788 if (sym != NULL)
6789 return sym;
6790
6791 /* Not right yet. FIXME pnh 7/20/2007. */
6792 sym = ada_find_any_symbol (name);
6793 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6794 return sym;
6795 else
6796 return NULL;
6797 }
6798
6799 static struct symbol *
6800 find_old_style_renaming_symbol (const char *name, struct block *block)
6801 {
6802 const struct symbol *function_sym = block_linkage_function (block);
6803 char *rename;
6804
6805 if (function_sym != NULL)
6806 {
6807 /* If the symbol is defined inside a function, NAME is not fully
6808 qualified. This means we need to prepend the function name
6809 as well as adding the ``___XR'' suffix to build the name of
6810 the associated renaming symbol. */
6811 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6812 /* Function names sometimes contain suffixes used
6813 for instance to qualify nested subprograms. When building
6814 the XR type name, we need to make sure that this suffix is
6815 not included. So do not include any suffix in the function
6816 name length below. */
6817 int function_name_len = ada_name_prefix_len (function_name);
6818 const int rename_len = function_name_len + 2 /* "__" */
6819 + strlen (name) + 6 /* "___XR\0" */ ;
6820
6821 /* Strip the suffix if necessary. */
6822 ada_remove_trailing_digits (function_name, &function_name_len);
6823 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6824 ada_remove_Xbn_suffix (function_name, &function_name_len);
6825
6826 /* Library-level functions are a special case, as GNAT adds
6827 a ``_ada_'' prefix to the function name to avoid namespace
6828 pollution. However, the renaming symbols themselves do not
6829 have this prefix, so we need to skip this prefix if present. */
6830 if (function_name_len > 5 /* "_ada_" */
6831 && strstr (function_name, "_ada_") == function_name)
6832 {
6833 function_name += 5;
6834 function_name_len -= 5;
6835 }
6836
6837 rename = (char *) alloca (rename_len * sizeof (char));
6838 strncpy (rename, function_name, function_name_len);
6839 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6840 "__%s___XR", name);
6841 }
6842 else
6843 {
6844 const int rename_len = strlen (name) + 6;
6845
6846 rename = (char *) alloca (rename_len * sizeof (char));
6847 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6848 }
6849
6850 return ada_find_any_symbol (rename);
6851 }
6852
6853 /* Because of GNAT encoding conventions, several GDB symbols may match a
6854 given type name. If the type denoted by TYPE0 is to be preferred to
6855 that of TYPE1 for purposes of type printing, return non-zero;
6856 otherwise return 0. */
6857
6858 int
6859 ada_prefer_type (struct type *type0, struct type *type1)
6860 {
6861 if (type1 == NULL)
6862 return 1;
6863 else if (type0 == NULL)
6864 return 0;
6865 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6866 return 1;
6867 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6868 return 0;
6869 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6870 return 1;
6871 else if (ada_is_constrained_packed_array_type (type0))
6872 return 1;
6873 else if (ada_is_array_descriptor_type (type0)
6874 && !ada_is_array_descriptor_type (type1))
6875 return 1;
6876 else
6877 {
6878 const char *type0_name = type_name_no_tag (type0);
6879 const char *type1_name = type_name_no_tag (type1);
6880
6881 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6882 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6883 return 1;
6884 }
6885 return 0;
6886 }
6887
6888 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6889 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6890
6891 char *
6892 ada_type_name (struct type *type)
6893 {
6894 if (type == NULL)
6895 return NULL;
6896 else if (TYPE_NAME (type) != NULL)
6897 return TYPE_NAME (type);
6898 else
6899 return TYPE_TAG_NAME (type);
6900 }
6901
6902 /* Search the list of "descriptive" types associated to TYPE for a type
6903 whose name is NAME. */
6904
6905 static struct type *
6906 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6907 {
6908 struct type *result;
6909
6910 /* If there no descriptive-type info, then there is no parallel type
6911 to be found. */
6912 if (!HAVE_GNAT_AUX_INFO (type))
6913 return NULL;
6914
6915 result = TYPE_DESCRIPTIVE_TYPE (type);
6916 while (result != NULL)
6917 {
6918 char *result_name = ada_type_name (result);
6919
6920 if (result_name == NULL)
6921 {
6922 warning (_("unexpected null name on descriptive type"));
6923 return NULL;
6924 }
6925
6926 /* If the names match, stop. */
6927 if (strcmp (result_name, name) == 0)
6928 break;
6929
6930 /* Otherwise, look at the next item on the list, if any. */
6931 if (HAVE_GNAT_AUX_INFO (result))
6932 result = TYPE_DESCRIPTIVE_TYPE (result);
6933 else
6934 result = NULL;
6935 }
6936
6937 /* If we didn't find a match, see whether this is a packed array. With
6938 older compilers, the descriptive type information is either absent or
6939 irrelevant when it comes to packed arrays so the above lookup fails.
6940 Fall back to using a parallel lookup by name in this case. */
6941 if (result == NULL && ada_is_constrained_packed_array_type (type))
6942 return ada_find_any_type (name);
6943
6944 return result;
6945 }
6946
6947 /* Find a parallel type to TYPE with the specified NAME, using the
6948 descriptive type taken from the debugging information, if available,
6949 and otherwise using the (slower) name-based method. */
6950
6951 static struct type *
6952 ada_find_parallel_type_with_name (struct type *type, const char *name)
6953 {
6954 struct type *result = NULL;
6955
6956 if (HAVE_GNAT_AUX_INFO (type))
6957 result = find_parallel_type_by_descriptive_type (type, name);
6958 else
6959 result = ada_find_any_type (name);
6960
6961 return result;
6962 }
6963
6964 /* Same as above, but specify the name of the parallel type by appending
6965 SUFFIX to the name of TYPE. */
6966
6967 struct type *
6968 ada_find_parallel_type (struct type *type, const char *suffix)
6969 {
6970 char *name, *typename = ada_type_name (type);
6971 int len;
6972
6973 if (typename == NULL)
6974 return NULL;
6975
6976 len = strlen (typename);
6977
6978 name = (char *) alloca (len + strlen (suffix) + 1);
6979
6980 strcpy (name, typename);
6981 strcpy (name + len, suffix);
6982
6983 return ada_find_parallel_type_with_name (type, name);
6984 }
6985
6986 /* If TYPE is a variable-size record type, return the corresponding template
6987 type describing its fields. Otherwise, return NULL. */
6988
6989 static struct type *
6990 dynamic_template_type (struct type *type)
6991 {
6992 type = ada_check_typedef (type);
6993
6994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6995 || ada_type_name (type) == NULL)
6996 return NULL;
6997 else
6998 {
6999 int len = strlen (ada_type_name (type));
7000
7001 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7002 return type;
7003 else
7004 return ada_find_parallel_type (type, "___XVE");
7005 }
7006 }
7007
7008 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7009 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7010
7011 static int
7012 is_dynamic_field (struct type *templ_type, int field_num)
7013 {
7014 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7015
7016 return name != NULL
7017 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7018 && strstr (name, "___XVL") != NULL;
7019 }
7020
7021 /* The index of the variant field of TYPE, or -1 if TYPE does not
7022 represent a variant record type. */
7023
7024 static int
7025 variant_field_index (struct type *type)
7026 {
7027 int f;
7028
7029 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7030 return -1;
7031
7032 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7033 {
7034 if (ada_is_variant_part (type, f))
7035 return f;
7036 }
7037 return -1;
7038 }
7039
7040 /* A record type with no fields. */
7041
7042 static struct type *
7043 empty_record (struct type *template)
7044 {
7045 struct type *type = alloc_type_copy (template);
7046
7047 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7048 TYPE_NFIELDS (type) = 0;
7049 TYPE_FIELDS (type) = NULL;
7050 INIT_CPLUS_SPECIFIC (type);
7051 TYPE_NAME (type) = "<empty>";
7052 TYPE_TAG_NAME (type) = NULL;
7053 TYPE_LENGTH (type) = 0;
7054 return type;
7055 }
7056
7057 /* An ordinary record type (with fixed-length fields) that describes
7058 the value of type TYPE at VALADDR or ADDRESS (see comments at
7059 the beginning of this section) VAL according to GNAT conventions.
7060 DVAL0 should describe the (portion of a) record that contains any
7061 necessary discriminants. It should be NULL if value_type (VAL) is
7062 an outer-level type (i.e., as opposed to a branch of a variant.) A
7063 variant field (unless unchecked) is replaced by a particular branch
7064 of the variant.
7065
7066 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7067 length are not statically known are discarded. As a consequence,
7068 VALADDR, ADDRESS and DVAL0 are ignored.
7069
7070 NOTE: Limitations: For now, we assume that dynamic fields and
7071 variants occupy whole numbers of bytes. However, they need not be
7072 byte-aligned. */
7073
7074 struct type *
7075 ada_template_to_fixed_record_type_1 (struct type *type,
7076 const gdb_byte *valaddr,
7077 CORE_ADDR address, struct value *dval0,
7078 int keep_dynamic_fields)
7079 {
7080 struct value *mark = value_mark ();
7081 struct value *dval;
7082 struct type *rtype;
7083 int nfields, bit_len;
7084 int variant_field;
7085 long off;
7086 int fld_bit_len;
7087 int f;
7088
7089 /* Compute the number of fields in this record type that are going
7090 to be processed: unless keep_dynamic_fields, this includes only
7091 fields whose position and length are static will be processed. */
7092 if (keep_dynamic_fields)
7093 nfields = TYPE_NFIELDS (type);
7094 else
7095 {
7096 nfields = 0;
7097 while (nfields < TYPE_NFIELDS (type)
7098 && !ada_is_variant_part (type, nfields)
7099 && !is_dynamic_field (type, nfields))
7100 nfields++;
7101 }
7102
7103 rtype = alloc_type_copy (type);
7104 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7105 INIT_CPLUS_SPECIFIC (rtype);
7106 TYPE_NFIELDS (rtype) = nfields;
7107 TYPE_FIELDS (rtype) = (struct field *)
7108 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7109 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7110 TYPE_NAME (rtype) = ada_type_name (type);
7111 TYPE_TAG_NAME (rtype) = NULL;
7112 TYPE_FIXED_INSTANCE (rtype) = 1;
7113
7114 off = 0;
7115 bit_len = 0;
7116 variant_field = -1;
7117
7118 for (f = 0; f < nfields; f += 1)
7119 {
7120 off = align_value (off, field_alignment (type, f))
7121 + TYPE_FIELD_BITPOS (type, f);
7122 TYPE_FIELD_BITPOS (rtype, f) = off;
7123 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7124
7125 if (ada_is_variant_part (type, f))
7126 {
7127 variant_field = f;
7128 fld_bit_len = 0;
7129 }
7130 else if (is_dynamic_field (type, f))
7131 {
7132 const gdb_byte *field_valaddr = valaddr;
7133 CORE_ADDR field_address = address;
7134 struct type *field_type =
7135 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7136
7137 if (dval0 == NULL)
7138 {
7139 /* rtype's length is computed based on the run-time
7140 value of discriminants. If the discriminants are not
7141 initialized, the type size may be completely bogus and
7142 GDB may fail to allocate a value for it. So check the
7143 size first before creating the value. */
7144 check_size (rtype);
7145 dval = value_from_contents_and_address (rtype, valaddr, address);
7146 }
7147 else
7148 dval = dval0;
7149
7150 /* If the type referenced by this field is an aligner type, we need
7151 to unwrap that aligner type, because its size might not be set.
7152 Keeping the aligner type would cause us to compute the wrong
7153 size for this field, impacting the offset of the all the fields
7154 that follow this one. */
7155 if (ada_is_aligner_type (field_type))
7156 {
7157 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7158
7159 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7160 field_address = cond_offset_target (field_address, field_offset);
7161 field_type = ada_aligned_type (field_type);
7162 }
7163
7164 field_valaddr = cond_offset_host (field_valaddr,
7165 off / TARGET_CHAR_BIT);
7166 field_address = cond_offset_target (field_address,
7167 off / TARGET_CHAR_BIT);
7168
7169 /* Get the fixed type of the field. Note that, in this case,
7170 we do not want to get the real type out of the tag: if
7171 the current field is the parent part of a tagged record,
7172 we will get the tag of the object. Clearly wrong: the real
7173 type of the parent is not the real type of the child. We
7174 would end up in an infinite loop. */
7175 field_type = ada_get_base_type (field_type);
7176 field_type = ada_to_fixed_type (field_type, field_valaddr,
7177 field_address, dval, 0);
7178 /* If the field size is already larger than the maximum
7179 object size, then the record itself will necessarily
7180 be larger than the maximum object size. We need to make
7181 this check now, because the size might be so ridiculously
7182 large (due to an uninitialized variable in the inferior)
7183 that it would cause an overflow when adding it to the
7184 record size. */
7185 check_size (field_type);
7186
7187 TYPE_FIELD_TYPE (rtype, f) = field_type;
7188 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7189 /* The multiplication can potentially overflow. But because
7190 the field length has been size-checked just above, and
7191 assuming that the maximum size is a reasonable value,
7192 an overflow should not happen in practice. So rather than
7193 adding overflow recovery code to this already complex code,
7194 we just assume that it's not going to happen. */
7195 fld_bit_len =
7196 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7197 }
7198 else
7199 {
7200 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7201
7202 /* If our field is a typedef type (most likely a typedef of
7203 a fat pointer, encoding an array access), then we need to
7204 look at its target type to determine its characteristics.
7205 In particular, we would miscompute the field size if we took
7206 the size of the typedef (zero), instead of the size of
7207 the target type. */
7208 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7209 field_type = ada_typedef_target_type (field_type);
7210
7211 TYPE_FIELD_TYPE (rtype, f) = field_type;
7212 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7213 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7214 fld_bit_len =
7215 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7216 else
7217 fld_bit_len =
7218 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7219 }
7220 if (off + fld_bit_len > bit_len)
7221 bit_len = off + fld_bit_len;
7222 off += fld_bit_len;
7223 TYPE_LENGTH (rtype) =
7224 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7225 }
7226
7227 /* We handle the variant part, if any, at the end because of certain
7228 odd cases in which it is re-ordered so as NOT to be the last field of
7229 the record. This can happen in the presence of representation
7230 clauses. */
7231 if (variant_field >= 0)
7232 {
7233 struct type *branch_type;
7234
7235 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7236
7237 if (dval0 == NULL)
7238 dval = value_from_contents_and_address (rtype, valaddr, address);
7239 else
7240 dval = dval0;
7241
7242 branch_type =
7243 to_fixed_variant_branch_type
7244 (TYPE_FIELD_TYPE (type, variant_field),
7245 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7246 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7247 if (branch_type == NULL)
7248 {
7249 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7250 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7251 TYPE_NFIELDS (rtype) -= 1;
7252 }
7253 else
7254 {
7255 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7256 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7257 fld_bit_len =
7258 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7259 TARGET_CHAR_BIT;
7260 if (off + fld_bit_len > bit_len)
7261 bit_len = off + fld_bit_len;
7262 TYPE_LENGTH (rtype) =
7263 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7264 }
7265 }
7266
7267 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7268 should contain the alignment of that record, which should be a strictly
7269 positive value. If null or negative, then something is wrong, most
7270 probably in the debug info. In that case, we don't round up the size
7271 of the resulting type. If this record is not part of another structure,
7272 the current RTYPE length might be good enough for our purposes. */
7273 if (TYPE_LENGTH (type) <= 0)
7274 {
7275 if (TYPE_NAME (rtype))
7276 warning (_("Invalid type size for `%s' detected: %d."),
7277 TYPE_NAME (rtype), TYPE_LENGTH (type));
7278 else
7279 warning (_("Invalid type size for <unnamed> detected: %d."),
7280 TYPE_LENGTH (type));
7281 }
7282 else
7283 {
7284 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7285 TYPE_LENGTH (type));
7286 }
7287
7288 value_free_to_mark (mark);
7289 if (TYPE_LENGTH (rtype) > varsize_limit)
7290 error (_("record type with dynamic size is larger than varsize-limit"));
7291 return rtype;
7292 }
7293
7294 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7295 of 1. */
7296
7297 static struct type *
7298 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7299 CORE_ADDR address, struct value *dval0)
7300 {
7301 return ada_template_to_fixed_record_type_1 (type, valaddr,
7302 address, dval0, 1);
7303 }
7304
7305 /* An ordinary record type in which ___XVL-convention fields and
7306 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7307 static approximations, containing all possible fields. Uses
7308 no runtime values. Useless for use in values, but that's OK,
7309 since the results are used only for type determinations. Works on both
7310 structs and unions. Representation note: to save space, we memorize
7311 the result of this function in the TYPE_TARGET_TYPE of the
7312 template type. */
7313
7314 static struct type *
7315 template_to_static_fixed_type (struct type *type0)
7316 {
7317 struct type *type;
7318 int nfields;
7319 int f;
7320
7321 if (TYPE_TARGET_TYPE (type0) != NULL)
7322 return TYPE_TARGET_TYPE (type0);
7323
7324 nfields = TYPE_NFIELDS (type0);
7325 type = type0;
7326
7327 for (f = 0; f < nfields; f += 1)
7328 {
7329 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7330 struct type *new_type;
7331
7332 if (is_dynamic_field (type0, f))
7333 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7334 else
7335 new_type = static_unwrap_type (field_type);
7336 if (type == type0 && new_type != field_type)
7337 {
7338 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7339 TYPE_CODE (type) = TYPE_CODE (type0);
7340 INIT_CPLUS_SPECIFIC (type);
7341 TYPE_NFIELDS (type) = nfields;
7342 TYPE_FIELDS (type) = (struct field *)
7343 TYPE_ALLOC (type, nfields * sizeof (struct field));
7344 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7345 sizeof (struct field) * nfields);
7346 TYPE_NAME (type) = ada_type_name (type0);
7347 TYPE_TAG_NAME (type) = NULL;
7348 TYPE_FIXED_INSTANCE (type) = 1;
7349 TYPE_LENGTH (type) = 0;
7350 }
7351 TYPE_FIELD_TYPE (type, f) = new_type;
7352 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7353 }
7354 return type;
7355 }
7356
7357 /* Given an object of type TYPE whose contents are at VALADDR and
7358 whose address in memory is ADDRESS, returns a revision of TYPE,
7359 which should be a non-dynamic-sized record, in which the variant
7360 part, if any, is replaced with the appropriate branch. Looks
7361 for discriminant values in DVAL0, which can be NULL if the record
7362 contains the necessary discriminant values. */
7363
7364 static struct type *
7365 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7366 CORE_ADDR address, struct value *dval0)
7367 {
7368 struct value *mark = value_mark ();
7369 struct value *dval;
7370 struct type *rtype;
7371 struct type *branch_type;
7372 int nfields = TYPE_NFIELDS (type);
7373 int variant_field = variant_field_index (type);
7374
7375 if (variant_field == -1)
7376 return type;
7377
7378 if (dval0 == NULL)
7379 dval = value_from_contents_and_address (type, valaddr, address);
7380 else
7381 dval = dval0;
7382
7383 rtype = alloc_type_copy (type);
7384 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7385 INIT_CPLUS_SPECIFIC (rtype);
7386 TYPE_NFIELDS (rtype) = nfields;
7387 TYPE_FIELDS (rtype) =
7388 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7389 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7390 sizeof (struct field) * nfields);
7391 TYPE_NAME (rtype) = ada_type_name (type);
7392 TYPE_TAG_NAME (rtype) = NULL;
7393 TYPE_FIXED_INSTANCE (rtype) = 1;
7394 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7395
7396 branch_type = to_fixed_variant_branch_type
7397 (TYPE_FIELD_TYPE (type, variant_field),
7398 cond_offset_host (valaddr,
7399 TYPE_FIELD_BITPOS (type, variant_field)
7400 / TARGET_CHAR_BIT),
7401 cond_offset_target (address,
7402 TYPE_FIELD_BITPOS (type, variant_field)
7403 / TARGET_CHAR_BIT), dval);
7404 if (branch_type == NULL)
7405 {
7406 int f;
7407
7408 for (f = variant_field + 1; f < nfields; f += 1)
7409 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7410 TYPE_NFIELDS (rtype) -= 1;
7411 }
7412 else
7413 {
7414 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7415 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7416 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7417 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7418 }
7419 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7420
7421 value_free_to_mark (mark);
7422 return rtype;
7423 }
7424
7425 /* An ordinary record type (with fixed-length fields) that describes
7426 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7427 beginning of this section]. Any necessary discriminants' values
7428 should be in DVAL, a record value; it may be NULL if the object
7429 at ADDR itself contains any necessary discriminant values.
