Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
112
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
114
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
117 const struct block *);
118
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
120
121 static const char *ada_decoded_op_name (enum exp_opcode);
122
123 static int numeric_type_p (struct type *);
124
125 static int integer_type_p (struct type *);
126
127 static int scalar_type_p (struct type *);
128
129 static int discrete_type_p (struct type *);
130
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
132 int, int);
133
134 static struct type *ada_find_parallel_type_with_name (struct type *,
135 const char *);
136
137 static int is_dynamic_field (struct type *, int);
138
139 static struct type *to_fixed_variant_branch_type (struct type *,
140 const gdb_byte *,
141 CORE_ADDR, struct value *);
142
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
144
145 static struct type *to_fixed_range_type (struct type *, struct value *);
146
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
149
150 static struct value *unwrap_value (struct value *);
151
152 static struct type *constrained_packed_array_type (struct type *, long *);
153
154 static struct type *decode_constrained_packed_array_type (struct type *);
155
156 static long decode_packed_array_bitsize (struct type *);
157
158 static struct value *decode_constrained_packed_array (struct value *);
159
160 static int ada_is_unconstrained_packed_array_type (struct type *);
161
162 static struct value *value_subscript_packed (struct value *, int,
163 struct value **);
164
165 static struct value *coerce_unspec_val_to_type (struct value *,
166 struct type *);
167
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
169
170 static int equiv_types (struct type *, struct type *);
171
172 static int is_name_suffix (const char *);
173
174 static int advance_wild_match (const char **, const char *, char);
175
176 static bool wild_match (const char *name, const char *patn);
177
178 static struct value *ada_coerce_ref (struct value *);
179
180 static LONGEST pos_atr (struct value *);
181
182 static struct value *val_atr (struct type *, LONGEST);
183
184 static struct symbol *standard_lookup (const char *, const struct block *,
185 domain_enum);
186
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
188 struct type *);
189
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
192
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
196
197 static int ada_is_direct_array_type (struct type *);
198
199 static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
203
204
205 static struct type *ada_find_any_type (const char *name);
206
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
210 \f
211
212 /* The result of a symbol lookup to be stored in our symbol cache. */
213
214 struct cache_entry
215 {
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
219 domain_enum domain;
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228 };
229
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239 #define HASH_SIZE 1009
240
241 struct ada_symbol_cache
242 {
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
245
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
248 };
249
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
252
253 static const char ada_completer_word_break_characters[] =
254 #ifdef VMS
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
256 #else
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
258 #endif
259
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
263
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
266
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
270
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
273 };
274
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
277 };
278
279 /* Maintenance-related settings for this module. */
280
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
283
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
285
286 static bool ada_ignore_descriptive_types_p = false;
287
288 /* Inferior-specific data. */
289
290 /* Per-inferior data for this module. */
291
292 struct ada_inferior_data
293 {
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
299
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
302 inferior. */
303 const struct exception_support_info *exception_info = nullptr;
304 };
305
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
308
309 /* Return our inferior data for the given inferior (INF).
310
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
316
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
319 {
320 struct ada_inferior_data *data;
321
322 data = ada_inferior_data.get (inf);
323 if (data == NULL)
324 data = ada_inferior_data.emplace (inf);
325
326 return data;
327 }
328
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
331
332 static void
333 ada_inferior_exit (struct inferior *inf)
334 {
335 ada_inferior_data.clear (inf);
336 }
337
338
339 /* program-space-specific data. */
340
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
343 {
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
346 };
347
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
350
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
353
354 This function always returns a valid object. */
355
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
358 {
359 struct ada_pspace_data *data;
360
361 data = ada_pspace_data_handle.get (pspace);
362 if (data == NULL)
363 data = ada_pspace_data_handle.emplace (pspace);
364
365 return data;
366 }
367
368 /* Utilities */
369
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
372
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
381
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
385
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
388
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
392
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
396
397 static struct type *
398 ada_typedef_target_type (struct type *type)
399 {
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
402 return type;
403 }
404
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
408
409 static const char *
410 ada_unqualified_name (const char *decoded_name)
411 {
412 const char *result;
413
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
419 return decoded_name;
420
421 result = strrchr (decoded_name, '.');
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'. */
431
432 static std::string
433 add_angle_brackets (const char *str)
434 {
435 return string_printf ("<%s>", str);
436 }
437
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
440
441 static int
442 field_name_match (const char *field_name, const char *target)
443 {
444 int len = strlen (target);
445
446 return
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
451 "___XVN") != 0)));
452 }
453
454
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
462
463 int
464 ada_get_field_index (const struct type *type, const char *field_name,
465 int maybe_missing)
466 {
467 int fieldno;
468 struct type *struct_type = check_typedef ((struct type *) type);
469
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
472 return fieldno;
473
474 if (!maybe_missing)
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
477
478 return -1;
479 }
480
481 /* The length of the prefix of NAME prior to any "___" suffix. */
482
483 int
484 ada_name_prefix_len (const char *name)
485 {
486 if (name == NULL)
487 return 0;
488 else
489 {
490 const char *p = strstr (name, "___");
491
492 if (p == NULL)
493 return strlen (name);
494 else
495 return p - name;
496 }
497 }
498
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
501
502 static int
503 is_suffix (const char *str, const char *suffix)
504 {
505 int len1, len2;
506
507 if (str == NULL)
508 return 0;
509 len1 = strlen (str);
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
512 }
513
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
516
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
519 {
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
522 return val;
523 else
524 {
525 struct value *result;
526
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
530
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
538 else
539 {
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
542 }
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
548 return result;
549 }
550 }
551
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
554 {
555 if (valaddr == NULL)
556 return NULL;
557 else
558 return valaddr + offset;
559 }
560
561 static CORE_ADDR
562 cond_offset_target (CORE_ADDR address, long offset)
563 {
564 if (address == 0)
565 return 0;
566 else
567 return address + offset;
568 }
569
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
573 expression. */
574
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
578
579 static void
580 lim_warning (const char *format, ...)
581 {
582 va_list args;
583
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
588
589 va_end (args);
590 }
591
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
594 GDB. */
595
596 void
597 ada_ensure_varsize_limit (const struct type *type)
598 {
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
601 }
602
603 /* Maximum value of a SIZE-byte signed integer type. */
604 static LONGEST
605 max_of_size (int size)
606 {
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
608
609 return top_bit | (top_bit - 1);
610 }
611
612 /* Minimum value of a SIZE-byte signed integer type. */
613 static LONGEST
614 min_of_size (int size)
615 {
616 return -max_of_size (size) - 1;
617 }
618
619 /* Maximum value of a SIZE-byte unsigned integer type. */
620 static ULONGEST
621 umax_of_size (int size)
622 {
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
624
625 return top_bit | (top_bit - 1);
626 }
627
628 /* Maximum value of integral type T, as a signed quantity. */
629 static LONGEST
630 max_of_type (struct type *t)
631 {
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
634 else
635 return max_of_size (TYPE_LENGTH (t));
636 }
637
638 /* Minimum value of integral type T, as a signed quantity. */
639 static LONGEST
640 min_of_type (struct type *t)
641 {
642 if (t->is_unsigned ())
643 return 0;
644 else
645 return min_of_size (TYPE_LENGTH (t));
646 }
647
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
649 LONGEST
650 ada_discrete_type_high_bound (struct type *type)
651 {
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
654 {
655 case TYPE_CODE_RANGE:
656 {
657 const dynamic_prop &high = type->bounds ()->high;
658
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
661 else
662 {
663 gdb_assert (high.kind () == PROP_UNDEFINED);
664
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
668 return 0;
669 }
670 }
671 case TYPE_CODE_ENUM:
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
673 case TYPE_CODE_BOOL:
674 return 1;
675 case TYPE_CODE_CHAR:
676 case TYPE_CODE_INT:
677 return max_of_type (type);
678 default:
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
680 }
681 }
682
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
684 LONGEST
685 ada_discrete_type_low_bound (struct type *type)
686 {
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
689 {
690 case TYPE_CODE_RANGE:
691 {
692 const dynamic_prop &low = type->bounds ()->low;
693
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
696 else
697 {
698 gdb_assert (low.kind () == PROP_UNDEFINED);
699
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
703 return 0;
704 }
705 }
706 case TYPE_CODE_ENUM:
707 return TYPE_FIELD_ENUMVAL (type, 0);
708 case TYPE_CODE_BOOL:
709 return 0;
710 case TYPE_CODE_CHAR:
711 case TYPE_CODE_INT:
712 return min_of_type (type);
713 default:
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
715 }
716 }
717
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
720
721 static struct type *
722 get_base_type (struct type *type)
723 {
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
725 {
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
727 return type;
728 type = TYPE_TARGET_TYPE (type);
729 }
730 return type;
731 }
732
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
737
738 struct value *
739 ada_get_decoded_value (struct value *value)
740 {
741 struct type *type = ada_check_typedef (value_type (value));
742
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
746 {
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
749 else
750 value = ada_coerce_to_simple_array (value);
751 }
752 else
753 value = ada_to_fixed_value (value);
754
755 return value;
756 }
757
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
762
763 struct type *
764 ada_get_decoded_type (struct type *type)
765 {
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
769 return type;
770 }
771
772 \f
773
774 /* Language Selection */
775
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
778
779 static enum language
780 ada_update_initial_language (enum language lang)
781 {
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
783 return language_ada;
784
785 return lang;
786 }
787
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
791
792 char *
793 ada_main_name (void)
794 {
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
797
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
802 in Ada. */
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
804
805 if (msym.minsym != NULL)
806 {
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
810
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
813 }
814
815 /* The main procedure doesn't seem to be in Ada. */
816 return NULL;
817 }
818 \f
819 /* Symbols */
820
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
822 of NULLs. */
823
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
846 {NULL, NULL}
847 };
848
849 /* The "encoded" form of DECODED, according to GNAT conventions. If
850 THROW_ERRORS, throw an error if invalid operator name is found.
851 Otherwise, return the empty string in that case. */
852
853 static std::string
854 ada_encode_1 (const char *decoded, bool throw_errors)
855 {
856 if (decoded == NULL)
857 return {};
858
859 std::string encoding_buffer;
860 for (const char *p = decoded; *p != '\0'; p += 1)
861 {
862 if (*p == '.')
863 encoding_buffer.append ("__");
864 else if (*p == '"')
865 {
866 const struct ada_opname_map *mapping;
867
868 for (mapping = ada_opname_table;
869 mapping->encoded != NULL
870 && !startswith (p, mapping->decoded); mapping += 1)
871 ;
872 if (mapping->encoded == NULL)
873 {
874 if (throw_errors)
875 error (_("invalid Ada operator name: %s"), p);
876 else
877 return {};
878 }
879 encoding_buffer.append (mapping->encoded);
880 break;
881 }
882 else
883 encoding_buffer.push_back (*p);
884 }
885
886 return encoding_buffer;
887 }
888
889 /* The "encoded" form of DECODED, according to GNAT conventions. */
890
891 std::string
892 ada_encode (const char *decoded)
893 {
894 return ada_encode_1 (decoded, true);
895 }
896
897 /* Return NAME folded to lower case, or, if surrounded by single
898 quotes, unfolded, but with the quotes stripped away. Result good
899 to next call. */
900
901 static const char *
902 ada_fold_name (gdb::string_view name)
903 {
904 static std::string fold_storage;
905
906 if (!name.empty () && name[0] == '\'')
907 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
908 else
909 {
910 fold_storage = gdb::to_string (name);
911 for (int i = 0; i < name.size (); i += 1)
912 fold_storage[i] = tolower (fold_storage[i]);
913 }
914
915 return fold_storage.c_str ();
916 }
917
918 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
919
920 static int
921 is_lower_alphanum (const char c)
922 {
923 return (isdigit (c) || (isalpha (c) && islower (c)));
924 }
925
926 /* ENCODED is the linkage name of a symbol and LEN contains its length.
927 This function saves in LEN the length of that same symbol name but
928 without either of these suffixes:
929 . .{DIGIT}+
930 . ${DIGIT}+
931 . ___{DIGIT}+
932 . __{DIGIT}+.
933
934 These are suffixes introduced by the compiler for entities such as
935 nested subprogram for instance, in order to avoid name clashes.
936 They do not serve any purpose for the debugger. */
937
938 static void
939 ada_remove_trailing_digits (const char *encoded, int *len)
940 {
941 if (*len > 1 && isdigit (encoded[*len - 1]))
942 {
943 int i = *len - 2;
944
945 while (i > 0 && isdigit (encoded[i]))
946 i--;
947 if (i >= 0 && encoded[i] == '.')
948 *len = i;
949 else if (i >= 0 && encoded[i] == '$')
950 *len = i;
951 else if (i >= 2 && startswith (encoded + i - 2, "___"))
952 *len = i - 2;
953 else if (i >= 1 && startswith (encoded + i - 1, "__"))
954 *len = i - 1;
955 }
956 }
957
958 /* Remove the suffix introduced by the compiler for protected object
959 subprograms. */
960
961 static void
962 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
963 {
964 /* Remove trailing N. */
965
966 /* Protected entry subprograms are broken into two
967 separate subprograms: The first one is unprotected, and has
968 a 'N' suffix; the second is the protected version, and has
969 the 'P' suffix. The second calls the first one after handling
970 the protection. Since the P subprograms are internally generated,
971 we leave these names undecoded, giving the user a clue that this
972 entity is internal. */
973
974 if (*len > 1
975 && encoded[*len - 1] == 'N'
976 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
977 *len = *len - 1;
978 }
979
980 /* See ada-lang.h. */
981
982 std::string
983 ada_decode (const char *encoded, bool wrap)
984 {
985 int i, j;
986 int len0;
987 const char *p;
988 int at_start_name;
989 std::string decoded;
990
991 /* With function descriptors on PPC64, the value of a symbol named
992 ".FN", if it exists, is the entry point of the function "FN". */
993 if (encoded[0] == '.')
994 encoded += 1;
995
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (startswith (encoded, "_ada_"))
1000 encoded += 5;
1001
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1006 goto Suppress;
1007
1008 len0 = strlen (encoded);
1009
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1012
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1019 {
1020 if (p[3] == 'X')
1021 len0 = p - encoded;
1022 else
1023 goto Suppress;
1024 }
1025
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
1030 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1031 len0 -= 3;
1032
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1038 len0 -= 2;
1039
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
1043 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1044 len0 -= 1;
1045
1046 /* Make decoded big enough for possible expansion by operator name. */
1047
1048 decoded.resize (2 * len0 + 1, 'X');
1049
1050 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1051
1052 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1053 {
1054 i = len0 - 2;
1055 while ((i >= 0 && isdigit (encoded[i]))
1056 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1057 i -= 1;
1058 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1059 len0 = i - 1;
1060 else if (encoded[i] == '$')
1061 len0 = i;
1062 }
1063
1064 /* The first few characters that are not alphabetic are not part
1065 of any encoding we use, so we can copy them over verbatim. */
1066
1067 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1068 decoded[j] = encoded[i];
1069
1070 at_start_name = 1;
1071 while (i < len0)
1072 {
1073 /* Is this a symbol function? */
1074 if (at_start_name && encoded[i] == 'O')
1075 {
1076 int k;
1077
1078 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1079 {
1080 int op_len = strlen (ada_opname_table[k].encoded);
1081 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1082 op_len - 1) == 0)
1083 && !isalnum (encoded[i + op_len]))
1084 {
1085 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1086 at_start_name = 0;
1087 i += op_len;
1088 j += strlen (ada_opname_table[k].decoded);
1089 break;
1090 }
1091 }
1092 if (ada_opname_table[k].encoded != NULL)
1093 continue;
1094 }
1095 at_start_name = 0;
1096
1097 /* Replace "TK__" with "__", which will eventually be translated
1098 into "." (just below). */
1099
1100 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1101 i += 2;
1102
1103 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1104 be translated into "." (just below). These are internal names
1105 generated for anonymous blocks inside which our symbol is nested. */
1106
1107 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1108 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1109 && isdigit (encoded [i+4]))
1110 {
1111 int k = i + 5;
1112
1113 while (k < len0 && isdigit (encoded[k]))
1114 k++; /* Skip any extra digit. */
1115
1116 /* Double-check that the "__B_{DIGITS}+" sequence we found
1117 is indeed followed by "__". */
1118 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1119 i = k;
1120 }
1121
1122 /* Remove _E{DIGITS}+[sb] */
1123
1124 /* Just as for protected object subprograms, there are 2 categories
1125 of subprograms created by the compiler for each entry. The first
1126 one implements the actual entry code, and has a suffix following
1127 the convention above; the second one implements the barrier and
1128 uses the same convention as above, except that the 'E' is replaced
1129 by a 'B'.
1130
1131 Just as above, we do not decode the name of barrier functions
1132 to give the user a clue that the code he is debugging has been
1133 internally generated. */
1134
1135 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1136 && isdigit (encoded[i+2]))
1137 {
1138 int k = i + 3;
1139
1140 while (k < len0 && isdigit (encoded[k]))
1141 k++;
1142
1143 if (k < len0
1144 && (encoded[k] == 'b' || encoded[k] == 's'))
1145 {
1146 k++;
1147 /* Just as an extra precaution, make sure that if this
1148 suffix is followed by anything else, it is a '_'.
1149 Otherwise, we matched this sequence by accident. */
1150 if (k == len0
1151 || (k < len0 && encoded[k] == '_'))
1152 i = k;
1153 }
1154 }
1155
1156 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1157 the GNAT front-end in protected object subprograms. */
1158
1159 if (i < len0 + 3
1160 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1161 {
1162 /* Backtrack a bit up until we reach either the begining of
1163 the encoded name, or "__". Make sure that we only find
1164 digits or lowercase characters. */
1165 const char *ptr = encoded + i - 1;
1166
1167 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1168 ptr--;
1169 if (ptr < encoded
1170 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1171 i++;
1172 }
1173
1174 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1175 {
1176 /* This is a X[bn]* sequence not separated from the previous
1177 part of the name with a non-alpha-numeric character (in other
1178 words, immediately following an alpha-numeric character), then
1179 verify that it is placed at the end of the encoded name. If
1180 not, then the encoding is not valid and we should abort the
1181 decoding. Otherwise, just skip it, it is used in body-nested
1182 package names. */
1183 do
1184 i += 1;
1185 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1186 if (i < len0)
1187 goto Suppress;
1188 }
1189 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1190 {
1191 /* Replace '__' by '.'. */
1192 decoded[j] = '.';
1193 at_start_name = 1;
1194 i += 2;
1195 j += 1;
1196 }
1197 else
1198 {
1199 /* It's a character part of the decoded name, so just copy it
1200 over. */
1201 decoded[j] = encoded[i];
1202 i += 1;
1203 j += 1;
1204 }
1205 }
1206 decoded.resize (j);
1207
1208 /* Decoded names should never contain any uppercase character.
1209 Double-check this, and abort the decoding if we find one. */
1210
1211 for (i = 0; i < decoded.length(); ++i)
1212 if (isupper (decoded[i]) || decoded[i] == ' ')
1213 goto Suppress;
1214
1215 return decoded;
1216
1217 Suppress:
1218 if (!wrap)
1219 return {};
1220
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1226 }
1227
1228 /* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233 static struct htab *decoded_names_store;
1234
1235 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
1240 GSYMBOL).
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
1243 when a decoded name is cached in it. */
1244
1245 const char *
1246 ada_decode_symbol (const struct general_symbol_info *arg)
1247 {
1248 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1249 const char **resultp =
1250 &gsymbol->language_specific.demangled_name;
1251
1252 if (!gsymbol->ada_mangled)
1253 {
1254 std::string decoded = ada_decode (gsymbol->linkage_name ());
1255 struct obstack *obstack = gsymbol->language_specific.obstack;
1256
1257 gsymbol->ada_mangled = 1;
1258
1259 if (obstack != NULL)
1260 *resultp = obstack_strdup (obstack, decoded.c_str ());
1261 else
1262 {
1263 /* Sometimes, we can't find a corresponding objfile, in
1264 which case, we put the result on the heap. Since we only
1265 decode when needed, we hope this usually does not cause a
1266 significant memory leak (FIXME). */
1267
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded.c_str (), INSERT);
1270
1271 if (*slot == NULL)
1272 *slot = xstrdup (decoded.c_str ());
1273 *resultp = *slot;
1274 }
1275 }
1276
1277 return *resultp;
1278 }
1279
1280 static char *
1281 ada_la_decode (const char *encoded, int options)
1282 {
1283 return xstrdup (ada_decode (encoded).c_str ());
1284 }
1285
1286 \f
1287
1288 /* Arrays */
1289
1290 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1291 generated by the GNAT compiler to describe the index type used
1292 for each dimension of an array, check whether it follows the latest
1293 known encoding. If not, fix it up to conform to the latest encoding.
1294 Otherwise, do nothing. This function also does nothing if
1295 INDEX_DESC_TYPE is NULL.
1296
1297 The GNAT encoding used to describe the array index type evolved a bit.
1298 Initially, the information would be provided through the name of each
1299 field of the structure type only, while the type of these fields was
1300 described as unspecified and irrelevant. The debugger was then expected
1301 to perform a global type lookup using the name of that field in order
1302 to get access to the full index type description. Because these global
1303 lookups can be very expensive, the encoding was later enhanced to make
1304 the global lookup unnecessary by defining the field type as being
1305 the full index type description.
1306
1307 The purpose of this routine is to allow us to support older versions
1308 of the compiler by detecting the use of the older encoding, and by
1309 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1310 we essentially replace each field's meaningless type by the associated
1311 index subtype). */
1312
1313 void
1314 ada_fixup_array_indexes_type (struct type *index_desc_type)
1315 {
1316 int i;
1317
1318 if (index_desc_type == NULL)
1319 return;
1320 gdb_assert (index_desc_type->num_fields () > 0);
1321
1322 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1323 to check one field only, no need to check them all). If not, return
1324 now.
1325
1326 If our INDEX_DESC_TYPE was generated using the older encoding,
1327 the field type should be a meaningless integer type whose name
1328 is not equal to the field name. */
1329 if (index_desc_type->field (0).type ()->name () != NULL
1330 && strcmp (index_desc_type->field (0).type ()->name (),
1331 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1332 return;
1333
1334 /* Fixup each field of INDEX_DESC_TYPE. */
1335 for (i = 0; i < index_desc_type->num_fields (); i++)
1336 {
1337 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1338 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1339
1340 if (raw_type)
1341 index_desc_type->field (i).set_type (raw_type);
1342 }
1343 }
1344
1345 /* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
1347
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1350
1351 static struct type *
1352 desc_base_type (struct type *type)
1353 {
1354 if (type == NULL)
1355 return NULL;
1356 type = ada_check_typedef (type);
1357 if (type->code () == TYPE_CODE_TYPEDEF)
1358 type = ada_typedef_target_type (type);
1359
1360 if (type != NULL
1361 && (type->code () == TYPE_CODE_PTR
1362 || type->code () == TYPE_CODE_REF))
1363 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1364 else
1365 return type;
1366 }
1367
1368 /* True iff TYPE indicates a "thin" array pointer type. */
1369
1370 static int
1371 is_thin_pntr (struct type *type)
1372 {
1373 return
1374 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1375 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1376 }
1377
1378 /* The descriptor type for thin pointer type TYPE. */
1379
1380 static struct type *
1381 thin_descriptor_type (struct type *type)
1382 {
1383 struct type *base_type = desc_base_type (type);
1384
1385 if (base_type == NULL)
1386 return NULL;
1387 if (is_suffix (ada_type_name (base_type), "___XVE"))
1388 return base_type;
1389 else
1390 {
1391 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1392
1393 if (alt_type == NULL)
1394 return base_type;
1395 else
1396 return alt_type;
1397 }
1398 }
1399
1400 /* A pointer to the array data for thin-pointer value VAL. */
1401
1402 static struct value *
1403 thin_data_pntr (struct value *val)
1404 {
1405 struct type *type = ada_check_typedef (value_type (val));
1406 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1407
1408 data_type = lookup_pointer_type (data_type);
1409
1410 if (type->code () == TYPE_CODE_PTR)
1411 return value_cast (data_type, value_copy (val));
1412 else
1413 return value_from_longest (data_type, value_address (val));
1414 }
1415
1416 /* True iff TYPE indicates a "thick" array pointer type. */
1417
1418 static int
1419 is_thick_pntr (struct type *type)
1420 {
1421 type = desc_base_type (type);
1422 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1423 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1424 }
1425
1426 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1427 pointer to one, the type of its bounds data; otherwise, NULL. */
1428
1429 static struct type *
1430 desc_bounds_type (struct type *type)
1431 {
1432 struct type *r;
1433
1434 type = desc_base_type (type);
1435
1436 if (type == NULL)
1437 return NULL;
1438 else if (is_thin_pntr (type))
1439 {
1440 type = thin_descriptor_type (type);
1441 if (type == NULL)
1442 return NULL;
1443 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1444 if (r != NULL)
1445 return ada_check_typedef (r);
1446 }
1447 else if (type->code () == TYPE_CODE_STRUCT)
1448 {
1449 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1450 if (r != NULL)
1451 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1452 }
1453 return NULL;
1454 }
1455
1456 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1457 one, a pointer to its bounds data. Otherwise NULL. */
1458
1459 static struct value *
1460 desc_bounds (struct value *arr)
1461 {
1462 struct type *type = ada_check_typedef (value_type (arr));
1463
1464 if (is_thin_pntr (type))
1465 {
1466 struct type *bounds_type =
1467 desc_bounds_type (thin_descriptor_type (type));
1468 LONGEST addr;
1469
1470 if (bounds_type == NULL)
1471 error (_("Bad GNAT array descriptor"));
1472
1473 /* NOTE: The following calculation is not really kosher, but
1474 since desc_type is an XVE-encoded type (and shouldn't be),
1475 the correct calculation is a real pain. FIXME (and fix GCC). */
1476 if (type->code () == TYPE_CODE_PTR)
1477 addr = value_as_long (arr);
1478 else
1479 addr = value_address (arr);
1480
1481 return
1482 value_from_longest (lookup_pointer_type (bounds_type),
1483 addr - TYPE_LENGTH (bounds_type));
1484 }
1485
1486 else if (is_thick_pntr (type))
1487 {
1488 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1489 _("Bad GNAT array descriptor"));
1490 struct type *p_bounds_type = value_type (p_bounds);
1491
1492 if (p_bounds_type
1493 && p_bounds_type->code () == TYPE_CODE_PTR)
1494 {
1495 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1496
1497 if (target_type->is_stub ())
1498 p_bounds = value_cast (lookup_pointer_type
1499 (ada_check_typedef (target_type)),
1500 p_bounds);
1501 }
1502 else
1503 error (_("Bad GNAT array descriptor"));
1504
1505 return p_bounds;
1506 }
1507 else
1508 return NULL;
1509 }
1510
1511 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1512 position of the field containing the address of the bounds data. */
1513
1514 static int
1515 fat_pntr_bounds_bitpos (struct type *type)
1516 {
1517 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1518 }
1519
1520 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1521 size of the field containing the address of the bounds data. */
1522
1523 static int
1524 fat_pntr_bounds_bitsize (struct type *type)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 1);
1530 else
1531 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1532 }
1533
1534 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1535 pointer to one, the type of its array data (a array-with-no-bounds type);
1536 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1537 data. */
1538
1539 static struct type *
1540 desc_data_target_type (struct type *type)
1541 {
1542 type = desc_base_type (type);
1543
1544 /* NOTE: The following is bogus; see comment in desc_bounds. */
1545 if (is_thin_pntr (type))
1546 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1547 else if (is_thick_pntr (type))
1548 {
1549 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1550
1551 if (data_type
1552 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1553 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1554 }
1555
1556 return NULL;
1557 }
1558
1559 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1560 its array data. */
1561
1562 static struct value *
1563 desc_data (struct value *arr)
1564 {
1565 struct type *type = value_type (arr);
1566
1567 if (is_thin_pntr (type))
1568 return thin_data_pntr (arr);
1569 else if (is_thick_pntr (type))
1570 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1571 _("Bad GNAT array descriptor"));
1572 else
1573 return NULL;
1574 }
1575
1576
1577 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1578 position of the field containing the address of the data. */
1579
1580 static int
1581 fat_pntr_data_bitpos (struct type *type)
1582 {
1583 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1584 }
1585
1586 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1587 size of the field containing the address of the data. */
1588
1589 static int
1590 fat_pntr_data_bitsize (struct type *type)
1591 {
1592 type = desc_base_type (type);
1593
1594 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1595 return TYPE_FIELD_BITSIZE (type, 0);
1596 else
1597 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1598 }
1599
1600 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1601 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1603
1604 static struct value *
1605 desc_one_bound (struct value *bounds, int i, int which)
1606 {
1607 char bound_name[20];
1608 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1609 which ? 'U' : 'L', i - 1);
1610 return value_struct_elt (&bounds, {}, bound_name, NULL,
1611 _("Bad GNAT array descriptor bounds"));
1612 }
1613
1614 /* If BOUNDS is an array-bounds structure type, return the bit position
1615 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1616 bound, if WHICH is 1. The first bound is I=1. */
1617
1618 static int
1619 desc_bound_bitpos (struct type *type, int i, int which)
1620 {
1621 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1622 }
1623
1624 /* If BOUNDS is an array-bounds structure type, return the bit field size
1625 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1626 bound, if WHICH is 1. The first bound is I=1. */
1627
1628 static int
1629 desc_bound_bitsize (struct type *type, int i, int which)
1630 {
1631 type = desc_base_type (type);
1632
1633 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1634 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1635 else
1636 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1637 }
1638
1639 /* If TYPE is the type of an array-bounds structure, the type of its
1640 Ith bound (numbering from 1). Otherwise, NULL. */
1641
1642 static struct type *
1643 desc_index_type (struct type *type, int i)
1644 {
1645 type = desc_base_type (type);
1646
1647 if (type->code () == TYPE_CODE_STRUCT)
1648 {
1649 char bound_name[20];
1650 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1651 return lookup_struct_elt_type (type, bound_name, 1);
1652 }
1653 else
1654 return NULL;
1655 }
1656
1657 /* The number of index positions in the array-bounds type TYPE.
1658 Return 0 if TYPE is NULL. */
1659
1660 static int
1661 desc_arity (struct type *type)
1662 {
1663 type = desc_base_type (type);
1664
1665 if (type != NULL)
1666 return type->num_fields () / 2;
1667 return 0;
1668 }
1669
1670 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1671 an array descriptor type (representing an unconstrained array
1672 type). */
1673
1674 static int
1675 ada_is_direct_array_type (struct type *type)
1676 {
1677 if (type == NULL)
1678 return 0;
1679 type = ada_check_typedef (type);
1680 return (type->code () == TYPE_CODE_ARRAY
1681 || ada_is_array_descriptor_type (type));
1682 }
1683
1684 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1685 * to one. */
1686
1687 static int
1688 ada_is_array_type (struct type *type)
1689 {
1690 while (type != NULL
1691 && (type->code () == TYPE_CODE_PTR
1692 || type->code () == TYPE_CODE_REF))
1693 type = TYPE_TARGET_TYPE (type);
1694 return ada_is_direct_array_type (type);
1695 }
1696
1697 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1698
1699 int
1700 ada_is_simple_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = ada_check_typedef (type);
1705 return (type->code () == TYPE_CODE_ARRAY
1706 || (type->code () == TYPE_CODE_PTR
1707 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1708 == TYPE_CODE_ARRAY)));
1709 }
1710
1711 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1712
1713 int
1714 ada_is_array_descriptor_type (struct type *type)
1715 {
1716 struct type *data_type = desc_data_target_type (type);
1717
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (data_type != NULL
1722 && data_type->code () == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
1724 }
1725
1726 /* Non-zero iff type is a partially mal-formed GNAT array
1727 descriptor. FIXME: This is to compensate for some problems with
1728 debugging output from GNAT. Re-examine periodically to see if it
1729 is still needed. */
1730
1731 int
1732 ada_is_bogus_array_descriptor (struct type *type)
1733 {
1734 return
1735 type != NULL
1736 && type->code () == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
1740 }
1741
1742
1743 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1744 (fat pointer) returns the type of the array data described---specifically,
1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1746 in from the descriptor; otherwise, they are left unspecified. If
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
1749 a descriptor. */
1750
1751 static struct type *
1752 ada_type_of_array (struct value *arr, int bounds)
1753 {
1754 if (ada_is_constrained_packed_array_type (value_type (arr)))
1755 return decode_constrained_packed_array_type (value_type (arr));
1756
1757 if (!ada_is_array_descriptor_type (value_type (arr)))
1758 return value_type (arr);
1759
1760 if (!bounds)
1761 {
1762 struct type *array_type =
1763 ada_check_typedef (desc_data_target_type (value_type (arr)));
1764
1765 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1766 TYPE_FIELD_BITSIZE (array_type, 0) =
1767 decode_packed_array_bitsize (value_type (arr));
1768
1769 return array_type;
1770 }
1771 else
1772 {
1773 struct type *elt_type;
1774 int arity;
1775 struct value *descriptor;
1776
1777 elt_type = ada_array_element_type (value_type (arr), -1);
1778 arity = ada_array_arity (value_type (arr));
1779
1780 if (elt_type == NULL || arity == 0)
1781 return ada_check_typedef (value_type (arr));
1782
1783 descriptor = desc_bounds (arr);
1784 if (value_as_long (descriptor) == 0)
1785 return NULL;
1786 while (arity > 0)
1787 {
1788 struct type *range_type = alloc_type_copy (value_type (arr));
1789 struct type *array_type = alloc_type_copy (value_type (arr));
1790 struct value *low = desc_one_bound (descriptor, arity, 0);
1791 struct value *high = desc_one_bound (descriptor, arity, 1);
1792
1793 arity -= 1;
1794 create_static_range_type (range_type, value_type (low),
1795 longest_to_int (value_as_long (low)),
1796 longest_to_int (value_as_long (high)));
1797 elt_type = create_array_type (array_type, elt_type, range_type);
1798
1799 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1800 {
1801 /* We need to store the element packed bitsize, as well as
1802 recompute the array size, because it was previously
1803 computed based on the unpacked element size. */
1804 LONGEST lo = value_as_long (low);
1805 LONGEST hi = value_as_long (high);
1806
1807 TYPE_FIELD_BITSIZE (elt_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1809 /* If the array has no element, then the size is already
1810 zero, and does not need to be recomputed. */
1811 if (lo < hi)
1812 {
1813 int array_bitsize =
1814 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1815
1816 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1817 }
1818 }
1819 }
1820
1821 return lookup_pointer_type (elt_type);
1822 }
1823 }
1824
1825 /* If ARR does not represent an array, returns ARR unchanged.
1826 Otherwise, returns either a standard GDB array with bounds set
1827 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1828 GDB array. Returns NULL if ARR is a null fat pointer. */
1829
1830 struct value *
1831 ada_coerce_to_simple_array_ptr (struct value *arr)
1832 {
1833 if (ada_is_array_descriptor_type (value_type (arr)))
1834 {
1835 struct type *arrType = ada_type_of_array (arr, 1);
1836
1837 if (arrType == NULL)
1838 return NULL;
1839 return value_cast (arrType, value_copy (desc_data (arr)));
1840 }
1841 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1842 return decode_constrained_packed_array (arr);
1843 else
1844 return arr;
1845 }
1846
1847 /* If ARR does not represent an array, returns ARR unchanged.
1848 Otherwise, returns a standard GDB array describing ARR (which may
1849 be ARR itself if it already is in the proper form). */
1850
1851 struct value *
1852 ada_coerce_to_simple_array (struct value *arr)
1853 {
1854 if (ada_is_array_descriptor_type (value_type (arr)))
1855 {
1856 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1857
1858 if (arrVal == NULL)
1859 error (_("Bounds unavailable for null array pointer."));
1860 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1861 return value_ind (arrVal);
1862 }
1863 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1864 return decode_constrained_packed_array (arr);
1865 else
1866 return arr;
1867 }
1868
1869 /* If TYPE represents a GNAT array type, return it translated to an
1870 ordinary GDB array type (possibly with BITSIZE fields indicating
1871 packing). For other types, is the identity. */
1872
1873 struct type *
1874 ada_coerce_to_simple_array_type (struct type *type)
1875 {
1876 if (ada_is_constrained_packed_array_type (type))
1877 return decode_constrained_packed_array_type (type);
1878
1879 if (ada_is_array_descriptor_type (type))
1880 return ada_check_typedef (desc_data_target_type (type));
1881
1882 return type;
1883 }
1884
1885 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1886
1887 static int
1888 ada_is_gnat_encoded_packed_array_type (struct type *type)
1889 {
1890 if (type == NULL)
1891 return 0;
1892 type = desc_base_type (type);
1893 type = ada_check_typedef (type);
1894 return
1895 ada_type_name (type) != NULL
1896 && strstr (ada_type_name (type), "___XP") != NULL;
1897 }
1898
1899 /* Non-zero iff TYPE represents a standard GNAT constrained
1900 packed-array type. */
1901
1902 int
1903 ada_is_constrained_packed_array_type (struct type *type)
1904 {
1905 return ada_is_gnat_encoded_packed_array_type (type)
1906 && !ada_is_array_descriptor_type (type);
1907 }
1908
1909 /* Non-zero iff TYPE represents an array descriptor for a
1910 unconstrained packed-array type. */
1911
1912 static int
1913 ada_is_unconstrained_packed_array_type (struct type *type)
1914 {
1915 if (!ada_is_array_descriptor_type (type))
1916 return 0;
1917
1918 if (ada_is_gnat_encoded_packed_array_type (type))
1919 return 1;
1920
1921 /* If we saw GNAT encodings, then the above code is sufficient.
1922 However, with minimal encodings, we will just have a thick
1923 pointer instead. */
1924 if (is_thick_pntr (type))
1925 {
1926 type = desc_base_type (type);
1927 /* The structure's first field is a pointer to an array, so this
1928 fetches the array type. */
1929 type = TYPE_TARGET_TYPE (type->field (0).type ());
1930 /* Now we can see if the array elements are packed. */
1931 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1932 }
1933
1934 return 0;
1935 }
1936
1937 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1938 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1939
1940 static bool
1941 ada_is_any_packed_array_type (struct type *type)
1942 {
1943 return (ada_is_constrained_packed_array_type (type)
1944 || (type->code () == TYPE_CODE_ARRAY
1945 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1946 }
1947
1948 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1950
1951 static long
1952 decode_packed_array_bitsize (struct type *type)
1953 {
1954 const char *raw_name;
1955 const char *tail;
1956 long bits;
1957
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
1961 if (type->code () == TYPE_CODE_TYPEDEF)
1962 type = ada_typedef_target_type (type);
1963
1964 raw_name = ada_type_name (ada_check_typedef (type));
1965 if (!raw_name)
1966 raw_name = ada_type_name (desc_base_type (type));
1967
1968 if (!raw_name)
1969 return 0;
1970
1971 tail = strstr (raw_name, "___XP");
1972 if (tail == nullptr)
1973 {
1974 gdb_assert (is_thick_pntr (type));
1975 /* The structure's first field is a pointer to an array, so this
1976 fetches the array type. */
1977 type = TYPE_TARGET_TYPE (type->field (0).type ());
1978 /* Now we can see if the array elements are packed. */
1979 return TYPE_FIELD_BITSIZE (type, 0);
1980 }
1981
1982 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1983 {
1984 lim_warning
1985 (_("could not understand bit size information on packed array"));
1986 return 0;
1987 }
1988
1989 return bits;
1990 }
1991
1992 /* Given that TYPE is a standard GDB array type with all bounds filled
1993 in, and that the element size of its ultimate scalar constituents
1994 (that is, either its elements, or, if it is an array of arrays, its
1995 elements' elements, etc.) is *ELT_BITS, return an identical type,
1996 but with the bit sizes of its elements (and those of any
1997 constituent arrays) recorded in the BITSIZE components of its
1998 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1999 in bits.
2000
2001 Note that, for arrays whose index type has an XA encoding where
2002 a bound references a record discriminant, getting that discriminant,
2003 and therefore the actual value of that bound, is not possible
2004 because none of the given parameters gives us access to the record.
2005 This function assumes that it is OK in the context where it is being
2006 used to return an array whose bounds are still dynamic and where
2007 the length is arbitrary. */
2008
2009 static struct type *
2010 constrained_packed_array_type (struct type *type, long *elt_bits)
2011 {
2012 struct type *new_elt_type;
2013 struct type *new_type;
2014 struct type *index_type_desc;
2015 struct type *index_type;
2016 LONGEST low_bound, high_bound;
2017
2018 type = ada_check_typedef (type);
2019 if (type->code () != TYPE_CODE_ARRAY)
2020 return type;
2021
2022 index_type_desc = ada_find_parallel_type (type, "___XA");
2023 if (index_type_desc)
2024 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2025 NULL);
2026 else
2027 index_type = type->index_type ();
2028
2029 new_type = alloc_type_copy (type);
2030 new_elt_type =
2031 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2032 elt_bits);
2033 create_array_type (new_type, new_elt_type, index_type);
2034 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2035 new_type->set_name (ada_type_name (type));
2036
2037 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2038 && is_dynamic_type (check_typedef (index_type)))
2039 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2040 low_bound = high_bound = 0;
2041 if (high_bound < low_bound)
2042 *elt_bits = TYPE_LENGTH (new_type) = 0;
2043 else
2044 {
2045 *elt_bits *= (high_bound - low_bound + 1);
2046 TYPE_LENGTH (new_type) =
2047 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2048 }
2049
2050 new_type->set_is_fixed_instance (true);
2051 return new_type;
2052 }
2053
2054 /* The array type encoded by TYPE, where
2055 ada_is_constrained_packed_array_type (TYPE). */
2056
2057 static struct type *
2058 decode_constrained_packed_array_type (struct type *type)
2059 {
2060 const char *raw_name = ada_type_name (ada_check_typedef (type));
2061 char *name;
2062 const char *tail;
2063 struct type *shadow_type;
2064 long bits;
2065
2066 if (!raw_name)
2067 raw_name = ada_type_name (desc_base_type (type));
2068
2069 if (!raw_name)
2070 return NULL;
2071
2072 name = (char *) alloca (strlen (raw_name) + 1);
2073 tail = strstr (raw_name, "___XP");
2074 type = desc_base_type (type);
2075
2076 memcpy (name, raw_name, tail - raw_name);
2077 name[tail - raw_name] = '\000';
2078
2079 shadow_type = ada_find_parallel_type_with_name (type, name);
2080
2081 if (shadow_type == NULL)
2082 {
2083 lim_warning (_("could not find bounds information on packed array"));
2084 return NULL;
2085 }
2086 shadow_type = check_typedef (shadow_type);
2087
2088 if (shadow_type->code () != TYPE_CODE_ARRAY)
2089 {
2090 lim_warning (_("could not understand bounds "
2091 "information on packed array"));
2092 return NULL;
2093 }
2094
2095 bits = decode_packed_array_bitsize (type);
2096 return constrained_packed_array_type (shadow_type, &bits);
2097 }
2098
2099 /* Helper function for decode_constrained_packed_array. Set the field
2100 bitsize on a series of packed arrays. Returns the number of
2101 elements in TYPE. */
2102
2103 static LONGEST
2104 recursively_update_array_bitsize (struct type *type)
2105 {
2106 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2107
2108 LONGEST low, high;
2109 if (!get_discrete_bounds (type->index_type (), &low, &high)
2110 || low > high)
2111 return 0;
2112 LONGEST our_len = high - low + 1;
2113
2114 struct type *elt_type = TYPE_TARGET_TYPE (type);
2115 if (elt_type->code () == TYPE_CODE_ARRAY)
2116 {
2117 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2118 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2119 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2120
2121 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2122 / HOST_CHAR_BIT);
2123 }
2124
2125 return our_len;
2126 }
2127
2128 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2129 array, returns a simple array that denotes that array. Its type is a
2130 standard GDB array type except that the BITSIZEs of the array
2131 target types are set to the number of bits in each element, and the
2132 type length is set appropriately. */
2133
2134 static struct value *
2135 decode_constrained_packed_array (struct value *arr)
2136 {
2137 struct type *type;
2138
2139 /* If our value is a pointer, then dereference it. Likewise if
2140 the value is a reference. Make sure that this operation does not
2141 cause the target type to be fixed, as this would indirectly cause
2142 this array to be decoded. The rest of the routine assumes that
2143 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2144 and "value_ind" routines to perform the dereferencing, as opposed
2145 to using "ada_coerce_ref" or "ada_value_ind". */
2146 arr = coerce_ref (arr);
2147 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2148 arr = value_ind (arr);
2149
2150 type = decode_constrained_packed_array_type (value_type (arr));
2151 if (type == NULL)
2152 {
2153 error (_("can't unpack array"));
2154 return NULL;
2155 }
2156
2157 /* Decoding the packed array type could not correctly set the field
2158 bitsizes for any dimension except the innermost, because the
2159 bounds may be variable and were not passed to that function. So,
2160 we further resolve the array bounds here and then update the
2161 sizes. */
2162 const gdb_byte *valaddr = value_contents_for_printing (arr);
2163 CORE_ADDR address = value_address (arr);
2164 gdb::array_view<const gdb_byte> view
2165 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2166 type = resolve_dynamic_type (type, view, address);
2167 recursively_update_array_bitsize (type);
2168
2169 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2170 && ada_is_modular_type (value_type (arr)))
2171 {
2172 /* This is a (right-justified) modular type representing a packed
2173 array with no wrapper. In order to interpret the value through
2174 the (left-justified) packed array type we just built, we must
2175 first left-justify it. */
2176 int bit_size, bit_pos;
2177 ULONGEST mod;
2178
2179 mod = ada_modulus (value_type (arr)) - 1;
2180 bit_size = 0;
2181 while (mod > 0)
2182 {
2183 bit_size += 1;
2184 mod >>= 1;
2185 }
2186 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2187 arr = ada_value_primitive_packed_val (arr, NULL,
2188 bit_pos / HOST_CHAR_BIT,
2189 bit_pos % HOST_CHAR_BIT,
2190 bit_size,
2191 type);
2192 }
2193
2194 return coerce_unspec_val_to_type (arr, type);
2195 }
2196
2197
2198 /* The value of the element of packed array ARR at the ARITY indices
2199 given in IND. ARR must be a simple array. */
2200
2201 static struct value *
2202 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2203 {
2204 int i;
2205 int bits, elt_off, bit_off;
2206 long elt_total_bit_offset;
2207 struct type *elt_type;
2208 struct value *v;
2209
2210 bits = 0;
2211 elt_total_bit_offset = 0;
2212 elt_type = ada_check_typedef (value_type (arr));
2213 for (i = 0; i < arity; i += 1)
2214 {
2215 if (elt_type->code () != TYPE_CODE_ARRAY
2216 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2217 error
2218 (_("attempt to do packed indexing of "
2219 "something other than a packed array"));
2220 else
2221 {
2222 struct type *range_type = elt_type->index_type ();
2223 LONGEST lowerbound, upperbound;
2224 LONGEST idx;
2225
2226 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2227 {
2228 lim_warning (_("don't know bounds of array"));
2229 lowerbound = upperbound = 0;
2230 }
2231
2232 idx = pos_atr (ind[i]);
2233 if (idx < lowerbound || idx > upperbound)
2234 lim_warning (_("packed array index %ld out of bounds"),
2235 (long) idx);
2236 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2237 elt_total_bit_offset += (idx - lowerbound) * bits;
2238 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2239 }
2240 }
2241 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2242 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2243
2244 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2245 bits, elt_type);
2246 return v;
2247 }
2248
2249 /* Non-zero iff TYPE includes negative integer values. */
2250
2251 static int
2252 has_negatives (struct type *type)
2253 {
2254 switch (type->code ())
2255 {
2256 default:
2257 return 0;
2258 case TYPE_CODE_INT:
2259 return !type->is_unsigned ();
2260 case TYPE_CODE_RANGE:
2261 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2262 }
2263 }
2264
2265 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2266 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2267 the unpacked buffer.
