Revert the entire VLA series.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #include "ui-out.h"
48 #include "block.h"
49 #include "infcall.h"
50 #include "dictionary.h"
51 #include "exceptions.h"
52 #include "annotate.h"
53 #include "valprint.h"
54 #include "source.h"
55 #include "observer.h"
56 #include "vec.h"
57 #include "stack.h"
58 #include "gdb_vecs.h"
59 #include "typeprint.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "cli/cli-utils.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 /* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321 static char *ada_completer_word_break_characters =
322 #ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324 #else
325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 #endif
327
328 /* The name of the symbol to use to get the name of the main subprogram. */
329 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
330 = "__gnat_ada_main_program_name";
331
332 /* Limit on the number of warnings to raise per expression evaluation. */
333 static int warning_limit = 2;
334
335 /* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337 static int warnings_issued = 0;
338
339 static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 };
342
343 static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 };
346
347 /* Space for allocating results of ada_lookup_symbol_list. */
348 static struct obstack symbol_list_obstack;
349
350 /* Maintenance-related settings for this module. */
351
352 static struct cmd_list_element *maint_set_ada_cmdlist;
353 static struct cmd_list_element *maint_show_ada_cmdlist;
354
355 /* Implement the "maintenance set ada" (prefix) command. */
356
357 static void
358 maint_set_ada_cmd (char *args, int from_tty)
359 {
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361 }
362
363 /* Implement the "maintenance show ada" (prefix) command. */
364
365 static void
366 maint_show_ada_cmd (char *args, int from_tty)
367 {
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 }
370
371 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373 static int ada_ignore_descriptive_types_p = 0;
374
375 /* Inferior-specific data. */
376
377 /* Per-inferior data for this module. */
378
379 struct ada_inferior_data
380 {
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
391 };
392
393 /* Our key to this module's inferior data. */
394 static const struct inferior_data *ada_inferior_data;
395
396 /* A cleanup routine for our inferior data. */
397 static void
398 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 {
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405 }
406
407 /* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415 static struct ada_inferior_data *
416 get_ada_inferior_data (struct inferior *inf)
417 {
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
423 data = XCNEW (struct ada_inferior_data);
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428 }
429
430 /* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433 static void
434 ada_inferior_exit (struct inferior *inf)
435 {
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438 }
439
440
441 /* program-space-specific data. */
442
443 /* This module's per-program-space data. */
444 struct ada_pspace_data
445 {
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448 };
449
450 /* Key to our per-program-space data. */
451 static const struct program_space_data *ada_pspace_data_handle;
452
453 /* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458 static struct ada_pspace_data *
459 get_ada_pspace_data (struct program_space *pspace)
460 {
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537 }
538
539 /* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542 static char *
543 add_angle_brackets (const char *str)
544 {
545 static char *result = NULL;
546
547 xfree (result);
548 result = xstrprintf ("<%s>", str);
549 return result;
550 }
551
552 static char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 check_size (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
687 set_value_component_location (result, val);
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
690 set_value_address (result, value_address (val));
691 set_value_optimized_out (result, value_optimized_out_const (val));
692 return result;
693 }
694 }
695
696 static const gdb_byte *
697 cond_offset_host (const gdb_byte *valaddr, long offset)
698 {
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703 }
704
705 static CORE_ADDR
706 cond_offset_target (CORE_ADDR address, long offset)
707 {
708 if (address == 0)
709 return 0;
710 else
711 return address + offset;
712 }
713
714 /* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
718
719 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
721 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
722
723 static void
724 lim_warning (const char *format, ...)
725 {
726 va_list args;
727
728 va_start (args, format);
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
731 vwarning (format, args);
732
733 va_end (args);
734 }
735
736 /* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740 static void
741 check_size (const struct type *type)
742 {
743 if (TYPE_LENGTH (type) > varsize_limit)
744 error (_("object size is larger than varsize-limit"));
745 }
746
747 /* Maximum value of a SIZE-byte signed integer type. */
748 static LONGEST
749 max_of_size (int size)
750 {
751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
752
753 return top_bit | (top_bit - 1);
754 }
755
756 /* Minimum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 min_of_size (int size)
759 {
760 return -max_of_size (size) - 1;
761 }
762
763 /* Maximum value of a SIZE-byte unsigned integer type. */
764 static ULONGEST
765 umax_of_size (int size)
766 {
767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
768
769 return top_bit | (top_bit - 1);
770 }
771
772 /* Maximum value of integral type T, as a signed quantity. */
773 static LONGEST
774 max_of_type (struct type *t)
775 {
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780 }
781
782 /* Minimum value of integral type T, as a signed quantity. */
783 static LONGEST
784 min_of_type (struct type *t)
785 {
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
790 }
791
792 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
793 LONGEST
794 ada_discrete_type_high_bound (struct type *type)
795 {
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_HIGH_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return max_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_high_bound."));
809 }
810 }
811
812 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
813 LONGEST
814 ada_discrete_type_low_bound (struct type *type)
815 {
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static char *main_program_name = NULL;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940 }
941 \f
942 /* Symbols */
943
944 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
946
947 const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
970 };
971
972 /* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
975 char *
976 ada_encode (const char *decoded)
977 {
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
980 const char *p;
981 int k;
982
983 if (decoded == NULL)
984 return NULL;
985
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
988
989 k = 0;
990 for (p = decoded; *p != '\0'; p += 1)
991 {
992 if (*p == '.')
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
997 else if (*p == '"')
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 error (_("invalid Ada operator name: %s"), p);
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
1012 else
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
1017 }
1018
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
1021 }
1022
1023 /* Return NAME folded to lower case, or, if surrounded by single
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
1027 char *
1028 ada_fold_name (const char *name)
1029 {
1030 static char *fold_buffer = NULL;
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1035
1036 if (name[0] == '\'')
1037 {
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
1040 }
1041 else
1042 {
1043 int i;
1044
1045 for (i = 0; i <= len; i += 1)
1046 fold_buffer[i] = tolower (name[i]);
1047 }
1048
1049 return fold_buffer;
1050 }
1051
1052 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054 static int
1055 is_lower_alphanum (const char c)
1056 {
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058 }
1059
1060 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
1067
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072 static void
1073 ada_remove_trailing_digits (const char *encoded, int *len)
1074 {
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
1078
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090 }
1091
1092 /* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095 static void
1096 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097 {
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
1103 the 'P' suffix. The second calls the first one after handling
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112 }
1113
1114 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116 static void
1117 ada_remove_Xbn_suffix (const char *encoded, int *len)
1118 {
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132 }
1133
1134 /* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
1137
1138 The resulting string is valid until the next call of ada_decode.
1139 If the string is unchanged by decoding, the original string pointer
1140 is returned. */
1141
1142 const char *
1143 ada_decode (const char *encoded)
1144 {
1145 int i, j;
1146 int len0;
1147 const char *p;
1148 char *decoded;
1149 int at_start_name;
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
1152
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
1158
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
1162 if (encoded[0] == '_' || encoded[0] == '<')
1163 goto Suppress;
1164
1165 len0 = strlen (encoded);
1166
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
1169
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
1176 {
1177 if (p[3] == 'X')
1178 len0 = p - encoded;
1179 else
1180 goto Suppress;
1181 }
1182
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1188 len0 -= 3;
1189
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1201 len0 -= 1;
1202
1203 /* Make decoded big enough for possible expansion by operator name. */
1204
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
1207
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1211 {
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
1220 }
1221
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
1231 /* Is this a symbol function? */
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
1235
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
1253 at_start_name = 0;
1254
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
1260
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
1283 of subprograms created by the compiler for each entry. The first
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1348 {
1349 /* Replace '__' by '.'. */
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
1355 else
1356 {
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
1363 }
1364 decoded[j] = '\000';
1365
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
1371 goto Suppress;
1372
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
1377
1378 Suppress:
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
1383 else
1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1385 return decoded;
1386
1387 }
1388
1389 /* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394 static struct htab *decoded_names_store;
1395
1396 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
1401 GSYMBOL).
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
1404 when a decoded name is cached in it. */
1405
1406 const char *
1407 ada_decode_symbol (const struct general_symbol_info *arg)
1408 {
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
1412
1413 if (!gsymbol->ada_mangled)
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
1416 struct obstack *obstack = gsymbol->language_specific.obstack;
1417
1418 gsymbol->ada_mangled = 1;
1419
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
1423 {
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
1431
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
1436 }
1437
1438 return *resultp;
1439 }
1440
1441 static char *
1442 ada_la_decode (const char *encoded, int options)
1443 {
1444 return xstrdup (ada_decode (encoded));
1445 }
1446
1447 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
1453
1454 static int
1455 match_name (const char *sym_name, const char *name, int wild)
1456 {
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
1460 return wild_match (sym_name, name) == 0;
1461 else
1462 {
1463 int len_name = strlen (name);
1464
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
1470 }
1471 }
1472 \f
1473
1474 /* Arrays */
1475
1476 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499 void
1500 ada_fixup_array_indexes_type (struct type *index_desc_type)
1501 {
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529 }
1530
1531 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1532
1533 static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536 };
1537
1538 /* Maximum number of array dimensions we are prepared to handle. */
1539
1540 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1541
1542
1543 /* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
1545
1546 /* The descriptor or array type, if any, indicated by TYPE; removes
1547 level of indirection, if needed. */
1548
1549 static struct type *
1550 desc_base_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return NULL;
1554 type = ada_check_typedef (type);
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1562 else
1563 return type;
1564 }
1565
1566 /* True iff TYPE indicates a "thin" array pointer type. */
1567
1568 static int
1569 is_thin_pntr (struct type *type)
1570 {
1571 return
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574 }
1575
1576 /* The descriptor type for thin pointer type TYPE. */
1577
1578 static struct type *
1579 thin_descriptor_type (struct type *type)
1580 {
1581 struct type *base_type = desc_base_type (type);
1582
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
1587 else
1588 {
1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1590
1591 if (alt_type == NULL)
1592 return base_type;
1593 else
1594 return alt_type;
1595 }
1596 }
1597
1598 /* A pointer to the array data for thin-pointer value VAL. */
1599
1600 static struct value *
1601 thin_data_pntr (struct value *val)
1602 {
1603 struct type *type = ada_check_typedef (value_type (val));
1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1605
1606 data_type = lookup_pointer_type (data_type);
1607
1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1609 return value_cast (data_type, value_copy (val));
1610 else
1611 return value_from_longest (data_type, value_address (val));
1612 }
1613
1614 /* True iff TYPE indicates a "thick" array pointer type. */
1615
1616 static int
1617 is_thick_pntr (struct type *type)
1618 {
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
1626
1627 static struct type *
1628 desc_bounds_type (struct type *type)
1629 {
1630 struct type *r;
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
1640 return NULL;
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
1643 return ada_check_typedef (r);
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1650 }
1651 return NULL;
1652 }
1653
1654 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
1657 static struct value *
1658 desc_bounds (struct value *arr)
1659 {
1660 struct type *type = ada_check_typedef (value_type (arr));
1661
1662 if (is_thin_pntr (type))
1663 {
1664 struct type *bounds_type =
1665 desc_bounds_type (thin_descriptor_type (type));
1666 LONGEST addr;
1667
1668 if (bounds_type == NULL)
1669 error (_("Bad GNAT array descriptor"));
1670
1671 /* NOTE: The following calculation is not really kosher, but
1672 since desc_type is an XVE-encoded type (and shouldn't be),
1673 the correct calculation is a real pain. FIXME (and fix GCC). */
1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1675 addr = value_as_long (arr);
1676 else
1677 addr = value_address (arr);
1678
1679 return
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
1682 }
1683
1684 else if (is_thick_pntr (type))
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
1705 else
1706 return NULL;
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitpos (struct type *type)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716 }
1717
1718 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1719 size of the field containing the address of the bounds data. */
1720
1721 static int
1722 fat_pntr_bounds_bitsize (struct type *type)
1723 {
1724 type = desc_base_type (type);
1725
1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1730 }
1731
1732 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
1736
1737 static struct type *
1738 desc_data_target_type (struct type *type)
1739 {
1740 type = desc_base_type (type);
1741
1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
1743 if (is_thin_pntr (type))
1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1745 else if (is_thick_pntr (type))
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1752 }
1753
1754 return NULL;
1755 }
1756
1757 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
1759
1760 static struct value *
1761 desc_data (struct value *arr)
1762 {
1763 struct type *type = value_type (arr);
1764
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1769 _("Bad GNAT array descriptor"));
1770 else
1771 return NULL;
1772 }
1773
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 position of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitpos (struct type *type)
1780 {
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782 }
1783
1784 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1785 size of the field containing the address of the data. */
1786
1787 static int
1788 fat_pntr_data_bitsize (struct type *type)
1789 {
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
1794 else
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796 }
1797
1798 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
1802 static struct value *
1803 desc_one_bound (struct value *bounds, int i, int which)
1804 {
1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1806 _("Bad GNAT array descriptor bounds"));
1807 }
1808
1809 /* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
1813 static int
1814 desc_bound_bitpos (struct type *type, int i, int which)
1815 {
1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1817 }
1818
1819 /* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
1823 static int
1824 desc_bound_bitsize (struct type *type, int i, int which)
1825 {
1826 type = desc_base_type (type);
1827
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1832 }
1833
1834 /* If TYPE is the type of an array-bounds structure, the type of its
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
1837 static struct type *
1838 desc_index_type (struct type *type, int i)
1839 {
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
1845 return NULL;
1846 }
1847
1848 /* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
1851 static int
1852 desc_arity (struct type *type)
1853 {
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859 }
1860
1861 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
1865 static int
1866 ada_is_direct_array_type (struct type *type)
1867 {
1868 if (type == NULL)
1869 return 0;
1870 type = ada_check_typedef (type);
1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1872 || ada_is_array_descriptor_type (type));
1873 }
1874
1875 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1876 * to one. */
1877
1878 static int
1879 ada_is_array_type (struct type *type)
1880 {
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886 }
1887
1888 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1889
1890 int
1891 ada_is_simple_array_type (struct type *type)
1892 {
1893 if (type == NULL)
1894 return 0;
1895 type = ada_check_typedef (type);
1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
1900 }
1901
1902 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
1904 int
1905 ada_is_array_descriptor_type (struct type *type)
1906 {
1907 struct type *data_type = desc_data_target_type (type);
1908
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
1915 }
1916
1917 /* Non-zero iff type is a partially mal-formed GNAT array
1918 descriptor. FIXME: This is to compensate for some problems with
1919 debugging output from GNAT. Re-examine periodically to see if it
1920 is still needed. */
1921
1922 int
1923 ada_is_bogus_array_descriptor (struct type *type)
1924 {
1925 return
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
1931 }
1932
1933
1934 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1935 (fat pointer) returns the type of the array data described---specifically,
1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1937 in from the descriptor; otherwise, they are left unspecified. If
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
1940 a descriptor. */
1941 struct type *
1942 ada_type_of_array (struct value *arr, int bounds)
1943 {
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
1946
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
1949
1950 if (!bounds)
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
1961 else
1962 {
1963 struct type *elt_type;
1964 int arity;
1965 struct value *descriptor;
1966
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
1969
1970 if (elt_type == NULL || arity == 0)
1971 return ada_check_typedef (value_type (arr));
1972
1973 descriptor = desc_bounds (arr);
1974 if (value_as_long (descriptor) == 0)
1975 return NULL;
1976 while (arity > 0)
1977 {
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
1982
1983 arity -= 1;
1984 create_static_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
1987 elt_type = create_array_type (array_type, elt_type, range_type);
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
2009 }
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013 }
2014
2015 /* If ARR does not represent an array, returns ARR unchanged.
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
2020 struct value *
2021 ada_coerce_to_simple_array_ptr (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct type *arrType = ada_type_of_array (arr, 1);
2026
2027 if (arrType == NULL)
2028 return NULL;
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
2033 else
2034 return arr;
2035 }
2036
2037 /* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
2039 be ARR itself if it already is in the proper form). */
2040
2041 struct value *
2042 ada_coerce_to_simple_array (struct value *arr)
2043 {
2044 if (ada_is_array_descriptor_type (value_type (arr)))
2045 {
2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2047
2048 if (arrVal == NULL)
2049 error (_("Bounds unavailable for null array pointer."));
2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2051 return value_ind (arrVal);
2052 }
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
2055 else
2056 return arr;
2057 }
2058
2059 /* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
2061 packing). For other types, is the identity. */
2062
2063 struct type *
2064 ada_coerce_to_simple_array_type (struct type *type)
2065 {
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
2068
2069 if (ada_is_array_descriptor_type (type))
2070 return ada_check_typedef (desc_data_target_type (type));
2071
2072 return type;
2073 }
2074
2075 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
2077 static int
2078 ada_is_packed_array_type (struct type *type)
2079 {
2080 if (type == NULL)
2081 return 0;
2082 type = desc_base_type (type);
2083 type = ada_check_typedef (type);
2084 return
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087 }
2088
2089 /* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092 int
2093 ada_is_constrained_packed_array_type (struct type *type)
2094 {
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097 }
2098
2099 /* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102 static int
2103 ada_is_unconstrained_packed_array_type (struct type *type)
2104 {
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107 }
2108
2109 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112 static long
2113 decode_packed_array_bitsize (struct type *type)
2114 {
2115 const char *raw_name;
2116 const char *tail;
2117 long bits;
2118
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
2133 gdb_assert (tail != NULL);
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143 }
2144
2145 /* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
2186 else
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
2189 TYPE_LENGTH (new_type) =
2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2191 }
2192
2193 TYPE_FIXED_INSTANCE (new_type) = 1;
2194 return new_type;
2195 }
2196
2197 /* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
2199
2200 static struct type *
2201 decode_constrained_packed_array_type (struct type *type)
2202 {
2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
2204 char *name;
2205 const char *tail;
2206 struct type *shadow_type;
2207 long bits;
2208
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
2217 type = desc_base_type (type);
2218
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
2225 {
2226 lim_warning (_("could not find bounds information on packed array"));
2227 return NULL;
2228 }
2229 CHECK_TYPEDEF (shadow_type);
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
2235 return NULL;
2236 }
2237
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
2240 }
2241
2242 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
2246 type length is set appropriately. */
2247
2248 static struct value *
2249 decode_constrained_packed_array (struct value *arr)
2250 {
2251 struct type *type;
2252
2253 /* If our value is a pointer, then dereference it. Likewise if
2254 the value is a reference. Make sure that this operation does not
2255 cause the target type to be fixed, as this would indirectly cause
2256 this array to be decoded. The rest of the routine assumes that
2257 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2258 and "value_ind" routines to perform the dereferencing, as opposed
2259 to using "ada_coerce_ref" or "ada_value_ind". */
2260 arr = coerce_ref (arr);
2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2262 arr = value_ind (arr);
2263
2264 type = decode_constrained_packed_array_type (value_type (arr));
2265 if (type == NULL)
2266 {
2267 error (_("can't unpack array"));
2268 return NULL;
2269 }
2270
2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2272 && ada_is_modular_type (value_type (arr)))
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
2281 mod = ada_modulus (value_type (arr)) - 1;
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
2296 return coerce_unspec_val_to_type (arr, type);
2297 }
2298
2299
2300 /* The value of the element of packed array ARR at the ARITY indices
2301 given in IND. ARR must be a simple array. */
2302
2303 static struct value *
2304 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2305 {
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
2309 struct type *elt_type;
2310 struct value *v;
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
2314 elt_type = ada_check_typedef (value_type (arr));
2315 for (i = 0; i < arity; i += 1)
2316 {
2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
2322 else
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
2330 lim_warning (_("don't know bounds of array"));
2331 lowerbound = upperbound = 0;
2332 }
2333
2334 idx = pos_atr (ind[i]);
2335 if (idx < lowerbound || idx > upperbound)
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2341 }
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2347 bits, elt_type);
2348 return v;
2349 }
2350
2351 /* Non-zero iff TYPE includes negative integer values. */
2352
2353 static int
2354 has_negatives (struct type *type)
2355 {
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
2365 }
2366
2367
2368 /* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2371 assigning through the result will set the field fetched from.
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2376
2377 struct value *
2378 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2379 long offset, int bit_offset, int bit_size,
2380 struct type *type)
2381 {
2382 struct value *v;
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
2391 unsigned char *unpacked;
2392 unsigned long accum; /* Staging area for bits being transferred */
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2398
2399 type = ada_check_typedef (type);
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
2404 bytes = (unsigned char *) (valaddr + offset);
2405 }
2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2407 {
2408 v = value_at (type, value_address (obj));
2409 bytes = (unsigned char *) alloca (len);
2410 read_memory (value_address (v) + offset, bytes, len);
2411 }
2412 else
2413 {
2414 v = allocate_value (type);
2415 bytes = (unsigned char *) value_contents (obj) + offset;
2416 }
2417
2418 if (obj != NULL)
2419 {
2420 long new_offset = offset;
2421
2422 set_value_component_location (v, obj);
2423 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2424 set_value_bitsize (v, bit_size);
2425 if (value_bitpos (v) >= HOST_CHAR_BIT)
2426 {
2427 ++new_offset;
2428 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2429 }
2430 set_value_offset (v, new_offset);
2431
2432 /* Also set the parent value. This is needed when trying to
2433 assign a new value (in inferior memory). */
2434 set_value_parent (v, obj);
2435 }
2436 else
2437 set_value_bitsize (v, bit_size);
2438 unpacked = (unsigned char *) value_contents (v);
2439
2440 srcBitsLeft = bit_size;
2441 nsrc = len;
2442 ntarg = TYPE_LENGTH (type);
2443 sign = 0;
2444 if (bit_size == 0)
2445 {
2446 memset (unpacked, 0, TYPE_LENGTH (type));
2447 return v;
2448 }
2449 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2450 {
2451 src = len - 1;
2452 if (has_negatives (type)
2453 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2454 sign = ~0;
2455
2456 unusedLS =
2457 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2458 % HOST_CHAR_BIT;
2459
2460 switch (TYPE_CODE (type))
2461 {
2462 case TYPE_CODE_ARRAY:
2463 case TYPE_CODE_UNION:
2464 case TYPE_CODE_STRUCT:
2465 /* Non-scalar values must be aligned at a byte boundary... */
2466 accumSize =
2467 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2468 /* ... And are placed at the beginning (most-significant) bytes
2469 of the target. */
2470 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2471 ntarg = targ + 1;
2472 break;
2473 default:
2474 accumSize = 0;
2475 targ = TYPE_LENGTH (type) - 1;
2476 break;
2477 }
2478 }
2479 else
2480 {
2481 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2482
2483 src = targ = 0;
2484 unusedLS = bit_offset;
2485 accumSize = 0;
2486
2487 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2488 sign = ~0;
2489 }
2490
2491 accum = 0;
2492 while (nsrc > 0)
2493 {
2494 /* Mask for removing bits of the next source byte that are not
2495 part of the value. */
2496 unsigned int unusedMSMask =
2497 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2498 1;
2499 /* Sign-extend bits for this byte. */
2500 unsigned int signMask = sign & ~unusedMSMask;
2501
2502 accum |=
2503 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2504 accumSize += HOST_CHAR_BIT - unusedLS;
2505 if (accumSize >= HOST_CHAR_BIT)
2506 {
2507 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2508 accumSize -= HOST_CHAR_BIT;
2509 accum >>= HOST_CHAR_BIT;
2510 ntarg -= 1;
2511 targ += delta;
2512 }
2513 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2514 unusedLS = 0;
2515 nsrc -= 1;
2516 src += delta;
2517 }
2518 while (ntarg > 0)
2519 {
2520 accum |= sign << accumSize;
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
2527
2528 return v;
2529 }
2530
2531 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2532 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2533 not overlap. */
2534 static void
2535 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2536 int src_offset, int n, int bits_big_endian_p)
2537 {
2538 unsigned int accum, mask;
2539 int accum_bits, chunk_size;
2540
2541 target += targ_offset / HOST_CHAR_BIT;
2542 targ_offset %= HOST_CHAR_BIT;
2543 source += src_offset / HOST_CHAR_BIT;
2544 src_offset %= HOST_CHAR_BIT;
2545 if (bits_big_endian_p)
2546 {
2547 accum = (unsigned char) *source;
2548 source += 1;
2549 accum_bits = HOST_CHAR_BIT - src_offset;
2550
2551 while (n > 0)
2552 {
2553 int unused_right;
2554
2555 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2556 accum_bits += HOST_CHAR_BIT;
2557 source += 1;
2558 chunk_size = HOST_CHAR_BIT - targ_offset;
2559 if (chunk_size > n)
2560 chunk_size = n;
2561 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2562 mask = ((1 << chunk_size) - 1) << unused_right;
2563 *target =
2564 (*target & ~mask)
2565 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2566 n -= chunk_size;
2567 accum_bits -= chunk_size;
2568 target += 1;
2569 targ_offset = 0;
2570 }
2571 }
2572 else
2573 {
2574 accum = (unsigned char) *source >> src_offset;
2575 source += 1;
2576 accum_bits = HOST_CHAR_BIT - src_offset;
2577
2578 while (n > 0)
2579 {
2580 accum = accum + ((unsigned char) *source << accum_bits);
2581 accum_bits += HOST_CHAR_BIT;
2582 source += 1;
2583 chunk_size = HOST_CHAR_BIT - targ_offset;
2584 if (chunk_size > n)
2585 chunk_size = n;
2586 mask = ((1 << chunk_size) - 1) << targ_offset;
2587 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2588 n -= chunk_size;
2589 accum_bits -= chunk_size;
2590 accum >>= chunk_size;
2591 target += 1;
2592 targ_offset = 0;
2593 }
2594 }
2595 }
2596
2597 /* Store the contents of FROMVAL into the location of TOVAL.
2598 Return a new value with the location of TOVAL and contents of
2599 FROMVAL. Handles assignment into packed fields that have
2600 floating-point or non-scalar types. */
2601
2602 static struct value *
2603 ada_value_assign (struct value *toval, struct value *fromval)
2604 {
2605 struct type *type = value_type (toval);
2606 int bits = value_bitsize (toval);
2607
2608 toval = ada_coerce_ref (toval);
2609 fromval = ada_coerce_ref (fromval);
2610
2611 if (ada_is_direct_array_type (value_type (toval)))
2612 toval = ada_coerce_to_simple_array (toval);
2613 if (ada_is_direct_array_type (value_type (fromval)))
2614 fromval = ada_coerce_to_simple_array (fromval);
2615
2616 if (!deprecated_value_modifiable (toval))
2617 error (_("Left operand of assignment is not a modifiable lvalue."));
2618
2619 if (VALUE_LVAL (toval) == lval_memory
2620 && bits > 0
2621 && (TYPE_CODE (type) == TYPE_CODE_FLT
2622 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2623 {
2624 int len = (value_bitpos (toval)
2625 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2626 int from_size;
2627 gdb_byte *buffer = alloca (len);
2628 struct value *val;
2629 CORE_ADDR to_addr = value_address (toval);
2630
2631 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2632 fromval = value_cast (type, fromval);
2633
2634 read_memory (to_addr, buffer, len);
2635 from_size = value_bitsize (fromval);
2636 if (from_size == 0)
2637 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2638 if (gdbarch_bits_big_endian (get_type_arch (type)))
2639 move_bits (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_size - bits, bits, 1);
2641 else
2642 move_bits (buffer, value_bitpos (toval),
2643 value_contents (fromval), 0, bits, 0);
2644 write_memory_with_notification (to_addr, buffer, len);
2645
2646 val = value_copy (toval);
2647 memcpy (value_contents_raw (val), value_contents (fromval),
2648 TYPE_LENGTH (type));
2649 deprecated_set_value_type (val, type);
2650
2651 return val;
2652 }
2653
2654 return value_assign (toval, fromval);
2655 }
2656
2657
2658 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2659 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2660 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2661 * COMPONENT, and not the inferior's memory. The current contents
2662 * of COMPONENT are ignored. */
2663 static void
2664 value_assign_to_component (struct value *container, struct value *component,
2665 struct value *val)
2666 {
2667 LONGEST offset_in_container =
2668 (LONGEST) (value_address (component) - value_address (container));
2669 int bit_offset_in_container =
2670 value_bitpos (component) - value_bitpos (container);
2671 int bits;
2672
2673 val = value_cast (value_type (component), val);
2674
2675 if (value_bitsize (component) == 0)
2676 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2677 else
2678 bits = value_bitsize (component);
2679
2680 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2681 move_bits (value_contents_writeable (container) + offset_in_container,
2682 value_bitpos (container) + bit_offset_in_container,
2683 value_contents (val),
2684 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2685 bits, 1);
2686 else
2687 move_bits (value_contents_writeable (container) + offset_in_container,
2688 value_bitpos (container) + bit_offset_in_container,
2689 value_contents (val), 0, bits, 0);
2690 }
2691
2692 /* The value of the element of array ARR at the ARITY indices given in IND.
2693 ARR may be either a simple array, GNAT array descriptor, or pointer
2694 thereto. */
2695
2696 struct value *
2697 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2698 {
2699 int k;
2700 struct value *elt;
2701 struct type *elt_type;
2702
2703 elt = ada_coerce_to_simple_array (arr);
2704
2705 elt_type = ada_check_typedef (value_type (elt));
2706 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2708 return value_subscript_packed (elt, arity, ind);
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2713 error (_("too many subscripts (%d expected)"), k);
2714 elt = value_subscript (elt, pos_atr (ind[k]));
2715 }
2716 return elt;
2717 }
2718
2719 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2720 value of the element of *ARR at the ARITY indices given in
2721 IND. Does not read the entire array into memory. */
2722
2723 static struct value *
2724 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2725 struct value **ind)
2726 {
2727 int k;
2728
2729 for (k = 0; k < arity; k += 1)
2730 {
2731 LONGEST lwb, upb;
2732
2733 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2734 error (_("too many subscripts (%d expected)"), k);
2735 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2736 value_copy (arr));
2737 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2738 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2739 type = TYPE_TARGET_TYPE (type);
2740 }
2741
2742 return value_ind (arr);
2743 }
2744
2745 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2747 elements starting at index LOW. The lower bound of this array is LOW, as
2748 per Ada rules. */
2749 static struct value *
2750 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2751 int low, int high)
2752 {
2753 struct type *type0 = ada_check_typedef (type);
2754 CORE_ADDR base = value_as_address (array_ptr)
2755 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2756 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2757 struct type *index_type
2758 = create_static_range_type (NULL,
2759 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2760 low, high);
2761 struct type *slice_type =
2762 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2763
2764 return value_at_lazy (slice_type, base);
2765 }
2766
2767
2768 static struct value *
2769 ada_value_slice (struct value *array, int low, int high)
2770 {
2771 struct type *type = ada_check_typedef (value_type (array));
2772 struct type *index_type
2773 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2774 struct type *slice_type =
2775 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2776
2777 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2778 }
2779
2780 /* If type is a record type in the form of a standard GNAT array
2781 descriptor, returns the number of dimensions for type. If arr is a
2782 simple array, returns the number of "array of"s that prefix its
2783 type designation. Otherwise, returns 0. */
2784
2785 int
2786 ada_array_arity (struct type *type)
2787 {
2788 int arity;
2789
2790 if (type == NULL)
2791 return 0;
2792
2793 type = desc_base_type (type);
2794
2795 arity = 0;
2796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2797 return desc_arity (desc_bounds_type (type));
2798 else
2799 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2800 {
2801 arity += 1;
2802 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2803 }
2804
2805 return arity;
2806 }
2807
2808 /* If TYPE is a record type in the form of a standard GNAT array
2809 descriptor or a simple array type, returns the element type for
2810 TYPE after indexing by NINDICES indices, or by all indices if
2811 NINDICES is -1. Otherwise, returns NULL. */
2812
2813 struct type *
2814 ada_array_element_type (struct type *type, int nindices)
2815 {
2816 type = desc_base_type (type);
2817
2818 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2819 {
2820 int k;
2821 struct type *p_array_type;
2822
2823 p_array_type = desc_data_target_type (type);
2824
2825 k = ada_array_arity (type);
2826 if (k == 0)
2827 return NULL;
2828
2829 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2830 if (nindices >= 0 && k > nindices)
2831 k = nindices;
2832 while (k > 0 && p_array_type != NULL)
2833 {
2834 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2835 k -= 1;
2836 }
2837 return p_array_type;
2838 }
2839 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2840 {
2841 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2842 {
2843 type = TYPE_TARGET_TYPE (type);
2844 nindices -= 1;
2845 }
2846 return type;
2847 }
2848
2849 return NULL;
2850 }
2851
2852 /* The type of nth index in arrays of given type (n numbering from 1).