7430 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7431 values from the record are needed. Except in the case that DVAL,
7432 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7433 unchecked) is replaced by a particular branch of the variant.
7434
7435 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7436 is questionable and may be removed. It can arise during the
7437 processing of an unconstrained-array-of-record type where all the
7438 variant branches have exactly the same size. This is because in
7439 such cases, the compiler does not bother to use the XVS convention
7440 when encoding the record. I am currently dubious of this
7441 shortcut and suspect the compiler should be altered. FIXME. */
7442
7443 static struct type *
7444 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7445 CORE_ADDR address, struct value *dval)
7446 {
7447 struct type *templ_type;
7448
7449 if (TYPE_FIXED_INSTANCE (type0))
7450 return type0;
7451
7452 templ_type = dynamic_template_type (type0);
7453
7454 if (templ_type != NULL)
7455 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7456 else if (variant_field_index (type0) >= 0)
7457 {
7458 if (dval == NULL && valaddr == NULL && address == 0)
7459 return type0;
7460 return to_record_with_fixed_variant_part (type0, valaddr, address,
7461 dval);
7462 }
7463 else
7464 {
7465 TYPE_FIXED_INSTANCE (type0) = 1;
7466 return type0;
7467 }
7468
7469 }
7470
7471 /* An ordinary record type (with fixed-length fields) that describes
7472 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7473 union type. Any necessary discriminants' values should be in DVAL,
7474 a record value. That is, this routine selects the appropriate
7475 branch of the union at ADDR according to the discriminant value
7476 indicated in the union's type name. Returns VAR_TYPE0 itself if
7477 it represents a variant subject to a pragma Unchecked_Union. */
7478
7479 static struct type *
7480 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7481 CORE_ADDR address, struct value *dval)
7482 {
7483 int which;
7484 struct type *templ_type;
7485 struct type *var_type;
7486
7487 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7488 var_type = TYPE_TARGET_TYPE (var_type0);
7489 else
7490 var_type = var_type0;
7491
7492 templ_type = ada_find_parallel_type (var_type, "___XVU");
7493
7494 if (templ_type != NULL)
7495 var_type = templ_type;
7496
7497 if (is_unchecked_variant (var_type, value_type (dval)))
7498 return var_type0;
7499 which =
7500 ada_which_variant_applies (var_type,
7501 value_type (dval), value_contents (dval));
7502
7503 if (which < 0)
7504 return empty_record (var_type);
7505 else if (is_dynamic_field (var_type, which))
7506 return to_fixed_record_type
7507 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7508 valaddr, address, dval);
7509 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7510 return
7511 to_fixed_record_type
7512 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7513 else
7514 return TYPE_FIELD_TYPE (var_type, which);
7515 }
7516
7517 /* Assuming that TYPE0 is an array type describing the type of a value
7518 at ADDR, and that DVAL describes a record containing any
7519 discriminants used in TYPE0, returns a type for the value that
7520 contains no dynamic components (that is, no components whose sizes
7521 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7522 true, gives an error message if the resulting type's size is over
7523 varsize_limit. */
7524
7525 static struct type *
7526 to_fixed_array_type (struct type *type0, struct value *dval,
7527 int ignore_too_big)
7528 {
7529 struct type *index_type_desc;
7530 struct type *result;
7531 int constrained_packed_array_p;
7532
7533 if (TYPE_FIXED_INSTANCE (type0))
7534 return type0;
7535
7536 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7537 if (constrained_packed_array_p)
7538 type0 = decode_constrained_packed_array_type (type0);
7539
7540 index_type_desc = ada_find_parallel_type (type0, "___XA");
7541 ada_fixup_array_indexes_type (index_type_desc);
7542 if (index_type_desc == NULL)
7543 {
7544 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7545
7546 /* NOTE: elt_type---the fixed version of elt_type0---should never
7547 depend on the contents of the array in properly constructed
7548 debugging data. */
7549 /* Create a fixed version of the array element type.
7550 We're not providing the address of an element here,
7551 and thus the actual object value cannot be inspected to do
7552 the conversion. This should not be a problem, since arrays of
7553 unconstrained objects are not allowed. In particular, all
7554 the elements of an array of a tagged type should all be of
7555 the same type specified in the debugging info. No need to
7556 consult the object tag. */
7557 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7558
7559 /* Make sure we always create a new array type when dealing with
7560 packed array types, since we're going to fix-up the array
7561 type length and element bitsize a little further down. */
7562 if (elt_type0 == elt_type && !constrained_packed_array_p)
7563 result = type0;
7564 else
7565 result = create_array_type (alloc_type_copy (type0),
7566 elt_type, TYPE_INDEX_TYPE (type0));
7567 }
7568 else
7569 {
7570 int i;
7571 struct type *elt_type0;
7572
7573 elt_type0 = type0;
7574 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7575 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7576
7577 /* NOTE: result---the fixed version of elt_type0---should never
7578 depend on the contents of the array in properly constructed
7579 debugging data. */
7580 /* Create a fixed version of the array element type.
7581 We're not providing the address of an element here,
7582 and thus the actual object value cannot be inspected to do
7583 the conversion. This should not be a problem, since arrays of
7584 unconstrained objects are not allowed. In particular, all
7585 the elements of an array of a tagged type should all be of
7586 the same type specified in the debugging info. No need to
7587 consult the object tag. */
7588 result =
7589 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7590
7591 elt_type0 = type0;
7592 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7593 {
7594 struct type *range_type =
7595 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7596
7597 result = create_array_type (alloc_type_copy (elt_type0),
7598 result, range_type);
7599 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7600 }
7601 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7602 error (_("array type with dynamic size is larger than varsize-limit"));
7603 }
7604
7605 if (constrained_packed_array_p)
7606 {
7607 /* So far, the resulting type has been created as if the original
7608 type was a regular (non-packed) array type. As a result, the
7609 bitsize of the array elements needs to be set again, and the array
7610 length needs to be recomputed based on that bitsize. */
7611 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7612 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7613
7614 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7615 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7616 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7617 TYPE_LENGTH (result)++;
7618 }
7619
7620 TYPE_FIXED_INSTANCE (result) = 1;
7621 return result;
7622 }
7623
7624
7625 /* A standard type (containing no dynamically sized components)
7626 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7627 DVAL describes a record containing any discriminants used in TYPE0,
7628 and may be NULL if there are none, or if the object of type TYPE at
7629 ADDRESS or in VALADDR contains these discriminants.
7630
7631 If CHECK_TAG is not null, in the case of tagged types, this function
7632 attempts to locate the object's tag and use it to compute the actual
7633 type. However, when ADDRESS is null, we cannot use it to determine the
7634 location of the tag, and therefore compute the tagged type's actual type.
7635 So we return the tagged type without consulting the tag. */
7636
7637 static struct type *
7638 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7639 CORE_ADDR address, struct value *dval, int check_tag)
7640 {
7641 type = ada_check_typedef (type);
7642 switch (TYPE_CODE (type))
7643 {
7644 default:
7645 return type;
7646 case TYPE_CODE_STRUCT:
7647 {
7648 struct type *static_type = to_static_fixed_type (type);
7649 struct type *fixed_record_type =
7650 to_fixed_record_type (type, valaddr, address, NULL);
7651
7652 /* If STATIC_TYPE is a tagged type and we know the object's address,
7653 then we can determine its tag, and compute the object's actual
7654 type from there. Note that we have to use the fixed record
7655 type (the parent part of the record may have dynamic fields
7656 and the way the location of _tag is expressed may depend on
7657 them). */
7658
7659 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7660 {
7661 struct type *real_type =
7662 type_from_tag (value_tag_from_contents_and_address
7663 (fixed_record_type,
7664 valaddr,
7665 address));
7666
7667 if (real_type != NULL)
7668 return to_fixed_record_type (real_type, valaddr, address, NULL);
7669 }
7670
7671 /* Check to see if there is a parallel ___XVZ variable.
7672 If there is, then it provides the actual size of our type. */
7673 else if (ada_type_name (fixed_record_type) != NULL)
7674 {
7675 char *name = ada_type_name (fixed_record_type);
7676 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7677 int xvz_found = 0;
7678 LONGEST size;
7679
7680 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7681 size = get_int_var_value (xvz_name, &xvz_found);
7682 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7683 {
7684 fixed_record_type = copy_type (fixed_record_type);
7685 TYPE_LENGTH (fixed_record_type) = size;
7686
7687 /* The FIXED_RECORD_TYPE may have be a stub. We have
7688 observed this when the debugging info is STABS, and
7689 apparently it is something that is hard to fix.
7690
7691 In practice, we don't need the actual type definition
7692 at all, because the presence of the XVZ variable allows us
7693 to assume that there must be a XVS type as well, which we
7694 should be able to use later, when we need the actual type
7695 definition.
7696
7697 In the meantime, pretend that the "fixed" type we are
7698 returning is NOT a stub, because this can cause trouble
7699 when using this type to create new types targeting it.
7700 Indeed, the associated creation routines often check
7701 whether the target type is a stub and will try to replace
7702 it, thus using a type with the wrong size. This, in turn,
7703 might cause the new type to have the wrong size too.
7704 Consider the case of an array, for instance, where the size
7705 of the array is computed from the number of elements in
7706 our array multiplied by the size of its element. */
7707 TYPE_STUB (fixed_record_type) = 0;
7708 }
7709 }
7710 return fixed_record_type;
7711 }
7712 case TYPE_CODE_ARRAY:
7713 return to_fixed_array_type (type, dval, 1);
7714 case TYPE_CODE_UNION:
7715 if (dval == NULL)
7716 return type;
7717 else
7718 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7719 }
7720 }
7721
7722 /* The same as ada_to_fixed_type_1, except that it preserves the type
7723 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7724
7725 The typedef layer needs be preserved in order to differentiate between
7726 arrays and array pointers when both types are implemented using the same
7727 fat pointer. In the array pointer case, the pointer is encoded as
7728 a typedef of the pointer type. For instance, considering:
7729
7730 type String_Access is access String;
7731 S1 : String_Access := null;
7732
7733 To the debugger, S1 is defined as a typedef of type String. But
7734 to the user, it is a pointer. So if the user tries to print S1,
7735 we should not dereference the array, but print the array address
7736 instead.
7737
7738 If we didn't preserve the typedef layer, we would lose the fact that
7739 the type is to be presented as a pointer (needs de-reference before
7740 being printed). And we would also use the source-level type name. */
7741
7742 struct type *
7743 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7744 CORE_ADDR address, struct value *dval, int check_tag)
7745
7746 {
7747 struct type *fixed_type =
7748 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7749
7750 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7751 then preserve the typedef layer.
7752
7753 Implementation note: We can only check the main-type portion of
7754 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7755 from TYPE now returns a type that has the same instance flags
7756 as TYPE. For instance, if TYPE is a "typedef const", and its
7757 target type is a "struct", then the typedef elimination will return
7758 a "const" version of the target type. See check_typedef for more
7759 details about how the typedef layer elimination is done.
7760
7761 brobecker/2010-11-19: It seems to me that the only case where it is
7762 useful to preserve the typedef layer is when dealing with fat pointers.
7763 Perhaps, we could add a check for that and preserve the typedef layer
7764 only in that situation. But this seems unecessary so far, probably
7765 because we call check_typedef/ada_check_typedef pretty much everywhere.
7766 */
7767 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7768 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7769 == TYPE_MAIN_TYPE (fixed_type)))
7770 return type;
7771
7772 return fixed_type;
7773 }
7774
7775 /* A standard (static-sized) type corresponding as well as possible to
7776 TYPE0, but based on no runtime data. */
7777
7778 static struct type *
7779 to_static_fixed_type (struct type *type0)
7780 {
7781 struct type *type;
7782
7783 if (type0 == NULL)
7784 return NULL;
7785
7786 if (TYPE_FIXED_INSTANCE (type0))
7787 return type0;
7788
7789 type0 = ada_check_typedef (type0);
7790
7791 switch (TYPE_CODE (type0))
7792 {
7793 default:
7794 return type0;
7795 case TYPE_CODE_STRUCT:
7796 type = dynamic_template_type (type0);
7797 if (type != NULL)
7798 return template_to_static_fixed_type (type);
7799 else
7800 return template_to_static_fixed_type (type0);
7801 case TYPE_CODE_UNION:
7802 type = ada_find_parallel_type (type0, "___XVU");
7803 if (type != NULL)
7804 return template_to_static_fixed_type (type);
7805 else
7806 return template_to_static_fixed_type (type0);
7807 }
7808 }
7809
7810 /* A static approximation of TYPE with all type wrappers removed. */
7811
7812 static struct type *
7813 static_unwrap_type (struct type *type)
7814 {
7815 if (ada_is_aligner_type (type))
7816 {
7817 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7818 if (ada_type_name (type1) == NULL)
7819 TYPE_NAME (type1) = ada_type_name (type);
7820
7821 return static_unwrap_type (type1);
7822 }
7823 else
7824 {
7825 struct type *raw_real_type = ada_get_base_type (type);
7826
7827 if (raw_real_type == type)
7828 return type;
7829 else
7830 return to_static_fixed_type (raw_real_type);
7831 }
7832 }
7833
7834 /* In some cases, incomplete and private types require
7835 cross-references that are not resolved as records (for example,
7836 type Foo;
7837 type FooP is access Foo;
7838 V: FooP;
7839 type Foo is array ...;
7840 ). In these cases, since there is no mechanism for producing
7841 cross-references to such types, we instead substitute for FooP a
7842 stub enumeration type that is nowhere resolved, and whose tag is
7843 the name of the actual type. Call these types "non-record stubs". */
7844
7845 /* A type equivalent to TYPE that is not a non-record stub, if one
7846 exists, otherwise TYPE. */
7847
7848 struct type *
7849 ada_check_typedef (struct type *type)
7850 {
7851 if (type == NULL)
7852 return NULL;
7853
7854 /* If our type is a typedef type of a fat pointer, then we're done.
7855 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7856 what allows us to distinguish between fat pointers that represent
7857 array types, and fat pointers that represent array access types
7858 (in both cases, the compiler implements them as fat pointers). */
7859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7860 && is_thick_pntr (ada_typedef_target_type (type)))
7861 return type;
7862
7863 CHECK_TYPEDEF (type);
7864 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7865 || !TYPE_STUB (type)
7866 || TYPE_TAG_NAME (type) == NULL)
7867 return type;
7868 else
7869 {
7870 char *name = TYPE_TAG_NAME (type);
7871 struct type *type1 = ada_find_any_type (name);
7872
7873 if (type1 == NULL)
7874 return type;
7875
7876 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7877 stubs pointing to arrays, as we don't create symbols for array
7878 types, only for the typedef-to-array types). If that's the case,
7879 strip the typedef layer. */
7880 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7881 type1 = ada_check_typedef (type1);
7882
7883 return type1;
7884 }
7885 }
7886
7887 /* A value representing the data at VALADDR/ADDRESS as described by
7888 type TYPE0, but with a standard (static-sized) type that correctly
7889 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7890 type, then return VAL0 [this feature is simply to avoid redundant
7891 creation of struct values]. */
7892
7893 static struct value *
7894 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7895 struct value *val0)
7896 {
7897 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7898
7899 if (type == type0 && val0 != NULL)
7900 return val0;
7901 else
7902 return value_from_contents_and_address (type, 0, address);
7903 }
7904
7905 /* A value representing VAL, but with a standard (static-sized) type
7906 that correctly describes it. Does not necessarily create a new
7907 value. */
7908
7909 struct value *
7910 ada_to_fixed_value (struct value *val)
7911 {
7912 return ada_to_fixed_value_create (value_type (val),
7913 value_address (val),
7914 val);
7915 }
7916 \f
7917
7918 /* Attributes */
7919
7920 /* Table mapping attribute numbers to names.
7921 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7922
7923 static const char *attribute_names[] = {
7924 "<?>",
7925
7926 "first",
7927 "last",
7928 "length",
7929 "image",
7930 "max",
7931 "min",
7932 "modulus",
7933 "pos",
7934 "size",
7935 "tag",
7936 "val",
7937 0
7938 };
7939
7940 const char *
7941 ada_attribute_name (enum exp_opcode n)
7942 {
7943 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7944 return attribute_names[n - OP_ATR_FIRST + 1];
7945 else
7946 return attribute_names[0];
7947 }
7948
7949 /* Evaluate the 'POS attribute applied to ARG. */
7950
7951 static LONGEST
7952 pos_atr (struct value *arg)
7953 {
7954 struct value *val = coerce_ref (arg);
7955 struct type *type = value_type (val);
7956
7957 if (!discrete_type_p (type))
7958 error (_("'POS only defined on discrete types"));
7959
7960 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7961 {
7962 int i;
7963 LONGEST v = value_as_long (val);
7964
7965 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7966 {
7967 if (v == TYPE_FIELD_BITPOS (type, i))
7968 return i;
7969 }
7970 error (_("enumeration value is invalid: can't find 'POS"));
7971 }
7972 else
7973 return value_as_long (val);
7974 }
7975
7976 static struct value *
7977 value_pos_atr (struct type *type, struct value *arg)
7978 {
7979 return value_from_longest (type, pos_atr (arg));
7980 }
7981
7982 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7983
7984 static struct value *
7985 value_val_atr (struct type *type, struct value *arg)
7986 {
7987 if (!discrete_type_p (type))
7988 error (_("'VAL only defined on discrete types"));
7989 if (!integer_type_p (value_type (arg)))
7990 error (_("'VAL requires integral argument"));
7991
7992 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7993 {
7994 long pos = value_as_long (arg);
7995
7996 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7997 error (_("argument to 'VAL out of range"));
7998 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7999 }
8000 else
8001 return value_from_longest (type, value_as_long (arg));
8002 }
8003 \f
8004
8005 /* Evaluation */
8006
8007 /* True if TYPE appears to be an Ada character type.