2268
2269 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2270 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2271
2272 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2273 zero otherwise.
2274
2275 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2276
2277 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2278
2279 static void
2280 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2281 gdb_byte *unpacked, int unpacked_len,
2282 int is_big_endian, int is_signed_type,
2283 int is_scalar)
2284 {
2285 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2286 int src_idx; /* Index into the source area */
2287 int src_bytes_left; /* Number of source bytes left to process. */
2288 int srcBitsLeft; /* Number of source bits left to move */
2289 int unusedLS; /* Number of bits in next significant
2290 byte of source that are unused */
2291
2292 int unpacked_idx; /* Index into the unpacked buffer */
2293 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2294
2295 unsigned long accum; /* Staging area for bits being transferred */
2296 int accumSize; /* Number of meaningful bits in accum */
2297 unsigned char sign;
2298
2299 /* Transmit bytes from least to most significant; delta is the direction
2300 the indices move. */
2301 int delta = is_big_endian ? -1 : 1;
2302
2303 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2304 bits from SRC. .*/
2305 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2306 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2307 bit_size, unpacked_len);
2308
2309 srcBitsLeft = bit_size;
2310 src_bytes_left = src_len;
2311 unpacked_bytes_left = unpacked_len;
2312 sign = 0;
2313
2314 if (is_big_endian)
2315 {
2316 src_idx = src_len - 1;
2317 if (is_signed_type
2318 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2319 sign = ~0;
2320
2321 unusedLS =
2322 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2323 % HOST_CHAR_BIT;
2324
2325 if (is_scalar)
2326 {
2327 accumSize = 0;
2328 unpacked_idx = unpacked_len - 1;
2329 }
2330 else
2331 {
2332 /* Non-scalar values must be aligned at a byte boundary... */
2333 accumSize =
2334 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2335 /* ... And are placed at the beginning (most-significant) bytes
2336 of the target. */
2337 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2338 unpacked_bytes_left = unpacked_idx + 1;
2339 }
2340 }
2341 else
2342 {
2343 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2344
2345 src_idx = unpacked_idx = 0;
2346 unusedLS = bit_offset;
2347 accumSize = 0;
2348
2349 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2350 sign = ~0;
2351 }
2352
2353 accum = 0;
2354 while (src_bytes_left > 0)
2355 {
2356 /* Mask for removing bits of the next source byte that are not
2357 part of the value. */
2358 unsigned int unusedMSMask =
2359 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2360 1;
2361 /* Sign-extend bits for this byte. */
2362 unsigned int signMask = sign & ~unusedMSMask;
2363
2364 accum |=
2365 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2366 accumSize += HOST_CHAR_BIT - unusedLS;
2367 if (accumSize >= HOST_CHAR_BIT)
2368 {
2369 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 unpacked_bytes_left -= 1;
2373 unpacked_idx += delta;
2374 }
2375 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2376 unusedLS = 0;
2377 src_bytes_left -= 1;
2378 src_idx += delta;
2379 }
2380 while (unpacked_bytes_left > 0)
2381 {
2382 accum |= sign << accumSize;
2383 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2384 accumSize -= HOST_CHAR_BIT;
2385 if (accumSize < 0)
2386 accumSize = 0;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2390 }
2391 }
2392
2393 /* Create a new value of type TYPE from the contents of OBJ starting
2394 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2395 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2396 assigning through the result will set the field fetched from.
2397 VALADDR is ignored unless OBJ is NULL, in which case,
2398 VALADDR+OFFSET must address the start of storage containing the
2399 packed value. The value returned in this case is never an lval.
2400 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2401
2402 struct value *
2403 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2404 long offset, int bit_offset, int bit_size,
2405 struct type *type)
2406 {
2407 struct value *v;
2408 const gdb_byte *src; /* First byte containing data to unpack */
2409 gdb_byte *unpacked;
2410 const int is_scalar = is_scalar_type (type);
2411 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2412 gdb::byte_vector staging;
2413
2414 type = ada_check_typedef (type);
2415
2416 if (obj == NULL)
2417 src = valaddr + offset;
2418 else
2419 src = value_contents (obj) + offset;
2420
2421 if (is_dynamic_type (type))
2422 {
2423 /* The length of TYPE might by dynamic, so we need to resolve
2424 TYPE in order to know its actual size, which we then use
2425 to create the contents buffer of the value we return.
2426 The difficulty is that the data containing our object is
2427 packed, and therefore maybe not at a byte boundary. So, what
2428 we do, is unpack the data into a byte-aligned buffer, and then
2429 use that buffer as our object's value for resolving the type. */
2430 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2431 staging.resize (staging_len);
2432
2433 ada_unpack_from_contents (src, bit_offset, bit_size,
2434 staging.data (), staging.size (),
2435 is_big_endian, has_negatives (type),
2436 is_scalar);
2437 type = resolve_dynamic_type (type, staging, 0);
2438 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2439 {
2440 /* This happens when the length of the object is dynamic,
2441 and is actually smaller than the space reserved for it.
2442 For instance, in an array of variant records, the bit_size
2443 we're given is the array stride, which is constant and
2444 normally equal to the maximum size of its element.
2445 But, in reality, each element only actually spans a portion
2446 of that stride. */
2447 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2448 }
2449 }
2450
2451 if (obj == NULL)
2452 {
2453 v = allocate_value (type);
2454 src = valaddr + offset;
2455 }
2456 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2457 {
2458 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2459 gdb_byte *buf;
2460
2461 v = value_at (type, value_address (obj) + offset);
2462 buf = (gdb_byte *) alloca (src_len);
2463 read_memory (value_address (v), buf, src_len);
2464 src = buf;
2465 }
2466 else
2467 {
2468 v = allocate_value (type);
2469 src = value_contents (obj) + offset;
2470 }
2471
2472 if (obj != NULL)
2473 {
2474 long new_offset = offset;
2475
2476 set_value_component_location (v, obj);
2477 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2478 set_value_bitsize (v, bit_size);
2479 if (value_bitpos (v) >= HOST_CHAR_BIT)
2480 {
2481 ++new_offset;
2482 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2483 }
2484 set_value_offset (v, new_offset);
2485
2486 /* Also set the parent value. This is needed when trying to
2487 assign a new value (in inferior memory). */
2488 set_value_parent (v, obj);
2489 }
2490 else
2491 set_value_bitsize (v, bit_size);
2492 unpacked = value_contents_writeable (v);
2493
2494 if (bit_size == 0)
2495 {
2496 memset (unpacked, 0, TYPE_LENGTH (type));
2497 return v;
2498 }
2499
2500 if (staging.size () == TYPE_LENGTH (type))
2501 {
2502 /* Small short-cut: If we've unpacked the data into a buffer
2503 of the same size as TYPE's length, then we can reuse that,
2504 instead of doing the unpacking again. */
2505 memcpy (unpacked, staging.data (), staging.size ());
2506 }
2507 else
2508 ada_unpack_from_contents (src, bit_offset, bit_size,
2509 unpacked, TYPE_LENGTH (type),
2510 is_big_endian, has_negatives (type), is_scalar);
2511
2512 return v;
2513 }
2514
2515 /* Store the contents of FROMVAL into the location of TOVAL.
2516 Return a new value with the location of TOVAL and contents of
2517 FROMVAL. Handles assignment into packed fields that have
2518 floating-point or non-scalar types. */
2519
2520 static struct value *
2521 ada_value_assign (struct value *toval, struct value *fromval)
2522 {
2523 struct type *type = value_type (toval);
2524 int bits = value_bitsize (toval);
2525
2526 toval = ada_coerce_ref (toval);
2527 fromval = ada_coerce_ref (fromval);
2528
2529 if (ada_is_direct_array_type (value_type (toval)))
2530 toval = ada_coerce_to_simple_array (toval);
2531 if (ada_is_direct_array_type (value_type (fromval)))
2532 fromval = ada_coerce_to_simple_array (fromval);
2533
2534 if (!deprecated_value_modifiable (toval))
2535 error (_("Left operand of assignment is not a modifiable lvalue."));
2536
2537 if (VALUE_LVAL (toval) == lval_memory
2538 && bits > 0
2539 && (type->code () == TYPE_CODE_FLT
2540 || type->code () == TYPE_CODE_STRUCT))
2541 {
2542 int len = (value_bitpos (toval)
2543 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2544 int from_size;
2545 gdb_byte *buffer = (gdb_byte *) alloca (len);
2546 struct value *val;
2547 CORE_ADDR to_addr = value_address (toval);
2548
2549 if (type->code () == TYPE_CODE_FLT)
2550 fromval = value_cast (type, fromval);
2551
2552 read_memory (to_addr, buffer, len);
2553 from_size = value_bitsize (fromval);
2554 if (from_size == 0)
2555 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2556
2557 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2558 ULONGEST from_offset = 0;
2559 if (is_big_endian && is_scalar_type (value_type (fromval)))
2560 from_offset = from_size - bits;
2561 copy_bitwise (buffer, value_bitpos (toval),
2562 value_contents (fromval), from_offset,
2563 bits, is_big_endian);
2564 write_memory_with_notification (to_addr, buffer, len);
2565
2566 val = value_copy (toval);
2567 memcpy (value_contents_raw (val), value_contents (fromval),
2568 TYPE_LENGTH (type));
2569 deprecated_set_value_type (val, type);
2570
2571 return val;
2572 }
2573
2574 return value_assign (toval, fromval);
2575 }
2576
2577
2578 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2579 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2580 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2581 COMPONENT, and not the inferior's memory. The current contents
2582 of COMPONENT are ignored.
2583
2584 Although not part of the initial design, this function also works
2585 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2586 had a null address, and COMPONENT had an address which is equal to
2587 its offset inside CONTAINER. */
2588
2589 static void
2590 value_assign_to_component (struct value *container, struct value *component,
2591 struct value *val)
2592 {
2593 LONGEST offset_in_container =
2594 (LONGEST) (value_address (component) - value_address (container));
2595 int bit_offset_in_container =
2596 value_bitpos (component) - value_bitpos (container);
2597 int bits;
2598
2599 val = value_cast (value_type (component), val);
2600
2601 if (value_bitsize (component) == 0)
2602 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2603 else
2604 bits = value_bitsize (component);
2605
2606 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2607 {
2608 int src_offset;
2609
2610 if (is_scalar_type (check_typedef (value_type (component))))
2611 src_offset
2612 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2613 else
2614 src_offset = 0;
2615 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2616 value_bitpos (container) + bit_offset_in_container,
2617 value_contents (val), src_offset, bits, 1);
2618 }
2619 else
2620 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2621 value_bitpos (container) + bit_offset_in_container,
2622 value_contents (val), 0, bits, 0);
2623 }
2624
2625 /* Determine if TYPE is an access to an unconstrained array. */
2626
2627 bool
2628 ada_is_access_to_unconstrained_array (struct type *type)
2629 {
2630 return (type->code () == TYPE_CODE_TYPEDEF
2631 && is_thick_pntr (ada_typedef_target_type (type)));
2632 }
2633
2634 /* The value of the element of array ARR at the ARITY indices given in IND.
2635 ARR may be either a simple array, GNAT array descriptor, or pointer
2636 thereto. */
2637
2638 struct value *
2639 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2640 {
2641 int k;
2642 struct value *elt;
2643 struct type *elt_type;
2644
2645 elt = ada_coerce_to_simple_array (arr);
2646
2647 elt_type = ada_check_typedef (value_type (elt));
2648 if (elt_type->code () == TYPE_CODE_ARRAY
2649 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2650 return value_subscript_packed (elt, arity, ind);
2651
2652 for (k = 0; k < arity; k += 1)
2653 {
2654 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2655
2656 if (elt_type->code () != TYPE_CODE_ARRAY)
2657 error (_("too many subscripts (%d expected)"), k);
2658
2659 elt = value_subscript (elt, pos_atr (ind[k]));
2660
2661 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2662 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2663 {
2664 /* The element is a typedef to an unconstrained array,
2665 except that the value_subscript call stripped the
2666 typedef layer. The typedef layer is GNAT's way to
2667 specify that the element is, at the source level, an
2668 access to the unconstrained array, rather than the
2669 unconstrained array. So, we need to restore that
2670 typedef layer, which we can do by forcing the element's
2671 type back to its original type. Otherwise, the returned
2672 value is going to be printed as the array, rather
2673 than as an access. Another symptom of the same issue
2674 would be that an expression trying to dereference the
2675 element would also be improperly rejected. */
2676 deprecated_set_value_type (elt, saved_elt_type);
2677 }
2678
2679 elt_type = ada_check_typedef (value_type (elt));
2680 }
2681
2682 return elt;
2683 }
2684
2685 /* Assuming ARR is a pointer to a GDB array, the value of the element
2686 of *ARR at the ARITY indices given in IND.
2687 Does not read the entire array into memory.
2688
2689 Note: Unlike what one would expect, this function is used instead of
2690 ada_value_subscript for basically all non-packed array types. The reason
2691 for this is that a side effect of doing our own pointer arithmetics instead
2692 of relying on value_subscript is that there is no implicit typedef peeling.
2693 This is important for arrays of array accesses, where it allows us to
2694 preserve the fact that the array's element is an array access, where the
2695 access part os encoded in a typedef layer. */
2696
2697 static struct value *
2698 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2699 {
2700 int k;
2701 struct value *array_ind = ada_value_ind (arr);
2702 struct type *type
2703 = check_typedef (value_enclosing_type (array_ind));
2704
2705 if (type->code () == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2707 return value_subscript_packed (array_ind, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 LONGEST lwb, upb;
2712
2713 if (type->code () != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2716 value_copy (arr));
2717 get_discrete_bounds (type->index_type (), &lwb, &upb);
2718 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2719 type = TYPE_TARGET_TYPE (type);
2720 }
2721
2722 return value_ind (arr);
2723 }
2724
2725 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2726 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2727 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2728 this array is LOW, as per Ada rules. */
2729 static struct value *
2730 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2731 int low, int high)
2732 {
2733 struct type *type0 = ada_check_typedef (type);
2734 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2735 struct type *index_type
2736 = create_static_range_type (NULL, base_index_type, low, high);
2737 struct type *slice_type = create_array_type_with_stride
2738 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2739 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2740 TYPE_FIELD_BITSIZE (type0, 0));
2741 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2742 gdb::optional<LONGEST> base_low_pos, low_pos;
2743 CORE_ADDR base;
2744
2745 low_pos = discrete_position (base_index_type, low);
2746 base_low_pos = discrete_position (base_index_type, base_low);
2747
2748 if (!low_pos.has_value () || !base_low_pos.has_value ())
2749 {
2750 warning (_("unable to get positions in slice, use bounds instead"));
2751 low_pos = low;
2752 base_low_pos = base_low;
2753 }
2754
2755 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2756 if (stride == 0)
2757 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2758
2759 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2760 return value_at_lazy (slice_type, base);
2761 }
2762
2763
2764 static struct value *
2765 ada_value_slice (struct value *array, int low, int high)
2766 {
2767 struct type *type = ada_check_typedef (value_type (array));
2768 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2769 struct type *index_type
2770 = create_static_range_type (NULL, type->index_type (), low, high);
2771 struct type *slice_type = create_array_type_with_stride
2772 (NULL, TYPE_TARGET_TYPE (type), index_type,
2773 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2774 TYPE_FIELD_BITSIZE (type, 0));
2775 gdb::optional<LONGEST> low_pos, high_pos;
2776
2777
2778 low_pos = discrete_position (base_index_type, low);
2779 high_pos = discrete_position (base_index_type, high);
2780
2781 if (!low_pos.has_value () || !high_pos.has_value ())
2782 {
2783 warning (_("unable to get positions in slice, use bounds instead"));
2784 low_pos = low;
2785 high_pos = high;
2786 }
2787
2788 return value_cast (slice_type,
2789 value_slice (array, low, *high_pos - *low_pos + 1));
2790 }
2791
2792 /* If type is a record type in the form of a standard GNAT array
2793 descriptor, returns the number of dimensions for type. If arr is a
2794 simple array, returns the number of "array of"s that prefix its
2795 type designation. Otherwise, returns 0. */
2796
2797 int
2798 ada_array_arity (struct type *type)
2799 {
2800 int arity;
2801
2802 if (type == NULL)
2803 return 0;
2804
2805 type = desc_base_type (type);
2806
2807 arity = 0;
2808 if (type->code () == TYPE_CODE_STRUCT)
2809 return desc_arity (desc_bounds_type (type));
2810 else
2811 while (type->code () == TYPE_CODE_ARRAY)
2812 {
2813 arity += 1;
2814 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2815 }
2816
2817 return arity;
2818 }
2819
2820 /* If TYPE is a record type in the form of a standard GNAT array
2821 descriptor or a simple array type, returns the element type for
2822 TYPE after indexing by NINDICES indices, or by all indices if
2823 NINDICES is -1. Otherwise, returns NULL. */
2824
2825 struct type *
2826 ada_array_element_type (struct type *type, int nindices)
2827 {
2828 type = desc_base_type (type);
2829
2830 if (type->code () == TYPE_CODE_STRUCT)
2831 {
2832 int k;
2833 struct type *p_array_type;
2834
2835 p_array_type = desc_data_target_type (type);
2836
2837 k = ada_array_arity (type);
2838 if (k == 0)
2839 return NULL;
2840
2841 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2842 if (nindices >= 0 && k > nindices)
2843 k = nindices;
2844 while (k > 0 && p_array_type != NULL)
2845 {
2846 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2847 k -= 1;
2848 }
2849 return p_array_type;
2850 }
2851 else if (type->code () == TYPE_CODE_ARRAY)
2852 {
2853 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2854 {
2855 type = TYPE_TARGET_TYPE (type);
2856 nindices -= 1;
2857 }
2858 return type;
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* See ada-lang.h. */
2865
2866 struct type *
2867 ada_index_type (struct type *type, int n, const char *name)
2868 {
2869 struct type *result_type;
2870
2871 type = desc_base_type (type);
2872
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2875
2876 if (ada_is_simple_array_type (type))
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
2881 {
2882 type = ada_check_typedef (type);
2883 type = TYPE_TARGET_TYPE (type);
2884 }
2885 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2886 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2887 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2888 perhaps stabsread.c would make more sense. */
2889 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2890 result_type = NULL;
2891 }
2892 else
2893 {
2894 result_type = desc_index_type (desc_bounds_type (type), n);
2895 if (result_type == NULL)
2896 error (_("attempt to take bound of something that is not an array"));
2897 }
2898
2899 return result_type;
2900 }
2901
2902 /* Given that arr is an array type, returns the lower bound of the
2903 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2904 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2905 array-descriptor type. It works for other arrays with bounds supplied
2906 by run-time quantities other than discriminants. */
2907
2908 static LONGEST
2909 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2910 {
2911 struct type *type, *index_type_desc, *index_type;
2912 int i;
2913
2914 gdb_assert (which == 0 || which == 1);
2915
2916 if (ada_is_constrained_packed_array_type (arr_type))
2917 arr_type = decode_constrained_packed_array_type (arr_type);
2918
2919 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2920 return (LONGEST) - which;
2921
2922 if (arr_type->code () == TYPE_CODE_PTR)
2923 type = TYPE_TARGET_TYPE (arr_type);
2924 else
2925 type = arr_type;
2926
2927 if (type->is_fixed_instance ())
2928 {
2929 /* The array has already been fixed, so we do not need to
2930 check the parallel ___XA type again. That encoding has
2931 already been applied, so ignore it now. */
2932 index_type_desc = NULL;
2933 }
2934 else
2935 {
2936 index_type_desc = ada_find_parallel_type (type, "___XA");
2937 ada_fixup_array_indexes_type (index_type_desc);
2938 }
2939
2940 if (index_type_desc != NULL)
2941 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2942 NULL);
2943 else
2944 {
2945 struct type *elt_type = check_typedef (type);
2946
2947 for (i = 1; i < n; i++)
2948 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2949
2950 index_type = elt_type->index_type ();
2951 }
2952
2953 return
2954 (LONGEST) (which == 0
2955 ? ada_discrete_type_low_bound (index_type)
2956 : ada_discrete_type_high_bound (index_type));
2957 }
2958
2959 /* Given that arr is an array value, returns the lower bound of the
2960 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2961 WHICH is 1. This routine will also work for arrays with bounds
2962 supplied by run-time quantities other than discriminants. */
2963
2964 static LONGEST
2965 ada_array_bound (struct value *arr, int n, int which)
2966 {
2967 struct type *arr_type;
2968
2969 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2972
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2975 else if (ada_is_simple_array_type (arr_type))
2976 return ada_array_bound_from_type (arr_type, n, which);
2977 else
2978 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2979 }
2980
2981 /* Given that arr is an array value, returns the length of the
2982 nth index. This routine will also work for arrays with bounds
2983 supplied by run-time quantities other than discriminants.
2984 Does not work for arrays indexed by enumeration types with representation
2985 clauses at the moment. */
2986
2987 static LONGEST
2988 ada_array_length (struct value *arr, int n)
2989 {
2990 struct type *arr_type, *index_type;
2991 int low, high;
2992
2993 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2994 arr = value_ind (arr);
2995 arr_type = value_enclosing_type (arr);
2996
2997 if (ada_is_constrained_packed_array_type (arr_type))
2998 return ada_array_length (decode_constrained_packed_array (arr), n);
2999
3000 if (ada_is_simple_array_type (arr_type))
3001 {
3002 low = ada_array_bound_from_type (arr_type, n, 0);
3003 high = ada_array_bound_from_type (arr_type, n, 1);
3004 }
3005 else
3006 {
3007 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3008 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3009 }
3010
3011 arr_type = check_typedef (arr_type);
3012 index_type = ada_index_type (arr_type, n, "length");
3013 if (index_type != NULL)
3014 {
3015 struct type *base_type;
3016 if (index_type->code () == TYPE_CODE_RANGE)
3017 base_type = TYPE_TARGET_TYPE (index_type);
3018 else
3019 base_type = index_type;
3020
3021 low = pos_atr (value_from_longest (base_type, low));
3022 high = pos_atr (value_from_longest (base_type, high));
3023 }
3024 return high - low + 1;
3025 }
3026
3027 /* An array whose type is that of ARR_TYPE (an array type), with
3028 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3029 less than LOW, then LOW-1 is used. */
3030
3031 static struct value *
3032 empty_array (struct type *arr_type, int low, int high)
3033 {
3034 struct type *arr_type0 = ada_check_typedef (arr_type);
3035 struct type *index_type
3036 = create_static_range_type
3037 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3038 high < low ? low - 1 : high);
3039 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3040
3041 return allocate_value (create_array_type (NULL, elt_type, index_type));
3042 }
3043 \f
3044
3045 /* Name resolution */
3046
3047 /* The "decoded" name for the user-definable Ada operator corresponding
3048 to OP. */
3049
3050 static const char *
3051 ada_decoded_op_name (enum exp_opcode op)
3052 {
3053 int i;
3054
3055 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3056 {
3057 if (ada_opname_table[i].op == op)
3058 return ada_opname_table[i].decoded;
3059 }
3060 error (_("Could not find operator name for opcode"));
3061 }
3062
3063 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3064 in a listing of choices during disambiguation (see sort_choices, below).
3065 The idea is that overloadings of a subprogram name from the
3066 same package should sort in their source order. We settle for ordering
3067 such symbols by their trailing number (__N or $N). */
3068
3069 static int
3070 encoded_ordered_before (const char *N0, const char *N1)
3071 {
3072 if (N1 == NULL)
3073 return 0;
3074 else if (N0 == NULL)
3075 return 1;
3076 else
3077 {
3078 int k0, k1;
3079
3080 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3081 ;
3082 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3083 ;
3084 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3085 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3086 {
3087 int n0, n1;
3088
3089 n0 = k0;
3090 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3091 n0 -= 1;
3092 n1 = k1;
3093 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3094 n1 -= 1;
3095 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3096 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3097 }
3098 return (strcmp (N0, N1) < 0);
3099 }
3100 }
3101
3102 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3103 encoded names. */
3104
3105 static void
3106 sort_choices (struct block_symbol syms[], int nsyms)
3107 {
3108 int i;
3109
3110 for (i = 1; i < nsyms; i += 1)
3111 {
3112 struct block_symbol sym = syms[i];
3113 int j;
3114
3115 for (j = i - 1; j >= 0; j -= 1)
3116 {
3117 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3118 sym.symbol->linkage_name ()))
3119 break;
3120 syms[j + 1] = syms[j];
3121 }
3122 syms[j + 1] = sym;
3123 }
3124 }
3125
3126 /* Whether GDB should display formals and return types for functions in the
3127 overloads selection menu. */
3128 static bool print_signatures = true;
3129
3130 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3131 all but functions, the signature is just the name of the symbol. For
3132 functions, this is the name of the function, the list of types for formals
3133 and the return type (if any). */
3134
3135 static void
3136 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3137 const struct type_print_options *flags)
3138 {
3139 struct type *type = SYMBOL_TYPE (sym);
3140
3141 fprintf_filtered (stream, "%s", sym->print_name ());
3142 if (!print_signatures
3143 || type == NULL
3144 || type->code () != TYPE_CODE_FUNC)
3145 return;
3146
3147 if (type->num_fields () > 0)
3148 {
3149 int i;
3150
3151 fprintf_filtered (stream, " (");
3152 for (i = 0; i < type->num_fields (); ++i)
3153 {
3154 if (i > 0)
3155 fprintf_filtered (stream, "; ");
3156 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3157 flags);
3158 }
3159 fprintf_filtered (stream, ")");
3160 }
3161 if (TYPE_TARGET_TYPE (type) != NULL
3162 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3163 {
3164 fprintf_filtered (stream, " return ");
3165 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3166 }
3167 }
3168
3169 /* Read and validate a set of numeric choices from the user in the
3170 range 0 .. N_CHOICES-1. Place the results in increasing
3171 order in CHOICES[0 .. N-1], and return N.
3172
3173 The user types choices as a sequence of numbers on one line
3174 separated by blanks, encoding them as follows:
3175
3176 + A choice of 0 means to cancel the selection, throwing an error.
3177 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3178 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3179
3180 The user is not allowed to choose more than MAX_RESULTS values.
3181
3182 ANNOTATION_SUFFIX, if present, is used to annotate the input
3183 prompts (for use with the -f switch). */
3184
3185 static int
3186 get_selections (int *choices, int n_choices, int max_results,
3187 int is_all_choice, const char *annotation_suffix)
3188 {
3189 const char *args;
3190 const char *prompt;
3191 int n_chosen;
3192 int first_choice = is_all_choice ? 2 : 1;
3193
3194 prompt = getenv ("PS2");
3195 if (prompt == NULL)
3196 prompt = "> ";
3197
3198 args = command_line_input (prompt, annotation_suffix);
3199
3200 if (args == NULL)
3201 error_no_arg (_("one or more choice numbers"));
3202
3203 n_chosen = 0;
3204
3205 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3206 order, as given in args. Choices are validated. */
3207 while (1)
3208 {
3209 char *args2;
3210 int choice, j;
3211
3212 args = skip_spaces (args);
3213 if (*args == '\0' && n_chosen == 0)
3214 error_no_arg (_("one or more choice numbers"));
3215 else if (*args == '\0')
3216 break;
3217
3218 choice = strtol (args, &args2, 10);
3219 if (args == args2 || choice < 0
3220 || choice > n_choices + first_choice - 1)
3221 error (_("Argument must be choice number"));
3222 args = args2;
3223
3224 if (choice == 0)
3225 error (_("cancelled"));
3226
3227 if (choice < first_choice)
3228 {
3229 n_chosen = n_choices;
3230 for (j = 0; j < n_choices; j += 1)
3231 choices[j] = j;
3232 break;
3233 }
3234 choice -= first_choice;
3235
3236 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3237 {
3238 }
3239
3240 if (j < 0 || choice != choices[j])
3241 {
3242 int k;
3243
3244 for (k = n_chosen - 1; k > j; k -= 1)
3245 choices[k + 1] = choices[k];
3246 choices[j + 1] = choice;
3247 n_chosen += 1;
3248 }
3249 }
3250
3251 if (n_chosen > max_results)
3252 error (_("Select no more than %d of the above"), max_results);
3253
3254 return n_chosen;
3255 }
3256
3257 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
3261
3262 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
3264
3265 static int
3266 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3267 {
3268 int i;
3269 int *chosen = XALLOCAVEC (int , nsyms);
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
3273
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3276 if (nsyms <= 1)
3277 return nsyms;
3278
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281 canceled because the command is ambiguous\n\
3282 See set/show multiple-symbol."));
3283
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
3289
3290 printf_filtered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_filtered (_("[1] all\n"));
3293
3294 sort_choices (syms, nsyms);
3295
3296 for (i = 0; i < nsyms; i += 1)
3297 {
3298 if (syms[i].symbol == NULL)
3299 continue;
3300
3301 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3302 {
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].symbol, 1);
3305
3306 printf_filtered ("[%d] ", i + first_choice);
3307 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3308 &type_print_raw_options);
3309 if (sal.symtab == NULL)
3310 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3311 metadata_style.style ().ptr (), nullptr, sal.line);
3312 else
3313 printf_filtered
3314 (_(" at %ps:%d\n"),
3315 styled_string (file_name_style.style (),
3316 symtab_to_filename_for_display (sal.symtab)),
3317 sal.line);
3318 continue;
3319 }
3320 else
3321 {
3322 int is_enumeral =
3323 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3324 && SYMBOL_TYPE (syms[i].symbol) != NULL
3325 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3326 struct symtab *symtab = NULL;
3327
3328 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3329 symtab = symbol_symtab (syms[i].symbol);
3330
3331 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3332 {
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 printf_filtered (_(" at %s:%d\n"),
3337 symtab_to_filename_for_display (symtab),
3338 SYMBOL_LINE (syms[i].symbol));
3339 }
3340 else if (is_enumeral
3341 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3342 {
3343 printf_filtered (("[%d] "), i + first_choice);
3344 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3345 gdb_stdout, -1, 0, &type_print_raw_options);
3346 printf_filtered (_("'(%s) (enumeral)\n"),
3347 syms[i].symbol->print_name ());
3348 }
3349 else
3350 {
3351 printf_filtered ("[%d] ", i + first_choice);
3352 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3353 &type_print_raw_options);
3354
3355 if (symtab != NULL)
3356 printf_filtered (is_enumeral
3357 ? _(" in %s (enumeral)\n")
3358 : _(" at %s:?\n"),
3359 symtab_to_filename_for_display (symtab));
3360 else
3361 printf_filtered (is_enumeral
3362 ? _(" (enumeral)\n")
3363 : _(" at ?\n"));
3364 }
3365 }
3366 }
3367
3368 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3369 "overload-choice");
3370
3371 for (i = 0; i < n_chosen; i += 1)
3372 syms[i] = syms[chosen[i]];
3373
3374 return n_chosen;
3375 }
3376
3377 /* See ada-lang.h. */
3378
3379 block_symbol
3380 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3381 int nargs, value *argvec[])
3382 {
3383 if (possible_user_operator_p (op, argvec))
3384 {
3385 std::vector<struct block_symbol> candidates
3386 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3387 NULL, VAR_DOMAIN);
3388
3389 int i = ada_resolve_function (candidates, argvec,
3390 nargs, ada_decoded_op_name (op), NULL,
3391 parse_completion);
3392 if (i >= 0)
3393 return candidates[i];
3394 }
3395 return {};
3396 }
3397
3398 /* See ada-lang.h. */
3399
3400 block_symbol
3401 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3402 struct type *context_type,
3403 bool parse_completion,
3404 int nargs, value *argvec[],
3405 innermost_block_tracker *tracker)
3406 {
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3409
3410 int i;
3411 if (candidates.size () == 1)
3412 i = 0;
3413 else
3414 {
3415 i = ada_resolve_function
3416 (candidates,
3417 argvec, nargs,
3418 sym->linkage_name (),
3419 context_type, parse_completion);
3420 if (i < 0)
3421 error (_("Could not find a match for %s"), sym->print_name ());
3422 }
3423
3424 tracker->update (candidates[i]);
3425 return candidates[i];
3426 }
3427
3428 /* See ada-lang.h. */
3429
3430 block_symbol
3431 ada_resolve_variable (struct symbol *sym, const struct block *block,
3432 struct type *context_type,
3433 bool parse_completion,
3434 int deprocedure_p,
3435 innermost_block_tracker *tracker)
3436 {
3437 std::vector<struct block_symbol> candidates
3438 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3439
3440 if (std::any_of (candidates.begin (),
3441 candidates.end (),
3442 [] (block_symbol &bsym)
3443 {
3444 switch (SYMBOL_CLASS (bsym.symbol))
3445 {
3446 case LOC_REGISTER:
3447 case LOC_ARG:
3448 case LOC_REF_ARG:
3449 case LOC_REGPARM_ADDR:
3450 case LOC_LOCAL:
3451 case LOC_COMPUTED:
3452 return true;
3453 default:
3454 return false;
3455 }
3456 }))
3457 {
3458 /* Types tend to get re-introduced locally, so if there
3459 are any local symbols that are not types, first filter
3460 out all types. */
3461 candidates.erase
3462 (std::remove_if
3463 (candidates.begin (),
3464 candidates.end (),
3465 [] (block_symbol &bsym)
3466 {
3467 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3468 }),
3469 candidates.end ());
3470 }
3471
3472 int i;
3473 if (candidates.empty ())
3474 error (_("No definition found for %s"), sym->print_name ());
3475 else if (candidates.size () == 1)
3476 i = 0;
3477 else if (deprocedure_p && !is_nonfunction (candidates))
3478 {
3479 i = ada_resolve_function
3480 (candidates, NULL, 0,
3481 sym->linkage_name (),
3482 context_type, parse_completion);
3483 if (i < 0)
3484 error (_("Could not find a match for %s"), sym->print_name ());
3485 }
3486 else
3487 {
3488 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3489 user_select_syms (candidates.data (), candidates.size (), 1);
3490 i = 0;
3491 }
3492
3493 tracker->update (candidates[i]);
3494 return candidates[i];
3495 }
3496
3497 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3500
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype)
3503 {
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3506
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3511
3512 switch (ftype->code ())
3513 {
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () != TYPE_CODE_PTR)
3518 return 0;
3519 atype = TYPE_TARGET_TYPE (atype);
3520 /* This can only happen if the actual argument is 'null'. */
3521 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3522 return 1;
3523 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 switch (atype->code ())
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_ENUM:
3531 case TYPE_CODE_RANGE:
3532 return 1;
3533 default:
3534 return 0;
3535 }
3536
3537 case TYPE_CODE_ARRAY:
3538 return (atype->code () == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
3540
3541 case TYPE_CODE_STRUCT:
3542 if (ada_is_array_descriptor_type (ftype))
3543 return (atype->code () == TYPE_CODE_ARRAY
3544 || ada_is_array_descriptor_type (atype));
3545 else
3546 return (atype->code () == TYPE_CODE_STRUCT
3547 && !ada_is_array_descriptor_type (atype));
3548
3549 case TYPE_CODE_UNION:
3550 case TYPE_CODE_FLT:
3551 return (atype->code () == ftype->code ());
3552 }
3553 }
3554
3555 /* Return non-zero if the formals of FUNC "sufficiently match" the
3556 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3557 may also be an enumeral, in which case it is treated as a 0-
3558 argument function. */
3559
3560 static int
3561 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3562 {
3563 int i;
3564 struct type *func_type = SYMBOL_TYPE (func);
3565
3566 if (SYMBOL_CLASS (func) == LOC_CONST
3567 && func_type->code () == TYPE_CODE_ENUM)
3568 return (n_actuals == 0);
3569 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3570 return 0;
3571
3572 if (func_type->num_fields () != n_actuals)
3573 return 0;
3574
3575 for (i = 0; i < n_actuals; i += 1)
3576 {
3577 if (actuals[i] == NULL)
3578 return 0;
3579 else
3580 {
3581 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3582 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3583
3584 if (!ada_type_match (ftype, atype))
3585 return 0;
3586 }
3587 }
3588 return 1;
3589 }
3590
3591 /* False iff function type FUNC_TYPE definitely does not produce a value
3592 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3593 FUNC_TYPE is not a valid function type with a non-null return type
3594 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3595
3596 static int
3597 return_match (struct type *func_type, struct type *context_type)
3598 {
3599 struct type *return_type;
3600
3601 if (func_type == NULL)
3602 return 1;
3603
3604 if (func_type->code () == TYPE_CODE_FUNC)
3605 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3606 else
3607 return_type = get_base_type (func_type);
3608 if (return_type == NULL)
3609 return 1;
3610
3611 context_type = get_base_type (context_type);
3612
3613 if (return_type->code () == TYPE_CODE_ENUM)
3614 return context_type == NULL || return_type == context_type;
3615 else if (context_type == NULL)
3616 return return_type->code () != TYPE_CODE_VOID;
3617 else
3618 return return_type->code () == context_type->code ();
3619 }
3620
3621
3622 /* Returns the index in SYMS that contains the symbol for the
3623 function (if any) that matches the types of the NARGS arguments in
3624 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3625 that returns that type, then eliminate matches that don't. If
3626 CONTEXT_TYPE is void and there is at least one match that does not
3627 return void, eliminate all matches that do.
3628
3629 Asks the user if there is more than one match remaining. Returns -1
3630 if there is no such symbol or none is selected. NAME is used
3631 solely for messages. May re-arrange and modify SYMS in
3632 the process; the index returned is for the modified vector. */
3633
3634 static int
3635 ada_resolve_function (std::vector<struct block_symbol> &syms,
3636 struct value **args, int nargs,
3637 const char *name, struct type *context_type,
3638 bool parse_completion)
3639 {
3640 int fallback;
3641 int k;
3642 int m; /* Number of hits */
3643
3644 m = 0;
3645 /* In the first pass of the loop, we only accept functions matching
3646 context_type. If none are found, we add a second pass of the loop
3647 where every function is accepted. */
3648 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3649 {
3650 for (k = 0; k < syms.size (); k += 1)
3651 {
3652 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3653
3654 if (ada_args_match (syms[k].symbol, args, nargs)
3655 && (fallback || return_match (type, context_type)))
3656 {
3657 syms[m] = syms[k];
3658 m += 1;
3659 }
3660 }
3661 }
3662
3663 /* If we got multiple matches, ask the user which one to use. Don't do this
3664 interactive thing during completion, though, as the purpose of the
3665 completion is providing a list of all possible matches. Prompting the
3666 user to filter it down would be completely unexpected in this case. */
3667 if (m == 0)
3668 return -1;
3669 else if (m > 1 && !parse_completion)
3670 {
3671 printf_filtered (_("Multiple matches for %s\n"), name);
3672 user_select_syms (syms.data (), m, 1);
3673 return 0;
3674 }
3675 return 0;
3676 }
3677
3678 /* Type-class predicates */
3679
3680 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3681 or FLOAT). */
3682
3683 static int
3684 numeric_type_p (struct type *type)
3685 {
3686 if (type == NULL)
3687 return 0;
3688 else
3689 {
3690 switch (type->code ())
3691 {
3692 case TYPE_CODE_INT:
3693 case TYPE_CODE_FLT:
3694 case TYPE_CODE_FIXED_POINT:
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3706
3707 static int
3708 integer_type_p (struct type *type)
3709 {
3710 if (type == NULL)
3711 return 0;
3712 else
3713 {
3714 switch (type->code ())
3715 {
3716 case TYPE_CODE_INT:
3717 return 1;
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3721 default:
3722 return 0;
3723 }
3724 }
3725 }
3726
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3728
3729 static int
3730 scalar_type_p (struct type *type)
3731 {
3732 if (type == NULL)
3733 return 0;
3734 else
3735 {
3736 switch (type->code ())
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_FLT:
3742 case TYPE_CODE_FIXED_POINT:
3743 return 1;
3744 default:
3745 return 0;
3746 }
3747 }
3748 }
3749
3750 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3751
3752 static int
3753 discrete_type_p (struct type *type)
3754 {
3755 if (type == NULL)
3756 return 0;
3757 else
3758 {
3759 switch (type->code ())
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_RANGE:
3763 case TYPE_CODE_ENUM:
3764 case TYPE_CODE_BOOL:
3765 return 1;
3766 default:
3767 return 0;
3768 }
3769 }
3770 }
3771
3772 /* Returns non-zero if OP with operands in the vector ARGS could be
3773 a user-defined function. Errs on the side of pre-defined operators
3774 (i.e., result 0). */
3775
3776 static int
3777 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3778 {
3779 struct type *type0 =
3780 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3781 struct type *type1 =
3782 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3783
3784 if (type0 == NULL)
3785 return 0;
3786
3787 switch (op)
3788 {
3789 default:
3790 return 0;
3791
3792 case BINOP_ADD:
3793 case BINOP_SUB:
3794 case BINOP_MUL:
3795 case BINOP_DIV:
3796 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3797
3798 case BINOP_REM:
3799 case BINOP_MOD:
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
3803 return (!(integer_type_p (type0) && integer_type_p (type1)));
3804
3805 case BINOP_EQUAL:
3806 case BINOP_NOTEQUAL:
3807 case BINOP_LESS:
3808 case BINOP_GTR:
3809 case BINOP_LEQ:
3810 case BINOP_GEQ:
3811 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3812
3813 case BINOP_CONCAT:
3814 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3815
3816 case BINOP_EXP:
3817 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3818
3819 case UNOP_NEG:
3820 case UNOP_PLUS:
3821 case UNOP_LOGICAL_NOT:
3822 case UNOP_ABS:
3823 return (!numeric_type_p (type0));
3824
3825 }
3826 }
3827 \f
3828 /* Renaming */
3829
3830 /* NOTES:
3831
3832 1. In the following, we assume that a renaming type's name may
3833 have an ___XD suffix. It would be nice if this went away at some
3834 point.
3835 2. We handle both the (old) purely type-based representation of
3836 renamings and the (new) variable-based encoding. At some point,
3837 it is devoutly to be hoped that the former goes away
3838 (FIXME: hilfinger-2007-07-09).
3839 3. Subprogram renamings are not implemented, although the XRS
3840 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841
3842 /* If SYM encodes a renaming,
3843
3844 <renaming> renames <renamed entity>,
3845
3846 sets *LEN to the length of the renamed entity's name,
3847 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3848 the string describing the subcomponent selected from the renamed
3849 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3850 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3851 are undefined). Otherwise, returns a value indicating the category
3852 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3853 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3854 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3855 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3856 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3857 may be NULL, in which case they are not assigned.
3858
3859 [Currently, however, GCC does not generate subprogram renamings.] */
3860
3861 enum ada_renaming_category
3862 ada_parse_renaming (struct symbol *sym,
3863 const char **renamed_entity, int *len,
3864 const char **renaming_expr)
3865 {
3866 enum ada_renaming_category kind;
3867 const char *info;
3868 const char *suffix;
3869
3870 if (sym == NULL)
3871 return ADA_NOT_RENAMING;
3872 switch (SYMBOL_CLASS (sym))
3873 {
3874 default:
3875 return ADA_NOT_RENAMING;
3876 case LOC_LOCAL:
3877 case LOC_STATIC:
3878 case LOC_COMPUTED:
3879 case LOC_OPTIMIZED_OUT:
3880 info = strstr (sym->linkage_name (), "___XR");
3881 if (info == NULL)
3882 return ADA_NOT_RENAMING;
3883 switch (info[5])
3884 {
3885 case '_':
3886 kind = ADA_OBJECT_RENAMING;
3887 info += 6;
3888 break;
3889 case 'E':
3890 kind = ADA_EXCEPTION_RENAMING;
3891 info += 7;
3892 break;
3893 case 'P':
3894 kind = ADA_PACKAGE_RENAMING;
3895 info += 7;
3896 break;
3897 case 'S':
3898 kind = ADA_SUBPROGRAM_RENAMING;
3899 info += 7;
3900 break;
3901 default:
3902 return ADA_NOT_RENAMING;
3903 }
3904 }
3905
3906 if (renamed_entity != NULL)
3907 *renamed_entity = info;
3908 suffix = strstr (info, "___XE");
3909 if (suffix == NULL || suffix == info)
3910 return ADA_NOT_RENAMING;
3911 if (len != NULL)
3912 *len = strlen (info) - strlen (suffix);
3913 suffix += 5;
3914 if (renaming_expr != NULL)
3915 *renaming_expr = suffix;
3916 return kind;
3917 }
3918
3919 /* Compute the value of the given RENAMING_SYM, which is expected to
3920 be a symbol encoding a renaming expression. BLOCK is the block
3921 used to evaluate the renaming. */
3922
3923 static struct value *
3924 ada_read_renaming_var_value (struct symbol *renaming_sym,
3925 const struct block *block)
3926 {
3927 const char *sym_name;
3928
3929 sym_name = renaming_sym->linkage_name ();
3930 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3931 return evaluate_expression (expr.get ());
3932 }
3933 \f
3934
3935 /* Evaluation: Function Calls */
3936
3937 /* Return an lvalue containing the value VAL. This is the identity on
3938 lvalues, and otherwise has the side-effect of allocating memory
3939 in the inferior where a copy of the value contents is copied. */
3940
3941 static struct value *
3942 ensure_lval (struct value *val)
3943 {
3944 if (VALUE_LVAL (val) == not_lval
3945 || VALUE_LVAL (val) == lval_internalvar)
3946 {
3947 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3948 const CORE_ADDR addr =
3949 value_as_long (value_allocate_space_in_inferior (len));
3950
3951 VALUE_LVAL (val) = lval_memory;
3952 set_value_address (val, addr);
3953 write_memory (addr, value_contents (val), len);
3954 }
3955
3956 return val;
3957 }
3958
3959 /* Given ARG, a value of type (pointer or reference to a)*
3960 structure/union, extract the component named NAME from the ultimate
3961 target structure/union and return it as a value with its
3962 appropriate type.
3963
3964 The routine searches for NAME among all members of the structure itself
3965 and (recursively) among all members of any wrapper members
3966 (e.g., '_parent').
3967
3968 If NO_ERR, then simply return NULL in case of error, rather than
3969 calling error. */
3970
3971 static struct value *
3972 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3973 {
3974 struct type *t, *t1;
3975 struct value *v;
3976 int check_tag;
3977
3978 v = NULL;
3979 t1 = t = ada_check_typedef (value_type (arg));
3980 if (t->code () == TYPE_CODE_REF)
3981 {
3982 t1 = TYPE_TARGET_TYPE (t);
3983 if (t1 == NULL)
3984 goto BadValue;
3985 t1 = ada_check_typedef (t1);
3986 if (t1->code () == TYPE_CODE_PTR)
3987 {
3988 arg = coerce_ref (arg);
3989 t = t1;
3990 }
3991 }
3992
3993 while (t->code () == TYPE_CODE_PTR)
3994 {
3995 t1 = TYPE_TARGET_TYPE (t);
3996 if (t1 == NULL)
3997 goto BadValue;
3998 t1 = ada_check_typedef (t1);
3999 if (t1->code () == TYPE_CODE_PTR)
4000 {
4001 arg = value_ind (arg);
4002 t = t1;
4003 }
4004 else
4005 break;
4006 }
4007
4008 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4009 goto BadValue;
4010
4011 if (t1 == t)
4012 v = ada_search_struct_field (name, arg, 0, t);
4013 else
4014 {
4015 int bit_offset, bit_size, byte_offset;
4016 struct type *field_type;
4017 CORE_ADDR address;
4018
4019 if (t->code () == TYPE_CODE_PTR)
4020 address = value_address (ada_value_ind (arg));
4021 else
4022 address = value_address (ada_coerce_ref (arg));
4023
4024 /* Check to see if this is a tagged type. We also need to handle
4025 the case where the type is a reference to a tagged type, but
4026 we have to be careful to exclude pointers to tagged types.