2853 Does not examine memory. Throws an error if N is invalid or TYPE
2854 is not an array type. NAME is the name of the Ada attribute being
2855 evaluated ('range, 'first, 'last, or 'length); it is used in building
2856 the error message. */
2857
2858 static struct type *
2859 ada_index_type (struct type *type, int n, const char *name)
2860 {
2861 struct type *result_type;
2862
2863 type = desc_base_type (type);
2864
2865 if (n < 0 || n > ada_array_arity (type))
2866 error (_("invalid dimension number to '%s"), name);
2867
2868 if (ada_is_simple_array_type (type))
2869 {
2870 int i;
2871
2872 for (i = 1; i < n; i += 1)
2873 type = TYPE_TARGET_TYPE (type);
2874 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2875 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2876 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2877 perhaps stabsread.c would make more sense. */
2878 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2879 result_type = NULL;
2880 }
2881 else
2882 {
2883 result_type = desc_index_type (desc_bounds_type (type), n);
2884 if (result_type == NULL)
2885 error (_("attempt to take bound of something that is not an array"));
2886 }
2887
2888 return result_type;
2889 }
2890
2891 /* Given that arr is an array type, returns the lower bound of the
2892 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2893 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2894 array-descriptor type. It works for other arrays with bounds supplied
2895 by run-time quantities other than discriminants. */
2896
2897 static LONGEST
2898 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2899 {
2900 struct type *type, *index_type_desc, *index_type;
2901 int i;
2902
2903 gdb_assert (which == 0 || which == 1);
2904
2905 if (ada_is_constrained_packed_array_type (arr_type))
2906 arr_type = decode_constrained_packed_array_type (arr_type);
2907
2908 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2909 return (LONGEST) - which;
2910
2911 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2912 type = TYPE_TARGET_TYPE (arr_type);
2913 else
2914 type = arr_type;
2915
2916 index_type_desc = ada_find_parallel_type (type, "___XA");
2917 ada_fixup_array_indexes_type (index_type_desc);
2918 if (index_type_desc != NULL)
2919 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2920 NULL);
2921 else
2922 {
2923 struct type *elt_type = check_typedef (type);
2924
2925 for (i = 1; i < n; i++)
2926 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2927
2928 index_type = TYPE_INDEX_TYPE (elt_type);
2929 }
2930
2931 return
2932 (LONGEST) (which == 0
2933 ? ada_discrete_type_low_bound (index_type)
2934 : ada_discrete_type_high_bound (index_type));
2935 }
2936
2937 /* Given that arr is an array value, returns the lower bound of the
2938 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2939 WHICH is 1. This routine will also work for arrays with bounds
2940 supplied by run-time quantities other than discriminants. */
2941
2942 static LONGEST
2943 ada_array_bound (struct value *arr, int n, int which)
2944 {
2945 struct type *arr_type = value_type (arr);
2946
2947 if (ada_is_constrained_packed_array_type (arr_type))
2948 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2949 else if (ada_is_simple_array_type (arr_type))
2950 return ada_array_bound_from_type (arr_type, n, which);
2951 else
2952 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2953 }
2954
2955 /* Given that arr is an array value, returns the length of the
2956 nth index. This routine will also work for arrays with bounds
2957 supplied by run-time quantities other than discriminants.
2958 Does not work for arrays indexed by enumeration types with representation
2959 clauses at the moment. */
2960
2961 static LONGEST
2962 ada_array_length (struct value *arr, int n)
2963 {
2964 struct type *arr_type = ada_check_typedef (value_type (arr));
2965
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_length (decode_constrained_packed_array (arr), n);
2968
2969 if (ada_is_simple_array_type (arr_type))
2970 return (ada_array_bound_from_type (arr_type, n, 1)
2971 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2972 else
2973 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2974 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2975 }
2976
2977 /* An empty array whose type is that of ARR_TYPE (an array type),
2978 with bounds LOW to LOW-1. */
2979
2980 static struct value *
2981 empty_array (struct type *arr_type, int low)
2982 {
2983 struct type *arr_type0 = ada_check_typedef (arr_type);
2984 struct type *index_type
2985 = create_static_range_type
2986 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2987 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2988
2989 return allocate_value (create_array_type (NULL, elt_type, index_type));
2990 }
2991 \f
2992
2993 /* Name resolution */
2994
2995 /* The "decoded" name for the user-definable Ada operator corresponding
2996 to OP. */
2997
2998 static const char *
2999 ada_decoded_op_name (enum exp_opcode op)
3000 {
3001 int i;
3002
3003 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3004 {
3005 if (ada_opname_table[i].op == op)
3006 return ada_opname_table[i].decoded;
3007 }
3008 error (_("Could not find operator name for opcode"));
3009 }
3010
3011
3012 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3013 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3014 undefined namespace) and converts operators that are
3015 user-defined into appropriate function calls. If CONTEXT_TYPE is
3016 non-null, it provides a preferred result type [at the moment, only
3017 type void has any effect---causing procedures to be preferred over
3018 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3019 return type is preferred. May change (expand) *EXP. */
3020
3021 static void
3022 resolve (struct expression **expp, int void_context_p)
3023 {
3024 struct type *context_type = NULL;
3025 int pc = 0;
3026
3027 if (void_context_p)
3028 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3029
3030 resolve_subexp (expp, &pc, 1, context_type);
3031 }
3032
3033 /* Resolve the operator of the subexpression beginning at
3034 position *POS of *EXPP. "Resolving" consists of replacing
3035 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3036 with their resolutions, replacing built-in operators with
3037 function calls to user-defined operators, where appropriate, and,
3038 when DEPROCEDURE_P is non-zero, converting function-valued variables
3039 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3040 are as in ada_resolve, above. */
3041
3042 static struct value *
3043 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3044 struct type *context_type)
3045 {
3046 int pc = *pos;
3047 int i;
3048 struct expression *exp; /* Convenience: == *expp. */
3049 enum exp_opcode op = (*expp)->elts[pc].opcode;
3050 struct value **argvec; /* Vector of operand types (alloca'ed). */
3051 int nargs; /* Number of operands. */
3052 int oplen;
3053
3054 argvec = NULL;
3055 nargs = 0;
3056 exp = *expp;
3057
3058 /* Pass one: resolve operands, saving their types and updating *pos,
3059 if needed. */
3060 switch (op)
3061 {
3062 case OP_FUNCALL:
3063 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3064 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3065 *pos += 7;
3066 else
3067 {
3068 *pos += 3;
3069 resolve_subexp (expp, pos, 0, NULL);
3070 }
3071 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3072 break;
3073
3074 case UNOP_ADDR:
3075 *pos += 1;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 break;
3078
3079 case UNOP_QUAL:
3080 *pos += 3;
3081 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3082 break;
3083
3084 case OP_ATR_MODULUS:
3085 case OP_ATR_SIZE:
3086 case OP_ATR_TAG:
3087 case OP_ATR_FIRST:
3088 case OP_ATR_LAST:
3089 case OP_ATR_LENGTH:
3090 case OP_ATR_POS:
3091 case OP_ATR_VAL:
3092 case OP_ATR_MIN:
3093 case OP_ATR_MAX:
3094 case TERNOP_IN_RANGE:
3095 case BINOP_IN_BOUNDS:
3096 case UNOP_IN_RANGE:
3097 case OP_AGGREGATE:
3098 case OP_OTHERS:
3099 case OP_CHOICES:
3100 case OP_POSITIONAL:
3101 case OP_DISCRETE_RANGE:
3102 case OP_NAME:
3103 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3104 *pos += oplen;
3105 break;
3106
3107 case BINOP_ASSIGN:
3108 {
3109 struct value *arg1;
3110
3111 *pos += 1;
3112 arg1 = resolve_subexp (expp, pos, 0, NULL);
3113 if (arg1 == NULL)
3114 resolve_subexp (expp, pos, 1, NULL);
3115 else
3116 resolve_subexp (expp, pos, 1, value_type (arg1));
3117 break;
3118 }
3119
3120 case UNOP_CAST:
3121 *pos += 3;
3122 nargs = 1;
3123 break;
3124
3125 case BINOP_ADD:
3126 case BINOP_SUB:
3127 case BINOP_MUL:
3128 case BINOP_DIV:
3129 case BINOP_REM:
3130 case BINOP_MOD:
3131 case BINOP_EXP:
3132 case BINOP_CONCAT:
3133 case BINOP_LOGICAL_AND:
3134 case BINOP_LOGICAL_OR:
3135 case BINOP_BITWISE_AND:
3136 case BINOP_BITWISE_IOR:
3137 case BINOP_BITWISE_XOR:
3138
3139 case BINOP_EQUAL:
3140 case BINOP_NOTEQUAL:
3141 case BINOP_LESS:
3142 case BINOP_GTR:
3143 case BINOP_LEQ:
3144 case BINOP_GEQ:
3145
3146 case BINOP_REPEAT:
3147 case BINOP_SUBSCRIPT:
3148 case BINOP_COMMA:
3149 *pos += 1;
3150 nargs = 2;
3151 break;
3152
3153 case UNOP_NEG:
3154 case UNOP_PLUS:
3155 case UNOP_LOGICAL_NOT:
3156 case UNOP_ABS:
3157 case UNOP_IND:
3158 *pos += 1;
3159 nargs = 1;
3160 break;
3161
3162 case OP_LONG:
3163 case OP_DOUBLE:
3164 case OP_VAR_VALUE:
3165 *pos += 4;
3166 break;
3167
3168 case OP_TYPE:
3169 case OP_BOOL:
3170 case OP_LAST:
3171 case OP_INTERNALVAR:
3172 *pos += 3;
3173 break;
3174
3175 case UNOP_MEMVAL:
3176 *pos += 3;
3177 nargs = 1;
3178 break;
3179
3180 case OP_REGISTER:
3181 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3182 break;
3183
3184 case STRUCTOP_STRUCT:
3185 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3186 nargs = 1;
3187 break;
3188
3189 case TERNOP_SLICE:
3190 *pos += 1;
3191 nargs = 3;
3192 break;
3193
3194 case OP_STRING:
3195 break;
3196
3197 default:
3198 error (_("Unexpected operator during name resolution"));
3199 }
3200
3201 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3202 for (i = 0; i < nargs; i += 1)
3203 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3204 argvec[i] = NULL;
3205 exp = *expp;
3206
3207 /* Pass two: perform any resolution on principal operator. */
3208 switch (op)
3209 {
3210 default:
3211 break;
3212
3213 case OP_VAR_VALUE:
3214 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3215 {
3216 struct ada_symbol_info *candidates;
3217 int n_candidates;
3218
3219 n_candidates =
3220 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3221 (exp->elts[pc + 2].symbol),
3222 exp->elts[pc + 1].block, VAR_DOMAIN,
3223 &candidates);
3224
3225 if (n_candidates > 1)
3226 {
3227 /* Types tend to get re-introduced locally, so if there
3228 are any local symbols that are not types, first filter
3229 out all types. */
3230 int j;
3231 for (j = 0; j < n_candidates; j += 1)
3232 switch (SYMBOL_CLASS (candidates[j].sym))
3233 {
3234 case LOC_REGISTER:
3235 case LOC_ARG:
3236 case LOC_REF_ARG:
3237 case LOC_REGPARM_ADDR:
3238 case LOC_LOCAL:
3239 case LOC_COMPUTED:
3240 goto FoundNonType;
3241 default:
3242 break;
3243 }
3244 FoundNonType:
3245 if (j < n_candidates)
3246 {
3247 j = 0;
3248 while (j < n_candidates)
3249 {
3250 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3251 {
3252 candidates[j] = candidates[n_candidates - 1];
3253 n_candidates -= 1;
3254 }
3255 else
3256 j += 1;
3257 }
3258 }
3259 }
3260
3261 if (n_candidates == 0)
3262 error (_("No definition found for %s"),
3263 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3264 else if (n_candidates == 1)
3265 i = 0;
3266 else if (deprocedure_p
3267 && !is_nonfunction (candidates, n_candidates))
3268 {
3269 i = ada_resolve_function
3270 (candidates, n_candidates, NULL, 0,
3271 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3272 context_type);
3273 if (i < 0)
3274 error (_("Could not find a match for %s"),
3275 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3276 }
3277 else
3278 {
3279 printf_filtered (_("Multiple matches for %s\n"),
3280 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3281 user_select_syms (candidates, n_candidates, 1);
3282 i = 0;
3283 }
3284
3285 exp->elts[pc + 1].block = candidates[i].block;
3286 exp->elts[pc + 2].symbol = candidates[i].sym;
3287 if (innermost_block == NULL
3288 || contained_in (candidates[i].block, innermost_block))
3289 innermost_block = candidates[i].block;
3290 }
3291
3292 if (deprocedure_p
3293 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3294 == TYPE_CODE_FUNC))
3295 {
3296 replace_operator_with_call (expp, pc, 0, 0,
3297 exp->elts[pc + 2].symbol,
3298 exp->elts[pc + 1].block);
3299 exp = *expp;
3300 }
3301 break;
3302
3303 case OP_FUNCALL:
3304 {
3305 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3306 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3307 {
3308 struct ada_symbol_info *candidates;
3309 int n_candidates;
3310
3311 n_candidates =
3312 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3313 (exp->elts[pc + 5].symbol),
3314 exp->elts[pc + 4].block, VAR_DOMAIN,
3315 &candidates);
3316 if (n_candidates == 1)
3317 i = 0;
3318 else
3319 {
3320 i = ada_resolve_function
3321 (candidates, n_candidates,
3322 argvec, nargs,
3323 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3324 context_type);
3325 if (i < 0)
3326 error (_("Could not find a match for %s"),
3327 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3328 }
3329
3330 exp->elts[pc + 4].block = candidates[i].block;
3331 exp->elts[pc + 5].symbol = candidates[i].sym;
3332 if (innermost_block == NULL
3333 || contained_in (candidates[i].block, innermost_block))
3334 innermost_block = candidates[i].block;
3335 }
3336 }
3337 break;
3338 case BINOP_ADD:
3339 case BINOP_SUB:
3340 case BINOP_MUL:
3341 case BINOP_DIV:
3342 case BINOP_REM:
3343 case BINOP_MOD:
3344 case BINOP_CONCAT:
3345 case BINOP_BITWISE_AND:
3346 case BINOP_BITWISE_IOR:
3347 case BINOP_BITWISE_XOR:
3348 case BINOP_EQUAL:
3349 case BINOP_NOTEQUAL:
3350 case BINOP_LESS:
3351 case BINOP_GTR:
3352 case BINOP_LEQ:
3353 case BINOP_GEQ:
3354 case BINOP_EXP:
3355 case UNOP_NEG:
3356 case UNOP_PLUS:
3357 case UNOP_LOGICAL_NOT:
3358 case UNOP_ABS:
3359 if (possible_user_operator_p (op, argvec))
3360 {
3361 struct ada_symbol_info *candidates;
3362 int n_candidates;
3363
3364 n_candidates =
3365 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3366 (struct block *) NULL, VAR_DOMAIN,
3367 &candidates);
3368 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3369 ada_decoded_op_name (op), NULL);
3370 if (i < 0)
3371 break;
3372
3373 replace_operator_with_call (expp, pc, nargs, 1,
3374 candidates[i].sym, candidates[i].block);
3375 exp = *expp;
3376 }
3377 break;
3378
3379 case OP_TYPE:
3380 case OP_REGISTER:
3381 return NULL;
3382 }
3383
3384 *pos = pc;
3385 return evaluate_subexp_type (exp, pos);
3386 }
3387
3388 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3389 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3390 a non-pointer. */
3391 /* The term "match" here is rather loose. The match is heuristic and
3392 liberal. */
3393
3394 static int
3395 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3396 {
3397 ftype = ada_check_typedef (ftype);
3398 atype = ada_check_typedef (atype);
3399
3400 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3401 ftype = TYPE_TARGET_TYPE (ftype);
3402 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3403 atype = TYPE_TARGET_TYPE (atype);
3404
3405 switch (TYPE_CODE (ftype))
3406 {
3407 default:
3408 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3409 case TYPE_CODE_PTR:
3410 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3411 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3412 TYPE_TARGET_TYPE (atype), 0);
3413 else
3414 return (may_deref
3415 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3416 case TYPE_CODE_INT:
3417 case TYPE_CODE_ENUM:
3418 case TYPE_CODE_RANGE:
3419 switch (TYPE_CODE (atype))
3420 {
3421 case TYPE_CODE_INT:
3422 case TYPE_CODE_ENUM:
3423 case TYPE_CODE_RANGE:
3424 return 1;
3425 default:
3426 return 0;
3427 }
3428
3429 case TYPE_CODE_ARRAY:
3430 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3431 || ada_is_array_descriptor_type (atype));
3432
3433 case TYPE_CODE_STRUCT:
3434 if (ada_is_array_descriptor_type (ftype))
3435 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3436 || ada_is_array_descriptor_type (atype));
3437 else
3438 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3439 && !ada_is_array_descriptor_type (atype));
3440
3441 case TYPE_CODE_UNION:
3442 case TYPE_CODE_FLT:
3443 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3444 }
3445 }
3446
3447 /* Return non-zero if the formals of FUNC "sufficiently match" the
3448 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3449 may also be an enumeral, in which case it is treated as a 0-
3450 argument function. */
3451
3452 static int
3453 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3454 {
3455 int i;
3456 struct type *func_type = SYMBOL_TYPE (func);
3457
3458 if (SYMBOL_CLASS (func) == LOC_CONST
3459 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3460 return (n_actuals == 0);
3461 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3462 return 0;
3463
3464 if (TYPE_NFIELDS (func_type) != n_actuals)
3465 return 0;
3466
3467 for (i = 0; i < n_actuals; i += 1)
3468 {
3469 if (actuals[i] == NULL)
3470 return 0;
3471 else
3472 {
3473 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3474 i));
3475 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3476
3477 if (!ada_type_match (ftype, atype, 1))
3478 return 0;
3479 }
3480 }
3481 return 1;
3482 }
3483
3484 /* False iff function type FUNC_TYPE definitely does not produce a value
3485 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3486 FUNC_TYPE is not a valid function type with a non-null return type
3487 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3488
3489 static int
3490 return_match (struct type *func_type, struct type *context_type)
3491 {
3492 struct type *return_type;
3493
3494 if (func_type == NULL)
3495 return 1;
3496
3497 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3498 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3499 else
3500 return_type = get_base_type (func_type);
3501 if (return_type == NULL)
3502 return 1;
3503
3504 context_type = get_base_type (context_type);
3505
3506 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3507 return context_type == NULL || return_type == context_type;
3508 else if (context_type == NULL)
3509 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3510 else
3511 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3512 }
3513
3514
3515 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3516 function (if any) that matches the types of the NARGS arguments in
3517 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3518 that returns that type, then eliminate matches that don't. If
3519 CONTEXT_TYPE is void and there is at least one match that does not
3520 return void, eliminate all matches that do.
3521
3522 Asks the user if there is more than one match remaining. Returns -1
3523 if there is no such symbol or none is selected. NAME is used
3524 solely for messages. May re-arrange and modify SYMS in
3525 the process; the index returned is for the modified vector. */
3526
3527 static int
3528 ada_resolve_function (struct ada_symbol_info syms[],
3529 int nsyms, struct value **args, int nargs,
3530 const char *name, struct type *context_type)
3531 {
3532 int fallback;
3533 int k;
3534 int m; /* Number of hits */
3535
3536 m = 0;
3537 /* In the first pass of the loop, we only accept functions matching
3538 context_type. If none are found, we add a second pass of the loop
3539 where every function is accepted. */
3540 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3541 {
3542 for (k = 0; k < nsyms; k += 1)
3543 {
3544 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3545
3546 if (ada_args_match (syms[k].sym, args, nargs)
3547 && (fallback || return_match (type, context_type)))
3548 {
3549 syms[m] = syms[k];
3550 m += 1;
3551 }
3552 }
3553 }
3554
3555 if (m == 0)
3556 return -1;
3557 else if (m > 1)
3558 {
3559 printf_filtered (_("Multiple matches for %s\n"), name);
3560 user_select_syms (syms, m, 1);
3561 return 0;
3562 }
3563 return 0;
3564 }
3565
3566 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3567 in a listing of choices during disambiguation (see sort_choices, below).
3568 The idea is that overloadings of a subprogram name from the
3569 same package should sort in their source order. We settle for ordering
3570 such symbols by their trailing number (__N or $N). */
3571
3572 static int
3573 encoded_ordered_before (const char *N0, const char *N1)
3574 {
3575 if (N1 == NULL)
3576 return 0;
3577 else if (N0 == NULL)
3578 return 1;
3579 else
3580 {
3581 int k0, k1;
3582
3583 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3584 ;
3585 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3586 ;
3587 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3588 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3589 {
3590 int n0, n1;
3591
3592 n0 = k0;
3593 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3594 n0 -= 1;
3595 n1 = k1;
3596 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3597 n1 -= 1;
3598 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3599 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3600 }
3601 return (strcmp (N0, N1) < 0);
3602 }
3603 }
3604
3605 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3606 encoded names. */
3607
3608 static void
3609 sort_choices (struct ada_symbol_info syms[], int nsyms)
3610 {
3611 int i;
3612
3613 for (i = 1; i < nsyms; i += 1)
3614 {
3615 struct ada_symbol_info sym = syms[i];
3616 int j;
3617
3618 for (j = i - 1; j >= 0; j -= 1)
3619 {
3620 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3621 SYMBOL_LINKAGE_NAME (sym.sym)))
3622 break;
3623 syms[j + 1] = syms[j];
3624 }
3625 syms[j + 1] = sym;
3626 }
3627 }
3628
3629 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3630 by asking the user (if necessary), returning the number selected,
3631 and setting the first elements of SYMS items. Error if no symbols
3632 selected. */
3633
3634 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3635 to be re-integrated one of these days. */
3636
3637 int
3638 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3639 {
3640 int i;
3641 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3642 int n_chosen;
3643 int first_choice = (max_results == 1) ? 1 : 2;
3644 const char *select_mode = multiple_symbols_select_mode ();
3645
3646 if (max_results < 1)
3647 error (_("Request to select 0 symbols!"));
3648 if (nsyms <= 1)
3649 return nsyms;
3650
3651 if (select_mode == multiple_symbols_cancel)
3652 error (_("\
3653 canceled because the command is ambiguous\n\
3654 See set/show multiple-symbol."));
3655
3656 /* If select_mode is "all", then return all possible symbols.
3657 Only do that if more than one symbol can be selected, of course.
3658 Otherwise, display the menu as usual. */
3659 if (select_mode == multiple_symbols_all && max_results > 1)
3660 return nsyms;
3661
3662 printf_unfiltered (_("[0] cancel\n"));
3663 if (max_results > 1)
3664 printf_unfiltered (_("[1] all\n"));
3665
3666 sort_choices (syms, nsyms);
3667
3668 for (i = 0; i < nsyms; i += 1)
3669 {
3670 if (syms[i].sym == NULL)
3671 continue;
3672
3673 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3674 {
3675 struct symtab_and_line sal =
3676 find_function_start_sal (syms[i].sym, 1);
3677
3678 if (sal.symtab == NULL)
3679 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3680 i + first_choice,
3681 SYMBOL_PRINT_NAME (syms[i].sym),
3682 sal.line);
3683 else
3684 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3685 SYMBOL_PRINT_NAME (syms[i].sym),
3686 symtab_to_filename_for_display (sal.symtab),
3687 sal.line);
3688 continue;
3689 }
3690 else
3691 {
3692 int is_enumeral =
3693 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3694 && SYMBOL_TYPE (syms[i].sym) != NULL
3695 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3696 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3697
3698 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3699 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3700 i + first_choice,
3701 SYMBOL_PRINT_NAME (syms[i].sym),
3702 symtab_to_filename_for_display (symtab),
3703 SYMBOL_LINE (syms[i].sym));
3704 else if (is_enumeral
3705 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3706 {
3707 printf_unfiltered (("[%d] "), i + first_choice);
3708 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3709 gdb_stdout, -1, 0, &type_print_raw_options);
3710 printf_unfiltered (_("'(%s) (enumeral)\n"),
3711 SYMBOL_PRINT_NAME (syms[i].sym));
3712 }
3713 else if (symtab != NULL)
3714 printf_unfiltered (is_enumeral
3715 ? _("[%d] %s in %s (enumeral)\n")
3716 : _("[%d] %s at %s:?\n"),
3717 i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
3719 symtab_to_filename_for_display (symtab));
3720 else
3721 printf_unfiltered (is_enumeral
3722 ? _("[%d] %s (enumeral)\n")
3723 : _("[%d] %s at ?\n"),
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym));
3726 }
3727 }
3728
3729 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3730 "overload-choice");
3731
3732 for (i = 0; i < n_chosen; i += 1)
3733 syms[i] = syms[chosen[i]];
3734
3735 return n_chosen;
3736 }
3737
3738 /* Read and validate a set of numeric choices from the user in the
3739 range 0 .. N_CHOICES-1. Place the results in increasing
3740 order in CHOICES[0 .. N-1], and return N.
3741
3742 The user types choices as a sequence of numbers on one line
3743 separated by blanks, encoding them as follows:
3744
3745 + A choice of 0 means to cancel the selection, throwing an error.
3746 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3747 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3748
3749 The user is not allowed to choose more than MAX_RESULTS values.
3750
3751 ANNOTATION_SUFFIX, if present, is used to annotate the input
3752 prompts (for use with the -f switch). */
3753
3754 int
3755 get_selections (int *choices, int n_choices, int max_results,
3756 int is_all_choice, char *annotation_suffix)
3757 {
3758 char *args;
3759 char *prompt;
3760 int n_chosen;
3761 int first_choice = is_all_choice ? 2 : 1;
3762
3763 prompt = getenv ("PS2");
3764 if (prompt == NULL)
3765 prompt = "> ";
3766
3767 args = command_line_input (prompt, 0, annotation_suffix);
3768
3769 if (args == NULL)
3770 error_no_arg (_("one or more choice numbers"));
3771
3772 n_chosen = 0;
3773
3774 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3775 order, as given in args. Choices are validated. */
3776 while (1)
3777 {
3778 char *args2;
3779 int choice, j;
3780
3781 args = skip_spaces (args);
3782 if (*args == '\0' && n_chosen == 0)
3783 error_no_arg (_("one or more choice numbers"));
3784 else if (*args == '\0')
3785 break;
3786
3787 choice = strtol (args, &args2, 10);
3788 if (args == args2 || choice < 0
3789 || choice > n_choices + first_choice - 1)
3790 error (_("Argument must be choice number"));
3791 args = args2;
3792
3793 if (choice == 0)
3794 error (_("cancelled"));
3795
3796 if (choice < first_choice)
3797 {
3798 n_chosen = n_choices;
3799 for (j = 0; j < n_choices; j += 1)
3800 choices[j] = j;
3801 break;
3802 }
3803 choice -= first_choice;
3804
3805 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3806 {
3807 }
3808
3809 if (j < 0 || choice != choices[j])
3810 {
3811 int k;
3812
3813 for (k = n_chosen - 1; k > j; k -= 1)
3814 choices[k + 1] = choices[k];
3815 choices[j + 1] = choice;
3816 n_chosen += 1;
3817 }
3818 }
3819
3820 if (n_chosen > max_results)
3821 error (_("Select no more than %d of the above"), max_results);
3822
3823 return n_chosen;
3824 }
3825
3826 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3827 on the function identified by SYM and BLOCK, and taking NARGS
3828 arguments. Update *EXPP as needed to hold more space. */
3829
3830 static void
3831 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3832 int oplen, struct symbol *sym,
3833 const struct block *block)
3834 {
3835 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3836 symbol, -oplen for operator being replaced). */
3837 struct expression *newexp = (struct expression *)
3838 xzalloc (sizeof (struct expression)
3839 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3840 struct expression *exp = *expp;
3841
3842 newexp->nelts = exp->nelts + 7 - oplen;
3843 newexp->language_defn = exp->language_defn;
3844 newexp->gdbarch = exp->gdbarch;
3845 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3846 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3847 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3848
3849 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3850 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3851
3852 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3853 newexp->elts[pc + 4].block = block;
3854 newexp->elts[pc + 5].symbol = sym;
3855
3856 *expp = newexp;
3857 xfree (exp);
3858 }
3859
3860 /* Type-class predicates */
3861
3862 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3863 or FLOAT). */
3864
3865 static int
3866 numeric_type_p (struct type *type)
3867 {
3868 if (type == NULL)
3869 return 0;
3870 else
3871 {
3872 switch (TYPE_CODE (type))
3873 {
3874 case TYPE_CODE_INT:
3875 case TYPE_CODE_FLT:
3876 return 1;
3877 case TYPE_CODE_RANGE:
3878 return (type == TYPE_TARGET_TYPE (type)
3879 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3880 default:
3881 return 0;
3882 }
3883 }
3884 }
3885
3886 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3887
3888 static int
3889 integer_type_p (struct type *type)
3890 {
3891 if (type == NULL)
3892 return 0;
3893 else
3894 {
3895 switch (TYPE_CODE (type))
3896 {
3897 case TYPE_CODE_INT:
3898 return 1;
3899 case TYPE_CODE_RANGE:
3900 return (type == TYPE_TARGET_TYPE (type)
3901 || integer_type_p (TYPE_TARGET_TYPE (type)));
3902 default:
3903 return 0;
3904 }
3905 }
3906 }
3907
3908 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3909
3910 static int
3911 scalar_type_p (struct type *type)
3912 {
3913 if (type == NULL)
3914 return 0;
3915 else
3916 {
3917 switch (TYPE_CODE (type))
3918 {
3919 case TYPE_CODE_INT:
3920 case TYPE_CODE_RANGE:
3921 case TYPE_CODE_ENUM:
3922 case TYPE_CODE_FLT:
3923 return 1;
3924 default:
3925 return 0;
3926 }
3927 }
3928 }
3929
3930 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3931
3932 static int
3933 discrete_type_p (struct type *type)
3934 {
3935 if (type == NULL)
3936 return 0;
3937 else
3938 {
3939 switch (TYPE_CODE (type))
3940 {
3941 case TYPE_CODE_INT:
3942 case TYPE_CODE_RANGE:
3943 case TYPE_CODE_ENUM:
3944 case TYPE_CODE_BOOL:
3945 return 1;
3946 default:
3947 return 0;
3948 }
3949 }
3950 }
3951
3952 /* Returns non-zero if OP with operands in the vector ARGS could be
3953 a user-defined function. Errs on the side of pre-defined operators
3954 (i.e., result 0). */
3955
3956 static int
3957 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3958 {
3959 struct type *type0 =
3960 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3961 struct type *type1 =
3962 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3963
3964 if (type0 == NULL)
3965 return 0;
3966
3967 switch (op)
3968 {
3969 default:
3970 return 0;
3971
3972 case BINOP_ADD:
3973 case BINOP_SUB:
3974 case BINOP_MUL:
3975 case BINOP_DIV:
3976 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3977
3978 case BINOP_REM:
3979 case BINOP_MOD:
3980 case BINOP_BITWISE_AND:
3981 case BINOP_BITWISE_IOR:
3982 case BINOP_BITWISE_XOR:
3983 return (!(integer_type_p (type0) && integer_type_p (type1)));
3984
3985 case BINOP_EQUAL:
3986 case BINOP_NOTEQUAL:
3987 case BINOP_LESS:
3988 case BINOP_GTR:
3989 case BINOP_LEQ:
3990 case BINOP_GEQ:
3991 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3992
3993 case BINOP_CONCAT:
3994 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3995
3996 case BINOP_EXP:
3997 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3998
3999 case UNOP_NEG:
4000 case UNOP_PLUS:
4001 case UNOP_LOGICAL_NOT:
4002 case UNOP_ABS:
4003 return (!numeric_type_p (type0));
4004
4005 }
4006 }
4007 \f
4008 /* Renaming */
4009
4010 /* NOTES:
4011
4012 1. In the following, we assume that a renaming type's name may
4013 have an ___XD suffix. It would be nice if this went away at some
4014 point.
4015 2. We handle both the (old) purely type-based representation of
4016 renamings and the (new) variable-based encoding. At some point,
4017 it is devoutly to be hoped that the former goes away
4018 (FIXME: hilfinger-2007-07-09).
4019 3. Subprogram renamings are not implemented, although the XRS
4020 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4021
4022 /* If SYM encodes a renaming,
4023
4024 <renaming> renames <renamed entity>,
4025
4026 sets *LEN to the length of the renamed entity's name,
4027 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4028 the string describing the subcomponent selected from the renamed
4029 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4030 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4031 are undefined). Otherwise, returns a value indicating the category
4032 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4033 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4034 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4035 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4036 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4037 may be NULL, in which case they are not assigned.