8008 [At the moment, this is true only for Character and Wide_Character;
8009 It is a heuristic test that could stand improvement]. */
8010
8011 int
8012 ada_is_character_type (struct type *type)
8013 {
8014 const char *name;
8015
8016 /* If the type code says it's a character, then assume it really is,
8017 and don't check any further. */
8018 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8019 return 1;
8020
8021 /* Otherwise, assume it's a character type iff it is a discrete type
8022 with a known character type name. */
8023 name = ada_type_name (type);
8024 return (name != NULL
8025 && (TYPE_CODE (type) == TYPE_CODE_INT
8026 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8027 && (strcmp (name, "character") == 0
8028 || strcmp (name, "wide_character") == 0
8029 || strcmp (name, "wide_wide_character") == 0
8030 || strcmp (name, "unsigned char") == 0));
8031 }
8032
8033 /* True if TYPE appears to be an Ada string type. */
8034
8035 int
8036 ada_is_string_type (struct type *type)
8037 {
8038 type = ada_check_typedef (type);
8039 if (type != NULL
8040 && TYPE_CODE (type) != TYPE_CODE_PTR
8041 && (ada_is_simple_array_type (type)
8042 || ada_is_array_descriptor_type (type))
8043 && ada_array_arity (type) == 1)
8044 {
8045 struct type *elttype = ada_array_element_type (type, 1);
8046
8047 return ada_is_character_type (elttype);
8048 }
8049 else
8050 return 0;
8051 }
8052
8053 /* The compiler sometimes provides a parallel XVS type for a given
8054 PAD type. Normally, it is safe to follow the PAD type directly,
8055 but older versions of the compiler have a bug that causes the offset
8056 of its "F" field to be wrong. Following that field in that case
8057 would lead to incorrect results, but this can be worked around
8058 by ignoring the PAD type and using the associated XVS type instead.
8059
8060 Set to True if the debugger should trust the contents of PAD types.
8061 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8062 static int trust_pad_over_xvs = 1;
8063
8064 /* True if TYPE is a struct type introduced by the compiler to force the
8065 alignment of a value. Such types have a single field with a
8066 distinctive name. */
8067
8068 int
8069 ada_is_aligner_type (struct type *type)
8070 {
8071 type = ada_check_typedef (type);
8072
8073 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8074 return 0;
8075
8076 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8077 && TYPE_NFIELDS (type) == 1
8078 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8079 }
8080
8081 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8082 the parallel type. */
8083
8084 struct type *
8085 ada_get_base_type (struct type *raw_type)
8086 {
8087 struct type *real_type_namer;
8088 struct type *raw_real_type;
8089
8090 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8091 return raw_type;
8092
8093 if (ada_is_aligner_type (raw_type))
8094 /* The encoding specifies that we should always use the aligner type.
8095 So, even if this aligner type has an associated XVS type, we should
8096 simply ignore it.
8097
8098 According to the compiler gurus, an XVS type parallel to an aligner
8099 type may exist because of a stabs limitation. In stabs, aligner
8100 types are empty because the field has a variable-sized type, and
8101 thus cannot actually be used as an aligner type. As a result,
8102 we need the associated parallel XVS type to decode the type.
8103 Since the policy in the compiler is to not change the internal
8104 representation based on the debugging info format, we sometimes
8105 end up having a redundant XVS type parallel to the aligner type. */
8106 return raw_type;
8107
8108 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8109 if (real_type_namer == NULL
8110 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8111 || TYPE_NFIELDS (real_type_namer) != 1)
8112 return raw_type;
8113
8114 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8115 {
8116 /* This is an older encoding form where the base type needs to be
8117 looked up by name. We prefer the newer enconding because it is
8118 more efficient. */
8119 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8120 if (raw_real_type == NULL)
8121 return raw_type;
8122 else
8123 return raw_real_type;
8124 }
8125
8126 /* The field in our XVS type is a reference to the base type. */
8127 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8128 }
8129
8130 /* The type of value designated by TYPE, with all aligners removed. */
8131
8132 struct type *
8133 ada_aligned_type (struct type *type)
8134 {
8135 if (ada_is_aligner_type (type))
8136 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8137 else
8138 return ada_get_base_type (type);
8139 }
8140
8141
8142 /* The address of the aligned value in an object at address VALADDR
8143 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8144
8145 const gdb_byte *
8146 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8147 {
8148 if (ada_is_aligner_type (type))
8149 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8150 valaddr +
8151 TYPE_FIELD_BITPOS (type,
8152 0) / TARGET_CHAR_BIT);
8153 else
8154 return valaddr;
8155 }
8156
8157
8158
8159 /* The printed representation of an enumeration literal with encoded
8160 name NAME. The value is good to the next call of ada_enum_name. */
8161 const char *
8162 ada_enum_name (const char *name)
8163 {
8164 static char *result;
8165 static size_t result_len = 0;
8166 char *tmp;
8167
8168 /* First, unqualify the enumeration name:
8169 1. Search for the last '.' character. If we find one, then skip
8170 all the preceeding characters, the unqualified name starts
8171 right after that dot.
8172 2. Otherwise, we may be debugging on a target where the compiler
8173 translates dots into "__". Search forward for double underscores,
8174 but stop searching when we hit an overloading suffix, which is
8175 of the form "__" followed by digits. */
8176
8177 tmp = strrchr (name, '.');
8178 if (tmp != NULL)
8179 name = tmp + 1;
8180 else
8181 {
8182 while ((tmp = strstr (name, "__")) != NULL)
8183 {
8184 if (isdigit (tmp[2]))
8185 break;
8186 else
8187 name = tmp + 2;
8188 }
8189 }
8190
8191 if (name[0] == 'Q')
8192 {
8193 int v;
8194
8195 if (name[1] == 'U' || name[1] == 'W')
8196 {
8197 if (sscanf (name + 2, "%x", &v) != 1)
8198 return name;
8199 }
8200 else
8201 return name;
8202
8203 GROW_VECT (result, result_len, 16);
8204 if (isascii (v) && isprint (v))
8205 xsnprintf (result, result_len, "'%c'", v);
8206 else if (name[1] == 'U')
8207 xsnprintf (result, result_len, "[\"%02x\"]", v);
8208 else
8209 xsnprintf (result, result_len, "[\"%04x\"]", v);
8210
8211 return result;
8212 }
8213 else
8214 {
8215 tmp = strstr (name, "__");
8216 if (tmp == NULL)
8217 tmp = strstr (name, "$");
8218 if (tmp != NULL)
8219 {
8220 GROW_VECT (result, result_len, tmp - name + 1);
8221 strncpy (result, name, tmp - name);
8222 result[tmp - name] = '\0';
8223 return result;
8224 }
8225
8226 return name;
8227 }
8228 }
8229
8230 /* Evaluate the subexpression of EXP starting at *POS as for
8231 evaluate_type, updating *POS to point just past the evaluated
8232 expression. */
8233
8234 static struct value *
8235 evaluate_subexp_type (struct expression *exp, int *pos)
8236 {
8237 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8238 }
8239
8240 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8241 value it wraps. */
8242
8243 static struct value *
8244 unwrap_value (struct value *val)
8245 {
8246 struct type *type = ada_check_typedef (value_type (val));
8247
8248 if (ada_is_aligner_type (type))
8249 {
8250 struct value *v = ada_value_struct_elt (val, "F", 0);
8251 struct type *val_type = ada_check_typedef (value_type (v));
8252
8253 if (ada_type_name (val_type) == NULL)
8254 TYPE_NAME (val_type) = ada_type_name (type);
8255
8256 return unwrap_value (v);
8257 }
8258 else
8259 {
8260 struct type *raw_real_type =
8261 ada_check_typedef (ada_get_base_type (type));
8262
8263 /* If there is no parallel XVS or XVE type, then the value is
8264 already unwrapped. Return it without further modification. */
8265 if ((type == raw_real_type)
8266 && ada_find_parallel_type (type, "___XVE") == NULL)
8267 return val;
8268
8269 return
8270 coerce_unspec_val_to_type
8271 (val, ada_to_fixed_type (raw_real_type, 0,
8272 value_address (val),
8273 NULL, 1));
8274 }
8275 }
8276
8277 static struct value *
8278 cast_to_fixed (struct type *type, struct value *arg)
8279 {
8280 LONGEST val;
8281
8282 if (type == value_type (arg))
8283 return arg;
8284 else if (ada_is_fixed_point_type (value_type (arg)))
8285 val = ada_float_to_fixed (type,
8286 ada_fixed_to_float (value_type (arg),
8287 value_as_long (arg)));
8288 else
8289 {
8290 DOUBLEST argd = value_as_double (arg);
8291
8292 val = ada_float_to_fixed (type, argd);
8293 }
8294
8295 return value_from_longest (type, val);
8296 }
8297
8298 static struct value *
8299 cast_from_fixed (struct type *type, struct value *arg)
8300 {
8301 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8302 value_as_long (arg));
8303
8304 return value_from_double (type, val);
8305 }
8306
8307 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8308 return the converted value. */
8309
8310 static struct value *
8311 coerce_for_assign (struct type *type, struct value *val)
8312 {
8313 struct type *type2 = value_type (val);
8314
8315 if (type == type2)
8316 return val;
8317
8318 type2 = ada_check_typedef (type2);
8319 type = ada_check_typedef (type);
8320
8321 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8322 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8323 {
8324 val = ada_value_ind (val);
8325 type2 = value_type (val);
8326 }
8327
8328 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8329 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8330 {
8331 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8332 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8333 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8334 error (_("Incompatible types in assignment"));
8335 deprecated_set_value_type (val, type);
8336 }
8337 return val;
8338 }
8339
8340 static struct value *
8341 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8342 {
8343 struct value *val;
8344 struct type *type1, *type2;
8345 LONGEST v, v1, v2;
8346
8347 arg1 = coerce_ref (arg1);
8348 arg2 = coerce_ref (arg2);
8349 type1 = base_type (ada_check_typedef (value_type (arg1)));
8350 type2 = base_type (ada_check_typedef (value_type (arg2)));
8351
8352 if (TYPE_CODE (type1) != TYPE_CODE_INT
8353 || TYPE_CODE (type2) != TYPE_CODE_INT)
8354 return value_binop (arg1, arg2, op);
8355
8356 switch (op)
8357 {
8358 case BINOP_MOD:
8359 case BINOP_DIV:
8360 case BINOP_REM:
8361 break;
8362 default:
8363 return value_binop (arg1, arg2, op);
8364 }
8365
8366 v2 = value_as_long (arg2);
8367 if (v2 == 0)
8368 error (_("second operand of %s must not be zero."), op_string (op));
8369
8370 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8371 return value_binop (arg1, arg2, op);
8372
8373 v1 = value_as_long (arg1);
8374 switch (op)
8375 {
8376 case BINOP_DIV:
8377 v = v1 / v2;
8378 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8379 v += v > 0 ? -1 : 1;
8380 break;
8381 case BINOP_REM:
8382 v = v1 % v2;
8383 if (v * v1 < 0)
8384 v -= v2;
8385 break;
8386 default:
8387 /* Should not reach this point. */
8388 v = 0;
8389 }
8390
8391 val = allocate_value (type1);
8392 store_unsigned_integer (value_contents_raw (val),
8393 TYPE_LENGTH (value_type (val)),
8394 gdbarch_byte_order (get_type_arch (type1)), v);
8395 return val;
8396 }
8397
8398 static int
8399 ada_value_equal (struct value *arg1, struct value *arg2)
8400 {
8401 if (ada_is_direct_array_type (value_type (arg1))
8402 || ada_is_direct_array_type (value_type (arg2)))
8403 {
8404 /* Automatically dereference any array reference before
8405 we attempt to perform the comparison. */
8406 arg1 = ada_coerce_ref (arg1);
8407 arg2 = ada_coerce_ref (arg2);
8408
8409 arg1 = ada_coerce_to_simple_array (arg1);
8410 arg2 = ada_coerce_to_simple_array (arg2);
8411 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8412 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8413 error (_("Attempt to compare array with non-array"));
8414 /* FIXME: The following works only for types whose
8415 representations use all bits (no padding or undefined bits)
8416 and do not have user-defined equality. */
8417 return
8418 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8419 && memcmp (value_contents (arg1), value_contents (arg2),
8420 TYPE_LENGTH (value_type (arg1))) == 0;
8421 }
8422 return value_equal (arg1, arg2);
8423 }
8424
8425 /* Total number of component associations in the aggregate starting at
8426 index PC in EXP. Assumes that index PC is the start of an
8427 OP_AGGREGATE. */
8428
8429 static int
8430 num_component_specs (struct expression *exp, int pc)
8431 {
8432 int n, m, i;
8433
8434 m = exp->elts[pc + 1].longconst;
8435 pc += 3;
8436 n = 0;
8437 for (i = 0; i < m; i += 1)
8438 {
8439 switch (exp->elts[pc].opcode)
8440 {
8441 default:
8442 n += 1;
8443 break;
8444 case OP_CHOICES:
8445 n += exp->elts[pc + 1].longconst;
8446 break;
8447 }
8448 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8449 }
8450 return n;
8451 }
8452
8453 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8454 component of LHS (a simple array or a record), updating *POS past
8455 the expression, assuming that LHS is contained in CONTAINER. Does
8456 not modify the inferior's memory, nor does it modify LHS (unless
8457 LHS == CONTAINER). */
8458
8459 static void
8460 assign_component (struct value *container, struct value *lhs, LONGEST index,
8461 struct expression *exp, int *pos)
8462 {
8463 struct value *mark = value_mark ();
8464 struct value *elt;
8465
8466 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8467 {
8468 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8469 struct value *index_val = value_from_longest (index_type, index);
8470
8471 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8472 }
8473 else
8474 {
8475 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8476 elt = ada_to_fixed_value (unwrap_value (elt));
8477 }
8478
8479 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8480 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8481 else
8482 value_assign_to_component (container, elt,
8483 ada_evaluate_subexp (NULL, exp, pos,
8484 EVAL_NORMAL));
8485
8486 value_free_to_mark (mark);
8487 }
8488
8489 /* Assuming that LHS represents an lvalue having a record or array
8490 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8491 of that aggregate's value to LHS, advancing *POS past the
8492 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8493 lvalue containing LHS (possibly LHS itself). Does not modify
8494 the inferior's memory, nor does it modify the contents of
8495 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8496
8497 static struct value *
8498 assign_aggregate (struct value *container,
8499 struct value *lhs, struct expression *exp,
8500 int *pos, enum noside noside)
8501 {
8502 struct type *lhs_type;
8503 int n = exp->elts[*pos+1].longconst;
8504 LONGEST low_index, high_index;
8505 int num_specs;
8506 LONGEST *indices;
8507 int max_indices, num_indices;
8508 int is_array_aggregate;
8509 int i;
8510
8511 *pos += 3;
8512 if (noside != EVAL_NORMAL)
8513 {
8514 int i;
8515
8516 for (i = 0; i < n; i += 1)
8517 ada_evaluate_subexp (NULL, exp, pos, noside);
8518 return container;
8519 }
8520
8521 container = ada_coerce_ref (container);
8522 if (ada_is_direct_array_type (value_type (container)))
8523 container = ada_coerce_to_simple_array (container);
8524 lhs = ada_coerce_ref (lhs);
8525 if (!deprecated_value_modifiable (lhs))
8526 error (_("Left operand of assignment is not a modifiable lvalue."));
8527
8528 lhs_type = value_type (lhs);
8529 if (ada_is_direct_array_type (lhs_type))
8530 {
8531 lhs = ada_coerce_to_simple_array (lhs);
8532 lhs_type = value_type (lhs);
8533 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8534 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8535 is_array_aggregate = 1;
8536 }
8537 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8538 {
8539 low_index = 0;
8540 high_index = num_visible_fields (lhs_type) - 1;
8541 is_array_aggregate = 0;
8542 }
8543 else
8544 error (_("Left-hand side must be array or record."));
8545
8546 num_specs = num_component_specs (exp, *pos - 3);
8547 max_indices = 4 * num_specs + 4;
8548 indices = alloca (max_indices * sizeof (indices[0]));
8549 indices[0] = indices[1] = low_index - 1;
8550 indices[2] = indices[3] = high_index + 1;
8551 num_indices = 4;
8552
8553 for (i = 0; i < n; i += 1)
8554 {
8555 switch (exp->elts[*pos].opcode)
8556 {
8557 case OP_CHOICES:
8558 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8559 &num_indices, max_indices,
8560 low_index, high_index);
8561 break;
8562 case OP_POSITIONAL:
8563 aggregate_assign_positional (container, lhs, exp, pos, indices,
8564 &num_indices, max_indices,
8565 low_index, high_index);
8566 break;
8567 case OP_OTHERS:
8568 if (i != n-1)
8569 error (_("Misplaced 'others' clause"));
8570 aggregate_assign_others (container, lhs, exp, pos, indices,
8571 num_indices, low_index, high_index);
8572 break;
8573 default:
8574 error (_("Internal error: bad aggregate clause"));
8575 }
8576 }
8577
8578 return container;
8579 }
8580
8581 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8582 construct at *POS, updating *POS past the construct, given that
8583 the positions are relative to lower bound LOW, where HIGH is the
8584 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8585 updating *NUM_INDICES as needed. CONTAINER is as for
8586 assign_aggregate. */
8587 static void
8588 aggregate_assign_positional (struct value *container,
8589 struct value *lhs, struct expression *exp,
8590 int *pos, LONGEST *indices, int *num_indices,
8591 int max_indices, LONGEST low, LONGEST high)
8592 {
8593 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8594
8595 if (ind - 1 == high)
8596 warning (_("Extra components in aggregate ignored."));
8597 if (ind <= high)
8598 {
8599 add_component_interval (ind, ind, indices, num_indices, max_indices);
8600 *pos += 3;
8601 assign_component (container, lhs, ind, exp, pos);
8602 }
8603 else
8604 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8605 }
8606
8607 /* Assign into the components of LHS indexed by the OP_CHOICES
8608 construct at *POS, updating *POS past the construct, given that
8609 the allowable indices are LOW..HIGH. Record the indices assigned
8610 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8611 needed. CONTAINER is as for assign_aggregate. */
8612 static void
8613 aggregate_assign_from_choices (struct value *container,
8614 struct value *lhs, struct expression *exp,
8615 int *pos, LONGEST *indices, int *num_indices,
8616 int max_indices, LONGEST low, LONGEST high)
8617 {
8618 int j;
8619 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8620 int choice_pos, expr_pc;
8621 int is_array = ada_is_direct_array_type (value_type (lhs));
8622
8623 choice_pos = *pos += 3;
8624
8625 for (j = 0; j < n_choices; j += 1)
8626 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8627 expr_pc = *pos;
8628 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8629
8630 for (j = 0; j < n_choices; j += 1)
8631 {
8632 LONGEST lower, upper;
8633 enum exp_opcode op = exp->elts[choice_pos].opcode;
8634
8635 if (op == OP_DISCRETE_RANGE)
8636 {
8637 choice_pos += 1;
8638 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8639 EVAL_NORMAL));
8640 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8641 EVAL_NORMAL));
8642 }
8643 else if (is_array)
8644 {
8645 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8646 EVAL_NORMAL));
8647 upper = lower;
8648 }
8649 else
8650 {
8651 int ind;
8652 char *name;
8653
8654 switch (op)
8655 {
8656 case OP_NAME:
8657 name = &exp->elts[choice_pos + 2].string;
8658 break;
8659 case OP_VAR_VALUE:
8660 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8661 break;
8662 default:
8663 error (_("Invalid record component association."));
8664 }
8665 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8666 ind = 0;
8667 if (! find_struct_field (name, value_type (lhs), 0,
8668 NULL, NULL, NULL, NULL, &ind))
8669 error (_("Unknown component name: %s."), name);
8670 lower = upper = ind;
8671 }
8672
8673 if (lower <= upper && (lower < low || upper > high))
8674 error (_("Index in component association out of bounds."));
8675
8676 add_component_interval (lower, upper, indices, num_indices,
8677 max_indices);
8678 while (lower <= upper)
8679 {
8680 int pos1;
8681
8682 pos1 = expr_pc;
8683 assign_component (container, lhs, lower, exp, &pos1);
8684 lower += 1;
8685 }
8686 }
8687 }
8688
8689 /* Assign the value of the expression in the OP_OTHERS construct in
8690 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8691 have not been previously assigned. The index intervals already assigned
8692 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8693 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8694 static void
8695 aggregate_assign_others (struct value *container,
8696 struct value *lhs, struct expression *exp,
8697 int *pos, LONGEST *indices, int num_indices,
8698 LONGEST low, LONGEST high)
8699 {
8700 int i;
8701 int expr_pc = *pos+1;
8702
8703 for (i = 0; i < num_indices - 2; i += 2)
8704 {
8705 LONGEST ind;
8706
8707 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8708 {
8709 int pos;
8710
8711 pos = expr_pc;
8712 assign_component (container, lhs, ind, exp, &pos);
8713 }
8714 }
8715 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8716 }
8717
8718 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8719 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8720 modifying *SIZE as needed. It is an error if *SIZE exceeds
8721 MAX_SIZE. The resulting intervals do not overlap. */
8722 static void
8723 add_component_interval (LONGEST low, LONGEST high,
8724 LONGEST* indices, int *size, int max_size)
8725 {
8726 int i, j;
8727
8728 for (i = 0; i < *size; i += 2) {
8729 if (high >= indices[i] && low <= indices[i + 1])
8730 {
8731 int kh;
8732
8733 for (kh = i + 2; kh < *size; kh += 2)
8734 if (high < indices[kh])
8735 break;
8736 if (low < indices[i])
8737 indices[i] = low;
8738 indices[i + 1] = indices[kh - 1];
8739 if (high > indices[i + 1])
8740 indices[i + 1] = high;
8741 memcpy (indices + i + 2, indices + kh, *size - kh);
8742 *size -= kh - i - 2;
8743 return;
8744 }
8745 else if (high < indices[i])
8746 break;
8747 }
8748
8749 if (*size == max_size)
8750 error (_("Internal error: miscounted aggregate components."));
8751 *size += 2;
8752 for (j = *size-1; j >= i+2; j -= 1)
8753 indices[j] = indices[j - 2];
8754 indices[i] = low;
8755 indices[i + 1] = high;
8756 }
8757
8758 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8759 is different. */
8760
8761 static struct value *
8762 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8763 {
8764 if (type == ada_check_typedef (value_type (arg2)))
8765 return arg2;
8766
8767 if (ada_is_fixed_point_type (type))
8768 return (cast_to_fixed (type, arg2));
8769
8770 if (ada_is_fixed_point_type (value_type (arg2)))
8771 return cast_from_fixed (type, arg2);
8772
8773 return value_cast (type, arg2);
8774 }
8775
8776 /* Evaluating Ada expressions, and printing their result.