4027 The latter should be shown as usual (as a pointer), whereas
4028 a reference should mostly be transparent to the user. */
4029
4030 if (ada_is_tagged_type (t1, 0)
4031 || (t1->code () == TYPE_CODE_REF
4032 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4033 {
4034 /* We first try to find the searched field in the current type.
4035 If not found then let's look in the fixed type. */
4036
4037 if (!find_struct_field (name, t1, 0,
4038 &field_type, &byte_offset, &bit_offset,
4039 &bit_size, NULL))
4040 check_tag = 1;
4041 else
4042 check_tag = 0;
4043 }
4044 else
4045 check_tag = 0;
4046
4047 /* Convert to fixed type in all cases, so that we have proper
4048 offsets to each field in unconstrained record types. */
4049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4050 address, NULL, check_tag);
4051
4052 /* Resolve the dynamic type as well. */
4053 arg = value_from_contents_and_address (t1, nullptr, address);
4054 t1 = value_type (arg);
4055
4056 if (find_struct_field (name, t1, 0,
4057 &field_type, &byte_offset, &bit_offset,
4058 &bit_size, NULL))
4059 {
4060 if (bit_size != 0)
4061 {
4062 if (t->code () == TYPE_CODE_REF)
4063 arg = ada_coerce_ref (arg);
4064 else
4065 arg = ada_value_ind (arg);
4066 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4067 bit_offset, bit_size,
4068 field_type);
4069 }
4070 else
4071 v = value_at_lazy (field_type, address + byte_offset);
4072 }
4073 }
4074
4075 if (v != NULL || no_err)
4076 return v;
4077 else
4078 error (_("There is no member named %s."), name);
4079
4080 BadValue:
4081 if (no_err)
4082 return NULL;
4083 else
4084 error (_("Attempt to extract a component of "
4085 "a value that is not a record."));
4086 }
4087
4088 /* Return the value ACTUAL, converted to be an appropriate value for a
4089 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4090 allocating any necessary descriptors (fat pointers), or copies of
4091 values not residing in memory, updating it as needed. */
4092
4093 struct value *
4094 ada_convert_actual (struct value *actual, struct type *formal_type0)
4095 {
4096 struct type *actual_type = ada_check_typedef (value_type (actual));
4097 struct type *formal_type = ada_check_typedef (formal_type0);
4098 struct type *formal_target =
4099 formal_type->code () == TYPE_CODE_PTR
4100 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4101 struct type *actual_target =
4102 actual_type->code () == TYPE_CODE_PTR
4103 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4104
4105 if (ada_is_array_descriptor_type (formal_target)
4106 && actual_target->code () == TYPE_CODE_ARRAY)
4107 return make_array_descriptor (formal_type, actual);
4108 else if (formal_type->code () == TYPE_CODE_PTR
4109 || formal_type->code () == TYPE_CODE_REF)
4110 {
4111 struct value *result;
4112
4113 if (formal_target->code () == TYPE_CODE_ARRAY
4114 && ada_is_array_descriptor_type (actual_target))
4115 result = desc_data (actual);
4116 else if (formal_type->code () != TYPE_CODE_PTR)
4117 {
4118 if (VALUE_LVAL (actual) != lval_memory)
4119 {
4120 struct value *val;
4121
4122 actual_type = ada_check_typedef (value_type (actual));
4123 val = allocate_value (actual_type);
4124 memcpy ((char *) value_contents_raw (val),
4125 (char *) value_contents (actual),
4126 TYPE_LENGTH (actual_type));
4127 actual = ensure_lval (val);
4128 }
4129 result = value_addr (actual);
4130 }
4131 else
4132 return actual;
4133 return value_cast_pointers (formal_type, result, 0);
4134 }
4135 else if (actual_type->code () == TYPE_CODE_PTR)
4136 return ada_value_ind (actual);
4137 else if (ada_is_aligner_type (formal_type))
4138 {
4139 /* We need to turn this parameter into an aligner type
4140 as well. */
4141 struct value *aligner = allocate_value (formal_type);
4142 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4143
4144 value_assign_to_component (aligner, component, actual);
4145 return aligner;
4146 }
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = (gdb_byte *) alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 desc_type->field (0).type ()),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 desc_type->field (1).type ()),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (type->code () == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Symbol Cache Module */
4223
4224 /* Performance measurements made as of 2010-01-15 indicate that
4225 this cache does bring some noticeable improvements. Depending
4226 on the type of entity being printed, the cache can make it as much
4227 as an order of magnitude faster than without it.
4228
4229 The descriptive type DWARF extension has significantly reduced
4230 the need for this cache, at least when DWARF is being used. However,
4231 even in this case, some expensive name-based symbol searches are still
4232 sometimes necessary - to find an XVZ variable, mostly. */
4233
4234 /* Return the symbol cache associated to the given program space PSPACE.
4235 If not allocated for this PSPACE yet, allocate and initialize one. */
4236
4237 static struct ada_symbol_cache *
4238 ada_get_symbol_cache (struct program_space *pspace)
4239 {
4240 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4241
4242 if (pspace_data->sym_cache == nullptr)
4243 pspace_data->sym_cache.reset (new ada_symbol_cache);
4244
4245 return pspace_data->sym_cache.get ();
4246 }
4247
4248 /* Clear all entries from the symbol cache. */
4249
4250 static void
4251 ada_clear_symbol_cache ()
4252 {
4253 struct ada_pspace_data *pspace_data
4254 = get_ada_pspace_data (current_program_space);
4255
4256 if (pspace_data->sym_cache != nullptr)
4257 pspace_data->sym_cache.reset ();
4258 }
4259
4260 /* Search our cache for an entry matching NAME and DOMAIN.
4261 Return it if found, or NULL otherwise. */
4262
4263 static struct cache_entry **
4264 find_entry (const char *name, domain_enum domain)
4265 {
4266 struct ada_symbol_cache *sym_cache
4267 = ada_get_symbol_cache (current_program_space);
4268 int h = msymbol_hash (name) % HASH_SIZE;
4269 struct cache_entry **e;
4270
4271 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4272 {
4273 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4274 return e;
4275 }
4276 return NULL;
4277 }
4278
4279 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4280 Return 1 if found, 0 otherwise.
4281
4282 If an entry was found and SYM is not NULL, set *SYM to the entry's
4283 SYM. Same principle for BLOCK if not NULL. */
4284
4285 static int
4286 lookup_cached_symbol (const char *name, domain_enum domain,
4287 struct symbol **sym, const struct block **block)
4288 {
4289 struct cache_entry **e = find_entry (name, domain);
4290
4291 if (e == NULL)
4292 return 0;
4293 if (sym != NULL)
4294 *sym = (*e)->sym;
4295 if (block != NULL)
4296 *block = (*e)->block;
4297 return 1;
4298 }
4299
4300 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4301 in domain DOMAIN, save this result in our symbol cache. */
4302
4303 static void
4304 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4305 const struct block *block)
4306 {
4307 struct ada_symbol_cache *sym_cache
4308 = ada_get_symbol_cache (current_program_space);
4309 int h;
4310 struct cache_entry *e;
4311
4312 /* Symbols for builtin types don't have a block.
4313 For now don't cache such symbols. */
4314 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4315 return;
4316
4317 /* If the symbol is a local symbol, then do not cache it, as a search
4318 for that symbol depends on the context. To determine whether
4319 the symbol is local or not, we check the block where we found it
4320 against the global and static blocks of its associated symtab. */
4321 if (sym
4322 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4323 GLOBAL_BLOCK) != block
4324 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4325 STATIC_BLOCK) != block)
4326 return;
4327
4328 h = msymbol_hash (name) % HASH_SIZE;
4329 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4330 e->next = sym_cache->root[h];
4331 sym_cache->root[h] = e;
4332 e->name = obstack_strdup (&sym_cache->cache_space, name);
4333 e->sym = sym;
4334 e->domain = domain;
4335 e->block = block;
4336 }
4337 \f
4338 /* Symbol Lookup */
4339
4340 /* Return the symbol name match type that should be used used when
4341 searching for all symbols matching LOOKUP_NAME.
4342
4343 LOOKUP_NAME is expected to be a symbol name after transformation
4344 for Ada lookups. */
4345
4346 static symbol_name_match_type
4347 name_match_type_from_name (const char *lookup_name)
4348 {
4349 return (strstr (lookup_name, "__") == NULL
4350 ? symbol_name_match_type::WILD
4351 : symbol_name_match_type::FULL);
4352 }
4353
4354 /* Return the result of a standard (literal, C-like) lookup of NAME in
4355 given DOMAIN, visible from lexical block BLOCK. */
4356
4357 static struct symbol *
4358 standard_lookup (const char *name, const struct block *block,
4359 domain_enum domain)
4360 {
4361 /* Initialize it just to avoid a GCC false warning. */
4362 struct block_symbol sym = {};
4363
4364 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4365 return sym.symbol;
4366 ada_lookup_encoded_symbol (name, block, domain, &sym);
4367 cache_symbol (name, domain, sym.symbol, sym.block);
4368 return sym.symbol;
4369 }
4370
4371
4372 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4373 in the symbol fields of SYMS. We treat enumerals as functions,
4374 since they contend in overloading in the same way. */
4375 static int
4376 is_nonfunction (const std::vector<struct block_symbol> &syms)
4377 {
4378 for (const block_symbol &sym : syms)
4379 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4380 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4381 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4382 return 1;
4383
4384 return 0;
4385 }
4386
4387 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4388 struct types. Otherwise, they may not. */
4389
4390 static int
4391 equiv_types (struct type *type0, struct type *type1)
4392 {
4393 if (type0 == type1)
4394 return 1;
4395 if (type0 == NULL || type1 == NULL
4396 || type0->code () != type1->code ())
4397 return 0;
4398 if ((type0->code () == TYPE_CODE_STRUCT
4399 || type0->code () == TYPE_CODE_ENUM)
4400 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4401 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4402 return 1;
4403
4404 return 0;
4405 }
4406
4407 /* True iff SYM0 represents the same entity as SYM1, or one that is
4408 no more defined than that of SYM1. */
4409
4410 static int
4411 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4412 {
4413 if (sym0 == sym1)
4414 return 1;
4415 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4416 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4417 return 0;
4418
4419 switch (SYMBOL_CLASS (sym0))
4420 {
4421 case LOC_UNDEF:
4422 return 1;
4423 case LOC_TYPEDEF:
4424 {
4425 struct type *type0 = SYMBOL_TYPE (sym0);
4426 struct type *type1 = SYMBOL_TYPE (sym1);
4427 const char *name0 = sym0->linkage_name ();
4428 const char *name1 = sym1->linkage_name ();
4429 int len0 = strlen (name0);
4430
4431 return
4432 type0->code () == type1->code ()
4433 && (equiv_types (type0, type1)
4434 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4435 && startswith (name1 + len0, "___XV")));
4436 }
4437 case LOC_CONST:
4438 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4439 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4440
4441 case LOC_STATIC:
4442 {
4443 const char *name0 = sym0->linkage_name ();
4444 const char *name1 = sym1->linkage_name ();
4445 return (strcmp (name0, name1) == 0
4446 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4447 }
4448
4449 default:
4450 return 0;
4451 }
4452 }
4453
4454 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4455 records in RESULT. Do nothing if SYM is a duplicate. */
4456
4457 static void
4458 add_defn_to_vec (std::vector<struct block_symbol> &result,
4459 struct symbol *sym,
4460 const struct block *block)
4461 {
4462 /* Do not try to complete stub types, as the debugger is probably
4463 already scanning all symbols matching a certain name at the
4464 time when this function is called. Trying to replace the stub
4465 type by its associated full type will cause us to restart a scan
4466 which may lead to an infinite recursion. Instead, the client
4467 collecting the matching symbols will end up collecting several
4468 matches, with at least one of them complete. It can then filter
4469 out the stub ones if needed. */
4470
4471 for (int i = result.size () - 1; i >= 0; i -= 1)
4472 {
4473 if (lesseq_defined_than (sym, result[i].symbol))
4474 return;
4475 else if (lesseq_defined_than (result[i].symbol, sym))
4476 {
4477 result[i].symbol = sym;
4478 result[i].block = block;
4479 return;
4480 }
4481 }
4482
4483 struct block_symbol info;
4484 info.symbol = sym;
4485 info.block = block;
4486 result.push_back (info);
4487 }
4488
4489 /* Return a bound minimal symbol matching NAME according to Ada
4490 decoding rules. Returns an invalid symbol if there is no such
4491 minimal symbol. Names prefixed with "standard__" are handled
4492 specially: "standard__" is first stripped off, and only static and
4493 global symbols are searched. */
4494
4495 struct bound_minimal_symbol
4496 ada_lookup_simple_minsym (const char *name)
4497 {
4498 struct bound_minimal_symbol result;
4499
4500 memset (&result, 0, sizeof (result));
4501
4502 symbol_name_match_type match_type = name_match_type_from_name (name);
4503 lookup_name_info lookup_name (name, match_type);
4504
4505 symbol_name_matcher_ftype *match_name
4506 = ada_get_symbol_name_matcher (lookup_name);
4507
4508 for (objfile *objfile : current_program_space->objfiles ())
4509 {
4510 for (minimal_symbol *msymbol : objfile->msymbols ())
4511 {
4512 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4513 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4514 {
4515 result.minsym = msymbol;
4516 result.objfile = objfile;
4517 break;
4518 }
4519 }
4520 }
4521
4522 return result;
4523 }
4524
4525 /* For all subprograms that statically enclose the subprogram of the
4526 selected frame, add symbols matching identifier NAME in DOMAIN
4527 and their blocks to the list of data in RESULT, as for
4528 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4529 with a wildcard prefix. */
4530
4531 static void
4532 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4533 const lookup_name_info &lookup_name,
4534 domain_enum domain)
4535 {
4536 }
4537
4538 /* True if TYPE is definitely an artificial type supplied to a symbol
4539 for which no debugging information was given in the symbol file. */
4540
4541 static int
4542 is_nondebugging_type (struct type *type)
4543 {
4544 const char *name = ada_type_name (type);
4545
4546 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4547 }
4548
4549 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4550 that are deemed "identical" for practical purposes.
4551
4552 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4553 types and that their number of enumerals is identical (in other
4554 words, type1->num_fields () == type2->num_fields ()). */
4555
4556 static int
4557 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4558 {
4559 int i;
4560
4561 /* The heuristic we use here is fairly conservative. We consider
4562 that 2 enumerate types are identical if they have the same
4563 number of enumerals and that all enumerals have the same
4564 underlying value and name. */
4565
4566 /* All enums in the type should have an identical underlying value. */
4567 for (i = 0; i < type1->num_fields (); i++)
4568 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4569 return 0;
4570
4571 /* All enumerals should also have the same name (modulo any numerical
4572 suffix). */
4573 for (i = 0; i < type1->num_fields (); i++)
4574 {
4575 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4576 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4577 int len_1 = strlen (name_1);
4578 int len_2 = strlen (name_2);
4579
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4581 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4582 if (len_1 != len_2
4583 || strncmp (TYPE_FIELD_NAME (type1, i),
4584 TYPE_FIELD_NAME (type2, i),
4585 len_1) != 0)
4586 return 0;
4587 }
4588
4589 return 1;
4590 }
4591
4592 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4593 that are deemed "identical" for practical purposes. Sometimes,
4594 enumerals are not strictly identical, but their types are so similar
4595 that they can be considered identical.
4596
4597 For instance, consider the following code:
4598
4599 type Color is (Black, Red, Green, Blue, White);
4600 type RGB_Color is new Color range Red .. Blue;
4601
4602 Type RGB_Color is a subrange of an implicit type which is a copy
4603 of type Color. If we call that implicit type RGB_ColorB ("B" is
4604 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4605 As a result, when an expression references any of the enumeral
4606 by name (Eg. "print green"), the expression is technically
4607 ambiguous and the user should be asked to disambiguate. But
4608 doing so would only hinder the user, since it wouldn't matter
4609 what choice he makes, the outcome would always be the same.
4610 So, for practical purposes, we consider them as the same. */
4611
4612 static int
4613 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4614 {
4615 int i;
4616
4617 /* Before performing a thorough comparison check of each type,
4618 we perform a series of inexpensive checks. We expect that these
4619 checks will quickly fail in the vast majority of cases, and thus
4620 help prevent the unnecessary use of a more expensive comparison.
4621 Said comparison also expects us to make some of these checks
4622 (see ada_identical_enum_types_p). */
4623
4624 /* Quick check: All symbols should have an enum type. */
4625 for (i = 0; i < syms.size (); i++)
4626 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4627 return 0;
4628
4629 /* Quick check: They should all have the same value. */
4630 for (i = 1; i < syms.size (); i++)
4631 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4632 return 0;
4633
4634 /* Quick check: They should all have the same number of enumerals. */
4635 for (i = 1; i < syms.size (); i++)
4636 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4637 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4638 return 0;
4639
4640 /* All the sanity checks passed, so we might have a set of
4641 identical enumeration types. Perform a more complete
4642 comparison of the type of each symbol. */
4643 for (i = 1; i < syms.size (); i++)
4644 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4645 SYMBOL_TYPE (syms[0].symbol)))
4646 return 0;
4647
4648 return 1;
4649 }
4650
4651 /* Remove any non-debugging symbols in SYMS that definitely
4652 duplicate other symbols in the list (The only case I know of where
4653 this happens is when object files containing stabs-in-ecoff are
4654 linked with files containing ordinary ecoff debugging symbols (or no
4655 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4656
4657 static void
4658 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4659 {
4660 int i, j;
4661
4662 /* We should never be called with less than 2 symbols, as there
4663 cannot be any extra symbol in that case. But it's easy to
4664 handle, since we have nothing to do in that case. */
4665 if (syms->size () < 2)
4666 return;
4667
4668 i = 0;
4669 while (i < syms->size ())
4670 {
4671 int remove_p = 0;
4672
4673 /* If two symbols have the same name and one of them is a stub type,
4674 the get rid of the stub. */
4675
4676 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4677 && (*syms)[i].symbol->linkage_name () != NULL)
4678 {
4679 for (j = 0; j < syms->size (); j++)
4680 {
4681 if (j != i
4682 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4683 && (*syms)[j].symbol->linkage_name () != NULL
4684 && strcmp ((*syms)[i].symbol->linkage_name (),
4685 (*syms)[j].symbol->linkage_name ()) == 0)
4686 remove_p = 1;
4687 }
4688 }
4689
4690 /* Two symbols with the same name, same class and same address
4691 should be identical. */
4692
4693 else if ((*syms)[i].symbol->linkage_name () != NULL
4694 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4695 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4696 {
4697 for (j = 0; j < syms->size (); j += 1)
4698 {
4699 if (i != j
4700 && (*syms)[j].symbol->linkage_name () != NULL
4701 && strcmp ((*syms)[i].symbol->linkage_name (),
4702 (*syms)[j].symbol->linkage_name ()) == 0
4703 && SYMBOL_CLASS ((*syms)[i].symbol)
4704 == SYMBOL_CLASS ((*syms)[j].symbol)
4705 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4706 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4707 remove_p = 1;
4708 }
4709 }
4710
4711 if (remove_p)
4712 syms->erase (syms->begin () + i);
4713 else
4714 i += 1;
4715 }
4716
4717 /* If all the remaining symbols are identical enumerals, then
4718 just keep the first one and discard the rest.
4719
4720 Unlike what we did previously, we do not discard any entry
4721 unless they are ALL identical. This is because the symbol
4722 comparison is not a strict comparison, but rather a practical
4723 comparison. If all symbols are considered identical, then
4724 we can just go ahead and use the first one and discard the rest.
4725 But if we cannot reduce the list to a single element, we have
4726 to ask the user to disambiguate anyways. And if we have to
4727 present a multiple-choice menu, it's less confusing if the list
4728 isn't missing some choices that were identical and yet distinct. */
4729 if (symbols_are_identical_enums (*syms))
4730 syms->resize (1);
4731 }
4732
4733 /* Given a type that corresponds to a renaming entity, use the type name
4734 to extract the scope (package name or function name, fully qualified,
4735 and following the GNAT encoding convention) where this renaming has been
4736 defined. */
4737
4738 static std::string
4739 xget_renaming_scope (struct type *renaming_type)
4740 {
4741 /* The renaming types adhere to the following convention:
4742 <scope>__<rename>___<XR extension>.
4743 So, to extract the scope, we search for the "___XR" extension,
4744 and then backtrack until we find the first "__". */
4745
4746 const char *name = renaming_type->name ();
4747 const char *suffix = strstr (name, "___XR");
4748 const char *last;
4749
4750 /* Now, backtrack a bit until we find the first "__". Start looking
4751 at suffix - 3, as the <rename> part is at least one character long. */
4752
4753 for (last = suffix - 3; last > name; last--)
4754 if (last[0] == '_' && last[1] == '_')
4755 break;
4756
4757 /* Make a copy of scope and return it. */
4758 return std::string (name, last);
4759 }
4760
4761 /* Return nonzero if NAME corresponds to a package name. */
4762
4763 static int
4764 is_package_name (const char *name)
4765 {
4766 /* Here, We take advantage of the fact that no symbols are generated
4767 for packages, while symbols are generated for each function.
4768 So the condition for NAME represent a package becomes equivalent
4769 to NAME not existing in our list of symbols. There is only one
4770 small complication with library-level functions (see below). */
4771
4772 /* If it is a function that has not been defined at library level,
4773 then we should be able to look it up in the symbols. */
4774 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4775 return 0;
4776
4777 /* Library-level function names start with "_ada_". See if function
4778 "_ada_" followed by NAME can be found. */
4779
4780 /* Do a quick check that NAME does not contain "__", since library-level
4781 functions names cannot contain "__" in them. */
4782 if (strstr (name, "__") != NULL)
4783 return 0;
4784
4785 std::string fun_name = string_printf ("_ada_%s", name);
4786
4787 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4788 }
4789
4790 /* Return nonzero if SYM corresponds to a renaming entity that is
4791 not visible from FUNCTION_NAME. */
4792
4793 static int
4794 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4795 {
4796 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4797 return 0;
4798
4799 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4800
4801 /* If the rename has been defined in a package, then it is visible. */
4802 if (is_package_name (scope.c_str ()))
4803 return 0;
4804
4805 /* Check that the rename is in the current function scope by checking
4806 that its name starts with SCOPE. */
4807
4808 /* If the function name starts with "_ada_", it means that it is
4809 a library-level function. Strip this prefix before doing the
4810 comparison, as the encoding for the renaming does not contain
4811 this prefix. */
4812 if (startswith (function_name, "_ada_"))
4813 function_name += 5;
4814
4815 return !startswith (function_name, scope.c_str ());
4816 }
4817
4818 /* Remove entries from SYMS that corresponds to a renaming entity that
4819 is not visible from the function associated with CURRENT_BLOCK or
4820 that is superfluous due to the presence of more specific renaming
4821 information. Places surviving symbols in the initial entries of
4822 SYMS.
4823
4824 Rationale:
4825 First, in cases where an object renaming is implemented as a
4826 reference variable, GNAT may produce both the actual reference
4827 variable and the renaming encoding. In this case, we discard the
4828 latter.
4829
4830 Second, GNAT emits a type following a specified encoding for each renaming
4831 entity. Unfortunately, STABS currently does not support the definition
4832 of types that are local to a given lexical block, so all renamings types
4833 are emitted at library level. As a consequence, if an application
4834 contains two renaming entities using the same name, and a user tries to
4835 print the value of one of these entities, the result of the ada symbol
4836 lookup will also contain the wrong renaming type.
4837
4838 This function partially covers for this limitation by attempting to
4839 remove from the SYMS list renaming symbols that should be visible
4840 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4841 method with the current information available. The implementation
4842 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4843
4844 - When the user tries to print a rename in a function while there
4845 is another rename entity defined in a package: Normally, the
4846 rename in the function has precedence over the rename in the
4847 package, so the latter should be removed from the list. This is
4848 currently not the case.
4849
4850 - This function will incorrectly remove valid renames if
4851 the CURRENT_BLOCK corresponds to a function which symbol name
4852 has been changed by an "Export" pragma. As a consequence,
4853 the user will be unable to print such rename entities. */
4854
4855 static void
4856 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4857 const struct block *current_block)
4858 {
4859 struct symbol *current_function;
4860 const char *current_function_name;
4861 int i;
4862 int is_new_style_renaming;
4863
4864 /* If there is both a renaming foo___XR... encoded as a variable and
4865 a simple variable foo in the same block, discard the latter.
4866 First, zero out such symbols, then compress. */
4867 is_new_style_renaming = 0;
4868 for (i = 0; i < syms->size (); i += 1)
4869 {
4870 struct symbol *sym = (*syms)[i].symbol;
4871 const struct block *block = (*syms)[i].block;
4872 const char *name;
4873 const char *suffix;
4874
4875 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4876 continue;
4877 name = sym->linkage_name ();
4878 suffix = strstr (name, "___XR");
4879
4880 if (suffix != NULL)
4881 {
4882 int name_len = suffix - name;
4883 int j;
4884
4885 is_new_style_renaming = 1;
4886 for (j = 0; j < syms->size (); j += 1)
4887 if (i != j && (*syms)[j].symbol != NULL
4888 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4889 name_len) == 0
4890 && block == (*syms)[j].block)
4891 (*syms)[j].symbol = NULL;
4892 }
4893 }
4894 if (is_new_style_renaming)
4895 {
4896 int j, k;
4897
4898 for (j = k = 0; j < syms->size (); j += 1)
4899 if ((*syms)[j].symbol != NULL)
4900 {
4901 (*syms)[k] = (*syms)[j];
4902 k += 1;
4903 }
4904 syms->resize (k);
4905 return;
4906 }
4907
4908 /* Extract the function name associated to CURRENT_BLOCK.
4909 Abort if unable to do so. */
4910
4911 if (current_block == NULL)
4912 return;
4913
4914 current_function = block_linkage_function (current_block);
4915 if (current_function == NULL)
4916 return;
4917
4918 current_function_name = current_function->linkage_name ();
4919 if (current_function_name == NULL)
4920 return;
4921
4922 /* Check each of the symbols, and remove it from the list if it is
4923 a type corresponding to a renaming that is out of the scope of
4924 the current block. */
4925
4926 i = 0;
4927 while (i < syms->size ())
4928 {
4929 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4930 == ADA_OBJECT_RENAMING
4931 && old_renaming_is_invisible ((*syms)[i].symbol,
4932 current_function_name))
4933 syms->erase (syms->begin () + i);
4934 else
4935 i += 1;
4936 }
4937 }
4938
4939 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4940 whose name and domain match NAME and DOMAIN respectively.
4941 If no match was found, then extend the search to "enclosing"
4942 routines (in other words, if we're inside a nested function,
4943 search the symbols defined inside the enclosing functions).
4944 If WILD_MATCH_P is nonzero, perform the naming matching in
4945 "wild" mode (see function "wild_match" for more info).
4946
4947 Note: This function assumes that RESULT has 0 (zero) element in it. */
4948
4949 static void
4950 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4951 const lookup_name_info &lookup_name,
4952 const struct block *block, domain_enum domain)
4953 {
4954 int block_depth = 0;
4955
4956 while (block != NULL)
4957 {
4958 block_depth += 1;
4959 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4960
4961 /* If we found a non-function match, assume that's the one. */
4962 if (is_nonfunction (result))
4963 return;
4964
4965 block = BLOCK_SUPERBLOCK (block);
4966 }
4967
4968 /* If no luck so far, try to find NAME as a local symbol in some lexically
4969 enclosing subprogram. */
4970 if (result.empty () && block_depth > 2)
4971 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4972 }
4973
4974 /* An object of this type is used as the callback argument when
4975 calling the map_matching_symbols method. */
4976
4977 struct match_data
4978 {
4979 explicit match_data (std::vector<struct block_symbol> *rp)
4980 : resultp (rp)
4981 {
4982 }
4983 DISABLE_COPY_AND_ASSIGN (match_data);
4984
4985 bool operator() (struct block_symbol *bsym);
4986
4987 struct objfile *objfile = nullptr;
4988 std::vector<struct block_symbol> *resultp;
4989 struct symbol *arg_sym = nullptr;
4990 bool found_sym = false;
4991 };
4992
4993 /* A callback for add_nonlocal_symbols that adds symbol, found in
4994 BSYM, to a list of symbols. */
4995
4996 bool
4997 match_data::operator() (struct block_symbol *bsym)
4998 {
4999 const struct block *block = bsym->block;
5000 struct symbol *sym = bsym->symbol;
5001
5002 if (sym == NULL)
5003 {
5004 if (!found_sym && arg_sym != NULL)
5005 add_defn_to_vec (*resultp,
5006 fixup_symbol_section (arg_sym, objfile),
5007 block);
5008 found_sym = false;
5009 arg_sym = NULL;
5010 }
5011 else
5012 {
5013 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5014 return true;
5015 else if (SYMBOL_IS_ARGUMENT (sym))
5016 arg_sym = sym;
5017 else
5018 {
5019 found_sym = true;
5020 add_defn_to_vec (*resultp,
5021 fixup_symbol_section (sym, objfile),
5022 block);
5023 }
5024 }
5025 return true;
5026 }
5027
5028 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5029 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5030 symbols to RESULT. Return whether we found such symbols. */
5031
5032 static int
5033 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5034 const struct block *block,
5035 const lookup_name_info &lookup_name,
5036 domain_enum domain)
5037 {
5038 struct using_direct *renaming;
5039 int defns_mark = result.size ();
5040
5041 symbol_name_matcher_ftype *name_match
5042 = ada_get_symbol_name_matcher (lookup_name);
5043
5044 for (renaming = block_using (block);
5045 renaming != NULL;
5046 renaming = renaming->next)
5047 {
5048 const char *r_name;
5049
5050 /* Avoid infinite recursions: skip this renaming if we are actually
5051 already traversing it.
5052
5053 Currently, symbol lookup in Ada don't use the namespace machinery from
5054 C++/Fortran support: skip namespace imports that use them. */
5055 if (renaming->searched
5056 || (renaming->import_src != NULL
5057 && renaming->import_src[0] != '\0')
5058 || (renaming->import_dest != NULL
5059 && renaming->import_dest[0] != '\0'))
5060 continue;
5061 renaming->searched = 1;
5062
5063 /* TODO: here, we perform another name-based symbol lookup, which can
5064 pull its own multiple overloads. In theory, we should be able to do
5065 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5066 not a simple name. But in order to do this, we would need to enhance
5067 the DWARF reader to associate a symbol to this renaming, instead of a
5068 name. So, for now, we do something simpler: re-use the C++/Fortran
5069 namespace machinery. */
5070 r_name = (renaming->alias != NULL
5071 ? renaming->alias
5072 : renaming->declaration);
5073 if (name_match (r_name, lookup_name, NULL))
5074 {
5075 lookup_name_info decl_lookup_name (renaming->declaration,
5076 lookup_name.match_type ());
5077 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5078 1, NULL);
5079 }
5080 renaming->searched = 0;
5081 }
5082 return result.size () != defns_mark;
5083 }
5084
5085 /* Implements compare_names, but only applying the comparision using
5086 the given CASING. */
5087
5088 static int
5089 compare_names_with_case (const char *string1, const char *string2,
5090 enum case_sensitivity casing)
5091 {
5092 while (*string1 != '\0' && *string2 != '\0')
5093 {
5094 char c1, c2;
5095
5096 if (isspace (*string1) || isspace (*string2))
5097 return strcmp_iw_ordered (string1, string2);
5098
5099 if (casing == case_sensitive_off)
5100 {
5101 c1 = tolower (*string1);
5102 c2 = tolower (*string2);
5103 }
5104 else
5105 {
5106 c1 = *string1;
5107 c2 = *string2;
5108 }
5109 if (c1 != c2)
5110 break;
5111
5112 string1 += 1;
5113 string2 += 1;
5114 }
5115
5116 switch (*string1)
5117 {
5118 case '(':
5119 return strcmp_iw_ordered (string1, string2);
5120 case '_':
5121 if (*string2 == '\0')
5122 {
5123 if (is_name_suffix (string1))
5124 return 0;
5125 else
5126 return 1;
5127 }
5128 /* FALLTHROUGH */
5129 default:
5130 if (*string2 == '(')
5131 return strcmp_iw_ordered (string1, string2);
5132 else
5133 {
5134 if (casing == case_sensitive_off)
5135 return tolower (*string1) - tolower (*string2);
5136 else
5137 return *string1 - *string2;
5138 }
5139 }
5140 }
5141
5142 /* Compare STRING1 to STRING2, with results as for strcmp.
5143 Compatible with strcmp_iw_ordered in that...
5144
5145 strcmp_iw_ordered (STRING1, STRING2) <= 0
5146
5147 ... implies...
5148
5149 compare_names (STRING1, STRING2) <= 0
5150
5151 (they may differ as to what symbols compare equal). */
5152
5153 static int
5154 compare_names (const char *string1, const char *string2)
5155 {
5156 int result;
5157
5158 /* Similar to what strcmp_iw_ordered does, we need to perform
5159 a case-insensitive comparison first, and only resort to
5160 a second, case-sensitive, comparison if the first one was
5161 not sufficient to differentiate the two strings. */
5162
5163 result = compare_names_with_case (string1, string2, case_sensitive_off);
5164 if (result == 0)
5165 result = compare_names_with_case (string1, string2, case_sensitive_on);
5166
5167 return result;
5168 }
5169
5170 /* Convenience function to get at the Ada encoded lookup name for
5171 LOOKUP_NAME, as a C string. */
5172
5173 static const char *
5174 ada_lookup_name (const lookup_name_info &lookup_name)
5175 {
5176 return lookup_name.ada ().lookup_name ().c_str ();
5177 }
5178
5179 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5180 for OBJFILE, then walk the objfile's symtabs and update the
5181 results. */
5182
5183 static void
5184 map_matching_symbols (struct objfile *objfile,
5185 const lookup_name_info &lookup_name,
5186 bool is_wild_match,
5187 domain_enum domain,
5188 int global,
5189 match_data &data)
5190 {
5191 data.objfile = objfile;
5192 objfile->expand_matching_symbols (lookup_name, domain, global,
5193 is_wild_match ? nullptr : compare_names);
5194
5195 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5196 for (compunit_symtab *symtab : objfile->compunits ())
5197 {
5198 const struct block *block
5199 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5200 if (!iterate_over_symbols_terminated (block, lookup_name,
5201 domain, data))
5202 break;
5203 }
5204 }
5205
5206 /* Add to RESULT all non-local symbols whose name and domain match
5207 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5208 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5209 symbols otherwise. */
5210
5211 static void
5212 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5213 const lookup_name_info &lookup_name,
5214 domain_enum domain, int global)
5215 {
5216 struct match_data data (&result);
5217
5218 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5219
5220 for (objfile *objfile : current_program_space->objfiles ())
5221 {
5222 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5223 global, data);
5224
5225 for (compunit_symtab *cu : objfile->compunits ())
5226 {
5227 const struct block *global_block
5228 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5229
5230 if (ada_add_block_renamings (result, global_block, lookup_name,
5231 domain))
5232 data.found_sym = true;
5233 }
5234 }
5235
5236 if (result.empty () && global && !is_wild_match)
5237 {
5238 const char *name = ada_lookup_name (lookup_name);
5239 std::string bracket_name = std::string ("<_ada_") + name + '>';
5240 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5241
5242 for (objfile *objfile : current_program_space->objfiles ())
5243 map_matching_symbols (objfile, name1, false, domain, global, data);
5244 }
5245 }
5246
5247 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5248 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5249 returning the number of matches. Add these to RESULT.
5250
5251 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5252 symbol match within the nest of blocks whose innermost member is BLOCK,
5253 is the one match returned (no other matches in that or
5254 enclosing blocks is returned). If there are any matches in or
5255 surrounding BLOCK, then these alone are returned.
5256
5257 Names prefixed with "standard__" are handled specially:
5258 "standard__" is first stripped off (by the lookup_name
5259 constructor), and only static and global symbols are searched.
5260
5261 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5262 to lookup global symbols. */
5263
5264 static void
5265 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5266 const struct block *block,
5267 const lookup_name_info &lookup_name,
5268 domain_enum domain,
5269 int full_search,
5270 int *made_global_lookup_p)
5271 {
5272 struct symbol *sym;
5273
5274 if (made_global_lookup_p)
5275 *made_global_lookup_p = 0;
5276
5277 /* Special case: If the user specifies a symbol name inside package
5278 Standard, do a non-wild matching of the symbol name without
5279 the "standard__" prefix. This was primarily introduced in order
5280 to allow the user to specifically access the standard exceptions
5281 using, for instance, Standard.Constraint_Error when Constraint_Error
5282 is ambiguous (due to the user defining its own Constraint_Error
5283 entity inside its program). */
5284 if (lookup_name.ada ().standard_p ())
5285 block = NULL;
5286
5287 /* Check the non-global symbols. If we have ANY match, then we're done. */
5288
5289 if (block != NULL)
5290 {
5291 if (full_search)
5292 ada_add_local_symbols (result, lookup_name, block, domain);
5293 else
5294 {
5295 /* In the !full_search case we're are being called by
5296 iterate_over_symbols, and we don't want to search
5297 superblocks. */
5298 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5299 }
5300 if (!result.empty () || !full_search)
5301 return;
5302 }
5303
5304 /* No non-global symbols found. Check our cache to see if we have
5305 already performed this search before. If we have, then return
5306 the same result. */
5307
5308 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5309 domain, &sym, &block))
5310 {
5311 if (sym != NULL)
5312 add_defn_to_vec (result, sym, block);
5313 return;
5314 }
5315
5316 if (made_global_lookup_p)
5317 *made_global_lookup_p = 1;
5318
5319 /* Search symbols from all global blocks. */
5320
5321 add_nonlocal_symbols (result, lookup_name, domain, 1);
5322
5323 /* Now add symbols from all per-file blocks if we've gotten no hits
5324 (not strictly correct, but perhaps better than an error). */
5325
5326 if (result.empty ())
5327 add_nonlocal_symbols (result, lookup_name, domain, 0);
5328 }
5329
5330 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5331 is non-zero, enclosing scope and in global scopes.
5332
5333 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5334 blocks and symbol tables (if any) in which they were found.
5335
5336 When full_search is non-zero, any non-function/non-enumeral
5337 symbol match within the nest of blocks whose innermost member is BLOCK,
5338 is the one match returned (no other matches in that or
5339 enclosing blocks is returned). If there are any matches in or
5340 surrounding BLOCK, then these alone are returned.
5341
5342 Names prefixed with "standard__" are handled specially: "standard__"
5343 is first stripped off, and only static and global symbols are searched. */
5344
5345 static std::vector<struct block_symbol>
5346 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5347 const struct block *block,
5348 domain_enum domain,
5349 int full_search)
5350 {
5351 int syms_from_global_search;
5352 std::vector<struct block_symbol> results;
5353
5354 ada_add_all_symbols (results, block, lookup_name,
5355 domain, full_search, &syms_from_global_search);
5356
5357 remove_extra_symbols (&results);
5358
5359 if (results.empty () && full_search && syms_from_global_search)
5360 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5361
5362 if (results.size () == 1 && full_search && syms_from_global_search)
5363 cache_symbol (ada_lookup_name (lookup_name), domain,
5364 results[0].symbol, results[0].block);
5365
5366 remove_irrelevant_renamings (&results, block);
5367 return results;
5368 }
5369
5370 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5371 in global scopes, returning (SYM,BLOCK) tuples.
5372
5373 See ada_lookup_symbol_list_worker for further details. */
5374
5375 std::vector<struct block_symbol>
5376 ada_lookup_symbol_list (const char *name, const struct block *block,
5377 domain_enum domain)
5378 {
5379 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5380 lookup_name_info lookup_name (name, name_match_type);
5381
5382 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5383 }
5384
5385 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5386 to 1, but choosing the first symbol found if there are multiple
5387 choices.
5388
5389 The result is stored in *INFO, which must be non-NULL.
5390 If no match is found, INFO->SYM is set to NULL. */
5391
5392 void
5393 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5394 domain_enum domain,
5395 struct block_symbol *info)
5396 {
5397 /* Since we already have an encoded name, wrap it in '<>' to force a
5398 verbatim match. Otherwise, if the name happens to not look like
5399 an encoded name (because it doesn't include a "__"),
5400 ada_lookup_name_info would re-encode/fold it again, and that
5401 would e.g., incorrectly lowercase object renaming names like
5402 "R28b" -> "r28b". */
5403 std::string verbatim = add_angle_brackets (name);
5404
5405 gdb_assert (info != NULL);
5406 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5407 }
5408
5409 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5410 scope and in global scopes, or NULL if none. NAME is folded and
5411 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5412 choosing the first symbol if there are multiple choices. */
5413
5414 struct block_symbol
5415 ada_lookup_symbol (const char *name, const struct block *block0,
5416 domain_enum domain)
5417 {
5418 std::vector<struct block_symbol> candidates
5419 = ada_lookup_symbol_list (name, block0, domain);
5420
5421 if (candidates.empty ())
5422 return {};
5423
5424 block_symbol info = candidates[0];
5425 info.symbol = fixup_symbol_section (info.symbol, NULL);
5426 return info;
5427 }
5428
5429
5430 /* True iff STR is a possible encoded suffix of a normal Ada name
5431 that is to be ignored for matching purposes. Suffixes of parallel
5432 names (e.g., XVE) are not included here. Currently, the possible suffixes
5433 are given by any of the regular expressions:
5434
5435 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5436 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5437 TKB [subprogram suffix for task bodies]
5438 _E[0-9]+[bs]$ [protected object entry suffixes]
5439 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5440
5441 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5442 match is performed. This sequence is used to differentiate homonyms,
5443 is an optional part of a valid name suffix. */
5444
5445 static int
5446 is_name_suffix (const char *str)
5447 {
5448 int k;
5449 const char *matching;
5450 const int len = strlen (str);
5451
5452 /* Skip optional leading __[0-9]+. */
5453
5454 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5455 {
5456 str += 3;
5457 while (isdigit (str[0]))
5458 str += 1;
5459 }
5460
5461 /* [.$][0-9]+ */
5462
5463 if (str[0] == '.' || str[0] == '$')
5464 {
5465 matching = str + 1;
5466 while (isdigit (matching[0]))
5467 matching += 1;
5468 if (matching[0] == '\0')
5469 return 1;
5470 }
5471
5472 /* ___[0-9]+ */
5473
5474 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5475 {
5476 matching = str + 3;
5477 while (isdigit (matching[0]))
5478 matching += 1;
5479 if (matching[0] == '\0')
5480 return 1;
5481 }
5482
5483 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5484
5485 if (strcmp (str, "TKB") == 0)
5486 return 1;
5487
5488 #if 0
5489 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5490 with a N at the end. Unfortunately, the compiler uses the same
5491 convention for other internal types it creates. So treating
5492 all entity names that end with an "N" as a name suffix causes
5493 some regressions. For instance, consider the case of an enumerated
5494 type. To support the 'Image attribute, it creates an array whose
5495 name ends with N.
5496 Having a single character like this as a suffix carrying some
5497 information is a bit risky. Perhaps we should change the encoding
5498 to be something like "_N" instead. In the meantime, do not do
5499 the following check. */
5500 /* Protected Object Subprograms */
5501 if (len == 1 && str [0] == 'N')
5502 return 1;
5503 #endif
5504
5505 /* _E[0-9]+[bs]$ */
5506 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5507 {
5508 matching = str + 3;
5509 while (isdigit (matching[0]))
5510 matching += 1;
5511 if ((matching[0] == 'b' || matching[0] == 's')
5512 && matching [1] == '\0')
5513 return 1;
5514 }
5515
5516 /* ??? We should not modify STR directly, as we are doing below. This
5517 is fine in this case, but may become problematic later if we find
5518 that this alternative did not work, and want to try matching
5519 another one from the begining of STR. Since we modified it, we
5520 won't be able to find the begining of the string anymore! */
5521 if (str[0] == 'X')
5522 {
5523 str += 1;
5524 while (str[0] != '_' && str[0] != '\0')
5525 {
5526 if (str[0] != 'n' && str[0] != 'b')
5527 return 0;
5528 str += 1;
5529 }
5530 }
5531
5532 if (str[0] == '\000')
5533 return 1;
5534
5535 if (str[0] == '_')
5536 {
5537 if (str[1] != '_' || str[2] == '\000')
5538 return 0;
5539 if (str[2] == '_')
5540 {
5541 if (strcmp (str + 3, "JM") == 0)
5542 return 1;
5543 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5544 the LJM suffix in favor of the JM one. But we will
5545 still accept LJM as a valid suffix for a reasonable
5546 amount of time, just to allow ourselves to debug programs
5547 compiled using an older version of GNAT. */
5548 if (strcmp (str + 3, "LJM") == 0)
5549 return 1;
5550 if (str[3] != 'X')
5551 return 0;
5552 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5553 || str[4] == 'U' || str[4] == 'P')
5554 return 1;
5555 if (str[4] == 'R' && str[5] != 'T')
5556 return 1;
5557 return 0;
5558 }
5559 if (!isdigit (str[2]))
5560 return 0;
5561 for (k = 3; str[k] != '\0'; k += 1)
5562 if (!isdigit (str[k]) && str[k] != '_')
5563 return 0;
5564 return 1;
5565 }
5566 if (str[0] == '$' && isdigit (str[1]))
5567 {
5568 for (k = 2; str[k] != '\0'; k += 1)
5569 if (!isdigit (str[k]) && str[k] != '_')
5570 return 0;
5571 return 1;
5572 }
5573 return 0;
5574 }
5575
5576 /* Return non-zero if the string starting at NAME and ending before
5577 NAME_END contains no capital letters. */
5578
5579 static int
5580 is_valid_name_for_wild_match (const char *name0)
5581 {
5582 std::string decoded_name = ada_decode (name0);
5583 int i;
5584
5585 /* If the decoded name starts with an angle bracket, it means that
5586 NAME0 does not follow the GNAT encoding format. It should then
5587 not be allowed as a possible wild match. */
5588 if (decoded_name[0] == '<')
5589 return 0;
5590
5591 for (i=0; decoded_name[i] != '\0'; i++)
5592 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5593 return 0;
5594
5595 return 1;
5596 }
5597
5598 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5599 character which could start a simple name. Assumes that *NAMEP points
5600 somewhere inside the string beginning at NAME0. */
5601
5602 static int
5603 advance_wild_match (const char **namep, const char *name0, char target0)
5604 {
5605 const char *name = *namep;
5606
5607 while (1)
5608 {
5609 char t0, t1;
5610
5611 t0 = *name;
5612 if (t0 == '_')
5613 {
5614 t1 = name[1];
5615 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5616 {
5617 name += 1;
5618 if (name == name0 + 5 && startswith (name0, "_ada"))
5619 break;
5620 else
5621 name += 1;
5622 }
5623 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5624 || name[2] == target0))
5625 {
5626 name += 2;
5627 break;
5628 }
5629 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5630 {
5631 /* Names like "pkg__B_N__name", where N is a number, are
5632 block-local. We can handle these by simply skipping
5633 the "B_" here. */
5634 name += 4;
5635 }
5636 else
5637 return 0;
5638 }
5639 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5640 name += 1;
5641 else
5642 return 0;
5643 }
5644
5645 *namep = name;
5646 return 1;
5647 }
5648
5649 /* Return true iff NAME encodes a name of the form prefix.PATN.