4038
4039 [Currently, however, GCC does not generate subprogram renamings.] */
4040
4041 enum ada_renaming_category
4042 ada_parse_renaming (struct symbol *sym,
4043 const char **renamed_entity, int *len,
4044 const char **renaming_expr)
4045 {
4046 enum ada_renaming_category kind;
4047 const char *info;
4048 const char *suffix;
4049
4050 if (sym == NULL)
4051 return ADA_NOT_RENAMING;
4052 switch (SYMBOL_CLASS (sym))
4053 {
4054 default:
4055 return ADA_NOT_RENAMING;
4056 case LOC_TYPEDEF:
4057 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4058 renamed_entity, len, renaming_expr);
4059 case LOC_LOCAL:
4060 case LOC_STATIC:
4061 case LOC_COMPUTED:
4062 case LOC_OPTIMIZED_OUT:
4063 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4064 if (info == NULL)
4065 return ADA_NOT_RENAMING;
4066 switch (info[5])
4067 {
4068 case '_':
4069 kind = ADA_OBJECT_RENAMING;
4070 info += 6;
4071 break;
4072 case 'E':
4073 kind = ADA_EXCEPTION_RENAMING;
4074 info += 7;
4075 break;
4076 case 'P':
4077 kind = ADA_PACKAGE_RENAMING;
4078 info += 7;
4079 break;
4080 case 'S':
4081 kind = ADA_SUBPROGRAM_RENAMING;
4082 info += 7;
4083 break;
4084 default:
4085 return ADA_NOT_RENAMING;
4086 }
4087 }
4088
4089 if (renamed_entity != NULL)
4090 *renamed_entity = info;
4091 suffix = strstr (info, "___XE");
4092 if (suffix == NULL || suffix == info)
4093 return ADA_NOT_RENAMING;
4094 if (len != NULL)
4095 *len = strlen (info) - strlen (suffix);
4096 suffix += 5;
4097 if (renaming_expr != NULL)
4098 *renaming_expr = suffix;
4099 return kind;
4100 }
4101
4102 /* Assuming TYPE encodes a renaming according to the old encoding in
4103 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4104 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4105 ADA_NOT_RENAMING otherwise. */
4106 static enum ada_renaming_category
4107 parse_old_style_renaming (struct type *type,
4108 const char **renamed_entity, int *len,
4109 const char **renaming_expr)
4110 {
4111 enum ada_renaming_category kind;
4112 const char *name;
4113 const char *info;
4114 const char *suffix;
4115
4116 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4117 || TYPE_NFIELDS (type) != 1)
4118 return ADA_NOT_RENAMING;
4119
4120 name = type_name_no_tag (type);
4121 if (name == NULL)
4122 return ADA_NOT_RENAMING;
4123
4124 name = strstr (name, "___XR");
4125 if (name == NULL)
4126 return ADA_NOT_RENAMING;
4127 switch (name[5])
4128 {
4129 case '\0':
4130 case '_':
4131 kind = ADA_OBJECT_RENAMING;
4132 break;
4133 case 'E':
4134 kind = ADA_EXCEPTION_RENAMING;
4135 break;
4136 case 'P':
4137 kind = ADA_PACKAGE_RENAMING;
4138 break;
4139 case 'S':
4140 kind = ADA_SUBPROGRAM_RENAMING;
4141 break;
4142 default:
4143 return ADA_NOT_RENAMING;
4144 }
4145
4146 info = TYPE_FIELD_NAME (type, 0);
4147 if (info == NULL)
4148 return ADA_NOT_RENAMING;
4149 if (renamed_entity != NULL)
4150 *renamed_entity = info;
4151 suffix = strstr (info, "___XE");
4152 if (renaming_expr != NULL)
4153 *renaming_expr = suffix + 5;
4154 if (suffix == NULL || suffix == info)
4155 return ADA_NOT_RENAMING;
4156 if (len != NULL)
4157 *len = suffix - info;
4158 return kind;
4159 }
4160
4161 /* Compute the value of the given RENAMING_SYM, which is expected to
4162 be a symbol encoding a renaming expression. BLOCK is the block
4163 used to evaluate the renaming. */
4164
4165 static struct value *
4166 ada_read_renaming_var_value (struct symbol *renaming_sym,
4167 struct block *block)
4168 {
4169 const char *sym_name;
4170 struct expression *expr;
4171 struct value *value;
4172 struct cleanup *old_chain = NULL;
4173
4174 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4175 expr = parse_exp_1 (&sym_name, 0, block, 0);
4176 old_chain = make_cleanup (free_current_contents, &expr);
4177 value = evaluate_expression (expr);
4178
4179 do_cleanups (old_chain);
4180 return value;
4181 }
4182 \f
4183
4184 /* Evaluation: Function Calls */
4185
4186 /* Return an lvalue containing the value VAL. This is the identity on
4187 lvalues, and otherwise has the side-effect of allocating memory
4188 in the inferior where a copy of the value contents is copied. */
4189
4190 static struct value *
4191 ensure_lval (struct value *val)
4192 {
4193 if (VALUE_LVAL (val) == not_lval
4194 || VALUE_LVAL (val) == lval_internalvar)
4195 {
4196 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4197 const CORE_ADDR addr =
4198 value_as_long (value_allocate_space_in_inferior (len));
4199
4200 set_value_address (val, addr);
4201 VALUE_LVAL (val) = lval_memory;
4202 write_memory (addr, value_contents (val), len);
4203 }
4204
4205 return val;
4206 }
4207
4208 /* Return the value ACTUAL, converted to be an appropriate value for a
4209 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4210 allocating any necessary descriptors (fat pointers), or copies of
4211 values not residing in memory, updating it as needed. */
4212
4213 struct value *
4214 ada_convert_actual (struct value *actual, struct type *formal_type0)
4215 {
4216 struct type *actual_type = ada_check_typedef (value_type (actual));
4217 struct type *formal_type = ada_check_typedef (formal_type0);
4218 struct type *formal_target =
4219 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4220 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4221 struct type *actual_target =
4222 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4223 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4224
4225 if (ada_is_array_descriptor_type (formal_target)
4226 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4227 return make_array_descriptor (formal_type, actual);
4228 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4229 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4230 {
4231 struct value *result;
4232
4233 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4234 && ada_is_array_descriptor_type (actual_target))
4235 result = desc_data (actual);
4236 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4237 {
4238 if (VALUE_LVAL (actual) != lval_memory)
4239 {
4240 struct value *val;
4241
4242 actual_type = ada_check_typedef (value_type (actual));
4243 val = allocate_value (actual_type);
4244 memcpy ((char *) value_contents_raw (val),
4245 (char *) value_contents (actual),
4246 TYPE_LENGTH (actual_type));
4247 actual = ensure_lval (val);
4248 }
4249 result = value_addr (actual);
4250 }
4251 else
4252 return actual;
4253 return value_cast_pointers (formal_type, result, 0);
4254 }
4255 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4256 return ada_value_ind (actual);
4257
4258 return actual;
4259 }
4260
4261 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4262 type TYPE. This is usually an inefficient no-op except on some targets
4263 (such as AVR) where the representation of a pointer and an address
4264 differs. */
4265
4266 static CORE_ADDR
4267 value_pointer (struct value *value, struct type *type)
4268 {
4269 struct gdbarch *gdbarch = get_type_arch (type);
4270 unsigned len = TYPE_LENGTH (type);
4271 gdb_byte *buf = alloca (len);
4272 CORE_ADDR addr;
4273
4274 addr = value_address (value);
4275 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4276 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4277 return addr;
4278 }
4279
4280
4281 /* Push a descriptor of type TYPE for array value ARR on the stack at
4282 *SP, updating *SP to reflect the new descriptor. Return either
4283 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4284 to-descriptor type rather than a descriptor type), a struct value *
4285 representing a pointer to this descriptor. */
4286
4287 static struct value *
4288 make_array_descriptor (struct type *type, struct value *arr)
4289 {
4290 struct type *bounds_type = desc_bounds_type (type);
4291 struct type *desc_type = desc_base_type (type);
4292 struct value *descriptor = allocate_value (desc_type);
4293 struct value *bounds = allocate_value (bounds_type);
4294 int i;
4295
4296 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4297 i > 0; i -= 1)
4298 {
4299 modify_field (value_type (bounds), value_contents_writeable (bounds),
4300 ada_array_bound (arr, i, 0),
4301 desc_bound_bitpos (bounds_type, i, 0),
4302 desc_bound_bitsize (bounds_type, i, 0));
4303 modify_field (value_type (bounds), value_contents_writeable (bounds),
4304 ada_array_bound (arr, i, 1),
4305 desc_bound_bitpos (bounds_type, i, 1),
4306 desc_bound_bitsize (bounds_type, i, 1));
4307 }
4308
4309 bounds = ensure_lval (bounds);
4310
4311 modify_field (value_type (descriptor),
4312 value_contents_writeable (descriptor),
4313 value_pointer (ensure_lval (arr),
4314 TYPE_FIELD_TYPE (desc_type, 0)),
4315 fat_pntr_data_bitpos (desc_type),
4316 fat_pntr_data_bitsize (desc_type));
4317
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (bounds,
4321 TYPE_FIELD_TYPE (desc_type, 1)),
4322 fat_pntr_bounds_bitpos (desc_type),
4323 fat_pntr_bounds_bitsize (desc_type));
4324
4325 descriptor = ensure_lval (descriptor);
4326
4327 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4328 return value_addr (descriptor);
4329 else
4330 return descriptor;
4331 }
4332 \f
4333 /* Symbol Cache Module */
4334
4335 /* Performance measurements made as of 2010-01-15 indicate that
4336 this cache does bring some noticeable improvements. Depending
4337 on the type of entity being printed, the cache can make it as much
4338 as an order of magnitude faster than without it.
4339
4340 The descriptive type DWARF extension has significantly reduced
4341 the need for this cache, at least when DWARF is being used. However,
4342 even in this case, some expensive name-based symbol searches are still
4343 sometimes necessary - to find an XVZ variable, mostly. */
4344
4345 /* Initialize the contents of SYM_CACHE. */
4346
4347 static void
4348 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4349 {
4350 obstack_init (&sym_cache->cache_space);
4351 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4352 }
4353
4354 /* Free the memory used by SYM_CACHE. */
4355
4356 static void
4357 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4358 {
4359 obstack_free (&sym_cache->cache_space, NULL);
4360 xfree (sym_cache);
4361 }
4362
4363 /* Return the symbol cache associated to the given program space PSPACE.
4364 If not allocated for this PSPACE yet, allocate and initialize one. */
4365
4366 static struct ada_symbol_cache *
4367 ada_get_symbol_cache (struct program_space *pspace)
4368 {
4369 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4370 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4371
4372 if (sym_cache == NULL)
4373 {
4374 sym_cache = XCNEW (struct ada_symbol_cache);
4375 ada_init_symbol_cache (sym_cache);
4376 }
4377
4378 return sym_cache;
4379 }
4380
4381 /* Clear all entries from the symbol cache. */
4382
4383 static void
4384 ada_clear_symbol_cache (void)
4385 {
4386 struct ada_symbol_cache *sym_cache
4387 = ada_get_symbol_cache (current_program_space);
4388
4389 obstack_free (&sym_cache->cache_space, NULL);
4390 ada_init_symbol_cache (sym_cache);
4391 }
4392
4393 /* Search our cache for an entry matching NAME and NAMESPACE.
4394 Return it if found, or NULL otherwise. */
4395
4396 static struct cache_entry **
4397 find_entry (const char *name, domain_enum namespace)
4398 {
4399 struct ada_symbol_cache *sym_cache
4400 = ada_get_symbol_cache (current_program_space);
4401 int h = msymbol_hash (name) % HASH_SIZE;
4402 struct cache_entry **e;
4403
4404 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4405 {
4406 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4407 return e;
4408 }
4409 return NULL;
4410 }
4411
4412 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4413 Return 1 if found, 0 otherwise.
4414
4415 If an entry was found and SYM is not NULL, set *SYM to the entry's
4416 SYM. Same principle for BLOCK if not NULL. */
4417
4418 static int
4419 lookup_cached_symbol (const char *name, domain_enum namespace,
4420 struct symbol **sym, const struct block **block)
4421 {
4422 struct cache_entry **e = find_entry (name, namespace);
4423
4424 if (e == NULL)
4425 return 0;
4426 if (sym != NULL)
4427 *sym = (*e)->sym;
4428 if (block != NULL)
4429 *block = (*e)->block;
4430 return 1;
4431 }
4432
4433 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4434 in domain NAMESPACE, save this result in our symbol cache. */
4435
4436 static void
4437 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4438 const struct block *block)
4439 {
4440 struct ada_symbol_cache *sym_cache
4441 = ada_get_symbol_cache (current_program_space);
4442 int h;
4443 char *copy;
4444 struct cache_entry *e;
4445
4446 /* If the symbol is a local symbol, then do not cache it, as a search
4447 for that symbol depends on the context. To determine whether
4448 the symbol is local or not, we check the block where we found it
4449 against the global and static blocks of its associated symtab. */
4450 if (sym
4451 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4453 return;
4454
4455 h = msymbol_hash (name) % HASH_SIZE;
4456 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4457 sizeof (*e));
4458 e->next = sym_cache->root[h];
4459 sym_cache->root[h] = e;
4460 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4461 strcpy (copy, name);
4462 e->sym = sym;
4463 e->namespace = namespace;
4464 e->block = block;
4465 }
4466 \f
4467 /* Symbol Lookup */
4468
4469 /* Return nonzero if wild matching should be used when searching for
4470 all symbols matching LOOKUP_NAME.
4471
4472 LOOKUP_NAME is expected to be a symbol name after transformation
4473 for Ada lookups (see ada_name_for_lookup). */
4474
4475 static int
4476 should_use_wild_match (const char *lookup_name)
4477 {
4478 return (strstr (lookup_name, "__") == NULL);
4479 }
4480
4481 /* Return the result of a standard (literal, C-like) lookup of NAME in
4482 given DOMAIN, visible from lexical block BLOCK. */
4483
4484 static struct symbol *
4485 standard_lookup (const char *name, const struct block *block,
4486 domain_enum domain)
4487 {
4488 /* Initialize it just to avoid a GCC false warning. */
4489 struct symbol *sym = NULL;
4490
4491 if (lookup_cached_symbol (name, domain, &sym, NULL))
4492 return sym;
4493 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4494 cache_symbol (name, domain, sym, block_found);
4495 return sym;
4496 }
4497
4498
4499 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4500 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4501 since they contend in overloading in the same way. */
4502 static int
4503 is_nonfunction (struct ada_symbol_info syms[], int n)
4504 {
4505 int i;
4506
4507 for (i = 0; i < n; i += 1)
4508 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4509 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4510 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4511 return 1;
4512
4513 return 0;
4514 }
4515
4516 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4517 struct types. Otherwise, they may not. */
4518
4519 static int
4520 equiv_types (struct type *type0, struct type *type1)
4521 {
4522 if (type0 == type1)
4523 return 1;
4524 if (type0 == NULL || type1 == NULL
4525 || TYPE_CODE (type0) != TYPE_CODE (type1))
4526 return 0;
4527 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4528 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4529 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4530 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4531 return 1;
4532
4533 return 0;
4534 }
4535
4536 /* True iff SYM0 represents the same entity as SYM1, or one that is
4537 no more defined than that of SYM1. */
4538
4539 static int
4540 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4541 {
4542 if (sym0 == sym1)
4543 return 1;
4544 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4545 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4546 return 0;
4547
4548 switch (SYMBOL_CLASS (sym0))
4549 {
4550 case LOC_UNDEF:
4551 return 1;
4552 case LOC_TYPEDEF:
4553 {
4554 struct type *type0 = SYMBOL_TYPE (sym0);
4555 struct type *type1 = SYMBOL_TYPE (sym1);
4556 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4557 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4558 int len0 = strlen (name0);
4559
4560 return
4561 TYPE_CODE (type0) == TYPE_CODE (type1)
4562 && (equiv_types (type0, type1)
4563 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4564 && strncmp (name1 + len0, "___XV", 5) == 0));
4565 }
4566 case LOC_CONST:
4567 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4568 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4569 default:
4570 return 0;
4571 }
4572 }
4573
4574 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4575 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4576
4577 static void
4578 add_defn_to_vec (struct obstack *obstackp,
4579 struct symbol *sym,
4580 const struct block *block)
4581 {
4582 int i;
4583 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4584
4585 /* Do not try to complete stub types, as the debugger is probably
4586 already scanning all symbols matching a certain name at the
4587 time when this function is called. Trying to replace the stub
4588 type by its associated full type will cause us to restart a scan
4589 which may lead to an infinite recursion. Instead, the client
4590 collecting the matching symbols will end up collecting several
4591 matches, with at least one of them complete. It can then filter
4592 out the stub ones if needed. */
4593
4594 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4595 {
4596 if (lesseq_defined_than (sym, prevDefns[i].sym))
4597 return;
4598 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4599 {
4600 prevDefns[i].sym = sym;
4601 prevDefns[i].block = block;
4602 return;
4603 }
4604 }
4605
4606 {
4607 struct ada_symbol_info info;
4608
4609 info.sym = sym;
4610 info.block = block;
4611 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4612 }
4613 }
4614
4615 /* Number of ada_symbol_info structures currently collected in
4616 current vector in *OBSTACKP. */
4617
4618 static int
4619 num_defns_collected (struct obstack *obstackp)
4620 {
4621 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4622 }
4623
4624 /* Vector of ada_symbol_info structures currently collected in current
4625 vector in *OBSTACKP. If FINISH, close off the vector and return
4626 its final address. */
4627
4628 static struct ada_symbol_info *
4629 defns_collected (struct obstack *obstackp, int finish)
4630 {
4631 if (finish)
4632 return obstack_finish (obstackp);
4633 else
4634 return (struct ada_symbol_info *) obstack_base (obstackp);
4635 }
4636
4637 /* Return a bound minimal symbol matching NAME according to Ada
4638 decoding rules. Returns an invalid symbol if there is no such
4639 minimal symbol. Names prefixed with "standard__" are handled
4640 specially: "standard__" is first stripped off, and only static and
4641 global symbols are searched. */
4642
4643 struct bound_minimal_symbol
4644 ada_lookup_simple_minsym (const char *name)
4645 {
4646 struct bound_minimal_symbol result;
4647 struct objfile *objfile;
4648 struct minimal_symbol *msymbol;
4649 const int wild_match_p = should_use_wild_match (name);
4650
4651 memset (&result, 0, sizeof (result));
4652
4653 /* Special case: If the user specifies a symbol name inside package
4654 Standard, do a non-wild matching of the symbol name without
4655 the "standard__" prefix. This was primarily introduced in order
4656 to allow the user to specifically access the standard exceptions
4657 using, for instance, Standard.Constraint_Error when Constraint_Error
4658 is ambiguous (due to the user defining its own Constraint_Error
4659 entity inside its program). */
4660 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4661 name += sizeof ("standard__") - 1;
4662
4663 ALL_MSYMBOLS (objfile, msymbol)
4664 {
4665 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4666 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4667 {
4668 result.minsym = msymbol;
4669 result.objfile = objfile;
4670 break;
4671 }
4672 }
4673
4674 return result;
4675 }
4676
4677 /* For all subprograms that statically enclose the subprogram of the
4678 selected frame, add symbols matching identifier NAME in DOMAIN
4679 and their blocks to the list of data in OBSTACKP, as for
4680 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4681 with a wildcard prefix. */
4682
4683 static void
4684 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4685 const char *name, domain_enum namespace,
4686 int wild_match_p)
4687 {
4688 }
4689
4690 /* True if TYPE is definitely an artificial type supplied to a symbol
4691 for which no debugging information was given in the symbol file. */
4692
4693 static int
4694 is_nondebugging_type (struct type *type)
4695 {
4696 const char *name = ada_type_name (type);
4697
4698 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4699 }
4700
4701 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4702 that are deemed "identical" for practical purposes.
4703
4704 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4705 types and that their number of enumerals is identical (in other
4706 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4707
4708 static int
4709 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4710 {
4711 int i;
4712
4713 /* The heuristic we use here is fairly conservative. We consider
4714 that 2 enumerate types are identical if they have the same
4715 number of enumerals and that all enumerals have the same
4716 underlying value and name. */
4717
4718 /* All enums in the type should have an identical underlying value. */
4719 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4720 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4721 return 0;
4722
4723 /* All enumerals should also have the same name (modulo any numerical
4724 suffix). */
4725 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4726 {
4727 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4728 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4729 int len_1 = strlen (name_1);
4730 int len_2 = strlen (name_2);
4731
4732 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4734 if (len_1 != len_2
4735 || strncmp (TYPE_FIELD_NAME (type1, i),
4736 TYPE_FIELD_NAME (type2, i),
4737 len_1) != 0)
4738 return 0;
4739 }
4740
4741 return 1;
4742 }
4743
4744 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4745 that are deemed "identical" for practical purposes. Sometimes,
4746 enumerals are not strictly identical, but their types are so similar
4747 that they can be considered identical.
4748
4749 For instance, consider the following code:
4750
4751 type Color is (Black, Red, Green, Blue, White);
4752 type RGB_Color is new Color range Red .. Blue;
4753
4754 Type RGB_Color is a subrange of an implicit type which is a copy
4755 of type Color. If we call that implicit type RGB_ColorB ("B" is
4756 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4757 As a result, when an expression references any of the enumeral
4758 by name (Eg. "print green"), the expression is technically
4759 ambiguous and the user should be asked to disambiguate. But
4760 doing so would only hinder the user, since it wouldn't matter
4761 what choice he makes, the outcome would always be the same.
4762 So, for practical purposes, we consider them as the same. */
4763
4764 static int
4765 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4766 {
4767 int i;
4768
4769 /* Before performing a thorough comparison check of each type,
4770 we perform a series of inexpensive checks. We expect that these
4771 checks will quickly fail in the vast majority of cases, and thus
4772 help prevent the unnecessary use of a more expensive comparison.
4773 Said comparison also expects us to make some of these checks
4774 (see ada_identical_enum_types_p). */
4775
4776 /* Quick check: All symbols should have an enum type. */
4777 for (i = 0; i < nsyms; i++)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4779 return 0;
4780
4781 /* Quick check: They should all have the same value. */
4782 for (i = 1; i < nsyms; i++)
4783 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4784 return 0;
4785
4786 /* Quick check: They should all have the same number of enumerals. */
4787 for (i = 1; i < nsyms; i++)
4788 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4789 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4790 return 0;
4791
4792 /* All the sanity checks passed, so we might have a set of
4793 identical enumeration types. Perform a more complete
4794 comparison of the type of each symbol. */
4795 for (i = 1; i < nsyms; i++)
4796 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4797 SYMBOL_TYPE (syms[0].sym)))
4798 return 0;
4799
4800 return 1;
4801 }
4802
4803 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4804 duplicate other symbols in the list (The only case I know of where
4805 this happens is when object files containing stabs-in-ecoff are
4806 linked with files containing ordinary ecoff debugging symbols (or no
4807 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4808 Returns the number of items in the modified list. */
4809
4810 static int
4811 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4812 {
4813 int i, j;
4814
4815 /* We should never be called with less than 2 symbols, as there
4816 cannot be any extra symbol in that case. But it's easy to
4817 handle, since we have nothing to do in that case. */
4818 if (nsyms < 2)
4819 return nsyms;
4820
4821 i = 0;
4822 while (i < nsyms)
4823 {
4824 int remove_p = 0;
4825
4826 /* If two symbols have the same name and one of them is a stub type,
4827 the get rid of the stub. */
4828
4829 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4830 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4831 {
4832 for (j = 0; j < nsyms; j++)
4833 {
4834 if (j != i
4835 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4836 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4837 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4838 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4839 remove_p = 1;
4840 }
4841 }
4842
4843 /* Two symbols with the same name, same class and same address
4844 should be identical. */
4845
4846 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4847 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4848 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4849 {
4850 for (j = 0; j < nsyms; j += 1)
4851 {
4852 if (i != j
4853 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4854 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4855 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4856 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4857 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4858 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4859 remove_p = 1;
4860 }
4861 }
4862
4863 if (remove_p)
4864 {
4865 for (j = i + 1; j < nsyms; j += 1)
4866 syms[j - 1] = syms[j];
4867 nsyms -= 1;
4868 }
4869
4870 i += 1;
4871 }
4872
4873 /* If all the remaining symbols are identical enumerals, then
4874 just keep the first one and discard the rest.
4875
4876 Unlike what we did previously, we do not discard any entry
4877 unless they are ALL identical. This is because the symbol
4878 comparison is not a strict comparison, but rather a practical
4879 comparison. If all symbols are considered identical, then
4880 we can just go ahead and use the first one and discard the rest.
4881 But if we cannot reduce the list to a single element, we have
4882 to ask the user to disambiguate anyways. And if we have to
4883 present a multiple-choice menu, it's less confusing if the list
4884 isn't missing some choices that were identical and yet distinct. */
4885 if (symbols_are_identical_enums (syms, nsyms))
4886 nsyms = 1;
4887
4888 return nsyms;
4889 }
4890
4891 /* Given a type that corresponds to a renaming entity, use the type name
4892 to extract the scope (package name or function name, fully qualified,
4893 and following the GNAT encoding convention) where this renaming has been
4894 defined. The string returned needs to be deallocated after use. */
4895
4896 static char *
4897 xget_renaming_scope (struct type *renaming_type)
4898 {
4899 /* The renaming types adhere to the following convention:
4900 <scope>__<rename>___<XR extension>.
4901 So, to extract the scope, we search for the "___XR" extension,
4902 and then backtrack until we find the first "__". */
4903
4904 const char *name = type_name_no_tag (renaming_type);
4905 char *suffix = strstr (name, "___XR");
4906 char *last;
4907 int scope_len;
4908 char *scope;
4909
4910 /* Now, backtrack a bit until we find the first "__". Start looking
4911 at suffix - 3, as the <rename> part is at least one character long. */
4912
4913 for (last = suffix - 3; last > name; last--)
4914 if (last[0] == '_' && last[1] == '_')
4915 break;
4916
4917 /* Make a copy of scope and return it. */
4918
4919 scope_len = last - name;
4920 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4921
4922 strncpy (scope, name, scope_len);
4923 scope[scope_len] = '\0';
4924
4925 return scope;
4926 }
4927
4928 /* Return nonzero if NAME corresponds to a package name. */
4929
4930 static int
4931 is_package_name (const char *name)
4932 {
4933 /* Here, We take advantage of the fact that no symbols are generated
4934 for packages, while symbols are generated for each function.
4935 So the condition for NAME represent a package becomes equivalent
4936 to NAME not existing in our list of symbols. There is only one
4937 small complication with library-level functions (see below). */
4938
4939 char *fun_name;
4940
4941 /* If it is a function that has not been defined at library level,
4942 then we should be able to look it up in the symbols. */
4943 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4944 return 0;
4945
4946 /* Library-level function names start with "_ada_". See if function
4947 "_ada_" followed by NAME can be found. */
4948
4949 /* Do a quick check that NAME does not contain "__", since library-level
4950 functions names cannot contain "__" in them. */
4951 if (strstr (name, "__") != NULL)
4952 return 0;
4953
4954 fun_name = xstrprintf ("_ada_%s", name);
4955
4956 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4957 }
4958
4959 /* Return nonzero if SYM corresponds to a renaming entity that is
4960 not visible from FUNCTION_NAME. */
4961
4962 static int
4963 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4964 {
4965 char *scope;
4966 struct cleanup *old_chain;
4967
4968 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4969 return 0;
4970
4971 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4972 old_chain = make_cleanup (xfree, scope);
4973
4974 /* If the rename has been defined in a package, then it is visible. */
4975 if (is_package_name (scope))
4976 {
4977 do_cleanups (old_chain);
4978 return 0;
4979 }
4980
4981 /* Check that the rename is in the current function scope by checking
4982 that its name starts with SCOPE. */
4983
4984 /* If the function name starts with "_ada_", it means that it is
4985 a library-level function. Strip this prefix before doing the
4986 comparison, as the encoding for the renaming does not contain
4987 this prefix. */
4988 if (strncmp (function_name, "_ada_", 5) == 0)
4989 function_name += 5;
4990
4991 {
4992 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4993
4994 do_cleanups (old_chain);
4995 return is_invisible;
4996 }
4997 }
4998
4999 /* Remove entries from SYMS that corresponds to a renaming entity that
5000 is not visible from the function associated with CURRENT_BLOCK or
5001 that is superfluous due to the presence of more specific renaming
5002 information. Places surviving symbols in the initial entries of
5003 SYMS and returns the number of surviving symbols.
5004
5005 Rationale:
5006 First, in cases where an object renaming is implemented as a
5007 reference variable, GNAT may produce both the actual reference
5008 variable and the renaming encoding. In this case, we discard the
5009 latter.
5010
5011 Second, GNAT emits a type following a specified encoding for each renaming
5012 entity. Unfortunately, STABS currently does not support the definition
5013 of types that are local to a given lexical block, so all renamings types
5014 are emitted at library level. As a consequence, if an application
5015 contains two renaming entities using the same name, and a user tries to
5016 print the value of one of these entities, the result of the ada symbol
5017 lookup will also contain the wrong renaming type.
5018
5019 This function partially covers for this limitation by attempting to
5020 remove from the SYMS list renaming symbols that should be visible
5021 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5022 method with the current information available. The implementation
5023 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5024
5025 - When the user tries to print a rename in a function while there
5026 is another rename entity defined in a package: Normally, the
5027 rename in the function has precedence over the rename in the
5028 package, so the latter should be removed from the list. This is
5029 currently not the case.
5030
5031 - This function will incorrectly remove valid renames if
5032 the CURRENT_BLOCK corresponds to a function which symbol name
5033 has been changed by an "Export" pragma. As a consequence,
5034 the user will be unable to print such rename entities. */
5035
5036 static int
5037 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5038 int nsyms, const struct block *current_block)
5039 {
5040 struct symbol *current_function;
5041 const char *current_function_name;
5042 int i;
5043 int is_new_style_renaming;
5044
5045 /* If there is both a renaming foo___XR... encoded as a variable and
5046 a simple variable foo in the same block, discard the latter.
5047 First, zero out such symbols, then compress. */
5048 is_new_style_renaming = 0;
5049 for (i = 0; i < nsyms; i += 1)
5050 {
5051 struct symbol *sym = syms[i].sym;
5052 const struct block *block = syms[i].block;
5053 const char *name;
5054 const char *suffix;
5055
5056 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5057 continue;
5058 name = SYMBOL_LINKAGE_NAME (sym);
5059 suffix = strstr (name, "___XR");
5060
5061 if (suffix != NULL)
5062 {
5063 int name_len = suffix - name;
5064 int j;
5065
5066 is_new_style_renaming = 1;
5067 for (j = 0; j < nsyms; j += 1)
5068 if (i != j && syms[j].sym != NULL
5069 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5070 name_len) == 0
5071 && block == syms[j].block)
5072 syms[j].sym = NULL;
5073 }
5074 }
5075 if (is_new_style_renaming)
5076 {
5077 int j, k;
5078
5079 for (j = k = 0; j < nsyms; j += 1)
5080 if (syms[j].sym != NULL)
5081 {
5082 syms[k] = syms[j];
5083 k += 1;
5084 }
5085 return k;
5086 }
5087
5088 /* Extract the function name associated to CURRENT_BLOCK.
5089 Abort if unable to do so. */
5090
5091 if (current_block == NULL)
5092 return nsyms;
5093
5094 current_function = block_linkage_function (current_block);
5095 if (current_function == NULL)
5096 return nsyms;
5097
5098 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5099 if (current_function_name == NULL)
5100 return nsyms;
5101
5102 /* Check each of the symbols, and remove it from the list if it is
5103 a type corresponding to a renaming that is out of the scope of
5104 the current block. */
5105
5106 i = 0;
5107 while (i < nsyms)
5108 {
5109 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5110 == ADA_OBJECT_RENAMING
5111 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5112 {
5113 int j;
5114
5115 for (j = i + 1; j < nsyms; j += 1)
5116 syms[j - 1] = syms[j];
5117 nsyms -= 1;
5118 }
5119 else
5120 i += 1;
5121 }
5122
5123 return nsyms;
5124 }
5125
5126 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5127 whose name and domain match NAME and DOMAIN respectively.
5128 If no match was found, then extend the search to "enclosing"
5129 routines (in other words, if we're inside a nested function,
5130 search the symbols defined inside the enclosing functions).
5131 If WILD_MATCH_P is nonzero, perform the naming matching in
5132 "wild" mode (see function "wild_match" for more info).