8777 ------------------------------------------------------
8778
8779 1. Introduction:
8780 ----------------
8781
8782 We usually evaluate an Ada expression in order to print its value.
8783 We also evaluate an expression in order to print its type, which
8784 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8785 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8786 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8787 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8788 similar.
8789
8790 Evaluating expressions is a little more complicated for Ada entities
8791 than it is for entities in languages such as C. The main reason for
8792 this is that Ada provides types whose definition might be dynamic.
8793 One example of such types is variant records. Or another example
8794 would be an array whose bounds can only be known at run time.
8795
8796 The following description is a general guide as to what should be
8797 done (and what should NOT be done) in order to evaluate an expression
8798 involving such types, and when. This does not cover how the semantic
8799 information is encoded by GNAT as this is covered separatly. For the
8800 document used as the reference for the GNAT encoding, see exp_dbug.ads
8801 in the GNAT sources.
8802
8803 Ideally, we should embed each part of this description next to its
8804 associated code. Unfortunately, the amount of code is so vast right
8805 now that it's hard to see whether the code handling a particular
8806 situation might be duplicated or not. One day, when the code is
8807 cleaned up, this guide might become redundant with the comments
8808 inserted in the code, and we might want to remove it.
8809
8810 2. ``Fixing'' an Entity, the Simple Case:
8811 -----------------------------------------
8812
8813 When evaluating Ada expressions, the tricky issue is that they may
8814 reference entities whose type contents and size are not statically
8815 known. Consider for instance a variant record:
8816
8817 type Rec (Empty : Boolean := True) is record
8818 case Empty is
8819 when True => null;
8820 when False => Value : Integer;
8821 end case;
8822 end record;
8823 Yes : Rec := (Empty => False, Value => 1);
8824 No : Rec := (empty => True);
8825
8826 The size and contents of that record depends on the value of the
8827 descriminant (Rec.Empty). At this point, neither the debugging
8828 information nor the associated type structure in GDB are able to
8829 express such dynamic types. So what the debugger does is to create
8830 "fixed" versions of the type that applies to the specific object.
8831 We also informally refer to this opperation as "fixing" an object,
8832 which means creating its associated fixed type.
8833
8834 Example: when printing the value of variable "Yes" above, its fixed
8835 type would look like this:
8836
8837 type Rec is record
8838 Empty : Boolean;
8839 Value : Integer;
8840 end record;
8841
8842 On the other hand, if we printed the value of "No", its fixed type
8843 would become:
8844
8845 type Rec is record
8846 Empty : Boolean;
8847 end record;
8848
8849 Things become a little more complicated when trying to fix an entity
8850 with a dynamic type that directly contains another dynamic type,
8851 such as an array of variant records, for instance. There are
8852 two possible cases: Arrays, and records.
8853
8854 3. ``Fixing'' Arrays:
8855 ---------------------
8856
8857 The type structure in GDB describes an array in terms of its bounds,
8858 and the type of its elements. By design, all elements in the array
8859 have the same type and we cannot represent an array of variant elements
8860 using the current type structure in GDB. When fixing an array,
8861 we cannot fix the array element, as we would potentially need one
8862 fixed type per element of the array. As a result, the best we can do
8863 when fixing an array is to produce an array whose bounds and size
8864 are correct (allowing us to read it from memory), but without having
8865 touched its element type. Fixing each element will be done later,
8866 when (if) necessary.
8867
8868 Arrays are a little simpler to handle than records, because the same
8869 amount of memory is allocated for each element of the array, even if
8870 the amount of space actually used by each element differs from element
8871 to element. Consider for instance the following array of type Rec:
8872
8873 type Rec_Array is array (1 .. 2) of Rec;
8874
8875 The actual amount of memory occupied by each element might be different
8876 from element to element, depending on the value of their discriminant.
8877 But the amount of space reserved for each element in the array remains
8878 fixed regardless. So we simply need to compute that size using
8879 the debugging information available, from which we can then determine
8880 the array size (we multiply the number of elements of the array by
8881 the size of each element).
8882
8883 The simplest case is when we have an array of a constrained element
8884 type. For instance, consider the following type declarations:
8885
8886 type Bounded_String (Max_Size : Integer) is
8887 Length : Integer;
8888 Buffer : String (1 .. Max_Size);
8889 end record;
8890 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8891
8892 In this case, the compiler describes the array as an array of
8893 variable-size elements (identified by its XVS suffix) for which
8894 the size can be read in the parallel XVZ variable.
8895
8896 In the case of an array of an unconstrained element type, the compiler
8897 wraps the array element inside a private PAD type. This type should not
8898 be shown to the user, and must be "unwrap"'ed before printing. Note
8899 that we also use the adjective "aligner" in our code to designate
8900 these wrapper types.
8901
8902 In some cases, the size allocated for each element is statically
8903 known. In that case, the PAD type already has the correct size,
8904 and the array element should remain unfixed.
8905
8906 But there are cases when this size is not statically known.
8907 For instance, assuming that "Five" is an integer variable:
8908
8909 type Dynamic is array (1 .. Five) of Integer;
8910 type Wrapper (Has_Length : Boolean := False) is record
8911 Data : Dynamic;
8912 case Has_Length is
8913 when True => Length : Integer;
8914 when False => null;
8915 end case;
8916 end record;
8917 type Wrapper_Array is array (1 .. 2) of Wrapper;
8918
8919 Hello : Wrapper_Array := (others => (Has_Length => True,
8920 Data => (others => 17),
8921 Length => 1));
8922
8923
8924 The debugging info would describe variable Hello as being an
8925 array of a PAD type. The size of that PAD type is not statically
8926 known, but can be determined using a parallel XVZ variable.
8927 In that case, a copy of the PAD type with the correct size should
8928 be used for the fixed array.
8929
8930 3. ``Fixing'' record type objects:
8931 ----------------------------------
8932
8933 Things are slightly different from arrays in the case of dynamic
8934 record types. In this case, in order to compute the associated
8935 fixed type, we need to determine the size and offset of each of
8936 its components. This, in turn, requires us to compute the fixed
8937 type of each of these components.
8938
8939 Consider for instance the example:
8940
8941 type Bounded_String (Max_Size : Natural) is record
8942 Str : String (1 .. Max_Size);
8943 Length : Natural;
8944 end record;
8945 My_String : Bounded_String (Max_Size => 10);
8946
8947 In that case, the position of field "Length" depends on the size
8948 of field Str, which itself depends on the value of the Max_Size
8949 discriminant. In order to fix the type of variable My_String,
8950 we need to fix the type of field Str. Therefore, fixing a variant
8951 record requires us to fix each of its components.
8952
8953 However, if a component does not have a dynamic size, the component
8954 should not be fixed. In particular, fields that use a PAD type
8955 should not fixed. Here is an example where this might happen
8956 (assuming type Rec above):
8957
8958 type Container (Big : Boolean) is record
8959 First : Rec;
8960 After : Integer;
8961 case Big is
8962 when True => Another : Integer;
8963 when False => null;
8964 end case;
8965 end record;
8966 My_Container : Container := (Big => False,
8967 First => (Empty => True),
8968 After => 42);
8969
8970 In that example, the compiler creates a PAD type for component First,
8971 whose size is constant, and then positions the component After just
8972 right after it. The offset of component After is therefore constant
8973 in this case.
8974
8975 The debugger computes the position of each field based on an algorithm
8976 that uses, among other things, the actual position and size of the field
8977 preceding it. Let's now imagine that the user is trying to print
8978 the value of My_Container. If the type fixing was recursive, we would
8979 end up computing the offset of field After based on the size of the
8980 fixed version of field First. And since in our example First has
8981 only one actual field, the size of the fixed type is actually smaller
8982 than the amount of space allocated to that field, and thus we would
8983 compute the wrong offset of field After.
8984
8985 To make things more complicated, we need to watch out for dynamic
8986 components of variant records (identified by the ___XVL suffix in
8987 the component name). Even if the target type is a PAD type, the size
8988 of that type might not be statically known. So the PAD type needs
8989 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8990 we might end up with the wrong size for our component. This can be
8991 observed with the following type declarations:
8992
8993 type Octal is new Integer range 0 .. 7;
8994 type Octal_Array is array (Positive range <>) of Octal;
8995 pragma Pack (Octal_Array);
8996
8997 type Octal_Buffer (Size : Positive) is record
8998 Buffer : Octal_Array (1 .. Size);
8999 Length : Integer;
9000 end record;
9001
9002 In that case, Buffer is a PAD type whose size is unset and needs
9003 to be computed by fixing the unwrapped type.
9004
9005 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9006 ----------------------------------------------------------
9007
9008 Lastly, when should the sub-elements of an entity that remained unfixed
9009 thus far, be actually fixed?
9010
9011 The answer is: Only when referencing that element. For instance
9012 when selecting one component of a record, this specific component
9013 should be fixed at that point in time. Or when printing the value
9014 of a record, each component should be fixed before its value gets
9015 printed. Similarly for arrays, the element of the array should be
9016 fixed when printing each element of the array, or when extracting
9017 one element out of that array. On the other hand, fixing should
9018 not be performed on the elements when taking a slice of an array!
9019
9020 Note that one of the side-effects of miscomputing the offset and
9021 size of each field is that we end up also miscomputing the size
9022 of the containing type. This can have adverse results when computing
9023 the value of an entity. GDB fetches the value of an entity based
9024 on the size of its type, and thus a wrong size causes GDB to fetch
9025 the wrong amount of memory. In the case where the computed size is
9026 too small, GDB fetches too little data to print the value of our
9027 entiry. Results in this case as unpredicatble, as we usually read
9028 past the buffer containing the data =:-o. */
9029
9030 /* Implement the evaluate_exp routine in the exp_descriptor structure
9031 for the Ada language. */
9032
9033 static struct value *
9034 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9035 int *pos, enum noside noside)
9036 {
9037 enum exp_opcode op;
9038 int tem;
9039 int pc;
9040 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9041 struct type *type;
9042 int nargs, oplen;
9043 struct value **argvec;
9044
9045 pc = *pos;
9046 *pos += 1;
9047 op = exp->elts[pc].opcode;
9048
9049 switch (op)
9050 {
9051 default:
9052 *pos -= 1;
9053 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9054 arg1 = unwrap_value (arg1);
9055
9056 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9057 then we need to perform the conversion manually, because
9058 evaluate_subexp_standard doesn't do it. This conversion is
9059 necessary in Ada because the different kinds of float/fixed
9060 types in Ada have different representations.
9061
9062 Similarly, we need to perform the conversion from OP_LONG
9063 ourselves. */
9064 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9065 arg1 = ada_value_cast (expect_type, arg1, noside);
9066
9067 return arg1;
9068
9069 case OP_STRING:
9070 {
9071 struct value *result;
9072
9073 *pos -= 1;
9074 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9075 /* The result type will have code OP_STRING, bashed there from
9076 OP_ARRAY. Bash it back. */
9077 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9078 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9079 return result;
9080 }
9081
9082 case UNOP_CAST:
9083 (*pos) += 2;
9084 type = exp->elts[pc + 1].type;
9085 arg1 = evaluate_subexp (type, exp, pos, noside);
9086 if (noside == EVAL_SKIP)
9087 goto nosideret;
9088 arg1 = ada_value_cast (type, arg1, noside);
9089 return arg1;
9090
9091 case UNOP_QUAL:
9092 (*pos) += 2;
9093 type = exp->elts[pc + 1].type;
9094 return ada_evaluate_subexp (type, exp, pos, noside);
9095
9096 case BINOP_ASSIGN:
9097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9099 {
9100 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9101 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9102 return arg1;
9103 return ada_value_assign (arg1, arg1);
9104 }
9105 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9106 except if the lhs of our assignment is a convenience variable.
9107 In the case of assigning to a convenience variable, the lhs
9108 should be exactly the result of the evaluation of the rhs. */
9109 type = value_type (arg1);
9110 if (VALUE_LVAL (arg1) == lval_internalvar)
9111 type = NULL;
9112 arg2 = evaluate_subexp (type, exp, pos, noside);
9113 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9114 return arg1;
9115 if (ada_is_fixed_point_type (value_type (arg1)))
9116 arg2 = cast_to_fixed (value_type (arg1), arg2);
9117 else if (ada_is_fixed_point_type (value_type (arg2)))
9118 error
9119 (_("Fixed-point values must be assigned to fixed-point variables"));
9120 else
9121 arg2 = coerce_for_assign (value_type (arg1), arg2);
9122 return ada_value_assign (arg1, arg2);
9123
9124 case BINOP_ADD:
9125 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9126 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9127 if (noside == EVAL_SKIP)
9128 goto nosideret;
9129 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9130 return (value_from_longest
9131 (value_type (arg1),
9132 value_as_long (arg1) + value_as_long (arg2)));
9133 if ((ada_is_fixed_point_type (value_type (arg1))
9134 || ada_is_fixed_point_type (value_type (arg2)))
9135 && value_type (arg1) != value_type (arg2))
9136 error (_("Operands of fixed-point addition must have the same type"));
9137 /* Do the addition, and cast the result to the type of the first
9138 argument. We cannot cast the result to a reference type, so if
9139 ARG1 is a reference type, find its underlying type. */
9140 type = value_type (arg1);
9141 while (TYPE_CODE (type) == TYPE_CODE_REF)
9142 type = TYPE_TARGET_TYPE (type);
9143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9144 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9145
9146 case BINOP_SUB:
9147 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9148 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9149 if (noside == EVAL_SKIP)
9150 goto nosideret;
9151 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9152 return (value_from_longest
9153 (value_type (arg1),
9154 value_as_long (arg1) - value_as_long (arg2)));
9155 if ((ada_is_fixed_point_type (value_type (arg1))
9156 || ada_is_fixed_point_type (value_type (arg2)))
9157 && value_type (arg1) != value_type (arg2))
9158 error (_("Operands of fixed-point subtraction "
9159 "must have the same type"));
9160 /* Do the substraction, and cast the result to the type of the first
9161 argument. We cannot cast the result to a reference type, so if
9162 ARG1 is a reference type, find its underlying type. */
9163 type = value_type (arg1);
9164 while (TYPE_CODE (type) == TYPE_CODE_REF)
9165 type = TYPE_TARGET_TYPE (type);
9166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9167 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9168
9169 case BINOP_MUL:
9170 case BINOP_DIV:
9171 case BINOP_REM:
9172 case BINOP_MOD:
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9178 {
9179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9180 return value_zero (value_type (arg1), not_lval);
9181 }
9182 else
9183 {
9184 type = builtin_type (exp->gdbarch)->builtin_double;
9185 if (ada_is_fixed_point_type (value_type (arg1)))
9186 arg1 = cast_from_fixed (type, arg1);
9187 if (ada_is_fixed_point_type (value_type (arg2)))
9188 arg2 = cast_from_fixed (type, arg2);
9189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9190 return ada_value_binop (arg1, arg2, op);
9191 }
9192
9193 case BINOP_EQUAL:
9194 case BINOP_NOTEQUAL:
9195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9197 if (noside == EVAL_SKIP)
9198 goto nosideret;
9199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9200 tem = 0;
9201 else
9202 {
9203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9204 tem = ada_value_equal (arg1, arg2);
9205 }
9206 if (op == BINOP_NOTEQUAL)
9207 tem = !tem;
9208 type = language_bool_type (exp->language_defn, exp->gdbarch);
9209 return value_from_longest (type, (LONGEST) tem);
9210
9211 case UNOP_NEG:
9212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 if (noside == EVAL_SKIP)
9214 goto nosideret;
9215 else if (ada_is_fixed_point_type (value_type (arg1)))
9216 return value_cast (value_type (arg1), value_neg (arg1));
9217 else
9218 {
9219 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9220 return value_neg (arg1);
9221 }
9222
9223 case BINOP_LOGICAL_AND:
9224 case BINOP_LOGICAL_OR:
9225 case UNOP_LOGICAL_NOT:
9226 {
9227 struct value *val;
9228
9229 *pos -= 1;
9230 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9231 type = language_bool_type (exp->language_defn, exp->gdbarch);
9232 return value_cast (type, val);
9233 }
9234
9235 case BINOP_BITWISE_AND:
9236 case BINOP_BITWISE_IOR:
9237 case BINOP_BITWISE_XOR:
9238 {
9239 struct value *val;
9240
9241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9242 *pos = pc;
9243 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9244
9245 return value_cast (value_type (arg1), val);
9246 }
9247
9248 case OP_VAR_VALUE:
9249 *pos -= 1;
9250
9251 if (noside == EVAL_SKIP)
9252 {
9253 *pos += 4;
9254 goto nosideret;
9255 }
9256 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9257 /* Only encountered when an unresolved symbol occurs in a
9258 context other than a function call, in which case, it is
9259 invalid. */
9260 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9261 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9263 {
9264 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9265 /* Check to see if this is a tagged type. We also need to handle
9266 the case where the type is a reference to a tagged type, but
9267 we have to be careful to exclude pointers to tagged types.