5650 Ignores any informational suffixes of NAME (i.e., for which
5651 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5652 simple name. */
5653
5654 static bool
5655 wild_match (const char *name, const char *patn)
5656 {
5657 const char *p;
5658 const char *name0 = name;
5659
5660 while (1)
5661 {
5662 const char *match = name;
5663
5664 if (*name == *patn)
5665 {
5666 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5667 if (*p != *name)
5668 break;
5669 if (*p == '\0' && is_name_suffix (name))
5670 return match == name0 || is_valid_name_for_wild_match (name0);
5671
5672 if (name[-1] == '_')
5673 name -= 1;
5674 }
5675 if (!advance_wild_match (&name, name0, *patn))
5676 return false;
5677 }
5678 }
5679
5680 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5681 necessary). OBJFILE is the section containing BLOCK. */
5682
5683 static void
5684 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5685 const struct block *block,
5686 const lookup_name_info &lookup_name,
5687 domain_enum domain, struct objfile *objfile)
5688 {
5689 struct block_iterator iter;
5690 /* A matching argument symbol, if any. */
5691 struct symbol *arg_sym;
5692 /* Set true when we find a matching non-argument symbol. */
5693 bool found_sym;
5694 struct symbol *sym;
5695
5696 arg_sym = NULL;
5697 found_sym = false;
5698 for (sym = block_iter_match_first (block, lookup_name, &iter);
5699 sym != NULL;
5700 sym = block_iter_match_next (lookup_name, &iter))
5701 {
5702 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5703 {
5704 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5705 {
5706 if (SYMBOL_IS_ARGUMENT (sym))
5707 arg_sym = sym;
5708 else
5709 {
5710 found_sym = true;
5711 add_defn_to_vec (result,
5712 fixup_symbol_section (sym, objfile),
5713 block);
5714 }
5715 }
5716 }
5717 }
5718
5719 /* Handle renamings. */
5720
5721 if (ada_add_block_renamings (result, block, lookup_name, domain))
5722 found_sym = true;
5723
5724 if (!found_sym && arg_sym != NULL)
5725 {
5726 add_defn_to_vec (result,
5727 fixup_symbol_section (arg_sym, objfile),
5728 block);
5729 }
5730
5731 if (!lookup_name.ada ().wild_match_p ())
5732 {
5733 arg_sym = NULL;
5734 found_sym = false;
5735 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5736 const char *name = ada_lookup_name.c_str ();
5737 size_t name_len = ada_lookup_name.size ();
5738
5739 ALL_BLOCK_SYMBOLS (block, iter, sym)
5740 {
5741 if (symbol_matches_domain (sym->language (),
5742 SYMBOL_DOMAIN (sym), domain))
5743 {
5744 int cmp;
5745
5746 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5747 if (cmp == 0)
5748 {
5749 cmp = !startswith (sym->linkage_name (), "_ada_");
5750 if (cmp == 0)
5751 cmp = strncmp (name, sym->linkage_name () + 5,
5752 name_len);
5753 }
5754
5755 if (cmp == 0
5756 && is_name_suffix (sym->linkage_name () + name_len + 5))
5757 {
5758 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5759 {
5760 if (SYMBOL_IS_ARGUMENT (sym))
5761 arg_sym = sym;
5762 else
5763 {
5764 found_sym = true;
5765 add_defn_to_vec (result,
5766 fixup_symbol_section (sym, objfile),
5767 block);
5768 }
5769 }
5770 }
5771 }
5772 }
5773
5774 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5775 They aren't parameters, right? */
5776 if (!found_sym && arg_sym != NULL)
5777 {
5778 add_defn_to_vec (result,
5779 fixup_symbol_section (arg_sym, objfile),
5780 block);
5781 }
5782 }
5783 }
5784 \f
5785
5786 /* Symbol Completion */
5787
5788 /* See symtab.h. */
5789
5790 bool
5791 ada_lookup_name_info::matches
5792 (const char *sym_name,
5793 symbol_name_match_type match_type,
5794 completion_match_result *comp_match_res) const
5795 {
5796 bool match = false;
5797 const char *text = m_encoded_name.c_str ();
5798 size_t text_len = m_encoded_name.size ();
5799
5800 /* First, test against the fully qualified name of the symbol. */
5801
5802 if (strncmp (sym_name, text, text_len) == 0)
5803 match = true;
5804
5805 std::string decoded_name = ada_decode (sym_name);
5806 if (match && !m_encoded_p)
5807 {
5808 /* One needed check before declaring a positive match is to verify
5809 that iff we are doing a verbatim match, the decoded version
5810 of the symbol name starts with '<'. Otherwise, this symbol name
5811 is not a suitable completion. */
5812
5813 bool has_angle_bracket = (decoded_name[0] == '<');
5814 match = (has_angle_bracket == m_verbatim_p);
5815 }
5816
5817 if (match && !m_verbatim_p)
5818 {
5819 /* When doing non-verbatim match, another check that needs to
5820 be done is to verify that the potentially matching symbol name
5821 does not include capital letters, because the ada-mode would
5822 not be able to understand these symbol names without the
5823 angle bracket notation. */
5824 const char *tmp;
5825
5826 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5827 if (*tmp != '\0')
5828 match = false;
5829 }
5830
5831 /* Second: Try wild matching... */
5832
5833 if (!match && m_wild_match_p)
5834 {
5835 /* Since we are doing wild matching, this means that TEXT
5836 may represent an unqualified symbol name. We therefore must
5837 also compare TEXT against the unqualified name of the symbol. */
5838 sym_name = ada_unqualified_name (decoded_name.c_str ());
5839
5840 if (strncmp (sym_name, text, text_len) == 0)
5841 match = true;
5842 }
5843
5844 /* Finally: If we found a match, prepare the result to return. */
5845
5846 if (!match)
5847 return false;
5848
5849 if (comp_match_res != NULL)
5850 {
5851 std::string &match_str = comp_match_res->match.storage ();
5852
5853 if (!m_encoded_p)
5854 match_str = ada_decode (sym_name);
5855 else
5856 {
5857 if (m_verbatim_p)
5858 match_str = add_angle_brackets (sym_name);
5859 else
5860 match_str = sym_name;
5861
5862 }
5863
5864 comp_match_res->set_match (match_str.c_str ());
5865 }
5866
5867 return true;
5868 }
5869
5870 /* Field Access */
5871
5872 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5873 for tagged types. */
5874
5875 static int
5876 ada_is_dispatch_table_ptr_type (struct type *type)
5877 {
5878 const char *name;
5879
5880 if (type->code () != TYPE_CODE_PTR)
5881 return 0;
5882
5883 name = TYPE_TARGET_TYPE (type)->name ();
5884 if (name == NULL)
5885 return 0;
5886
5887 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5888 }
5889
5890 /* Return non-zero if TYPE is an interface tag. */
5891
5892 static int
5893 ada_is_interface_tag (struct type *type)
5894 {
5895 const char *name = type->name ();
5896
5897 if (name == NULL)
5898 return 0;
5899
5900 return (strcmp (name, "ada__tags__interface_tag") == 0);
5901 }
5902
5903 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5904 to be invisible to users. */
5905
5906 int
5907 ada_is_ignored_field (struct type *type, int field_num)
5908 {
5909 if (field_num < 0 || field_num > type->num_fields ())
5910 return 1;
5911
5912 /* Check the name of that field. */
5913 {
5914 const char *name = TYPE_FIELD_NAME (type, field_num);
5915
5916 /* Anonymous field names should not be printed.
5917 brobecker/2007-02-20: I don't think this can actually happen
5918 but we don't want to print the value of anonymous fields anyway. */
5919 if (name == NULL)
5920 return 1;
5921
5922 /* Normally, fields whose name start with an underscore ("_")
5923 are fields that have been internally generated by the compiler,
5924 and thus should not be printed. The "_parent" field is special,
5925 however: This is a field internally generated by the compiler
5926 for tagged types, and it contains the components inherited from
5927 the parent type. This field should not be printed as is, but
5928 should not be ignored either. */
5929 if (name[0] == '_' && !startswith (name, "_parent"))
5930 return 1;
5931 }
5932
5933 /* If this is the dispatch table of a tagged type or an interface tag,
5934 then ignore. */
5935 if (ada_is_tagged_type (type, 1)
5936 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5937 || ada_is_interface_tag (type->field (field_num).type ())))
5938 return 1;
5939
5940 /* Not a special field, so it should not be ignored. */
5941 return 0;
5942 }
5943
5944 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5945 pointer or reference type whose ultimate target has a tag field. */
5946
5947 int
5948 ada_is_tagged_type (struct type *type, int refok)
5949 {
5950 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5951 }
5952
5953 /* True iff TYPE represents the type of X'Tag */
5954
5955 int
5956 ada_is_tag_type (struct type *type)
5957 {
5958 type = ada_check_typedef (type);
5959
5960 if (type == NULL || type->code () != TYPE_CODE_PTR)
5961 return 0;
5962 else
5963 {
5964 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5965
5966 return (name != NULL
5967 && strcmp (name, "ada__tags__dispatch_table") == 0);
5968 }
5969 }
5970
5971 /* The type of the tag on VAL. */
5972
5973 static struct type *
5974 ada_tag_type (struct value *val)
5975 {
5976 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5977 }
5978
5979 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5980 retired at Ada 05). */
5981
5982 static int
5983 is_ada95_tag (struct value *tag)
5984 {
5985 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5986 }
5987
5988 /* The value of the tag on VAL. */
5989
5990 static struct value *
5991 ada_value_tag (struct value *val)
5992 {
5993 return ada_value_struct_elt (val, "_tag", 0);
5994 }
5995
5996 /* The value of the tag on the object of type TYPE whose contents are
5997 saved at VALADDR, if it is non-null, or is at memory address
5998 ADDRESS. */
5999
6000 static struct value *
6001 value_tag_from_contents_and_address (struct type *type,
6002 const gdb_byte *valaddr,
6003 CORE_ADDR address)
6004 {
6005 int tag_byte_offset;
6006 struct type *tag_type;
6007
6008 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6009 NULL, NULL, NULL))
6010 {
6011 const gdb_byte *valaddr1 = ((valaddr == NULL)
6012 ? NULL
6013 : valaddr + tag_byte_offset);
6014 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6015
6016 return value_from_contents_and_address (tag_type, valaddr1, address1);
6017 }
6018 return NULL;
6019 }
6020
6021 static struct type *
6022 type_from_tag (struct value *tag)
6023 {
6024 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6025
6026 if (type_name != NULL)
6027 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6028 return NULL;
6029 }
6030
6031 /* Given a value OBJ of a tagged type, return a value of this
6032 type at the base address of the object. The base address, as
6033 defined in Ada.Tags, it is the address of the primary tag of
6034 the object, and therefore where the field values of its full
6035 view can be fetched. */
6036
6037 struct value *
6038 ada_tag_value_at_base_address (struct value *obj)
6039 {
6040 struct value *val;
6041 LONGEST offset_to_top = 0;
6042 struct type *ptr_type, *obj_type;
6043 struct value *tag;
6044 CORE_ADDR base_address;
6045
6046 obj_type = value_type (obj);
6047
6048 /* It is the responsability of the caller to deref pointers. */
6049
6050 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6051 return obj;
6052
6053 tag = ada_value_tag (obj);
6054 if (!tag)
6055 return obj;
6056
6057 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6058
6059 if (is_ada95_tag (tag))
6060 return obj;
6061
6062 ptr_type = language_lookup_primitive_type
6063 (language_def (language_ada), target_gdbarch(), "storage_offset");
6064 ptr_type = lookup_pointer_type (ptr_type);
6065 val = value_cast (ptr_type, tag);
6066 if (!val)
6067 return obj;
6068
6069 /* It is perfectly possible that an exception be raised while
6070 trying to determine the base address, just like for the tag;
6071 see ada_tag_name for more details. We do not print the error
6072 message for the same reason. */
6073
6074 try
6075 {
6076 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6077 }
6078
6079 catch (const gdb_exception_error &e)
6080 {
6081 return obj;
6082 }
6083
6084 /* If offset is null, nothing to do. */
6085
6086 if (offset_to_top == 0)
6087 return obj;
6088
6089 /* -1 is a special case in Ada.Tags; however, what should be done
6090 is not quite clear from the documentation. So do nothing for
6091 now. */
6092
6093 if (offset_to_top == -1)
6094 return obj;
6095
6096 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6097 from the base address. This was however incompatible with
6098 C++ dispatch table: C++ uses a *negative* value to *add*
6099 to the base address. Ada's convention has therefore been
6100 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6101 use the same convention. Here, we support both cases by
6102 checking the sign of OFFSET_TO_TOP. */
6103
6104 if (offset_to_top > 0)
6105 offset_to_top = -offset_to_top;
6106
6107 base_address = value_address (obj) + offset_to_top;
6108 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6109
6110 /* Make sure that we have a proper tag at the new address.
6111 Otherwise, offset_to_top is bogus (which can happen when
6112 the object is not initialized yet). */
6113
6114 if (!tag)
6115 return obj;
6116
6117 obj_type = type_from_tag (tag);
6118
6119 if (!obj_type)
6120 return obj;
6121
6122 return value_from_contents_and_address (obj_type, NULL, base_address);
6123 }
6124
6125 /* Return the "ada__tags__type_specific_data" type. */
6126
6127 static struct type *
6128 ada_get_tsd_type (struct inferior *inf)
6129 {
6130 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6131
6132 if (data->tsd_type == 0)
6133 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6134 return data->tsd_type;
6135 }
6136
6137 /* Return the TSD (type-specific data) associated to the given TAG.
6138 TAG is assumed to be the tag of a tagged-type entity.
6139
6140 May return NULL if we are unable to get the TSD. */
6141
6142 static struct value *
6143 ada_get_tsd_from_tag (struct value *tag)
6144 {
6145 struct value *val;
6146 struct type *type;
6147
6148 /* First option: The TSD is simply stored as a field of our TAG.
6149 Only older versions of GNAT would use this format, but we have
6150 to test it first, because there are no visible markers for
6151 the current approach except the absence of that field. */
6152
6153 val = ada_value_struct_elt (tag, "tsd", 1);
6154 if (val)
6155 return val;
6156
6157 /* Try the second representation for the dispatch table (in which
6158 there is no explicit 'tsd' field in the referent of the tag pointer,
6159 and instead the tsd pointer is stored just before the dispatch
6160 table. */
6161
6162 type = ada_get_tsd_type (current_inferior());
6163 if (type == NULL)
6164 return NULL;
6165 type = lookup_pointer_type (lookup_pointer_type (type));
6166 val = value_cast (type, tag);
6167 if (val == NULL)
6168 return NULL;
6169 return value_ind (value_ptradd (val, -1));
6170 }
6171
6172 /* Given the TSD of a tag (type-specific data), return a string
6173 containing the name of the associated type.
6174
6175 May return NULL if we are unable to determine the tag name. */
6176
6177 static gdb::unique_xmalloc_ptr<char>
6178 ada_tag_name_from_tsd (struct value *tsd)
6179 {
6180 char *p;
6181 struct value *val;
6182
6183 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6184 if (val == NULL)
6185 return NULL;
6186 gdb::unique_xmalloc_ptr<char> buffer
6187 = target_read_string (value_as_address (val), INT_MAX);
6188 if (buffer == nullptr)
6189 return nullptr;
6190
6191 for (p = buffer.get (); *p != '\0'; ++p)
6192 {
6193 if (isalpha (*p))
6194 *p = tolower (*p);
6195 }
6196
6197 return buffer;
6198 }
6199
6200 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6201 a C string.
6202
6203 Return NULL if the TAG is not an Ada tag, or if we were unable to
6204 determine the name of that tag. */
6205
6206 gdb::unique_xmalloc_ptr<char>
6207 ada_tag_name (struct value *tag)
6208 {
6209 gdb::unique_xmalloc_ptr<char> name;
6210
6211 if (!ada_is_tag_type (value_type (tag)))
6212 return NULL;
6213
6214 /* It is perfectly possible that an exception be raised while trying
6215 to determine the TAG's name, even under normal circumstances:
6216 The associated variable may be uninitialized or corrupted, for
6217 instance. We do not let any exception propagate past this point.
6218 instead we return NULL.
6219
6220 We also do not print the error message either (which often is very
6221 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6222 the caller print a more meaningful message if necessary. */
6223 try
6224 {
6225 struct value *tsd = ada_get_tsd_from_tag (tag);
6226
6227 if (tsd != NULL)
6228 name = ada_tag_name_from_tsd (tsd);
6229 }
6230 catch (const gdb_exception_error &e)
6231 {
6232 }
6233
6234 return name;
6235 }
6236
6237 /* The parent type of TYPE, or NULL if none. */
6238
6239 struct type *
6240 ada_parent_type (struct type *type)
6241 {
6242 int i;
6243
6244 type = ada_check_typedef (type);
6245
6246 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6247 return NULL;
6248
6249 for (i = 0; i < type->num_fields (); i += 1)
6250 if (ada_is_parent_field (type, i))
6251 {
6252 struct type *parent_type = type->field (i).type ();
6253
6254 /* If the _parent field is a pointer, then dereference it. */
6255 if (parent_type->code () == TYPE_CODE_PTR)
6256 parent_type = TYPE_TARGET_TYPE (parent_type);
6257 /* If there is a parallel XVS type, get the actual base type. */
6258 parent_type = ada_get_base_type (parent_type);
6259
6260 return ada_check_typedef (parent_type);
6261 }
6262
6263 return NULL;
6264 }
6265
6266 /* True iff field number FIELD_NUM of structure type TYPE contains the
6267 parent-type (inherited) fields of a derived type. Assumes TYPE is
6268 a structure type with at least FIELD_NUM+1 fields. */
6269
6270 int
6271 ada_is_parent_field (struct type *type, int field_num)
6272 {
6273 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6274
6275 return (name != NULL
6276 && (startswith (name, "PARENT")
6277 || startswith (name, "_parent")));
6278 }
6279
6280 /* True iff field number FIELD_NUM of structure type TYPE is a
6281 transparent wrapper field (which should be silently traversed when doing
6282 field selection and flattened when printing). Assumes TYPE is a
6283 structure type with at least FIELD_NUM+1 fields. Such fields are always
6284 structures. */
6285
6286 int
6287 ada_is_wrapper_field (struct type *type, int field_num)
6288 {
6289 const char *name = TYPE_FIELD_NAME (type, field_num);
6290
6291 if (name != NULL && strcmp (name, "RETVAL") == 0)
6292 {
6293 /* This happens in functions with "out" or "in out" parameters
6294 which are passed by copy. For such functions, GNAT describes
6295 the function's return type as being a struct where the return
6296 value is in a field called RETVAL, and where the other "out"
6297 or "in out" parameters are fields of that struct. This is not
6298 a wrapper. */
6299 return 0;
6300 }
6301
6302 return (name != NULL
6303 && (startswith (name, "PARENT")
6304 || strcmp (name, "REP") == 0
6305 || startswith (name, "_parent")
6306 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6307 }
6308
6309 /* True iff field number FIELD_NUM of structure or union type TYPE
6310 is a variant wrapper. Assumes TYPE is a structure type with at least
6311 FIELD_NUM+1 fields. */
6312
6313 int
6314 ada_is_variant_part (struct type *type, int field_num)
6315 {
6316 /* Only Ada types are eligible. */
6317 if (!ADA_TYPE_P (type))
6318 return 0;
6319
6320 struct type *field_type = type->field (field_num).type ();
6321
6322 return (field_type->code () == TYPE_CODE_UNION
6323 || (is_dynamic_field (type, field_num)
6324 && (TYPE_TARGET_TYPE (field_type)->code ()
6325 == TYPE_CODE_UNION)));
6326 }
6327
6328 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6329 whose discriminants are contained in the record type OUTER_TYPE,
6330 returns the type of the controlling discriminant for the variant.
6331 May return NULL if the type could not be found. */
6332
6333 struct type *
6334 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6335 {
6336 const char *name = ada_variant_discrim_name (var_type);
6337
6338 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6339 }
6340
6341 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6342 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6343 represents a 'when others' clause; otherwise 0. */
6344
6345 static int
6346 ada_is_others_clause (struct type *type, int field_num)
6347 {
6348 const char *name = TYPE_FIELD_NAME (type, field_num);
6349
6350 return (name != NULL && name[0] == 'O');
6351 }
6352
6353 /* Assuming that TYPE0 is the type of the variant part of a record,
6354 returns the name of the discriminant controlling the variant.
6355 The value is valid until the next call to ada_variant_discrim_name. */
6356
6357 const char *
6358 ada_variant_discrim_name (struct type *type0)
6359 {
6360 static std::string result;
6361 struct type *type;
6362 const char *name;
6363 const char *discrim_end;
6364 const char *discrim_start;
6365
6366 if (type0->code () == TYPE_CODE_PTR)
6367 type = TYPE_TARGET_TYPE (type0);
6368 else
6369 type = type0;
6370
6371 name = ada_type_name (type);
6372
6373 if (name == NULL || name[0] == '\000')
6374 return "";
6375
6376 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6377 discrim_end -= 1)
6378 {
6379 if (startswith (discrim_end, "___XVN"))
6380 break;
6381 }
6382 if (discrim_end == name)
6383 return "";
6384
6385 for (discrim_start = discrim_end; discrim_start != name + 3;
6386 discrim_start -= 1)
6387 {
6388 if (discrim_start == name + 1)
6389 return "";
6390 if ((discrim_start > name + 3
6391 && startswith (discrim_start - 3, "___"))
6392 || discrim_start[-1] == '.')
6393 break;
6394 }
6395
6396 result = std::string (discrim_start, discrim_end - discrim_start);
6397 return result.c_str ();
6398 }
6399
6400 /* Scan STR for a subtype-encoded number, beginning at position K.
6401 Put the position of the character just past the number scanned in
6402 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6403 Return 1 if there was a valid number at the given position, and 0
6404 otherwise. A "subtype-encoded" number consists of the absolute value
6405 in decimal, followed by the letter 'm' to indicate a negative number.
6406 Assumes 0m does not occur. */
6407
6408 int
6409 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6410 {
6411 ULONGEST RU;
6412
6413 if (!isdigit (str[k]))
6414 return 0;
6415
6416 /* Do it the hard way so as not to make any assumption about
6417 the relationship of unsigned long (%lu scan format code) and
6418 LONGEST. */
6419 RU = 0;
6420 while (isdigit (str[k]))
6421 {
6422 RU = RU * 10 + (str[k] - '0');
6423 k += 1;
6424 }
6425
6426 if (str[k] == 'm')
6427 {
6428 if (R != NULL)
6429 *R = (-(LONGEST) (RU - 1)) - 1;
6430 k += 1;
6431 }
6432 else if (R != NULL)
6433 *R = (LONGEST) RU;
6434
6435 /* NOTE on the above: Technically, C does not say what the results of
6436 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6437 number representable as a LONGEST (although either would probably work
6438 in most implementations). When RU>0, the locution in the then branch
6439 above is always equivalent to the negative of RU. */
6440
6441 if (new_k != NULL)
6442 *new_k = k;
6443 return 1;
6444 }
6445
6446 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6447 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6448 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6449
6450 static int
6451 ada_in_variant (LONGEST val, struct type *type, int field_num)
6452 {
6453 const char *name = TYPE_FIELD_NAME (type, field_num);
6454 int p;
6455
6456 p = 0;
6457 while (1)
6458 {
6459 switch (name[p])
6460 {
6461 case '\0':
6462 return 0;
6463 case 'S':
6464 {
6465 LONGEST W;
6466
6467 if (!ada_scan_number (name, p + 1, &W, &p))
6468 return 0;
6469 if (val == W)
6470 return 1;
6471 break;
6472 }
6473 case 'R':
6474 {
6475 LONGEST L, U;
6476
6477 if (!ada_scan_number (name, p + 1, &L, &p)
6478 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6479 return 0;
6480 if (val >= L && val <= U)
6481 return 1;
6482 break;
6483 }
6484 case 'O':
6485 return 1;
6486 default:
6487 return 0;
6488 }
6489 }
6490 }
6491
6492 /* FIXME: Lots of redundancy below. Try to consolidate. */
6493
6494 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6495 ARG_TYPE, extract and return the value of one of its (non-static)
6496 fields. FIELDNO says which field. Differs from value_primitive_field
6497 only in that it can handle packed values of arbitrary type. */
6498
6499 struct value *
6500 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6501 struct type *arg_type)
6502 {
6503 struct type *type;
6504
6505 arg_type = ada_check_typedef (arg_type);
6506 type = arg_type->field (fieldno).type ();
6507
6508 /* Handle packed fields. It might be that the field is not packed
6509 relative to its containing structure, but the structure itself is
6510 packed; in this case we must take the bit-field path. */
6511 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6512 {
6513 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6514 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6515
6516 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6517 offset + bit_pos / 8,
6518 bit_pos % 8, bit_size, type);
6519 }
6520 else
6521 return value_primitive_field (arg1, offset, fieldno, arg_type);
6522 }
6523
6524 /* Find field with name NAME in object of type TYPE. If found,
6525 set the following for each argument that is non-null:
6526 - *FIELD_TYPE_P to the field's type;
6527 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6528 an object of that type;
6529 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6530 - *BIT_SIZE_P to its size in bits if the field is packed, and
6531 0 otherwise;
6532 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6533 fields up to but not including the desired field, or by the total
6534 number of fields if not found. A NULL value of NAME never
6535 matches; the function just counts visible fields in this case.
6536
6537 Notice that we need to handle when a tagged record hierarchy
6538 has some components with the same name, like in this scenario:
6539
6540 type Top_T is tagged record
6541 N : Integer := 1;
6542 U : Integer := 974;
6543 A : Integer := 48;
6544 end record;
6545
6546 type Middle_T is new Top.Top_T with record
6547 N : Character := 'a';
6548 C : Integer := 3;
6549 end record;
6550
6551 type Bottom_T is new Middle.Middle_T with record
6552 N : Float := 4.0;
6553 C : Character := '5';
6554 X : Integer := 6;
6555 A : Character := 'J';
6556 end record;
6557
6558 Let's say we now have a variable declared and initialized as follow:
6559
6560 TC : Top_A := new Bottom_T;
6561
6562 And then we use this variable to call this function
6563
6564 procedure Assign (Obj: in out Top_T; TV : Integer);
6565
6566 as follow:
6567
6568 Assign (Top_T (B), 12);
6569
6570 Now, we're in the debugger, and we're inside that procedure
6571 then and we want to print the value of obj.c:
6572
6573 Usually, the tagged record or one of the parent type owns the
6574 component to print and there's no issue but in this particular
6575 case, what does it mean to ask for Obj.C? Since the actual
6576 type for object is type Bottom_T, it could mean two things: type
6577 component C from the Middle_T view, but also component C from
6578 Bottom_T. So in that "undefined" case, when the component is
6579 not found in the non-resolved type (which includes all the
6580 components of the parent type), then resolve it and see if we
6581 get better luck once expanded.
6582
6583 In the case of homonyms in the derived tagged type, we don't
6584 guaranty anything, and pick the one that's easiest for us
6585 to program.
6586
6587 Returns 1 if found, 0 otherwise. */
6588
6589 static int
6590 find_struct_field (const char *name, struct type *type, int offset,
6591 struct type **field_type_p,
6592 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6593 int *index_p)
6594 {
6595 int i;
6596 int parent_offset = -1;
6597
6598 type = ada_check_typedef (type);
6599
6600 if (field_type_p != NULL)
6601 *field_type_p = NULL;
6602 if (byte_offset_p != NULL)
6603 *byte_offset_p = 0;
6604 if (bit_offset_p != NULL)
6605 *bit_offset_p = 0;
6606 if (bit_size_p != NULL)
6607 *bit_size_p = 0;
6608
6609 for (i = 0; i < type->num_fields (); i += 1)
6610 {
6611 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6612 int fld_offset = offset + bit_pos / 8;
6613 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6614
6615 if (t_field_name == NULL)
6616 continue;
6617
6618 else if (ada_is_parent_field (type, i))
6619 {
6620 /* This is a field pointing us to the parent type of a tagged
6621 type. As hinted in this function's documentation, we give
6622 preference to fields in the current record first, so what
6623 we do here is just record the index of this field before
6624 we skip it. If it turns out we couldn't find our field
6625 in the current record, then we'll get back to it and search
6626 inside it whether the field might exist in the parent. */
6627
6628 parent_offset = i;
6629 continue;
6630 }
6631
6632 else if (name != NULL && field_name_match (t_field_name, name))
6633 {
6634 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6635
6636 if (field_type_p != NULL)
6637 *field_type_p = type->field (i).type ();
6638 if (byte_offset_p != NULL)
6639 *byte_offset_p = fld_offset;
6640 if (bit_offset_p != NULL)
6641 *bit_offset_p = bit_pos % 8;
6642 if (bit_size_p != NULL)
6643 *bit_size_p = bit_size;
6644 return 1;
6645 }
6646 else if (ada_is_wrapper_field (type, i))
6647 {
6648 if (find_struct_field (name, type->field (i).type (), fld_offset,
6649 field_type_p, byte_offset_p, bit_offset_p,
6650 bit_size_p, index_p))
6651 return 1;
6652 }
6653 else if (ada_is_variant_part (type, i))
6654 {
6655 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6656 fixed type?? */
6657 int j;
6658 struct type *field_type
6659 = ada_check_typedef (type->field (i).type ());
6660
6661 for (j = 0; j < field_type->num_fields (); j += 1)
6662 {
6663 if (find_struct_field (name, field_type->field (j).type (),
6664 fld_offset
6665 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6666 field_type_p, byte_offset_p,
6667 bit_offset_p, bit_size_p, index_p))
6668 return 1;
6669 }
6670 }
6671 else if (index_p != NULL)
6672 *index_p += 1;
6673 }
6674
6675 /* Field not found so far. If this is a tagged type which
6676 has a parent, try finding that field in the parent now. */
6677
6678 if (parent_offset != -1)
6679 {
6680 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6681 int fld_offset = offset + bit_pos / 8;
6682
6683 if (find_struct_field (name, type->field (parent_offset).type (),
6684 fld_offset, field_type_p, byte_offset_p,
6685 bit_offset_p, bit_size_p, index_p))
6686 return 1;
6687 }
6688
6689 return 0;
6690 }
6691
6692 /* Number of user-visible fields in record type TYPE. */
6693
6694 static int
6695 num_visible_fields (struct type *type)
6696 {
6697 int n;
6698
6699 n = 0;
6700 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6701 return n;
6702 }
6703
6704 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6705 and search in it assuming it has (class) type TYPE.
6706 If found, return value, else return NULL.
6707
6708 Searches recursively through wrapper fields (e.g., '_parent').
6709
6710 In the case of homonyms in the tagged types, please refer to the
6711 long explanation in find_struct_field's function documentation. */
6712
6713 static struct value *
6714 ada_search_struct_field (const char *name, struct value *arg, int offset,
6715 struct type *type)
6716 {
6717 int i;
6718 int parent_offset = -1;
6719
6720 type = ada_check_typedef (type);
6721 for (i = 0; i < type->num_fields (); i += 1)
6722 {
6723 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6724
6725 if (t_field_name == NULL)
6726 continue;
6727
6728 else if (ada_is_parent_field (type, i))
6729 {
6730 /* This is a field pointing us to the parent type of a tagged
6731 type. As hinted in this function's documentation, we give
6732 preference to fields in the current record first, so what
6733 we do here is just record the index of this field before
6734 we skip it. If it turns out we couldn't find our field
6735 in the current record, then we'll get back to it and search
6736 inside it whether the field might exist in the parent. */
6737
6738 parent_offset = i;
6739 continue;
6740 }
6741
6742 else if (field_name_match (t_field_name, name))
6743 return ada_value_primitive_field (arg, offset, i, type);
6744
6745 else if (ada_is_wrapper_field (type, i))
6746 {
6747 struct value *v = /* Do not let indent join lines here. */
6748 ada_search_struct_field (name, arg,
6749 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6750 type->field (i).type ());
6751
6752 if (v != NULL)
6753 return v;
6754 }
6755
6756 else if (ada_is_variant_part (type, i))
6757 {
6758 /* PNH: Do we ever get here? See find_struct_field. */
6759 int j;
6760 struct type *field_type = ada_check_typedef (type->field (i).type ());
6761 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6762
6763 for (j = 0; j < field_type->num_fields (); j += 1)
6764 {
6765 struct value *v = ada_search_struct_field /* Force line
6766 break. */
6767 (name, arg,
6768 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6769 field_type->field (j).type ());
6770
6771 if (v != NULL)
6772 return v;
6773 }
6774 }
6775 }
6776
6777 /* Field not found so far. If this is a tagged type which
6778 has a parent, try finding that field in the parent now. */
6779
6780 if (parent_offset != -1)
6781 {
6782 struct value *v = ada_search_struct_field (
6783 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6784 type->field (parent_offset).type ());
6785
6786 if (v != NULL)
6787 return v;
6788 }
6789
6790 return NULL;
6791 }
6792
6793 static struct value *ada_index_struct_field_1 (int *, struct value *,
6794 int, struct type *);
6795
6796
6797 /* Return field #INDEX in ARG, where the index is that returned by
6798 * find_struct_field through its INDEX_P argument. Adjust the address
6799 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6800 * If found, return value, else return NULL. */
6801
6802 static struct value *
6803 ada_index_struct_field (int index, struct value *arg, int offset,
6804 struct type *type)
6805 {
6806 return ada_index_struct_field_1 (&index, arg, offset, type);
6807 }
6808
6809
6810 /* Auxiliary function for ada_index_struct_field. Like
6811 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6812 * *INDEX_P. */
6813
6814 static struct value *
6815 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6816 struct type *type)
6817 {
6818 int i;
6819 type = ada_check_typedef (type);
6820
6821 for (i = 0; i < type->num_fields (); i += 1)
6822 {
6823 if (TYPE_FIELD_NAME (type, i) == NULL)
6824 continue;
6825 else if (ada_is_wrapper_field (type, i))
6826 {
6827 struct value *v = /* Do not let indent join lines here. */
6828 ada_index_struct_field_1 (index_p, arg,
6829 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6830 type->field (i).type ());
6831
6832 if (v != NULL)
6833 return v;
6834 }
6835
6836 else if (ada_is_variant_part (type, i))
6837 {
6838 /* PNH: Do we ever get here? See ada_search_struct_field,
6839 find_struct_field. */
6840 error (_("Cannot assign this kind of variant record"));
6841 }
6842 else if (*index_p == 0)
6843 return ada_value_primitive_field (arg, offset, i, type);
6844 else
6845 *index_p -= 1;
6846 }
6847 return NULL;
6848 }
6849
6850 /* Return a string representation of type TYPE. */
6851
6852 static std::string
6853 type_as_string (struct type *type)
6854 {
6855 string_file tmp_stream;
6856
6857 type_print (type, "", &tmp_stream, -1);
6858
6859 return std::move (tmp_stream.string ());
6860 }
6861
6862 /* Given a type TYPE, look up the type of the component of type named NAME.
6863 If DISPP is non-null, add its byte displacement from the beginning of a
6864 structure (pointed to by a value) of type TYPE to *DISPP (does not
6865 work for packed fields).
6866
6867 Matches any field whose name has NAME as a prefix, possibly
6868 followed by "___".
6869
6870 TYPE can be either a struct or union. If REFOK, TYPE may also
6871 be a (pointer or reference)+ to a struct or union, and the
6872 ultimate target type will be searched.
6873
6874 Looks recursively into variant clauses and parent types.
6875
6876 In the case of homonyms in the tagged types, please refer to the
6877 long explanation in find_struct_field's function documentation.
6878
6879 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6880 TYPE is not a type of the right kind. */
6881
6882 static struct type *
6883 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6884 int noerr)
6885 {
6886 int i;
6887 int parent_offset = -1;
6888
6889 if (name == NULL)
6890 goto BadName;
6891
6892 if (refok && type != NULL)
6893 while (1)
6894 {
6895 type = ada_check_typedef (type);
6896 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6897 break;
6898 type = TYPE_TARGET_TYPE (type);
6899 }
6900
6901 if (type == NULL
6902 || (type->code () != TYPE_CODE_STRUCT
6903 && type->code () != TYPE_CODE_UNION))
6904 {
6905 if (noerr)
6906 return NULL;
6907
6908 error (_("Type %s is not a structure or union type"),
6909 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6910 }
6911
6912 type = to_static_fixed_type (type);
6913
6914 for (i = 0; i < type->num_fields (); i += 1)
6915 {
6916 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6917 struct type *t;
6918
6919 if (t_field_name == NULL)
6920 continue;
6921
6922 else if (ada_is_parent_field (type, i))
6923 {
6924 /* This is a field pointing us to the parent type of a tagged
6925 type. As hinted in this function's documentation, we give
6926 preference to fields in the current record first, so what
6927 we do here is just record the index of this field before
6928 we skip it. If it turns out we couldn't find our field
6929 in the current record, then we'll get back to it and search
6930 inside it whether the field might exist in the parent. */
6931
6932 parent_offset = i;
6933 continue;
6934 }
6935
6936 else if (field_name_match (t_field_name, name))
6937 return type->field (i).type ();
6938
6939 else if (ada_is_wrapper_field (type, i))
6940 {
6941 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6942 0, 1);
6943 if (t != NULL)
6944 return t;
6945 }
6946
6947 else if (ada_is_variant_part (type, i))
6948 {
6949 int j;
6950 struct type *field_type = ada_check_typedef (type->field (i).type ());
6951
6952 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6953 {
6954 /* FIXME pnh 2008/01/26: We check for a field that is
6955 NOT wrapped in a struct, since the compiler sometimes
6956 generates these for unchecked variant types. Revisit
6957 if the compiler changes this practice. */
6958 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6959
6960 if (v_field_name != NULL
6961 && field_name_match (v_field_name, name))
6962 t = field_type->field (j).type ();
6963 else
6964 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6965 name, 0, 1);
6966
6967 if (t != NULL)
6968 return t;
6969 }
6970 }
6971
6972 }
6973
6974 /* Field not found so far. If this is a tagged type which
6975 has a parent, try finding that field in the parent now. */
6976
6977 if (parent_offset != -1)
6978 {
6979 struct type *t;
6980
6981 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6982 name, 0, 1);
6983 if (t != NULL)
6984 return t;
6985 }
6986
6987 BadName:
6988 if (!noerr)
6989 {
6990 const char *name_str = name != NULL ? name : _("<null>");
6991
6992 error (_("Type %s has no component named %s"),
6993 type_as_string (type).c_str (), name_str);
6994 }
6995
6996 return NULL;
6997 }
6998
6999 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7000 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7001 represents an unchecked union (that is, the variant part of a
7002 record that is named in an Unchecked_Union pragma). */
7003
7004 static int
7005 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7006 {
7007 const char *discrim_name = ada_variant_discrim_name (var_type);
7008
7009 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7010 }
7011
7012
7013 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7014 within OUTER, determine which variant clause (field number in VAR_TYPE,
7015 numbering from 0) is applicable. Returns -1 if none are. */
7016
7017 int
7018 ada_which_variant_applies (struct type *var_type, struct value *outer)
7019 {
7020 int others_clause;
7021 int i;
7022 const char *discrim_name = ada_variant_discrim_name (var_type);
7023 struct value *discrim;
7024 LONGEST discrim_val;
7025
7026 /* Using plain value_from_contents_and_address here causes problems
7027 because we will end up trying to resolve a type that is currently
7028 being constructed. */
7029 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7030 if (discrim == NULL)
7031 return -1;
7032 discrim_val = value_as_long (discrim);
7033
7034 others_clause = -1;
7035 for (i = 0; i < var_type->num_fields (); i += 1)
7036 {
7037 if (ada_is_others_clause (var_type, i))
7038 others_clause = i;
7039 else if (ada_in_variant (discrim_val, var_type, i))
7040 return i;
7041 }
7042
7043 return others_clause;
7044 }
7045 \f
7046
7047
7048 /* Dynamic-Sized Records */
7049
7050 /* Strategy: The type ostensibly attached to a value with dynamic size
7051 (i.e., a size that is not statically recorded in the debugging
7052 data) does not accurately reflect the size or layout of the value.
7053 Our strategy is to convert these values to values with accurate,
7054 conventional types that are constructed on the fly. */
7055
7056 /* There is a subtle and tricky problem here. In general, we cannot
7057 determine the size of dynamic records without its data. However,
7058 the 'struct value' data structure, which GDB uses to represent
7059 quantities in the inferior process (the target), requires the size
7060 of the type at the time of its allocation in order to reserve space
7061 for GDB's internal copy of the data. That's why the
7062 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7063 rather than struct value*s.
7064
7065 However, GDB's internal history variables ($1, $2, etc.) are
7066 struct value*s containing internal copies of the data that are not, in
7067 general, the same as the data at their corresponding addresses in
7068 the target. Fortunately, the types we give to these values are all
7069 conventional, fixed-size types (as per the strategy described
7070 above), so that we don't usually have to perform the
7071 'to_fixed_xxx_type' conversions to look at their values.
7072 Unfortunately, there is one exception: if one of the internal
7073 history variables is an array whose elements are unconstrained
7074 records, then we will need to create distinct fixed types for each
7075 element selected. */
7076
7077 /* The upshot of all of this is that many routines take a (type, host
7078 address, target address) triple as arguments to represent a value.
7079 The host address, if non-null, is supposed to contain an internal
7080 copy of the relevant data; otherwise, the program is to consult the
7081 target at the target address. */
7082
7083 /* Assuming that VAL0 represents a pointer value, the result of
7084 dereferencing it. Differs from value_ind in its treatment of
7085 dynamic-sized types. */
7086
7087 struct value *
7088 ada_value_ind (struct value *val0)
7089 {
7090 struct value *val = value_ind (val0);
7091
7092 if (ada_is_tagged_type (value_type (val), 0))
7093 val = ada_tag_value_at_base_address (val);
7094
7095 return ada_to_fixed_value (val);
7096 }
7097
7098 /* The value resulting from dereferencing any "reference to"
7099 qualifiers on VAL0. */
7100
7101 static struct value *
7102 ada_coerce_ref (struct value *val0)
7103 {
7104 if (value_type (val0)->code () == TYPE_CODE_REF)
7105 {
7106 struct value *val = val0;
7107
7108 val = coerce_ref (val);
7109
7110 if (ada_is_tagged_type (value_type (val), 0))
7111 val = ada_tag_value_at_base_address (val);
7112
7113 return ada_to_fixed_value (val);
7114 }
7115 else
7116 return val0;
7117 }
7118
7119 /* Return the bit alignment required for field #F of template type TYPE. */
7120
7121 static unsigned int
7122 field_alignment (struct type *type, int f)
7123 {
7124 const char *name = TYPE_FIELD_NAME (type, f);
7125 int len;
7126 int align_offset;
7127
7128 /* The field name should never be null, unless the debugging information
7129 is somehow malformed. In this case, we assume the field does not
7130 require any alignment. */
7131 if (name == NULL)
7132 return 1;
7133
7134 len = strlen (name);
7135
7136 if (!isdigit (name[len - 1]))
7137 return 1;
7138
7139 if (isdigit (name[len - 2]))
7140 align_offset = len - 2;
7141 else
7142 align_offset = len - 1;
7143
7144 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7145 return TARGET_CHAR_BIT;
7146
7147 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7148 }
7149
7150 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7151
7152 static struct symbol *
7153 ada_find_any_type_symbol (const char *name)
7154 {
7155 struct symbol *sym;
7156
7157 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7158 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7159 return sym;
7160
7161 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7162 return sym;
7163 }
7164
7165 /* Find a type named NAME. Ignores ambiguity. This routine will look
7166 solely for types defined by debug info, it will not search the GDB
7167 primitive types. */
7168
7169 static struct type *
7170 ada_find_any_type (const char *name)
7171 {
7172 struct symbol *sym = ada_find_any_type_symbol (name);
7173
7174 if (sym != NULL)
7175 return SYMBOL_TYPE (sym);
7176
7177 return NULL;
7178 }
7179
7180 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7181 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7182 symbol, in which case it is returned. Otherwise, this looks for
7183 symbols whose name is that of NAME_SYM suffixed with "___XR".
7184 Return symbol if found, and NULL otherwise. */
7185
7186 static bool
7187 ada_is_renaming_symbol (struct symbol *name_sym)
7188 {
7189 const char *name = name_sym->linkage_name ();
7190 return strstr (name, "___XR") != NULL;
7191 }
7192
7193 /* Because of GNAT encoding conventions, several GDB symbols may match a
7194 given type name. If the type denoted by TYPE0 is to be preferred to
7195 that of TYPE1 for purposes of type printing, return non-zero;
7196 otherwise return 0. */
7197
7198 int
7199 ada_prefer_type (struct type *type0, struct type *type1)
7200 {
7201 if (type1 == NULL)
7202 return 1;
7203 else if (type0 == NULL)
7204 return 0;
7205 else if (type1->code () == TYPE_CODE_VOID)
7206 return 1;
7207 else if (type0->code () == TYPE_CODE_VOID)
7208 return 0;
7209 else if (type1->name () == NULL && type0->name () != NULL)
7210 return 1;
7211 else if (ada_is_constrained_packed_array_type (type0))
7212 return 1;
7213 else if (ada_is_array_descriptor_type (type0)
7214 && !ada_is_array_descriptor_type (type1))
7215 return 1;
7216 else
7217 {
7218 const char *type0_name = type0->name ();
7219 const char *type1_name = type1->name ();
7220
7221 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7222 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7223 return 1;
7224 }
7225 return 0;
7226 }
7227
7228 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7229 null. */
7230
7231 const char *
7232 ada_type_name (struct type *type)
7233 {
7234 if (type == NULL)
7235 return NULL;
7236 return type->name ();
7237 }
7238
7239 /* Search the list of "descriptive" types associated to TYPE for a type
7240 whose name is NAME. */
7241
7242 static struct type *
7243 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7244 {
7245 struct type *result, *tmp;
7246
7247 if (ada_ignore_descriptive_types_p)
7248 return NULL;
7249
7250 /* If there no descriptive-type info, then there is no parallel type
7251 to be found. */
7252 if (!HAVE_GNAT_AUX_INFO (type))
7253 return NULL;
7254
7255 result = TYPE_DESCRIPTIVE_TYPE (type);
7256 while (result != NULL)
7257 {
7258 const char *result_name = ada_type_name (result);
7259
7260 if (result_name == NULL)
7261 {
7262 warning (_("unexpected null name on descriptive type"));
7263 return NULL;
7264 }
7265
7266 /* If the names match, stop. */
7267 if (strcmp (result_name, name) == 0)
7268 break;
7269
7270 /* Otherwise, look at the next item on the list, if any. */
7271 if (HAVE_GNAT_AUX_INFO (result))
7272 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7273 else
7274 tmp = NULL;
7275
7276 /* If not found either, try after having resolved the typedef. */
7277 if (tmp != NULL)
7278 result = tmp;
7279 else
7280 {
7281 result = check_typedef (result);
7282 if (HAVE_GNAT_AUX_INFO (result))
7283 result = TYPE_DESCRIPTIVE_TYPE (result);
7284 else
7285 result = NULL;
7286 }
7287 }
7288
7289 /* If we didn't find a match, see whether this is a packed array. With
7290 older compilers, the descriptive type information is either absent or
7291 irrelevant when it comes to packed arrays so the above lookup fails.