5133
5134 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5135
5136 static void
5137 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5138 const struct block *block, domain_enum domain,
5139 int wild_match_p)
5140 {
5141 int block_depth = 0;
5142
5143 while (block != NULL)
5144 {
5145 block_depth += 1;
5146 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5147 wild_match_p);
5148
5149 /* If we found a non-function match, assume that's the one. */
5150 if (is_nonfunction (defns_collected (obstackp, 0),
5151 num_defns_collected (obstackp)))
5152 return;
5153
5154 block = BLOCK_SUPERBLOCK (block);
5155 }
5156
5157 /* If no luck so far, try to find NAME as a local symbol in some lexically
5158 enclosing subprogram. */
5159 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5160 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5161 }
5162
5163 /* An object of this type is used as the user_data argument when
5164 calling the map_matching_symbols method. */
5165
5166 struct match_data
5167 {
5168 struct objfile *objfile;
5169 struct obstack *obstackp;
5170 struct symbol *arg_sym;
5171 int found_sym;
5172 };
5173
5174 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5175 to a list of symbols. DATA0 is a pointer to a struct match_data *
5176 containing the obstack that collects the symbol list, the file that SYM
5177 must come from, a flag indicating whether a non-argument symbol has
5178 been found in the current block, and the last argument symbol
5179 passed in SYM within the current block (if any). When SYM is null,
5180 marking the end of a block, the argument symbol is added if no
5181 other has been found. */
5182
5183 static int
5184 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5185 {
5186 struct match_data *data = (struct match_data *) data0;
5187
5188 if (sym == NULL)
5189 {
5190 if (!data->found_sym && data->arg_sym != NULL)
5191 add_defn_to_vec (data->obstackp,
5192 fixup_symbol_section (data->arg_sym, data->objfile),
5193 block);
5194 data->found_sym = 0;
5195 data->arg_sym = NULL;
5196 }
5197 else
5198 {
5199 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5200 return 0;
5201 else if (SYMBOL_IS_ARGUMENT (sym))
5202 data->arg_sym = sym;
5203 else
5204 {
5205 data->found_sym = 1;
5206 add_defn_to_vec (data->obstackp,
5207 fixup_symbol_section (sym, data->objfile),
5208 block);
5209 }
5210 }
5211 return 0;
5212 }
5213
5214 /* Implements compare_names, but only applying the comparision using
5215 the given CASING. */
5216
5217 static int
5218 compare_names_with_case (const char *string1, const char *string2,
5219 enum case_sensitivity casing)
5220 {
5221 while (*string1 != '\0' && *string2 != '\0')
5222 {
5223 char c1, c2;
5224
5225 if (isspace (*string1) || isspace (*string2))
5226 return strcmp_iw_ordered (string1, string2);
5227
5228 if (casing == case_sensitive_off)
5229 {
5230 c1 = tolower (*string1);
5231 c2 = tolower (*string2);
5232 }
5233 else
5234 {
5235 c1 = *string1;
5236 c2 = *string2;
5237 }
5238 if (c1 != c2)
5239 break;
5240
5241 string1 += 1;
5242 string2 += 1;
5243 }
5244
5245 switch (*string1)
5246 {
5247 case '(':
5248 return strcmp_iw_ordered (string1, string2);
5249 case '_':
5250 if (*string2 == '\0')
5251 {
5252 if (is_name_suffix (string1))
5253 return 0;
5254 else
5255 return 1;
5256 }
5257 /* FALLTHROUGH */
5258 default:
5259 if (*string2 == '(')
5260 return strcmp_iw_ordered (string1, string2);
5261 else
5262 {
5263 if (casing == case_sensitive_off)
5264 return tolower (*string1) - tolower (*string2);
5265 else
5266 return *string1 - *string2;
5267 }
5268 }
5269 }
5270
5271 /* Compare STRING1 to STRING2, with results as for strcmp.
5272 Compatible with strcmp_iw_ordered in that...
5273
5274 strcmp_iw_ordered (STRING1, STRING2) <= 0
5275
5276 ... implies...
5277
5278 compare_names (STRING1, STRING2) <= 0
5279
5280 (they may differ as to what symbols compare equal). */
5281
5282 static int
5283 compare_names (const char *string1, const char *string2)
5284 {
5285 int result;
5286
5287 /* Similar to what strcmp_iw_ordered does, we need to perform
5288 a case-insensitive comparison first, and only resort to
5289 a second, case-sensitive, comparison if the first one was
5290 not sufficient to differentiate the two strings. */
5291
5292 result = compare_names_with_case (string1, string2, case_sensitive_off);
5293 if (result == 0)
5294 result = compare_names_with_case (string1, string2, case_sensitive_on);
5295
5296 return result;
5297 }
5298
5299 /* Add to OBSTACKP all non-local symbols whose name and domain match
5300 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5301 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5302
5303 static void
5304 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5305 domain_enum domain, int global,
5306 int is_wild_match)
5307 {
5308 struct objfile *objfile;
5309 struct match_data data;
5310
5311 memset (&data, 0, sizeof data);
5312 data.obstackp = obstackp;
5313
5314 ALL_OBJFILES (objfile)
5315 {
5316 data.objfile = objfile;
5317
5318 if (is_wild_match)
5319 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5320 aux_add_nonlocal_symbols, &data,
5321 wild_match, NULL);
5322 else
5323 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5324 aux_add_nonlocal_symbols, &data,
5325 full_match, compare_names);
5326 }
5327
5328 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5329 {
5330 ALL_OBJFILES (objfile)
5331 {
5332 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5333 strcpy (name1, "_ada_");
5334 strcpy (name1 + sizeof ("_ada_") - 1, name);
5335 data.objfile = objfile;
5336 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5337 global,
5338 aux_add_nonlocal_symbols,
5339 &data,
5340 full_match, compare_names);
5341 }
5342 }
5343 }
5344
5345 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5346 non-zero, enclosing scope and in global scopes, returning the number of
5347 matches.
5348 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5349 indicating the symbols found and the blocks and symbol tables (if
5350 any) in which they were found. This vector is transient---good only to
5351 the next call of ada_lookup_symbol_list.
5352
5353 When full_search is non-zero, any non-function/non-enumeral
5354 symbol match within the nest of blocks whose innermost member is BLOCK0,
5355 is the one match returned (no other matches in that or
5356 enclosing blocks is returned). If there are any matches in or
5357 surrounding BLOCK0, then these alone are returned.
5358
5359 Names prefixed with "standard__" are handled specially: "standard__"
5360 is first stripped off, and only static and global symbols are searched. */
5361
5362 static int
5363 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5364 domain_enum namespace,
5365 struct ada_symbol_info **results,
5366 int full_search)
5367 {
5368 struct symbol *sym;
5369 const struct block *block;
5370 const char *name;
5371 const int wild_match_p = should_use_wild_match (name0);
5372 int cacheIfUnique;
5373 int ndefns;
5374
5375 obstack_free (&symbol_list_obstack, NULL);
5376 obstack_init (&symbol_list_obstack);
5377
5378 cacheIfUnique = 0;
5379
5380 /* Search specified block and its superiors. */
5381
5382 name = name0;
5383 block = block0;
5384
5385 /* Special case: If the user specifies a symbol name inside package
5386 Standard, do a non-wild matching of the symbol name without
5387 the "standard__" prefix. This was primarily introduced in order
5388 to allow the user to specifically access the standard exceptions
5389 using, for instance, Standard.Constraint_Error when Constraint_Error
5390 is ambiguous (due to the user defining its own Constraint_Error
5391 entity inside its program). */
5392 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5393 {
5394 block = NULL;
5395 name = name0 + sizeof ("standard__") - 1;
5396 }
5397
5398 /* Check the non-global symbols. If we have ANY match, then we're done. */
5399
5400 if (block != NULL)
5401 {
5402 if (full_search)
5403 {
5404 ada_add_local_symbols (&symbol_list_obstack, name, block,
5405 namespace, wild_match_p);
5406 }
5407 else
5408 {
5409 /* In the !full_search case we're are being called by
5410 ada_iterate_over_symbols, and we don't want to search
5411 superblocks. */
5412 ada_add_block_symbols (&symbol_list_obstack, block, name,
5413 namespace, NULL, wild_match_p);
5414 }
5415 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5416 goto done;
5417 }
5418
5419 /* No non-global symbols found. Check our cache to see if we have
5420 already performed this search before. If we have, then return
5421 the same result. */
5422
5423 cacheIfUnique = 1;
5424 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5425 {
5426 if (sym != NULL)
5427 add_defn_to_vec (&symbol_list_obstack, sym, block);
5428 goto done;
5429 }
5430
5431 /* Search symbols from all global blocks. */
5432
5433 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5434 wild_match_p);
5435
5436 /* Now add symbols from all per-file blocks if we've gotten no hits
5437 (not strictly correct, but perhaps better than an error). */
5438
5439 if (num_defns_collected (&symbol_list_obstack) == 0)
5440 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5441 wild_match_p);
5442
5443 done:
5444 ndefns = num_defns_collected (&symbol_list_obstack);
5445 *results = defns_collected (&symbol_list_obstack, 1);
5446
5447 ndefns = remove_extra_symbols (*results, ndefns);
5448
5449 if (ndefns == 0 && full_search)
5450 cache_symbol (name0, namespace, NULL, NULL);
5451
5452 if (ndefns == 1 && full_search && cacheIfUnique)
5453 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5454
5455 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5456
5457 return ndefns;
5458 }
5459
5460 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5461 in global scopes, returning the number of matches, and setting *RESULTS
5462 to a vector of (SYM,BLOCK) tuples.
5463 See ada_lookup_symbol_list_worker for further details. */
5464
5465 int
5466 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5467 domain_enum domain, struct ada_symbol_info **results)
5468 {
5469 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5470 }
5471
5472 /* Implementation of the la_iterate_over_symbols method. */
5473
5474 static void
5475 ada_iterate_over_symbols (const struct block *block,
5476 const char *name, domain_enum domain,
5477 symbol_found_callback_ftype *callback,
5478 void *data)
5479 {
5480 int ndefs, i;
5481 struct ada_symbol_info *results;
5482
5483 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5484 for (i = 0; i < ndefs; ++i)
5485 {
5486 if (! (*callback) (results[i].sym, data))
5487 break;
5488 }
5489 }
5490
5491 /* If NAME is the name of an entity, return a string that should
5492 be used to look that entity up in Ada units. This string should
5493 be deallocated after use using xfree.
5494
5495 NAME can have any form that the "break" or "print" commands might
5496 recognize. In other words, it does not have to be the "natural"
5497 name, or the "encoded" name. */
5498
5499 char *
5500 ada_name_for_lookup (const char *name)
5501 {
5502 char *canon;
5503 int nlen = strlen (name);
5504
5505 if (name[0] == '<' && name[nlen - 1] == '>')
5506 {
5507 canon = xmalloc (nlen - 1);
5508 memcpy (canon, name + 1, nlen - 2);
5509 canon[nlen - 2] = '\0';
5510 }
5511 else
5512 canon = xstrdup (ada_encode (ada_fold_name (name)));
5513 return canon;
5514 }
5515
5516 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5517 to 1, but choosing the first symbol found if there are multiple
5518 choices.
5519
5520 The result is stored in *INFO, which must be non-NULL.
5521 If no match is found, INFO->SYM is set to NULL. */
5522
5523 void
5524 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5525 domain_enum namespace,
5526 struct ada_symbol_info *info)
5527 {
5528 struct ada_symbol_info *candidates;
5529 int n_candidates;
5530
5531 gdb_assert (info != NULL);
5532 memset (info, 0, sizeof (struct ada_symbol_info));
5533
5534 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5535 if (n_candidates == 0)
5536 return;
5537
5538 *info = candidates[0];
5539 info->sym = fixup_symbol_section (info->sym, NULL);
5540 }
5541
5542 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5543 scope and in global scopes, or NULL if none. NAME is folded and
5544 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5545 choosing the first symbol if there are multiple choices.
5546 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5547
5548 struct symbol *
5549 ada_lookup_symbol (const char *name, const struct block *block0,
5550 domain_enum namespace, int *is_a_field_of_this)
5551 {
5552 struct ada_symbol_info info;
5553
5554 if (is_a_field_of_this != NULL)
5555 *is_a_field_of_this = 0;
5556
5557 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5558 block0, namespace, &info);
5559 return info.sym;
5560 }
5561
5562 static struct symbol *
5563 ada_lookup_symbol_nonlocal (const char *name,
5564 const struct block *block,
5565 const domain_enum domain)
5566 {
5567 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5568 }
5569
5570
5571 /* True iff STR is a possible encoded suffix of a normal Ada name
5572 that is to be ignored for matching purposes. Suffixes of parallel
5573 names (e.g., XVE) are not included here. Currently, the possible suffixes
5574 are given by any of the regular expressions:
5575
5576 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5577 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5578 TKB [subprogram suffix for task bodies]
5579 _E[0-9]+[bs]$ [protected object entry suffixes]
5580 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5581
5582 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5583 match is performed. This sequence is used to differentiate homonyms,
5584 is an optional part of a valid name suffix. */
5585
5586 static int
5587 is_name_suffix (const char *str)
5588 {
5589 int k;
5590 const char *matching;
5591 const int len = strlen (str);
5592
5593 /* Skip optional leading __[0-9]+. */
5594
5595 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5596 {
5597 str += 3;
5598 while (isdigit (str[0]))
5599 str += 1;
5600 }
5601
5602 /* [.$][0-9]+ */
5603
5604 if (str[0] == '.' || str[0] == '$')
5605 {
5606 matching = str + 1;
5607 while (isdigit (matching[0]))
5608 matching += 1;
5609 if (matching[0] == '\0')
5610 return 1;
5611 }
5612
5613 /* ___[0-9]+ */
5614
5615 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5616 {
5617 matching = str + 3;
5618 while (isdigit (matching[0]))
5619 matching += 1;
5620 if (matching[0] == '\0')
5621 return 1;
5622 }
5623
5624 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5625
5626 if (strcmp (str, "TKB") == 0)
5627 return 1;
5628
5629 #if 0
5630 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5631 with a N at the end. Unfortunately, the compiler uses the same
5632 convention for other internal types it creates. So treating
5633 all entity names that end with an "N" as a name suffix causes
5634 some regressions. For instance, consider the case of an enumerated
5635 type. To support the 'Image attribute, it creates an array whose
5636 name ends with N.
5637 Having a single character like this as a suffix carrying some
5638 information is a bit risky. Perhaps we should change the encoding
5639 to be something like "_N" instead. In the meantime, do not do
5640 the following check. */
5641 /* Protected Object Subprograms */
5642 if (len == 1 && str [0] == 'N')
5643 return 1;
5644 #endif
5645
5646 /* _E[0-9]+[bs]$ */
5647 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5648 {
5649 matching = str + 3;
5650 while (isdigit (matching[0]))
5651 matching += 1;
5652 if ((matching[0] == 'b' || matching[0] == 's')
5653 && matching [1] == '\0')
5654 return 1;
5655 }
5656
5657 /* ??? We should not modify STR directly, as we are doing below. This
5658 is fine in this case, but may become problematic later if we find
5659 that this alternative did not work, and want to try matching
5660 another one from the begining of STR. Since we modified it, we
5661 won't be able to find the begining of the string anymore! */
5662 if (str[0] == 'X')
5663 {
5664 str += 1;
5665 while (str[0] != '_' && str[0] != '\0')
5666 {
5667 if (str[0] != 'n' && str[0] != 'b')
5668 return 0;
5669 str += 1;
5670 }
5671 }
5672
5673 if (str[0] == '\000')
5674 return 1;
5675
5676 if (str[0] == '_')
5677 {
5678 if (str[1] != '_' || str[2] == '\000')
5679 return 0;
5680 if (str[2] == '_')
5681 {
5682 if (strcmp (str + 3, "JM") == 0)
5683 return 1;
5684 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5685 the LJM suffix in favor of the JM one. But we will
5686 still accept LJM as a valid suffix for a reasonable
5687 amount of time, just to allow ourselves to debug programs
5688 compiled using an older version of GNAT. */
5689 if (strcmp (str + 3, "LJM") == 0)
5690 return 1;
5691 if (str[3] != 'X')
5692 return 0;
5693 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5694 || str[4] == 'U' || str[4] == 'P')
5695 return 1;
5696 if (str[4] == 'R' && str[5] != 'T')
5697 return 1;
5698 return 0;
5699 }
5700 if (!isdigit (str[2]))
5701 return 0;
5702 for (k = 3; str[k] != '\0'; k += 1)
5703 if (!isdigit (str[k]) && str[k] != '_')
5704 return 0;
5705 return 1;
5706 }
5707 if (str[0] == '$' && isdigit (str[1]))
5708 {
5709 for (k = 2; str[k] != '\0'; k += 1)
5710 if (!isdigit (str[k]) && str[k] != '_')
5711 return 0;
5712 return 1;
5713 }
5714 return 0;
5715 }
5716
5717 /* Return non-zero if the string starting at NAME and ending before
5718 NAME_END contains no capital letters. */
5719
5720 static int
5721 is_valid_name_for_wild_match (const char *name0)
5722 {
5723 const char *decoded_name = ada_decode (name0);
5724 int i;
5725
5726 /* If the decoded name starts with an angle bracket, it means that
5727 NAME0 does not follow the GNAT encoding format. It should then
5728 not be allowed as a possible wild match. */
5729 if (decoded_name[0] == '<')
5730 return 0;
5731
5732 for (i=0; decoded_name[i] != '\0'; i++)
5733 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5734 return 0;
5735
5736 return 1;
5737 }
5738
5739 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5740 that could start a simple name. Assumes that *NAMEP points into
5741 the string beginning at NAME0. */
5742
5743 static int
5744 advance_wild_match (const char **namep, const char *name0, int target0)
5745 {
5746 const char *name = *namep;
5747
5748 while (1)
5749 {
5750 int t0, t1;
5751
5752 t0 = *name;
5753 if (t0 == '_')
5754 {
5755 t1 = name[1];
5756 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5757 {
5758 name += 1;
5759 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5760 break;
5761 else
5762 name += 1;
5763 }
5764 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5765 || name[2] == target0))
5766 {
5767 name += 2;
5768 break;
5769 }
5770 else
5771 return 0;
5772 }
5773 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5774 name += 1;
5775 else
5776 return 0;
5777 }
5778
5779 *namep = name;
5780 return 1;
5781 }
5782
5783 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5784 informational suffixes of NAME (i.e., for which is_name_suffix is
5785 true). Assumes that PATN is a lower-cased Ada simple name. */
5786
5787 static int
5788 wild_match (const char *name, const char *patn)
5789 {
5790 const char *p;
5791 const char *name0 = name;
5792
5793 while (1)
5794 {
5795 const char *match = name;
5796
5797 if (*name == *patn)
5798 {
5799 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5800 if (*p != *name)
5801 break;
5802 if (*p == '\0' && is_name_suffix (name))
5803 return match != name0 && !is_valid_name_for_wild_match (name0);
5804
5805 if (name[-1] == '_')
5806 name -= 1;
5807 }
5808 if (!advance_wild_match (&name, name0, *patn))
5809 return 1;
5810 }
5811 }
5812
5813 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5814 informational suffix. */
5815
5816 static int
5817 full_match (const char *sym_name, const char *search_name)
5818 {
5819 return !match_name (sym_name, search_name, 0);
5820 }
5821
5822
5823 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5824 vector *defn_symbols, updating the list of symbols in OBSTACKP
5825 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5826 OBJFILE is the section containing BLOCK. */
5827
5828 static void
5829 ada_add_block_symbols (struct obstack *obstackp,
5830 const struct block *block, const char *name,
5831 domain_enum domain, struct objfile *objfile,
5832 int wild)
5833 {
5834 struct block_iterator iter;
5835 int name_len = strlen (name);
5836 /* A matching argument symbol, if any. */
5837 struct symbol *arg_sym;
5838 /* Set true when we find a matching non-argument symbol. */
5839 int found_sym;
5840 struct symbol *sym;
5841
5842 arg_sym = NULL;
5843 found_sym = 0;
5844 if (wild)
5845 {
5846 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5847 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5848 {
5849 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5850 SYMBOL_DOMAIN (sym), domain)
5851 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5852 {
5853 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5854 continue;
5855 else if (SYMBOL_IS_ARGUMENT (sym))
5856 arg_sym = sym;
5857 else
5858 {
5859 found_sym = 1;
5860 add_defn_to_vec (obstackp,
5861 fixup_symbol_section (sym, objfile),
5862 block);
5863 }
5864 }
5865 }
5866 }
5867 else
5868 {
5869 for (sym = block_iter_match_first (block, name, full_match, &iter);
5870 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5871 {
5872 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5873 SYMBOL_DOMAIN (sym), domain))
5874 {
5875 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5876 {
5877 if (SYMBOL_IS_ARGUMENT (sym))
5878 arg_sym = sym;
5879 else
5880 {
5881 found_sym = 1;
5882 add_defn_to_vec (obstackp,
5883 fixup_symbol_section (sym, objfile),
5884 block);
5885 }
5886 }
5887 }
5888 }
5889 }
5890
5891 if (!found_sym && arg_sym != NULL)
5892 {
5893 add_defn_to_vec (obstackp,
5894 fixup_symbol_section (arg_sym, objfile),
5895 block);
5896 }
5897
5898 if (!wild)
5899 {
5900 arg_sym = NULL;
5901 found_sym = 0;
5902
5903 ALL_BLOCK_SYMBOLS (block, iter, sym)
5904 {
5905 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5906 SYMBOL_DOMAIN (sym), domain))
5907 {
5908 int cmp;
5909
5910 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5911 if (cmp == 0)
5912 {
5913 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5914 if (cmp == 0)
5915 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5916 name_len);
5917 }
5918
5919 if (cmp == 0
5920 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5921 {
5922 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5923 {
5924 if (SYMBOL_IS_ARGUMENT (sym))
5925 arg_sym = sym;
5926 else
5927 {
5928 found_sym = 1;
5929 add_defn_to_vec (obstackp,
5930 fixup_symbol_section (sym, objfile),
5931 block);
5932 }
5933 }
5934 }
5935 }
5936 }
5937
5938 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5939 They aren't parameters, right? */
5940 if (!found_sym && arg_sym != NULL)
5941 {
5942 add_defn_to_vec (obstackp,
5943 fixup_symbol_section (arg_sym, objfile),
5944 block);
5945 }
5946 }
5947 }
5948 \f
5949
5950 /* Symbol Completion */
5951
5952 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5953 name in a form that's appropriate for the completion. The result
5954 does not need to be deallocated, but is only good until the next call.
5955
5956 TEXT_LEN is equal to the length of TEXT.
5957 Perform a wild match if WILD_MATCH_P is set.
5958 ENCODED_P should be set if TEXT represents the start of a symbol name
5959 in its encoded form. */
5960
5961 static const char *
5962 symbol_completion_match (const char *sym_name,
5963 const char *text, int text_len,
5964 int wild_match_p, int encoded_p)
5965 {
5966 const int verbatim_match = (text[0] == '<');
5967 int match = 0;
5968
5969 if (verbatim_match)
5970 {
5971 /* Strip the leading angle bracket. */
5972 text = text + 1;
5973 text_len--;
5974 }
5975
5976 /* First, test against the fully qualified name of the symbol. */
5977
5978 if (strncmp (sym_name, text, text_len) == 0)
5979 match = 1;
5980
5981 if (match && !encoded_p)
5982 {
5983 /* One needed check before declaring a positive match is to verify
5984 that iff we are doing a verbatim match, the decoded version
5985 of the symbol name starts with '<'. Otherwise, this symbol name
5986 is not a suitable completion. */
5987 const char *sym_name_copy = sym_name;
5988 int has_angle_bracket;
5989
5990 sym_name = ada_decode (sym_name);
5991 has_angle_bracket = (sym_name[0] == '<');
5992 match = (has_angle_bracket == verbatim_match);
5993 sym_name = sym_name_copy;
5994 }
5995
5996 if (match && !verbatim_match)
5997 {
5998 /* When doing non-verbatim match, another check that needs to
5999 be done is to verify that the potentially matching symbol name
6000 does not include capital letters, because the ada-mode would
6001 not be able to understand these symbol names without the
6002 angle bracket notation. */
6003 const char *tmp;
6004
6005 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6006 if (*tmp != '\0')
6007 match = 0;
6008 }
6009
6010 /* Second: Try wild matching... */
6011
6012 if (!match && wild_match_p)
6013 {
6014 /* Since we are doing wild matching, this means that TEXT
6015 may represent an unqualified symbol name. We therefore must
6016 also compare TEXT against the unqualified name of the symbol. */
6017 sym_name = ada_unqualified_name (ada_decode (sym_name));
6018
6019 if (strncmp (sym_name, text, text_len) == 0)
6020 match = 1;
6021 }
6022
6023 /* Finally: If we found a mach, prepare the result to return. */
6024
6025 if (!match)
6026 return NULL;
6027
6028 if (verbatim_match)
6029 sym_name = add_angle_brackets (sym_name);
6030
6031 if (!encoded_p)
6032 sym_name = ada_decode (sym_name);
6033
6034 return sym_name;
6035 }
6036
6037 /* A companion function to ada_make_symbol_completion_list().
6038 Check if SYM_NAME represents a symbol which name would be suitable
6039 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6040 it is appended at the end of the given string vector SV.
6041
6042 ORIG_TEXT is the string original string from the user command
6043 that needs to be completed. WORD is the entire command on which
6044 completion should be performed. These two parameters are used to
6045 determine which part of the symbol name should be added to the
6046 completion vector.
6047 if WILD_MATCH_P is set, then wild matching is performed.
6048 ENCODED_P should be set if TEXT represents a symbol name in its
6049 encoded formed (in which case the completion should also be
6050 encoded). */
6051
6052 static void
6053 symbol_completion_add (VEC(char_ptr) **sv,
6054 const char *sym_name,
6055 const char *text, int text_len,
6056 const char *orig_text, const char *word,
6057 int wild_match_p, int encoded_p)
6058 {
6059 const char *match = symbol_completion_match (sym_name, text, text_len,
6060 wild_match_p, encoded_p);
6061 char *completion;
6062
6063 if (match == NULL)
6064 return;
6065
6066 /* We found a match, so add the appropriate completion to the given
6067 string vector. */
6068
6069 if (word == orig_text)
6070 {
6071 completion = xmalloc (strlen (match) + 5);
6072 strcpy (completion, match);
6073 }
6074 else if (word > orig_text)
6075 {
6076 /* Return some portion of sym_name. */
6077 completion = xmalloc (strlen (match) + 5);
6078 strcpy (completion, match + (word - orig_text));
6079 }
6080 else
6081 {
6082 /* Return some of ORIG_TEXT plus sym_name. */
6083 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6084 strncpy (completion, word, orig_text - word);
6085 completion[orig_text - word] = '\0';
6086 strcat (completion, match);
6087 }
6088
6089 VEC_safe_push (char_ptr, *sv, completion);
6090 }
6091
6092 /* An object of this type is passed as the user_data argument to the
6093 expand_symtabs_matching method. */
6094 struct add_partial_datum
6095 {
6096 VEC(char_ptr) **completions;
6097 const char *text;
6098 int text_len;
6099 const char *text0;
6100 const char *word;
6101 int wild_match;
6102 int encoded;
6103 };
6104
6105 /* A callback for expand_symtabs_matching. */
6106
6107 static int
6108 ada_complete_symbol_matcher (const char *name, void *user_data)
6109 {
6110 struct add_partial_datum *data = user_data;
6111
6112 return symbol_completion_match (name, data->text, data->text_len,
6113 data->wild_match, data->encoded) != NULL;
6114 }
6115
6116 /* Return a list of possible symbol names completing TEXT0. WORD is
6117 the entire command on which completion is made. */
6118
6119 static VEC (char_ptr) *
6120 ada_make_symbol_completion_list (const char *text0, const char *word,
6121 enum type_code code)
6122 {
6123 char *text;
6124 int text_len;
6125 int wild_match_p;
6126 int encoded_p;
6127 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6128 struct symbol *sym;
6129 struct symtab *s;
6130 struct minimal_symbol *msymbol;
6131 struct objfile *objfile;
6132 struct block *b, *surrounding_static_block = 0;
6133 int i;
6134 struct block_iterator iter;
6135 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6136
6137 gdb_assert (code == TYPE_CODE_UNDEF);
6138
6139 if (text0[0] == '<')
6140 {
6141 text = xstrdup (text0);
6142 make_cleanup (xfree, text);
6143 text_len = strlen (text);
6144 wild_match_p = 0;
6145 encoded_p = 1;
6146 }
6147 else
6148 {
6149 text = xstrdup (ada_encode (text0));
6150 make_cleanup (xfree, text);
6151 text_len = strlen (text);
6152 for (i = 0; i < text_len; i++)
6153 text[i] = tolower (text[i]);
6154
6155 encoded_p = (strstr (text0, "__") != NULL);
6156 /* If the name contains a ".", then the user is entering a fully
6157 qualified entity name, and the match must not be done in wild
6158 mode. Similarly, if the user wants to complete what looks like
6159 an encoded name, the match must not be done in wild mode. */
6160 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6161 }
6162
6163 /* First, look at the partial symtab symbols. */
6164 {
6165 struct add_partial_datum data;
6166
6167 data.completions = &completions;
6168 data.text = text;
6169 data.text_len = text_len;
6170 data.text0 = text0;
6171 data.word = word;
6172 data.wild_match = wild_match_p;
6173 data.encoded = encoded_p;
6174 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6175 &data);
6176 }
6177
6178 /* At this point scan through the misc symbol vectors and add each
6179 symbol you find to the list. Eventually we want to ignore
6180 anything that isn't a text symbol (everything else will be
6181 handled by the psymtab code above). */
6182
6183 ALL_MSYMBOLS (objfile, msymbol)
6184 {
6185 QUIT;
6186 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6187 text, text_len, text0, word, wild_match_p,
6188 encoded_p);
6189 }
6190
6191 /* Search upwards from currently selected frame (so that we can
6192 complete on local vars. */
6193
6194 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6195 {
6196 if (!BLOCK_SUPERBLOCK (b))
6197 surrounding_static_block = b; /* For elmin of dups */
6198
6199 ALL_BLOCK_SYMBOLS (b, iter, sym)
6200 {
6201 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6202 text, text_len, text0, word,
6203 wild_match_p, encoded_p);
6204 }
6205 }
6206
6207 /* Go through the symtabs and check the externs and statics for
6208 symbols which match. */
6209
6210 ALL_SYMTABS (objfile, s)
6211 {
6212 QUIT;
6213 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6214 ALL_BLOCK_SYMBOLS (b, iter, sym)
6215 {
6216 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6217 text, text_len, text0, word,
6218 wild_match_p, encoded_p);
6219 }
6220 }
6221
6222 ALL_SYMTABS (objfile, s)
6223 {
6224 QUIT;
6225 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6226 /* Don't do this block twice. */
6227 if (b == surrounding_static_block)
6228 continue;
6229 ALL_BLOCK_SYMBOLS (b, iter, sym)
6230 {
6231 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6232 text, text_len, text0, word,
6233 wild_match_p, encoded_p);
6234 }
6235 }
6236
6237 do_cleanups (old_chain);
6238 return completions;
6239 }
6240
6241 /* Field Access */
6242
6243 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6244 for tagged types. */
6245
6246 static int
6247 ada_is_dispatch_table_ptr_type (struct type *type)
6248 {
6249 const char *name;
6250
6251 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6252 return 0;
6253
6254 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6255 if (name == NULL)
6256 return 0;
6257
6258 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6259 }
6260
6261 /* Return non-zero if TYPE is an interface tag. */
6262
6263 static int
6264 ada_is_interface_tag (struct type *type)
6265 {
6266 const char *name = TYPE_NAME (type);
6267
6268 if (name == NULL)
6269 return 0;
6270
6271 return (strcmp (name, "ada__tags__interface_tag") == 0);
6272 }
6273
6274 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6275 to be invisible to users. */
6276
6277 int
6278 ada_is_ignored_field (struct type *type, int field_num)
6279 {
6280 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6281 return 1;
6282
6283 /* Check the name of that field. */
6284 {
6285 const char *name = TYPE_FIELD_NAME (type, field_num);
6286
6287 /* Anonymous field names should not be printed.