9268 The latter should be shown as usual (as a pointer), whereas
9269 a reference should mostly be transparent to the user. */
9270 if (ada_is_tagged_type (type, 0)
9271 || (TYPE_CODE(type) == TYPE_CODE_REF
9272 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9273 {
9274 /* Tagged types are a little special in the fact that the real
9275 type is dynamic and can only be determined by inspecting the
9276 object's tag. This means that we need to get the object's
9277 value first (EVAL_NORMAL) and then extract the actual object
9278 type from its tag.
9279
9280 Note that we cannot skip the final step where we extract
9281 the object type from its tag, because the EVAL_NORMAL phase
9282 results in dynamic components being resolved into fixed ones.
9283 This can cause problems when trying to print the type
9284 description of tagged types whose parent has a dynamic size:
9285 We use the type name of the "_parent" component in order
9286 to print the name of the ancestor type in the type description.
9287 If that component had a dynamic size, the resolution into
9288 a fixed type would result in the loss of that type name,
9289 thus preventing us from printing the name of the ancestor
9290 type in the type description. */
9291 struct type *actual_type;
9292
9293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9294 actual_type = type_from_tag (ada_value_tag (arg1));
9295 if (actual_type == NULL)
9296 /* If, for some reason, we were unable to determine
9297 the actual type from the tag, then use the static
9298 approximation that we just computed as a fallback.
9299 This can happen if the debugging information is
9300 incomplete, for instance. */
9301 actual_type = type;
9302
9303 return value_zero (actual_type, not_lval);
9304 }
9305
9306 *pos += 4;
9307 return value_zero
9308 (to_static_fixed_type
9309 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9310 not_lval);
9311 }
9312 else
9313 {
9314 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9315 arg1 = unwrap_value (arg1);
9316 return ada_to_fixed_value (arg1);
9317 }
9318
9319 case OP_FUNCALL:
9320 (*pos) += 2;
9321
9322 /* Allocate arg vector, including space for the function to be
9323 called in argvec[0] and a terminating NULL. */
9324 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9325 argvec =
9326 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9327
9328 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9330 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9331 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9332 else
9333 {
9334 for (tem = 0; tem <= nargs; tem += 1)
9335 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9336 argvec[tem] = 0;
9337
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340 }
9341
9342 if (ada_is_constrained_packed_array_type
9343 (desc_base_type (value_type (argvec[0]))))
9344 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9345 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9346 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9347 /* This is a packed array that has already been fixed, and
9348 therefore already coerced to a simple array. Nothing further
9349 to do. */
9350 ;
9351 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9352 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9353 && VALUE_LVAL (argvec[0]) == lval_memory))
9354 argvec[0] = value_addr (argvec[0]);
9355
9356 type = ada_check_typedef (value_type (argvec[0]));
9357
9358 /* Ada allows us to implicitly dereference arrays when subscripting
9359 them. So, if this is an typedef (encoding use for array access
9360 types encoded as fat pointers), strip it now. */
9361 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9362 type = ada_typedef_target_type (type);
9363
9364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9365 {
9366 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9367 {
9368 case TYPE_CODE_FUNC:
9369 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9370 break;
9371 case TYPE_CODE_ARRAY:
9372 break;
9373 case TYPE_CODE_STRUCT:
9374 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9375 argvec[0] = ada_value_ind (argvec[0]);
9376 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9377 break;
9378 default:
9379 error (_("cannot subscript or call something of type `%s'"),
9380 ada_type_name (value_type (argvec[0])));
9381 break;
9382 }
9383 }
9384
9385 switch (TYPE_CODE (type))
9386 {
9387 case TYPE_CODE_FUNC:
9388 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9389 return allocate_value (TYPE_TARGET_TYPE (type));
9390 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9391 case TYPE_CODE_STRUCT:
9392 {
9393 int arity;
9394
9395 arity = ada_array_arity (type);
9396 type = ada_array_element_type (type, nargs);
9397 if (type == NULL)
9398 error (_("cannot subscript or call a record"));
9399 if (arity != nargs)
9400 error (_("wrong number of subscripts; expecting %d"), arity);
9401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9402 return value_zero (ada_aligned_type (type), lval_memory);
9403 return
9404 unwrap_value (ada_value_subscript
9405 (argvec[0], nargs, argvec + 1));
9406 }
9407 case TYPE_CODE_ARRAY:
9408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9409 {
9410 type = ada_array_element_type (type, nargs);
9411 if (type == NULL)
9412 error (_("element type of array unknown"));
9413 else
9414 return value_zero (ada_aligned_type (type), lval_memory);
9415 }
9416 return
9417 unwrap_value (ada_value_subscript
9418 (ada_coerce_to_simple_array (argvec[0]),
9419 nargs, argvec + 1));
9420 case TYPE_CODE_PTR: /* Pointer to array */
9421 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9423 {
9424 type = ada_array_element_type (type, nargs);
9425 if (type == NULL)
9426 error (_("element type of array unknown"));
9427 else
9428 return value_zero (ada_aligned_type (type), lval_memory);
9429 }
9430 return
9431 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9432 nargs, argvec + 1));
9433
9434 default:
9435 error (_("Attempt to index or call something other than an "
9436 "array or function"));
9437 }
9438
9439 case TERNOP_SLICE:
9440 {
9441 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9442 struct value *low_bound_val =
9443 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9444 struct value *high_bound_val =
9445 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9446 LONGEST low_bound;
9447 LONGEST high_bound;
9448
9449 low_bound_val = coerce_ref (low_bound_val);
9450 high_bound_val = coerce_ref (high_bound_val);
9451 low_bound = pos_atr (low_bound_val);
9452 high_bound = pos_atr (high_bound_val);
9453
9454 if (noside == EVAL_SKIP)
9455 goto nosideret;
9456
9457 /* If this is a reference to an aligner type, then remove all
9458 the aligners. */
9459 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9460 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9461 TYPE_TARGET_TYPE (value_type (array)) =
9462 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9463
9464 if (ada_is_constrained_packed_array_type (value_type (array)))
9465 error (_("cannot slice a packed array"));
9466
9467 /* If this is a reference to an array or an array lvalue,
9468 convert to a pointer. */
9469 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9470 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9471 && VALUE_LVAL (array) == lval_memory))
9472 array = value_addr (array);
9473
9474 if (noside == EVAL_AVOID_SIDE_EFFECTS
9475 && ada_is_array_descriptor_type (ada_check_typedef
9476 (value_type (array))))
9477 return empty_array (ada_type_of_array (array, 0), low_bound);
9478
9479 array = ada_coerce_to_simple_array_ptr (array);
9480
9481 /* If we have more than one level of pointer indirection,
9482 dereference the value until we get only one level. */
9483 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9484 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9485 == TYPE_CODE_PTR))
9486 array = value_ind (array);
9487
9488 /* Make sure we really do have an array type before going further,
9489 to avoid a SEGV when trying to get the index type or the target
9490 type later down the road if the debug info generated by
9491 the compiler is incorrect or incomplete. */
9492 if (!ada_is_simple_array_type (value_type (array)))
9493 error (_("cannot take slice of non-array"));
9494
9495 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9496 {
9497 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9498 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9499 low_bound);
9500 else
9501 {
9502 struct type *arr_type0 =
9503 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9504 NULL, 1);
9505
9506 return ada_value_slice_from_ptr (array, arr_type0,
9507 longest_to_int (low_bound),
9508 longest_to_int (high_bound));
9509 }
9510 }
9511 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9512 return array;
9513 else if (high_bound < low_bound)
9514 return empty_array (value_type (array), low_bound);
9515 else
9516 return ada_value_slice (array, longest_to_int (low_bound),
9517 longest_to_int (high_bound));
9518 }
9519
9520 case UNOP_IN_RANGE:
9521 (*pos) += 2;
9522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9523 type = check_typedef (exp->elts[pc + 1].type);
9524
9525 if (noside == EVAL_SKIP)
9526 goto nosideret;
9527
9528 switch (TYPE_CODE (type))
9529 {
9530 default:
9531 lim_warning (_("Membership test incompletely implemented; "
9532 "always returns true"));
9533 type = language_bool_type (exp->language_defn, exp->gdbarch);
9534 return value_from_longest (type, (LONGEST) 1);
9535
9536 case TYPE_CODE_RANGE:
9537 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9538 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9539 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9541 type = language_bool_type (exp->language_defn, exp->gdbarch);
9542 return
9543 value_from_longest (type,
9544 (value_less (arg1, arg3)
9545 || value_equal (arg1, arg3))
9546 && (value_less (arg2, arg1)
9547 || value_equal (arg2, arg1)));
9548 }
9549
9550 case BINOP_IN_BOUNDS:
9551 (*pos) += 2;
9552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9554
9555 if (noside == EVAL_SKIP)
9556 goto nosideret;
9557
9558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9559 {
9560 type = language_bool_type (exp->language_defn, exp->gdbarch);
9561 return value_zero (type, not_lval);
9562 }
9563
9564 tem = longest_to_int (exp->elts[pc + 1].longconst);
9565
9566 type = ada_index_type (value_type (arg2), tem, "range");
9567 if (!type)
9568 type = value_type (arg1);
9569
9570 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9571 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9572
9573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9575 type = language_bool_type (exp->language_defn, exp->gdbarch);
9576 return
9577 value_from_longest (type,
9578 (value_less (arg1, arg3)
9579 || value_equal (arg1, arg3))
9580 && (value_less (arg2, arg1)
9581 || value_equal (arg2, arg1)));
9582
9583 case TERNOP_IN_RANGE:
9584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9585 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9586 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9587
9588 if (noside == EVAL_SKIP)
9589 goto nosideret;
9590
9591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9592 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9593 type = language_bool_type (exp->language_defn, exp->gdbarch);
9594 return
9595 value_from_longest (type,
9596 (value_less (arg1, arg3)
9597 || value_equal (arg1, arg3))
9598 && (value_less (arg2, arg1)
9599 || value_equal (arg2, arg1)));
9600
9601 case OP_ATR_FIRST:
9602 case OP_ATR_LAST:
9603 case OP_ATR_LENGTH:
9604 {
9605 struct type *type_arg;
9606
9607 if (exp->elts[*pos].opcode == OP_TYPE)
9608 {
9609 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9610 arg1 = NULL;
9611 type_arg = check_typedef (exp->elts[pc + 2].type);
9612 }
9613 else
9614 {
9615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 type_arg = NULL;
9617 }
9618
9619 if (exp->elts[*pos].opcode != OP_LONG)
9620 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9621 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9622 *pos += 4;
9623
9624 if (noside == EVAL_SKIP)
9625 goto nosideret;
9626
9627 if (type_arg == NULL)
9628 {
9629 arg1 = ada_coerce_ref (arg1);
9630
9631 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9632 arg1 = ada_coerce_to_simple_array (arg1);
9633
9634 type = ada_index_type (value_type (arg1), tem,
9635 ada_attribute_name (op));
9636 if (type == NULL)
9637 type = builtin_type (exp->gdbarch)->builtin_int;
9638
9639 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9640 return allocate_value (type);
9641
9642 switch (op)
9643 {
9644 default: /* Should never happen. */
9645 error (_("unexpected attribute encountered"));
9646 case OP_ATR_FIRST:
9647 return value_from_longest
9648 (type, ada_array_bound (arg1, tem, 0));
9649 case OP_ATR_LAST:
9650 return value_from_longest
9651 (type, ada_array_bound (arg1, tem, 1));
9652 case OP_ATR_LENGTH:
9653 return value_from_longest
9654 (type, ada_array_length (arg1, tem));
9655 }
9656 }
9657 else if (discrete_type_p (type_arg))
9658 {
9659 struct type *range_type;
9660 char *name = ada_type_name (type_arg);
9661
9662 range_type = NULL;
9663 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9664 range_type = to_fixed_range_type (type_arg, NULL);
9665 if (range_type == NULL)
9666 range_type = type_arg;
9667 switch (op)
9668 {
9669 default:
9670 error (_("unexpected attribute encountered"));
9671 case OP_ATR_FIRST:
9672 return value_from_longest
9673 (range_type, ada_discrete_type_low_bound (range_type));
9674 case OP_ATR_LAST:
9675 return value_from_longest
9676 (range_type, ada_discrete_type_high_bound (range_type));
9677 case OP_ATR_LENGTH:
9678 error (_("the 'length attribute applies only to array types"));
9679 }
9680 }
9681 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9682 error (_("unimplemented type attribute"));
9683 else
9684 {
9685 LONGEST low, high;
9686
9687 if (ada_is_constrained_packed_array_type (type_arg))
9688 type_arg = decode_constrained_packed_array_type (type_arg);
9689
9690 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9691 if (type == NULL)
9692 type = builtin_type (exp->gdbarch)->builtin_int;
9693
9694 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9695 return allocate_value (type);
9696
9697 switch (op)
9698 {
9699 default:
9700 error (_("unexpected attribute encountered"));
9701 case OP_ATR_FIRST:
9702 low = ada_array_bound_from_type (type_arg, tem, 0);
9703 return value_from_longest (type, low);
9704 case OP_ATR_LAST:
9705 high = ada_array_bound_from_type (type_arg, tem, 1);
9706 return value_from_longest (type, high);
9707 case OP_ATR_LENGTH:
9708 low = ada_array_bound_from_type (type_arg, tem, 0);
9709 high = ada_array_bound_from_type (type_arg, tem, 1);
9710 return value_from_longest (type, high - low + 1);
9711 }
9712 }
9713 }
9714
9715 case OP_ATR_TAG:
9716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9717 if (noside == EVAL_SKIP)
9718 goto nosideret;
9719
9720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9721 return value_zero (ada_tag_type (arg1), not_lval);
9722
9723 return ada_value_tag (arg1);
9724
9725 case OP_ATR_MIN:
9726 case OP_ATR_MAX:
9727 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9729 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9730 if (noside == EVAL_SKIP)
9731 goto nosideret;
9732 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9733 return value_zero (value_type (arg1), not_lval);
9734 else
9735 {
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return value_binop (arg1, arg2,
9738 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9739 }
9740
9741 case OP_ATR_MODULUS:
9742 {
9743 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9744
9745 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
9748
9749 if (!ada_is_modular_type (type_arg))
9750 error (_("'modulus must be applied to modular type"));
9751
9752 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9753 ada_modulus (type_arg));
9754 }
9755
9756
9757 case OP_ATR_POS:
9758 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
9761 goto nosideret;
9762 type = builtin_type (exp->gdbarch)->builtin_int;
9763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9764 return value_zero (type, not_lval);
9765 else
9766 return value_pos_atr (type, arg1);
9767
9768 case OP_ATR_SIZE:
9769 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9770 type = value_type (arg1);
9771
9772 /* If the argument is a reference, then dereference its type, since
9773 the user is really asking for the size of the actual object,
9774 not the size of the pointer. */
9775 if (TYPE_CODE (type) == TYPE_CODE_REF)
9776 type = TYPE_TARGET_TYPE (type);
9777
9778 if (noside == EVAL_SKIP)
9779 goto nosideret;
9780 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9781 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9782 else
9783 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9784 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9785
9786 case OP_ATR_VAL:
9787 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 type = exp->elts[pc + 2].type;
9790 if (noside == EVAL_SKIP)
9791 goto nosideret;
9792 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9793 return value_zero (type, not_lval);
9794 else
9795 return value_val_atr (type, arg1);
9796
9797 case BINOP_EXP:
9798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9799 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9800 if (noside == EVAL_SKIP)
9801 goto nosideret;
9802 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9803 return value_zero (value_type (arg1), not_lval);
9804 else
9805 {
9806 /* For integer exponentiation operations,
9807 only promote the first argument. */
9808 if (is_integral_type (value_type (arg2)))
9809 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9810 else
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9812
9813 return value_binop (arg1, arg2, op);
9814 }
9815
9816 case UNOP_PLUS:
9817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9818 if (noside == EVAL_SKIP)
9819 goto nosideret;
9820 else
9821 return arg1;
9822
9823 case UNOP_ABS:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
9827 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9828 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9829 return value_neg (arg1);
9830 else
9831 return arg1;
9832
9833 case UNOP_IND:
9834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9835 if (noside == EVAL_SKIP)
9836 goto nosideret;
9837 type = ada_check_typedef (value_type (arg1));
9838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9839 {
9840 if (ada_is_array_descriptor_type (type))
9841 /* GDB allows dereferencing GNAT array descriptors. */
9842 {
9843 struct type *arrType = ada_type_of_array (arg1, 0);
9844
9845 if (arrType == NULL)
9846 error (_("Attempt to dereference null array pointer."));
9847 return value_at_lazy (arrType, 0);
9848 }
9849 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9850 || TYPE_CODE (type) == TYPE_CODE_REF
9851 /* In C you can dereference an array to get the 1st elt. */
9852 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9853 {
9854 type = to_static_fixed_type
9855 (ada_aligned_type
9856 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9857 check_size (type);
9858 return value_zero (type, lval_memory);
9859 }
9860 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9861 {
9862 /* GDB allows dereferencing an int. */
9863 if (expect_type == NULL)
9864 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9865 lval_memory);
9866 else
9867 {
9868 expect_type =
9869 to_static_fixed_type (ada_aligned_type (expect_type));
9870 return value_zero (expect_type, lval_memory);
9871 }
9872 }
9873 else
9874 error (_("Attempt to take contents of a non-pointer value."));
9875 }
9876 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9877 type = ada_check_typedef (value_type (arg1));
9878
9879 if (TYPE_CODE (type) == TYPE_CODE_INT)
9880 /* GDB allows dereferencing an int. If we were given
9881 the expect_type, then use that as the target type.
9882 Otherwise, assume that the target type is an int. */
9883 {
9884 if (expect_type != NULL)
9885 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9886 arg1));
9887 else
9888 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9889 (CORE_ADDR) value_as_address (arg1));
9890 }
9891
9892 if (ada_is_array_descriptor_type (type))
9893 /* GDB allows dereferencing GNAT array descriptors. */
9894 return ada_coerce_to_simple_array (arg1);
9895 else
9896 return ada_value_ind (arg1);
9897
9898 case STRUCTOP_STRUCT:
9899 tem = longest_to_int (exp->elts[pc + 1].longconst);
9900 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9902 if (noside == EVAL_SKIP)
9903 goto nosideret;
9904 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9905 {
9906 struct type *type1 = value_type (arg1);
9907
9908 if (ada_is_tagged_type (type1, 1))
9909 {
9910 type = ada_lookup_struct_elt_type (type1,
9911 &exp->elts[pc + 2].string,
9912 1, 1, NULL);
9913 if (type == NULL)
9914 /* In this case, we assume that the field COULD exist
9915 in some extension of the type. Return an object of
9916 "type" void, which will match any formal
9917 (see ada_type_match). */
9918 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9919 lval_memory);
9920 }
9921 else
9922 type =
9923 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9924 0, NULL);
9925
9926 return value_zero (ada_aligned_type (type), lval_memory);
9927 }
9928 else
9929 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9930 arg1 = unwrap_value (arg1);
9931 return ada_to_fixed_value (arg1);
9932
9933 case OP_TYPE:
9934 /* The value is not supposed to be used. This is here to make it
9935 easier to accommodate expressions that contain types. */
9936 (*pos) += 2;
9937 if (noside == EVAL_SKIP)
9938 goto nosideret;
9939 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9940 return allocate_value (exp->elts[pc + 1].type);
9941 else
9942 error (_("Attempt to use a type name as an expression"));
9943
9944 case OP_AGGREGATE:
9945 case OP_CHOICES:
9946 case OP_OTHERS:
9947 case OP_DISCRETE_RANGE:
9948 case OP_POSITIONAL:
9949 case OP_NAME:
9950 if (noside == EVAL_NORMAL)
9951 switch (op)
9952 {
9953 case OP_NAME:
9954 error (_("Undefined name, ambiguous name, or renaming used in "
9955 "component association: %s."), &exp->elts[pc+2].string);
9956 case OP_AGGREGATE:
9957 error (_("Aggregates only allowed on the right of an assignment"));
9958 default:
9959 internal_error (__FILE__, __LINE__,
9960 _("aggregate apparently mangled"));
9961 }
9962
9963 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9964 *pos += oplen - 1;
9965 for (tem = 0; tem < nargs; tem += 1)
9966 ada_evaluate_subexp (NULL, exp, pos, noside);
9967 goto nosideret;
9968 }
9969
9970 nosideret:
9971 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9972 }
9973 \f
9974
9975 /* Fixed point */
9976
9977 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9978 type name that encodes the 'small and 'delta information.