7292 Fall back to using a parallel lookup by name in this case. */
7293 if (result == NULL && ada_is_constrained_packed_array_type (type))
7294 return ada_find_any_type (name);
7295
7296 return result;
7297 }
7298
7299 /* Find a parallel type to TYPE with the specified NAME, using the
7300 descriptive type taken from the debugging information, if available,
7301 and otherwise using the (slower) name-based method. */
7302
7303 static struct type *
7304 ada_find_parallel_type_with_name (struct type *type, const char *name)
7305 {
7306 struct type *result = NULL;
7307
7308 if (HAVE_GNAT_AUX_INFO (type))
7309 result = find_parallel_type_by_descriptive_type (type, name);
7310 else
7311 result = ada_find_any_type (name);
7312
7313 return result;
7314 }
7315
7316 /* Same as above, but specify the name of the parallel type by appending
7317 SUFFIX to the name of TYPE. */
7318
7319 struct type *
7320 ada_find_parallel_type (struct type *type, const char *suffix)
7321 {
7322 char *name;
7323 const char *type_name = ada_type_name (type);
7324 int len;
7325
7326 if (type_name == NULL)
7327 return NULL;
7328
7329 len = strlen (type_name);
7330
7331 name = (char *) alloca (len + strlen (suffix) + 1);
7332
7333 strcpy (name, type_name);
7334 strcpy (name + len, suffix);
7335
7336 return ada_find_parallel_type_with_name (type, name);
7337 }
7338
7339 /* If TYPE is a variable-size record type, return the corresponding template
7340 type describing its fields. Otherwise, return NULL. */
7341
7342 static struct type *
7343 dynamic_template_type (struct type *type)
7344 {
7345 type = ada_check_typedef (type);
7346
7347 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7348 || ada_type_name (type) == NULL)
7349 return NULL;
7350 else
7351 {
7352 int len = strlen (ada_type_name (type));
7353
7354 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7355 return type;
7356 else
7357 return ada_find_parallel_type (type, "___XVE");
7358 }
7359 }
7360
7361 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7362 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7363
7364 static int
7365 is_dynamic_field (struct type *templ_type, int field_num)
7366 {
7367 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7368
7369 return name != NULL
7370 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7371 && strstr (name, "___XVL") != NULL;
7372 }
7373
7374 /* The index of the variant field of TYPE, or -1 if TYPE does not
7375 represent a variant record type. */
7376
7377 static int
7378 variant_field_index (struct type *type)
7379 {
7380 int f;
7381
7382 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7383 return -1;
7384
7385 for (f = 0; f < type->num_fields (); f += 1)
7386 {
7387 if (ada_is_variant_part (type, f))
7388 return f;
7389 }
7390 return -1;
7391 }
7392
7393 /* A record type with no fields. */
7394
7395 static struct type *
7396 empty_record (struct type *templ)
7397 {
7398 struct type *type = alloc_type_copy (templ);
7399
7400 type->set_code (TYPE_CODE_STRUCT);
7401 INIT_NONE_SPECIFIC (type);
7402 type->set_name ("<empty>");
7403 TYPE_LENGTH (type) = 0;
7404 return type;
7405 }
7406
7407 /* An ordinary record type (with fixed-length fields) that describes
7408 the value of type TYPE at VALADDR or ADDRESS (see comments at
7409 the beginning of this section) VAL according to GNAT conventions.
7410 DVAL0 should describe the (portion of a) record that contains any
7411 necessary discriminants. It should be NULL if value_type (VAL) is
7412 an outer-level type (i.e., as opposed to a branch of a variant.) A
7413 variant field (unless unchecked) is replaced by a particular branch
7414 of the variant.
7415
7416 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7417 length are not statically known are discarded. As a consequence,
7418 VALADDR, ADDRESS and DVAL0 are ignored.
7419
7420 NOTE: Limitations: For now, we assume that dynamic fields and
7421 variants occupy whole numbers of bytes. However, they need not be
7422 byte-aligned. */
7423
7424 struct type *
7425 ada_template_to_fixed_record_type_1 (struct type *type,
7426 const gdb_byte *valaddr,
7427 CORE_ADDR address, struct value *dval0,
7428 int keep_dynamic_fields)
7429 {
7430 struct value *mark = value_mark ();
7431 struct value *dval;
7432 struct type *rtype;
7433 int nfields, bit_len;
7434 int variant_field;
7435 long off;
7436 int fld_bit_len;
7437 int f;
7438
7439 /* Compute the number of fields in this record type that are going
7440 to be processed: unless keep_dynamic_fields, this includes only
7441 fields whose position and length are static will be processed. */
7442 if (keep_dynamic_fields)
7443 nfields = type->num_fields ();
7444 else
7445 {
7446 nfields = 0;
7447 while (nfields < type->num_fields ()
7448 && !ada_is_variant_part (type, nfields)
7449 && !is_dynamic_field (type, nfields))
7450 nfields++;
7451 }
7452
7453 rtype = alloc_type_copy (type);
7454 rtype->set_code (TYPE_CODE_STRUCT);
7455 INIT_NONE_SPECIFIC (rtype);
7456 rtype->set_num_fields (nfields);
7457 rtype->set_fields
7458 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7459 rtype->set_name (ada_type_name (type));
7460 rtype->set_is_fixed_instance (true);
7461
7462 off = 0;
7463 bit_len = 0;
7464 variant_field = -1;
7465
7466 for (f = 0; f < nfields; f += 1)
7467 {
7468 off = align_up (off, field_alignment (type, f))
7469 + TYPE_FIELD_BITPOS (type, f);
7470 SET_FIELD_BITPOS (rtype->field (f), off);
7471 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7472
7473 if (ada_is_variant_part (type, f))
7474 {
7475 variant_field = f;
7476 fld_bit_len = 0;
7477 }
7478 else if (is_dynamic_field (type, f))
7479 {
7480 const gdb_byte *field_valaddr = valaddr;
7481 CORE_ADDR field_address = address;
7482 struct type *field_type =
7483 TYPE_TARGET_TYPE (type->field (f).type ());
7484
7485 if (dval0 == NULL)
7486 {
7487 /* rtype's length is computed based on the run-time
7488 value of discriminants. If the discriminants are not
7489 initialized, the type size may be completely bogus and
7490 GDB may fail to allocate a value for it. So check the
7491 size first before creating the value. */
7492 ada_ensure_varsize_limit (rtype);
7493 /* Using plain value_from_contents_and_address here
7494 causes problems because we will end up trying to
7495 resolve a type that is currently being
7496 constructed. */
7497 dval = value_from_contents_and_address_unresolved (rtype,
7498 valaddr,
7499 address);
7500 rtype = value_type (dval);
7501 }
7502 else
7503 dval = dval0;
7504
7505 /* If the type referenced by this field is an aligner type, we need
7506 to unwrap that aligner type, because its size might not be set.
7507 Keeping the aligner type would cause us to compute the wrong
7508 size for this field, impacting the offset of the all the fields
7509 that follow this one. */
7510 if (ada_is_aligner_type (field_type))
7511 {
7512 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7513
7514 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7515 field_address = cond_offset_target (field_address, field_offset);
7516 field_type = ada_aligned_type (field_type);
7517 }
7518
7519 field_valaddr = cond_offset_host (field_valaddr,
7520 off / TARGET_CHAR_BIT);
7521 field_address = cond_offset_target (field_address,
7522 off / TARGET_CHAR_BIT);
7523
7524 /* Get the fixed type of the field. Note that, in this case,
7525 we do not want to get the real type out of the tag: if
7526 the current field is the parent part of a tagged record,
7527 we will get the tag of the object. Clearly wrong: the real
7528 type of the parent is not the real type of the child. We
7529 would end up in an infinite loop. */
7530 field_type = ada_get_base_type (field_type);
7531 field_type = ada_to_fixed_type (field_type, field_valaddr,
7532 field_address, dval, 0);
7533 /* If the field size is already larger than the maximum
7534 object size, then the record itself will necessarily
7535 be larger than the maximum object size. We need to make
7536 this check now, because the size might be so ridiculously
7537 large (due to an uninitialized variable in the inferior)
7538 that it would cause an overflow when adding it to the
7539 record size. */
7540 ada_ensure_varsize_limit (field_type);
7541
7542 rtype->field (f).set_type (field_type);
7543 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7544 /* The multiplication can potentially overflow. But because
7545 the field length has been size-checked just above, and
7546 assuming that the maximum size is a reasonable value,
7547 an overflow should not happen in practice. So rather than
7548 adding overflow recovery code to this already complex code,
7549 we just assume that it's not going to happen. */
7550 fld_bit_len =
7551 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7552 }
7553 else
7554 {
7555 /* Note: If this field's type is a typedef, it is important
7556 to preserve the typedef layer.
7557
7558 Otherwise, we might be transforming a typedef to a fat
7559 pointer (encoding a pointer to an unconstrained array),
7560 into a basic fat pointer (encoding an unconstrained
7561 array). As both types are implemented using the same
7562 structure, the typedef is the only clue which allows us
7563 to distinguish between the two options. Stripping it
7564 would prevent us from printing this field appropriately. */
7565 rtype->field (f).set_type (type->field (f).type ());
7566 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7567 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7568 fld_bit_len =
7569 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7570 else
7571 {
7572 struct type *field_type = type->field (f).type ();
7573
7574 /* We need to be careful of typedefs when computing
7575 the length of our field. If this is a typedef,
7576 get the length of the target type, not the length
7577 of the typedef. */
7578 if (field_type->code () == TYPE_CODE_TYPEDEF)
7579 field_type = ada_typedef_target_type (field_type);
7580
7581 fld_bit_len =
7582 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7583 }
7584 }
7585 if (off + fld_bit_len > bit_len)
7586 bit_len = off + fld_bit_len;
7587 off += fld_bit_len;
7588 TYPE_LENGTH (rtype) =
7589 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7590 }
7591
7592 /* We handle the variant part, if any, at the end because of certain
7593 odd cases in which it is re-ordered so as NOT to be the last field of
7594 the record. This can happen in the presence of representation
7595 clauses. */
7596 if (variant_field >= 0)
7597 {
7598 struct type *branch_type;
7599
7600 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7601
7602 if (dval0 == NULL)
7603 {
7604 /* Using plain value_from_contents_and_address here causes
7605 problems because we will end up trying to resolve a type
7606 that is currently being constructed. */
7607 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7608 address);
7609 rtype = value_type (dval);
7610 }
7611 else
7612 dval = dval0;
7613
7614 branch_type =
7615 to_fixed_variant_branch_type
7616 (type->field (variant_field).type (),
7617 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7618 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7619 if (branch_type == NULL)
7620 {
7621 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7622 rtype->field (f - 1) = rtype->field (f);
7623 rtype->set_num_fields (rtype->num_fields () - 1);
7624 }
7625 else
7626 {
7627 rtype->field (variant_field).set_type (branch_type);
7628 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7629 fld_bit_len =
7630 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7631 TARGET_CHAR_BIT;
7632 if (off + fld_bit_len > bit_len)
7633 bit_len = off + fld_bit_len;
7634 TYPE_LENGTH (rtype) =
7635 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7636 }
7637 }
7638
7639 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7640 should contain the alignment of that record, which should be a strictly
7641 positive value. If null or negative, then something is wrong, most
7642 probably in the debug info. In that case, we don't round up the size
7643 of the resulting type. If this record is not part of another structure,
7644 the current RTYPE length might be good enough for our purposes. */
7645 if (TYPE_LENGTH (type) <= 0)
7646 {
7647 if (rtype->name ())
7648 warning (_("Invalid type size for `%s' detected: %s."),
7649 rtype->name (), pulongest (TYPE_LENGTH (type)));
7650 else
7651 warning (_("Invalid type size for <unnamed> detected: %s."),
7652 pulongest (TYPE_LENGTH (type)));
7653 }
7654 else
7655 {
7656 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7657 TYPE_LENGTH (type));
7658 }
7659
7660 value_free_to_mark (mark);
7661 if (TYPE_LENGTH (rtype) > varsize_limit)
7662 error (_("record type with dynamic size is larger than varsize-limit"));
7663 return rtype;
7664 }
7665
7666 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7667 of 1. */
7668
7669 static struct type *
7670 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7671 CORE_ADDR address, struct value *dval0)
7672 {
7673 return ada_template_to_fixed_record_type_1 (type, valaddr,
7674 address, dval0, 1);
7675 }
7676
7677 /* An ordinary record type in which ___XVL-convention fields and
7678 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7679 static approximations, containing all possible fields. Uses
7680 no runtime values. Useless for use in values, but that's OK,
7681 since the results are used only for type determinations. Works on both
7682 structs and unions. Representation note: to save space, we memorize
7683 the result of this function in the TYPE_TARGET_TYPE of the
7684 template type. */
7685
7686 static struct type *
7687 template_to_static_fixed_type (struct type *type0)
7688 {
7689 struct type *type;
7690 int nfields;
7691 int f;
7692
7693 /* No need no do anything if the input type is already fixed. */
7694 if (type0->is_fixed_instance ())
7695 return type0;
7696
7697 /* Likewise if we already have computed the static approximation. */
7698 if (TYPE_TARGET_TYPE (type0) != NULL)
7699 return TYPE_TARGET_TYPE (type0);
7700
7701 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7702 type = type0;
7703 nfields = type0->num_fields ();
7704
7705 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7706 recompute all over next time. */
7707 TYPE_TARGET_TYPE (type0) = type;
7708
7709 for (f = 0; f < nfields; f += 1)
7710 {
7711 struct type *field_type = type0->field (f).type ();
7712 struct type *new_type;
7713
7714 if (is_dynamic_field (type0, f))
7715 {
7716 field_type = ada_check_typedef (field_type);
7717 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7718 }
7719 else
7720 new_type = static_unwrap_type (field_type);
7721
7722 if (new_type != field_type)
7723 {
7724 /* Clone TYPE0 only the first time we get a new field type. */
7725 if (type == type0)
7726 {
7727 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7728 type->set_code (type0->code ());
7729 INIT_NONE_SPECIFIC (type);
7730 type->set_num_fields (nfields);
7731
7732 field *fields =
7733 ((struct field *)
7734 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7735 memcpy (fields, type0->fields (),
7736 sizeof (struct field) * nfields);
7737 type->set_fields (fields);
7738
7739 type->set_name (ada_type_name (type0));
7740 type->set_is_fixed_instance (true);
7741 TYPE_LENGTH (type) = 0;
7742 }
7743 type->field (f).set_type (new_type);
7744 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7745 }
7746 }
7747
7748 return type;
7749 }
7750
7751 /* Given an object of type TYPE whose contents are at VALADDR and
7752 whose address in memory is ADDRESS, returns a revision of TYPE,
7753 which should be a non-dynamic-sized record, in which the variant
7754 part, if any, is replaced with the appropriate branch. Looks
7755 for discriminant values in DVAL0, which can be NULL if the record
7756 contains the necessary discriminant values. */
7757
7758 static struct type *
7759 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7760 CORE_ADDR address, struct value *dval0)
7761 {
7762 struct value *mark = value_mark ();
7763 struct value *dval;
7764 struct type *rtype;
7765 struct type *branch_type;
7766 int nfields = type->num_fields ();
7767 int variant_field = variant_field_index (type);
7768
7769 if (variant_field == -1)
7770 return type;
7771
7772 if (dval0 == NULL)
7773 {
7774 dval = value_from_contents_and_address (type, valaddr, address);
7775 type = value_type (dval);
7776 }
7777 else
7778 dval = dval0;
7779
7780 rtype = alloc_type_copy (type);
7781 rtype->set_code (TYPE_CODE_STRUCT);
7782 INIT_NONE_SPECIFIC (rtype);
7783 rtype->set_num_fields (nfields);
7784
7785 field *fields =
7786 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7787 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7788 rtype->set_fields (fields);
7789
7790 rtype->set_name (ada_type_name (type));
7791 rtype->set_is_fixed_instance (true);
7792 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7793
7794 branch_type = to_fixed_variant_branch_type
7795 (type->field (variant_field).type (),
7796 cond_offset_host (valaddr,
7797 TYPE_FIELD_BITPOS (type, variant_field)
7798 / TARGET_CHAR_BIT),
7799 cond_offset_target (address,
7800 TYPE_FIELD_BITPOS (type, variant_field)
7801 / TARGET_CHAR_BIT), dval);
7802 if (branch_type == NULL)
7803 {
7804 int f;
7805
7806 for (f = variant_field + 1; f < nfields; f += 1)
7807 rtype->field (f - 1) = rtype->field (f);
7808 rtype->set_num_fields (rtype->num_fields () - 1);
7809 }
7810 else
7811 {
7812 rtype->field (variant_field).set_type (branch_type);
7813 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7814 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7815 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7816 }
7817 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7818
7819 value_free_to_mark (mark);
7820 return rtype;
7821 }
7822
7823 /* An ordinary record type (with fixed-length fields) that describes
7824 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7825 beginning of this section]. Any necessary discriminants' values
7826 should be in DVAL, a record value; it may be NULL if the object
7827 at ADDR itself contains any necessary discriminant values.
7828 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7829 values from the record are needed. Except in the case that DVAL,
7830 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7831 unchecked) is replaced by a particular branch of the variant.
7832
7833 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7834 is questionable and may be removed. It can arise during the
7835 processing of an unconstrained-array-of-record type where all the
7836 variant branches have exactly the same size. This is because in
7837 such cases, the compiler does not bother to use the XVS convention
7838 when encoding the record. I am currently dubious of this
7839 shortcut and suspect the compiler should be altered. FIXME. */
7840
7841 static struct type *
7842 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7843 CORE_ADDR address, struct value *dval)
7844 {
7845 struct type *templ_type;
7846
7847 if (type0->is_fixed_instance ())
7848 return type0;
7849
7850 templ_type = dynamic_template_type (type0);
7851
7852 if (templ_type != NULL)
7853 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7854 else if (variant_field_index (type0) >= 0)
7855 {
7856 if (dval == NULL && valaddr == NULL && address == 0)
7857 return type0;
7858 return to_record_with_fixed_variant_part (type0, valaddr, address,
7859 dval);
7860 }
7861 else
7862 {
7863 type0->set_is_fixed_instance (true);
7864 return type0;
7865 }
7866
7867 }
7868
7869 /* An ordinary record type (with fixed-length fields) that describes
7870 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7871 union type. Any necessary discriminants' values should be in DVAL,
7872 a record value. That is, this routine selects the appropriate
7873 branch of the union at ADDR according to the discriminant value
7874 indicated in the union's type name. Returns VAR_TYPE0 itself if
7875 it represents a variant subject to a pragma Unchecked_Union. */
7876
7877 static struct type *
7878 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7879 CORE_ADDR address, struct value *dval)
7880 {
7881 int which;
7882 struct type *templ_type;
7883 struct type *var_type;
7884
7885 if (var_type0->code () == TYPE_CODE_PTR)
7886 var_type = TYPE_TARGET_TYPE (var_type0);
7887 else
7888 var_type = var_type0;
7889
7890 templ_type = ada_find_parallel_type (var_type, "___XVU");
7891
7892 if (templ_type != NULL)
7893 var_type = templ_type;
7894
7895 if (is_unchecked_variant (var_type, value_type (dval)))
7896 return var_type0;
7897 which = ada_which_variant_applies (var_type, dval);
7898
7899 if (which < 0)
7900 return empty_record (var_type);
7901 else if (is_dynamic_field (var_type, which))
7902 return to_fixed_record_type
7903 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7904 valaddr, address, dval);
7905 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7906 return
7907 to_fixed_record_type
7908 (var_type->field (which).type (), valaddr, address, dval);
7909 else
7910 return var_type->field (which).type ();
7911 }
7912
7913 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7914 ENCODING_TYPE, a type following the GNAT conventions for discrete
7915 type encodings, only carries redundant information. */
7916
7917 static int
7918 ada_is_redundant_range_encoding (struct type *range_type,
7919 struct type *encoding_type)
7920 {
7921 const char *bounds_str;
7922 int n;
7923 LONGEST lo, hi;
7924
7925 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7926
7927 if (get_base_type (range_type)->code ()
7928 != get_base_type (encoding_type)->code ())
7929 {
7930 /* The compiler probably used a simple base type to describe
7931 the range type instead of the range's actual base type,
7932 expecting us to get the real base type from the encoding
7933 anyway. In this situation, the encoding cannot be ignored
7934 as redundant. */
7935 return 0;
7936 }
7937
7938 if (is_dynamic_type (range_type))
7939 return 0;
7940
7941 if (encoding_type->name () == NULL)
7942 return 0;
7943
7944 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7945 if (bounds_str == NULL)
7946 return 0;
7947
7948 n = 8; /* Skip "___XDLU_". */
7949 if (!ada_scan_number (bounds_str, n, &lo, &n))
7950 return 0;
7951 if (range_type->bounds ()->low.const_val () != lo)
7952 return 0;
7953
7954 n += 2; /* Skip the "__" separator between the two bounds. */
7955 if (!ada_scan_number (bounds_str, n, &hi, &n))
7956 return 0;
7957 if (range_type->bounds ()->high.const_val () != hi)
7958 return 0;
7959
7960 return 1;
7961 }
7962
7963 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7964 a type following the GNAT encoding for describing array type
7965 indices, only carries redundant information. */
7966
7967 static int
7968 ada_is_redundant_index_type_desc (struct type *array_type,
7969 struct type *desc_type)
7970 {
7971 struct type *this_layer = check_typedef (array_type);
7972 int i;
7973
7974 for (i = 0; i < desc_type->num_fields (); i++)
7975 {
7976 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7977 desc_type->field (i).type ()))
7978 return 0;
7979 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7980 }
7981
7982 return 1;
7983 }
7984
7985 /* Assuming that TYPE0 is an array type describing the type of a value
7986 at ADDR, and that DVAL describes a record containing any
7987 discriminants used in TYPE0, returns a type for the value that
7988 contains no dynamic components (that is, no components whose sizes
7989 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7990 true, gives an error message if the resulting type's size is over
7991 varsize_limit. */
7992
7993 static struct type *
7994 to_fixed_array_type (struct type *type0, struct value *dval,
7995 int ignore_too_big)
7996 {
7997 struct type *index_type_desc;
7998 struct type *result;
7999 int constrained_packed_array_p;
8000 static const char *xa_suffix = "___XA";
8001
8002 type0 = ada_check_typedef (type0);
8003 if (type0->is_fixed_instance ())
8004 return type0;
8005
8006 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8007 if (constrained_packed_array_p)
8008 {
8009 type0 = decode_constrained_packed_array_type (type0);
8010 if (type0 == nullptr)
8011 error (_("could not decode constrained packed array type"));
8012 }
8013
8014 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8015
8016 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8017 encoding suffixed with 'P' may still be generated. If so,
8018 it should be used to find the XA type. */
8019
8020 if (index_type_desc == NULL)
8021 {
8022 const char *type_name = ada_type_name (type0);
8023
8024 if (type_name != NULL)
8025 {
8026 const int len = strlen (type_name);
8027 char *name = (char *) alloca (len + strlen (xa_suffix));
8028
8029 if (type_name[len - 1] == 'P')
8030 {
8031 strcpy (name, type_name);
8032 strcpy (name + len - 1, xa_suffix);
8033 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8034 }
8035 }
8036 }
8037
8038 ada_fixup_array_indexes_type (index_type_desc);
8039 if (index_type_desc != NULL
8040 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8041 {
8042 /* Ignore this ___XA parallel type, as it does not bring any
8043 useful information. This allows us to avoid creating fixed
8044 versions of the array's index types, which would be identical
8045 to the original ones. This, in turn, can also help avoid
8046 the creation of fixed versions of the array itself. */
8047 index_type_desc = NULL;
8048 }
8049
8050 if (index_type_desc == NULL)
8051 {
8052 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8053
8054 /* NOTE: elt_type---the fixed version of elt_type0---should never
8055 depend on the contents of the array in properly constructed
8056 debugging data. */
8057 /* Create a fixed version of the array element type.
8058 We're not providing the address of an element here,
8059 and thus the actual object value cannot be inspected to do
8060 the conversion. This should not be a problem, since arrays of
8061 unconstrained objects are not allowed. In particular, all
8062 the elements of an array of a tagged type should all be of
8063 the same type specified in the debugging info. No need to
8064 consult the object tag. */
8065 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8066
8067 /* Make sure we always create a new array type when dealing with
8068 packed array types, since we're going to fix-up the array
8069 type length and element bitsize a little further down. */
8070 if (elt_type0 == elt_type && !constrained_packed_array_p)
8071 result = type0;
8072 else
8073 result = create_array_type (alloc_type_copy (type0),
8074 elt_type, type0->index_type ());
8075 }
8076 else
8077 {
8078 int i;
8079 struct type *elt_type0;
8080
8081 elt_type0 = type0;
8082 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8083 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8084
8085 /* NOTE: result---the fixed version of elt_type0---should never
8086 depend on the contents of the array in properly constructed
8087 debugging data. */
8088 /* Create a fixed version of the array element type.
8089 We're not providing the address of an element here,
8090 and thus the actual object value cannot be inspected to do
8091 the conversion. This should not be a problem, since arrays of
8092 unconstrained objects are not allowed. In particular, all
8093 the elements of an array of a tagged type should all be of
8094 the same type specified in the debugging info. No need to
8095 consult the object tag. */
8096 result =
8097 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8098
8099 elt_type0 = type0;
8100 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8101 {
8102 struct type *range_type =
8103 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8104
8105 result = create_array_type (alloc_type_copy (elt_type0),
8106 result, range_type);
8107 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8108 }
8109 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8110 error (_("array type with dynamic size is larger than varsize-limit"));
8111 }
8112
8113 /* We want to preserve the type name. This can be useful when
8114 trying to get the type name of a value that has already been
8115 printed (for instance, if the user did "print VAR; whatis $". */
8116 result->set_name (type0->name ());
8117
8118 if (constrained_packed_array_p)
8119 {
8120 /* So far, the resulting type has been created as if the original
8121 type was a regular (non-packed) array type. As a result, the
8122 bitsize of the array elements needs to be set again, and the array
8123 length needs to be recomputed based on that bitsize. */
8124 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8125 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8126
8127 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8128 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8129 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8130 TYPE_LENGTH (result)++;
8131 }
8132
8133 result->set_is_fixed_instance (true);
8134 return result;
8135 }
8136
8137
8138 /* A standard type (containing no dynamically sized components)
8139 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8140 DVAL describes a record containing any discriminants used in TYPE0,
8141 and may be NULL if there are none, or if the object of type TYPE at
8142 ADDRESS or in VALADDR contains these discriminants.
8143
8144 If CHECK_TAG is not null, in the case of tagged types, this function
8145 attempts to locate the object's tag and use it to compute the actual
8146 type. However, when ADDRESS is null, we cannot use it to determine the
8147 location of the tag, and therefore compute the tagged type's actual type.
8148 So we return the tagged type without consulting the tag. */
8149
8150 static struct type *
8151 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8152 CORE_ADDR address, struct value *dval, int check_tag)
8153 {
8154 type = ada_check_typedef (type);
8155
8156 /* Only un-fixed types need to be handled here. */
8157 if (!HAVE_GNAT_AUX_INFO (type))
8158 return type;
8159
8160 switch (type->code ())
8161 {
8162 default:
8163 return type;
8164 case TYPE_CODE_STRUCT:
8165 {
8166 struct type *static_type = to_static_fixed_type (type);
8167 struct type *fixed_record_type =
8168 to_fixed_record_type (type, valaddr, address, NULL);
8169
8170 /* If STATIC_TYPE is a tagged type and we know the object's address,
8171 then we can determine its tag, and compute the object's actual
8172 type from there. Note that we have to use the fixed record
8173 type (the parent part of the record may have dynamic fields
8174 and the way the location of _tag is expressed may depend on
8175 them). */
8176
8177 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8178 {
8179 struct value *tag =
8180 value_tag_from_contents_and_address
8181 (fixed_record_type,
8182 valaddr,
8183 address);
8184 struct type *real_type = type_from_tag (tag);
8185 struct value *obj =
8186 value_from_contents_and_address (fixed_record_type,
8187 valaddr,
8188 address);
8189 fixed_record_type = value_type (obj);
8190 if (real_type != NULL)
8191 return to_fixed_record_type
8192 (real_type, NULL,
8193 value_address (ada_tag_value_at_base_address (obj)), NULL);
8194 }
8195
8196 /* Check to see if there is a parallel ___XVZ variable.
8197 If there is, then it provides the actual size of our type. */
8198 else if (ada_type_name (fixed_record_type) != NULL)
8199 {
8200 const char *name = ada_type_name (fixed_record_type);
8201 char *xvz_name
8202 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8203 bool xvz_found = false;
8204 LONGEST size;
8205
8206 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8207 try
8208 {
8209 xvz_found = get_int_var_value (xvz_name, size);
8210 }
8211 catch (const gdb_exception_error &except)
8212 {
8213 /* We found the variable, but somehow failed to read
8214 its value. Rethrow the same error, but with a little
8215 bit more information, to help the user understand
8216 what went wrong (Eg: the variable might have been
8217 optimized out). */
8218 throw_error (except.error,
8219 _("unable to read value of %s (%s)"),
8220 xvz_name, except.what ());
8221 }
8222
8223 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8224 {
8225 fixed_record_type = copy_type (fixed_record_type);
8226 TYPE_LENGTH (fixed_record_type) = size;
8227
8228 /* The FIXED_RECORD_TYPE may have be a stub. We have
8229 observed this when the debugging info is STABS, and
8230 apparently it is something that is hard to fix.
8231
8232 In practice, we don't need the actual type definition
8233 at all, because the presence of the XVZ variable allows us
8234 to assume that there must be a XVS type as well, which we
8235 should be able to use later, when we need the actual type
8236 definition.
8237
8238 In the meantime, pretend that the "fixed" type we are
8239 returning is NOT a stub, because this can cause trouble
8240 when using this type to create new types targeting it.
8241 Indeed, the associated creation routines often check
8242 whether the target type is a stub and will try to replace
8243 it, thus using a type with the wrong size. This, in turn,
8244 might cause the new type to have the wrong size too.
8245 Consider the case of an array, for instance, where the size
8246 of the array is computed from the number of elements in
8247 our array multiplied by the size of its element. */
8248 fixed_record_type->set_is_stub (false);
8249 }
8250 }
8251 return fixed_record_type;
8252 }
8253 case TYPE_CODE_ARRAY:
8254 return to_fixed_array_type (type, dval, 1);
8255 case TYPE_CODE_UNION:
8256 if (dval == NULL)
8257 return type;
8258 else
8259 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8260 }
8261 }
8262
8263 /* The same as ada_to_fixed_type_1, except that it preserves the type
8264 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8265
8266 The typedef layer needs be preserved in order to differentiate between
8267 arrays and array pointers when both types are implemented using the same
8268 fat pointer. In the array pointer case, the pointer is encoded as
8269 a typedef of the pointer type. For instance, considering:
8270
8271 type String_Access is access String;
8272 S1 : String_Access := null;
8273
8274 To the debugger, S1 is defined as a typedef of type String. But
8275 to the user, it is a pointer. So if the user tries to print S1,
8276 we should not dereference the array, but print the array address
8277 instead.
8278
8279 If we didn't preserve the typedef layer, we would lose the fact that
8280 the type is to be presented as a pointer (needs de-reference before
8281 being printed). And we would also use the source-level type name. */
8282
8283 struct type *
8284 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8285 CORE_ADDR address, struct value *dval, int check_tag)
8286
8287 {
8288 struct type *fixed_type =
8289 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8290
8291 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8292 then preserve the typedef layer.
8293
8294 Implementation note: We can only check the main-type portion of
8295 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8296 from TYPE now returns a type that has the same instance flags
8297 as TYPE. For instance, if TYPE is a "typedef const", and its
8298 target type is a "struct", then the typedef elimination will return
8299 a "const" version of the target type. See check_typedef for more
8300 details about how the typedef layer elimination is done.
8301
8302 brobecker/2010-11-19: It seems to me that the only case where it is
8303 useful to preserve the typedef layer is when dealing with fat pointers.
8304 Perhaps, we could add a check for that and preserve the typedef layer
8305 only in that situation. But this seems unnecessary so far, probably
8306 because we call check_typedef/ada_check_typedef pretty much everywhere.
8307 */
8308 if (type->code () == TYPE_CODE_TYPEDEF
8309 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8310 == TYPE_MAIN_TYPE (fixed_type)))
8311 return type;
8312
8313 return fixed_type;
8314 }
8315
8316 /* A standard (static-sized) type corresponding as well as possible to
8317 TYPE0, but based on no runtime data. */
8318
8319 static struct type *
8320 to_static_fixed_type (struct type *type0)
8321 {
8322 struct type *type;
8323
8324 if (type0 == NULL)
8325 return NULL;
8326
8327 if (type0->is_fixed_instance ())
8328 return type0;
8329
8330 type0 = ada_check_typedef (type0);
8331
8332 switch (type0->code ())
8333 {
8334 default:
8335 return type0;
8336 case TYPE_CODE_STRUCT:
8337 type = dynamic_template_type (type0);
8338 if (type != NULL)
8339 return template_to_static_fixed_type (type);
8340 else
8341 return template_to_static_fixed_type (type0);
8342 case TYPE_CODE_UNION:
8343 type = ada_find_parallel_type (type0, "___XVU");
8344 if (type != NULL)
8345 return template_to_static_fixed_type (type);
8346 else
8347 return template_to_static_fixed_type (type0);
8348 }
8349 }
8350
8351 /* A static approximation of TYPE with all type wrappers removed. */
8352
8353 static struct type *
8354 static_unwrap_type (struct type *type)
8355 {
8356 if (ada_is_aligner_type (type))
8357 {
8358 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8359 if (ada_type_name (type1) == NULL)
8360 type1->set_name (ada_type_name (type));
8361
8362 return static_unwrap_type (type1);
8363 }
8364 else
8365 {
8366 struct type *raw_real_type = ada_get_base_type (type);
8367
8368 if (raw_real_type == type)
8369 return type;
8370 else
8371 return to_static_fixed_type (raw_real_type);
8372 }
8373 }
8374
8375 /* In some cases, incomplete and private types require
8376 cross-references that are not resolved as records (for example,
8377 type Foo;
8378 type FooP is access Foo;
8379 V: FooP;
8380 type Foo is array ...;
8381 ). In these cases, since there is no mechanism for producing
8382 cross-references to such types, we instead substitute for FooP a
8383 stub enumeration type that is nowhere resolved, and whose tag is
8384 the name of the actual type. Call these types "non-record stubs". */
8385
8386 /* A type equivalent to TYPE that is not a non-record stub, if one
8387 exists, otherwise TYPE. */
8388
8389 struct type *
8390 ada_check_typedef (struct type *type)
8391 {
8392 if (type == NULL)
8393 return NULL;
8394
8395 /* If our type is an access to an unconstrained array, which is encoded
8396 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8397 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8398 what allows us to distinguish between fat pointers that represent
8399 array types, and fat pointers that represent array access types
8400 (in both cases, the compiler implements them as fat pointers). */
8401 if (ada_is_access_to_unconstrained_array (type))
8402 return type;
8403
8404 type = check_typedef (type);
8405 if (type == NULL || type->code () != TYPE_CODE_ENUM
8406 || !type->is_stub ()
8407 || type->name () == NULL)
8408 return type;
8409 else
8410 {
8411 const char *name = type->name ();
8412 struct type *type1 = ada_find_any_type (name);
8413
8414 if (type1 == NULL)
8415 return type;
8416
8417 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8418 stubs pointing to arrays, as we don't create symbols for array
8419 types, only for the typedef-to-array types). If that's the case,
8420 strip the typedef layer. */
8421 if (type1->code () == TYPE_CODE_TYPEDEF)
8422 type1 = ada_check_typedef (type1);
8423
8424 return type1;
8425 }
8426 }
8427
8428 /* A value representing the data at VALADDR/ADDRESS as described by
8429 type TYPE0, but with a standard (static-sized) type that correctly
8430 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8431 type, then return VAL0 [this feature is simply to avoid redundant
8432 creation of struct values]. */
8433
8434 static struct value *
8435 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8436 struct value *val0)
8437 {
8438 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8439
8440 if (type == type0 && val0 != NULL)
8441 return val0;
8442
8443 if (VALUE_LVAL (val0) != lval_memory)
8444 {
8445 /* Our value does not live in memory; it could be a convenience
8446 variable, for instance. Create a not_lval value using val0's
8447 contents. */
8448 return value_from_contents (type, value_contents (val0));
8449 }
8450
8451 return value_from_contents_and_address (type, 0, address);
8452 }
8453
8454 /* A value representing VAL, but with a standard (static-sized) type
8455 that correctly describes it. Does not necessarily create a new
8456 value. */
8457
8458 struct value *
8459 ada_to_fixed_value (struct value *val)
8460 {
8461 val = unwrap_value (val);
8462 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8463 return val;
8464 }
8465 \f
8466
8467 /* Attributes */
8468
8469 /* Table mapping attribute numbers to names.
8470 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8471
8472 static const char * const attribute_names[] = {
8473 "<?>",
8474
8475 "first",
8476 "last",
8477 "length",
8478 "image",
8479 "max",
8480 "min",
8481 "modulus",
8482 "pos",
8483 "size",
8484 "tag",
8485 "val",
8486 0
8487 };
8488
8489 static const char *
8490 ada_attribute_name (enum exp_opcode n)
8491 {
8492 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8493 return attribute_names[n - OP_ATR_FIRST + 1];
8494 else
8495 return attribute_names[0];
8496 }
8497
8498 /* Evaluate the 'POS attribute applied to ARG. */
8499
8500 static LONGEST
8501 pos_atr (struct value *arg)
8502 {
8503 struct value *val = coerce_ref (arg);
8504 struct type *type = value_type (val);
8505
8506 if (!discrete_type_p (type))
8507 error (_("'POS only defined on discrete types"));
8508
8509 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8510 if (!result.has_value ())
8511 error (_("enumeration value is invalid: can't find 'POS"));
8512
8513 return *result;
8514 }
8515
8516 struct value *
8517 ada_pos_atr (struct type *expect_type,
8518 struct expression *exp,
8519 enum noside noside, enum exp_opcode op,
8520 struct value *arg)
8521 {
8522 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8524 return value_zero (type, not_lval);
8525 return value_from_longest (type, pos_atr (arg));
8526 }
8527
8528 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8529
8530 static struct value *
8531 val_atr (struct type *type, LONGEST val)
8532 {
8533 gdb_assert (discrete_type_p (type));
8534 if (type->code () == TYPE_CODE_RANGE)
8535 type = TYPE_TARGET_TYPE (type);
8536 if (type->code () == TYPE_CODE_ENUM)
8537 {
8538 if (val < 0 || val >= type->num_fields ())
8539 error (_("argument to 'VAL out of range"));
8540 val = TYPE_FIELD_ENUMVAL (type, val);
8541 }
8542 return value_from_longest (type, val);
8543 }
8544
8545 struct value *
8546 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8547 {
8548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8549 return value_zero (type, not_lval);
8550
8551 if (!discrete_type_p (type))
8552 error (_("'VAL only defined on discrete types"));
8553 if (!integer_type_p (value_type (arg)))
8554 error (_("'VAL requires integral argument"));
8555
8556 return val_atr (type, value_as_long (arg));
8557 }
8558 \f
8559
8560 /* Evaluation */
8561
8562 /* True if TYPE appears to be an Ada character type.
8563 [At the moment, this is true only for Character and Wide_Character;
8564 It is a heuristic test that could stand improvement]. */
8565
8566 bool
8567 ada_is_character_type (struct type *type)
8568 {
8569 const char *name;
8570
8571 /* If the type code says it's a character, then assume it really is,
8572 and don't check any further. */
8573 if (type->code () == TYPE_CODE_CHAR)
8574 return true;
8575
8576 /* Otherwise, assume it's a character type iff it is a discrete type
8577 with a known character type name. */
8578 name = ada_type_name (type);
8579 return (name != NULL
8580 && (type->code () == TYPE_CODE_INT
8581 || type->code () == TYPE_CODE_RANGE)
8582 && (strcmp (name, "character") == 0
8583 || strcmp (name, "wide_character") == 0
8584 || strcmp (name, "wide_wide_character") == 0
8585 || strcmp (name, "unsigned char") == 0));
8586 }
8587
8588 /* True if TYPE appears to be an Ada string type. */
8589
8590 bool
8591 ada_is_string_type (struct type *type)
8592 {
8593 type = ada_check_typedef (type);
8594 if (type != NULL
8595 && type->code () != TYPE_CODE_PTR
8596 && (ada_is_simple_array_type (type)
8597 || ada_is_array_descriptor_type (type))
8598 && ada_array_arity (type) == 1)
8599 {
8600 struct type *elttype = ada_array_element_type (type, 1);
8601
8602 return ada_is_character_type (elttype);
8603 }
8604 else
8605 return false;
8606 }
8607
8608 /* The compiler sometimes provides a parallel XVS type for a given
8609 PAD type. Normally, it is safe to follow the PAD type directly,
8610 but older versions of the compiler have a bug that causes the offset
8611 of its "F" field to be wrong. Following that field in that case
8612 would lead to incorrect results, but this can be worked around
8613 by ignoring the PAD type and using the associated XVS type instead.
8614
8615 Set to True if the debugger should trust the contents of PAD types.
8616 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8617 static bool trust_pad_over_xvs = true;
8618
8619 /* True if TYPE is a struct type introduced by the compiler to force the
8620 alignment of a value. Such types have a single field with a
8621 distinctive name. */
8622
8623 int
8624 ada_is_aligner_type (struct type *type)
8625 {
8626 type = ada_check_typedef (type);
8627
8628 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8629 return 0;
8630
8631 return (type->code () == TYPE_CODE_STRUCT
8632 && type->num_fields () == 1
8633 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8634 }
8635
8636 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8637 the parallel type. */
8638
8639 struct type *
8640 ada_get_base_type (struct type *raw_type)
8641 {
8642 struct type *real_type_namer;
8643 struct type *raw_real_type;
8644
8645 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8646 return raw_type;
8647
8648 if (ada_is_aligner_type (raw_type))
8649 /* The encoding specifies that we should always use the aligner type.
8650 So, even if this aligner type has an associated XVS type, we should
8651 simply ignore it.
8652
8653 According to the compiler gurus, an XVS type parallel to an aligner
8654 type may exist because of a stabs limitation. In stabs, aligner
8655 types are empty because the field has a variable-sized type, and
8656 thus cannot actually be used as an aligner type. As a result,
8657 we need the associated parallel XVS type to decode the type.
8658 Since the policy in the compiler is to not change the internal
8659 representation based on the debugging info format, we sometimes
8660 end up having a redundant XVS type parallel to the aligner type. */
8661 return raw_type;
8662
8663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8664 if (real_type_namer == NULL
8665 || real_type_namer->code () != TYPE_CODE_STRUCT
8666 || real_type_namer->num_fields () != 1)
8667 return raw_type;
8668
8669 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8670 {
8671 /* This is an older encoding form where the base type needs to be
8672 looked up by name. We prefer the newer encoding because it is
8673 more efficient. */
8674 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8675 if (raw_real_type == NULL)
8676 return raw_type;
8677 else
8678 return raw_real_type;
8679 }
8680
8681 /* The field in our XVS type is a reference to the base type. */
8682 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8683 }
8684
8685 /* The type of value designated by TYPE, with all aligners removed. */
8686
8687 struct type *
8688 ada_aligned_type (struct type *type)
8689 {
8690 if (ada_is_aligner_type (type))
8691 return ada_aligned_type (type->field (0).type ());
8692 else
8693 return ada_get_base_type (type);
8694 }
8695
8696
8697 /* The address of the aligned value in an object at address VALADDR
8698 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8699
8700 const gdb_byte *
8701 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8702 {
8703 if (ada_is_aligner_type (type))
8704 return ada_aligned_value_addr (type->field (0).type (),
8705 valaddr +
8706 TYPE_FIELD_BITPOS (type,
8707 0) / TARGET_CHAR_BIT);
8708 else
8709 return valaddr;
8710 }
8711
8712
8713
8714 /* The printed representation of an enumeration literal with encoded
8715 name NAME. The value is good to the next call of ada_enum_name. */
8716 const char *
8717 ada_enum_name (const char *name)
8718 {
8719 static std::string storage;
8720 const char *tmp;
8721
8722 /* First, unqualify the enumeration name:
8723 1. Search for the last '.' character. If we find one, then skip
8724 all the preceding characters, the unqualified name starts
8725 right after that dot.