6288 brobecker/2007-02-20: I don't think this can actually happen
6289 but we don't want to print the value of annonymous fields anyway. */
6290 if (name == NULL)
6291 return 1;
6292
6293 /* Normally, fields whose name start with an underscore ("_")
6294 are fields that have been internally generated by the compiler,
6295 and thus should not be printed. The "_parent" field is special,
6296 however: This is a field internally generated by the compiler
6297 for tagged types, and it contains the components inherited from
6298 the parent type. This field should not be printed as is, but
6299 should not be ignored either. */
6300 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6301 return 1;
6302 }
6303
6304 /* If this is the dispatch table of a tagged type or an interface tag,
6305 then ignore. */
6306 if (ada_is_tagged_type (type, 1)
6307 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6308 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6309 return 1;
6310
6311 /* Not a special field, so it should not be ignored. */
6312 return 0;
6313 }
6314
6315 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6316 pointer or reference type whose ultimate target has a tag field. */
6317
6318 int
6319 ada_is_tagged_type (struct type *type, int refok)
6320 {
6321 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6322 }
6323
6324 /* True iff TYPE represents the type of X'Tag */
6325
6326 int
6327 ada_is_tag_type (struct type *type)
6328 {
6329 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6330 return 0;
6331 else
6332 {
6333 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6334
6335 return (name != NULL
6336 && strcmp (name, "ada__tags__dispatch_table") == 0);
6337 }
6338 }
6339
6340 /* The type of the tag on VAL. */
6341
6342 struct type *
6343 ada_tag_type (struct value *val)
6344 {
6345 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6346 }
6347
6348 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6349 retired at Ada 05). */
6350
6351 static int
6352 is_ada95_tag (struct value *tag)
6353 {
6354 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6355 }
6356
6357 /* The value of the tag on VAL. */
6358
6359 struct value *
6360 ada_value_tag (struct value *val)
6361 {
6362 return ada_value_struct_elt (val, "_tag", 0);
6363 }
6364
6365 /* The value of the tag on the object of type TYPE whose contents are
6366 saved at VALADDR, if it is non-null, or is at memory address
6367 ADDRESS. */
6368
6369 static struct value *
6370 value_tag_from_contents_and_address (struct type *type,
6371 const gdb_byte *valaddr,
6372 CORE_ADDR address)
6373 {
6374 int tag_byte_offset;
6375 struct type *tag_type;
6376
6377 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6378 NULL, NULL, NULL))
6379 {
6380 const gdb_byte *valaddr1 = ((valaddr == NULL)
6381 ? NULL
6382 : valaddr + tag_byte_offset);
6383 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6384
6385 return value_from_contents_and_address (tag_type, valaddr1, address1);
6386 }
6387 return NULL;
6388 }
6389
6390 static struct type *
6391 type_from_tag (struct value *tag)
6392 {
6393 const char *type_name = ada_tag_name (tag);
6394
6395 if (type_name != NULL)
6396 return ada_find_any_type (ada_encode (type_name));
6397 return NULL;
6398 }
6399
6400 /* Given a value OBJ of a tagged type, return a value of this
6401 type at the base address of the object. The base address, as
6402 defined in Ada.Tags, it is the address of the primary tag of
6403 the object, and therefore where the field values of its full
6404 view can be fetched. */
6405
6406 struct value *
6407 ada_tag_value_at_base_address (struct value *obj)
6408 {
6409 volatile struct gdb_exception e;
6410 struct value *val;
6411 LONGEST offset_to_top = 0;
6412 struct type *ptr_type, *obj_type;
6413 struct value *tag;
6414 CORE_ADDR base_address;
6415
6416 obj_type = value_type (obj);
6417
6418 /* It is the responsability of the caller to deref pointers. */
6419
6420 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6421 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6422 return obj;
6423
6424 tag = ada_value_tag (obj);
6425 if (!tag)
6426 return obj;
6427
6428 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6429
6430 if (is_ada95_tag (tag))
6431 return obj;
6432
6433 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6434 ptr_type = lookup_pointer_type (ptr_type);
6435 val = value_cast (ptr_type, tag);
6436 if (!val)
6437 return obj;
6438
6439 /* It is perfectly possible that an exception be raised while
6440 trying to determine the base address, just like for the tag;
6441 see ada_tag_name for more details. We do not print the error
6442 message for the same reason. */
6443
6444 TRY_CATCH (e, RETURN_MASK_ERROR)
6445 {
6446 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6447 }
6448
6449 if (e.reason < 0)
6450 return obj;
6451
6452 /* If offset is null, nothing to do. */
6453
6454 if (offset_to_top == 0)
6455 return obj;
6456
6457 /* -1 is a special case in Ada.Tags; however, what should be done
6458 is not quite clear from the documentation. So do nothing for
6459 now. */
6460
6461 if (offset_to_top == -1)
6462 return obj;
6463
6464 base_address = value_address (obj) - offset_to_top;
6465 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6466
6467 /* Make sure that we have a proper tag at the new address.
6468 Otherwise, offset_to_top is bogus (which can happen when
6469 the object is not initialized yet). */
6470
6471 if (!tag)
6472 return obj;
6473
6474 obj_type = type_from_tag (tag);
6475
6476 if (!obj_type)
6477 return obj;
6478
6479 return value_from_contents_and_address (obj_type, NULL, base_address);
6480 }
6481
6482 /* Return the "ada__tags__type_specific_data" type. */
6483
6484 static struct type *
6485 ada_get_tsd_type (struct inferior *inf)
6486 {
6487 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6488
6489 if (data->tsd_type == 0)
6490 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6491 return data->tsd_type;
6492 }
6493
6494 /* Return the TSD (type-specific data) associated to the given TAG.
6495 TAG is assumed to be the tag of a tagged-type entity.
6496
6497 May return NULL if we are unable to get the TSD. */
6498
6499 static struct value *
6500 ada_get_tsd_from_tag (struct value *tag)
6501 {
6502 struct value *val;
6503 struct type *type;
6504
6505 /* First option: The TSD is simply stored as a field of our TAG.
6506 Only older versions of GNAT would use this format, but we have
6507 to test it first, because there are no visible markers for
6508 the current approach except the absence of that field. */
6509
6510 val = ada_value_struct_elt (tag, "tsd", 1);
6511 if (val)
6512 return val;
6513
6514 /* Try the second representation for the dispatch table (in which
6515 there is no explicit 'tsd' field in the referent of the tag pointer,
6516 and instead the tsd pointer is stored just before the dispatch
6517 table. */
6518
6519 type = ada_get_tsd_type (current_inferior());
6520 if (type == NULL)
6521 return NULL;
6522 type = lookup_pointer_type (lookup_pointer_type (type));
6523 val = value_cast (type, tag);
6524 if (val == NULL)
6525 return NULL;
6526 return value_ind (value_ptradd (val, -1));
6527 }
6528
6529 /* Given the TSD of a tag (type-specific data), return a string
6530 containing the name of the associated type.
6531
6532 The returned value is good until the next call. May return NULL
6533 if we are unable to determine the tag name. */
6534
6535 static char *
6536 ada_tag_name_from_tsd (struct value *tsd)
6537 {
6538 static char name[1024];
6539 char *p;
6540 struct value *val;
6541
6542 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6543 if (val == NULL)
6544 return NULL;
6545 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6546 for (p = name; *p != '\0'; p += 1)
6547 if (isalpha (*p))
6548 *p = tolower (*p);
6549 return name;
6550 }
6551
6552 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6553 a C string.
6554
6555 Return NULL if the TAG is not an Ada tag, or if we were unable to
6556 determine the name of that tag. The result is good until the next
6557 call. */
6558
6559 const char *
6560 ada_tag_name (struct value *tag)
6561 {
6562 volatile struct gdb_exception e;
6563 char *name = NULL;
6564
6565 if (!ada_is_tag_type (value_type (tag)))
6566 return NULL;
6567
6568 /* It is perfectly possible that an exception be raised while trying
6569 to determine the TAG's name, even under normal circumstances:
6570 The associated variable may be uninitialized or corrupted, for
6571 instance. We do not let any exception propagate past this point.
6572 instead we return NULL.
6573
6574 We also do not print the error message either (which often is very
6575 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6576 the caller print a more meaningful message if necessary. */
6577 TRY_CATCH (e, RETURN_MASK_ERROR)
6578 {
6579 struct value *tsd = ada_get_tsd_from_tag (tag);
6580
6581 if (tsd != NULL)
6582 name = ada_tag_name_from_tsd (tsd);
6583 }
6584
6585 return name;
6586 }
6587
6588 /* The parent type of TYPE, or NULL if none. */
6589
6590 struct type *
6591 ada_parent_type (struct type *type)
6592 {
6593 int i;
6594
6595 type = ada_check_typedef (type);
6596
6597 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6598 return NULL;
6599
6600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6601 if (ada_is_parent_field (type, i))
6602 {
6603 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6604
6605 /* If the _parent field is a pointer, then dereference it. */
6606 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6607 parent_type = TYPE_TARGET_TYPE (parent_type);
6608 /* If there is a parallel XVS type, get the actual base type. */
6609 parent_type = ada_get_base_type (parent_type);
6610
6611 return ada_check_typedef (parent_type);
6612 }
6613
6614 return NULL;
6615 }
6616
6617 /* True iff field number FIELD_NUM of structure type TYPE contains the
6618 parent-type (inherited) fields of a derived type. Assumes TYPE is
6619 a structure type with at least FIELD_NUM+1 fields. */
6620
6621 int
6622 ada_is_parent_field (struct type *type, int field_num)
6623 {
6624 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6625
6626 return (name != NULL
6627 && (strncmp (name, "PARENT", 6) == 0
6628 || strncmp (name, "_parent", 7) == 0));
6629 }
6630
6631 /* True iff field number FIELD_NUM of structure type TYPE is a
6632 transparent wrapper field (which should be silently traversed when doing
6633 field selection and flattened when printing). Assumes TYPE is a
6634 structure type with at least FIELD_NUM+1 fields. Such fields are always
6635 structures. */
6636
6637 int
6638 ada_is_wrapper_field (struct type *type, int field_num)
6639 {
6640 const char *name = TYPE_FIELD_NAME (type, field_num);
6641
6642 return (name != NULL
6643 && (strncmp (name, "PARENT", 6) == 0
6644 || strcmp (name, "REP") == 0
6645 || strncmp (name, "_parent", 7) == 0
6646 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6647 }
6648
6649 /* True iff field number FIELD_NUM of structure or union type TYPE
6650 is a variant wrapper. Assumes TYPE is a structure type with at least
6651 FIELD_NUM+1 fields. */
6652
6653 int
6654 ada_is_variant_part (struct type *type, int field_num)
6655 {
6656 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6657
6658 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6659 || (is_dynamic_field (type, field_num)
6660 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6661 == TYPE_CODE_UNION)));
6662 }
6663
6664 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6665 whose discriminants are contained in the record type OUTER_TYPE,
6666 returns the type of the controlling discriminant for the variant.
6667 May return NULL if the type could not be found. */
6668
6669 struct type *
6670 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6671 {
6672 char *name = ada_variant_discrim_name (var_type);
6673
6674 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6675 }
6676
6677 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6678 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6679 represents a 'when others' clause; otherwise 0. */
6680
6681 int
6682 ada_is_others_clause (struct type *type, int field_num)
6683 {
6684 const char *name = TYPE_FIELD_NAME (type, field_num);
6685
6686 return (name != NULL && name[0] == 'O');
6687 }
6688
6689 /* Assuming that TYPE0 is the type of the variant part of a record,
6690 returns the name of the discriminant controlling the variant.
6691 The value is valid until the next call to ada_variant_discrim_name. */
6692
6693 char *
6694 ada_variant_discrim_name (struct type *type0)
6695 {
6696 static char *result = NULL;
6697 static size_t result_len = 0;
6698 struct type *type;
6699 const char *name;
6700 const char *discrim_end;
6701 const char *discrim_start;
6702
6703 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6704 type = TYPE_TARGET_TYPE (type0);
6705 else
6706 type = type0;
6707
6708 name = ada_type_name (type);
6709
6710 if (name == NULL || name[0] == '\000')
6711 return "";
6712
6713 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6714 discrim_end -= 1)
6715 {
6716 if (strncmp (discrim_end, "___XVN", 6) == 0)
6717 break;
6718 }
6719 if (discrim_end == name)
6720 return "";
6721
6722 for (discrim_start = discrim_end; discrim_start != name + 3;
6723 discrim_start -= 1)
6724 {
6725 if (discrim_start == name + 1)
6726 return "";
6727 if ((discrim_start > name + 3
6728 && strncmp (discrim_start - 3, "___", 3) == 0)
6729 || discrim_start[-1] == '.')
6730 break;
6731 }
6732
6733 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6734 strncpy (result, discrim_start, discrim_end - discrim_start);
6735 result[discrim_end - discrim_start] = '\0';
6736 return result;
6737 }
6738
6739 /* Scan STR for a subtype-encoded number, beginning at position K.
6740 Put the position of the character just past the number scanned in
6741 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6742 Return 1 if there was a valid number at the given position, and 0
6743 otherwise. A "subtype-encoded" number consists of the absolute value
6744 in decimal, followed by the letter 'm' to indicate a negative number.
6745 Assumes 0m does not occur. */
6746
6747 int
6748 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6749 {
6750 ULONGEST RU;
6751
6752 if (!isdigit (str[k]))
6753 return 0;
6754
6755 /* Do it the hard way so as not to make any assumption about
6756 the relationship of unsigned long (%lu scan format code) and
6757 LONGEST. */
6758 RU = 0;
6759 while (isdigit (str[k]))
6760 {
6761 RU = RU * 10 + (str[k] - '0');
6762 k += 1;
6763 }
6764
6765 if (str[k] == 'm')
6766 {
6767 if (R != NULL)
6768 *R = (-(LONGEST) (RU - 1)) - 1;
6769 k += 1;
6770 }
6771 else if (R != NULL)
6772 *R = (LONGEST) RU;
6773
6774 /* NOTE on the above: Technically, C does not say what the results of
6775 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6776 number representable as a LONGEST (although either would probably work
6777 in most implementations). When RU>0, the locution in the then branch
6778 above is always equivalent to the negative of RU. */
6779
6780 if (new_k != NULL)
6781 *new_k = k;
6782 return 1;
6783 }
6784
6785 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6786 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6787 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6788
6789 int
6790 ada_in_variant (LONGEST val, struct type *type, int field_num)
6791 {
6792 const char *name = TYPE_FIELD_NAME (type, field_num);
6793 int p;
6794
6795 p = 0;
6796 while (1)
6797 {
6798 switch (name[p])
6799 {
6800 case '\0':
6801 return 0;
6802 case 'S':
6803 {
6804 LONGEST W;
6805
6806 if (!ada_scan_number (name, p + 1, &W, &p))
6807 return 0;
6808 if (val == W)
6809 return 1;
6810 break;
6811 }
6812 case 'R':
6813 {
6814 LONGEST L, U;
6815
6816 if (!ada_scan_number (name, p + 1, &L, &p)
6817 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6818 return 0;
6819 if (val >= L && val <= U)
6820 return 1;
6821 break;
6822 }
6823 case 'O':
6824 return 1;
6825 default:
6826 return 0;
6827 }
6828 }
6829 }
6830
6831 /* FIXME: Lots of redundancy below. Try to consolidate. */
6832
6833 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6834 ARG_TYPE, extract and return the value of one of its (non-static)
6835 fields. FIELDNO says which field. Differs from value_primitive_field
6836 only in that it can handle packed values of arbitrary type. */
6837
6838 static struct value *
6839 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6840 struct type *arg_type)
6841 {
6842 struct type *type;
6843
6844 arg_type = ada_check_typedef (arg_type);
6845 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6846
6847 /* Handle packed fields. */
6848
6849 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6850 {
6851 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6852 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6853
6854 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6855 offset + bit_pos / 8,
6856 bit_pos % 8, bit_size, type);
6857 }
6858 else
6859 return value_primitive_field (arg1, offset, fieldno, arg_type);
6860 }
6861
6862 /* Find field with name NAME in object of type TYPE. If found,
6863 set the following for each argument that is non-null:
6864 - *FIELD_TYPE_P to the field's type;
6865 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6866 an object of that type;
6867 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6868 - *BIT_SIZE_P to its size in bits if the field is packed, and
6869 0 otherwise;
6870 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6871 fields up to but not including the desired field, or by the total
6872 number of fields if not found. A NULL value of NAME never
6873 matches; the function just counts visible fields in this case.
6874
6875 Returns 1 if found, 0 otherwise. */
6876
6877 static int
6878 find_struct_field (const char *name, struct type *type, int offset,
6879 struct type **field_type_p,
6880 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6881 int *index_p)
6882 {
6883 int i;
6884
6885 type = ada_check_typedef (type);
6886
6887 if (field_type_p != NULL)
6888 *field_type_p = NULL;
6889 if (byte_offset_p != NULL)
6890 *byte_offset_p = 0;
6891 if (bit_offset_p != NULL)
6892 *bit_offset_p = 0;
6893 if (bit_size_p != NULL)
6894 *bit_size_p = 0;
6895
6896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6897 {
6898 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6899 int fld_offset = offset + bit_pos / 8;
6900 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6901
6902 if (t_field_name == NULL)
6903 continue;
6904
6905 else if (name != NULL && field_name_match (t_field_name, name))
6906 {
6907 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6908
6909 if (field_type_p != NULL)
6910 *field_type_p = TYPE_FIELD_TYPE (type, i);
6911 if (byte_offset_p != NULL)
6912 *byte_offset_p = fld_offset;
6913 if (bit_offset_p != NULL)
6914 *bit_offset_p = bit_pos % 8;
6915 if (bit_size_p != NULL)
6916 *bit_size_p = bit_size;
6917 return 1;
6918 }
6919 else if (ada_is_wrapper_field (type, i))
6920 {
6921 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6922 field_type_p, byte_offset_p, bit_offset_p,
6923 bit_size_p, index_p))
6924 return 1;
6925 }
6926 else if (ada_is_variant_part (type, i))
6927 {
6928 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6929 fixed type?? */
6930 int j;
6931 struct type *field_type
6932 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6933
6934 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6935 {
6936 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6937 fld_offset
6938 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6939 field_type_p, byte_offset_p,
6940 bit_offset_p, bit_size_p, index_p))
6941 return 1;
6942 }
6943 }
6944 else if (index_p != NULL)
6945 *index_p += 1;
6946 }
6947 return 0;
6948 }
6949
6950 /* Number of user-visible fields in record type TYPE. */
6951
6952 static int
6953 num_visible_fields (struct type *type)
6954 {
6955 int n;
6956
6957 n = 0;
6958 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6959 return n;
6960 }
6961
6962 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6963 and search in it assuming it has (class) type TYPE.
6964 If found, return value, else return NULL.
6965
6966 Searches recursively through wrapper fields (e.g., '_parent'). */
6967
6968 static struct value *
6969 ada_search_struct_field (char *name, struct value *arg, int offset,
6970 struct type *type)
6971 {
6972 int i;
6973
6974 type = ada_check_typedef (type);
6975 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6976 {
6977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6978
6979 if (t_field_name == NULL)
6980 continue;
6981
6982 else if (field_name_match (t_field_name, name))
6983 return ada_value_primitive_field (arg, offset, i, type);
6984
6985 else if (ada_is_wrapper_field (type, i))
6986 {
6987 struct value *v = /* Do not let indent join lines here. */
6988 ada_search_struct_field (name, arg,
6989 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6990 TYPE_FIELD_TYPE (type, i));
6991
6992 if (v != NULL)
6993 return v;
6994 }
6995
6996 else if (ada_is_variant_part (type, i))
6997 {
6998 /* PNH: Do we ever get here? See find_struct_field. */
6999 int j;
7000 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7001 i));
7002 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7003
7004 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7005 {
7006 struct value *v = ada_search_struct_field /* Force line
7007 break. */
7008 (name, arg,
7009 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7010 TYPE_FIELD_TYPE (field_type, j));
7011
7012 if (v != NULL)
7013 return v;
7014 }
7015 }
7016 }
7017 return NULL;
7018 }
7019
7020 static struct value *ada_index_struct_field_1 (int *, struct value *,
7021 int, struct type *);
7022
7023
7024 /* Return field #INDEX in ARG, where the index is that returned by
7025 * find_struct_field through its INDEX_P argument. Adjust the address
7026 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7027 * If found, return value, else return NULL. */
7028
7029 static struct value *
7030 ada_index_struct_field (int index, struct value *arg, int offset,
7031 struct type *type)
7032 {
7033 return ada_index_struct_field_1 (&index, arg, offset, type);
7034 }
7035
7036
7037 /* Auxiliary function for ada_index_struct_field. Like
7038 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7039 * *INDEX_P. */
7040
7041 static struct value *
7042 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7043 struct type *type)
7044 {
7045 int i;
7046 type = ada_check_typedef (type);
7047
7048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7049 {
7050 if (TYPE_FIELD_NAME (type, i) == NULL)
7051 continue;
7052 else if (ada_is_wrapper_field (type, i))
7053 {
7054 struct value *v = /* Do not let indent join lines here. */
7055 ada_index_struct_field_1 (index_p, arg,
7056 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7057 TYPE_FIELD_TYPE (type, i));
7058
7059 if (v != NULL)
7060 return v;
7061 }
7062
7063 else if (ada_is_variant_part (type, i))
7064 {
7065 /* PNH: Do we ever get here? See ada_search_struct_field,
7066 find_struct_field. */
7067 error (_("Cannot assign this kind of variant record"));
7068 }
7069 else if (*index_p == 0)
7070 return ada_value_primitive_field (arg, offset, i, type);
7071 else
7072 *index_p -= 1;
7073 }
7074 return NULL;
7075 }
7076
7077 /* Given ARG, a value of type (pointer or reference to a)*
7078 structure/union, extract the component named NAME from the ultimate
7079 target structure/union and return it as a value with its
7080 appropriate type.
7081
7082 The routine searches for NAME among all members of the structure itself
7083 and (recursively) among all members of any wrapper members
7084 (e.g., '_parent').
7085
7086 If NO_ERR, then simply return NULL in case of error, rather than
7087 calling error. */
7088
7089 struct value *
7090 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7091 {
7092 struct type *t, *t1;
7093 struct value *v;
7094
7095 v = NULL;
7096 t1 = t = ada_check_typedef (value_type (arg));
7097 if (TYPE_CODE (t) == TYPE_CODE_REF)
7098 {
7099 t1 = TYPE_TARGET_TYPE (t);
7100 if (t1 == NULL)
7101 goto BadValue;
7102 t1 = ada_check_typedef (t1);
7103 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7104 {
7105 arg = coerce_ref (arg);
7106 t = t1;
7107 }
7108 }
7109
7110 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7111 {
7112 t1 = TYPE_TARGET_TYPE (t);
7113 if (t1 == NULL)
7114 goto BadValue;
7115 t1 = ada_check_typedef (t1);
7116 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7117 {
7118 arg = value_ind (arg);
7119 t = t1;
7120 }
7121 else
7122 break;
7123 }
7124
7125 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7126 goto BadValue;
7127
7128 if (t1 == t)
7129 v = ada_search_struct_field (name, arg, 0, t);
7130 else
7131 {
7132 int bit_offset, bit_size, byte_offset;
7133 struct type *field_type;
7134 CORE_ADDR address;
7135
7136 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7137 address = value_address (ada_value_ind (arg));
7138 else
7139 address = value_address (ada_coerce_ref (arg));
7140
7141 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7142 if (find_struct_field (name, t1, 0,
7143 &field_type, &byte_offset, &bit_offset,
7144 &bit_size, NULL))
7145 {
7146 if (bit_size != 0)
7147 {
7148 if (TYPE_CODE (t) == TYPE_CODE_REF)
7149 arg = ada_coerce_ref (arg);
7150 else
7151 arg = ada_value_ind (arg);
7152 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7153 bit_offset, bit_size,
7154 field_type);
7155 }
7156 else
7157 v = value_at_lazy (field_type, address + byte_offset);
7158 }
7159 }
7160
7161 if (v != NULL || no_err)
7162 return v;
7163 else
7164 error (_("There is no member named %s."), name);
7165
7166 BadValue:
7167 if (no_err)
7168 return NULL;
7169 else
7170 error (_("Attempt to extract a component of "
7171 "a value that is not a record."));
7172 }
7173
7174 /* Given a type TYPE, look up the type of the component of type named NAME.
7175 If DISPP is non-null, add its byte displacement from the beginning of a
7176 structure (pointed to by a value) of type TYPE to *DISPP (does not
7177 work for packed fields).
7178
7179 Matches any field whose name has NAME as a prefix, possibly
7180 followed by "___".
7181
7182 TYPE can be either a struct or union. If REFOK, TYPE may also
7183 be a (pointer or reference)+ to a struct or union, and the
7184 ultimate target type will be searched.
7185
7186 Looks recursively into variant clauses and parent types.
7187
7188 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7189 TYPE is not a type of the right kind. */
7190
7191 static struct type *
7192 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7193 int noerr, int *dispp)
7194 {
7195 int i;
7196
7197 if (name == NULL)
7198 goto BadName;
7199
7200 if (refok && type != NULL)
7201 while (1)
7202 {
7203 type = ada_check_typedef (type);
7204 if (TYPE_CODE (type) != TYPE_CODE_PTR
7205 && TYPE_CODE (type) != TYPE_CODE_REF)
7206 break;
7207 type = TYPE_TARGET_TYPE (type);
7208 }
7209
7210 if (type == NULL
7211 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7212 && TYPE_CODE (type) != TYPE_CODE_UNION))
7213 {
7214 if (noerr)
7215 return NULL;
7216 else
7217 {
7218 target_terminal_ours ();
7219 gdb_flush (gdb_stdout);
7220 if (type == NULL)
7221 error (_("Type (null) is not a structure or union type"));
7222 else
7223 {
7224 /* XXX: type_sprint */
7225 fprintf_unfiltered (gdb_stderr, _("Type "));
7226 type_print (type, "", gdb_stderr, -1);
7227 error (_(" is not a structure or union type"));
7228 }
7229 }
7230 }
7231
7232 type = to_static_fixed_type (type);
7233
7234 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7235 {
7236 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7237 struct type *t;
7238 int disp;
7239
7240 if (t_field_name == NULL)
7241 continue;
7242
7243 else if (field_name_match (t_field_name, name))
7244 {
7245 if (dispp != NULL)
7246 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7247 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7248 }
7249
7250 else if (ada_is_wrapper_field (type, i))
7251 {
7252 disp = 0;
7253 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7254 0, 1, &disp);
7255 if (t != NULL)
7256 {
7257 if (dispp != NULL)
7258 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7259 return t;
7260 }
7261 }
7262
7263 else if (ada_is_variant_part (type, i))
7264 {
7265 int j;
7266 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7267 i));
7268
7269 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7270 {
7271 /* FIXME pnh 2008/01/26: We check for a field that is
7272 NOT wrapped in a struct, since the compiler sometimes
7273 generates these for unchecked variant types. Revisit
7274 if the compiler changes this practice. */
7275 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7276 disp = 0;
7277 if (v_field_name != NULL
7278 && field_name_match (v_field_name, name))
7279 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7280 else
7281 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7282 j),
7283 name, 0, 1, &disp);
7284
7285 if (t != NULL)
7286 {
7287 if (dispp != NULL)
7288 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7289 return t;
7290 }
7291 }
7292 }
7293
7294 }
7295
7296 BadName:
7297 if (!noerr)
7298 {
7299 target_terminal_ours ();
7300 gdb_flush (gdb_stdout);
7301 if (name == NULL)
7302 {
7303 /* XXX: type_sprint */
7304 fprintf_unfiltered (gdb_stderr, _("Type "));
7305 type_print (type, "", gdb_stderr, -1);
7306 error (_(" has no component named <null>"));
7307 }
7308 else
7309 {
7310 /* XXX: type_sprint */
7311 fprintf_unfiltered (gdb_stderr, _("Type "));
7312 type_print (type, "", gdb_stderr, -1);
7313 error (_(" has no component named %s"), name);
7314 }
7315 }
7316
7317 return NULL;
7318 }
7319
7320 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7321 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7322 represents an unchecked union (that is, the variant part of a
7323 record that is named in an Unchecked_Union pragma). */
7324
7325 static int
7326 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7327 {
7328 char *discrim_name = ada_variant_discrim_name (var_type);
7329
7330 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7331 == NULL);
7332 }
7333
7334
7335 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7336 within a value of type OUTER_TYPE that is stored in GDB at
7337 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7338 numbering from 0) is applicable. Returns -1 if none are. */
7339
7340 int
7341 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7342 const gdb_byte *outer_valaddr)
7343 {
7344 int others_clause;
7345 int i;
7346 char *discrim_name = ada_variant_discrim_name (var_type);
7347 struct value *outer;
7348 struct value *discrim;
7349 LONGEST discrim_val;
7350
7351 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7352 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7353 if (discrim == NULL)
7354 return -1;
7355 discrim_val = value_as_long (discrim);
7356
7357 others_clause = -1;
7358 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7359 {
7360 if (ada_is_others_clause (var_type, i))
7361 others_clause = i;
7362 else if (ada_in_variant (discrim_val, var_type, i))
7363 return i;
7364 }
7365
7366 return others_clause;
7367 }
7368 \f
7369
7370
7371 /* Dynamic-Sized Records */
7372
7373 /* Strategy: The type ostensibly attached to a value with dynamic size
7374 (i.e., a size that is not statically recorded in the debugging
7375 data) does not accurately reflect the size or layout of the value.
7376 Our strategy is to convert these values to values with accurate,
7377 conventional types that are constructed on the fly. */
7378
7379 /* There is a subtle and tricky problem here. In general, we cannot
7380 determine the size of dynamic records without its data. However,
7381 the 'struct value' data structure, which GDB uses to represent
7382 quantities in the inferior process (the target), requires the size
7383 of the type at the time of its allocation in order to reserve space
7384 for GDB's internal copy of the data. That's why the
7385 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7386 rather than struct value*s.
7387
7388 However, GDB's internal history variables ($1, $2, etc.) are
7389 struct value*s containing internal copies of the data that are not, in
7390 general, the same as the data at their corresponding addresses in
7391 the target. Fortunately, the types we give to these values are all
7392 conventional, fixed-size types (as per the strategy described
7393 above), so that we don't usually have to perform the
7394 'to_fixed_xxx_type' conversions to look at their values.
7395 Unfortunately, there is one exception: if one of the internal
7396 history variables is an array whose elements are unconstrained
7397 records, then we will need to create distinct fixed types for each
7398 element selected. */
7399
7400 /* The upshot of all of this is that many routines take a (type, host
7401 address, target address) triple as arguments to represent a value.
7402 The host address, if non-null, is supposed to contain an internal
7403 copy of the relevant data; otherwise, the program is to consult the
7404 target at the target address. */
7405
7406 /* Assuming that VAL0 represents a pointer value, the result of
7407 dereferencing it. Differs from value_ind in its treatment of
7408 dynamic-sized types. */
7409
7410 struct value *
7411 ada_value_ind (struct value *val0)
7412 {
7413 struct value *val = value_ind (val0);
7414
7415 if (ada_is_tagged_type (value_type (val), 0))
7416 val = ada_tag_value_at_base_address (val);
7417
7418 return ada_to_fixed_value (val);
7419 }
7420
7421 /* The value resulting from dereferencing any "reference to"
7422 qualifiers on VAL0. */
7423
7424 static struct value *
7425 ada_coerce_ref (struct value *val0)
7426 {
7427 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7428 {
7429 struct value *val = val0;
7430
7431 val = coerce_ref (val);
7432
7433 if (ada_is_tagged_type (value_type (val), 0))
7434 val = ada_tag_value_at_base_address (val);
7435
7436 return ada_to_fixed_value (val);
7437 }
7438 else
7439 return val0;
7440 }
7441
7442 /* Return OFF rounded upward if necessary to a multiple of
7443 ALIGNMENT (a power of 2). */
7444
7445 static unsigned int
7446 align_value (unsigned int off, unsigned int alignment)
7447 {
7448 return (off + alignment - 1) & ~(alignment - 1);
7449 }
7450
7451 /* Return the bit alignment required for field #F of template type TYPE. */
7452
7453 static unsigned int
7454 field_alignment (struct type *type, int f)
7455 {
7456 const char *name = TYPE_FIELD_NAME (type, f);
7457 int len;
7458 int align_offset;
7459
7460 /* The field name should never be null, unless the debugging information
7461 is somehow malformed. In this case, we assume the field does not
7462 require any alignment. */
7463 if (name == NULL)
7464 return 1;
7465
7466 len = strlen (name);
7467
7468 if (!isdigit (name[len - 1]))
7469 return 1;
7470
7471 if (isdigit (name[len - 2]))
7472 align_offset = len - 2;
7473 else
7474 align_offset = len - 1;
7475
7476 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7477 return TARGET_CHAR_BIT;
7478
7479 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7480 }
7481
7482 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7483
7484 static struct symbol *
7485 ada_find_any_type_symbol (const char *name)
7486 {
7487 struct symbol *sym;
7488
7489 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7490 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7491 return sym;
7492
7493 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7494 return sym;
7495 }
7496
7497 /* Find a type named NAME. Ignores ambiguity. This routine will look
7498 solely for types defined by debug info, it will not search the GDB
7499 primitive types. */
7500
7501 static struct type *
7502 ada_find_any_type (const char *name)
7503 {
7504 struct symbol *sym = ada_find_any_type_symbol (name);
7505
7506 if (sym != NULL)
7507 return SYMBOL_TYPE (sym);
7508
7509 return NULL;
7510 }
7511
7512 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7513 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7514 symbol, in which case it is returned. Otherwise, this looks for
7515 symbols whose name is that of NAME_SYM suffixed with "___XR".