9979 Otherwise, return NULL. */
9980
9981 static const char *
9982 fixed_type_info (struct type *type)
9983 {
9984 const char *name = ada_type_name (type);
9985 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9986
9987 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9988 {
9989 const char *tail = strstr (name, "___XF_");
9990
9991 if (tail == NULL)
9992 return NULL;
9993 else
9994 return tail + 5;
9995 }
9996 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9997 return fixed_type_info (TYPE_TARGET_TYPE (type));
9998 else
9999 return NULL;
10000 }
10001
10002 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10003
10004 int
10005 ada_is_fixed_point_type (struct type *type)
10006 {
10007 return fixed_type_info (type) != NULL;
10008 }
10009
10010 /* Return non-zero iff TYPE represents a System.Address type. */
10011
10012 int
10013 ada_is_system_address_type (struct type *type)
10014 {
10015 return (TYPE_NAME (type)
10016 && strcmp (TYPE_NAME (type), "system__address") == 0);
10017 }
10018
10019 /* Assuming that TYPE is the representation of an Ada fixed-point
10020 type, return its delta, or -1 if the type is malformed and the
10021 delta cannot be determined. */
10022
10023 DOUBLEST
10024 ada_delta (struct type *type)
10025 {
10026 const char *encoding = fixed_type_info (type);
10027 DOUBLEST num, den;
10028
10029 /* Strictly speaking, num and den are encoded as integer. However,
10030 they may not fit into a long, and they will have to be converted
10031 to DOUBLEST anyway. So scan them as DOUBLEST. */
10032 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10033 &num, &den) < 2)
10034 return -1.0;
10035 else
10036 return num / den;
10037 }
10038
10039 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10040 factor ('SMALL value) associated with the type. */
10041
10042 static DOUBLEST
10043 scaling_factor (struct type *type)
10044 {
10045 const char *encoding = fixed_type_info (type);
10046 DOUBLEST num0, den0, num1, den1;
10047 int n;
10048
10049 /* Strictly speaking, num's and den's are encoded as integer. However,
10050 they may not fit into a long, and they will have to be converted
10051 to DOUBLEST anyway. So scan them as DOUBLEST. */
10052 n = sscanf (encoding,
10053 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10054 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10055 &num0, &den0, &num1, &den1);
10056
10057 if (n < 2)
10058 return 1.0;
10059 else if (n == 4)
10060 return num1 / den1;
10061 else
10062 return num0 / den0;
10063 }
10064
10065
10066 /* Assuming that X is the representation of a value of fixed-point
10067 type TYPE, return its floating-point equivalent. */
10068
10069 DOUBLEST
10070 ada_fixed_to_float (struct type *type, LONGEST x)
10071 {
10072 return (DOUBLEST) x *scaling_factor (type);
10073 }
10074
10075 /* The representation of a fixed-point value of type TYPE
10076 corresponding to the value X. */
10077
10078 LONGEST
10079 ada_float_to_fixed (struct type *type, DOUBLEST x)
10080 {
10081 return (LONGEST) (x / scaling_factor (type) + 0.5);
10082 }
10083
10084 \f
10085
10086 /* Range types */
10087
10088 /* Scan STR beginning at position K for a discriminant name, and
10089 return the value of that discriminant field of DVAL in *PX. If
10090 PNEW_K is not null, put the position of the character beyond the
10091 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10092 not alter *PX and *PNEW_K if unsuccessful. */
10093
10094 static int
10095 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10096 int *pnew_k)
10097 {
10098 static char *bound_buffer = NULL;
10099 static size_t bound_buffer_len = 0;
10100 char *bound;
10101 char *pend;
10102 struct value *bound_val;
10103
10104 if (dval == NULL || str == NULL || str[k] == '\0')
10105 return 0;
10106
10107 pend = strstr (str + k, "__");
10108 if (pend == NULL)
10109 {
10110 bound = str + k;
10111 k += strlen (bound);
10112 }
10113 else
10114 {
10115 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10116 bound = bound_buffer;
10117 strncpy (bound_buffer, str + k, pend - (str + k));
10118 bound[pend - (str + k)] = '\0';
10119 k = pend - str;
10120 }
10121
10122 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10123 if (bound_val == NULL)
10124 return 0;
10125
10126 *px = value_as_long (bound_val);
10127 if (pnew_k != NULL)
10128 *pnew_k = k;
10129 return 1;
10130 }
10131
10132 /* Value of variable named NAME in the current environment. If
10133 no such variable found, then if ERR_MSG is null, returns 0, and
10134 otherwise causes an error with message ERR_MSG. */
10135
10136 static struct value *
10137 get_var_value (char *name, char *err_msg)
10138 {
10139 struct ada_symbol_info *syms;
10140 int nsyms;
10141
10142 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10143 &syms);
10144
10145 if (nsyms != 1)
10146 {
10147 if (err_msg == NULL)
10148 return 0;
10149 else
10150 error (("%s"), err_msg);
10151 }
10152
10153 return value_of_variable (syms[0].sym, syms[0].block);
10154 }
10155
10156 /* Value of integer variable named NAME in the current environment. If
10157 no such variable found, returns 0, and sets *FLAG to 0. If
10158 successful, sets *FLAG to 1. */
10159
10160 LONGEST
10161 get_int_var_value (char *name, int *flag)
10162 {
10163 struct value *var_val = get_var_value (name, 0);
10164
10165 if (var_val == 0)
10166 {
10167 if (flag != NULL)
10168 *flag = 0;
10169 return 0;
10170 }
10171 else
10172 {
10173 if (flag != NULL)
10174 *flag = 1;
10175 return value_as_long (var_val);
10176 }
10177 }
10178
10179
10180 /* Return a range type whose base type is that of the range type named
10181 NAME in the current environment, and whose bounds are calculated
10182 from NAME according to the GNAT range encoding conventions.
10183 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10184 corresponding range type from debug information; fall back to using it
10185 if symbol lookup fails. If a new type must be created, allocate it
10186 like ORIG_TYPE was. The bounds information, in general, is encoded
10187 in NAME, the base type given in the named range type. */
10188
10189 static struct type *
10190 to_fixed_range_type (struct type *raw_type, struct value *dval)
10191 {
10192 char *name;
10193 struct type *base_type;
10194 char *subtype_info;
10195
10196 gdb_assert (raw_type != NULL);
10197 gdb_assert (TYPE_NAME (raw_type) != NULL);
10198
10199 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10200 base_type = TYPE_TARGET_TYPE (raw_type);
10201 else
10202 base_type = raw_type;
10203
10204 name = TYPE_NAME (raw_type);
10205 subtype_info = strstr (name, "___XD");
10206 if (subtype_info == NULL)
10207 {
10208 LONGEST L = ada_discrete_type_low_bound (raw_type);
10209 LONGEST U = ada_discrete_type_high_bound (raw_type);
10210
10211 if (L < INT_MIN || U > INT_MAX)
10212 return raw_type;
10213 else
10214 return create_range_type (alloc_type_copy (raw_type), raw_type,
10215 ada_discrete_type_low_bound (raw_type),
10216 ada_discrete_type_high_bound (raw_type));
10217 }
10218 else
10219 {
10220 static char *name_buf = NULL;
10221 static size_t name_len = 0;
10222 int prefix_len = subtype_info - name;
10223 LONGEST L, U;
10224 struct type *type;
10225 char *bounds_str;
10226 int n;
10227
10228 GROW_VECT (name_buf, name_len, prefix_len + 5);
10229 strncpy (name_buf, name, prefix_len);
10230 name_buf[prefix_len] = '\0';
10231
10232 subtype_info += 5;
10233 bounds_str = strchr (subtype_info, '_');
10234 n = 1;
10235
10236 if (*subtype_info == 'L')
10237 {
10238 if (!ada_scan_number (bounds_str, n, &L, &n)
10239 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10240 return raw_type;
10241 if (bounds_str[n] == '_')
10242 n += 2;
10243 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10244 n += 1;
10245 subtype_info += 1;
10246 }
10247 else
10248 {
10249 int ok;
10250
10251 strcpy (name_buf + prefix_len, "___L");
10252 L = get_int_var_value (name_buf, &ok);
10253 if (!ok)
10254 {
10255 lim_warning (_("Unknown lower bound, using 1."));
10256 L = 1;
10257 }
10258 }
10259
10260 if (*subtype_info == 'U')
10261 {
10262 if (!ada_scan_number (bounds_str, n, &U, &n)
10263 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10264 return raw_type;
10265 }
10266 else
10267 {
10268 int ok;
10269
10270 strcpy (name_buf + prefix_len, "___U");
10271 U = get_int_var_value (name_buf, &ok);
10272 if (!ok)
10273 {
10274 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10275 U = L;
10276 }
10277 }
10278
10279 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10280 TYPE_NAME (type) = name;
10281 return type;
10282 }
10283 }
10284
10285 /* True iff NAME is the name of a range type. */
10286
10287 int
10288 ada_is_range_type_name (const char *name)
10289 {
10290 return (name != NULL && strstr (name, "___XD"));
10291 }
10292 \f
10293
10294 /* Modular types */
10295
10296 /* True iff TYPE is an Ada modular type. */
10297
10298 int
10299 ada_is_modular_type (struct type *type)
10300 {
10301 struct type *subranged_type = base_type (type);
10302
10303 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10304 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10305 && TYPE_UNSIGNED (subranged_type));
10306 }
10307
10308 /* Try to determine the lower and upper bounds of the given modular type
10309 using the type name only. Return non-zero and set L and U as the lower
10310 and upper bounds (respectively) if successful. */
10311
10312 int
10313 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10314 {
10315 char *name = ada_type_name (type);
10316 char *suffix;
10317 int k;
10318 LONGEST U;
10319
10320 if (name == NULL)
10321 return 0;
10322
10323 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10324 we are looking for static bounds, which means an __XDLU suffix.
10325 Moreover, we know that the lower bound of modular types is always
10326 zero, so the actual suffix should start with "__XDLU_0__", and
10327 then be followed by the upper bound value. */
10328 suffix = strstr (name, "__XDLU_0__");
10329 if (suffix == NULL)
10330 return 0;
10331 k = 10;
10332 if (!ada_scan_number (suffix, k, &U, NULL))
10333 return 0;
10334
10335 *modulus = (ULONGEST) U + 1;
10336 return 1;
10337 }
10338
10339 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10340
10341 ULONGEST
10342 ada_modulus (struct type *type)
10343 {
10344 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10345 }
10346 \f
10347
10348 /* Ada exception catchpoint support:
10349 ---------------------------------
10350
10351 We support 3 kinds of exception catchpoints:
10352 . catchpoints on Ada exceptions
10353 . catchpoints on unhandled Ada exceptions
10354 . catchpoints on failed assertions
10355
10356 Exceptions raised during failed assertions, or unhandled exceptions
10357 could perfectly be caught with the general catchpoint on Ada exceptions.
10358 However, we can easily differentiate these two special cases, and having
10359 the option to distinguish these two cases from the rest can be useful
10360 to zero-in on certain situations.
10361
10362 Exception catchpoints are a specialized form of breakpoint,
10363 since they rely on inserting breakpoints inside known routines
10364 of the GNAT runtime. The implementation therefore uses a standard
10365 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10366 of breakpoint_ops.
10367
10368 Support in the runtime for exception catchpoints have been changed
10369 a few times already, and these changes affect the implementation
10370 of these catchpoints. In order to be able to support several
10371 variants of the runtime, we use a sniffer that will determine
10372 the runtime variant used by the program being debugged.
10373
10374 At this time, we do not support the use of conditions on Ada exception
10375 catchpoints. The COND and COND_STRING fields are therefore set
10376 to NULL (most of the time, see below).
10377
10378 Conditions where EXP_STRING, COND, and COND_STRING are used:
10379
10380 When a user specifies the name of a specific exception in the case
10381 of catchpoints on Ada exceptions, we store the name of that exception
10382 in the EXP_STRING. We then translate this request into an actual
10383 condition stored in COND_STRING, and then parse it into an expression
10384 stored in COND. */
10385
10386 /* The different types of catchpoints that we introduced for catching
10387 Ada exceptions. */
10388
10389 enum exception_catchpoint_kind
10390 {
10391 ex_catch_exception,
10392 ex_catch_exception_unhandled,
10393 ex_catch_assert
10394 };
10395
10396 /* Ada's standard exceptions. */
10397
10398 static char *standard_exc[] = {
10399 "constraint_error",
10400 "program_error",
10401 "storage_error",
10402 "tasking_error"
10403 };
10404
10405 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10406
10407 /* A structure that describes how to support exception catchpoints
10408 for a given executable. */
10409
10410 struct exception_support_info
10411 {
10412 /* The name of the symbol to break on in order to insert
10413 a catchpoint on exceptions. */
10414 const char *catch_exception_sym;
10415
10416 /* The name of the symbol to break on in order to insert
10417 a catchpoint on unhandled exceptions. */
10418 const char *catch_exception_unhandled_sym;
10419
10420 /* The name of the symbol to break on in order to insert
10421 a catchpoint on failed assertions. */
10422 const char *catch_assert_sym;
10423
10424 /* Assuming that the inferior just triggered an unhandled exception
10425 catchpoint, this function is responsible for returning the address
10426 in inferior memory where the name of that exception is stored.
10427 Return zero if the address could not be computed. */
10428 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10429 };
10430
10431 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10432 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10433
10434 /* The following exception support info structure describes how to
10435 implement exception catchpoints with the latest version of the
10436 Ada runtime (as of 2007-03-06). */
10437
10438 static const struct exception_support_info default_exception_support_info =
10439 {
10440 "__gnat_debug_raise_exception", /* catch_exception_sym */
10441 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10442 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10443 ada_unhandled_exception_name_addr
10444 };
10445
10446 /* The following exception support info structure describes how to
10447 implement exception catchpoints with a slightly older version
10448 of the Ada runtime. */
10449
10450 static const struct exception_support_info exception_support_info_fallback =
10451 {
10452 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10453 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10454 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10455 ada_unhandled_exception_name_addr_from_raise
10456 };
10457
10458 /* For each executable, we sniff which exception info structure to use
10459 and cache it in the following global variable. */
10460
10461 static const struct exception_support_info *exception_info = NULL;
10462
10463 /* Inspect the Ada runtime and determine which exception info structure
10464 should be used to provide support for exception catchpoints.
10465
10466 This function will always set exception_info, or raise an error. */
10467
10468 static void
10469 ada_exception_support_info_sniffer (void)
10470 {
10471 struct symbol *sym;
10472
10473 /* If the exception info is already known, then no need to recompute it. */
10474 if (exception_info != NULL)
10475 return;
10476
10477 /* Check the latest (default) exception support info. */
10478 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10479 NULL, VAR_DOMAIN);
10480 if (sym != NULL)
10481 {
10482 exception_info = &default_exception_support_info;
10483 return;
10484 }
10485
10486 /* Try our fallback exception suport info. */
10487 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10488 NULL, VAR_DOMAIN);
10489 if (sym != NULL)
10490 {
10491 exception_info = &exception_support_info_fallback;
10492 return;
10493 }
10494
10495 /* Sometimes, it is normal for us to not be able to find the routine
10496 we are looking for. This happens when the program is linked with
10497 the shared version of the GNAT runtime, and the program has not been
10498 started yet. Inform the user of these two possible causes if
10499 applicable. */
10500
10501 if (ada_update_initial_language (language_unknown) != language_ada)
10502 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10503
10504 /* If the symbol does not exist, then check that the program is
10505 already started, to make sure that shared libraries have been
10506 loaded. If it is not started, this may mean that the symbol is
10507 in a shared library. */
10508
10509 if (ptid_get_pid (inferior_ptid) == 0)
10510 error (_("Unable to insert catchpoint. Try to start the program first."));
10511
10512 /* At this point, we know that we are debugging an Ada program and
10513 that the inferior has been started, but we still are not able to
10514 find the run-time symbols. That can mean that we are in
10515 configurable run time mode, or that a-except as been optimized
10516 out by the linker... In any case, at this point it is not worth
10517 supporting this feature. */
10518
10519 error (_("Cannot insert catchpoints in this configuration."));
10520 }
10521
10522 /* An observer of "executable_changed" events.
10523 Its role is to clear certain cached values that need to be recomputed
10524 each time a new executable is loaded by GDB. */
10525
10526 static void
10527 ada_executable_changed_observer (void)
10528 {
10529 /* If the executable changed, then it is possible that the Ada runtime
10530 is different. So we need to invalidate the exception support info
10531 cache. */
10532 exception_info = NULL;
10533 }
10534
10535 /* True iff FRAME is very likely to be that of a function that is
10536 part of the runtime system. This is all very heuristic, but is
10537 intended to be used as advice as to what frames are uninteresting
10538 to most users. */
10539
10540 static int
10541 is_known_support_routine (struct frame_info *frame)
10542 {
10543 struct symtab_and_line sal;
10544 char *func_name;
10545 enum language func_lang;
10546 int i;
10547
10548 /* If this code does not have any debugging information (no symtab),
10549 This cannot be any user code. */
10550
10551 find_frame_sal (frame, &sal);
10552 if (sal.symtab == NULL)
10553 return 1;
10554
10555 /* If there is a symtab, but the associated source file cannot be
10556 located, then assume this is not user code: Selecting a frame
10557 for which we cannot display the code would not be very helpful
10558 for the user. This should also take care of case such as VxWorks
10559 where the kernel has some debugging info provided for a few units. */
10560
10561 if (symtab_to_fullname (sal.symtab) == NULL)
10562 return 1;
10563
10564 /* Check the unit filename againt the Ada runtime file naming.