8726 2. Otherwise, we may be debugging on a target where the compiler
8727 translates dots into "__". Search forward for double underscores,
8728 but stop searching when we hit an overloading suffix, which is
8729 of the form "__" followed by digits. */
8730
8731 tmp = strrchr (name, '.');
8732 if (tmp != NULL)
8733 name = tmp + 1;
8734 else
8735 {
8736 while ((tmp = strstr (name, "__")) != NULL)
8737 {
8738 if (isdigit (tmp[2]))
8739 break;
8740 else
8741 name = tmp + 2;
8742 }
8743 }
8744
8745 if (name[0] == 'Q')
8746 {
8747 int v;
8748
8749 if (name[1] == 'U' || name[1] == 'W')
8750 {
8751 if (sscanf (name + 2, "%x", &v) != 1)
8752 return name;
8753 }
8754 else if (((name[1] >= '0' && name[1] <= '9')
8755 || (name[1] >= 'a' && name[1] <= 'z'))
8756 && name[2] == '\0')
8757 {
8758 storage = string_printf ("'%c'", name[1]);
8759 return storage.c_str ();
8760 }
8761 else
8762 return name;
8763
8764 if (isascii (v) && isprint (v))
8765 storage = string_printf ("'%c'", v);
8766 else if (name[1] == 'U')
8767 storage = string_printf ("[\"%02x\"]", v);
8768 else
8769 storage = string_printf ("[\"%04x\"]", v);
8770
8771 return storage.c_str ();
8772 }
8773 else
8774 {
8775 tmp = strstr (name, "__");
8776 if (tmp == NULL)
8777 tmp = strstr (name, "$");
8778 if (tmp != NULL)
8779 {
8780 storage = std::string (name, tmp - name);
8781 return storage.c_str ();
8782 }
8783
8784 return name;
8785 }
8786 }
8787
8788 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8789 value it wraps. */
8790
8791 static struct value *
8792 unwrap_value (struct value *val)
8793 {
8794 struct type *type = ada_check_typedef (value_type (val));
8795
8796 if (ada_is_aligner_type (type))
8797 {
8798 struct value *v = ada_value_struct_elt (val, "F", 0);
8799 struct type *val_type = ada_check_typedef (value_type (v));
8800
8801 if (ada_type_name (val_type) == NULL)
8802 val_type->set_name (ada_type_name (type));
8803
8804 return unwrap_value (v);
8805 }
8806 else
8807 {
8808 struct type *raw_real_type =
8809 ada_check_typedef (ada_get_base_type (type));
8810
8811 /* If there is no parallel XVS or XVE type, then the value is
8812 already unwrapped. Return it without further modification. */
8813 if ((type == raw_real_type)
8814 && ada_find_parallel_type (type, "___XVE") == NULL)
8815 return val;
8816
8817 return
8818 coerce_unspec_val_to_type
8819 (val, ada_to_fixed_type (raw_real_type, 0,
8820 value_address (val),
8821 NULL, 1));
8822 }
8823 }
8824
8825 /* Given two array types T1 and T2, return nonzero iff both arrays
8826 contain the same number of elements. */
8827
8828 static int
8829 ada_same_array_size_p (struct type *t1, struct type *t2)
8830 {
8831 LONGEST lo1, hi1, lo2, hi2;
8832
8833 /* Get the array bounds in order to verify that the size of
8834 the two arrays match. */
8835 if (!get_array_bounds (t1, &lo1, &hi1)
8836 || !get_array_bounds (t2, &lo2, &hi2))
8837 error (_("unable to determine array bounds"));
8838
8839 /* To make things easier for size comparison, normalize a bit
8840 the case of empty arrays by making sure that the difference
8841 between upper bound and lower bound is always -1. */
8842 if (lo1 > hi1)
8843 hi1 = lo1 - 1;
8844 if (lo2 > hi2)
8845 hi2 = lo2 - 1;
8846
8847 return (hi1 - lo1 == hi2 - lo2);
8848 }
8849
8850 /* Assuming that VAL is an array of integrals, and TYPE represents
8851 an array with the same number of elements, but with wider integral
8852 elements, return an array "casted" to TYPE. In practice, this
8853 means that the returned array is built by casting each element
8854 of the original array into TYPE's (wider) element type. */
8855
8856 static struct value *
8857 ada_promote_array_of_integrals (struct type *type, struct value *val)
8858 {
8859 struct type *elt_type = TYPE_TARGET_TYPE (type);
8860 LONGEST lo, hi;
8861 struct value *res;
8862 LONGEST i;
8863
8864 /* Verify that both val and type are arrays of scalars, and
8865 that the size of val's elements is smaller than the size
8866 of type's element. */
8867 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8868 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8869 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8870 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8871 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8872 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8873
8874 if (!get_array_bounds (type, &lo, &hi))
8875 error (_("unable to determine array bounds"));
8876
8877 res = allocate_value (type);
8878
8879 /* Promote each array element. */
8880 for (i = 0; i < hi - lo + 1; i++)
8881 {
8882 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8883
8884 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8885 value_contents_all (elt), TYPE_LENGTH (elt_type));
8886 }
8887
8888 return res;
8889 }
8890
8891 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8892 return the converted value. */
8893
8894 static struct value *
8895 coerce_for_assign (struct type *type, struct value *val)
8896 {
8897 struct type *type2 = value_type (val);
8898
8899 if (type == type2)
8900 return val;
8901
8902 type2 = ada_check_typedef (type2);
8903 type = ada_check_typedef (type);
8904
8905 if (type2->code () == TYPE_CODE_PTR
8906 && type->code () == TYPE_CODE_ARRAY)
8907 {
8908 val = ada_value_ind (val);
8909 type2 = value_type (val);
8910 }
8911
8912 if (type2->code () == TYPE_CODE_ARRAY
8913 && type->code () == TYPE_CODE_ARRAY)
8914 {
8915 if (!ada_same_array_size_p (type, type2))
8916 error (_("cannot assign arrays of different length"));
8917
8918 if (is_integral_type (TYPE_TARGET_TYPE (type))
8919 && is_integral_type (TYPE_TARGET_TYPE (type2))
8920 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8921 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8922 {
8923 /* Allow implicit promotion of the array elements to
8924 a wider type. */
8925 return ada_promote_array_of_integrals (type, val);
8926 }
8927
8928 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8929 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8930 error (_("Incompatible types in assignment"));
8931 deprecated_set_value_type (val, type);
8932 }
8933 return val;
8934 }
8935
8936 static struct value *
8937 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8938 {
8939 struct value *val;
8940 struct type *type1, *type2;
8941 LONGEST v, v1, v2;
8942
8943 arg1 = coerce_ref (arg1);
8944 arg2 = coerce_ref (arg2);
8945 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8946 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8947
8948 if (type1->code () != TYPE_CODE_INT
8949 || type2->code () != TYPE_CODE_INT)
8950 return value_binop (arg1, arg2, op);
8951
8952 switch (op)
8953 {
8954 case BINOP_MOD:
8955 case BINOP_DIV:
8956 case BINOP_REM:
8957 break;
8958 default:
8959 return value_binop (arg1, arg2, op);
8960 }
8961
8962 v2 = value_as_long (arg2);
8963 if (v2 == 0)
8964 {
8965 const char *name;
8966 if (op == BINOP_MOD)
8967 name = "mod";
8968 else if (op == BINOP_DIV)
8969 name = "/";
8970 else
8971 {
8972 gdb_assert (op == BINOP_REM);
8973 name = "rem";
8974 }
8975
8976 error (_("second operand of %s must not be zero."), name);
8977 }
8978
8979 if (type1->is_unsigned () || op == BINOP_MOD)
8980 return value_binop (arg1, arg2, op);
8981
8982 v1 = value_as_long (arg1);
8983 switch (op)
8984 {
8985 case BINOP_DIV:
8986 v = v1 / v2;
8987 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8988 v += v > 0 ? -1 : 1;
8989 break;
8990 case BINOP_REM:
8991 v = v1 % v2;
8992 if (v * v1 < 0)
8993 v -= v2;
8994 break;
8995 default:
8996 /* Should not reach this point. */
8997 v = 0;
8998 }
8999
9000 val = allocate_value (type1);
9001 store_unsigned_integer (value_contents_raw (val),
9002 TYPE_LENGTH (value_type (val)),
9003 type_byte_order (type1), v);
9004 return val;
9005 }
9006
9007 static int
9008 ada_value_equal (struct value *arg1, struct value *arg2)
9009 {
9010 if (ada_is_direct_array_type (value_type (arg1))
9011 || ada_is_direct_array_type (value_type (arg2)))
9012 {
9013 struct type *arg1_type, *arg2_type;
9014
9015 /* Automatically dereference any array reference before
9016 we attempt to perform the comparison. */
9017 arg1 = ada_coerce_ref (arg1);
9018 arg2 = ada_coerce_ref (arg2);
9019
9020 arg1 = ada_coerce_to_simple_array (arg1);
9021 arg2 = ada_coerce_to_simple_array (arg2);
9022
9023 arg1_type = ada_check_typedef (value_type (arg1));
9024 arg2_type = ada_check_typedef (value_type (arg2));
9025
9026 if (arg1_type->code () != TYPE_CODE_ARRAY
9027 || arg2_type->code () != TYPE_CODE_ARRAY)
9028 error (_("Attempt to compare array with non-array"));
9029 /* FIXME: The following works only for types whose
9030 representations use all bits (no padding or undefined bits)
9031 and do not have user-defined equality. */
9032 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9033 && memcmp (value_contents (arg1), value_contents (arg2),
9034 TYPE_LENGTH (arg1_type)) == 0);
9035 }
9036 return value_equal (arg1, arg2);
9037 }
9038
9039 namespace expr
9040 {
9041
9042 bool
9043 check_objfile (const std::unique_ptr<ada_component> &comp,
9044 struct objfile *objfile)
9045 {
9046 return comp->uses_objfile (objfile);
9047 }
9048
9049 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9050 component of LHS (a simple array or a record). Does not modify the
9051 inferior's memory, nor does it modify LHS (unless LHS ==
9052 CONTAINER). */
9053
9054 static void
9055 assign_component (struct value *container, struct value *lhs, LONGEST index,
9056 struct expression *exp, operation_up &arg)
9057 {
9058 scoped_value_mark mark;
9059
9060 struct value *elt;
9061 struct type *lhs_type = check_typedef (value_type (lhs));
9062
9063 if (lhs_type->code () == TYPE_CODE_ARRAY)
9064 {
9065 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9066 struct value *index_val = value_from_longest (index_type, index);
9067
9068 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9069 }
9070 else
9071 {
9072 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9073 elt = ada_to_fixed_value (elt);
9074 }
9075
9076 ada_aggregate_operation *ag_op
9077 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9078 if (ag_op != nullptr)
9079 ag_op->assign_aggregate (container, elt, exp);
9080 else
9081 value_assign_to_component (container, elt,
9082 arg->evaluate (nullptr, exp,
9083 EVAL_NORMAL));
9084 }
9085
9086 bool
9087 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9088 {
9089 for (const auto &item : m_components)
9090 if (item->uses_objfile (objfile))
9091 return true;
9092 return false;
9093 }
9094
9095 void
9096 ada_aggregate_component::dump (ui_file *stream, int depth)
9097 {
9098 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9099 for (const auto &item : m_components)
9100 item->dump (stream, depth + 1);
9101 }
9102
9103 void
9104 ada_aggregate_component::assign (struct value *container,
9105 struct value *lhs, struct expression *exp,
9106 std::vector<LONGEST> &indices,
9107 LONGEST low, LONGEST high)
9108 {
9109 for (auto &item : m_components)
9110 item->assign (container, lhs, exp, indices, low, high);
9111 }
9112
9113 /* See ada-exp.h. */
9114
9115 value *
9116 ada_aggregate_operation::assign_aggregate (struct value *container,
9117 struct value *lhs,
9118 struct expression *exp)
9119 {
9120 struct type *lhs_type;
9121 LONGEST low_index, high_index;
9122
9123 container = ada_coerce_ref (container);
9124 if (ada_is_direct_array_type (value_type (container)))
9125 container = ada_coerce_to_simple_array (container);
9126 lhs = ada_coerce_ref (lhs);
9127 if (!deprecated_value_modifiable (lhs))
9128 error (_("Left operand of assignment is not a modifiable lvalue."));
9129
9130 lhs_type = check_typedef (value_type (lhs));
9131 if (ada_is_direct_array_type (lhs_type))
9132 {
9133 lhs = ada_coerce_to_simple_array (lhs);
9134 lhs_type = check_typedef (value_type (lhs));
9135 low_index = lhs_type->bounds ()->low.const_val ();
9136 high_index = lhs_type->bounds ()->high.const_val ();
9137 }
9138 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9139 {
9140 low_index = 0;
9141 high_index = num_visible_fields (lhs_type) - 1;
9142 }
9143 else
9144 error (_("Left-hand side must be array or record."));
9145
9146 std::vector<LONGEST> indices (4);
9147 indices[0] = indices[1] = low_index - 1;
9148 indices[2] = indices[3] = high_index + 1;
9149
9150 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9151 low_index, high_index);
9152
9153 return container;
9154 }
9155
9156 bool
9157 ada_positional_component::uses_objfile (struct objfile *objfile)
9158 {
9159 return m_op->uses_objfile (objfile);
9160 }
9161
9162 void
9163 ada_positional_component::dump (ui_file *stream, int depth)
9164 {
9165 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9166 depth, "", m_index);
9167 m_op->dump (stream, depth + 1);
9168 }
9169
9170 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9171 construct, given that the positions are relative to lower bound
9172 LOW, where HIGH is the upper bound. Record the position in
9173 INDICES. CONTAINER is as for assign_aggregate. */
9174 void
9175 ada_positional_component::assign (struct value *container,
9176 struct value *lhs, struct expression *exp,
9177 std::vector<LONGEST> &indices,
9178 LONGEST low, LONGEST high)
9179 {
9180 LONGEST ind = m_index + low;
9181
9182 if (ind - 1 == high)
9183 warning (_("Extra components in aggregate ignored."));
9184 if (ind <= high)
9185 {
9186 add_component_interval (ind, ind, indices);
9187 assign_component (container, lhs, ind, exp, m_op);
9188 }
9189 }
9190
9191 bool
9192 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9193 {
9194 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9195 }
9196
9197 void
9198 ada_discrete_range_association::dump (ui_file *stream, int depth)
9199 {
9200 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9201 m_low->dump (stream, depth + 1);
9202 m_high->dump (stream, depth + 1);
9203 }
9204
9205 void
9206 ada_discrete_range_association::assign (struct value *container,
9207 struct value *lhs,
9208 struct expression *exp,
9209 std::vector<LONGEST> &indices,
9210 LONGEST low, LONGEST high,
9211 operation_up &op)
9212 {
9213 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9214 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9215
9216 if (lower <= upper && (lower < low || upper > high))
9217 error (_("Index in component association out of bounds."));
9218
9219 add_component_interval (lower, upper, indices);
9220 while (lower <= upper)
9221 {
9222 assign_component (container, lhs, lower, exp, op);
9223 lower += 1;
9224 }
9225 }
9226
9227 bool
9228 ada_name_association::uses_objfile (struct objfile *objfile)
9229 {
9230 return m_val->uses_objfile (objfile);
9231 }
9232
9233 void
9234 ada_name_association::dump (ui_file *stream, int depth)
9235 {
9236 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9237 m_val->dump (stream, depth + 1);
9238 }
9239
9240 void
9241 ada_name_association::assign (struct value *container,
9242 struct value *lhs,
9243 struct expression *exp,
9244 std::vector<LONGEST> &indices,
9245 LONGEST low, LONGEST high,
9246 operation_up &op)
9247 {
9248 int index;
9249
9250 if (ada_is_direct_array_type (value_type (lhs)))
9251 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9252 EVAL_NORMAL)));
9253 else
9254 {
9255 ada_string_operation *strop
9256 = dynamic_cast<ada_string_operation *> (m_val.get ());
9257
9258 const char *name;
9259 if (strop != nullptr)
9260 name = strop->get_name ();
9261 else
9262 {
9263 ada_var_value_operation *vvo
9264 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9265 if (vvo != nullptr)
9266 error (_("Invalid record component association."));
9267 name = vvo->get_symbol ()->natural_name ();
9268 }
9269
9270 index = 0;
9271 if (! find_struct_field (name, value_type (lhs), 0,
9272 NULL, NULL, NULL, NULL, &index))
9273 error (_("Unknown component name: %s."), name);
9274 }
9275
9276 add_component_interval (index, index, indices);
9277 assign_component (container, lhs, index, exp, op);
9278 }
9279
9280 bool
9281 ada_choices_component::uses_objfile (struct objfile *objfile)
9282 {
9283 if (m_op->uses_objfile (objfile))
9284 return true;
9285 for (const auto &item : m_assocs)
9286 if (item->uses_objfile (objfile))
9287 return true;
9288 return false;
9289 }
9290
9291 void
9292 ada_choices_component::dump (ui_file *stream, int depth)
9293 {
9294 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9295 m_op->dump (stream, depth + 1);
9296 for (const auto &item : m_assocs)
9297 item->dump (stream, depth + 1);
9298 }
9299
9300 /* Assign into the components of LHS indexed by the OP_CHOICES
9301 construct at *POS, updating *POS past the construct, given that
9302 the allowable indices are LOW..HIGH. Record the indices assigned
9303 to in INDICES. CONTAINER is as for assign_aggregate. */
9304 void
9305 ada_choices_component::assign (struct value *container,
9306 struct value *lhs, struct expression *exp,
9307 std::vector<LONGEST> &indices,
9308 LONGEST low, LONGEST high)
9309 {
9310 for (auto &item : m_assocs)
9311 item->assign (container, lhs, exp, indices, low, high, m_op);
9312 }
9313
9314 bool
9315 ada_others_component::uses_objfile (struct objfile *objfile)
9316 {
9317 return m_op->uses_objfile (objfile);
9318 }
9319
9320 void
9321 ada_others_component::dump (ui_file *stream, int depth)
9322 {
9323 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9324 m_op->dump (stream, depth + 1);
9325 }
9326
9327 /* Assign the value of the expression in the OP_OTHERS construct in
9328 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9329 have not been previously assigned. The index intervals already assigned
9330 are in INDICES. CONTAINER is as for assign_aggregate. */
9331 void
9332 ada_others_component::assign (struct value *container,
9333 struct value *lhs, struct expression *exp,
9334 std::vector<LONGEST> &indices,
9335 LONGEST low, LONGEST high)
9336 {
9337 int num_indices = indices.size ();
9338 for (int i = 0; i < num_indices - 2; i += 2)
9339 {
9340 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9341 assign_component (container, lhs, ind, exp, m_op);
9342 }
9343 }
9344
9345 struct value *
9346 ada_assign_operation::evaluate (struct type *expect_type,
9347 struct expression *exp,
9348 enum noside noside)
9349 {
9350 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9351
9352 ada_aggregate_operation *ag_op
9353 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9354 if (ag_op != nullptr)
9355 {
9356 if (noside != EVAL_NORMAL)
9357 return arg1;
9358
9359 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9360 return ada_value_assign (arg1, arg1);
9361 }
9362 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9363 except if the lhs of our assignment is a convenience variable.
9364 In the case of assigning to a convenience variable, the lhs
9365 should be exactly the result of the evaluation of the rhs. */
9366 struct type *type = value_type (arg1);
9367 if (VALUE_LVAL (arg1) == lval_internalvar)
9368 type = NULL;
9369 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9371 return arg1;
9372 if (VALUE_LVAL (arg1) == lval_internalvar)
9373 {
9374 /* Nothing. */
9375 }
9376 else
9377 arg2 = coerce_for_assign (value_type (arg1), arg2);
9378 return ada_value_assign (arg1, arg2);
9379 }
9380
9381 } /* namespace expr */
9382
9383 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9384 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9385 overlap. */
9386 static void
9387 add_component_interval (LONGEST low, LONGEST high,
9388 std::vector<LONGEST> &indices)
9389 {
9390 int i, j;
9391
9392 int size = indices.size ();
9393 for (i = 0; i < size; i += 2) {
9394 if (high >= indices[i] && low <= indices[i + 1])
9395 {
9396 int kh;
9397
9398 for (kh = i + 2; kh < size; kh += 2)
9399 if (high < indices[kh])
9400 break;
9401 if (low < indices[i])
9402 indices[i] = low;
9403 indices[i + 1] = indices[kh - 1];
9404 if (high > indices[i + 1])
9405 indices[i + 1] = high;
9406 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9407 indices.resize (kh - i - 2);
9408 return;
9409 }
9410 else if (high < indices[i])
9411 break;
9412 }
9413
9414 indices.resize (indices.size () + 2);
9415 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9416 indices[j] = indices[j - 2];
9417 indices[i] = low;
9418 indices[i + 1] = high;
9419 }
9420
9421 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9422 is different. */
9423
9424 static struct value *
9425 ada_value_cast (struct type *type, struct value *arg2)
9426 {
9427 if (type == ada_check_typedef (value_type (arg2)))
9428 return arg2;
9429
9430 return value_cast (type, arg2);
9431 }
9432
9433 /* Evaluating Ada expressions, and printing their result.
9434 ------------------------------------------------------
9435
9436 1. Introduction:
9437 ----------------
9438
9439 We usually evaluate an Ada expression in order to print its value.
9440 We also evaluate an expression in order to print its type, which
9441 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9442 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9443 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9444 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9445 similar.
9446
9447 Evaluating expressions is a little more complicated for Ada entities
9448 than it is for entities in languages such as C. The main reason for
9449 this is that Ada provides types whose definition might be dynamic.
9450 One example of such types is variant records. Or another example
9451 would be an array whose bounds can only be known at run time.
9452
9453 The following description is a general guide as to what should be
9454 done (and what should NOT be done) in order to evaluate an expression
9455 involving such types, and when. This does not cover how the semantic
9456 information is encoded by GNAT as this is covered separatly. For the
9457 document used as the reference for the GNAT encoding, see exp_dbug.ads
9458 in the GNAT sources.
9459
9460 Ideally, we should embed each part of this description next to its
9461 associated code. Unfortunately, the amount of code is so vast right
9462 now that it's hard to see whether the code handling a particular
9463 situation might be duplicated or not. One day, when the code is
9464 cleaned up, this guide might become redundant with the comments
9465 inserted in the code, and we might want to remove it.
9466
9467 2. ``Fixing'' an Entity, the Simple Case:
9468 -----------------------------------------
9469
9470 When evaluating Ada expressions, the tricky issue is that they may
9471 reference entities whose type contents and size are not statically
9472 known. Consider for instance a variant record:
9473
9474 type Rec (Empty : Boolean := True) is record
9475 case Empty is
9476 when True => null;
9477 when False => Value : Integer;
9478 end case;
9479 end record;
9480 Yes : Rec := (Empty => False, Value => 1);
9481 No : Rec := (empty => True);
9482
9483 The size and contents of that record depends on the value of the
9484 descriminant (Rec.Empty). At this point, neither the debugging
9485 information nor the associated type structure in GDB are able to
9486 express such dynamic types. So what the debugger does is to create
9487 "fixed" versions of the type that applies to the specific object.
9488 We also informally refer to this operation as "fixing" an object,
9489 which means creating its associated fixed type.
9490
9491 Example: when printing the value of variable "Yes" above, its fixed
9492 type would look like this:
9493
9494 type Rec is record
9495 Empty : Boolean;
9496 Value : Integer;
9497 end record;
9498
9499 On the other hand, if we printed the value of "No", its fixed type
9500 would become:
9501
9502 type Rec is record
9503 Empty : Boolean;
9504 end record;
9505
9506 Things become a little more complicated when trying to fix an entity
9507 with a dynamic type that directly contains another dynamic type,
9508 such as an array of variant records, for instance. There are
9509 two possible cases: Arrays, and records.
9510
9511 3. ``Fixing'' Arrays:
9512 ---------------------
9513
9514 The type structure in GDB describes an array in terms of its bounds,
9515 and the type of its elements. By design, all elements in the array
9516 have the same type and we cannot represent an array of variant elements
9517 using the current type structure in GDB. When fixing an array,
9518 we cannot fix the array element, as we would potentially need one
9519 fixed type per element of the array. As a result, the best we can do
9520 when fixing an array is to produce an array whose bounds and size
9521 are correct (allowing us to read it from memory), but without having
9522 touched its element type. Fixing each element will be done later,
9523 when (if) necessary.
9524
9525 Arrays are a little simpler to handle than records, because the same
9526 amount of memory is allocated for each element of the array, even if
9527 the amount of space actually used by each element differs from element
9528 to element. Consider for instance the following array of type Rec:
9529
9530 type Rec_Array is array (1 .. 2) of Rec;
9531
9532 The actual amount of memory occupied by each element might be different
9533 from element to element, depending on the value of their discriminant.
9534 But the amount of space reserved for each element in the array remains
9535 fixed regardless. So we simply need to compute that size using
9536 the debugging information available, from which we can then determine
9537 the array size (we multiply the number of elements of the array by
9538 the size of each element).
9539
9540 The simplest case is when we have an array of a constrained element
9541 type. For instance, consider the following type declarations:
9542
9543 type Bounded_String (Max_Size : Integer) is
9544 Length : Integer;
9545 Buffer : String (1 .. Max_Size);
9546 end record;
9547 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9548
9549 In this case, the compiler describes the array as an array of
9550 variable-size elements (identified by its XVS suffix) for which
9551 the size can be read in the parallel XVZ variable.
9552
9553 In the case of an array of an unconstrained element type, the compiler
9554 wraps the array element inside a private PAD type. This type should not
9555 be shown to the user, and must be "unwrap"'ed before printing. Note
9556 that we also use the adjective "aligner" in our code to designate
9557 these wrapper types.
9558
9559 In some cases, the size allocated for each element is statically
9560 known. In that case, the PAD type already has the correct size,
9561 and the array element should remain unfixed.
9562
9563 But there are cases when this size is not statically known.
9564 For instance, assuming that "Five" is an integer variable:
9565
9566 type Dynamic is array (1 .. Five) of Integer;
9567 type Wrapper (Has_Length : Boolean := False) is record
9568 Data : Dynamic;
9569 case Has_Length is
9570 when True => Length : Integer;
9571 when False => null;
9572 end case;
9573 end record;
9574 type Wrapper_Array is array (1 .. 2) of Wrapper;
9575
9576 Hello : Wrapper_Array := (others => (Has_Length => True,
9577 Data => (others => 17),
9578 Length => 1));
9579
9580
9581 The debugging info would describe variable Hello as being an
9582 array of a PAD type. The size of that PAD type is not statically
9583 known, but can be determined using a parallel XVZ variable.
9584 In that case, a copy of the PAD type with the correct size should
9585 be used for the fixed array.
9586
9587 3. ``Fixing'' record type objects:
9588 ----------------------------------
9589
9590 Things are slightly different from arrays in the case of dynamic
9591 record types. In this case, in order to compute the associated
9592 fixed type, we need to determine the size and offset of each of
9593 its components. This, in turn, requires us to compute the fixed
9594 type of each of these components.
9595
9596 Consider for instance the example:
9597
9598 type Bounded_String (Max_Size : Natural) is record
9599 Str : String (1 .. Max_Size);
9600 Length : Natural;
9601 end record;
9602 My_String : Bounded_String (Max_Size => 10);
9603
9604 In that case, the position of field "Length" depends on the size
9605 of field Str, which itself depends on the value of the Max_Size
9606 discriminant. In order to fix the type of variable My_String,
9607 we need to fix the type of field Str. Therefore, fixing a variant
9608 record requires us to fix each of its components.
9609
9610 However, if a component does not have a dynamic size, the component
9611 should not be fixed. In particular, fields that use a PAD type
9612 should not fixed. Here is an example where this might happen
9613 (assuming type Rec above):
9614
9615 type Container (Big : Boolean) is record
9616 First : Rec;
9617 After : Integer;
9618 case Big is
9619 when True => Another : Integer;
9620 when False => null;
9621 end case;
9622 end record;
9623 My_Container : Container := (Big => False,
9624 First => (Empty => True),
9625 After => 42);
9626
9627 In that example, the compiler creates a PAD type for component First,
9628 whose size is constant, and then positions the component After just
9629 right after it. The offset of component After is therefore constant
9630 in this case.
9631
9632 The debugger computes the position of each field based on an algorithm
9633 that uses, among other things, the actual position and size of the field
9634 preceding it. Let's now imagine that the user is trying to print
9635 the value of My_Container. If the type fixing was recursive, we would
9636 end up computing the offset of field After based on the size of the
9637 fixed version of field First. And since in our example First has
9638 only one actual field, the size of the fixed type is actually smaller
9639 than the amount of space allocated to that field, and thus we would
9640 compute the wrong offset of field After.
9641
9642 To make things more complicated, we need to watch out for dynamic
9643 components of variant records (identified by the ___XVL suffix in
9644 the component name). Even if the target type is a PAD type, the size
9645 of that type might not be statically known. So the PAD type needs
9646 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9647 we might end up with the wrong size for our component. This can be
9648 observed with the following type declarations:
9649
9650 type Octal is new Integer range 0 .. 7;
9651 type Octal_Array is array (Positive range <>) of Octal;
9652 pragma Pack (Octal_Array);
9653
9654 type Octal_Buffer (Size : Positive) is record
9655 Buffer : Octal_Array (1 .. Size);
9656 Length : Integer;
9657 end record;
9658
9659 In that case, Buffer is a PAD type whose size is unset and needs
9660 to be computed by fixing the unwrapped type.
9661
9662 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9663 ----------------------------------------------------------
9664
9665 Lastly, when should the sub-elements of an entity that remained unfixed
9666 thus far, be actually fixed?
9667
9668 The answer is: Only when referencing that element. For instance
9669 when selecting one component of a record, this specific component
9670 should be fixed at that point in time. Or when printing the value
9671 of a record, each component should be fixed before its value gets
9672 printed. Similarly for arrays, the element of the array should be
9673 fixed when printing each element of the array, or when extracting
9674 one element out of that array. On the other hand, fixing should
9675 not be performed on the elements when taking a slice of an array!
9676
9677 Note that one of the side effects of miscomputing the offset and
9678 size of each field is that we end up also miscomputing the size
9679 of the containing type. This can have adverse results when computing
9680 the value of an entity. GDB fetches the value of an entity based
9681 on the size of its type, and thus a wrong size causes GDB to fetch
9682 the wrong amount of memory. In the case where the computed size is
9683 too small, GDB fetches too little data to print the value of our
9684 entity. Results in this case are unpredictable, as we usually read
9685 past the buffer containing the data =:-o. */
9686
9687 /* A helper function for TERNOP_IN_RANGE. */
9688
9689 static value *
9690 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9691 enum noside noside,
9692 value *arg1, value *arg2, value *arg3)
9693 {
9694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9696 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9697 return
9698 value_from_longest (type,
9699 (value_less (arg1, arg3)
9700 || value_equal (arg1, arg3))
9701 && (value_less (arg2, arg1)
9702 || value_equal (arg2, arg1)));
9703 }
9704
9705 /* A helper function for UNOP_NEG. */
9706
9707 value *
9708 ada_unop_neg (struct type *expect_type,
9709 struct expression *exp,
9710 enum noside noside, enum exp_opcode op,
9711 struct value *arg1)
9712 {
9713 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9714 return value_neg (arg1);
9715 }
9716
9717 /* A helper function for UNOP_IN_RANGE. */
9718
9719 value *
9720 ada_unop_in_range (struct type *expect_type,
9721 struct expression *exp,
9722 enum noside noside, enum exp_opcode op,
9723 struct value *arg1, struct type *type)
9724 {
9725 struct value *arg2, *arg3;
9726 switch (type->code ())
9727 {
9728 default:
9729 lim_warning (_("Membership test incompletely implemented; "
9730 "always returns true"));
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) 1);
9733
9734 case TYPE_CODE_RANGE:
9735 arg2 = value_from_longest (type,
9736 type->bounds ()->low.const_val ());
9737 arg3 = value_from_longest (type,
9738 type->bounds ()->high.const_val ());
9739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9740 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9741 type = language_bool_type (exp->language_defn, exp->gdbarch);
9742 return
9743 value_from_longest (type,
9744 (value_less (arg1, arg3)
9745 || value_equal (arg1, arg3))
9746 && (value_less (arg2, arg1)
9747 || value_equal (arg2, arg1)));
9748 }
9749 }
9750
9751 /* A helper function for OP_ATR_TAG. */
9752
9753 value *
9754 ada_atr_tag (struct type *expect_type,
9755 struct expression *exp,
9756 enum noside noside, enum exp_opcode op,
9757 struct value *arg1)
9758 {
9759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9760 return value_zero (ada_tag_type (arg1), not_lval);
9761
9762 return ada_value_tag (arg1);
9763 }
9764
9765 /* A helper function for OP_ATR_SIZE. */
9766
9767 value *
9768 ada_atr_size (struct type *expect_type,
9769 struct expression *exp,
9770 enum noside noside, enum exp_opcode op,
9771 struct value *arg1)
9772 {
9773 struct type *type = value_type (arg1);
9774
9775 /* If the argument is a reference, then dereference its type, since
9776 the user is really asking for the size of the actual object,
9777 not the size of the pointer. */
9778 if (type->code () == TYPE_CODE_REF)
9779 type = TYPE_TARGET_TYPE (type);
9780
9781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9782 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9783 else
9784 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9785 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9786 }
9787
9788 /* A helper function for UNOP_ABS. */
9789
9790 value *
9791 ada_abs (struct type *expect_type,
9792 struct expression *exp,
9793 enum noside noside, enum exp_opcode op,
9794 struct value *arg1)
9795 {
9796 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9797 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9798 return value_neg (arg1);
9799 else
9800 return arg1;
9801 }
9802
9803 /* A helper function for BINOP_MUL. */
9804
9805 value *
9806 ada_mult_binop (struct type *expect_type,
9807 struct expression *exp,
9808 enum noside noside, enum exp_opcode op,
9809 struct value *arg1, struct value *arg2)
9810 {
9811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 {
9813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9814 return value_zero (value_type (arg1), not_lval);
9815 }
9816 else
9817 {
9818 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9819 return ada_value_binop (arg1, arg2, op);
9820 }
9821 }
9822
9823 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9824
9825 value *
9826 ada_equal_binop (struct type *expect_type,
9827 struct expression *exp,
9828 enum noside noside, enum exp_opcode op,
9829 struct value *arg1, struct value *arg2)
9830 {
9831 int tem;
9832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9833 tem = 0;
9834 else
9835 {
9836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837 tem = ada_value_equal (arg1, arg2);
9838 }
9839 if (op == BINOP_NOTEQUAL)
9840 tem = !tem;
9841 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9842 return value_from_longest (type, (LONGEST) tem);
9843 }
9844
9845 /* A helper function for TERNOP_SLICE. */
9846
9847 value *
9848 ada_ternop_slice (struct expression *exp,
9849 enum noside noside,
9850 struct value *array, struct value *low_bound_val,
9851 struct value *high_bound_val)
9852 {
9853 LONGEST low_bound;
9854 LONGEST high_bound;
9855
9856 low_bound_val = coerce_ref (low_bound_val);
9857 high_bound_val = coerce_ref (high_bound_val);
9858 low_bound = value_as_long (low_bound_val);
9859 high_bound = value_as_long (high_bound_val);
9860
9861 /* If this is a reference to an aligner type, then remove all
9862 the aligners. */
9863 if (value_type (array)->code () == TYPE_CODE_REF
9864 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9865 TYPE_TARGET_TYPE (value_type (array)) =
9866 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9867
9868 if (ada_is_any_packed_array_type (value_type (array)))
9869 error (_("cannot slice a packed array"));
9870
9871 /* If this is a reference to an array or an array lvalue,
9872 convert to a pointer. */
9873 if (value_type (array)->code () == TYPE_CODE_REF
9874 || (value_type (array)->code () == TYPE_CODE_ARRAY
9875 && VALUE_LVAL (array) == lval_memory))
9876 array = value_addr (array);
9877
9878 if (noside == EVAL_AVOID_SIDE_EFFECTS
9879 && ada_is_array_descriptor_type (ada_check_typedef
9880 (value_type (array))))
9881 return empty_array (ada_type_of_array (array, 0), low_bound,
9882 high_bound);
9883
9884 array = ada_coerce_to_simple_array_ptr (array);
9885
9886 /* If we have more than one level of pointer indirection,
9887 dereference the value until we get only one level. */
9888 while (value_type (array)->code () == TYPE_CODE_PTR
9889 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9890 == TYPE_CODE_PTR))
9891 array = value_ind (array);
9892
9893 /* Make sure we really do have an array type before going further,
9894 to avoid a SEGV when trying to get the index type or the target
9895 type later down the road if the debug info generated by
9896 the compiler is incorrect or incomplete. */
9897 if (!ada_is_simple_array_type (value_type (array)))
9898 error (_("cannot take slice of non-array"));
9899
9900 if (ada_check_typedef (value_type (array))->code ()
9901 == TYPE_CODE_PTR)
9902 {
9903 struct type *type0 = ada_check_typedef (value_type (array));
9904
9905 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9906 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9907 else
9908 {
9909 struct type *arr_type0 =
9910 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9911
9912 return ada_value_slice_from_ptr (array, arr_type0,
9913 longest_to_int (low_bound),
9914 longest_to_int (high_bound));
9915 }
9916 }
9917 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9918 return array;
9919 else if (high_bound < low_bound)
9920 return empty_array (value_type (array), low_bound, high_bound);
9921 else
9922 return ada_value_slice (array, longest_to_int (low_bound),
9923 longest_to_int (high_bound));
9924 }
9925
9926 /* A helper function for BINOP_IN_BOUNDS. */
9927
9928 value *
9929 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9930 struct value *arg1, struct value *arg2, int n)
9931 {
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 {
9934 struct type *type = language_bool_type (exp->language_defn,
9935 exp->gdbarch);
9936 return value_zero (type, not_lval);
9937 }
9938
9939 struct type *type = ada_index_type (value_type (arg2), n, "range");
9940 if (!type)
9941 type = value_type (arg1);
9942
9943 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9944 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9945
9946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9948 type = language_bool_type (exp->language_defn, exp->gdbarch);
9949 return value_from_longest (type,
9950 (value_less (arg1, arg3)
9951 || value_equal (arg1, arg3))
9952 && (value_less (arg2, arg1)
9953 || value_equal (arg2, arg1)));
9954 }
9955
9956 /* A helper function for some attribute operations. */
9957
9958 static value *
9959 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9960 struct value *arg1, struct type *type_arg, int tem)
9961 {
9962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9963 {
9964 if (type_arg == NULL)
9965 type_arg = value_type (arg1);
9966
9967 if (ada_is_constrained_packed_array_type (type_arg))
9968 type_arg = decode_constrained_packed_array_type (type_arg);
9969
9970 if (!discrete_type_p (type_arg))
9971 {
9972 switch (op)
9973 {
9974 default: /* Should never happen. */
9975 error (_("unexpected attribute encountered"));
9976 case OP_ATR_FIRST:
9977 case OP_ATR_LAST:
9978 type_arg = ada_index_type (type_arg, tem,
9979 ada_attribute_name (op));
9980 break;
9981 case OP_ATR_LENGTH:
9982 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9983 break;
9984 }
9985 }
9986
9987 return value_zero (type_arg, not_lval);
9988 }
9989 else if (type_arg == NULL)
9990 {
9991 arg1 = ada_coerce_ref (arg1);
9992
9993 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9994 arg1 = ada_coerce_to_simple_array (arg1);
9995
9996 struct type *type;
9997 if (op == OP_ATR_LENGTH)
9998 type = builtin_type (exp->gdbarch)->builtin_int;
9999 else
10000 {
10001 type = ada_index_type (value_type (arg1), tem,
10002 ada_attribute_name (op));
10003 if (type == NULL)
10004 type = builtin_type (exp->gdbarch)->builtin_int;
10005 }
10006
10007 switch (op)
10008 {
10009 default: /* Should never happen. */
10010 error (_("unexpected attribute encountered"));
10011 case OP_ATR_FIRST:
10012 return value_from_longest
10013 (type, ada_array_bound (arg1, tem, 0));
10014 case OP_ATR_LAST:
10015 return value_from_longest
10016 (type, ada_array_bound (arg1, tem, 1));
10017 case OP_ATR_LENGTH:
10018 return value_from_longest
10019 (type, ada_array_length (arg1, tem));
10020 }
10021 }
10022 else if (discrete_type_p (type_arg))
10023 {
10024 struct type *range_type;
10025 const char *name = ada_type_name (type_arg);
10026
10027 range_type = NULL;
10028 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10029 range_type = to_fixed_range_type (type_arg, NULL);
10030 if (range_type == NULL)
10031 range_type = type_arg;
10032 switch (op)
10033 {
10034 default:
10035 error (_("unexpected attribute encountered"));
10036 case OP_ATR_FIRST:
10037 return value_from_longest
10038 (range_type, ada_discrete_type_low_bound (range_type));
10039 case OP_ATR_LAST:
10040 return value_from_longest
10041 (range_type, ada_discrete_type_high_bound (range_type));
10042 case OP_ATR_LENGTH:
10043 error (_("the 'length attribute applies only to array types"));
10044 }
10045 }
10046 else if (type_arg->code () == TYPE_CODE_FLT)
10047 error (_("unimplemented type attribute"));
10048 else
10049 {
10050 LONGEST low, high;
10051
10052 if (ada_is_constrained_packed_array_type (type_arg))
10053 type_arg = decode_constrained_packed_array_type (type_arg);
10054
10055 struct type *type;
10056 if (op == OP_ATR_LENGTH)
10057 type = builtin_type (exp->gdbarch)->builtin_int;
10058 else
10059 {
10060 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10061 if (type == NULL)
10062 type = builtin_type (exp->gdbarch)->builtin_int;
10063 }
10064
10065 switch (op)
10066 {
10067 default:
10068 error (_("unexpected attribute encountered"));
10069 case OP_ATR_FIRST:
10070 low = ada_array_bound_from_type (type_arg, tem, 0);
10071 return value_from_longest (type, low);
10072 case OP_ATR_LAST:
10073 high = ada_array_bound_from_type (type_arg, tem, 1);
10074 return value_from_longest (type, high);
10075 case OP_ATR_LENGTH:
10076 low = ada_array_bound_from_type (type_arg, tem, 0);
10077 high = ada_array_bound_from_type (type_arg, tem, 1);
10078 return value_from_longest (type, high - low + 1);
10079 }
10080 }
10081 }
10082
10083 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10084
10085 struct value *
10086 ada_binop_minmax (struct type *expect_type,
10087 struct expression *exp,
10088 enum noside noside, enum exp_opcode op,
10089 struct value *arg1, struct value *arg2)
10090 {
10091 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10092 return value_zero (value_type (arg1), not_lval);
10093 else
10094 {
10095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10096 return value_binop (arg1, arg2, op);
10097 }
10098 }
10099
10100 /* A helper function for BINOP_EXP. */
10101
10102 struct value *
10103 ada_binop_exp (struct type *expect_type,
10104 struct expression *exp,
10105 enum noside noside, enum exp_opcode op,
10106 struct value *arg1, struct value *arg2)
10107 {
10108 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10109 return value_zero (value_type (arg1), not_lval);
10110 else
10111 {
10112 /* For integer exponentiation operations,
10113 only promote the first argument. */
10114 if (is_integral_type (value_type (arg2)))
10115 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10116 else
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118
10119 return value_binop (arg1, arg2, op);
10120 }
10121 }
10122
10123 namespace expr
10124 {
10125
10126 value *
10127 ada_wrapped_operation::evaluate (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside)
10130 {
10131 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10132 if (noside == EVAL_NORMAL)
10133 result = unwrap_value (result);
10134
10135 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10136 then we need to perform the conversion manually, because
10137 evaluate_subexp_standard doesn't do it. This conversion is
10138 necessary in Ada because the different kinds of float/fixed
10139 types in Ada have different representations.
10140
10141 Similarly, we need to perform the conversion from OP_LONG
10142 ourselves. */
10143 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10144 result = ada_value_cast (expect_type, result);
10145
10146 return result;
10147 }
10148
10149 value *
10150 ada_string_operation::evaluate (struct type *expect_type,
10151 struct expression *exp,
10152 enum noside noside)
10153 {
10154 value *result = string_operation::evaluate (expect_type, exp, noside);
10155 /* The result type will have code OP_STRING, bashed there from
10156 OP_ARRAY. Bash it back. */
10157 if (value_type (result)->code () == TYPE_CODE_STRING)
10158 value_type (result)->set_code (TYPE_CODE_ARRAY);
10159 return result;
10160 }
10161
10162 value *
10163 ada_qual_operation::evaluate (struct type *expect_type,
10164 struct expression *exp,
10165 enum noside noside)
10166 {
10167 struct type *type = std::get<1> (m_storage);
10168 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10169 }
10170
10171 value *
10172 ada_ternop_range_operation::evaluate (struct type *expect_type,
10173 struct expression *exp,
10174 enum noside noside)
10175 {
10176 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10177 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10178 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10179 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10180 }
10181
10182 value *
10183 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10184 struct expression *exp,
10185 enum noside noside)
10186 {
10187 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10188 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10189
10190 auto do_op = [=] (LONGEST x, LONGEST y)
10191 {
10192 if (std::get<0> (m_storage) == BINOP_ADD)
10193 return x + y;
10194 return x - y;
10195 };
10196
10197 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10198 return (value_from_longest
10199 (value_type (arg1),
10200 do_op (value_as_long (arg1), value_as_long (arg2))));
10201 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10202 return (value_from_longest
10203 (value_type (arg2),
10204 do_op (value_as_long (arg1), value_as_long (arg2))));
10205 /* Preserve the original type for use by the range case below.
10206 We cannot cast the result to a reference type, so if ARG1 is
10207 a reference type, find its underlying type. */
10208 struct type *type = value_type (arg1);
10209 while (type->code () == TYPE_CODE_REF)
10210 type = TYPE_TARGET_TYPE (type);
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10213 /* We need to special-case the result with a range.
10214 This is done for the benefit of "ptype". gdb's Ada support
10215 historically used the LHS to set the result type here, so
10216 preserve this behavior. */
10217 if (type->code () == TYPE_CODE_RANGE)
10218 arg1 = value_cast (type, arg1);
10219 return arg1;
10220 }
10221
10222 value *
10223 ada_unop_atr_operation::evaluate (struct type *expect_type,
10224 struct expression *exp,
10225 enum noside noside)
10226 {
10227 struct type *type_arg = nullptr;
10228 value *val = nullptr;
10229
10230 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10231 {
10232 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10233 EVAL_AVOID_SIDE_EFFECTS);
10234 type_arg = value_type (tem);
10235 }
10236 else
10237 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10238
10239 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10240 val, type_arg, std::get<2> (m_storage));
10241 }
10242
10243 value *
10244 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10245 struct expression *exp,
10246 enum noside noside)
10247 {
10248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10249 return value_zero (expect_type, not_lval);
10250
10251 const bound_minimal_symbol &b = std::get<0> (m_storage);
10252 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10253
10254 val = ada_value_cast (expect_type, val);
10255
10256 /* Follow the Ada language semantics that do not allow taking
10257 an address of the result of a cast (view conversion in Ada). */
10258 if (VALUE_LVAL (val) == lval_memory)
10259 {
10260 if (value_lazy (val))
10261 value_fetch_lazy (val);
10262 VALUE_LVAL (val) = not_lval;
10263 }
10264 return val;
10265 }
10266
10267 value *
10268 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10269 struct expression *exp,
10270 enum noside noside)
10271 {
10272 value *val = evaluate_var_value (noside,
10273 std::get<0> (m_storage).block,
10274 std::get<0> (m_storage).symbol);
10275
10276 val = ada_value_cast (expect_type, val);
10277
10278 /* Follow the Ada language semantics that do not allow taking
10279 an address of the result of a cast (view conversion in Ada). */
10280 if (VALUE_LVAL (val) == lval_memory)
10281 {
10282 if (value_lazy (val))
10283 value_fetch_lazy (val);
10284 VALUE_LVAL (val) = not_lval;
10285 }
10286 return val;
10287 }
10288
10289 value *
10290 ada_var_value_operation::evaluate (struct type *expect_type,
10291 struct expression *exp,
10292 enum noside noside)
10293 {
10294 symbol *sym = std::get<0> (m_storage).symbol;
10295
10296 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10297 /* Only encountered when an unresolved symbol occurs in a
10298 context other than a function call, in which case, it is
10299 invalid. */
10300 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10301 sym->print_name ());
10302
10303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10304 {
10305 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10306 /* Check to see if this is a tagged type. We also need to handle
10307 the case where the type is a reference to a tagged type, but
10308 we have to be careful to exclude pointers to tagged types.
10309 The latter should be shown as usual (as a pointer), whereas
10310 a reference should mostly be transparent to the user. */
10311 if (ada_is_tagged_type (type, 0)
10312 || (type->code () == TYPE_CODE_REF
10313 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10314 {
10315 /* Tagged types are a little special in the fact that the real
10316 type is dynamic and can only be determined by inspecting the
10317 object's tag. This means that we need to get the object's
10318 value first (EVAL_NORMAL) and then extract the actual object
10319 type from its tag.
10320
10321 Note that we cannot skip the final step where we extract
10322 the object type from its tag, because the EVAL_NORMAL phase
10323 results in dynamic components being resolved into fixed ones.
10324 This can cause problems when trying to print the type
10325 description of tagged types whose parent has a dynamic size:
10326 We use the type name of the "_parent" component in order
10327 to print the name of the ancestor type in the type description.
10328 If that component had a dynamic size, the resolution into
10329 a fixed type would result in the loss of that type name,
10330 thus preventing us from printing the name of the ancestor
10331 type in the type description. */
10332 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10333
10334 if (type->code () != TYPE_CODE_REF)
10335 {
10336 struct type *actual_type;
10337
10338 actual_type = type_from_tag (ada_value_tag (arg1));
10339 if (actual_type == NULL)
10340 /* If, for some reason, we were unable to determine
10341 the actual type from the tag, then use the static
10342 approximation that we just computed as a fallback.
10343 This can happen if the debugging information is
10344 incomplete, for instance. */
10345 actual_type = type;
10346 return value_zero (actual_type, not_lval);
10347 }
10348 else
10349 {
10350 /* In the case of a ref, ada_coerce_ref takes care
10351 of determining the actual type. But the evaluation
10352 should return a ref as it should be valid to ask
10353 for its address; so rebuild a ref after coerce. */
10354 arg1 = ada_coerce_ref (arg1);
10355 return value_ref (arg1, TYPE_CODE_REF);
10356 }
10357 }
10358
10359 /* Records and unions for which GNAT encodings have been
10360 generated need to be statically fixed as well.