7516 Return symbol if found, and NULL otherwise. */
7517
7518 struct symbol *
7519 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7520 {
7521 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7522 struct symbol *sym;
7523
7524 if (strstr (name, "___XR") != NULL)
7525 return name_sym;
7526
7527 sym = find_old_style_renaming_symbol (name, block);
7528
7529 if (sym != NULL)
7530 return sym;
7531
7532 /* Not right yet. FIXME pnh 7/20/2007. */
7533 sym = ada_find_any_type_symbol (name);
7534 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7535 return sym;
7536 else
7537 return NULL;
7538 }
7539
7540 static struct symbol *
7541 find_old_style_renaming_symbol (const char *name, const struct block *block)
7542 {
7543 const struct symbol *function_sym = block_linkage_function (block);
7544 char *rename;
7545
7546 if (function_sym != NULL)
7547 {
7548 /* If the symbol is defined inside a function, NAME is not fully
7549 qualified. This means we need to prepend the function name
7550 as well as adding the ``___XR'' suffix to build the name of
7551 the associated renaming symbol. */
7552 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7553 /* Function names sometimes contain suffixes used
7554 for instance to qualify nested subprograms. When building
7555 the XR type name, we need to make sure that this suffix is
7556 not included. So do not include any suffix in the function
7557 name length below. */
7558 int function_name_len = ada_name_prefix_len (function_name);
7559 const int rename_len = function_name_len + 2 /* "__" */
7560 + strlen (name) + 6 /* "___XR\0" */ ;
7561
7562 /* Strip the suffix if necessary. */
7563 ada_remove_trailing_digits (function_name, &function_name_len);
7564 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7565 ada_remove_Xbn_suffix (function_name, &function_name_len);
7566
7567 /* Library-level functions are a special case, as GNAT adds
7568 a ``_ada_'' prefix to the function name to avoid namespace
7569 pollution. However, the renaming symbols themselves do not
7570 have this prefix, so we need to skip this prefix if present. */
7571 if (function_name_len > 5 /* "_ada_" */
7572 && strstr (function_name, "_ada_") == function_name)
7573 {
7574 function_name += 5;
7575 function_name_len -= 5;
7576 }
7577
7578 rename = (char *) alloca (rename_len * sizeof (char));
7579 strncpy (rename, function_name, function_name_len);
7580 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7581 "__%s___XR", name);
7582 }
7583 else
7584 {
7585 const int rename_len = strlen (name) + 6;
7586
7587 rename = (char *) alloca (rename_len * sizeof (char));
7588 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7589 }
7590
7591 return ada_find_any_type_symbol (rename);
7592 }
7593
7594 /* Because of GNAT encoding conventions, several GDB symbols may match a
7595 given type name. If the type denoted by TYPE0 is to be preferred to
7596 that of TYPE1 for purposes of type printing, return non-zero;
7597 otherwise return 0. */
7598
7599 int
7600 ada_prefer_type (struct type *type0, struct type *type1)
7601 {
7602 if (type1 == NULL)
7603 return 1;
7604 else if (type0 == NULL)
7605 return 0;
7606 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7607 return 1;
7608 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7609 return 0;
7610 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7611 return 1;
7612 else if (ada_is_constrained_packed_array_type (type0))
7613 return 1;
7614 else if (ada_is_array_descriptor_type (type0)
7615 && !ada_is_array_descriptor_type (type1))
7616 return 1;
7617 else
7618 {
7619 const char *type0_name = type_name_no_tag (type0);
7620 const char *type1_name = type_name_no_tag (type1);
7621
7622 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7623 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7624 return 1;
7625 }
7626 return 0;
7627 }
7628
7629 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7630 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7631
7632 const char *
7633 ada_type_name (struct type *type)
7634 {
7635 if (type == NULL)
7636 return NULL;
7637 else if (TYPE_NAME (type) != NULL)
7638 return TYPE_NAME (type);
7639 else
7640 return TYPE_TAG_NAME (type);
7641 }
7642
7643 /* Search the list of "descriptive" types associated to TYPE for a type
7644 whose name is NAME. */
7645
7646 static struct type *
7647 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7648 {
7649 struct type *result;
7650
7651 if (ada_ignore_descriptive_types_p)
7652 return NULL;
7653
7654 /* If there no descriptive-type info, then there is no parallel type
7655 to be found. */
7656 if (!HAVE_GNAT_AUX_INFO (type))
7657 return NULL;
7658
7659 result = TYPE_DESCRIPTIVE_TYPE (type);
7660 while (result != NULL)
7661 {
7662 const char *result_name = ada_type_name (result);
7663
7664 if (result_name == NULL)
7665 {
7666 warning (_("unexpected null name on descriptive type"));
7667 return NULL;
7668 }
7669
7670 /* If the names match, stop. */
7671 if (strcmp (result_name, name) == 0)
7672 break;
7673
7674 /* Otherwise, look at the next item on the list, if any. */
7675 if (HAVE_GNAT_AUX_INFO (result))
7676 result = TYPE_DESCRIPTIVE_TYPE (result);
7677 else
7678 result = NULL;
7679 }
7680
7681 /* If we didn't find a match, see whether this is a packed array. With
7682 older compilers, the descriptive type information is either absent or
7683 irrelevant when it comes to packed arrays so the above lookup fails.
7684 Fall back to using a parallel lookup by name in this case. */
7685 if (result == NULL && ada_is_constrained_packed_array_type (type))
7686 return ada_find_any_type (name);
7687
7688 return result;
7689 }
7690
7691 /* Find a parallel type to TYPE with the specified NAME, using the
7692 descriptive type taken from the debugging information, if available,
7693 and otherwise using the (slower) name-based method. */
7694
7695 static struct type *
7696 ada_find_parallel_type_with_name (struct type *type, const char *name)
7697 {
7698 struct type *result = NULL;
7699
7700 if (HAVE_GNAT_AUX_INFO (type))
7701 result = find_parallel_type_by_descriptive_type (type, name);
7702 else
7703 result = ada_find_any_type (name);
7704
7705 return result;
7706 }
7707
7708 /* Same as above, but specify the name of the parallel type by appending
7709 SUFFIX to the name of TYPE. */
7710
7711 struct type *
7712 ada_find_parallel_type (struct type *type, const char *suffix)
7713 {
7714 char *name;
7715 const char *typename = ada_type_name (type);
7716 int len;
7717
7718 if (typename == NULL)
7719 return NULL;
7720
7721 len = strlen (typename);
7722
7723 name = (char *) alloca (len + strlen (suffix) + 1);
7724
7725 strcpy (name, typename);
7726 strcpy (name + len, suffix);
7727
7728 return ada_find_parallel_type_with_name (type, name);
7729 }
7730
7731 /* If TYPE is a variable-size record type, return the corresponding template
7732 type describing its fields. Otherwise, return NULL. */
7733
7734 static struct type *
7735 dynamic_template_type (struct type *type)
7736 {
7737 type = ada_check_typedef (type);
7738
7739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7740 || ada_type_name (type) == NULL)
7741 return NULL;
7742 else
7743 {
7744 int len = strlen (ada_type_name (type));
7745
7746 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7747 return type;
7748 else
7749 return ada_find_parallel_type (type, "___XVE");
7750 }
7751 }
7752
7753 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7754 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7755
7756 static int
7757 is_dynamic_field (struct type *templ_type, int field_num)
7758 {
7759 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7760
7761 return name != NULL
7762 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7763 && strstr (name, "___XVL") != NULL;
7764 }
7765
7766 /* The index of the variant field of TYPE, or -1 if TYPE does not
7767 represent a variant record type. */
7768
7769 static int
7770 variant_field_index (struct type *type)
7771 {
7772 int f;
7773
7774 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7775 return -1;
7776
7777 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7778 {
7779 if (ada_is_variant_part (type, f))
7780 return f;
7781 }
7782 return -1;
7783 }
7784
7785 /* A record type with no fields. */
7786
7787 static struct type *
7788 empty_record (struct type *template)
7789 {
7790 struct type *type = alloc_type_copy (template);
7791
7792 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7793 TYPE_NFIELDS (type) = 0;
7794 TYPE_FIELDS (type) = NULL;
7795 INIT_CPLUS_SPECIFIC (type);
7796 TYPE_NAME (type) = "<empty>";
7797 TYPE_TAG_NAME (type) = NULL;
7798 TYPE_LENGTH (type) = 0;
7799 return type;
7800 }
7801
7802 /* An ordinary record type (with fixed-length fields) that describes
7803 the value of type TYPE at VALADDR or ADDRESS (see comments at
7804 the beginning of this section) VAL according to GNAT conventions.
7805 DVAL0 should describe the (portion of a) record that contains any
7806 necessary discriminants. It should be NULL if value_type (VAL) is
7807 an outer-level type (i.e., as opposed to a branch of a variant.) A
7808 variant field (unless unchecked) is replaced by a particular branch
7809 of the variant.
7810
7811 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7812 length are not statically known are discarded. As a consequence,
7813 VALADDR, ADDRESS and DVAL0 are ignored.
7814
7815 NOTE: Limitations: For now, we assume that dynamic fields and
7816 variants occupy whole numbers of bytes. However, they need not be
7817 byte-aligned. */
7818
7819 struct type *
7820 ada_template_to_fixed_record_type_1 (struct type *type,
7821 const gdb_byte *valaddr,
7822 CORE_ADDR address, struct value *dval0,
7823 int keep_dynamic_fields)
7824 {
7825 struct value *mark = value_mark ();
7826 struct value *dval;
7827 struct type *rtype;
7828 int nfields, bit_len;
7829 int variant_field;
7830 long off;
7831 int fld_bit_len;
7832 int f;
7833
7834 /* Compute the number of fields in this record type that are going
7835 to be processed: unless keep_dynamic_fields, this includes only
7836 fields whose position and length are static will be processed. */
7837 if (keep_dynamic_fields)
7838 nfields = TYPE_NFIELDS (type);
7839 else
7840 {
7841 nfields = 0;
7842 while (nfields < TYPE_NFIELDS (type)
7843 && !ada_is_variant_part (type, nfields)
7844 && !is_dynamic_field (type, nfields))
7845 nfields++;
7846 }
7847
7848 rtype = alloc_type_copy (type);
7849 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7850 INIT_CPLUS_SPECIFIC (rtype);
7851 TYPE_NFIELDS (rtype) = nfields;
7852 TYPE_FIELDS (rtype) = (struct field *)
7853 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7854 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7855 TYPE_NAME (rtype) = ada_type_name (type);
7856 TYPE_TAG_NAME (rtype) = NULL;
7857 TYPE_FIXED_INSTANCE (rtype) = 1;
7858
7859 off = 0;
7860 bit_len = 0;
7861 variant_field = -1;
7862
7863 for (f = 0; f < nfields; f += 1)
7864 {
7865 off = align_value (off, field_alignment (type, f))
7866 + TYPE_FIELD_BITPOS (type, f);
7867 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7868 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7869
7870 if (ada_is_variant_part (type, f))
7871 {
7872 variant_field = f;
7873 fld_bit_len = 0;
7874 }
7875 else if (is_dynamic_field (type, f))
7876 {
7877 const gdb_byte *field_valaddr = valaddr;
7878 CORE_ADDR field_address = address;
7879 struct type *field_type =
7880 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7881
7882 if (dval0 == NULL)
7883 {
7884 /* rtype's length is computed based on the run-time
7885 value of discriminants. If the discriminants are not
7886 initialized, the type size may be completely bogus and
7887 GDB may fail to allocate a value for it. So check the
7888 size first before creating the value. */
7889 check_size (rtype);
7890 dval = value_from_contents_and_address (rtype, valaddr, address);
7891 }
7892 else
7893 dval = dval0;
7894
7895 /* If the type referenced by this field is an aligner type, we need
7896 to unwrap that aligner type, because its size might not be set.
7897 Keeping the aligner type would cause us to compute the wrong
7898 size for this field, impacting the offset of the all the fields
7899 that follow this one. */
7900 if (ada_is_aligner_type (field_type))
7901 {
7902 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7903
7904 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7905 field_address = cond_offset_target (field_address, field_offset);
7906 field_type = ada_aligned_type (field_type);
7907 }
7908
7909 field_valaddr = cond_offset_host (field_valaddr,
7910 off / TARGET_CHAR_BIT);
7911 field_address = cond_offset_target (field_address,
7912 off / TARGET_CHAR_BIT);
7913
7914 /* Get the fixed type of the field. Note that, in this case,
7915 we do not want to get the real type out of the tag: if
7916 the current field is the parent part of a tagged record,
7917 we will get the tag of the object. Clearly wrong: the real
7918 type of the parent is not the real type of the child. We
7919 would end up in an infinite loop. */
7920 field_type = ada_get_base_type (field_type);
7921 field_type = ada_to_fixed_type (field_type, field_valaddr,
7922 field_address, dval, 0);
7923 /* If the field size is already larger than the maximum
7924 object size, then the record itself will necessarily
7925 be larger than the maximum object size. We need to make
7926 this check now, because the size might be so ridiculously
7927 large (due to an uninitialized variable in the inferior)
7928 that it would cause an overflow when adding it to the
7929 record size. */
7930 check_size (field_type);
7931
7932 TYPE_FIELD_TYPE (rtype, f) = field_type;
7933 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7934 /* The multiplication can potentially overflow. But because
7935 the field length has been size-checked just above, and
7936 assuming that the maximum size is a reasonable value,
7937 an overflow should not happen in practice. So rather than
7938 adding overflow recovery code to this already complex code,
7939 we just assume that it's not going to happen. */
7940 fld_bit_len =
7941 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7942 }
7943 else
7944 {
7945 /* Note: If this field's type is a typedef, it is important
7946 to preserve the typedef layer.
7947
7948 Otherwise, we might be transforming a typedef to a fat
7949 pointer (encoding a pointer to an unconstrained array),
7950 into a basic fat pointer (encoding an unconstrained
7951 array). As both types are implemented using the same
7952 structure, the typedef is the only clue which allows us
7953 to distinguish between the two options. Stripping it
7954 would prevent us from printing this field appropriately. */
7955 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7956 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7957 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7958 fld_bit_len =
7959 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7960 else
7961 {
7962 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7963
7964 /* We need to be careful of typedefs when computing
7965 the length of our field. If this is a typedef,
7966 get the length of the target type, not the length
7967 of the typedef. */
7968 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7969 field_type = ada_typedef_target_type (field_type);
7970
7971 fld_bit_len =
7972 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7973 }
7974 }
7975 if (off + fld_bit_len > bit_len)
7976 bit_len = off + fld_bit_len;
7977 off += fld_bit_len;
7978 TYPE_LENGTH (rtype) =
7979 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7980 }
7981
7982 /* We handle the variant part, if any, at the end because of certain
7983 odd cases in which it is re-ordered so as NOT to be the last field of
7984 the record. This can happen in the presence of representation
7985 clauses. */
7986 if (variant_field >= 0)
7987 {
7988 struct type *branch_type;
7989
7990 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7991
7992 if (dval0 == NULL)
7993 dval = value_from_contents_and_address (rtype, valaddr, address);
7994 else
7995 dval = dval0;
7996
7997 branch_type =
7998 to_fixed_variant_branch_type
7999 (TYPE_FIELD_TYPE (type, variant_field),
8000 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8001 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8002 if (branch_type == NULL)
8003 {
8004 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8005 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8006 TYPE_NFIELDS (rtype) -= 1;
8007 }
8008 else
8009 {
8010 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8011 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8012 fld_bit_len =
8013 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8014 TARGET_CHAR_BIT;
8015 if (off + fld_bit_len > bit_len)
8016 bit_len = off + fld_bit_len;
8017 TYPE_LENGTH (rtype) =
8018 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8019 }
8020 }
8021
8022 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8023 should contain the alignment of that record, which should be a strictly
8024 positive value. If null or negative, then something is wrong, most
8025 probably in the debug info. In that case, we don't round up the size
8026 of the resulting type. If this record is not part of another structure,
8027 the current RTYPE length might be good enough for our purposes. */
8028 if (TYPE_LENGTH (type) <= 0)
8029 {
8030 if (TYPE_NAME (rtype))
8031 warning (_("Invalid type size for `%s' detected: %d."),
8032 TYPE_NAME (rtype), TYPE_LENGTH (type));
8033 else
8034 warning (_("Invalid type size for <unnamed> detected: %d."),
8035 TYPE_LENGTH (type));
8036 }
8037 else
8038 {
8039 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8040 TYPE_LENGTH (type));
8041 }
8042
8043 value_free_to_mark (mark);
8044 if (TYPE_LENGTH (rtype) > varsize_limit)
8045 error (_("record type with dynamic size is larger than varsize-limit"));
8046 return rtype;
8047 }
8048
8049 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8050 of 1. */
8051
8052 static struct type *
8053 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8054 CORE_ADDR address, struct value *dval0)
8055 {
8056 return ada_template_to_fixed_record_type_1 (type, valaddr,
8057 address, dval0, 1);
8058 }
8059
8060 /* An ordinary record type in which ___XVL-convention fields and
8061 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8062 static approximations, containing all possible fields. Uses
8063 no runtime values. Useless for use in values, but that's OK,
8064 since the results are used only for type determinations. Works on both
8065 structs and unions. Representation note: to save space, we memorize
8066 the result of this function in the TYPE_TARGET_TYPE of the
8067 template type. */
8068
8069 static struct type *
8070 template_to_static_fixed_type (struct type *type0)
8071 {
8072 struct type *type;
8073 int nfields;
8074 int f;
8075
8076 if (TYPE_TARGET_TYPE (type0) != NULL)
8077 return TYPE_TARGET_TYPE (type0);
8078
8079 nfields = TYPE_NFIELDS (type0);
8080 type = type0;
8081
8082 for (f = 0; f < nfields; f += 1)
8083 {
8084 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8085 struct type *new_type;
8086
8087 if (is_dynamic_field (type0, f))
8088 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8089 else
8090 new_type = static_unwrap_type (field_type);
8091 if (type == type0 && new_type != field_type)
8092 {
8093 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8094 TYPE_CODE (type) = TYPE_CODE (type0);
8095 INIT_CPLUS_SPECIFIC (type);
8096 TYPE_NFIELDS (type) = nfields;
8097 TYPE_FIELDS (type) = (struct field *)
8098 TYPE_ALLOC (type, nfields * sizeof (struct field));
8099 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8100 sizeof (struct field) * nfields);
8101 TYPE_NAME (type) = ada_type_name (type0);
8102 TYPE_TAG_NAME (type) = NULL;
8103 TYPE_FIXED_INSTANCE (type) = 1;
8104 TYPE_LENGTH (type) = 0;
8105 }
8106 TYPE_FIELD_TYPE (type, f) = new_type;
8107 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8108 }
8109 return type;
8110 }
8111
8112 /* Given an object of type TYPE whose contents are at VALADDR and
8113 whose address in memory is ADDRESS, returns a revision of TYPE,
8114 which should be a non-dynamic-sized record, in which the variant
8115 part, if any, is replaced with the appropriate branch. Looks
8116 for discriminant values in DVAL0, which can be NULL if the record
8117 contains the necessary discriminant values. */
8118
8119 static struct type *
8120 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8121 CORE_ADDR address, struct value *dval0)
8122 {
8123 struct value *mark = value_mark ();
8124 struct value *dval;
8125 struct type *rtype;
8126 struct type *branch_type;
8127 int nfields = TYPE_NFIELDS (type);
8128 int variant_field = variant_field_index (type);
8129
8130 if (variant_field == -1)
8131 return type;
8132
8133 if (dval0 == NULL)
8134 dval = value_from_contents_and_address (type, valaddr, address);
8135 else
8136 dval = dval0;
8137
8138 rtype = alloc_type_copy (type);
8139 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8140 INIT_CPLUS_SPECIFIC (rtype);
8141 TYPE_NFIELDS (rtype) = nfields;
8142 TYPE_FIELDS (rtype) =
8143 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8144 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8145 sizeof (struct field) * nfields);
8146 TYPE_NAME (rtype) = ada_type_name (type);
8147 TYPE_TAG_NAME (rtype) = NULL;
8148 TYPE_FIXED_INSTANCE (rtype) = 1;
8149 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8150
8151 branch_type = to_fixed_variant_branch_type
8152 (TYPE_FIELD_TYPE (type, variant_field),
8153 cond_offset_host (valaddr,
8154 TYPE_FIELD_BITPOS (type, variant_field)
8155 / TARGET_CHAR_BIT),
8156 cond_offset_target (address,
8157 TYPE_FIELD_BITPOS (type, variant_field)
8158 / TARGET_CHAR_BIT), dval);
8159 if (branch_type == NULL)
8160 {
8161 int f;
8162
8163 for (f = variant_field + 1; f < nfields; f += 1)
8164 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8165 TYPE_NFIELDS (rtype) -= 1;
8166 }
8167 else
8168 {
8169 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8170 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8171 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8172 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8173 }
8174 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8175
8176 value_free_to_mark (mark);
8177 return rtype;
8178 }
8179
8180 /* An ordinary record type (with fixed-length fields) that describes
8181 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8182 beginning of this section]. Any necessary discriminants' values
8183 should be in DVAL, a record value; it may be NULL if the object
8184 at ADDR itself contains any necessary discriminant values.
8185 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8186 values from the record are needed. Except in the case that DVAL,
8187 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8188 unchecked) is replaced by a particular branch of the variant.
8189
8190 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8191 is questionable and may be removed. It can arise during the
8192 processing of an unconstrained-array-of-record type where all the
8193 variant branches have exactly the same size. This is because in
8194 such cases, the compiler does not bother to use the XVS convention
8195 when encoding the record. I am currently dubious of this
8196 shortcut and suspect the compiler should be altered. FIXME. */
8197
8198 static struct type *
8199 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8200 CORE_ADDR address, struct value *dval)
8201 {
8202 struct type *templ_type;
8203
8204 if (TYPE_FIXED_INSTANCE (type0))
8205 return type0;
8206
8207 templ_type = dynamic_template_type (type0);
8208
8209 if (templ_type != NULL)
8210 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8211 else if (variant_field_index (type0) >= 0)
8212 {
8213 if (dval == NULL && valaddr == NULL && address == 0)
8214 return type0;
8215 return to_record_with_fixed_variant_part (type0, valaddr, address,
8216 dval);
8217 }
8218 else
8219 {
8220 TYPE_FIXED_INSTANCE (type0) = 1;
8221 return type0;
8222 }
8223
8224 }
8225
8226 /* An ordinary record type (with fixed-length fields) that describes
8227 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8228 union type. Any necessary discriminants' values should be in DVAL,
8229 a record value. That is, this routine selects the appropriate
8230 branch of the union at ADDR according to the discriminant value
8231 indicated in the union's type name. Returns VAR_TYPE0 itself if
8232 it represents a variant subject to a pragma Unchecked_Union. */
8233
8234 static struct type *
8235 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8236 CORE_ADDR address, struct value *dval)
8237 {
8238 int which;
8239 struct type *templ_type;
8240 struct type *var_type;
8241
8242 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8243 var_type = TYPE_TARGET_TYPE (var_type0);
8244 else
8245 var_type = var_type0;
8246
8247 templ_type = ada_find_parallel_type (var_type, "___XVU");
8248
8249 if (templ_type != NULL)
8250 var_type = templ_type;
8251
8252 if (is_unchecked_variant (var_type, value_type (dval)))
8253 return var_type0;
8254 which =
8255 ada_which_variant_applies (var_type,
8256 value_type (dval), value_contents (dval));
8257
8258 if (which < 0)
8259 return empty_record (var_type);
8260 else if (is_dynamic_field (var_type, which))
8261 return to_fixed_record_type
8262 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8263 valaddr, address, dval);
8264 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8265 return
8266 to_fixed_record_type
8267 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8268 else
8269 return TYPE_FIELD_TYPE (var_type, which);
8270 }
8271
8272 /* Assuming that TYPE0 is an array type describing the type of a value
8273 at ADDR, and that DVAL describes a record containing any
8274 discriminants used in TYPE0, returns a type for the value that
8275 contains no dynamic components (that is, no components whose sizes
8276 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8277 true, gives an error message if the resulting type's size is over
8278 varsize_limit. */
8279
8280 static struct type *
8281 to_fixed_array_type (struct type *type0, struct value *dval,
8282 int ignore_too_big)
8283 {
8284 struct type *index_type_desc;
8285 struct type *result;
8286 int constrained_packed_array_p;
8287
8288 type0 = ada_check_typedef (type0);
8289 if (TYPE_FIXED_INSTANCE (type0))
8290 return type0;
8291
8292 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8293 if (constrained_packed_array_p)
8294 type0 = decode_constrained_packed_array_type (type0);
8295
8296 index_type_desc = ada_find_parallel_type (type0, "___XA");
8297 ada_fixup_array_indexes_type (index_type_desc);
8298 if (index_type_desc == NULL)
8299 {
8300 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8301
8302 /* NOTE: elt_type---the fixed version of elt_type0---should never
8303 depend on the contents of the array in properly constructed
8304 debugging data. */
8305 /* Create a fixed version of the array element type.
8306 We're not providing the address of an element here,
8307 and thus the actual object value cannot be inspected to do
8308 the conversion. This should not be a problem, since arrays of
8309 unconstrained objects are not allowed. In particular, all
8310 the elements of an array of a tagged type should all be of
8311 the same type specified in the debugging info. No need to
8312 consult the object tag. */
8313 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8314
8315 /* Make sure we always create a new array type when dealing with
8316 packed array types, since we're going to fix-up the array
8317 type length and element bitsize a little further down. */
8318 if (elt_type0 == elt_type && !constrained_packed_array_p)
8319 result = type0;
8320 else
8321 result = create_array_type (alloc_type_copy (type0),
8322 elt_type, TYPE_INDEX_TYPE (type0));
8323 }
8324 else
8325 {
8326 int i;
8327 struct type *elt_type0;
8328
8329 elt_type0 = type0;
8330 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8331 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8332
8333 /* NOTE: result---the fixed version of elt_type0---should never
8334 depend on the contents of the array in properly constructed
8335 debugging data. */
8336 /* Create a fixed version of the array element type.
8337 We're not providing the address of an element here,
8338 and thus the actual object value cannot be inspected to do
8339 the conversion. This should not be a problem, since arrays of
8340 unconstrained objects are not allowed. In particular, all
8341 the elements of an array of a tagged type should all be of
8342 the same type specified in the debugging info. No need to
8343 consult the object tag. */
8344 result =
8345 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8346
8347 elt_type0 = type0;
8348 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8349 {
8350 struct type *range_type =
8351 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8352
8353 result = create_array_type (alloc_type_copy (elt_type0),
8354 result, range_type);
8355 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8356 }
8357 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8358 error (_("array type with dynamic size is larger than varsize-limit"));
8359 }
8360
8361 /* We want to preserve the type name. This can be useful when
8362 trying to get the type name of a value that has already been
8363 printed (for instance, if the user did "print VAR; whatis $". */
8364 TYPE_NAME (result) = TYPE_NAME (type0);
8365
8366 if (constrained_packed_array_p)
8367 {
8368 /* So far, the resulting type has been created as if the original
8369 type was a regular (non-packed) array type. As a result, the
8370 bitsize of the array elements needs to be set again, and the array
8371 length needs to be recomputed based on that bitsize. */
8372 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8373 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8374
8375 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8376 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8377 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8378 TYPE_LENGTH (result)++;
8379 }
8380
8381 TYPE_FIXED_INSTANCE (result) = 1;
8382 return result;
8383 }
8384
8385
8386 /* A standard type (containing no dynamically sized components)
8387 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8388 DVAL describes a record containing any discriminants used in TYPE0,
8389 and may be NULL if there are none, or if the object of type TYPE at
8390 ADDRESS or in VALADDR contains these discriminants.
8391
8392 If CHECK_TAG is not null, in the case of tagged types, this function
8393 attempts to locate the object's tag and use it to compute the actual
8394 type. However, when ADDRESS is null, we cannot use it to determine the
8395 location of the tag, and therefore compute the tagged type's actual type.
8396 So we return the tagged type without consulting the tag. */
8397
8398 static struct type *
8399 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8400 CORE_ADDR address, struct value *dval, int check_tag)
8401 {
8402 type = ada_check_typedef (type);
8403 switch (TYPE_CODE (type))
8404 {
8405 default:
8406 return type;
8407 case TYPE_CODE_STRUCT:
8408 {
8409 struct type *static_type = to_static_fixed_type (type);
8410 struct type *fixed_record_type =
8411 to_fixed_record_type (type, valaddr, address, NULL);
8412
8413 /* If STATIC_TYPE is a tagged type and we know the object's address,
8414 then we can determine its tag, and compute the object's actual
8415 type from there. Note that we have to use the fixed record
8416 type (the parent part of the record may have dynamic fields
8417 and the way the location of _tag is expressed may depend on
8418 them). */
8419
8420 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8421 {
8422 struct value *tag =
8423 value_tag_from_contents_and_address
8424 (fixed_record_type,
8425 valaddr,
8426 address);
8427 struct type *real_type = type_from_tag (tag);
8428 struct value *obj =
8429 value_from_contents_and_address (fixed_record_type,
8430 valaddr,
8431 address);
8432 if (real_type != NULL)
8433 return to_fixed_record_type
8434 (real_type, NULL,
8435 value_address (ada_tag_value_at_base_address (obj)), NULL);
8436 }
8437
8438 /* Check to see if there is a parallel ___XVZ variable.
8439 If there is, then it provides the actual size of our type. */
8440 else if (ada_type_name (fixed_record_type) != NULL)
8441 {
8442 const char *name = ada_type_name (fixed_record_type);
8443 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8444 int xvz_found = 0;
8445 LONGEST size;
8446
8447 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8448 size = get_int_var_value (xvz_name, &xvz_found);
8449 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8450 {
8451 fixed_record_type = copy_type (fixed_record_type);
8452 TYPE_LENGTH (fixed_record_type) = size;
8453
8454 /* The FIXED_RECORD_TYPE may have be a stub. We have
8455 observed this when the debugging info is STABS, and
8456 apparently it is something that is hard to fix.
8457
8458 In practice, we don't need the actual type definition
8459 at all, because the presence of the XVZ variable allows us
8460 to assume that there must be a XVS type as well, which we
8461 should be able to use later, when we need the actual type
8462 definition.
8463
8464 In the meantime, pretend that the "fixed" type we are
8465 returning is NOT a stub, because this can cause trouble
8466 when using this type to create new types targeting it.
8467 Indeed, the associated creation routines often check
8468 whether the target type is a stub and will try to replace
8469 it, thus using a type with the wrong size. This, in turn,
8470 might cause the new type to have the wrong size too.
8471 Consider the case of an array, for instance, where the size
8472 of the array is computed from the number of elements in
8473 our array multiplied by the size of its element. */
8474 TYPE_STUB (fixed_record_type) = 0;
8475 }
8476 }
8477 return fixed_record_type;
8478 }
8479 case TYPE_CODE_ARRAY:
8480 return to_fixed_array_type (type, dval, 1);
8481 case TYPE_CODE_UNION:
8482 if (dval == NULL)
8483 return type;
8484 else
8485 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8486 }
8487 }
8488
8489 /* The same as ada_to_fixed_type_1, except that it preserves the type
8490 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8491
8492 The typedef layer needs be preserved in order to differentiate between
8493 arrays and array pointers when both types are implemented using the same
8494 fat pointer. In the array pointer case, the pointer is encoded as
8495 a typedef of the pointer type. For instance, considering:
8496
8497 type String_Access is access String;
8498 S1 : String_Access := null;
8499
8500 To the debugger, S1 is defined as a typedef of type String. But
8501 to the user, it is a pointer. So if the user tries to print S1,
8502 we should not dereference the array, but print the array address
8503 instead.
8504
8505 If we didn't preserve the typedef layer, we would lose the fact that
8506 the type is to be presented as a pointer (needs de-reference before
8507 being printed). And we would also use the source-level type name. */
8508
8509 struct type *
8510 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8511 CORE_ADDR address, struct value *dval, int check_tag)
8512
8513 {
8514 struct type *fixed_type =
8515 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8516
8517 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8518 then preserve the typedef layer.
8519
8520 Implementation note: We can only check the main-type portion of
8521 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8522 from TYPE now returns a type that has the same instance flags
8523 as TYPE. For instance, if TYPE is a "typedef const", and its
8524 target type is a "struct", then the typedef elimination will return
8525 a "const" version of the target type. See check_typedef for more
8526 details about how the typedef layer elimination is done.
8527
8528 brobecker/2010-11-19: It seems to me that the only case where it is
8529 useful to preserve the typedef layer is when dealing with fat pointers.
8530 Perhaps, we could add a check for that and preserve the typedef layer
8531 only in that situation. But this seems unecessary so far, probably
8532 because we call check_typedef/ada_check_typedef pretty much everywhere.