10565 We also check the name of the objfile against the name of some
10566 known system libraries that sometimes come with debugging info
10567 too. */
10568
10569 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10570 {
10571 re_comp (known_runtime_file_name_patterns[i]);
10572 if (re_exec (sal.symtab->filename))
10573 return 1;
10574 if (sal.symtab->objfile != NULL
10575 && re_exec (sal.symtab->objfile->name))
10576 return 1;
10577 }
10578
10579 /* Check whether the function is a GNAT-generated entity. */
10580
10581 find_frame_funname (frame, &func_name, &func_lang, NULL);
10582 if (func_name == NULL)
10583 return 1;
10584
10585 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10586 {
10587 re_comp (known_auxiliary_function_name_patterns[i]);
10588 if (re_exec (func_name))
10589 return 1;
10590 }
10591
10592 return 0;
10593 }
10594
10595 /* Find the first frame that contains debugging information and that is not
10596 part of the Ada run-time, starting from FI and moving upward. */
10597
10598 void
10599 ada_find_printable_frame (struct frame_info *fi)
10600 {
10601 for (; fi != NULL; fi = get_prev_frame (fi))
10602 {
10603 if (!is_known_support_routine (fi))
10604 {
10605 select_frame (fi);
10606 break;
10607 }
10608 }
10609
10610 }
10611
10612 /* Assuming that the inferior just triggered an unhandled exception
10613 catchpoint, return the address in inferior memory where the name
10614 of the exception is stored.
10615
10616 Return zero if the address could not be computed. */
10617
10618 static CORE_ADDR
10619 ada_unhandled_exception_name_addr (void)
10620 {
10621 return parse_and_eval_address ("e.full_name");
10622 }
10623
10624 /* Same as ada_unhandled_exception_name_addr, except that this function
10625 should be used when the inferior uses an older version of the runtime,
10626 where the exception name needs to be extracted from a specific frame
10627 several frames up in the callstack. */
10628
10629 static CORE_ADDR
10630 ada_unhandled_exception_name_addr_from_raise (void)
10631 {
10632 int frame_level;
10633 struct frame_info *fi;
10634
10635 /* To determine the name of this exception, we need to select
10636 the frame corresponding to RAISE_SYM_NAME. This frame is
10637 at least 3 levels up, so we simply skip the first 3 frames
10638 without checking the name of their associated function. */
10639 fi = get_current_frame ();
10640 for (frame_level = 0; frame_level < 3; frame_level += 1)
10641 if (fi != NULL)
10642 fi = get_prev_frame (fi);
10643
10644 while (fi != NULL)
10645 {
10646 char *func_name;
10647 enum language func_lang;
10648
10649 find_frame_funname (fi, &func_name, &func_lang, NULL);
10650 if (func_name != NULL
10651 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10652 break; /* We found the frame we were looking for... */
10653 fi = get_prev_frame (fi);
10654 }
10655
10656 if (fi == NULL)
10657 return 0;
10658
10659 select_frame (fi);
10660 return parse_and_eval_address ("id.full_name");
10661 }
10662
10663 /* Assuming the inferior just triggered an Ada exception catchpoint
10664 (of any type), return the address in inferior memory where the name
10665 of the exception is stored, if applicable.
10666
10667 Return zero if the address could not be computed, or if not relevant. */
10668
10669 static CORE_ADDR
10670 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10671 struct breakpoint *b)
10672 {
10673 switch (ex)
10674 {
10675 case ex_catch_exception:
10676 return (parse_and_eval_address ("e.full_name"));
10677 break;
10678
10679 case ex_catch_exception_unhandled:
10680 return exception_info->unhandled_exception_name_addr ();
10681 break;
10682
10683 case ex_catch_assert:
10684 return 0; /* Exception name is not relevant in this case. */
10685 break;
10686
10687 default:
10688 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10689 break;
10690 }
10691
10692 return 0; /* Should never be reached. */
10693 }
10694
10695 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10696 any error that ada_exception_name_addr_1 might cause to be thrown.
10697 When an error is intercepted, a warning with the error message is printed,
10698 and zero is returned. */
10699
10700 static CORE_ADDR
10701 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10702 struct breakpoint *b)
10703 {
10704 struct gdb_exception e;
10705 CORE_ADDR result = 0;
10706
10707 TRY_CATCH (e, RETURN_MASK_ERROR)
10708 {
10709 result = ada_exception_name_addr_1 (ex, b);
10710 }
10711
10712 if (e.reason < 0)
10713 {
10714 warning (_("failed to get exception name: %s"), e.message);
10715 return 0;
10716 }
10717
10718 return result;
10719 }
10720
10721 /* Implement the PRINT_IT method in the breakpoint_ops structure
10722 for all exception catchpoint kinds. */
10723
10724 static enum print_stop_action
10725 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10726 {
10727 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10728 char exception_name[256];
10729
10730 if (addr != 0)
10731 {
10732 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10733 exception_name [sizeof (exception_name) - 1] = '\0';
10734 }
10735
10736 ada_find_printable_frame (get_current_frame ());
10737
10738 annotate_catchpoint (b->number);
10739 switch (ex)
10740 {
10741 case ex_catch_exception:
10742 if (addr != 0)
10743 printf_filtered (_("\nCatchpoint %d, %s at "),
10744 b->number, exception_name);
10745 else
10746 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10747 break;
10748 case ex_catch_exception_unhandled:
10749 if (addr != 0)
10750 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10751 b->number, exception_name);
10752 else
10753 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10754 b->number);
10755 break;
10756 case ex_catch_assert:
10757 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10758 b->number);
10759 break;
10760 }
10761
10762 return PRINT_SRC_AND_LOC;
10763 }
10764
10765 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10766 for all exception catchpoint kinds. */
10767
10768 static void
10769 print_one_exception (enum exception_catchpoint_kind ex,
10770 struct breakpoint *b, struct bp_location **last_loc)
10771 {
10772 struct value_print_options opts;
10773
10774 get_user_print_options (&opts);
10775 if (opts.addressprint)
10776 {
10777 annotate_field (4);
10778 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10779 }
10780
10781 annotate_field (5);
10782 *last_loc = b->loc;
10783 switch (ex)
10784 {
10785 case ex_catch_exception:
10786 if (b->exp_string != NULL)
10787 {
10788 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10789
10790 ui_out_field_string (uiout, "what", msg);
10791 xfree (msg);
10792 }
10793 else
10794 ui_out_field_string (uiout, "what", "all Ada exceptions");
10795
10796 break;
10797
10798 case ex_catch_exception_unhandled:
10799 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10800 break;
10801
10802 case ex_catch_assert:
10803 ui_out_field_string (uiout, "what", "failed Ada assertions");
10804 break;
10805
10806 default:
10807 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10808 break;
10809 }
10810 }
10811
10812 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10813 for all exception catchpoint kinds. */
10814
10815 static void
10816 print_mention_exception (enum exception_catchpoint_kind ex,
10817 struct breakpoint *b)
10818 {
10819 switch (ex)
10820 {
10821 case ex_catch_exception:
10822 if (b->exp_string != NULL)
10823 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10824 b->number, b->exp_string);
10825 else
10826 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10827
10828 break;
10829
10830 case ex_catch_exception_unhandled:
10831 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10832 b->number);
10833 break;
10834
10835 case ex_catch_assert:
10836 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10837 break;
10838
10839 default:
10840 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10841 break;
10842 }
10843 }
10844
10845 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10846 for all exception catchpoint kinds. */
10847
10848 static void
10849 print_recreate_exception (enum exception_catchpoint_kind ex,
10850 struct breakpoint *b, struct ui_file *fp)
10851 {
10852 switch (ex)
10853 {
10854 case ex_catch_exception:
10855 fprintf_filtered (fp, "catch exception");
10856 if (b->exp_string != NULL)
10857 fprintf_filtered (fp, " %s", b->exp_string);
10858 break;
10859
10860 case ex_catch_exception_unhandled:
10861 fprintf_filtered (fp, "catch exception unhandled");
10862 break;
10863
10864 case ex_catch_assert:
10865 fprintf_filtered (fp, "catch assert");
10866 break;
10867
10868 default:
10869 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10870 }
10871 }
10872
10873 /* Virtual table for "catch exception" breakpoints. */
10874
10875 static enum print_stop_action
10876 print_it_catch_exception (struct breakpoint *b)
10877 {
10878 return print_it_exception (ex_catch_exception, b);
10879 }
10880
10881 static void
10882 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10883 {
10884 print_one_exception (ex_catch_exception, b, last_loc);
10885 }
10886
10887 static void
10888 print_mention_catch_exception (struct breakpoint *b)
10889 {
10890 print_mention_exception (ex_catch_exception, b);
10891 }
10892
10893 static void
10894 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10895 {
10896 print_recreate_exception (ex_catch_exception, b, fp);
10897 }
10898
10899 static struct breakpoint_ops catch_exception_breakpoint_ops =
10900 {
10901 NULL, /* insert */
10902 NULL, /* remove */
10903 NULL, /* breakpoint_hit */
10904 print_it_catch_exception,
10905 print_one_catch_exception,
10906 print_mention_catch_exception,
10907 print_recreate_catch_exception
10908 };
10909
10910 /* Virtual table for "catch exception unhandled" breakpoints. */
10911
10912 static enum print_stop_action
10913 print_it_catch_exception_unhandled (struct breakpoint *b)
10914 {
10915 return print_it_exception (ex_catch_exception_unhandled, b);
10916 }
10917
10918 static void
10919 print_one_catch_exception_unhandled (struct breakpoint *b,
10920 struct bp_location **last_loc)
10921 {
10922 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10923 }
10924
10925 static void
10926 print_mention_catch_exception_unhandled (struct breakpoint *b)
10927 {
10928 print_mention_exception (ex_catch_exception_unhandled, b);
10929 }
10930
10931 static void
10932 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10933 struct ui_file *fp)
10934 {
10935 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10936 }
10937
10938 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10939 NULL, /* insert */
10940 NULL, /* remove */
10941 NULL, /* breakpoint_hit */
10942 print_it_catch_exception_unhandled,
10943 print_one_catch_exception_unhandled,
10944 print_mention_catch_exception_unhandled,
10945 print_recreate_catch_exception_unhandled
10946 };
10947
10948 /* Virtual table for "catch assert" breakpoints. */
10949
10950 static enum print_stop_action
10951 print_it_catch_assert (struct breakpoint *b)
10952 {
10953 return print_it_exception (ex_catch_assert, b);
10954 }
10955
10956 static void
10957 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10958 {
10959 print_one_exception (ex_catch_assert, b, last_loc);
10960 }
10961
10962 static void
10963 print_mention_catch_assert (struct breakpoint *b)
10964 {
10965 print_mention_exception (ex_catch_assert, b);
10966 }
10967
10968 static void
10969 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10970 {
10971 print_recreate_exception (ex_catch_assert, b, fp);
10972 }
10973
10974 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10975 NULL, /* insert */
10976 NULL, /* remove */
10977 NULL, /* breakpoint_hit */
10978 print_it_catch_assert,
10979 print_one_catch_assert,
10980 print_mention_catch_assert,
10981 print_recreate_catch_assert
10982 };
10983
10984 /* Return non-zero if B is an Ada exception catchpoint. */
10985
10986 int
10987 ada_exception_catchpoint_p (struct breakpoint *b)
10988 {
10989 return (b->ops == &catch_exception_breakpoint_ops
10990 || b->ops == &catch_exception_unhandled_breakpoint_ops
10991 || b->ops == &catch_assert_breakpoint_ops);
10992 }
10993
10994 /* Return a newly allocated copy of the first space-separated token
10995 in ARGSP, and then adjust ARGSP to point immediately after that
10996 token.
10997
10998 Return NULL if ARGPS does not contain any more tokens. */
10999
11000 static char *
11001 ada_get_next_arg (char **argsp)
11002 {
11003 char *args = *argsp;
11004 char *end;
11005 char *result;
11006
11007 /* Skip any leading white space. */
11008
11009 while (isspace (*args))
11010 args++;
11011
11012 if (args[0] == '\0')
11013 return NULL; /* No more arguments. */
11014
11015 /* Find the end of the current argument. */
11016
11017 end = args;
11018 while (*end != '\0' && !isspace (*end))
11019 end++;
11020
11021 /* Adjust ARGSP to point to the start of the next argument. */
11022
11023 *argsp = end;
11024
11025 /* Make a copy of the current argument and return it. */
11026
11027 result = xmalloc (end - args + 1);
11028 strncpy (result, args, end - args);
11029 result[end - args] = '\0';
11030
11031 return result;
11032 }
11033
11034 /* Split the arguments specified in a "catch exception" command.
11035 Set EX to the appropriate catchpoint type.
11036 Set EXP_STRING to the name of the specific exception if
11037 specified by the user. */
11038
11039 static void
11040 catch_ada_exception_command_split (char *args,
11041 enum exception_catchpoint_kind *ex,
11042 char **exp_string)
11043 {
11044 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11045 char *exception_name;
11046
11047 exception_name = ada_get_next_arg (&args);
11048 make_cleanup (xfree, exception_name);
11049
11050 /* Check that we do not have any more arguments. Anything else
11051 is unexpected. */
11052
11053 while (isspace (*args))
11054 args++;
11055
11056 if (args[0] != '\0')
11057 error (_("Junk at end of expression"));
11058
11059 discard_cleanups (old_chain);
11060
11061 if (exception_name == NULL)
11062 {
11063 /* Catch all exceptions. */
11064 *ex = ex_catch_exception;
11065 *exp_string = NULL;
11066 }
11067 else if (strcmp (exception_name, "unhandled") == 0)
11068 {
11069 /* Catch unhandled exceptions. */
11070 *ex = ex_catch_exception_unhandled;
11071 *exp_string = NULL;
11072 }
11073 else
11074 {
11075 /* Catch a specific exception. */
11076 *ex = ex_catch_exception;
11077 *exp_string = exception_name;
11078 }
11079 }
11080
11081 /* Return the name of the symbol on which we should break in order to
11082 implement a catchpoint of the EX kind. */
11083
11084 static const char *
11085 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11086 {
11087 gdb_assert (exception_info != NULL);
11088
11089 switch (ex)
11090 {
11091 case ex_catch_exception:
11092 return (exception_info->catch_exception_sym);
11093 break;
11094 case ex_catch_exception_unhandled:
11095 return (exception_info->catch_exception_unhandled_sym);
11096 break;
11097 case ex_catch_assert:
11098 return (exception_info->catch_assert_sym);
11099 break;
11100 default:
11101 internal_error (__FILE__, __LINE__,
11102 _("unexpected catchpoint kind (%d)"), ex);
11103 }
11104 }
11105
11106 /* Return the breakpoint ops "virtual table" used for catchpoints
11107 of the EX kind. */
11108
11109 static struct breakpoint_ops *
11110 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11111 {
11112 switch (ex)
11113 {
11114 case ex_catch_exception:
11115 return (&catch_exception_breakpoint_ops);
11116 break;
11117 case ex_catch_exception_unhandled:
11118 return (&catch_exception_unhandled_breakpoint_ops);
11119 break;
11120 case ex_catch_assert:
11121 return (&catch_assert_breakpoint_ops);
11122 break;
11123 default:
11124 internal_error (__FILE__, __LINE__,
11125 _("unexpected catchpoint kind (%d)"), ex);
11126 }
11127 }
11128
11129 /* Return the condition that will be used to match the current exception
11130 being raised with the exception that the user wants to catch. This
11131 assumes that this condition is used when the inferior just triggered
11132 an exception catchpoint.
11133
11134 The string returned is a newly allocated string that needs to be
11135 deallocated later. */
11136
11137 static char *
11138 ada_exception_catchpoint_cond_string (const char *exp_string)
11139 {
11140 int i;
11141
11142 /* The standard exceptions are a special case. They are defined in
11143 runtime units that have been compiled without debugging info; if
11144 EXP_STRING is the not-fully-qualified name of a standard
11145 exception (e.g. "constraint_error") then, during the evaluation
11146 of the condition expression, the symbol lookup on this name would
11147 *not* return this standard exception. The catchpoint condition
11148 may then be set only on user-defined exceptions which have the
11149 same not-fully-qualified name (e.g. my_package.constraint_error).
11150
11151 To avoid this unexcepted behavior, these standard exceptions are
11152 systematically prefixed by "standard". This means that "catch
11153 exception constraint_error" is rewritten into "catch exception
11154 standard.constraint_error".
11155
11156 If an exception named contraint_error is defined in another package of
11157 the inferior program, then the only way to specify this exception as a
11158 breakpoint condition is to use its fully-qualified named:
11159 e.g. my_package.constraint_error. */
11160
11161 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11162 {
11163 if (strcmp (standard_exc [i], exp_string) == 0)
11164 {
11165 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11166 exp_string);
11167 }
11168 }
11169 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11170 }
11171
11172 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11173
11174 static struct expression *
11175 ada_parse_catchpoint_condition (char *cond_string,
11176 struct symtab_and_line sal)
11177 {
11178 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11179 }
11180
11181 /* Return the symtab_and_line that should be used to insert an exception
11182 catchpoint of the TYPE kind.
11183
11184 EX_STRING should contain the name of a specific exception
11185 that the catchpoint should catch, or NULL otherwise.
11186
11187 The idea behind all the remaining parameters is that their names match
11188 the name of certain fields in the breakpoint structure that are used to
11189 handle exception catchpoints. This function returns the value to which
11190 these fields should be set, depending on the type of catchpoint we need
11191 to create.
11192
11193 If COND and COND_STRING are both non-NULL, any value they might
11194 hold will be free'ed, and then replaced by newly allocated ones.
11195 These parameters are left untouched otherwise. */
11196
11197 static struct symtab_and_line
11198 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11199 char **addr_string, char **cond_string,
11200 struct expression **cond, struct breakpoint_ops **ops)
11201 {
11202 const char *sym_name;
11203 struct symbol *sym;
11204 struct symtab_and_line sal;
11205
11206 /* First, find out which exception support info to use. */
11207 ada_exception_support_info_sniffer ();
11208
11209 /* Then lookup the function on which we will break in order to catch
11210 the Ada exceptions requested by the user. */
11211
11212 sym_name = ada_exception_sym_name (ex);
11213 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11214
11215 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11216 that should be compiled with debugging information. As a result, we
11217 expect to find that symbol in the symtabs. If we don't find it, then
11218 the target most likely does not support Ada exceptions, or we cannot
11219 insert exception breakpoints yet, because the GNAT runtime hasn't been
11220 loaded yet. */
11221
11222 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11223 in such a way that no debugging information is produced for the symbol
11224 we are looking for. In this case, we could search the minimal symbols
11225 as a fall-back mechanism. This would still be operating in degraded
11226 mode, however, as we would still be missing the debugging information
11227 that is needed in order to extract the name of the exception being
11228 raised (this name is printed in the catchpoint message, and is also
11229 used when trying to catch a specific exception). We do not handle
11230 this case for now. */
11231
11232 if (sym == NULL)
11233 error (_("Unable to break on '%s' in this configuration."), sym_name);
11234
11235 /* Make sure that the symbol we found corresponds to a function. */
11236 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11237 error (_("Symbol \"%s\" is not a function (class = %d)"),
11238 sym_name, SYMBOL_CLASS (sym));
11239
11240 sal = find_function_start_sal (sym, 1);
11241
11242 /* Set ADDR_STRING. */
11243
11244 *addr_string = xstrdup (sym_name);
11245
11246 /* Set the COND and COND_STRING (if not NULL). */
11247
11248 if (cond_string != NULL && cond != NULL)
11249 {
11250 if (*cond_string != NULL)
11251 {
11252 xfree (*cond_string);
11253 *cond_string = NULL;
11254 }
11255 if (*cond != NULL)
11256 {
11257 xfree (*cond);
11258 *cond = NULL;
11259 }
11260 if (exp_string != NULL)
11261 {
11262 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11263 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11264 }
11265 }
11266
11267 /* Set OPS. */
11268 *ops = ada_exception_breakpoint_ops (ex);
11269
11270 return sal;
11271 }
11272
11273 /* Parse the arguments (ARGS) of the "catch exception" command.