10361 Otherwise, non-static fixing produces a type where
10362 all dynamic properties are removed, which prevents "ptype"
10363 from being able to completely describe the type.
10364 For instance, a case statement in a variant record would be
10365 replaced by the relevant components based on the actual
10366 value of the discriminants. */
10367 if ((type->code () == TYPE_CODE_STRUCT
10368 && dynamic_template_type (type) != NULL)
10369 || (type->code () == TYPE_CODE_UNION
10370 && ada_find_parallel_type (type, "___XVU") != NULL))
10371 return value_zero (to_static_fixed_type (type), not_lval);
10372 }
10373
10374 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10375 return ada_to_fixed_value (arg1);
10376 }
10377
10378 bool
10379 ada_var_value_operation::resolve (struct expression *exp,
10380 bool deprocedure_p,
10381 bool parse_completion,
10382 innermost_block_tracker *tracker,
10383 struct type *context_type)
10384 {
10385 symbol *sym = std::get<0> (m_storage).symbol;
10386 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10387 {
10388 block_symbol resolved
10389 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10390 context_type, parse_completion,
10391 deprocedure_p, tracker);
10392 std::get<0> (m_storage) = resolved;
10393 }
10394
10395 if (deprocedure_p
10396 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10397 == TYPE_CODE_FUNC))
10398 return true;
10399
10400 return false;
10401 }
10402
10403 value *
10404 ada_atr_val_operation::evaluate (struct type *expect_type,
10405 struct expression *exp,
10406 enum noside noside)
10407 {
10408 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10409 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10410 }
10411
10412 value *
10413 ada_unop_ind_operation::evaluate (struct type *expect_type,
10414 struct expression *exp,
10415 enum noside noside)
10416 {
10417 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10418
10419 struct type *type = ada_check_typedef (value_type (arg1));
10420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10421 {
10422 if (ada_is_array_descriptor_type (type))
10423 /* GDB allows dereferencing GNAT array descriptors. */
10424 {
10425 struct type *arrType = ada_type_of_array (arg1, 0);
10426
10427 if (arrType == NULL)
10428 error (_("Attempt to dereference null array pointer."));
10429 return value_at_lazy (arrType, 0);
10430 }
10431 else if (type->code () == TYPE_CODE_PTR
10432 || type->code () == TYPE_CODE_REF
10433 /* In C you can dereference an array to get the 1st elt. */
10434 || type->code () == TYPE_CODE_ARRAY)
10435 {
10436 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10437 only be determined by inspecting the object's tag.
10438 This means that we need to evaluate completely the
10439 expression in order to get its type. */
10440
10441 if ((type->code () == TYPE_CODE_REF
10442 || type->code () == TYPE_CODE_PTR)
10443 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10444 {
10445 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10446 EVAL_NORMAL);
10447 type = value_type (ada_value_ind (arg1));
10448 }
10449 else
10450 {
10451 type = to_static_fixed_type
10452 (ada_aligned_type
10453 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10454 }
10455 ada_ensure_varsize_limit (type);
10456 return value_zero (type, lval_memory);
10457 }
10458 else if (type->code () == TYPE_CODE_INT)
10459 {
10460 /* GDB allows dereferencing an int. */
10461 if (expect_type == NULL)
10462 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10463 lval_memory);
10464 else
10465 {
10466 expect_type =
10467 to_static_fixed_type (ada_aligned_type (expect_type));
10468 return value_zero (expect_type, lval_memory);
10469 }
10470 }
10471 else
10472 error (_("Attempt to take contents of a non-pointer value."));
10473 }
10474 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10475 type = ada_check_typedef (value_type (arg1));
10476
10477 if (type->code () == TYPE_CODE_INT)
10478 /* GDB allows dereferencing an int. If we were given
10479 the expect_type, then use that as the target type.
10480 Otherwise, assume that the target type is an int. */
10481 {
10482 if (expect_type != NULL)
10483 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10484 arg1));
10485 else
10486 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10487 (CORE_ADDR) value_as_address (arg1));
10488 }
10489
10490 struct type *target_type = (to_static_fixed_type
10491 (ada_aligned_type
10492 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10493 ada_ensure_varsize_limit (target_type);
10494
10495 if (ada_is_array_descriptor_type (type))
10496 /* GDB allows dereferencing GNAT array descriptors. */
10497 return ada_coerce_to_simple_array (arg1);
10498 else
10499 return ada_value_ind (arg1);
10500 }
10501
10502 value *
10503 ada_structop_operation::evaluate (struct type *expect_type,
10504 struct expression *exp,
10505 enum noside noside)
10506 {
10507 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10508 const char *str = std::get<1> (m_storage).c_str ();
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 {
10511 struct type *type;
10512 struct type *type1 = value_type (arg1);
10513
10514 if (ada_is_tagged_type (type1, 1))
10515 {
10516 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10517
10518 /* If the field is not found, check if it exists in the
10519 extension of this object's type. This means that we
10520 need to evaluate completely the expression. */
10521
10522 if (type == NULL)
10523 {
10524 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10525 EVAL_NORMAL);
10526 arg1 = ada_value_struct_elt (arg1, str, 0);
10527 arg1 = unwrap_value (arg1);
10528 type = value_type (ada_to_fixed_value (arg1));
10529 }
10530 }
10531 else
10532 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10533
10534 return value_zero (ada_aligned_type (type), lval_memory);
10535 }
10536 else
10537 {
10538 arg1 = ada_value_struct_elt (arg1, str, 0);
10539 arg1 = unwrap_value (arg1);
10540 return ada_to_fixed_value (arg1);
10541 }
10542 }
10543
10544 value *
10545 ada_funcall_operation::evaluate (struct type *expect_type,
10546 struct expression *exp,
10547 enum noside noside)
10548 {
10549 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10550 int nargs = args_up.size ();
10551 std::vector<value *> argvec (nargs);
10552 operation_up &callee_op = std::get<0> (m_storage);
10553
10554 ada_var_value_operation *avv
10555 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10556 if (avv != nullptr
10557 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10558 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10559 avv->get_symbol ()->print_name ());
10560
10561 value *callee = callee_op->evaluate (nullptr, exp, noside);
10562 for (int i = 0; i < args_up.size (); ++i)
10563 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10564
10565 if (ada_is_constrained_packed_array_type
10566 (desc_base_type (value_type (callee))))
10567 callee = ada_coerce_to_simple_array (callee);
10568 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10569 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10570 /* This is a packed array that has already been fixed, and
10571 therefore already coerced to a simple array. Nothing further
10572 to do. */
10573 ;
10574 else if (value_type (callee)->code () == TYPE_CODE_REF)
10575 {
10576 /* Make sure we dereference references so that all the code below
10577 feels like it's really handling the referenced value. Wrapping
10578 types (for alignment) may be there, so make sure we strip them as
10579 well. */
10580 callee = ada_to_fixed_value (coerce_ref (callee));
10581 }
10582 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10583 && VALUE_LVAL (callee) == lval_memory)
10584 callee = value_addr (callee);
10585
10586 struct type *type = ada_check_typedef (value_type (callee));
10587
10588 /* Ada allows us to implicitly dereference arrays when subscripting
10589 them. So, if this is an array typedef (encoding use for array
10590 access types encoded as fat pointers), strip it now. */
10591 if (type->code () == TYPE_CODE_TYPEDEF)
10592 type = ada_typedef_target_type (type);
10593
10594 if (type->code () == TYPE_CODE_PTR)
10595 {
10596 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10597 {
10598 case TYPE_CODE_FUNC:
10599 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10600 break;
10601 case TYPE_CODE_ARRAY:
10602 break;
10603 case TYPE_CODE_STRUCT:
10604 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10605 callee = ada_value_ind (callee);
10606 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10607 break;
10608 default:
10609 error (_("cannot subscript or call something of type `%s'"),
10610 ada_type_name (value_type (callee)));
10611 break;
10612 }
10613 }
10614
10615 switch (type->code ())
10616 {
10617 case TYPE_CODE_FUNC:
10618 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10619 {
10620 if (TYPE_TARGET_TYPE (type) == NULL)
10621 error_call_unknown_return_type (NULL);
10622 return allocate_value (TYPE_TARGET_TYPE (type));
10623 }
10624 return call_function_by_hand (callee, NULL, argvec);
10625 case TYPE_CODE_INTERNAL_FUNCTION:
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10627 /* We don't know anything about what the internal
10628 function might return, but we have to return
10629 something. */
10630 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10631 not_lval);
10632 else
10633 return call_internal_function (exp->gdbarch, exp->language_defn,
10634 callee, nargs,
10635 argvec.data ());
10636
10637 case TYPE_CODE_STRUCT:
10638 {
10639 int arity;
10640
10641 arity = ada_array_arity (type);
10642 type = ada_array_element_type (type, nargs);
10643 if (type == NULL)
10644 error (_("cannot subscript or call a record"));
10645 if (arity != nargs)
10646 error (_("wrong number of subscripts; expecting %d"), arity);
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return value_zero (ada_aligned_type (type), lval_memory);
10649 return
10650 unwrap_value (ada_value_subscript
10651 (callee, nargs, argvec.data ()));
10652 }
10653 case TYPE_CODE_ARRAY:
10654 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10655 {
10656 type = ada_array_element_type (type, nargs);
10657 if (type == NULL)
10658 error (_("element type of array unknown"));
10659 else
10660 return value_zero (ada_aligned_type (type), lval_memory);
10661 }
10662 return
10663 unwrap_value (ada_value_subscript
10664 (ada_coerce_to_simple_array (callee),
10665 nargs, argvec.data ()));
10666 case TYPE_CODE_PTR: /* Pointer to array */
10667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10668 {
10669 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10670 type = ada_array_element_type (type, nargs);
10671 if (type == NULL)
10672 error (_("element type of array unknown"));
10673 else
10674 return value_zero (ada_aligned_type (type), lval_memory);
10675 }
10676 return
10677 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10678 argvec.data ()));
10679
10680 default:
10681 error (_("Attempt to index or call something other than an "
10682 "array or function"));
10683 }
10684 }
10685
10686 bool
10687 ada_funcall_operation::resolve (struct expression *exp,
10688 bool deprocedure_p,
10689 bool parse_completion,
10690 innermost_block_tracker *tracker,
10691 struct type *context_type)
10692 {
10693 operation_up &callee_op = std::get<0> (m_storage);
10694
10695 ada_var_value_operation *avv
10696 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10697 if (avv == nullptr)
10698 return false;
10699
10700 symbol *sym = avv->get_symbol ();
10701 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10702 return false;
10703
10704 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10705 int nargs = args_up.size ();
10706 std::vector<value *> argvec (nargs);
10707
10708 for (int i = 0; i < args_up.size (); ++i)
10709 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10710
10711 const block *block = avv->get_block ();
10712 block_symbol resolved
10713 = ada_resolve_funcall (sym, block,
10714 context_type, parse_completion,
10715 nargs, argvec.data (),
10716 tracker);
10717
10718 std::get<0> (m_storage)
10719 = make_operation<ada_var_value_operation> (resolved);
10720 return false;
10721 }
10722
10723 bool
10724 ada_ternop_slice_operation::resolve (struct expression *exp,
10725 bool deprocedure_p,
10726 bool parse_completion,
10727 innermost_block_tracker *tracker,
10728 struct type *context_type)
10729 {
10730 /* Historically this check was done during resolution, so we
10731 continue that here. */
10732 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10733 EVAL_AVOID_SIDE_EFFECTS);
10734 if (ada_is_any_packed_array_type (value_type (v)))
10735 error (_("cannot slice a packed array"));
10736 return false;
10737 }
10738
10739 }
10740
10741 \f
10742
10743 /* Return non-zero iff TYPE represents a System.Address type. */
10744
10745 int
10746 ada_is_system_address_type (struct type *type)
10747 {
10748 return (type->name () && strcmp (type->name (), "system__address") == 0);
10749 }
10750
10751 \f
10752
10753 /* Range types */
10754
10755 /* Scan STR beginning at position K for a discriminant name, and
10756 return the value of that discriminant field of DVAL in *PX. If
10757 PNEW_K is not null, put the position of the character beyond the
10758 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10759 not alter *PX and *PNEW_K if unsuccessful. */
10760
10761 static int
10762 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10763 int *pnew_k)
10764 {
10765 static std::string storage;
10766 const char *pstart, *pend, *bound;
10767 struct value *bound_val;
10768
10769 if (dval == NULL || str == NULL || str[k] == '\0')
10770 return 0;
10771
10772 pstart = str + k;
10773 pend = strstr (pstart, "__");
10774 if (pend == NULL)
10775 {
10776 bound = pstart;
10777 k += strlen (bound);
10778 }
10779 else
10780 {
10781 int len = pend - pstart;
10782
10783 /* Strip __ and beyond. */
10784 storage = std::string (pstart, len);
10785 bound = storage.c_str ();
10786 k = pend - str;
10787 }
10788
10789 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10790 if (bound_val == NULL)
10791 return 0;
10792
10793 *px = value_as_long (bound_val);
10794 if (pnew_k != NULL)
10795 *pnew_k = k;
10796 return 1;
10797 }
10798
10799 /* Value of variable named NAME. Only exact matches are considered.
10800 If no such variable found, then if ERR_MSG is null, returns 0, and
10801 otherwise causes an error with message ERR_MSG. */
10802
10803 static struct value *
10804 get_var_value (const char *name, const char *err_msg)
10805 {
10806 std::string quoted_name = add_angle_brackets (name);
10807
10808 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10809
10810 std::vector<struct block_symbol> syms
10811 = ada_lookup_symbol_list_worker (lookup_name,
10812 get_selected_block (0),
10813 VAR_DOMAIN, 1);
10814
10815 if (syms.size () != 1)
10816 {
10817 if (err_msg == NULL)
10818 return 0;
10819 else
10820 error (("%s"), err_msg);
10821 }
10822
10823 return value_of_variable (syms[0].symbol, syms[0].block);
10824 }
10825
10826 /* Value of integer variable named NAME in the current environment.
10827 If no such variable is found, returns false. Otherwise, sets VALUE
10828 to the variable's value and returns true. */
10829
10830 bool
10831 get_int_var_value (const char *name, LONGEST &value)
10832 {
10833 struct value *var_val = get_var_value (name, 0);
10834
10835 if (var_val == 0)
10836 return false;
10837
10838 value = value_as_long (var_val);
10839 return true;
10840 }
10841
10842
10843 /* Return a range type whose base type is that of the range type named
10844 NAME in the current environment, and whose bounds are calculated
10845 from NAME according to the GNAT range encoding conventions.
10846 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10847 corresponding range type from debug information; fall back to using it
10848 if symbol lookup fails. If a new type must be created, allocate it
10849 like ORIG_TYPE was. The bounds information, in general, is encoded
10850 in NAME, the base type given in the named range type. */
10851
10852 static struct type *
10853 to_fixed_range_type (struct type *raw_type, struct value *dval)
10854 {
10855 const char *name;
10856 struct type *base_type;
10857 const char *subtype_info;
10858
10859 gdb_assert (raw_type != NULL);
10860 gdb_assert (raw_type->name () != NULL);
10861
10862 if (raw_type->code () == TYPE_CODE_RANGE)
10863 base_type = TYPE_TARGET_TYPE (raw_type);
10864 else
10865 base_type = raw_type;
10866
10867 name = raw_type->name ();
10868 subtype_info = strstr (name, "___XD");
10869 if (subtype_info == NULL)
10870 {
10871 LONGEST L = ada_discrete_type_low_bound (raw_type);
10872 LONGEST U = ada_discrete_type_high_bound (raw_type);
10873
10874 if (L < INT_MIN || U > INT_MAX)
10875 return raw_type;
10876 else
10877 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10878 L, U);
10879 }
10880 else
10881 {
10882 int prefix_len = subtype_info - name;
10883 LONGEST L, U;
10884 struct type *type;
10885 const char *bounds_str;
10886 int n;
10887
10888 subtype_info += 5;
10889 bounds_str = strchr (subtype_info, '_');
10890 n = 1;
10891
10892 if (*subtype_info == 'L')
10893 {
10894 if (!ada_scan_number (bounds_str, n, &L, &n)
10895 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10896 return raw_type;
10897 if (bounds_str[n] == '_')
10898 n += 2;
10899 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10900 n += 1;
10901 subtype_info += 1;
10902 }
10903 else
10904 {
10905 std::string name_buf = std::string (name, prefix_len) + "___L";
10906 if (!get_int_var_value (name_buf.c_str (), L))
10907 {
10908 lim_warning (_("Unknown lower bound, using 1."));
10909 L = 1;
10910 }
10911 }
10912
10913 if (*subtype_info == 'U')
10914 {
10915 if (!ada_scan_number (bounds_str, n, &U, &n)
10916 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10917 return raw_type;
10918 }
10919 else
10920 {
10921 std::string name_buf = std::string (name, prefix_len) + "___U";
10922 if (!get_int_var_value (name_buf.c_str (), U))
10923 {
10924 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10925 U = L;
10926 }
10927 }
10928
10929 type = create_static_range_type (alloc_type_copy (raw_type),
10930 base_type, L, U);
10931 /* create_static_range_type alters the resulting type's length
10932 to match the size of the base_type, which is not what we want.
10933 Set it back to the original range type's length. */
10934 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10935 type->set_name (name);
10936 return type;
10937 }
10938 }
10939
10940 /* True iff NAME is the name of a range type. */
10941
10942 int
10943 ada_is_range_type_name (const char *name)
10944 {
10945 return (name != NULL && strstr (name, "___XD"));
10946 }
10947 \f
10948
10949 /* Modular types */
10950
10951 /* True iff TYPE is an Ada modular type. */
10952
10953 int
10954 ada_is_modular_type (struct type *type)
10955 {
10956 struct type *subranged_type = get_base_type (type);
10957
10958 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10959 && subranged_type->code () == TYPE_CODE_INT
10960 && subranged_type->is_unsigned ());
10961 }
10962
10963 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10964
10965 ULONGEST
10966 ada_modulus (struct type *type)
10967 {
10968 const dynamic_prop &high = type->bounds ()->high;
10969
10970 if (high.kind () == PROP_CONST)
10971 return (ULONGEST) high.const_val () + 1;
10972
10973 /* If TYPE is unresolved, the high bound might be a location list. Return
10974 0, for lack of a better value to return. */
10975 return 0;
10976 }
10977 \f
10978
10979 /* Ada exception catchpoint support:
10980 ---------------------------------
10981
10982 We support 3 kinds of exception catchpoints:
10983 . catchpoints on Ada exceptions
10984 . catchpoints on unhandled Ada exceptions
10985 . catchpoints on failed assertions
10986
10987 Exceptions raised during failed assertions, or unhandled exceptions
10988 could perfectly be caught with the general catchpoint on Ada exceptions.
10989 However, we can easily differentiate these two special cases, and having
10990 the option to distinguish these two cases from the rest can be useful
10991 to zero-in on certain situations.
10992
10993 Exception catchpoints are a specialized form of breakpoint,
10994 since they rely on inserting breakpoints inside known routines
10995 of the GNAT runtime. The implementation therefore uses a standard
10996 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10997 of breakpoint_ops.
10998
10999 Support in the runtime for exception catchpoints have been changed
11000 a few times already, and these changes affect the implementation
11001 of these catchpoints. In order to be able to support several
11002 variants of the runtime, we use a sniffer that will determine
11003 the runtime variant used by the program being debugged. */
11004
11005 /* Ada's standard exceptions.
11006
11007 The Ada 83 standard also defined Numeric_Error. But there so many
11008 situations where it was unclear from the Ada 83 Reference Manual
11009 (RM) whether Constraint_Error or Numeric_Error should be raised,
11010 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11011 Interpretation saying that anytime the RM says that Numeric_Error
11012 should be raised, the implementation may raise Constraint_Error.
11013 Ada 95 went one step further and pretty much removed Numeric_Error
11014 from the list of standard exceptions (it made it a renaming of
11015 Constraint_Error, to help preserve compatibility when compiling
11016 an Ada83 compiler). As such, we do not include Numeric_Error from
11017 this list of standard exceptions. */
11018
11019 static const char * const standard_exc[] = {
11020 "constraint_error",
11021 "program_error",
11022 "storage_error",
11023 "tasking_error"
11024 };
11025
11026 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11027
11028 /* A structure that describes how to support exception catchpoints
11029 for a given executable. */
11030
11031 struct exception_support_info
11032 {
11033 /* The name of the symbol to break on in order to insert
11034 a catchpoint on exceptions. */
11035 const char *catch_exception_sym;
11036
11037 /* The name of the symbol to break on in order to insert
11038 a catchpoint on unhandled exceptions. */
11039 const char *catch_exception_unhandled_sym;
11040
11041 /* The name of the symbol to break on in order to insert
11042 a catchpoint on failed assertions. */
11043 const char *catch_assert_sym;
11044
11045 /* The name of the symbol to break on in order to insert
11046 a catchpoint on exception handling. */
11047 const char *catch_handlers_sym;
11048
11049 /* Assuming that the inferior just triggered an unhandled exception
11050 catchpoint, this function is responsible for returning the address
11051 in inferior memory where the name of that exception is stored.
11052 Return zero if the address could not be computed. */
11053 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11054 };
11055
11056 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11057 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11058
11059 /* The following exception support info structure describes how to
11060 implement exception catchpoints with the latest version of the
11061 Ada runtime (as of 2019-08-??). */
11062
11063 static const struct exception_support_info default_exception_support_info =
11064 {
11065 "__gnat_debug_raise_exception", /* catch_exception_sym */
11066 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11067 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11068 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11069 ada_unhandled_exception_name_addr
11070 };
11071
11072 /* The following exception support info structure describes how to
11073 implement exception catchpoints with an earlier version of the
11074 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11075
11076 static const struct exception_support_info exception_support_info_v0 =
11077 {
11078 "__gnat_debug_raise_exception", /* catch_exception_sym */
11079 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11080 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11081 "__gnat_begin_handler", /* catch_handlers_sym */
11082 ada_unhandled_exception_name_addr
11083 };
11084
11085 /* The following exception support info structure describes how to
11086 implement exception catchpoints with a slightly older version
11087 of the Ada runtime. */
11088
11089 static const struct exception_support_info exception_support_info_fallback =
11090 {
11091 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11092 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11093 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11094 "__gnat_begin_handler", /* catch_handlers_sym */
11095 ada_unhandled_exception_name_addr_from_raise
11096 };
11097
11098 /* Return nonzero if we can detect the exception support routines
11099 described in EINFO.
11100
11101 This function errors out if an abnormal situation is detected
11102 (for instance, if we find the exception support routines, but
11103 that support is found to be incomplete). */
11104
11105 static int
11106 ada_has_this_exception_support (const struct exception_support_info *einfo)
11107 {
11108 struct symbol *sym;
11109
11110 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11111 that should be compiled with debugging information. As a result, we
11112 expect to find that symbol in the symtabs. */
11113
11114 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11115 if (sym == NULL)
11116 {
11117 /* Perhaps we did not find our symbol because the Ada runtime was
11118 compiled without debugging info, or simply stripped of it.
11119 It happens on some GNU/Linux distributions for instance, where
11120 users have to install a separate debug package in order to get
11121 the runtime's debugging info. In that situation, let the user
11122 know why we cannot insert an Ada exception catchpoint.
11123
11124 Note: Just for the purpose of inserting our Ada exception
11125 catchpoint, we could rely purely on the associated minimal symbol.
11126 But we would be operating in degraded mode anyway, since we are
11127 still lacking the debugging info needed later on to extract
11128 the name of the exception being raised (this name is printed in
11129 the catchpoint message, and is also used when trying to catch
11130 a specific exception). We do not handle this case for now. */
11131 struct bound_minimal_symbol msym
11132 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11133
11134 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11135 error (_("Your Ada runtime appears to be missing some debugging "
11136 "information.\nCannot insert Ada exception catchpoint "
11137 "in this configuration."));
11138
11139 return 0;
11140 }
11141
11142 /* Make sure that the symbol we found corresponds to a function. */
11143
11144 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11145 {
11146 error (_("Symbol \"%s\" is not a function (class = %d)"),
11147 sym->linkage_name (), SYMBOL_CLASS (sym));
11148 return 0;
11149 }
11150
11151 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11152 if (sym == NULL)
11153 {
11154 struct bound_minimal_symbol msym
11155 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11156
11157 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11158 error (_("Your Ada runtime appears to be missing some debugging "
11159 "information.\nCannot insert Ada exception catchpoint "
11160 "in this configuration."));
11161
11162 return 0;
11163 }
11164
11165 /* Make sure that the symbol we found corresponds to a function. */
11166
11167 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11168 {
11169 error (_("Symbol \"%s\" is not a function (class = %d)"),
11170 sym->linkage_name (), SYMBOL_CLASS (sym));
11171 return 0;
11172 }
11173
11174 return 1;
11175 }
11176
11177 /* Inspect the Ada runtime and determine which exception info structure
11178 should be used to provide support for exception catchpoints.
11179
11180 This function will always set the per-inferior exception_info,
11181 or raise an error. */
11182
11183 static void
11184 ada_exception_support_info_sniffer (void)
11185 {
11186 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11187
11188 /* If the exception info is already known, then no need to recompute it. */
11189 if (data->exception_info != NULL)
11190 return;
11191
11192 /* Check the latest (default) exception support info. */
11193 if (ada_has_this_exception_support (&default_exception_support_info))
11194 {
11195 data->exception_info = &default_exception_support_info;
11196 return;
11197 }
11198
11199 /* Try the v0 exception suport info. */
11200 if (ada_has_this_exception_support (&exception_support_info_v0))
11201 {
11202 data->exception_info = &exception_support_info_v0;
11203 return;
11204 }
11205
11206 /* Try our fallback exception suport info. */
11207 if (ada_has_this_exception_support (&exception_support_info_fallback))
11208 {
11209 data->exception_info = &exception_support_info_fallback;
11210 return;
11211 }
11212
11213 /* Sometimes, it is normal for us to not be able to find the routine
11214 we are looking for. This happens when the program is linked with
11215 the shared version of the GNAT runtime, and the program has not been
11216 started yet. Inform the user of these two possible causes if
11217 applicable. */
11218
11219 if (ada_update_initial_language (language_unknown) != language_ada)
11220 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11221
11222 /* If the symbol does not exist, then check that the program is
11223 already started, to make sure that shared libraries have been
11224 loaded. If it is not started, this may mean that the symbol is
11225 in a shared library. */
11226
11227 if (inferior_ptid.pid () == 0)
11228 error (_("Unable to insert catchpoint. Try to start the program first."));
11229
11230 /* At this point, we know that we are debugging an Ada program and
11231 that the inferior has been started, but we still are not able to
11232 find the run-time symbols. That can mean that we are in
11233 configurable run time mode, or that a-except as been optimized
11234 out by the linker... In any case, at this point it is not worth
11235 supporting this feature. */
11236
11237 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11238 }
11239
11240 /* True iff FRAME is very likely to be that of a function that is
11241 part of the runtime system. This is all very heuristic, but is
11242 intended to be used as advice as to what frames are uninteresting
11243 to most users. */
11244
11245 static int
11246 is_known_support_routine (struct frame_info *frame)
11247 {
11248 enum language func_lang;
11249 int i;
11250 const char *fullname;
11251
11252 /* If this code does not have any debugging information (no symtab),
11253 This cannot be any user code. */
11254
11255 symtab_and_line sal = find_frame_sal (frame);
11256 if (sal.symtab == NULL)
11257 return 1;
11258
11259 /* If there is a symtab, but the associated source file cannot be
11260 located, then assume this is not user code: Selecting a frame
11261 for which we cannot display the code would not be very helpful
11262 for the user. This should also take care of case such as VxWorks
11263 where the kernel has some debugging info provided for a few units. */
11264
11265 fullname = symtab_to_fullname (sal.symtab);
11266 if (access (fullname, R_OK) != 0)
11267 return 1;
11268
11269 /* Check the unit filename against the Ada runtime file naming.
11270 We also check the name of the objfile against the name of some
11271 known system libraries that sometimes come with debugging info
11272 too. */
11273
11274 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11275 {
11276 re_comp (known_runtime_file_name_patterns[i]);
11277 if (re_exec (lbasename (sal.symtab->filename)))
11278 return 1;
11279 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11280 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11281 return 1;
11282 }
11283
11284 /* Check whether the function is a GNAT-generated entity. */
11285
11286 gdb::unique_xmalloc_ptr<char> func_name
11287 = find_frame_funname (frame, &func_lang, NULL);
11288 if (func_name == NULL)
11289 return 1;
11290
11291 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11292 {
11293 re_comp (known_auxiliary_function_name_patterns[i]);
11294 if (re_exec (func_name.get ()))
11295 return 1;
11296 }
11297
11298 return 0;
11299 }
11300
11301 /* Find the first frame that contains debugging information and that is not
11302 part of the Ada run-time, starting from FI and moving upward. */
11303
11304 void
11305 ada_find_printable_frame (struct frame_info *fi)
11306 {
11307 for (; fi != NULL; fi = get_prev_frame (fi))
11308 {
11309 if (!is_known_support_routine (fi))
11310 {
11311 select_frame (fi);
11312 break;
11313 }
11314 }
11315
11316 }
11317
11318 /* Assuming that the inferior just triggered an unhandled exception
11319 catchpoint, return the address in inferior memory where the name
11320 of the exception is stored.
11321
11322 Return zero if the address could not be computed. */
11323
11324 static CORE_ADDR
11325 ada_unhandled_exception_name_addr (void)
11326 {
11327 return parse_and_eval_address ("e.full_name");
11328 }
11329
11330 /* Same as ada_unhandled_exception_name_addr, except that this function
11331 should be used when the inferior uses an older version of the runtime,
11332 where the exception name needs to be extracted from a specific frame
11333 several frames up in the callstack. */
11334
11335 static CORE_ADDR
11336 ada_unhandled_exception_name_addr_from_raise (void)
11337 {
11338 int frame_level;
11339 struct frame_info *fi;
11340 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11341
11342 /* To determine the name of this exception, we need to select
11343 the frame corresponding to RAISE_SYM_NAME. This frame is
11344 at least 3 levels up, so we simply skip the first 3 frames
11345 without checking the name of their associated function. */
11346 fi = get_current_frame ();
11347 for (frame_level = 0; frame_level < 3; frame_level += 1)
11348 if (fi != NULL)
11349 fi = get_prev_frame (fi);
11350
11351 while (fi != NULL)
11352 {
11353 enum language func_lang;
11354
11355 gdb::unique_xmalloc_ptr<char> func_name
11356 = find_frame_funname (fi, &func_lang, NULL);
11357 if (func_name != NULL)
11358 {
11359 if (strcmp (func_name.get (),
11360 data->exception_info->catch_exception_sym) == 0)
11361 break; /* We found the frame we were looking for... */
11362 }
11363 fi = get_prev_frame (fi);
11364 }
11365
11366 if (fi == NULL)
11367 return 0;
11368
11369 select_frame (fi);
11370 return parse_and_eval_address ("id.full_name");
11371 }
11372
11373 /* Assuming the inferior just triggered an Ada exception catchpoint
11374 (of any type), return the address in inferior memory where the name
11375 of the exception is stored, if applicable.
11376
11377 Assumes the selected frame is the current frame.
11378
11379 Return zero if the address could not be computed, or if not relevant. */
11380
11381 static CORE_ADDR
11382 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11383 struct breakpoint *b)
11384 {
11385 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11386
11387 switch (ex)
11388 {
11389 case ada_catch_exception:
11390 return (parse_and_eval_address ("e.full_name"));
11391 break;
11392
11393 case ada_catch_exception_unhandled:
11394 return data->exception_info->unhandled_exception_name_addr ();
11395 break;
11396
11397 case ada_catch_handlers:
11398 return 0; /* The runtimes does not provide access to the exception
11399 name. */
11400 break;
11401
11402 case ada_catch_assert:
11403 return 0; /* Exception name is not relevant in this case. */
11404 break;
11405
11406 default:
11407 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11408 break;
11409 }
11410
11411 return 0; /* Should never be reached. */
11412 }
11413
11414 /* Assuming the inferior is stopped at an exception catchpoint,
11415 return the message which was associated to the exception, if
11416 available. Return NULL if the message could not be retrieved.
11417
11418 Note: The exception message can be associated to an exception
11419 either through the use of the Raise_Exception function, or
11420 more simply (Ada 2005 and later), via:
11421
11422 raise Exception_Name with "exception message";
11423
11424 */
11425
11426 static gdb::unique_xmalloc_ptr<char>
11427 ada_exception_message_1 (void)
11428 {
11429 struct value *e_msg_val;
11430 int e_msg_len;
11431
11432 /* For runtimes that support this feature, the exception message
11433 is passed as an unbounded string argument called "message". */
11434 e_msg_val = parse_and_eval ("message");
11435 if (e_msg_val == NULL)
11436 return NULL; /* Exception message not supported. */
11437
11438 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11439 gdb_assert (e_msg_val != NULL);
11440 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11441
11442 /* If the message string is empty, then treat it as if there was
11443 no exception message. */
11444 if (e_msg_len <= 0)
11445 return NULL;
11446
11447 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11448 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11449 e_msg_len);
11450 e_msg.get ()[e_msg_len] = '\0';
11451
11452 return e_msg;
11453 }
11454
11455 /* Same as ada_exception_message_1, except that all exceptions are
11456 contained here (returning NULL instead). */
11457
11458 static gdb::unique_xmalloc_ptr<char>
11459 ada_exception_message (void)
11460 {
11461 gdb::unique_xmalloc_ptr<char> e_msg;
11462
11463 try
11464 {
11465 e_msg = ada_exception_message_1 ();
11466 }
11467 catch (const gdb_exception_error &e)
11468 {
11469 e_msg.reset (nullptr);
11470 }
11471
11472 return e_msg;
11473 }
11474
11475 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11476 any error that ada_exception_name_addr_1 might cause to be thrown.
11477 When an error is intercepted, a warning with the error message is printed,
11478 and zero is returned. */
11479
11480 static CORE_ADDR
11481 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11482 struct breakpoint *b)
11483 {
11484 CORE_ADDR result = 0;
11485
11486 try
11487 {
11488 result = ada_exception_name_addr_1 (ex, b);
11489 }
11490
11491 catch (const gdb_exception_error &e)
11492 {
11493 warning (_("failed to get exception name: %s"), e.what ());
11494 return 0;
11495 }
11496
11497 return result;
11498 }
11499
11500 static std::string ada_exception_catchpoint_cond_string
11501 (const char *excep_string,
11502 enum ada_exception_catchpoint_kind ex);
11503
11504 /* Ada catchpoints.
11505
11506 In the case of catchpoints on Ada exceptions, the catchpoint will
11507 stop the target on every exception the program throws. When a user
11508 specifies the name of a specific exception, we translate this
11509 request into a condition expression (in text form), and then parse
11510 it into an expression stored in each of the catchpoint's locations.
11511 We then use this condition to check whether the exception that was
11512 raised is the one the user is interested in. If not, then the
11513 target is resumed again. We store the name of the requested
11514 exception, in order to be able to re-set the condition expression
11515 when symbols change. */
11516
11517 /* An instance of this type is used to represent an Ada catchpoint
11518 breakpoint location. */
11519
11520 class ada_catchpoint_location : public bp_location
11521 {
11522 public:
11523 ada_catchpoint_location (breakpoint *owner)
11524 : bp_location (owner, bp_loc_software_breakpoint)
11525 {}
11526
11527 /* The condition that checks whether the exception that was raised
11528 is the specific exception the user specified on catchpoint
11529 creation. */
11530 expression_up excep_cond_expr;
11531 };
11532
11533 /* An instance of this type is used to represent an Ada catchpoint. */
11534
11535 struct ada_catchpoint : public breakpoint
11536 {
11537 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11538 : m_kind (kind)
11539 {
11540 }
11541
11542 /* The name of the specific exception the user specified. */
11543 std::string excep_string;
11544
11545 /* What kind of catchpoint this is. */
11546 enum ada_exception_catchpoint_kind m_kind;
11547 };
11548
11549 /* Parse the exception condition string in the context of each of the
11550 catchpoint's locations, and store them for later evaluation. */
11551
11552 static void
11553 create_excep_cond_exprs (struct ada_catchpoint *c,
11554 enum ada_exception_catchpoint_kind ex)
11555 {
11556 /* Nothing to do if there's no specific exception to catch. */
11557 if (c->excep_string.empty ())
11558 return;
11559
11560 /* Same if there are no locations... */
11561 if (c->loc == NULL)
11562 return;
11563
11564 /* Compute the condition expression in text form, from the specific
11565 expection we want to catch. */
11566 std::string cond_string
11567 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11568
11569 /* Iterate over all the catchpoint's locations, and parse an
11570 expression for each. */
11571 for (bp_location *bl : c->locations ())
11572 {
11573 struct ada_catchpoint_location *ada_loc
11574 = (struct ada_catchpoint_location *) bl;
11575 expression_up exp;
11576
11577 if (!bl->shlib_disabled)
11578 {
11579 const char *s;
11580
11581 s = cond_string.c_str ();
11582 try
11583 {
11584 exp = parse_exp_1 (&s, bl->address,
11585 block_for_pc (bl->address),
11586 0);
11587 }
11588 catch (const gdb_exception_error &e)
11589 {
11590 warning (_("failed to reevaluate internal exception condition "
11591 "for catchpoint %d: %s"),
11592 c->number, e.what ());
11593 }
11594 }
11595
11596 ada_loc->excep_cond_expr = std::move (exp);
11597 }
11598 }
11599
11600 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11601 structure for all exception catchpoint kinds. */
11602
11603 static struct bp_location *
11604 allocate_location_exception (struct breakpoint *self)
11605 {
11606 return new ada_catchpoint_location (self);
11607 }
11608
11609 /* Implement the RE_SET method in the breakpoint_ops structure for all
11610 exception catchpoint kinds. */
11611
11612 static void
11613 re_set_exception (struct breakpoint *b)
11614 {
11615 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11616
11617 /* Call the base class's method. This updates the catchpoint's
11618 locations. */
11619 bkpt_breakpoint_ops.re_set (b);
11620
11621 /* Reparse the exception conditional expressions. One for each
11622 location. */
11623 create_excep_cond_exprs (c, c->m_kind);
11624 }
11625
11626 /* Returns true if we should stop for this breakpoint hit. If the
11627 user specified a specific exception, we only want to cause a stop
11628 if the program thrown that exception. */
11629
11630 static int
11631 should_stop_exception (const struct bp_location *bl)
11632 {
11633 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11634 const struct ada_catchpoint_location *ada_loc
11635 = (const struct ada_catchpoint_location *) bl;
11636 int stop;
11637
11638 struct internalvar *var = lookup_internalvar ("_ada_exception");
11639 if (c->m_kind == ada_catch_assert)
11640 clear_internalvar (var);
11641 else
11642 {
11643 try
11644 {
11645 const char *expr;
11646
11647 if (c->m_kind == ada_catch_handlers)
11648 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11649 ".all.occurrence.id");
11650 else
11651 expr = "e";
11652
11653 struct value *exc = parse_and_eval (expr);
11654 set_internalvar (var, exc);
11655 }
11656 catch (const gdb_exception_error &ex)
11657 {
11658 clear_internalvar (var);
11659 }
11660 }
11661
11662 /* With no specific exception, should always stop. */
11663 if (c->excep_string.empty ())
11664 return 1;
11665
11666 if (ada_loc->excep_cond_expr == NULL)
11667 {
11668 /* We will have a NULL expression if back when we were creating
11669 the expressions, this location's had failed to parse. */
11670 return 1;
11671 }
11672
11673 stop = 1;
11674 try
11675 {
11676 struct value *mark;
11677
11678 mark = value_mark ();
11679 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11680 value_free_to_mark (mark);
11681 }
11682 catch (const gdb_exception &ex)
11683 {
11684 exception_fprintf (gdb_stderr, ex,
11685 _("Error in testing exception condition:\n"));
11686 }
11687
11688 return stop;
11689 }
11690
11691 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11692 for all exception catchpoint kinds. */
11693
11694 static void
11695 check_status_exception (bpstat bs)
11696 {
11697 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11698 }
11699
11700 /* Implement the PRINT_IT method in the breakpoint_ops structure
11701 for all exception catchpoint kinds. */
11702
11703 static enum print_stop_action
11704 print_it_exception (bpstat bs)
11705 {
11706 struct ui_out *uiout = current_uiout;
11707 struct breakpoint *b = bs->breakpoint_at;
11708
11709 annotate_catchpoint (b->number);
11710
11711 if (uiout->is_mi_like_p ())
11712 {
11713 uiout->field_string ("reason",
11714 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11715 uiout->field_string ("disp", bpdisp_text (b->disposition));
11716 }
11717
11718 uiout->text (b->disposition == disp_del
11719 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11720 uiout->field_signed ("bkptno", b->number);
11721 uiout->text (", ");
11722
11723 /* ada_exception_name_addr relies on the selected frame being the
11724 current frame. Need to do this here because this function may be
11725 called more than once when printing a stop, and below, we'll
11726 select the first frame past the Ada run-time (see
11727 ada_find_printable_frame). */
11728 select_frame (get_current_frame ());
11729
11730 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11731 switch (c->m_kind)
11732 {
11733 case ada_catch_exception:
11734 case ada_catch_exception_unhandled:
11735 case ada_catch_handlers:
11736 {
11737 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11738 char exception_name[256];
11739
11740 if (addr != 0)
11741 {
11742 read_memory (addr, (gdb_byte *) exception_name,
11743 sizeof (exception_name) - 1);
11744 exception_name [sizeof (exception_name) - 1] = '\0';
11745 }
11746 else
11747 {
11748 /* For some reason, we were unable to read the exception
11749 name. This could happen if the Runtime was compiled
11750 without debugging info, for instance. In that case,
11751 just replace the exception name by the generic string
11752 "exception" - it will read as "an exception" in the
11753 notification we are about to print. */
11754 memcpy (exception_name, "exception", sizeof ("exception"));
11755 }
11756 /* In the case of unhandled exception breakpoints, we print
11757 the exception name as "unhandled EXCEPTION_NAME", to make
11758 it clearer to the user which kind of catchpoint just got
11759 hit. We used ui_out_text to make sure that this extra
11760 info does not pollute the exception name in the MI case. */
11761 if (c->m_kind == ada_catch_exception_unhandled)
11762 uiout->text ("unhandled ");
11763 uiout->field_string ("exception-name", exception_name);
11764 }
11765 break;
11766 case ada_catch_assert:
11767 /* In this case, the name of the exception is not really
11768 important. Just print "failed assertion" to make it clearer
11769 that his program just hit an assertion-failure catchpoint.
11770 We used ui_out_text because this info does not belong in
11771 the MI output. */
11772 uiout->text ("failed assertion");
11773 break;
11774 }
11775
11776 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11777 if (exception_message != NULL)
11778 {
11779 uiout->text (" (");
11780 uiout->field_string ("exception-message", exception_message.get ());
11781 uiout->text (")");
11782 }
11783
11784 uiout->text (" at ");
11785 ada_find_printable_frame (get_current_frame ());
11786
11787 return PRINT_SRC_AND_LOC;
11788 }
11789
11790 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11791 for all exception catchpoint kinds. */
11792
11793 static void
11794 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11795 {
11796 struct ui_out *uiout = current_uiout;
11797 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11798 struct value_print_options opts;
11799
11800 get_user_print_options (&opts);
11801
11802 if (opts.addressprint)
11803 uiout->field_skip ("addr");
11804
11805 annotate_field (5);
11806 switch (c->m_kind)
11807 {
11808 case ada_catch_exception:
11809 if (!c->excep_string.empty ())
11810 {
11811 std::string msg = string_printf (_("`%s' Ada exception"),
11812 c->excep_string.c_str ());
11813
11814 uiout->field_string ("what", msg);
11815 }
11816 else
11817 uiout->field_string ("what", "all Ada exceptions");
11818
11819 break;
11820
11821 case ada_catch_exception_unhandled:
11822 uiout->field_string ("what", "unhandled Ada exceptions");
11823 break;
11824
11825 case ada_catch_handlers:
11826 if (!c->excep_string.empty ())
11827 {
11828 uiout->field_fmt ("what",
11829 _("`%s' Ada exception handlers"),
11830 c->excep_string.c_str ());
11831 }
11832 else
11833 uiout->field_string ("what", "all Ada exceptions handlers");
11834 break;
11835
11836 case ada_catch_assert:
11837 uiout->field_string ("what", "failed Ada assertions");
11838 break;
11839
11840 default:
11841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11842 break;
11843 }
11844 }
11845
11846 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11847 for all exception catchpoint kinds. */
11848
11849 static void
11850 print_mention_exception (struct breakpoint *b)
11851 {
11852 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11853 struct ui_out *uiout = current_uiout;
11854
11855 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11856 : _("Catchpoint "));
11857 uiout->field_signed ("bkptno", b->number);
11858 uiout->text (": ");
11859
11860 switch (c->m_kind)
11861 {
11862 case ada_catch_exception:
11863 if (!c->excep_string.empty ())
11864 {
11865 std::string info = string_printf (_("`%s' Ada exception"),
11866 c->excep_string.c_str ());
11867 uiout->text (info);
11868 }
11869 else
11870 uiout->text (_("all Ada exceptions"));
11871 break;
11872
11873 case ada_catch_exception_unhandled:
11874 uiout->text (_("unhandled Ada exceptions"));
11875 break;
11876
11877 case ada_catch_handlers:
11878 if (!c->excep_string.empty ())
11879 {
11880 std::string info
11881 = string_printf (_("`%s' Ada exception handlers"),
11882 c->excep_string.c_str ());
11883 uiout->text (info);
11884 }
11885 else
11886 uiout->text (_("all Ada exceptions handlers"));
11887 break;
11888
11889 case ada_catch_assert:
11890 uiout->text (_("failed Ada assertions"));
11891 break;
11892
11893 default:
11894 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11895 break;
11896 }
11897 }
11898
11899 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11900 for all exception catchpoint kinds. */
11901
11902 static void
11903 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11904 {
11905 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11906
11907 switch (c->m_kind)
11908 {
11909 case ada_catch_exception:
11910 fprintf_filtered (fp, "catch exception");
11911 if (!c->excep_string.empty ())
11912 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11913 break;
11914
11915 case ada_catch_exception_unhandled:
11916 fprintf_filtered (fp, "catch exception unhandled");
11917 break;
11918
11919 case ada_catch_handlers:
11920 fprintf_filtered (fp, "catch handlers");
11921 break;
11922
11923 case ada_catch_assert:
11924 fprintf_filtered (fp, "catch assert");
11925 break;
11926
11927 default:
11928 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11929 }
11930 print_recreate_thread (b, fp);
11931 }
11932
11933 /* Virtual tables for various breakpoint types. */
11934 static struct breakpoint_ops catch_exception_breakpoint_ops;
11935 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11936 static struct breakpoint_ops catch_assert_breakpoint_ops;
11937 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11938
11939 /* See ada-lang.h. */
11940
11941 bool
11942 is_ada_exception_catchpoint (breakpoint *bp)
11943 {
11944 return (bp->ops == &catch_exception_breakpoint_ops
11945 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11946 || bp->ops == &catch_assert_breakpoint_ops
11947 || bp->ops == &catch_handlers_breakpoint_ops);
11948 }
11949
11950 /* Split the arguments specified in a "catch exception" command.