8533 */
8534 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8535 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8536 == TYPE_MAIN_TYPE (fixed_type)))
8537 return type;
8538
8539 return fixed_type;
8540 }
8541
8542 /* A standard (static-sized) type corresponding as well as possible to
8543 TYPE0, but based on no runtime data. */
8544
8545 static struct type *
8546 to_static_fixed_type (struct type *type0)
8547 {
8548 struct type *type;
8549
8550 if (type0 == NULL)
8551 return NULL;
8552
8553 if (TYPE_FIXED_INSTANCE (type0))
8554 return type0;
8555
8556 type0 = ada_check_typedef (type0);
8557
8558 switch (TYPE_CODE (type0))
8559 {
8560 default:
8561 return type0;
8562 case TYPE_CODE_STRUCT:
8563 type = dynamic_template_type (type0);
8564 if (type != NULL)
8565 return template_to_static_fixed_type (type);
8566 else
8567 return template_to_static_fixed_type (type0);
8568 case TYPE_CODE_UNION:
8569 type = ada_find_parallel_type (type0, "___XVU");
8570 if (type != NULL)
8571 return template_to_static_fixed_type (type);
8572 else
8573 return template_to_static_fixed_type (type0);
8574 }
8575 }
8576
8577 /* A static approximation of TYPE with all type wrappers removed. */
8578
8579 static struct type *
8580 static_unwrap_type (struct type *type)
8581 {
8582 if (ada_is_aligner_type (type))
8583 {
8584 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8585 if (ada_type_name (type1) == NULL)
8586 TYPE_NAME (type1) = ada_type_name (type);
8587
8588 return static_unwrap_type (type1);
8589 }
8590 else
8591 {
8592 struct type *raw_real_type = ada_get_base_type (type);
8593
8594 if (raw_real_type == type)
8595 return type;
8596 else
8597 return to_static_fixed_type (raw_real_type);
8598 }
8599 }
8600
8601 /* In some cases, incomplete and private types require
8602 cross-references that are not resolved as records (for example,
8603 type Foo;
8604 type FooP is access Foo;
8605 V: FooP;
8606 type Foo is array ...;
8607 ). In these cases, since there is no mechanism for producing
8608 cross-references to such types, we instead substitute for FooP a
8609 stub enumeration type that is nowhere resolved, and whose tag is
8610 the name of the actual type. Call these types "non-record stubs". */
8611
8612 /* A type equivalent to TYPE that is not a non-record stub, if one
8613 exists, otherwise TYPE. */
8614
8615 struct type *
8616 ada_check_typedef (struct type *type)
8617 {
8618 if (type == NULL)
8619 return NULL;
8620
8621 /* If our type is a typedef type of a fat pointer, then we're done.
8622 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8623 what allows us to distinguish between fat pointers that represent
8624 array types, and fat pointers that represent array access types
8625 (in both cases, the compiler implements them as fat pointers). */
8626 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8627 && is_thick_pntr (ada_typedef_target_type (type)))
8628 return type;
8629
8630 CHECK_TYPEDEF (type);
8631 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8632 || !TYPE_STUB (type)
8633 || TYPE_TAG_NAME (type) == NULL)
8634 return type;
8635 else
8636 {
8637 const char *name = TYPE_TAG_NAME (type);
8638 struct type *type1 = ada_find_any_type (name);
8639
8640 if (type1 == NULL)
8641 return type;
8642
8643 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8644 stubs pointing to arrays, as we don't create symbols for array
8645 types, only for the typedef-to-array types). If that's the case,
8646 strip the typedef layer. */
8647 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8648 type1 = ada_check_typedef (type1);
8649
8650 return type1;
8651 }
8652 }
8653
8654 /* A value representing the data at VALADDR/ADDRESS as described by
8655 type TYPE0, but with a standard (static-sized) type that correctly
8656 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8657 type, then return VAL0 [this feature is simply to avoid redundant
8658 creation of struct values]. */
8659
8660 static struct value *
8661 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8662 struct value *val0)
8663 {
8664 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8665
8666 if (type == type0 && val0 != NULL)
8667 return val0;
8668 else
8669 return value_from_contents_and_address (type, 0, address);
8670 }
8671
8672 /* A value representing VAL, but with a standard (static-sized) type
8673 that correctly describes it. Does not necessarily create a new
8674 value. */
8675
8676 struct value *
8677 ada_to_fixed_value (struct value *val)
8678 {
8679 val = unwrap_value (val);
8680 val = ada_to_fixed_value_create (value_type (val),
8681 value_address (val),
8682 val);
8683 return val;
8684 }
8685 \f
8686
8687 /* Attributes */
8688
8689 /* Table mapping attribute numbers to names.
8690 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8691
8692 static const char *attribute_names[] = {
8693 "<?>",
8694
8695 "first",
8696 "last",
8697 "length",
8698 "image",
8699 "max",
8700 "min",
8701 "modulus",
8702 "pos",
8703 "size",
8704 "tag",
8705 "val",
8706 0
8707 };
8708
8709 const char *
8710 ada_attribute_name (enum exp_opcode n)
8711 {
8712 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8713 return attribute_names[n - OP_ATR_FIRST + 1];
8714 else
8715 return attribute_names[0];
8716 }
8717
8718 /* Evaluate the 'POS attribute applied to ARG. */
8719
8720 static LONGEST
8721 pos_atr (struct value *arg)
8722 {
8723 struct value *val = coerce_ref (arg);
8724 struct type *type = value_type (val);
8725
8726 if (!discrete_type_p (type))
8727 error (_("'POS only defined on discrete types"));
8728
8729 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8730 {
8731 int i;
8732 LONGEST v = value_as_long (val);
8733
8734 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8735 {
8736 if (v == TYPE_FIELD_ENUMVAL (type, i))
8737 return i;
8738 }
8739 error (_("enumeration value is invalid: can't find 'POS"));
8740 }
8741 else
8742 return value_as_long (val);
8743 }
8744
8745 static struct value *
8746 value_pos_atr (struct type *type, struct value *arg)
8747 {
8748 return value_from_longest (type, pos_atr (arg));
8749 }
8750
8751 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8752
8753 static struct value *
8754 value_val_atr (struct type *type, struct value *arg)
8755 {
8756 if (!discrete_type_p (type))
8757 error (_("'VAL only defined on discrete types"));
8758 if (!integer_type_p (value_type (arg)))
8759 error (_("'VAL requires integral argument"));
8760
8761 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8762 {
8763 long pos = value_as_long (arg);
8764
8765 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8766 error (_("argument to 'VAL out of range"));
8767 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8768 }
8769 else
8770 return value_from_longest (type, value_as_long (arg));
8771 }
8772 \f
8773
8774 /* Evaluation */
8775
8776 /* True if TYPE appears to be an Ada character type.
8777 [At the moment, this is true only for Character and Wide_Character;
8778 It is a heuristic test that could stand improvement]. */
8779
8780 int
8781 ada_is_character_type (struct type *type)
8782 {
8783 const char *name;
8784
8785 /* If the type code says it's a character, then assume it really is,
8786 and don't check any further. */
8787 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8788 return 1;
8789
8790 /* Otherwise, assume it's a character type iff it is a discrete type
8791 with a known character type name. */
8792 name = ada_type_name (type);
8793 return (name != NULL
8794 && (TYPE_CODE (type) == TYPE_CODE_INT
8795 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8796 && (strcmp (name, "character") == 0
8797 || strcmp (name, "wide_character") == 0
8798 || strcmp (name, "wide_wide_character") == 0
8799 || strcmp (name, "unsigned char") == 0));
8800 }
8801
8802 /* True if TYPE appears to be an Ada string type. */
8803
8804 int
8805 ada_is_string_type (struct type *type)
8806 {
8807 type = ada_check_typedef (type);
8808 if (type != NULL
8809 && TYPE_CODE (type) != TYPE_CODE_PTR
8810 && (ada_is_simple_array_type (type)
8811 || ada_is_array_descriptor_type (type))
8812 && ada_array_arity (type) == 1)
8813 {
8814 struct type *elttype = ada_array_element_type (type, 1);
8815
8816 return ada_is_character_type (elttype);
8817 }
8818 else
8819 return 0;
8820 }
8821
8822 /* The compiler sometimes provides a parallel XVS type for a given
8823 PAD type. Normally, it is safe to follow the PAD type directly,
8824 but older versions of the compiler have a bug that causes the offset
8825 of its "F" field to be wrong. Following that field in that case
8826 would lead to incorrect results, but this can be worked around
8827 by ignoring the PAD type and using the associated XVS type instead.
8828
8829 Set to True if the debugger should trust the contents of PAD types.
8830 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8831 static int trust_pad_over_xvs = 1;
8832
8833 /* True if TYPE is a struct type introduced by the compiler to force the
8834 alignment of a value. Such types have a single field with a
8835 distinctive name. */
8836
8837 int
8838 ada_is_aligner_type (struct type *type)
8839 {
8840 type = ada_check_typedef (type);
8841
8842 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8843 return 0;
8844
8845 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8846 && TYPE_NFIELDS (type) == 1
8847 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8848 }
8849
8850 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8851 the parallel type. */
8852
8853 struct type *
8854 ada_get_base_type (struct type *raw_type)
8855 {
8856 struct type *real_type_namer;
8857 struct type *raw_real_type;
8858
8859 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8860 return raw_type;
8861
8862 if (ada_is_aligner_type (raw_type))
8863 /* The encoding specifies that we should always use the aligner type.
8864 So, even if this aligner type has an associated XVS type, we should
8865 simply ignore it.
8866
8867 According to the compiler gurus, an XVS type parallel to an aligner
8868 type may exist because of a stabs limitation. In stabs, aligner
8869 types are empty because the field has a variable-sized type, and
8870 thus cannot actually be used as an aligner type. As a result,
8871 we need the associated parallel XVS type to decode the type.
8872 Since the policy in the compiler is to not change the internal
8873 representation based on the debugging info format, we sometimes
8874 end up having a redundant XVS type parallel to the aligner type. */
8875 return raw_type;
8876
8877 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8878 if (real_type_namer == NULL
8879 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8880 || TYPE_NFIELDS (real_type_namer) != 1)
8881 return raw_type;
8882
8883 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8884 {
8885 /* This is an older encoding form where the base type needs to be
8886 looked up by name. We prefer the newer enconding because it is
8887 more efficient. */
8888 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8889 if (raw_real_type == NULL)
8890 return raw_type;
8891 else
8892 return raw_real_type;
8893 }
8894
8895 /* The field in our XVS type is a reference to the base type. */
8896 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8897 }
8898
8899 /* The type of value designated by TYPE, with all aligners removed. */
8900
8901 struct type *
8902 ada_aligned_type (struct type *type)
8903 {
8904 if (ada_is_aligner_type (type))
8905 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8906 else
8907 return ada_get_base_type (type);
8908 }
8909
8910
8911 /* The address of the aligned value in an object at address VALADDR
8912 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8913
8914 const gdb_byte *
8915 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8916 {
8917 if (ada_is_aligner_type (type))
8918 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8919 valaddr +
8920 TYPE_FIELD_BITPOS (type,
8921 0) / TARGET_CHAR_BIT);
8922 else
8923 return valaddr;
8924 }
8925
8926
8927
8928 /* The printed representation of an enumeration literal with encoded
8929 name NAME. The value is good to the next call of ada_enum_name. */
8930 const char *
8931 ada_enum_name (const char *name)
8932 {
8933 static char *result;
8934 static size_t result_len = 0;
8935 char *tmp;
8936
8937 /* First, unqualify the enumeration name:
8938 1. Search for the last '.' character. If we find one, then skip
8939 all the preceding characters, the unqualified name starts
8940 right after that dot.
8941 2. Otherwise, we may be debugging on a target where the compiler
8942 translates dots into "__". Search forward for double underscores,
8943 but stop searching when we hit an overloading suffix, which is
8944 of the form "__" followed by digits. */
8945
8946 tmp = strrchr (name, '.');
8947 if (tmp != NULL)
8948 name = tmp + 1;
8949 else
8950 {
8951 while ((tmp = strstr (name, "__")) != NULL)
8952 {
8953 if (isdigit (tmp[2]))
8954 break;
8955 else
8956 name = tmp + 2;
8957 }
8958 }
8959
8960 if (name[0] == 'Q')
8961 {
8962 int v;
8963
8964 if (name[1] == 'U' || name[1] == 'W')
8965 {
8966 if (sscanf (name + 2, "%x", &v) != 1)
8967 return name;
8968 }
8969 else
8970 return name;
8971
8972 GROW_VECT (result, result_len, 16);
8973 if (isascii (v) && isprint (v))
8974 xsnprintf (result, result_len, "'%c'", v);
8975 else if (name[1] == 'U')
8976 xsnprintf (result, result_len, "[\"%02x\"]", v);
8977 else
8978 xsnprintf (result, result_len, "[\"%04x\"]", v);
8979
8980 return result;
8981 }
8982 else
8983 {
8984 tmp = strstr (name, "__");
8985 if (tmp == NULL)
8986 tmp = strstr (name, "$");
8987 if (tmp != NULL)
8988 {
8989 GROW_VECT (result, result_len, tmp - name + 1);
8990 strncpy (result, name, tmp - name);
8991 result[tmp - name] = '\0';
8992 return result;
8993 }
8994
8995 return name;
8996 }
8997 }
8998
8999 /* Evaluate the subexpression of EXP starting at *POS as for
9000 evaluate_type, updating *POS to point just past the evaluated
9001 expression. */
9002
9003 static struct value *
9004 evaluate_subexp_type (struct expression *exp, int *pos)
9005 {
9006 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9007 }
9008
9009 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9010 value it wraps. */
9011
9012 static struct value *
9013 unwrap_value (struct value *val)
9014 {
9015 struct type *type = ada_check_typedef (value_type (val));
9016
9017 if (ada_is_aligner_type (type))
9018 {
9019 struct value *v = ada_value_struct_elt (val, "F", 0);
9020 struct type *val_type = ada_check_typedef (value_type (v));
9021
9022 if (ada_type_name (val_type) == NULL)
9023 TYPE_NAME (val_type) = ada_type_name (type);
9024
9025 return unwrap_value (v);
9026 }
9027 else
9028 {
9029 struct type *raw_real_type =
9030 ada_check_typedef (ada_get_base_type (type));
9031
9032 /* If there is no parallel XVS or XVE type, then the value is
9033 already unwrapped. Return it without further modification. */
9034 if ((type == raw_real_type)
9035 && ada_find_parallel_type (type, "___XVE") == NULL)
9036 return val;
9037
9038 return
9039 coerce_unspec_val_to_type
9040 (val, ada_to_fixed_type (raw_real_type, 0,
9041 value_address (val),
9042 NULL, 1));
9043 }
9044 }
9045
9046 static struct value *
9047 cast_to_fixed (struct type *type, struct value *arg)
9048 {
9049 LONGEST val;
9050
9051 if (type == value_type (arg))
9052 return arg;
9053 else if (ada_is_fixed_point_type (value_type (arg)))
9054 val = ada_float_to_fixed (type,
9055 ada_fixed_to_float (value_type (arg),
9056 value_as_long (arg)));
9057 else
9058 {
9059 DOUBLEST argd = value_as_double (arg);
9060
9061 val = ada_float_to_fixed (type, argd);
9062 }
9063
9064 return value_from_longest (type, val);
9065 }
9066
9067 static struct value *
9068 cast_from_fixed (struct type *type, struct value *arg)
9069 {
9070 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9071 value_as_long (arg));
9072
9073 return value_from_double (type, val);
9074 }
9075
9076 /* Given two array types T1 and T2, return nonzero iff both arrays
9077 contain the same number of elements. */
9078
9079 static int
9080 ada_same_array_size_p (struct type *t1, struct type *t2)
9081 {
9082 LONGEST lo1, hi1, lo2, hi2;
9083
9084 /* Get the array bounds in order to verify that the size of
9085 the two arrays match. */
9086 if (!get_array_bounds (t1, &lo1, &hi1)
9087 || !get_array_bounds (t2, &lo2, &hi2))
9088 error (_("unable to determine array bounds"));
9089
9090 /* To make things easier for size comparison, normalize a bit
9091 the case of empty arrays by making sure that the difference
9092 between upper bound and lower bound is always -1. */
9093 if (lo1 > hi1)
9094 hi1 = lo1 - 1;
9095 if (lo2 > hi2)
9096 hi2 = lo2 - 1;
9097
9098 return (hi1 - lo1 == hi2 - lo2);
9099 }
9100
9101 /* Assuming that VAL is an array of integrals, and TYPE represents
9102 an array with the same number of elements, but with wider integral
9103 elements, return an array "casted" to TYPE. In practice, this
9104 means that the returned array is built by casting each element
9105 of the original array into TYPE's (wider) element type. */
9106
9107 static struct value *
9108 ada_promote_array_of_integrals (struct type *type, struct value *val)
9109 {
9110 struct type *elt_type = TYPE_TARGET_TYPE (type);
9111 LONGEST lo, hi;
9112 struct value *res;
9113 LONGEST i;
9114
9115 /* Verify that both val and type are arrays of scalars, and
9116 that the size of val's elements is smaller than the size
9117 of type's element. */
9118 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9119 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9120 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9121 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9122 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9123 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9124
9125 if (!get_array_bounds (type, &lo, &hi))
9126 error (_("unable to determine array bounds"));
9127
9128 res = allocate_value (type);
9129
9130 /* Promote each array element. */
9131 for (i = 0; i < hi - lo + 1; i++)
9132 {
9133 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9134
9135 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9136 value_contents_all (elt), TYPE_LENGTH (elt_type));
9137 }
9138
9139 return res;
9140 }
9141
9142 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9143 return the converted value. */
9144
9145 static struct value *
9146 coerce_for_assign (struct type *type, struct value *val)
9147 {
9148 struct type *type2 = value_type (val);
9149
9150 if (type == type2)
9151 return val;
9152
9153 type2 = ada_check_typedef (type2);
9154 type = ada_check_typedef (type);
9155
9156 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9157 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9158 {
9159 val = ada_value_ind (val);
9160 type2 = value_type (val);
9161 }
9162
9163 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9164 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9165 {
9166 if (!ada_same_array_size_p (type, type2))
9167 error (_("cannot assign arrays of different length"));
9168
9169 if (is_integral_type (TYPE_TARGET_TYPE (type))
9170 && is_integral_type (TYPE_TARGET_TYPE (type2))
9171 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9172 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9173 {
9174 /* Allow implicit promotion of the array elements to
9175 a wider type. */
9176 return ada_promote_array_of_integrals (type, val);
9177 }
9178
9179 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9180 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9181 error (_("Incompatible types in assignment"));
9182 deprecated_set_value_type (val, type);
9183 }
9184 return val;
9185 }
9186
9187 static struct value *
9188 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9189 {
9190 struct value *val;
9191 struct type *type1, *type2;
9192 LONGEST v, v1, v2;
9193
9194 arg1 = coerce_ref (arg1);
9195 arg2 = coerce_ref (arg2);
9196 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9197 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9198
9199 if (TYPE_CODE (type1) != TYPE_CODE_INT
9200 || TYPE_CODE (type2) != TYPE_CODE_INT)
9201 return value_binop (arg1, arg2, op);
9202
9203 switch (op)
9204 {
9205 case BINOP_MOD:
9206 case BINOP_DIV:
9207 case BINOP_REM:
9208 break;
9209 default:
9210 return value_binop (arg1, arg2, op);
9211 }
9212
9213 v2 = value_as_long (arg2);
9214 if (v2 == 0)
9215 error (_("second operand of %s must not be zero."), op_string (op));
9216
9217 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9218 return value_binop (arg1, arg2, op);
9219
9220 v1 = value_as_long (arg1);
9221 switch (op)
9222 {
9223 case BINOP_DIV:
9224 v = v1 / v2;
9225 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9226 v += v > 0 ? -1 : 1;
9227 break;
9228 case BINOP_REM:
9229 v = v1 % v2;
9230 if (v * v1 < 0)
9231 v -= v2;
9232 break;
9233 default:
9234 /* Should not reach this point. */
9235 v = 0;
9236 }
9237
9238 val = allocate_value (type1);
9239 store_unsigned_integer (value_contents_raw (val),
9240 TYPE_LENGTH (value_type (val)),
9241 gdbarch_byte_order (get_type_arch (type1)), v);
9242 return val;
9243 }
9244
9245 static int
9246 ada_value_equal (struct value *arg1, struct value *arg2)
9247 {
9248 if (ada_is_direct_array_type (value_type (arg1))
9249 || ada_is_direct_array_type (value_type (arg2)))
9250 {
9251 /* Automatically dereference any array reference before
9252 we attempt to perform the comparison. */
9253 arg1 = ada_coerce_ref (arg1);
9254 arg2 = ada_coerce_ref (arg2);
9255
9256 arg1 = ada_coerce_to_simple_array (arg1);
9257 arg2 = ada_coerce_to_simple_array (arg2);
9258 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9259 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9260 error (_("Attempt to compare array with non-array"));
9261 /* FIXME: The following works only for types whose
9262 representations use all bits (no padding or undefined bits)
9263 and do not have user-defined equality. */
9264 return
9265 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9266 && memcmp (value_contents (arg1), value_contents (arg2),
9267 TYPE_LENGTH (value_type (arg1))) == 0;
9268 }
9269 return value_equal (arg1, arg2);
9270 }
9271
9272 /* Total number of component associations in the aggregate starting at
9273 index PC in EXP. Assumes that index PC is the start of an
9274 OP_AGGREGATE. */
9275
9276 static int
9277 num_component_specs (struct expression *exp, int pc)
9278 {
9279 int n, m, i;
9280
9281 m = exp->elts[pc + 1].longconst;
9282 pc += 3;
9283 n = 0;
9284 for (i = 0; i < m; i += 1)
9285 {
9286 switch (exp->elts[pc].opcode)
9287 {
9288 default:
9289 n += 1;
9290 break;
9291 case OP_CHOICES:
9292 n += exp->elts[pc + 1].longconst;
9293 break;
9294 }
9295 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9296 }
9297 return n;
9298 }
9299
9300 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9301 component of LHS (a simple array or a record), updating *POS past
9302 the expression, assuming that LHS is contained in CONTAINER. Does
9303 not modify the inferior's memory, nor does it modify LHS (unless
9304 LHS == CONTAINER). */
9305
9306 static void
9307 assign_component (struct value *container, struct value *lhs, LONGEST index,
9308 struct expression *exp, int *pos)
9309 {
9310 struct value *mark = value_mark ();
9311 struct value *elt;
9312
9313 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9314 {
9315 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9316 struct value *index_val = value_from_longest (index_type, index);
9317
9318 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9319 }
9320 else
9321 {
9322 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9323 elt = ada_to_fixed_value (elt);
9324 }
9325
9326 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9327 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9328 else
9329 value_assign_to_component (container, elt,
9330 ada_evaluate_subexp (NULL, exp, pos,
9331 EVAL_NORMAL));
9332
9333 value_free_to_mark (mark);
9334 }
9335
9336 /* Assuming that LHS represents an lvalue having a record or array
9337 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9338 of that aggregate's value to LHS, advancing *POS past the
9339 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9340 lvalue containing LHS (possibly LHS itself). Does not modify
9341 the inferior's memory, nor does it modify the contents of
9342 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9343
9344 static struct value *
9345 assign_aggregate (struct value *container,
9346 struct value *lhs, struct expression *exp,
9347 int *pos, enum noside noside)
9348 {
9349 struct type *lhs_type;
9350 int n = exp->elts[*pos+1].longconst;
9351 LONGEST low_index, high_index;
9352 int num_specs;
9353 LONGEST *indices;
9354 int max_indices, num_indices;
9355 int i;
9356
9357 *pos += 3;
9358 if (noside != EVAL_NORMAL)
9359 {
9360 for (i = 0; i < n; i += 1)
9361 ada_evaluate_subexp (NULL, exp, pos, noside);
9362 return container;
9363 }
9364
9365 container = ada_coerce_ref (container);
9366 if (ada_is_direct_array_type (value_type (container)))
9367 container = ada_coerce_to_simple_array (container);
9368 lhs = ada_coerce_ref (lhs);
9369 if (!deprecated_value_modifiable (lhs))
9370 error (_("Left operand of assignment is not a modifiable lvalue."));
9371
9372 lhs_type = value_type (lhs);
9373 if (ada_is_direct_array_type (lhs_type))
9374 {
9375 lhs = ada_coerce_to_simple_array (lhs);
9376 lhs_type = value_type (lhs);
9377 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9378 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9379 }
9380 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9381 {
9382 low_index = 0;
9383 high_index = num_visible_fields (lhs_type) - 1;
9384 }
9385 else
9386 error (_("Left-hand side must be array or record."));
9387
9388 num_specs = num_component_specs (exp, *pos - 3);
9389 max_indices = 4 * num_specs + 4;
9390 indices = alloca (max_indices * sizeof (indices[0]));
9391 indices[0] = indices[1] = low_index - 1;
9392 indices[2] = indices[3] = high_index + 1;
9393 num_indices = 4;
9394
9395 for (i = 0; i < n; i += 1)
9396 {
9397 switch (exp->elts[*pos].opcode)
9398 {
9399 case OP_CHOICES:
9400 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9401 &num_indices, max_indices,
9402 low_index, high_index);
9403 break;
9404 case OP_POSITIONAL:
9405 aggregate_assign_positional (container, lhs, exp, pos, indices,
9406 &num_indices, max_indices,
9407 low_index, high_index);
9408 break;
9409 case OP_OTHERS:
9410 if (i != n-1)
9411 error (_("Misplaced 'others' clause"));
9412 aggregate_assign_others (container, lhs, exp, pos, indices,
9413 num_indices, low_index, high_index);
9414 break;
9415 default:
9416 error (_("Internal error: bad aggregate clause"));
9417 }
9418 }
9419
9420 return container;
9421 }
9422
9423 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9424 construct at *POS, updating *POS past the construct, given that
9425 the positions are relative to lower bound LOW, where HIGH is the
9426 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9427 updating *NUM_INDICES as needed. CONTAINER is as for
9428 assign_aggregate. */
9429 static void
9430 aggregate_assign_positional (struct value *container,
9431 struct value *lhs, struct expression *exp,
9432 int *pos, LONGEST *indices, int *num_indices,
9433 int max_indices, LONGEST low, LONGEST high)
9434 {
9435 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9436
9437 if (ind - 1 == high)
9438 warning (_("Extra components in aggregate ignored."));
9439 if (ind <= high)
9440 {
9441 add_component_interval (ind, ind, indices, num_indices, max_indices);
9442 *pos += 3;
9443 assign_component (container, lhs, ind, exp, pos);
9444 }
9445 else
9446 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9447 }
9448
9449 /* Assign into the components of LHS indexed by the OP_CHOICES
9450 construct at *POS, updating *POS past the construct, given that
9451 the allowable indices are LOW..HIGH. Record the indices assigned
9452 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9453 needed. CONTAINER is as for assign_aggregate. */
9454 static void
9455 aggregate_assign_from_choices (struct value *container,
9456 struct value *lhs, struct expression *exp,
9457 int *pos, LONGEST *indices, int *num_indices,
9458 int max_indices, LONGEST low, LONGEST high)
9459 {
9460 int j;
9461 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9462 int choice_pos, expr_pc;
9463 int is_array = ada_is_direct_array_type (value_type (lhs));
9464
9465 choice_pos = *pos += 3;
9466
9467 for (j = 0; j < n_choices; j += 1)
9468 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9469 expr_pc = *pos;
9470 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9471
9472 for (j = 0; j < n_choices; j += 1)
9473 {
9474 LONGEST lower, upper;
9475 enum exp_opcode op = exp->elts[choice_pos].opcode;
9476
9477 if (op == OP_DISCRETE_RANGE)
9478 {
9479 choice_pos += 1;
9480 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9481 EVAL_NORMAL));
9482 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9483 EVAL_NORMAL));
9484 }
9485 else if (is_array)
9486 {
9487 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9488 EVAL_NORMAL));
9489 upper = lower;
9490 }
9491 else
9492 {
9493 int ind;
9494 const char *name;
9495
9496 switch (op)
9497 {
9498 case OP_NAME:
9499 name = &exp->elts[choice_pos + 2].string;
9500 break;
9501 case OP_VAR_VALUE:
9502 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9503 break;
9504 default:
9505 error (_("Invalid record component association."));
9506 }
9507 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9508 ind = 0;
9509 if (! find_struct_field (name, value_type (lhs), 0,
9510 NULL, NULL, NULL, NULL, &ind))
9511 error (_("Unknown component name: %s."), name);
9512 lower = upper = ind;
9513 }
9514
9515 if (lower <= upper && (lower < low || upper > high))
9516 error (_("Index in component association out of bounds."));
9517
9518 add_component_interval (lower, upper, indices, num_indices,
9519 max_indices);
9520 while (lower <= upper)
9521 {
9522 int pos1;
9523
9524 pos1 = expr_pc;
9525 assign_component (container, lhs, lower, exp, &pos1);
9526 lower += 1;
9527 }
9528 }
9529 }
9530
9531 /* Assign the value of the expression in the OP_OTHERS construct in
9532 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9533 have not been previously assigned. The index intervals already assigned
9534 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9535 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9536 static void
9537 aggregate_assign_others (struct value *container,
9538 struct value *lhs, struct expression *exp,
9539 int *pos, LONGEST *indices, int num_indices,
9540 LONGEST low, LONGEST high)
9541 {
9542 int i;
9543 int expr_pc = *pos + 1;
9544
9545 for (i = 0; i < num_indices - 2; i += 2)
9546 {
9547 LONGEST ind;
9548
9549 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9550 {
9551 int localpos;
9552
9553 localpos = expr_pc;
9554 assign_component (container, lhs, ind, exp, &localpos);
9555 }
9556 }
9557 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9558 }
9559
9560 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9561 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9562 modifying *SIZE as needed. It is an error if *SIZE exceeds
9563 MAX_SIZE. The resulting intervals do not overlap. */
9564 static void
9565 add_component_interval (LONGEST low, LONGEST high,
9566 LONGEST* indices, int *size, int max_size)
9567 {
9568 int i, j;
9569
9570 for (i = 0; i < *size; i += 2) {
9571 if (high >= indices[i] && low <= indices[i + 1])
9572 {
9573 int kh;
9574
9575 for (kh = i + 2; kh < *size; kh += 2)
9576 if (high < indices[kh])
9577 break;
9578 if (low < indices[i])
9579 indices[i] = low;
9580 indices[i + 1] = indices[kh - 1];
9581 if (high > indices[i + 1])
9582 indices[i + 1] = high;
9583 memcpy (indices + i + 2, indices + kh, *size - kh);
9584 *size -= kh - i - 2;
9585 return;
9586 }
9587 else if (high < indices[i])
9588 break;
9589 }
9590
9591 if (*size == max_size)
9592 error (_("Internal error: miscounted aggregate components."));
9593 *size += 2;
9594 for (j = *size-1; j >= i+2; j -= 1)
9595 indices[j] = indices[j - 2];
9596 indices[i] = low;
9597 indices[i + 1] = high;
9598 }
9599
9600 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9601 is different. */
9602
9603 static struct value *
9604 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9605 {
9606 if (type == ada_check_typedef (value_type (arg2)))
9607 return arg2;
9608
9609 if (ada_is_fixed_point_type (type))
9610 return (cast_to_fixed (type, arg2));
9611
9612 if (ada_is_fixed_point_type (value_type (arg2)))
9613 return cast_from_fixed (type, arg2);
9614
9615 return value_cast (type, arg2);
9616 }
9617
9618 /* Evaluating Ada expressions, and printing their result.
9619 ------------------------------------------------------
9620
9621 1. Introduction:
9622 ----------------
9623
9624 We usually evaluate an Ada expression in order to print its value.
9625 We also evaluate an expression in order to print its type, which
9626 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9627 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9628 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9629 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9630 similar.
9631
9632 Evaluating expressions is a little more complicated for Ada entities
9633 than it is for entities in languages such as C. The main reason for
9634 this is that Ada provides types whose definition might be dynamic.
9635 One example of such types is variant records. Or another example
9636 would be an array whose bounds can only be known at run time.
9637
9638 The following description is a general guide as to what should be
9639 done (and what should NOT be done) in order to evaluate an expression
9640 involving such types, and when. This does not cover how the semantic
9641 information is encoded by GNAT as this is covered separatly. For the
9642 document used as the reference for the GNAT encoding, see exp_dbug.ads
9643 in the GNAT sources.
9644
9645 Ideally, we should embed each part of this description next to its
9646 associated code. Unfortunately, the amount of code is so vast right
9647 now that it's hard to see whether the code handling a particular
9648 situation might be duplicated or not. One day, when the code is
9649 cleaned up, this guide might become redundant with the comments
9650 inserted in the code, and we might want to remove it.
9651
9652 2. ``Fixing'' an Entity, the Simple Case:
9653 -----------------------------------------
9654
9655 When evaluating Ada expressions, the tricky issue is that they may
9656 reference entities whose type contents and size are not statically
9657 known. Consider for instance a variant record:
9658
9659 type Rec (Empty : Boolean := True) is record
9660 case Empty is
9661 when True => null;
9662 when False => Value : Integer;
9663 end case;
9664 end record;
9665 Yes : Rec := (Empty => False, Value => 1);
9666 No : Rec := (empty => True);
9667
9668 The size and contents of that record depends on the value of the
9669 descriminant (Rec.Empty). At this point, neither the debugging
9670 information nor the associated type structure in GDB are able to
9671 express such dynamic types. So what the debugger does is to create
9672 "fixed" versions of the type that applies to the specific object.
9673 We also informally refer to this opperation as "fixing" an object,
9674 which means creating its associated fixed type.
9675
9676 Example: when printing the value of variable "Yes" above, its fixed
9677 type would look like this:
9678
9679 type Rec is record
9680 Empty : Boolean;
9681 Value : Integer;
9682 end record;
9683
9684 On the other hand, if we printed the value of "No", its fixed type
9685 would become:
9686
9687 type Rec is record
9688 Empty : Boolean;
9689 end record;
9690
9691 Things become a little more complicated when trying to fix an entity
9692 with a dynamic type that directly contains another dynamic type,
9693 such as an array of variant records, for instance. There are
9694 two possible cases: Arrays, and records.