11274
11275 Set TYPE to the appropriate exception catchpoint type.
11276 If the user asked the catchpoint to catch only a specific
11277 exception, then save the exception name in ADDR_STRING.
11278
11279 See ada_exception_sal for a description of all the remaining
11280 function arguments of this function. */
11281
11282 struct symtab_and_line
11283 ada_decode_exception_location (char *args, char **addr_string,
11284 char **exp_string, char **cond_string,
11285 struct expression **cond,
11286 struct breakpoint_ops **ops)
11287 {
11288 enum exception_catchpoint_kind ex;
11289
11290 catch_ada_exception_command_split (args, &ex, exp_string);
11291 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11292 cond, ops);
11293 }
11294
11295 struct symtab_and_line
11296 ada_decode_assert_location (char *args, char **addr_string,
11297 struct breakpoint_ops **ops)
11298 {
11299 /* Check that no argument where provided at the end of the command. */
11300
11301 if (args != NULL)
11302 {
11303 while (isspace (*args))
11304 args++;
11305 if (*args != '\0')
11306 error (_("Junk at end of arguments."));
11307 }
11308
11309 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11310 ops);
11311 }
11312
11313 /* Operators */
11314 /* Information about operators given special treatment in functions
11315 below. */
11316 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11317
11318 #define ADA_OPERATORS \
11319 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11320 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11321 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11322 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11323 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11324 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11325 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11326 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11327 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11328 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11329 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11330 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11331 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11332 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11333 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11334 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11335 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11336 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11337 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11338
11339 static void
11340 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11341 int *argsp)
11342 {
11343 switch (exp->elts[pc - 1].opcode)
11344 {
11345 default:
11346 operator_length_standard (exp, pc, oplenp, argsp);
11347 break;
11348
11349 #define OP_DEFN(op, len, args, binop) \
11350 case op: *oplenp = len; *argsp = args; break;
11351 ADA_OPERATORS;
11352 #undef OP_DEFN
11353
11354 case OP_AGGREGATE:
11355 *oplenp = 3;
11356 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11357 break;
11358
11359 case OP_CHOICES:
11360 *oplenp = 3;
11361 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11362 break;
11363 }
11364 }
11365
11366 /* Implementation of the exp_descriptor method operator_check. */
11367
11368 static int
11369 ada_operator_check (struct expression *exp, int pos,
11370 int (*objfile_func) (struct objfile *objfile, void *data),
11371 void *data)
11372 {
11373 const union exp_element *const elts = exp->elts;
11374 struct type *type = NULL;
11375
11376 switch (elts[pos].opcode)
11377 {
11378 case UNOP_IN_RANGE:
11379 case UNOP_QUAL:
11380 type = elts[pos + 1].type;
11381 break;
11382
11383 default:
11384 return operator_check_standard (exp, pos, objfile_func, data);
11385 }
11386
11387 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11388
11389 if (type && TYPE_OBJFILE (type)
11390 && (*objfile_func) (TYPE_OBJFILE (type), data))
11391 return 1;
11392
11393 return 0;
11394 }
11395
11396 static char *
11397 ada_op_name (enum exp_opcode opcode)
11398 {
11399 switch (opcode)
11400 {
11401 default:
11402 return op_name_standard (opcode);
11403
11404 #define OP_DEFN(op, len, args, binop) case op: return #op;
11405 ADA_OPERATORS;
11406 #undef OP_DEFN
11407
11408 case OP_AGGREGATE:
11409 return "OP_AGGREGATE";
11410 case OP_CHOICES:
11411 return "OP_CHOICES";
11412 case OP_NAME:
11413 return "OP_NAME";
11414 }
11415 }
11416
11417 /* As for operator_length, but assumes PC is pointing at the first
11418 element of the operator, and gives meaningful results only for the
11419 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11420
11421 static void
11422 ada_forward_operator_length (struct expression *exp, int pc,
11423 int *oplenp, int *argsp)
11424 {
11425 switch (exp->elts[pc].opcode)
11426 {
11427 default:
11428 *oplenp = *argsp = 0;
11429 break;
11430
11431 #define OP_DEFN(op, len, args, binop) \
11432 case op: *oplenp = len; *argsp = args; break;
11433 ADA_OPERATORS;
11434 #undef OP_DEFN
11435
11436 case OP_AGGREGATE:
11437 *oplenp = 3;
11438 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11439 break;
11440
11441 case OP_CHOICES:
11442 *oplenp = 3;
11443 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11444 break;
11445
11446 case OP_STRING:
11447 case OP_NAME:
11448 {
11449 int len = longest_to_int (exp->elts[pc + 1].longconst);
11450
11451 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11452 *argsp = 0;
11453 break;
11454 }
11455 }
11456 }
11457
11458 static int
11459 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11460 {
11461 enum exp_opcode op = exp->elts[elt].opcode;
11462 int oplen, nargs;
11463 int pc = elt;
11464 int i;
11465
11466 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11467
11468 switch (op)
11469 {
11470 /* Ada attributes ('Foo). */
11471 case OP_ATR_FIRST:
11472 case OP_ATR_LAST:
11473 case OP_ATR_LENGTH:
11474 case OP_ATR_IMAGE:
11475 case OP_ATR_MAX:
11476 case OP_ATR_MIN:
11477 case OP_ATR_MODULUS:
11478 case OP_ATR_POS:
11479 case OP_ATR_SIZE:
11480 case OP_ATR_TAG:
11481 case OP_ATR_VAL:
11482 break;
11483
11484 case UNOP_IN_RANGE:
11485 case UNOP_QUAL:
11486 /* XXX: gdb_sprint_host_address, type_sprint */
11487 fprintf_filtered (stream, _("Type @"));
11488 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11489 fprintf_filtered (stream, " (");
11490 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11491 fprintf_filtered (stream, ")");
11492 break;
11493 case BINOP_IN_BOUNDS:
11494 fprintf_filtered (stream, " (%d)",
11495 longest_to_int (exp->elts[pc + 2].longconst));
11496 break;
11497 case TERNOP_IN_RANGE:
11498 break;
11499
11500 case OP_AGGREGATE:
11501 case OP_OTHERS:
11502 case OP_DISCRETE_RANGE:
11503 case OP_POSITIONAL:
11504 case OP_CHOICES:
11505 break;
11506
11507 case OP_NAME:
11508 case OP_STRING:
11509 {
11510 char *name = &exp->elts[elt + 2].string;
11511 int len = longest_to_int (exp->elts[elt + 1].longconst);
11512
11513 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11514 break;
11515 }
11516
11517 default:
11518 return dump_subexp_body_standard (exp, stream, elt);
11519 }
11520
11521 elt += oplen;
11522 for (i = 0; i < nargs; i += 1)
11523 elt = dump_subexp (exp, stream, elt);
11524
11525 return elt;
11526 }
11527
11528 /* The Ada extension of print_subexp (q.v.). */
11529
11530 static void
11531 ada_print_subexp (struct expression *exp, int *pos,
11532 struct ui_file *stream, enum precedence prec)
11533 {
11534 int oplen, nargs, i;
11535 int pc = *pos;
11536 enum exp_opcode op = exp->elts[pc].opcode;
11537
11538 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11539
11540 *pos += oplen;
11541 switch (op)
11542 {
11543 default:
11544 *pos -= oplen;
11545 print_subexp_standard (exp, pos, stream, prec);
11546 return;
11547
11548 case OP_VAR_VALUE:
11549 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11550 return;
11551
11552 case BINOP_IN_BOUNDS:
11553 /* XXX: sprint_subexp */
11554 print_subexp (exp, pos, stream, PREC_SUFFIX);
11555 fputs_filtered (" in ", stream);
11556 print_subexp (exp, pos, stream, PREC_SUFFIX);
11557 fputs_filtered ("'range", stream);
11558 if (exp->elts[pc + 1].longconst > 1)
11559 fprintf_filtered (stream, "(%ld)",
11560 (long) exp->elts[pc + 1].longconst);
11561 return;
11562
11563 case TERNOP_IN_RANGE:
11564 if (prec >= PREC_EQUAL)
11565 fputs_filtered ("(", stream);
11566 /* XXX: sprint_subexp */
11567 print_subexp (exp, pos, stream, PREC_SUFFIX);
11568 fputs_filtered (" in ", stream);
11569 print_subexp (exp, pos, stream, PREC_EQUAL);
11570 fputs_filtered (" .. ", stream);
11571 print_subexp (exp, pos, stream, PREC_EQUAL);
11572 if (prec >= PREC_EQUAL)
11573 fputs_filtered (")", stream);
11574 return;
11575
11576 case OP_ATR_FIRST:
11577 case OP_ATR_LAST:
11578 case OP_ATR_LENGTH:
11579 case OP_ATR_IMAGE:
11580 case OP_ATR_MAX:
11581 case OP_ATR_MIN:
11582 case OP_ATR_MODULUS:
11583 case OP_ATR_POS:
11584 case OP_ATR_SIZE:
11585 case OP_ATR_TAG:
11586 case OP_ATR_VAL:
11587 if (exp->elts[*pos].opcode == OP_TYPE)
11588 {
11589 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11590 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11591 *pos += 3;
11592 }
11593 else
11594 print_subexp (exp, pos, stream, PREC_SUFFIX);
11595 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11596 if (nargs > 1)
11597 {
11598 int tem;
11599
11600 for (tem = 1; tem < nargs; tem += 1)
11601 {
11602 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11603 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11604 }
11605 fputs_filtered (")", stream);
11606 }
11607 return;
11608
11609 case UNOP_QUAL:
11610 type_print (exp->elts[pc + 1].type, "", stream, 0);
11611 fputs_filtered ("'(", stream);
11612 print_subexp (exp, pos, stream, PREC_PREFIX);
11613 fputs_filtered (")", stream);
11614 return;
11615
11616 case UNOP_IN_RANGE:
11617 /* XXX: sprint_subexp */
11618 print_subexp (exp, pos, stream, PREC_SUFFIX);
11619 fputs_filtered (" in ", stream);
11620 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11621 return;
11622
11623 case OP_DISCRETE_RANGE:
11624 print_subexp (exp, pos, stream, PREC_SUFFIX);
11625 fputs_filtered ("..", stream);
11626 print_subexp (exp, pos, stream, PREC_SUFFIX);
11627 return;
11628
11629 case OP_OTHERS:
11630 fputs_filtered ("others => ", stream);
11631 print_subexp (exp, pos, stream, PREC_SUFFIX);
11632 return;
11633
11634 case OP_CHOICES:
11635 for (i = 0; i < nargs-1; i += 1)
11636 {
11637 if (i > 0)
11638 fputs_filtered ("|", stream);
11639 print_subexp (exp, pos, stream, PREC_SUFFIX);
11640 }
11641 fputs_filtered (" => ", stream);
11642 print_subexp (exp, pos, stream, PREC_SUFFIX);
11643 return;
11644
11645 case OP_POSITIONAL:
11646 print_subexp (exp, pos, stream, PREC_SUFFIX);
11647 return;
11648
11649 case OP_AGGREGATE:
11650 fputs_filtered ("(", stream);
11651 for (i = 0; i < nargs; i += 1)
11652 {
11653 if (i > 0)
11654 fputs_filtered (", ", stream);
11655 print_subexp (exp, pos, stream, PREC_SUFFIX);
11656 }
11657 fputs_filtered (")", stream);
11658 return;
11659 }
11660 }
11661
11662 /* Table mapping opcodes into strings for printing operators
11663 and precedences of the operators. */
11664
11665 static const struct op_print ada_op_print_tab[] = {
11666 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11667 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11668 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11669 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11670 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11671 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11672 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11673 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11674 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11675 {">=", BINOP_GEQ, PREC_ORDER, 0},
11676 {">", BINOP_GTR, PREC_ORDER, 0},
11677 {"<", BINOP_LESS, PREC_ORDER, 0},
11678 {">>", BINOP_RSH, PREC_SHIFT, 0},
11679 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11680 {"+", BINOP_ADD, PREC_ADD, 0},
11681 {"-", BINOP_SUB, PREC_ADD, 0},
11682 {"&", BINOP_CONCAT, PREC_ADD, 0},
11683 {"*", BINOP_MUL, PREC_MUL, 0},
11684 {"/", BINOP_DIV, PREC_MUL, 0},
11685 {"rem", BINOP_REM, PREC_MUL, 0},
11686 {"mod", BINOP_MOD, PREC_MUL, 0},
11687 {"**", BINOP_EXP, PREC_REPEAT, 0},
11688 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11689 {"-", UNOP_NEG, PREC_PREFIX, 0},
11690 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11691 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11692 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11693 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11694 {".all", UNOP_IND, PREC_SUFFIX, 1},
11695 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11696 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11697 {NULL, 0, 0, 0}
11698 };
11699 \f
11700 enum ada_primitive_types {
11701 ada_primitive_type_int,
11702 ada_primitive_type_long,
11703 ada_primitive_type_short,
11704 ada_primitive_type_char,
11705 ada_primitive_type_float,
11706 ada_primitive_type_double,
11707 ada_primitive_type_void,
11708 ada_primitive_type_long_long,
11709 ada_primitive_type_long_double,
11710 ada_primitive_type_natural,
11711 ada_primitive_type_positive,
11712 ada_primitive_type_system_address,
11713 nr_ada_primitive_types
11714 };
11715
11716 static void
11717 ada_language_arch_info (struct gdbarch *gdbarch,
11718 struct language_arch_info *lai)
11719 {
11720 const struct builtin_type *builtin = builtin_type (gdbarch);
11721
11722 lai->primitive_type_vector
11723 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11724 struct type *);
11725
11726 lai->primitive_type_vector [ada_primitive_type_int]
11727 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11728 0, "integer");
11729 lai->primitive_type_vector [ada_primitive_type_long]
11730 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11731 0, "long_integer");
11732 lai->primitive_type_vector [ada_primitive_type_short]
11733 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11734 0, "short_integer");
11735 lai->string_char_type
11736 = lai->primitive_type_vector [ada_primitive_type_char]
11737 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11738 lai->primitive_type_vector [ada_primitive_type_float]
11739 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11740 "float", NULL);
11741 lai->primitive_type_vector [ada_primitive_type_double]
11742 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11743 "long_float", NULL);
11744 lai->primitive_type_vector [ada_primitive_type_long_long]
11745 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11746 0, "long_long_integer");
11747 lai->primitive_type_vector [ada_primitive_type_long_double]
11748 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11749 "long_long_float", NULL);
11750 lai->primitive_type_vector [ada_primitive_type_natural]
11751 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11752 0, "natural");
11753 lai->primitive_type_vector [ada_primitive_type_positive]
11754 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11755 0, "positive");
11756 lai->primitive_type_vector [ada_primitive_type_void]
11757 = builtin->builtin_void;
11758
11759 lai->primitive_type_vector [ada_primitive_type_system_address]
11760 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11761 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11762 = "system__address";
11763
11764 lai->bool_type_symbol = NULL;
11765 lai->bool_type_default = builtin->builtin_bool;
11766 }
11767 \f
11768 /* Language vector */
11769
11770 /* Not really used, but needed in the ada_language_defn. */
11771
11772 static void
11773 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11774 {
11775 ada_emit_char (c, type, stream, quoter, 1);
11776 }
11777
11778 static int
11779 parse (void)
11780 {
11781 warnings_issued = 0;
11782 return ada_parse ();
11783 }
11784
11785 static const struct exp_descriptor ada_exp_descriptor = {
11786 ada_print_subexp,
11787 ada_operator_length,
11788 ada_operator_check,
11789 ada_op_name,
11790 ada_dump_subexp_body,
11791 ada_evaluate_subexp
11792 };
11793
11794 const struct language_defn ada_language_defn = {
11795 "ada", /* Language name */
11796 language_ada,
11797 range_check_off,
11798 type_check_off,
11799 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11800 that's not quite what this means. */
11801 array_row_major,
11802 macro_expansion_no,
11803 &ada_exp_descriptor,
11804 parse,
11805 ada_error,
11806 resolve,
11807 ada_printchar, /* Print a character constant */
11808 ada_printstr, /* Function to print string constant */
11809 emit_char, /* Function to print single char (not used) */
11810 ada_print_type, /* Print a type using appropriate syntax */
11811 ada_print_typedef, /* Print a typedef using appropriate syntax */
11812 ada_val_print, /* Print a value using appropriate syntax */
11813 ada_value_print, /* Print a top-level value */
11814 NULL, /* Language specific skip_trampoline */
11815 NULL, /* name_of_this */
11816 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11817 basic_lookup_transparent_type, /* lookup_transparent_type */
11818 ada_la_decode, /* Language specific symbol demangler */
11819 NULL, /* Language specific
11820 class_name_from_physname */
11821 ada_op_print_tab, /* expression operators for printing */
11822 0, /* c-style arrays */
11823 1, /* String lower bound */
11824 ada_get_gdb_completer_word_break_characters,
11825 ada_make_symbol_completion_list,
11826 ada_language_arch_info,
11827 ada_print_array_index,
11828 default_pass_by_reference,
11829 c_get_string,
11830 LANG_MAGIC
11831 };
11832
11833 /* Provide a prototype to silence -Wmissing-prototypes. */
11834 extern initialize_file_ftype _initialize_ada_language;
11835
11836 /* Command-list for the "set/show ada" prefix command. */
11837 static struct cmd_list_element *set_ada_list;
11838 static struct cmd_list_element *show_ada_list;
11839
11840 /* Implement the "set ada" prefix command. */
11841
11842 static void
11843 set_ada_command (char *arg, int from_tty)
11844 {
11845 printf_unfiltered (_(\
11846 "\"set ada\" must be followed by the name of a setting.\n"));
11847 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11848 }
11849
11850 /* Implement the "show ada" prefix command. */
11851
11852 static void
11853 show_ada_command (char *args, int from_tty)
11854 {
11855 cmd_show_list (show_ada_list, from_tty, "");
11856 }
11857
11858 void
11859 _initialize_ada_language (void)
11860 {
11861 add_language (&ada_language_defn);
11862
11863 add_prefix_cmd ("ada", no_class, set_ada_command,
11864 _("Prefix command for changing Ada-specfic settings"),
11865 &set_ada_list, "set ada ", 0, &setlist);
11866
11867 add_prefix_cmd ("ada", no_class, show_ada_command,
11868 _("Generic command for showing Ada-specific settings."),
11869 &show_ada_list, "show ada ", 0, &showlist);
11870
11871 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11872 &trust_pad_over_xvs, _("\
11873 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11874 Show whether an optimization trusting PAD types over XVS types is activated"),
11875 _("\
11876 This is related to the encoding used by the GNAT compiler. The debugger\n\
11877 should normally trust the contents of PAD types, but certain older versions\n\
11878 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11879 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11880 work around this bug. It is always safe to turn this option \"off\", but\n\
11881 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11882 this option to \"off\" unless necessary."),
11883 NULL, NULL, &set_ada_list, &show_ada_list);
11884
11885 varsize_limit = 65536;
11886
11887 obstack_init (&symbol_list_obstack);
11888
11889 decoded_names_store = htab_create_alloc
11890 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11891 NULL, xcalloc, xfree);
11892
11893 observer_attach_executable_changed (ada_executable_changed_observer);
11894
11895 /* Setup per-inferior data. */
11896 observer_attach_inferior_exit (ada_inferior_exit);
11897 ada_inferior_data
11898 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11899 }
This page took 0.376471 seconds and 4 git commands to generate.