11951 Set EX to the appropriate catchpoint type.
11952 Set EXCEP_STRING to the name of the specific exception if
11953 specified by the user.
11954 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11955 "catch handlers" command. False otherwise.
11956 If a condition is found at the end of the arguments, the condition
11957 expression is stored in COND_STRING (memory must be deallocated
11958 after use). Otherwise COND_STRING is set to NULL. */
11959
11960 static void
11961 catch_ada_exception_command_split (const char *args,
11962 bool is_catch_handlers_cmd,
11963 enum ada_exception_catchpoint_kind *ex,
11964 std::string *excep_string,
11965 std::string *cond_string)
11966 {
11967 std::string exception_name;
11968
11969 exception_name = extract_arg (&args);
11970 if (exception_name == "if")
11971 {
11972 /* This is not an exception name; this is the start of a condition
11973 expression for a catchpoint on all exceptions. So, "un-get"
11974 this token, and set exception_name to NULL. */
11975 exception_name.clear ();
11976 args -= 2;
11977 }
11978
11979 /* Check to see if we have a condition. */
11980
11981 args = skip_spaces (args);
11982 if (startswith (args, "if")
11983 && (isspace (args[2]) || args[2] == '\0'))
11984 {
11985 args += 2;
11986 args = skip_spaces (args);
11987
11988 if (args[0] == '\0')
11989 error (_("Condition missing after `if' keyword"));
11990 *cond_string = args;
11991
11992 args += strlen (args);
11993 }
11994
11995 /* Check that we do not have any more arguments. Anything else
11996 is unexpected. */
11997
11998 if (args[0] != '\0')
11999 error (_("Junk at end of expression"));
12000
12001 if (is_catch_handlers_cmd)
12002 {
12003 /* Catch handling of exceptions. */
12004 *ex = ada_catch_handlers;
12005 *excep_string = exception_name;
12006 }
12007 else if (exception_name.empty ())
12008 {
12009 /* Catch all exceptions. */
12010 *ex = ada_catch_exception;
12011 excep_string->clear ();
12012 }
12013 else if (exception_name == "unhandled")
12014 {
12015 /* Catch unhandled exceptions. */
12016 *ex = ada_catch_exception_unhandled;
12017 excep_string->clear ();
12018 }
12019 else
12020 {
12021 /* Catch a specific exception. */
12022 *ex = ada_catch_exception;
12023 *excep_string = exception_name;
12024 }
12025 }
12026
12027 /* Return the name of the symbol on which we should break in order to
12028 implement a catchpoint of the EX kind. */
12029
12030 static const char *
12031 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12032 {
12033 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12034
12035 gdb_assert (data->exception_info != NULL);
12036
12037 switch (ex)
12038 {
12039 case ada_catch_exception:
12040 return (data->exception_info->catch_exception_sym);
12041 break;
12042 case ada_catch_exception_unhandled:
12043 return (data->exception_info->catch_exception_unhandled_sym);
12044 break;
12045 case ada_catch_assert:
12046 return (data->exception_info->catch_assert_sym);
12047 break;
12048 case ada_catch_handlers:
12049 return (data->exception_info->catch_handlers_sym);
12050 break;
12051 default:
12052 internal_error (__FILE__, __LINE__,
12053 _("unexpected catchpoint kind (%d)"), ex);
12054 }
12055 }
12056
12057 /* Return the breakpoint ops "virtual table" used for catchpoints
12058 of the EX kind. */
12059
12060 static const struct breakpoint_ops *
12061 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12062 {
12063 switch (ex)
12064 {
12065 case ada_catch_exception:
12066 return (&catch_exception_breakpoint_ops);
12067 break;
12068 case ada_catch_exception_unhandled:
12069 return (&catch_exception_unhandled_breakpoint_ops);
12070 break;
12071 case ada_catch_assert:
12072 return (&catch_assert_breakpoint_ops);
12073 break;
12074 case ada_catch_handlers:
12075 return (&catch_handlers_breakpoint_ops);
12076 break;
12077 default:
12078 internal_error (__FILE__, __LINE__,
12079 _("unexpected catchpoint kind (%d)"), ex);
12080 }
12081 }
12082
12083 /* Return the condition that will be used to match the current exception
12084 being raised with the exception that the user wants to catch. This
12085 assumes that this condition is used when the inferior just triggered
12086 an exception catchpoint.
12087 EX: the type of catchpoints used for catching Ada exceptions. */
12088
12089 static std::string
12090 ada_exception_catchpoint_cond_string (const char *excep_string,
12091 enum ada_exception_catchpoint_kind ex)
12092 {
12093 int i;
12094 bool is_standard_exc = false;
12095 std::string result;
12096
12097 if (ex == ada_catch_handlers)
12098 {
12099 /* For exception handlers catchpoints, the condition string does
12100 not use the same parameter as for the other exceptions. */
12101 result = ("long_integer (GNAT_GCC_exception_Access"
12102 "(gcc_exception).all.occurrence.id)");
12103 }
12104 else
12105 result = "long_integer (e)";
12106
12107 /* The standard exceptions are a special case. They are defined in
12108 runtime units that have been compiled without debugging info; if
12109 EXCEP_STRING is the not-fully-qualified name of a standard
12110 exception (e.g. "constraint_error") then, during the evaluation
12111 of the condition expression, the symbol lookup on this name would
12112 *not* return this standard exception. The catchpoint condition
12113 may then be set only on user-defined exceptions which have the
12114 same not-fully-qualified name (e.g. my_package.constraint_error).
12115
12116 To avoid this unexcepted behavior, these standard exceptions are
12117 systematically prefixed by "standard". This means that "catch
12118 exception constraint_error" is rewritten into "catch exception
12119 standard.constraint_error".
12120
12121 If an exception named constraint_error is defined in another package of
12122 the inferior program, then the only way to specify this exception as a
12123 breakpoint condition is to use its fully-qualified named:
12124 e.g. my_package.constraint_error. */
12125
12126 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12127 {
12128 if (strcmp (standard_exc [i], excep_string) == 0)
12129 {
12130 is_standard_exc = true;
12131 break;
12132 }
12133 }
12134
12135 result += " = ";
12136
12137 if (is_standard_exc)
12138 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12139 else
12140 string_appendf (result, "long_integer (&%s)", excep_string);
12141
12142 return result;
12143 }
12144
12145 /* Return the symtab_and_line that should be used to insert an exception
12146 catchpoint of the TYPE kind.
12147
12148 ADDR_STRING returns the name of the function where the real
12149 breakpoint that implements the catchpoints is set, depending on the
12150 type of catchpoint we need to create. */
12151
12152 static struct symtab_and_line
12153 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12154 std::string *addr_string, const struct breakpoint_ops **ops)
12155 {
12156 const char *sym_name;
12157 struct symbol *sym;
12158
12159 /* First, find out which exception support info to use. */
12160 ada_exception_support_info_sniffer ();
12161
12162 /* Then lookup the function on which we will break in order to catch
12163 the Ada exceptions requested by the user. */
12164 sym_name = ada_exception_sym_name (ex);
12165 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12166
12167 if (sym == NULL)
12168 error (_("Catchpoint symbol not found: %s"), sym_name);
12169
12170 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12171 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12172
12173 /* Set ADDR_STRING. */
12174 *addr_string = sym_name;
12175
12176 /* Set OPS. */
12177 *ops = ada_exception_breakpoint_ops (ex);
12178
12179 return find_function_start_sal (sym, 1);
12180 }
12181
12182 /* Create an Ada exception catchpoint.
12183
12184 EX_KIND is the kind of exception catchpoint to be created.
12185
12186 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12187 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12188 of the exception to which this catchpoint applies.
12189
12190 COND_STRING, if not empty, is the catchpoint condition.
12191
12192 TEMPFLAG, if nonzero, means that the underlying breakpoint
12193 should be temporary.
12194
12195 FROM_TTY is the usual argument passed to all commands implementations. */
12196
12197 void
12198 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12199 enum ada_exception_catchpoint_kind ex_kind,
12200 const std::string &excep_string,
12201 const std::string &cond_string,
12202 int tempflag,
12203 int disabled,
12204 int from_tty)
12205 {
12206 std::string addr_string;
12207 const struct breakpoint_ops *ops = NULL;
12208 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12209
12210 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12211 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12212 ops, tempflag, disabled, from_tty);
12213 c->excep_string = excep_string;
12214 create_excep_cond_exprs (c.get (), ex_kind);
12215 if (!cond_string.empty ())
12216 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12217 install_breakpoint (0, std::move (c), 1);
12218 }
12219
12220 /* Implement the "catch exception" command. */
12221
12222 static void
12223 catch_ada_exception_command (const char *arg_entry, int from_tty,
12224 struct cmd_list_element *command)
12225 {
12226 const char *arg = arg_entry;
12227 struct gdbarch *gdbarch = get_current_arch ();
12228 int tempflag;
12229 enum ada_exception_catchpoint_kind ex_kind;
12230 std::string excep_string;
12231 std::string cond_string;
12232
12233 tempflag = command->context () == CATCH_TEMPORARY;
12234
12235 if (!arg)
12236 arg = "";
12237 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12238 &cond_string);
12239 create_ada_exception_catchpoint (gdbarch, ex_kind,
12240 excep_string, cond_string,
12241 tempflag, 1 /* enabled */,
12242 from_tty);
12243 }
12244
12245 /* Implement the "catch handlers" command. */
12246
12247 static void
12248 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12249 struct cmd_list_element *command)
12250 {
12251 const char *arg = arg_entry;
12252 struct gdbarch *gdbarch = get_current_arch ();
12253 int tempflag;
12254 enum ada_exception_catchpoint_kind ex_kind;
12255 std::string excep_string;
12256 std::string cond_string;
12257
12258 tempflag = command->context () == CATCH_TEMPORARY;
12259
12260 if (!arg)
12261 arg = "";
12262 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12263 &cond_string);
12264 create_ada_exception_catchpoint (gdbarch, ex_kind,
12265 excep_string, cond_string,
12266 tempflag, 1 /* enabled */,
12267 from_tty);
12268 }
12269
12270 /* Completion function for the Ada "catch" commands. */
12271
12272 static void
12273 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12274 const char *text, const char *word)
12275 {
12276 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12277
12278 for (const ada_exc_info &info : exceptions)
12279 {
12280 if (startswith (info.name, word))
12281 tracker.add_completion (make_unique_xstrdup (info.name));
12282 }
12283 }
12284
12285 /* Split the arguments specified in a "catch assert" command.
12286
12287 ARGS contains the command's arguments (or the empty string if
12288 no arguments were passed).
12289
12290 If ARGS contains a condition, set COND_STRING to that condition
12291 (the memory needs to be deallocated after use). */
12292
12293 static void
12294 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12295 {
12296 args = skip_spaces (args);
12297
12298 /* Check whether a condition was provided. */
12299 if (startswith (args, "if")
12300 && (isspace (args[2]) || args[2] == '\0'))
12301 {
12302 args += 2;
12303 args = skip_spaces (args);
12304 if (args[0] == '\0')
12305 error (_("condition missing after `if' keyword"));
12306 cond_string.assign (args);
12307 }
12308
12309 /* Otherwise, there should be no other argument at the end of
12310 the command. */
12311 else if (args[0] != '\0')
12312 error (_("Junk at end of arguments."));
12313 }
12314
12315 /* Implement the "catch assert" command. */
12316
12317 static void
12318 catch_assert_command (const char *arg_entry, int from_tty,
12319 struct cmd_list_element *command)
12320 {
12321 const char *arg = arg_entry;
12322 struct gdbarch *gdbarch = get_current_arch ();
12323 int tempflag;
12324 std::string cond_string;
12325
12326 tempflag = command->context () == CATCH_TEMPORARY;
12327
12328 if (!arg)
12329 arg = "";
12330 catch_ada_assert_command_split (arg, cond_string);
12331 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12332 "", cond_string,
12333 tempflag, 1 /* enabled */,
12334 from_tty);
12335 }
12336
12337 /* Return non-zero if the symbol SYM is an Ada exception object. */
12338
12339 static int
12340 ada_is_exception_sym (struct symbol *sym)
12341 {
12342 const char *type_name = SYMBOL_TYPE (sym)->name ();
12343
12344 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12345 && SYMBOL_CLASS (sym) != LOC_BLOCK
12346 && SYMBOL_CLASS (sym) != LOC_CONST
12347 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12348 && type_name != NULL && strcmp (type_name, "exception") == 0);
12349 }
12350
12351 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12352 Ada exception object. This matches all exceptions except the ones
12353 defined by the Ada language. */
12354
12355 static int
12356 ada_is_non_standard_exception_sym (struct symbol *sym)
12357 {
12358 int i;
12359
12360 if (!ada_is_exception_sym (sym))
12361 return 0;
12362
12363 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12364 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12365 return 0; /* A standard exception. */
12366
12367 /* Numeric_Error is also a standard exception, so exclude it.
12368 See the STANDARD_EXC description for more details as to why
12369 this exception is not listed in that array. */
12370 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12371 return 0;
12372
12373 return 1;
12374 }
12375
12376 /* A helper function for std::sort, comparing two struct ada_exc_info
12377 objects.
12378
12379 The comparison is determined first by exception name, and then
12380 by exception address. */
12381
12382 bool
12383 ada_exc_info::operator< (const ada_exc_info &other) const
12384 {
12385 int result;
12386
12387 result = strcmp (name, other.name);
12388 if (result < 0)
12389 return true;
12390 if (result == 0 && addr < other.addr)
12391 return true;
12392 return false;
12393 }
12394
12395 bool
12396 ada_exc_info::operator== (const ada_exc_info &other) const
12397 {
12398 return addr == other.addr && strcmp (name, other.name) == 0;
12399 }
12400
12401 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12402 routine, but keeping the first SKIP elements untouched.
12403
12404 All duplicates are also removed. */
12405
12406 static void
12407 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12408 int skip)
12409 {
12410 std::sort (exceptions->begin () + skip, exceptions->end ());
12411 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12412 exceptions->end ());
12413 }
12414
12415 /* Add all exceptions defined by the Ada standard whose name match
12416 a regular expression.
12417
12418 If PREG is not NULL, then this regexp_t object is used to
12419 perform the symbol name matching. Otherwise, no name-based
12420 filtering is performed.
12421
12422 EXCEPTIONS is a vector of exceptions to which matching exceptions
12423 gets pushed. */
12424
12425 static void
12426 ada_add_standard_exceptions (compiled_regex *preg,
12427 std::vector<ada_exc_info> *exceptions)
12428 {
12429 int i;
12430
12431 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12432 {
12433 if (preg == NULL
12434 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12435 {
12436 struct bound_minimal_symbol msymbol
12437 = ada_lookup_simple_minsym (standard_exc[i]);
12438
12439 if (msymbol.minsym != NULL)
12440 {
12441 struct ada_exc_info info
12442 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12443
12444 exceptions->push_back (info);
12445 }
12446 }
12447 }
12448 }
12449
12450 /* Add all Ada exceptions defined locally and accessible from the given
12451 FRAME.
12452
12453 If PREG is not NULL, then this regexp_t object is used to
12454 perform the symbol name matching. Otherwise, no name-based
12455 filtering is performed.
12456
12457 EXCEPTIONS is a vector of exceptions to which matching exceptions
12458 gets pushed. */
12459
12460 static void
12461 ada_add_exceptions_from_frame (compiled_regex *preg,
12462 struct frame_info *frame,
12463 std::vector<ada_exc_info> *exceptions)
12464 {
12465 const struct block *block = get_frame_block (frame, 0);
12466
12467 while (block != 0)
12468 {
12469 struct block_iterator iter;
12470 struct symbol *sym;
12471
12472 ALL_BLOCK_SYMBOLS (block, iter, sym)
12473 {
12474 switch (SYMBOL_CLASS (sym))
12475 {
12476 case LOC_TYPEDEF:
12477 case LOC_BLOCK:
12478 case LOC_CONST:
12479 break;
12480 default:
12481 if (ada_is_exception_sym (sym))
12482 {
12483 struct ada_exc_info info = {sym->print_name (),
12484 SYMBOL_VALUE_ADDRESS (sym)};
12485
12486 exceptions->push_back (info);
12487 }
12488 }
12489 }
12490 if (BLOCK_FUNCTION (block) != NULL)
12491 break;
12492 block = BLOCK_SUPERBLOCK (block);
12493 }
12494 }
12495
12496 /* Return true if NAME matches PREG or if PREG is NULL. */
12497
12498 static bool
12499 name_matches_regex (const char *name, compiled_regex *preg)
12500 {
12501 return (preg == NULL
12502 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12503 }
12504
12505 /* Add all exceptions defined globally whose name name match
12506 a regular expression, excluding standard exceptions.
12507
12508 The reason we exclude standard exceptions is that they need
12509 to be handled separately: Standard exceptions are defined inside
12510 a runtime unit which is normally not compiled with debugging info,
12511 and thus usually do not show up in our symbol search. However,
12512 if the unit was in fact built with debugging info, we need to
12513 exclude them because they would duplicate the entry we found
12514 during the special loop that specifically searches for those
12515 standard exceptions.
12516
12517 If PREG is not NULL, then this regexp_t object is used to
12518 perform the symbol name matching. Otherwise, no name-based
12519 filtering is performed.
12520
12521 EXCEPTIONS is a vector of exceptions to which matching exceptions
12522 gets pushed. */
12523
12524 static void
12525 ada_add_global_exceptions (compiled_regex *preg,
12526 std::vector<ada_exc_info> *exceptions)
12527 {
12528 /* In Ada, the symbol "search name" is a linkage name, whereas the
12529 regular expression used to do the matching refers to the natural
12530 name. So match against the decoded name. */
12531 expand_symtabs_matching (NULL,
12532 lookup_name_info::match_any (),
12533 [&] (const char *search_name)
12534 {
12535 std::string decoded = ada_decode (search_name);
12536 return name_matches_regex (decoded.c_str (), preg);
12537 },
12538 NULL,
12539 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12540 VARIABLES_DOMAIN);
12541
12542 for (objfile *objfile : current_program_space->objfiles ())
12543 {
12544 for (compunit_symtab *s : objfile->compunits ())
12545 {
12546 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12547 int i;
12548
12549 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12550 {
12551 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12552 struct block_iterator iter;
12553 struct symbol *sym;
12554
12555 ALL_BLOCK_SYMBOLS (b, iter, sym)
12556 if (ada_is_non_standard_exception_sym (sym)
12557 && name_matches_regex (sym->natural_name (), preg))
12558 {
12559 struct ada_exc_info info
12560 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12561
12562 exceptions->push_back (info);
12563 }
12564 }
12565 }
12566 }
12567 }
12568
12569 /* Implements ada_exceptions_list with the regular expression passed
12570 as a regex_t, rather than a string.
12571
12572 If not NULL, PREG is used to filter out exceptions whose names
12573 do not match. Otherwise, all exceptions are listed. */
12574
12575 static std::vector<ada_exc_info>
12576 ada_exceptions_list_1 (compiled_regex *preg)
12577 {
12578 std::vector<ada_exc_info> result;
12579 int prev_len;
12580
12581 /* First, list the known standard exceptions. These exceptions
12582 need to be handled separately, as they are usually defined in
12583 runtime units that have been compiled without debugging info. */
12584
12585 ada_add_standard_exceptions (preg, &result);
12586
12587 /* Next, find all exceptions whose scope is local and accessible
12588 from the currently selected frame. */
12589
12590 if (has_stack_frames ())
12591 {
12592 prev_len = result.size ();
12593 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12594 &result);
12595 if (result.size () > prev_len)
12596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12597 }
12598
12599 /* Add all exceptions whose scope is global. */
12600
12601 prev_len = result.size ();
12602 ada_add_global_exceptions (preg, &result);
12603 if (result.size () > prev_len)
12604 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12605
12606 return result;
12607 }
12608
12609 /* Return a vector of ada_exc_info.
12610
12611 If REGEXP is NULL, all exceptions are included in the result.
12612 Otherwise, it should contain a valid regular expression,
12613 and only the exceptions whose names match that regular expression
12614 are included in the result.
12615
12616 The exceptions are sorted in the following order:
12617 - Standard exceptions (defined by the Ada language), in
12618 alphabetical order;
12619 - Exceptions only visible from the current frame, in
12620 alphabetical order;
12621 - Exceptions whose scope is global, in alphabetical order. */
12622
12623 std::vector<ada_exc_info>
12624 ada_exceptions_list (const char *regexp)
12625 {
12626 if (regexp == NULL)
12627 return ada_exceptions_list_1 (NULL);
12628
12629 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12630 return ada_exceptions_list_1 (&reg);
12631 }
12632
12633 /* Implement the "info exceptions" command. */
12634
12635 static void
12636 info_exceptions_command (const char *regexp, int from_tty)
12637 {
12638 struct gdbarch *gdbarch = get_current_arch ();
12639
12640 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12641
12642 if (regexp != NULL)
12643 printf_filtered
12644 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12645 else
12646 printf_filtered (_("All defined Ada exceptions:\n"));
12647
12648 for (const ada_exc_info &info : exceptions)
12649 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12650 }
12651
12652 \f
12653 /* Language vector */
12654
12655 /* symbol_name_matcher_ftype adapter for wild_match. */
12656
12657 static bool
12658 do_wild_match (const char *symbol_search_name,
12659 const lookup_name_info &lookup_name,
12660 completion_match_result *comp_match_res)
12661 {
12662 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12663 }
12664
12665 /* symbol_name_matcher_ftype adapter for full_match. */
12666
12667 static bool
12668 do_full_match (const char *symbol_search_name,
12669 const lookup_name_info &lookup_name,
12670 completion_match_result *comp_match_res)
12671 {
12672 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12673
12674 /* If both symbols start with "_ada_", just let the loop below
12675 handle the comparison. However, if only the symbol name starts
12676 with "_ada_", skip the prefix and let the match proceed as
12677 usual. */
12678 if (startswith (symbol_search_name, "_ada_")
12679 && !startswith (lname, "_ada"))
12680 symbol_search_name += 5;
12681
12682 int uscore_count = 0;
12683 while (*lname != '\0')
12684 {
12685 if (*symbol_search_name != *lname)
12686 {
12687 if (*symbol_search_name == 'B' && uscore_count == 2
12688 && symbol_search_name[1] == '_')
12689 {
12690 symbol_search_name += 2;
12691 while (isdigit (*symbol_search_name))
12692 ++symbol_search_name;
12693 if (symbol_search_name[0] == '_'
12694 && symbol_search_name[1] == '_')
12695 {
12696 symbol_search_name += 2;
12697 continue;
12698 }
12699 }
12700 return false;
12701 }
12702
12703 if (*symbol_search_name == '_')
12704 ++uscore_count;
12705 else
12706 uscore_count = 0;
12707
12708 ++symbol_search_name;
12709 ++lname;
12710 }
12711
12712 return is_name_suffix (symbol_search_name);
12713 }
12714
12715 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12716
12717 static bool
12718 do_exact_match (const char *symbol_search_name,
12719 const lookup_name_info &lookup_name,
12720 completion_match_result *comp_match_res)
12721 {
12722 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12723 }
12724
12725 /* Build the Ada lookup name for LOOKUP_NAME. */
12726
12727 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12728 {
12729 gdb::string_view user_name = lookup_name.name ();
12730
12731 if (!user_name.empty () && user_name[0] == '<')
12732 {
12733 if (user_name.back () == '>')
12734 m_encoded_name
12735 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12736 else
12737 m_encoded_name
12738 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12739 m_encoded_p = true;
12740 m_verbatim_p = true;
12741 m_wild_match_p = false;
12742 m_standard_p = false;
12743 }
12744 else
12745 {
12746 m_verbatim_p = false;
12747
12748 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12749
12750 if (!m_encoded_p)
12751 {
12752 const char *folded = ada_fold_name (user_name);
12753 m_encoded_name = ada_encode_1 (folded, false);
12754 if (m_encoded_name.empty ())
12755 m_encoded_name = gdb::to_string (user_name);
12756 }
12757 else
12758 m_encoded_name = gdb::to_string (user_name);
12759
12760 /* Handle the 'package Standard' special case. See description
12761 of m_standard_p. */
12762 if (startswith (m_encoded_name.c_str (), "standard__"))
12763 {
12764 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12765 m_standard_p = true;
12766 }
12767 else
12768 m_standard_p = false;
12769
12770 /* If the name contains a ".", then the user is entering a fully
12771 qualified entity name, and the match must not be done in wild
12772 mode. Similarly, if the user wants to complete what looks
12773 like an encoded name, the match must not be done in wild
12774 mode. Also, in the standard__ special case always do
12775 non-wild matching. */
12776 m_wild_match_p
12777 = (lookup_name.match_type () != symbol_name_match_type::FULL
12778 && !m_encoded_p
12779 && !m_standard_p
12780 && user_name.find ('.') == std::string::npos);
12781 }
12782 }
12783
12784 /* symbol_name_matcher_ftype method for Ada. This only handles
12785 completion mode. */
12786
12787 static bool
12788 ada_symbol_name_matches (const char *symbol_search_name,
12789 const lookup_name_info &lookup_name,
12790 completion_match_result *comp_match_res)
12791 {
12792 return lookup_name.ada ().matches (symbol_search_name,
12793 lookup_name.match_type (),
12794 comp_match_res);
12795 }
12796
12797 /* A name matcher that matches the symbol name exactly, with
12798 strcmp. */
12799
12800 static bool
12801 literal_symbol_name_matcher (const char *symbol_search_name,
12802 const lookup_name_info &lookup_name,
12803 completion_match_result *comp_match_res)
12804 {
12805 gdb::string_view name_view = lookup_name.name ();
12806
12807 if (lookup_name.completion_mode ()
12808 ? (strncmp (symbol_search_name, name_view.data (),
12809 name_view.size ()) == 0)
12810 : symbol_search_name == name_view)
12811 {
12812 if (comp_match_res != NULL)
12813 comp_match_res->set_match (symbol_search_name);
12814 return true;
12815 }
12816 else
12817 return false;
12818 }
12819
12820 /* Implement the "get_symbol_name_matcher" language_defn method for
12821 Ada. */
12822
12823 static symbol_name_matcher_ftype *
12824 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12825 {
12826 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12827 return literal_symbol_name_matcher;
12828
12829 if (lookup_name.completion_mode ())
12830 return ada_symbol_name_matches;
12831 else
12832 {
12833 if (lookup_name.ada ().wild_match_p ())
12834 return do_wild_match;
12835 else if (lookup_name.ada ().verbatim_p ())
12836 return do_exact_match;
12837 else
12838 return do_full_match;
12839 }
12840 }
12841
12842 /* Class representing the Ada language. */
12843
12844 class ada_language : public language_defn
12845 {
12846 public:
12847 ada_language ()
12848 : language_defn (language_ada)
12849 { /* Nothing. */ }
12850
12851 /* See language.h. */
12852
12853 const char *name () const override
12854 { return "ada"; }
12855
12856 /* See language.h. */
12857
12858 const char *natural_name () const override
12859 { return "Ada"; }
12860
12861 /* See language.h. */
12862
12863 const std::vector<const char *> &filename_extensions () const override
12864 {
12865 static const std::vector<const char *> extensions
12866 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12867 return extensions;
12868 }
12869
12870 /* Print an array element index using the Ada syntax. */
12871
12872 void print_array_index (struct type *index_type,
12873 LONGEST index,
12874 struct ui_file *stream,
12875 const value_print_options *options) const override
12876 {
12877 struct value *index_value = val_atr (index_type, index);
12878
12879 value_print (index_value, stream, options);
12880 fprintf_filtered (stream, " => ");
12881 }
12882
12883 /* Implement the "read_var_value" language_defn method for Ada. */
12884
12885 struct value *read_var_value (struct symbol *var,
12886 const struct block *var_block,
12887 struct frame_info *frame) const override
12888 {
12889 /* The only case where default_read_var_value is not sufficient
12890 is when VAR is a renaming... */
12891 if (frame != nullptr)
12892 {
12893 const struct block *frame_block = get_frame_block (frame, NULL);
12894 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12895 return ada_read_renaming_var_value (var, frame_block);
12896 }
12897
12898 /* This is a typical case where we expect the default_read_var_value
12899 function to work. */
12900 return language_defn::read_var_value (var, var_block, frame);
12901 }
12902
12903 /* See language.h. */
12904 void language_arch_info (struct gdbarch *gdbarch,
12905 struct language_arch_info *lai) const override
12906 {
12907 const struct builtin_type *builtin = builtin_type (gdbarch);
12908
12909 /* Helper function to allow shorter lines below. */
12910 auto add = [&] (struct type *t)
12911 {
12912 lai->add_primitive_type (t);
12913 };
12914
12915 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12916 0, "integer"));
12917 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12918 0, "long_integer"));
12919 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12920 0, "short_integer"));
12921 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12922 0, "character");
12923 lai->set_string_char_type (char_type);
12924 add (char_type);
12925 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12926 "float", gdbarch_float_format (gdbarch)));
12927 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12928 "long_float", gdbarch_double_format (gdbarch)));
12929 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12930 0, "long_long_integer"));
12931 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12932 "long_long_float",
12933 gdbarch_long_double_format (gdbarch)));
12934 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12935 0, "natural"));
12936 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12937 0, "positive"));
12938 add (builtin->builtin_void);
12939
12940 struct type *system_addr_ptr
12941 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12942 "void"));
12943 system_addr_ptr->set_name ("system__address");
12944 add (system_addr_ptr);
12945
12946 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12947 type. This is a signed integral type whose size is the same as
12948 the size of addresses. */
12949 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12950 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12951 "storage_offset"));
12952
12953 lai->set_bool_type (builtin->builtin_bool);
12954 }
12955
12956 /* See language.h. */
12957
12958 bool iterate_over_symbols
12959 (const struct block *block, const lookup_name_info &name,
12960 domain_enum domain,
12961 gdb::function_view<symbol_found_callback_ftype> callback) const override
12962 {
12963 std::vector<struct block_symbol> results
12964 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12965 for (block_symbol &sym : results)
12966 {
12967 if (!callback (&sym))
12968 return false;
12969 }
12970
12971 return true;
12972 }
12973
12974 /* See language.h. */
12975 bool sniff_from_mangled_name (const char *mangled,
12976 char **out) const override
12977 {
12978 std::string demangled = ada_decode (mangled);
12979
12980 *out = NULL;
12981
12982 if (demangled != mangled && demangled[0] != '<')
12983 {
12984 /* Set the gsymbol language to Ada, but still return 0.
12985 Two reasons for that:
12986
12987 1. For Ada, we prefer computing the symbol's decoded name
12988 on the fly rather than pre-compute it, in order to save
12989 memory (Ada projects are typically very large).
12990
12991 2. There are some areas in the definition of the GNAT
12992 encoding where, with a bit of bad luck, we might be able
12993 to decode a non-Ada symbol, generating an incorrect
12994 demangled name (Eg: names ending with "TB" for instance
12995 are identified as task bodies and so stripped from
12996 the decoded name returned).
12997
12998 Returning true, here, but not setting *DEMANGLED, helps us get
12999 a little bit of the best of both worlds. Because we're last,
13000 we should not affect any of the other languages that were
13001 able to demangle the symbol before us; we get to correctly
13002 tag Ada symbols as such; and even if we incorrectly tagged a
13003 non-Ada symbol, which should be rare, any routing through the
13004 Ada language should be transparent (Ada tries to behave much
13005 like C/C++ with non-Ada symbols). */
13006 return true;
13007 }
13008
13009 return false;
13010 }
13011
13012 /* See language.h. */
13013
13014 char *demangle_symbol (const char *mangled, int options) const override
13015 {
13016 return ada_la_decode (mangled, options);
13017 }
13018
13019 /* See language.h. */
13020
13021 void print_type (struct type *type, const char *varstring,
13022 struct ui_file *stream, int show, int level,
13023 const struct type_print_options *flags) const override
13024 {
13025 ada_print_type (type, varstring, stream, show, level, flags);
13026 }
13027
13028 /* See language.h. */
13029
13030 const char *word_break_characters (void) const override
13031 {
13032 return ada_completer_word_break_characters;
13033 }
13034
13035 /* See language.h. */
13036
13037 void collect_symbol_completion_matches (completion_tracker &tracker,
13038 complete_symbol_mode mode,
13039 symbol_name_match_type name_match_type,
13040 const char *text, const char *word,
13041 enum type_code code) const override
13042 {
13043 struct symbol *sym;
13044 const struct block *b, *surrounding_static_block = 0;
13045 struct block_iterator iter;
13046
13047 gdb_assert (code == TYPE_CODE_UNDEF);
13048
13049 lookup_name_info lookup_name (text, name_match_type, true);
13050
13051 /* First, look at the partial symtab symbols. */
13052 expand_symtabs_matching (NULL,
13053 lookup_name,
13054 NULL,
13055 NULL,
13056 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13057 ALL_DOMAIN);
13058
13059 /* At this point scan through the misc symbol vectors and add each
13060 symbol you find to the list. Eventually we want to ignore
13061 anything that isn't a text symbol (everything else will be
13062 handled by the psymtab code above). */
13063
13064 for (objfile *objfile : current_program_space->objfiles ())
13065 {
13066 for (minimal_symbol *msymbol : objfile->msymbols ())
13067 {
13068 QUIT;
13069
13070 if (completion_skip_symbol (mode, msymbol))
13071 continue;
13072
13073 language symbol_language = msymbol->language ();
13074
13075 /* Ada minimal symbols won't have their language set to Ada. If
13076 we let completion_list_add_name compare using the
13077 default/C-like matcher, then when completing e.g., symbols in a
13078 package named "pck", we'd match internal Ada symbols like
13079 "pckS", which are invalid in an Ada expression, unless you wrap
13080 them in '<' '>' to request a verbatim match.
13081
13082 Unfortunately, some Ada encoded names successfully demangle as
13083 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13084 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13085 with the wrong language set. Paper over that issue here. */
13086 if (symbol_language == language_auto
13087 || symbol_language == language_cplus)
13088 symbol_language = language_ada;
13089
13090 completion_list_add_name (tracker,
13091 symbol_language,
13092 msymbol->linkage_name (),
13093 lookup_name, text, word);
13094 }
13095 }
13096
13097 /* Search upwards from currently selected frame (so that we can
13098 complete on local vars. */
13099
13100 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13101 {
13102 if (!BLOCK_SUPERBLOCK (b))
13103 surrounding_static_block = b; /* For elmin of dups */
13104
13105 ALL_BLOCK_SYMBOLS (b, iter, sym)
13106 {
13107 if (completion_skip_symbol (mode, sym))
13108 continue;
13109
13110 completion_list_add_name (tracker,
13111 sym->language (),
13112 sym->linkage_name (),
13113 lookup_name, text, word);
13114 }
13115 }
13116
13117 /* Go through the symtabs and check the externs and statics for
13118 symbols which match. */
13119
13120 for (objfile *objfile : current_program_space->objfiles ())
13121 {
13122 for (compunit_symtab *s : objfile->compunits ())
13123 {
13124 QUIT;
13125 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13126 ALL_BLOCK_SYMBOLS (b, iter, sym)
13127 {
13128 if (completion_skip_symbol (mode, sym))
13129 continue;
13130
13131 completion_list_add_name (tracker,
13132 sym->language (),
13133 sym->linkage_name (),
13134 lookup_name, text, word);
13135 }
13136 }
13137 }
13138
13139 for (objfile *objfile : current_program_space->objfiles ())
13140 {
13141 for (compunit_symtab *s : objfile->compunits ())
13142 {
13143 QUIT;
13144 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13145 /* Don't do this block twice. */
13146 if (b == surrounding_static_block)
13147 continue;
13148 ALL_BLOCK_SYMBOLS (b, iter, sym)
13149 {
13150 if (completion_skip_symbol (mode, sym))
13151 continue;
13152
13153 completion_list_add_name (tracker,
13154 sym->language (),
13155 sym->linkage_name (),
13156 lookup_name, text, word);
13157 }
13158 }
13159 }
13160 }
13161
13162 /* See language.h. */
13163
13164 gdb::unique_xmalloc_ptr<char> watch_location_expression
13165 (struct type *type, CORE_ADDR addr) const override
13166 {
13167 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13168 std::string name = type_to_string (type);
13169 return gdb::unique_xmalloc_ptr<char>
13170 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13171 }
13172
13173 /* See language.h. */
13174
13175 void value_print (struct value *val, struct ui_file *stream,
13176 const struct value_print_options *options) const override
13177 {
13178 return ada_value_print (val, stream, options);
13179 }
13180
13181 /* See language.h. */
13182
13183 void value_print_inner
13184 (struct value *val, struct ui_file *stream, int recurse,
13185 const struct value_print_options *options) const override
13186 {
13187 return ada_value_print_inner (val, stream, recurse, options);
13188 }
13189
13190 /* See language.h. */
13191
13192 struct block_symbol lookup_symbol_nonlocal
13193 (const char *name, const struct block *block,
13194 const domain_enum domain) const override
13195 {
13196 struct block_symbol sym;
13197
13198 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13199 if (sym.symbol != NULL)
13200 return sym;
13201
13202 /* If we haven't found a match at this point, try the primitive
13203 types. In other languages, this search is performed before
13204 searching for global symbols in order to short-circuit that
13205 global-symbol search if it happens that the name corresponds
13206 to a primitive type. But we cannot do the same in Ada, because
13207 it is perfectly legitimate for a program to declare a type which
13208 has the same name as a standard type. If looking up a type in
13209 that situation, we have traditionally ignored the primitive type
13210 in favor of user-defined types. This is why, unlike most other
13211 languages, we search the primitive types this late and only after
13212 having searched the global symbols without success. */
13213
13214 if (domain == VAR_DOMAIN)
13215 {
13216 struct gdbarch *gdbarch;
13217
13218 if (block == NULL)
13219 gdbarch = target_gdbarch ();
13220 else
13221 gdbarch = block_gdbarch (block);
13222 sym.symbol
13223 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13224 if (sym.symbol != NULL)
13225 return sym;
13226 }
13227
13228 return {};
13229 }
13230
13231 /* See language.h. */
13232
13233 int parser (struct parser_state *ps) const override
13234 {
13235 warnings_issued = 0;
13236 return ada_parse (ps);
13237 }
13238
13239 /* See language.h. */
13240
13241 void emitchar (int ch, struct type *chtype,
13242 struct ui_file *stream, int quoter) const override
13243 {
13244 ada_emit_char (ch, chtype, stream, quoter, 1);
13245 }
13246
13247 /* See language.h. */
13248
13249 void printchar (int ch, struct type *chtype,
13250 struct ui_file *stream) const override
13251 {
13252 ada_printchar (ch, chtype, stream);
13253 }
13254
13255 /* See language.h. */
13256
13257 void printstr (struct ui_file *stream, struct type *elttype,
13258 const gdb_byte *string, unsigned int length,
13259 const char *encoding, int force_ellipses,
13260 const struct value_print_options *options) const override
13261 {
13262 ada_printstr (stream, elttype, string, length, encoding,
13263 force_ellipses, options);
13264 }
13265
13266 /* See language.h. */
13267
13268 void print_typedef (struct type *type, struct symbol *new_symbol,
13269 struct ui_file *stream) const override
13270 {
13271 ada_print_typedef (type, new_symbol, stream);
13272 }
13273
13274 /* See language.h. */
13275
13276 bool is_string_type_p (struct type *type) const override
13277 {
13278 return ada_is_string_type (type);
13279 }
13280
13281 /* See language.h. */
13282
13283 const char *struct_too_deep_ellipsis () const override
13284 { return "(...)"; }
13285
13286 /* See language.h. */
13287
13288 bool c_style_arrays_p () const override
13289 { return false; }
13290
13291 /* See language.h. */
13292
13293 bool store_sym_names_in_linkage_form_p () const override
13294 { return true; }
13295
13296 /* See language.h. */
13297
13298 const struct lang_varobj_ops *varobj_ops () const override
13299 { return &ada_varobj_ops; }
13300
13301 protected:
13302 /* See language.h. */
13303
13304 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13305 (const lookup_name_info &lookup_name) const override
13306 {
13307 return ada_get_symbol_name_matcher (lookup_name);
13308 }
13309 };
13310
13311 /* Single instance of the Ada language class. */
13312
13313 static ada_language ada_language_defn;
13314
13315 /* Command-list for the "set/show ada" prefix command. */
13316 static struct cmd_list_element *set_ada_list;
13317 static struct cmd_list_element *show_ada_list;
13318
13319 static void
13320 initialize_ada_catchpoint_ops (void)
13321 {
13322 struct breakpoint_ops *ops;
13323
13324 initialize_breakpoint_ops ();
13325
13326 ops = &catch_exception_breakpoint_ops;
13327 *ops = bkpt_breakpoint_ops;
13328 ops->allocate_location = allocate_location_exception;
13329 ops->re_set = re_set_exception;
13330 ops->check_status = check_status_exception;
13331 ops->print_it = print_it_exception;
13332 ops->print_one = print_one_exception;
13333 ops->print_mention = print_mention_exception;
13334 ops->print_recreate = print_recreate_exception;
13335
13336 ops = &catch_exception_unhandled_breakpoint_ops;
13337 *ops = bkpt_breakpoint_ops;
13338 ops->allocate_location = allocate_location_exception;
13339 ops->re_set = re_set_exception;
13340 ops->check_status = check_status_exception;
13341 ops->print_it = print_it_exception;
13342 ops->print_one = print_one_exception;
13343 ops->print_mention = print_mention_exception;
13344 ops->print_recreate = print_recreate_exception;
13345
13346 ops = &catch_assert_breakpoint_ops;
13347 *ops = bkpt_breakpoint_ops;
13348 ops->allocate_location = allocate_location_exception;
13349 ops->re_set = re_set_exception;
13350 ops->check_status = check_status_exception;
13351 ops->print_it = print_it_exception;
13352 ops->print_one = print_one_exception;
13353 ops->print_mention = print_mention_exception;
13354 ops->print_recreate = print_recreate_exception;
13355
13356 ops = &catch_handlers_breakpoint_ops;
13357 *ops = bkpt_breakpoint_ops;
13358 ops->allocate_location = allocate_location_exception;
13359 ops->re_set = re_set_exception;
13360 ops->check_status = check_status_exception;
13361 ops->print_it = print_it_exception;
13362 ops->print_one = print_one_exception;
13363 ops->print_mention = print_mention_exception;
13364 ops->print_recreate = print_recreate_exception;
13365 }
13366
13367 /* This module's 'new_objfile' observer. */
13368
13369 static void
13370 ada_new_objfile_observer (struct objfile *objfile)
13371 {
13372 ada_clear_symbol_cache ();
13373 }
13374
13375 /* This module's 'free_objfile' observer. */
13376
13377 static void
13378 ada_free_objfile_observer (struct objfile *objfile)
13379 {
13380 ada_clear_symbol_cache ();
13381 }
13382
13383 void _initialize_ada_language ();
13384 void
13385 _initialize_ada_language ()
13386 {
13387 initialize_ada_catchpoint_ops ();
13388
13389 add_basic_prefix_cmd ("ada", no_class,
13390 _("Prefix command for changing Ada-specific settings."),
13391 &set_ada_list, 0, &setlist);
13392
13393 add_show_prefix_cmd ("ada", no_class,
13394 _("Generic command for showing Ada-specific settings."),
13395 &show_ada_list, 0, &showlist);
13396
13397 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13398 &trust_pad_over_xvs, _("\
13399 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13400 Show whether an optimization trusting PAD types over XVS types is activated."),
13401 _("\
13402 This is related to the encoding used by the GNAT compiler. The debugger\n\
13403 should normally trust the contents of PAD types, but certain older versions\n\
13404 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13405 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13406 work around this bug. It is always safe to turn this option \"off\", but\n\
13407 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13408 this option to \"off\" unless necessary."),
13409 NULL, NULL, &set_ada_list, &show_ada_list);
13410
13411 add_setshow_boolean_cmd ("print-signatures", class_vars,
13412 &print_signatures, _("\
13413 Enable or disable the output of formal and return types for functions in the \
13414 overloads selection menu."), _("\
13415 Show whether the output of formal and return types for functions in the \
13416 overloads selection menu is activated."),
13417 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13418
13419 add_catch_command ("exception", _("\
13420 Catch Ada exceptions, when raised.\n\
13421 Usage: catch exception [ARG] [if CONDITION]\n\
13422 Without any argument, stop when any Ada exception is raised.\n\
13423 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13424 being raised does not have a handler (and will therefore lead to the task's\n\
13425 termination).\n\
13426 Otherwise, the catchpoint only stops when the name of the exception being\n\
13427 raised is the same as ARG.\n\
13428 CONDITION is a boolean expression that is evaluated to see whether the\n\
13429 exception should cause a stop."),
13430 catch_ada_exception_command,
13431 catch_ada_completer,
13432 CATCH_PERMANENT,
13433 CATCH_TEMPORARY);
13434
13435 add_catch_command ("handlers", _("\
13436 Catch Ada exceptions, when handled.\n\
13437 Usage: catch handlers [ARG] [if CONDITION]\n\
13438 Without any argument, stop when any Ada exception is handled.\n\
13439 With an argument, catch only exceptions with the given name.\n\
13440 CONDITION is a boolean expression that is evaluated to see whether the\n\
13441 exception should cause a stop."),
13442 catch_ada_handlers_command,
13443 catch_ada_completer,
13444 CATCH_PERMANENT,
13445 CATCH_TEMPORARY);
13446 add_catch_command ("assert", _("\
13447 Catch failed Ada assertions, when raised.\n\
13448 Usage: catch assert [if CONDITION]\n\
13449 CONDITION is a boolean expression that is evaluated to see whether the\n\
13450 exception should cause a stop."),
13451 catch_assert_command,
13452 NULL,
13453 CATCH_PERMANENT,
13454 CATCH_TEMPORARY);
13455
13456 varsize_limit = 65536;
13457 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13458 &varsize_limit, _("\
13459 Set the maximum number of bytes allowed in a variable-size object."), _("\
13460 Show the maximum number of bytes allowed in a variable-size object."), _("\
13461 Attempts to access an object whose size is not a compile-time constant\n\
13462 and exceeds this limit will cause an error."),
13463 NULL, NULL, &setlist, &showlist);
13464
13465 add_info ("exceptions", info_exceptions_command,
13466 _("\
13467 List all Ada exception names.\n\
13468 Usage: info exceptions [REGEXP]\n\
13469 If a regular expression is passed as an argument, only those matching\n\
13470 the regular expression are listed."));
13471
13472 add_basic_prefix_cmd ("ada", class_maintenance,
13473 _("Set Ada maintenance-related variables."),
13474 &maint_set_ada_cmdlist,
13475 0/*allow-unknown*/, &maintenance_set_cmdlist);
13476
13477 add_show_prefix_cmd ("ada", class_maintenance,
13478 _("Show Ada maintenance-related variables."),
13479 &maint_show_ada_cmdlist,
13480 0/*allow-unknown*/, &maintenance_show_cmdlist);
13481
13482 add_setshow_boolean_cmd
13483 ("ignore-descriptive-types", class_maintenance,
13484 &ada_ignore_descriptive_types_p,
13485 _("Set whether descriptive types generated by GNAT should be ignored."),
13486 _("Show whether descriptive types generated by GNAT should be ignored."),
13487 _("\
13488 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13489 DWARF attribute."),
13490 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13491
13492 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13493 htab_eq_string,
13494 NULL, xcalloc, xfree);
13495
13496 /* The ada-lang observers. */
13497 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13498 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13499 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
13500 }
This page took 0.366484 seconds and 4 git commands to generate.