9695
9696 3. ``Fixing'' Arrays:
9697 ---------------------
9698
9699 The type structure in GDB describes an array in terms of its bounds,
9700 and the type of its elements. By design, all elements in the array
9701 have the same type and we cannot represent an array of variant elements
9702 using the current type structure in GDB. When fixing an array,
9703 we cannot fix the array element, as we would potentially need one
9704 fixed type per element of the array. As a result, the best we can do
9705 when fixing an array is to produce an array whose bounds and size
9706 are correct (allowing us to read it from memory), but without having
9707 touched its element type. Fixing each element will be done later,
9708 when (if) necessary.
9709
9710 Arrays are a little simpler to handle than records, because the same
9711 amount of memory is allocated for each element of the array, even if
9712 the amount of space actually used by each element differs from element
9713 to element. Consider for instance the following array of type Rec:
9714
9715 type Rec_Array is array (1 .. 2) of Rec;
9716
9717 The actual amount of memory occupied by each element might be different
9718 from element to element, depending on the value of their discriminant.
9719 But the amount of space reserved for each element in the array remains
9720 fixed regardless. So we simply need to compute that size using
9721 the debugging information available, from which we can then determine
9722 the array size (we multiply the number of elements of the array by
9723 the size of each element).
9724
9725 The simplest case is when we have an array of a constrained element
9726 type. For instance, consider the following type declarations:
9727
9728 type Bounded_String (Max_Size : Integer) is
9729 Length : Integer;
9730 Buffer : String (1 .. Max_Size);
9731 end record;
9732 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9733
9734 In this case, the compiler describes the array as an array of
9735 variable-size elements (identified by its XVS suffix) for which
9736 the size can be read in the parallel XVZ variable.
9737
9738 In the case of an array of an unconstrained element type, the compiler
9739 wraps the array element inside a private PAD type. This type should not
9740 be shown to the user, and must be "unwrap"'ed before printing. Note
9741 that we also use the adjective "aligner" in our code to designate
9742 these wrapper types.
9743
9744 In some cases, the size allocated for each element is statically
9745 known. In that case, the PAD type already has the correct size,
9746 and the array element should remain unfixed.
9747
9748 But there are cases when this size is not statically known.
9749 For instance, assuming that "Five" is an integer variable:
9750
9751 type Dynamic is array (1 .. Five) of Integer;
9752 type Wrapper (Has_Length : Boolean := False) is record
9753 Data : Dynamic;
9754 case Has_Length is
9755 when True => Length : Integer;
9756 when False => null;
9757 end case;
9758 end record;
9759 type Wrapper_Array is array (1 .. 2) of Wrapper;
9760
9761 Hello : Wrapper_Array := (others => (Has_Length => True,
9762 Data => (others => 17),
9763 Length => 1));
9764
9765
9766 The debugging info would describe variable Hello as being an
9767 array of a PAD type. The size of that PAD type is not statically
9768 known, but can be determined using a parallel XVZ variable.
9769 In that case, a copy of the PAD type with the correct size should
9770 be used for the fixed array.
9771
9772 3. ``Fixing'' record type objects:
9773 ----------------------------------
9774
9775 Things are slightly different from arrays in the case of dynamic
9776 record types. In this case, in order to compute the associated
9777 fixed type, we need to determine the size and offset of each of
9778 its components. This, in turn, requires us to compute the fixed
9779 type of each of these components.
9780
9781 Consider for instance the example:
9782
9783 type Bounded_String (Max_Size : Natural) is record
9784 Str : String (1 .. Max_Size);
9785 Length : Natural;
9786 end record;
9787 My_String : Bounded_String (Max_Size => 10);
9788
9789 In that case, the position of field "Length" depends on the size
9790 of field Str, which itself depends on the value of the Max_Size
9791 discriminant. In order to fix the type of variable My_String,
9792 we need to fix the type of field Str. Therefore, fixing a variant
9793 record requires us to fix each of its components.
9794
9795 However, if a component does not have a dynamic size, the component
9796 should not be fixed. In particular, fields that use a PAD type
9797 should not fixed. Here is an example where this might happen
9798 (assuming type Rec above):
9799
9800 type Container (Big : Boolean) is record
9801 First : Rec;
9802 After : Integer;
9803 case Big is
9804 when True => Another : Integer;
9805 when False => null;
9806 end case;
9807 end record;
9808 My_Container : Container := (Big => False,
9809 First => (Empty => True),
9810 After => 42);
9811
9812 In that example, the compiler creates a PAD type for component First,
9813 whose size is constant, and then positions the component After just
9814 right after it. The offset of component After is therefore constant
9815 in this case.
9816
9817 The debugger computes the position of each field based on an algorithm
9818 that uses, among other things, the actual position and size of the field
9819 preceding it. Let's now imagine that the user is trying to print
9820 the value of My_Container. If the type fixing was recursive, we would
9821 end up computing the offset of field After based on the size of the
9822 fixed version of field First. And since in our example First has
9823 only one actual field, the size of the fixed type is actually smaller
9824 than the amount of space allocated to that field, and thus we would
9825 compute the wrong offset of field After.
9826
9827 To make things more complicated, we need to watch out for dynamic
9828 components of variant records (identified by the ___XVL suffix in
9829 the component name). Even if the target type is a PAD type, the size
9830 of that type might not be statically known. So the PAD type needs
9831 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9832 we might end up with the wrong size for our component. This can be
9833 observed with the following type declarations:
9834
9835 type Octal is new Integer range 0 .. 7;
9836 type Octal_Array is array (Positive range <>) of Octal;
9837 pragma Pack (Octal_Array);
9838
9839 type Octal_Buffer (Size : Positive) is record
9840 Buffer : Octal_Array (1 .. Size);
9841 Length : Integer;
9842 end record;
9843
9844 In that case, Buffer is a PAD type whose size is unset and needs
9845 to be computed by fixing the unwrapped type.
9846
9847 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9848 ----------------------------------------------------------
9849
9850 Lastly, when should the sub-elements of an entity that remained unfixed
9851 thus far, be actually fixed?
9852
9853 The answer is: Only when referencing that element. For instance
9854 when selecting one component of a record, this specific component
9855 should be fixed at that point in time. Or when printing the value
9856 of a record, each component should be fixed before its value gets
9857 printed. Similarly for arrays, the element of the array should be
9858 fixed when printing each element of the array, or when extracting
9859 one element out of that array. On the other hand, fixing should
9860 not be performed on the elements when taking a slice of an array!
9861
9862 Note that one of the side-effects of miscomputing the offset and
9863 size of each field is that we end up also miscomputing the size
9864 of the containing type. This can have adverse results when computing
9865 the value of an entity. GDB fetches the value of an entity based
9866 on the size of its type, and thus a wrong size causes GDB to fetch
9867 the wrong amount of memory. In the case where the computed size is
9868 too small, GDB fetches too little data to print the value of our
9869 entiry. Results in this case as unpredicatble, as we usually read
9870 past the buffer containing the data =:-o. */
9871
9872 /* Implement the evaluate_exp routine in the exp_descriptor structure
9873 for the Ada language. */
9874
9875 static struct value *
9876 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9877 int *pos, enum noside noside)
9878 {
9879 enum exp_opcode op;
9880 int tem;
9881 int pc;
9882 int preeval_pos;
9883 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9884 struct type *type;
9885 int nargs, oplen;
9886 struct value **argvec;
9887
9888 pc = *pos;
9889 *pos += 1;
9890 op = exp->elts[pc].opcode;
9891
9892 switch (op)
9893 {
9894 default:
9895 *pos -= 1;
9896 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9897
9898 if (noside == EVAL_NORMAL)
9899 arg1 = unwrap_value (arg1);
9900
9901 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9902 then we need to perform the conversion manually, because
9903 evaluate_subexp_standard doesn't do it. This conversion is
9904 necessary in Ada because the different kinds of float/fixed
9905 types in Ada have different representations.
9906
9907 Similarly, we need to perform the conversion from OP_LONG
9908 ourselves. */
9909 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9910 arg1 = ada_value_cast (expect_type, arg1, noside);
9911
9912 return arg1;
9913
9914 case OP_STRING:
9915 {
9916 struct value *result;
9917
9918 *pos -= 1;
9919 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9920 /* The result type will have code OP_STRING, bashed there from
9921 OP_ARRAY. Bash it back. */
9922 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9923 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9924 return result;
9925 }
9926
9927 case UNOP_CAST:
9928 (*pos) += 2;
9929 type = exp->elts[pc + 1].type;
9930 arg1 = evaluate_subexp (type, exp, pos, noside);
9931 if (noside == EVAL_SKIP)
9932 goto nosideret;
9933 arg1 = ada_value_cast (type, arg1, noside);
9934 return arg1;
9935
9936 case UNOP_QUAL:
9937 (*pos) += 2;
9938 type = exp->elts[pc + 1].type;
9939 return ada_evaluate_subexp (type, exp, pos, noside);
9940
9941 case BINOP_ASSIGN:
9942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9943 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9944 {
9945 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9946 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9947 return arg1;
9948 return ada_value_assign (arg1, arg1);
9949 }
9950 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9951 except if the lhs of our assignment is a convenience variable.
9952 In the case of assigning to a convenience variable, the lhs
9953 should be exactly the result of the evaluation of the rhs. */
9954 type = value_type (arg1);
9955 if (VALUE_LVAL (arg1) == lval_internalvar)
9956 type = NULL;
9957 arg2 = evaluate_subexp (type, exp, pos, noside);
9958 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9959 return arg1;
9960 if (ada_is_fixed_point_type (value_type (arg1)))
9961 arg2 = cast_to_fixed (value_type (arg1), arg2);
9962 else if (ada_is_fixed_point_type (value_type (arg2)))
9963 error
9964 (_("Fixed-point values must be assigned to fixed-point variables"));
9965 else
9966 arg2 = coerce_for_assign (value_type (arg1), arg2);
9967 return ada_value_assign (arg1, arg2);
9968
9969 case BINOP_ADD:
9970 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9971 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9972 if (noside == EVAL_SKIP)
9973 goto nosideret;
9974 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9975 return (value_from_longest
9976 (value_type (arg1),
9977 value_as_long (arg1) + value_as_long (arg2)));
9978 if ((ada_is_fixed_point_type (value_type (arg1))
9979 || ada_is_fixed_point_type (value_type (arg2)))
9980 && value_type (arg1) != value_type (arg2))
9981 error (_("Operands of fixed-point addition must have the same type"));
9982 /* Do the addition, and cast the result to the type of the first
9983 argument. We cannot cast the result to a reference type, so if
9984 ARG1 is a reference type, find its underlying type. */
9985 type = value_type (arg1);
9986 while (TYPE_CODE (type) == TYPE_CODE_REF)
9987 type = TYPE_TARGET_TYPE (type);
9988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9989 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9990
9991 case BINOP_SUB:
9992 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9993 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9994 if (noside == EVAL_SKIP)
9995 goto nosideret;
9996 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9997 return (value_from_longest
9998 (value_type (arg1),
9999 value_as_long (arg1) - value_as_long (arg2)));
10000 if ((ada_is_fixed_point_type (value_type (arg1))
10001 || ada_is_fixed_point_type (value_type (arg2)))
10002 && value_type (arg1) != value_type (arg2))
10003 error (_("Operands of fixed-point subtraction "
10004 "must have the same type"));
10005 /* Do the substraction, and cast the result to the type of the first
10006 argument. We cannot cast the result to a reference type, so if
10007 ARG1 is a reference type, find its underlying type. */
10008 type = value_type (arg1);
10009 while (TYPE_CODE (type) == TYPE_CODE_REF)
10010 type = TYPE_TARGET_TYPE (type);
10011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10012 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10013
10014 case BINOP_MUL:
10015 case BINOP_DIV:
10016 case BINOP_REM:
10017 case BINOP_MOD:
10018 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10020 if (noside == EVAL_SKIP)
10021 goto nosideret;
10022 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10023 {
10024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10025 return value_zero (value_type (arg1), not_lval);
10026 }
10027 else
10028 {
10029 type = builtin_type (exp->gdbarch)->builtin_double;
10030 if (ada_is_fixed_point_type (value_type (arg1)))
10031 arg1 = cast_from_fixed (type, arg1);
10032 if (ada_is_fixed_point_type (value_type (arg2)))
10033 arg2 = cast_from_fixed (type, arg2);
10034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10035 return ada_value_binop (arg1, arg2, op);
10036 }
10037
10038 case BINOP_EQUAL:
10039 case BINOP_NOTEQUAL:
10040 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10042 if (noside == EVAL_SKIP)
10043 goto nosideret;
10044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10045 tem = 0;
10046 else
10047 {
10048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10049 tem = ada_value_equal (arg1, arg2);
10050 }
10051 if (op == BINOP_NOTEQUAL)
10052 tem = !tem;
10053 type = language_bool_type (exp->language_defn, exp->gdbarch);
10054 return value_from_longest (type, (LONGEST) tem);
10055
10056 case UNOP_NEG:
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 if (noside == EVAL_SKIP)
10059 goto nosideret;
10060 else if (ada_is_fixed_point_type (value_type (arg1)))
10061 return value_cast (value_type (arg1), value_neg (arg1));
10062 else
10063 {
10064 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10065 return value_neg (arg1);
10066 }
10067
10068 case BINOP_LOGICAL_AND:
10069 case BINOP_LOGICAL_OR:
10070 case UNOP_LOGICAL_NOT:
10071 {
10072 struct value *val;
10073
10074 *pos -= 1;
10075 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10076 type = language_bool_type (exp->language_defn, exp->gdbarch);
10077 return value_cast (type, val);
10078 }
10079
10080 case BINOP_BITWISE_AND:
10081 case BINOP_BITWISE_IOR:
10082 case BINOP_BITWISE_XOR:
10083 {
10084 struct value *val;
10085
10086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10087 *pos = pc;
10088 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10089
10090 return value_cast (value_type (arg1), val);
10091 }
10092
10093 case OP_VAR_VALUE:
10094 *pos -= 1;
10095
10096 if (noside == EVAL_SKIP)
10097 {
10098 *pos += 4;
10099 goto nosideret;
10100 }
10101 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10102 /* Only encountered when an unresolved symbol occurs in a
10103 context other than a function call, in which case, it is
10104 invalid. */
10105 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10106 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 {
10109 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10110 /* Check to see if this is a tagged type. We also need to handle
10111 the case where the type is a reference to a tagged type, but
10112 we have to be careful to exclude pointers to tagged types.
10113 The latter should be shown as usual (as a pointer), whereas
10114 a reference should mostly be transparent to the user. */
10115 if (ada_is_tagged_type (type, 0)
10116 || (TYPE_CODE (type) == TYPE_CODE_REF
10117 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10118 {
10119 /* Tagged types are a little special in the fact that the real
10120 type is dynamic and can only be determined by inspecting the
10121 object's tag. This means that we need to get the object's
10122 value first (EVAL_NORMAL) and then extract the actual object
10123 type from its tag.
10124
10125 Note that we cannot skip the final step where we extract
10126 the object type from its tag, because the EVAL_NORMAL phase
10127 results in dynamic components being resolved into fixed ones.
10128 This can cause problems when trying to print the type
10129 description of tagged types whose parent has a dynamic size:
10130 We use the type name of the "_parent" component in order
10131 to print the name of the ancestor type in the type description.
10132 If that component had a dynamic size, the resolution into
10133 a fixed type would result in the loss of that type name,
10134 thus preventing us from printing the name of the ancestor
10135 type in the type description. */
10136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10137
10138 if (TYPE_CODE (type) != TYPE_CODE_REF)
10139 {
10140 struct type *actual_type;
10141
10142 actual_type = type_from_tag (ada_value_tag (arg1));
10143 if (actual_type == NULL)
10144 /* If, for some reason, we were unable to determine
10145 the actual type from the tag, then use the static
10146 approximation that we just computed as a fallback.
10147 This can happen if the debugging information is
10148 incomplete, for instance. */
10149 actual_type = type;
10150 return value_zero (actual_type, not_lval);
10151 }
10152 else
10153 {
10154 /* In the case of a ref, ada_coerce_ref takes care
10155 of determining the actual type. But the evaluation
10156 should return a ref as it should be valid to ask
10157 for its address; so rebuild a ref after coerce. */
10158 arg1 = ada_coerce_ref (arg1);
10159 return value_ref (arg1);
10160 }
10161 }
10162
10163 *pos += 4;
10164 return value_zero
10165 (to_static_fixed_type
10166 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10167 not_lval);
10168 }
10169 else
10170 {
10171 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10172 return ada_to_fixed_value (arg1);
10173 }
10174
10175 case OP_FUNCALL:
10176 (*pos) += 2;
10177
10178 /* Allocate arg vector, including space for the function to be
10179 called in argvec[0] and a terminating NULL. */
10180 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10181 argvec =
10182 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10183
10184 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10185 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10186 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10187 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10188 else
10189 {
10190 for (tem = 0; tem <= nargs; tem += 1)
10191 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10192 argvec[tem] = 0;
10193
10194 if (noside == EVAL_SKIP)
10195 goto nosideret;
10196 }
10197
10198 if (ada_is_constrained_packed_array_type
10199 (desc_base_type (value_type (argvec[0]))))
10200 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10201 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10202 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10203 /* This is a packed array that has already been fixed, and
10204 therefore already coerced to a simple array. Nothing further
10205 to do. */
10206 ;
10207 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10208 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10209 && VALUE_LVAL (argvec[0]) == lval_memory))
10210 argvec[0] = value_addr (argvec[0]);
10211
10212 type = ada_check_typedef (value_type (argvec[0]));
10213
10214 /* Ada allows us to implicitly dereference arrays when subscripting
10215 them. So, if this is an array typedef (encoding use for array
10216 access types encoded as fat pointers), strip it now. */
10217 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10218 type = ada_typedef_target_type (type);
10219
10220 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10221 {
10222 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10223 {
10224 case TYPE_CODE_FUNC:
10225 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10226 break;
10227 case TYPE_CODE_ARRAY:
10228 break;
10229 case TYPE_CODE_STRUCT:
10230 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10231 argvec[0] = ada_value_ind (argvec[0]);
10232 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10233 break;
10234 default:
10235 error (_("cannot subscript or call something of type `%s'"),
10236 ada_type_name (value_type (argvec[0])));
10237 break;
10238 }
10239 }
10240
10241 switch (TYPE_CODE (type))
10242 {
10243 case TYPE_CODE_FUNC:
10244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10245 {
10246 struct type *rtype = TYPE_TARGET_TYPE (type);
10247
10248 if (TYPE_GNU_IFUNC (type))
10249 return allocate_value (TYPE_TARGET_TYPE (rtype));
10250 return allocate_value (rtype);
10251 }
10252 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10253 case TYPE_CODE_INTERNAL_FUNCTION:
10254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10255 /* We don't know anything about what the internal
10256 function might return, but we have to return
10257 something. */
10258 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10259 not_lval);
10260 else
10261 return call_internal_function (exp->gdbarch, exp->language_defn,
10262 argvec[0], nargs, argvec + 1);
10263
10264 case TYPE_CODE_STRUCT:
10265 {
10266 int arity;
10267
10268 arity = ada_array_arity (type);
10269 type = ada_array_element_type (type, nargs);
10270 if (type == NULL)
10271 error (_("cannot subscript or call a record"));
10272 if (arity != nargs)
10273 error (_("wrong number of subscripts; expecting %d"), arity);
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10275 return value_zero (ada_aligned_type (type), lval_memory);
10276 return
10277 unwrap_value (ada_value_subscript
10278 (argvec[0], nargs, argvec + 1));
10279 }
10280 case TYPE_CODE_ARRAY:
10281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10282 {
10283 type = ada_array_element_type (type, nargs);
10284 if (type == NULL)
10285 error (_("element type of array unknown"));
10286 else
10287 return value_zero (ada_aligned_type (type), lval_memory);
10288 }
10289 return
10290 unwrap_value (ada_value_subscript
10291 (ada_coerce_to_simple_array (argvec[0]),
10292 nargs, argvec + 1));
10293 case TYPE_CODE_PTR: /* Pointer to array */
10294 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10296 {
10297 type = ada_array_element_type (type, nargs);
10298 if (type == NULL)
10299 error (_("element type of array unknown"));
10300 else
10301 return value_zero (ada_aligned_type (type), lval_memory);
10302 }
10303 return
10304 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10305 nargs, argvec + 1));
10306
10307 default:
10308 error (_("Attempt to index or call something other than an "
10309 "array or function"));
10310 }
10311
10312 case TERNOP_SLICE:
10313 {
10314 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10315 struct value *low_bound_val =
10316 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10317 struct value *high_bound_val =
10318 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10319 LONGEST low_bound;
10320 LONGEST high_bound;
10321
10322 low_bound_val = coerce_ref (low_bound_val);
10323 high_bound_val = coerce_ref (high_bound_val);
10324 low_bound = pos_atr (low_bound_val);
10325 high_bound = pos_atr (high_bound_val);
10326
10327 if (noside == EVAL_SKIP)
10328 goto nosideret;
10329
10330 /* If this is a reference to an aligner type, then remove all
10331 the aligners. */
10332 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10333 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10334 TYPE_TARGET_TYPE (value_type (array)) =
10335 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10336
10337 if (ada_is_constrained_packed_array_type (value_type (array)))
10338 error (_("cannot slice a packed array"));
10339
10340 /* If this is a reference to an array or an array lvalue,
10341 convert to a pointer. */
10342 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10343 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10344 && VALUE_LVAL (array) == lval_memory))
10345 array = value_addr (array);
10346
10347 if (noside == EVAL_AVOID_SIDE_EFFECTS
10348 && ada_is_array_descriptor_type (ada_check_typedef
10349 (value_type (array))))
10350 return empty_array (ada_type_of_array (array, 0), low_bound);
10351
10352 array = ada_coerce_to_simple_array_ptr (array);
10353
10354 /* If we have more than one level of pointer indirection,
10355 dereference the value until we get only one level. */
10356 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10357 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10358 == TYPE_CODE_PTR))
10359 array = value_ind (array);
10360
10361 /* Make sure we really do have an array type before going further,
10362 to avoid a SEGV when trying to get the index type or the target
10363 type later down the road if the debug info generated by
10364 the compiler is incorrect or incomplete. */
10365 if (!ada_is_simple_array_type (value_type (array)))
10366 error (_("cannot take slice of non-array"));
10367
10368 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10369 == TYPE_CODE_PTR)
10370 {
10371 struct type *type0 = ada_check_typedef (value_type (array));
10372
10373 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10374 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10375 else
10376 {
10377 struct type *arr_type0 =
10378 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10379
10380 return ada_value_slice_from_ptr (array, arr_type0,
10381 longest_to_int (low_bound),
10382 longest_to_int (high_bound));
10383 }
10384 }
10385 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10386 return array;
10387 else if (high_bound < low_bound)
10388 return empty_array (value_type (array), low_bound);
10389 else
10390 return ada_value_slice (array, longest_to_int (low_bound),
10391 longest_to_int (high_bound));
10392 }
10393
10394 case UNOP_IN_RANGE:
10395 (*pos) += 2;
10396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10397 type = check_typedef (exp->elts[pc + 1].type);
10398
10399 if (noside == EVAL_SKIP)
10400 goto nosideret;
10401
10402 switch (TYPE_CODE (type))
10403 {
10404 default:
10405 lim_warning (_("Membership test incompletely implemented; "
10406 "always returns true"));
10407 type = language_bool_type (exp->language_defn, exp->gdbarch);
10408 return value_from_longest (type, (LONGEST) 1);
10409
10410 case TYPE_CODE_RANGE:
10411 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10412 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10413 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10414 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10415 type = language_bool_type (exp->language_defn, exp->gdbarch);
10416 return
10417 value_from_longest (type,
10418 (value_less (arg1, arg3)
10419 || value_equal (arg1, arg3))
10420 && (value_less (arg2, arg1)
10421 || value_equal (arg2, arg1)));
10422 }
10423
10424 case BINOP_IN_BOUNDS:
10425 (*pos) += 2;
10426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10428
10429 if (noside == EVAL_SKIP)
10430 goto nosideret;
10431
10432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10433 {
10434 type = language_bool_type (exp->language_defn, exp->gdbarch);
10435 return value_zero (type, not_lval);
10436 }
10437
10438 tem = longest_to_int (exp->elts[pc + 1].longconst);
10439
10440 type = ada_index_type (value_type (arg2), tem, "range");
10441 if (!type)
10442 type = value_type (arg1);
10443
10444 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10445 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10446
10447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10448 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10449 type = language_bool_type (exp->language_defn, exp->gdbarch);
10450 return
10451 value_from_longest (type,
10452 (value_less (arg1, arg3)
10453 || value_equal (arg1, arg3))
10454 && (value_less (arg2, arg1)
10455 || value_equal (arg2, arg1)));
10456
10457 case TERNOP_IN_RANGE:
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10461
10462 if (noside == EVAL_SKIP)
10463 goto nosideret;
10464
10465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10467 type = language_bool_type (exp->language_defn, exp->gdbarch);
10468 return
10469 value_from_longest (type,
10470 (value_less (arg1, arg3)
10471 || value_equal (arg1, arg3))
10472 && (value_less (arg2, arg1)
10473 || value_equal (arg2, arg1)));
10474
10475 case OP_ATR_FIRST:
10476 case OP_ATR_LAST:
10477 case OP_ATR_LENGTH:
10478 {
10479 struct type *type_arg;
10480
10481 if (exp->elts[*pos].opcode == OP_TYPE)
10482 {
10483 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10484 arg1 = NULL;
10485 type_arg = check_typedef (exp->elts[pc + 2].type);
10486 }
10487 else
10488 {
10489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10490 type_arg = NULL;
10491 }
10492
10493 if (exp->elts[*pos].opcode != OP_LONG)
10494 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10495 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10496 *pos += 4;
10497
10498 if (noside == EVAL_SKIP)
10499 goto nosideret;
10500
10501 if (type_arg == NULL)
10502 {
10503 arg1 = ada_coerce_ref (arg1);
10504
10505 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10506 arg1 = ada_coerce_to_simple_array (arg1);
10507
10508 if (op == OP_ATR_LENGTH)
10509 type = builtin_type (exp->gdbarch)->builtin_int;
10510 else
10511 {
10512 type = ada_index_type (value_type (arg1), tem,
10513 ada_attribute_name (op));
10514 if (type == NULL)
10515 type = builtin_type (exp->gdbarch)->builtin_int;
10516 }
10517
10518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10519 return allocate_value (type);
10520
10521 switch (op)
10522 {
10523 default: /* Should never happen. */
10524 error (_("unexpected attribute encountered"));
10525 case OP_ATR_FIRST:
10526 return value_from_longest
10527 (type, ada_array_bound (arg1, tem, 0));
10528 case OP_ATR_LAST:
10529 return value_from_longest
10530 (type, ada_array_bound (arg1, tem, 1));
10531 case OP_ATR_LENGTH:
10532 return value_from_longest
10533 (type, ada_array_length (arg1, tem));
10534 }
10535 }
10536 else if (discrete_type_p (type_arg))
10537 {
10538 struct type *range_type;
10539 const char *name = ada_type_name (type_arg);
10540
10541 range_type = NULL;
10542 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10543 range_type = to_fixed_range_type (type_arg, NULL);
10544 if (range_type == NULL)
10545 range_type = type_arg;
10546 switch (op)
10547 {
10548 default:
10549 error (_("unexpected attribute encountered"));
10550 case OP_ATR_FIRST:
10551 return value_from_longest
10552 (range_type, ada_discrete_type_low_bound (range_type));
10553 case OP_ATR_LAST:
10554 return value_from_longest
10555 (range_type, ada_discrete_type_high_bound (range_type));
10556 case OP_ATR_LENGTH:
10557 error (_("the 'length attribute applies only to array types"));
10558 }
10559 }
10560 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10561 error (_("unimplemented type attribute"));
10562 else
10563 {
10564 LONGEST low, high;
10565
10566 if (ada_is_constrained_packed_array_type (type_arg))
10567 type_arg = decode_constrained_packed_array_type (type_arg);
10568
10569 if (op == OP_ATR_LENGTH)
10570 type = builtin_type (exp->gdbarch)->builtin_int;
10571 else
10572 {
10573 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10574 if (type == NULL)
10575 type = builtin_type (exp->gdbarch)->builtin_int;
10576 }
10577
10578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10579 return allocate_value (type);
10580
10581 switch (op)
10582 {
10583 default:
10584 error (_("unexpected attribute encountered"));
10585 case OP_ATR_FIRST:
10586 low = ada_array_bound_from_type (type_arg, tem, 0);
10587 return value_from_longest (type, low);
10588 case OP_ATR_LAST:
10589 high = ada_array_bound_from_type (type_arg, tem, 1);
10590 return value_from_longest (type, high);
10591 case OP_ATR_LENGTH:
10592 low = ada_array_bound_from_type (type_arg, tem, 0);
10593 high = ada_array_bound_from_type (type_arg, tem, 1);
10594 return value_from_longest (type, high - low + 1);
10595 }
10596 }
10597 }
10598
10599 case OP_ATR_TAG:
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 if (noside == EVAL_SKIP)
10602 goto nosideret;
10603
10604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10605 return value_zero (ada_tag_type (arg1), not_lval);
10606
10607 return ada_value_tag (arg1);
10608
10609 case OP_ATR_MIN:
10610 case OP_ATR_MAX:
10611 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10613 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 if (noside == EVAL_SKIP)
10615 goto nosideret;
10616 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10617 return value_zero (value_type (arg1), not_lval);
10618 else
10619 {
10620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10621 return value_binop (arg1, arg2,
10622 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10623 }
10624
10625 case OP_ATR_MODULUS:
10626 {
10627 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10628
10629 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10630 if (noside == EVAL_SKIP)
10631 goto nosideret;
10632
10633 if (!ada_is_modular_type (type_arg))
10634 error (_("'modulus must be applied to modular type"));
10635
10636 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10637 ada_modulus (type_arg));
10638 }
10639
10640
10641 case OP_ATR_POS:
10642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 type = builtin_type (exp->gdbarch)->builtin_int;
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return value_zero (type, not_lval);
10649 else
10650 return value_pos_atr (type, arg1);
10651
10652 case OP_ATR_SIZE:
10653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 type = value_type (arg1);
10655
10656 /* If the argument is a reference, then dereference its type, since
10657 the user is really asking for the size of the actual object,
10658 not the size of the pointer. */
10659 if (TYPE_CODE (type) == TYPE_CODE_REF)
10660 type = TYPE_TARGET_TYPE (type);
10661
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10665 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10666 else
10667 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10668 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10669
10670 case OP_ATR_VAL:
10671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10673 type = exp->elts[pc + 2].type;
10674 if (noside == EVAL_SKIP)
10675 goto nosideret;
10676 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10677 return value_zero (type, not_lval);
10678 else
10679 return value_val_atr (type, arg1);
10680
10681 case BINOP_EXP:
10682 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10683 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10684 if (noside == EVAL_SKIP)
10685 goto nosideret;
10686 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10687 return value_zero (value_type (arg1), not_lval);
10688 else
10689 {
10690 /* For integer exponentiation operations,
10691 only promote the first argument. */
10692 if (is_integral_type (value_type (arg2)))
10693 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10694 else
10695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10696
10697 return value_binop (arg1, arg2, op);
10698 }
10699
10700 case UNOP_PLUS:
10701 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10702 if (noside == EVAL_SKIP)
10703 goto nosideret;
10704 else
10705 return arg1;
10706
10707 case UNOP_ABS:
10708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10709 if (noside == EVAL_SKIP)
10710 goto nosideret;
10711 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10712 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10713 return value_neg (arg1);
10714 else
10715 return arg1;
10716
10717 case UNOP_IND:
10718 preeval_pos = *pos;
10719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10720 if (noside == EVAL_SKIP)
10721 goto nosideret;
10722 type = ada_check_typedef (value_type (arg1));
10723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10724 {
10725 if (ada_is_array_descriptor_type (type))
10726 /* GDB allows dereferencing GNAT array descriptors. */
10727 {
10728 struct type *arrType = ada_type_of_array (arg1, 0);
10729
10730 if (arrType == NULL)
10731 error (_("Attempt to dereference null array pointer."));
10732 return value_at_lazy (arrType, 0);
10733 }
10734 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10735 || TYPE_CODE (type) == TYPE_CODE_REF
10736 /* In C you can dereference an array to get the 1st elt. */
10737 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10738 {
10739 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10740 only be determined by inspecting the object's tag.
10741 This means that we need to evaluate completely the
10742 expression in order to get its type. */
10743
10744 if ((TYPE_CODE (type) == TYPE_CODE_REF
10745 || TYPE_CODE (type) == TYPE_CODE_PTR)
10746 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10747 {
10748 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10749 EVAL_NORMAL);
10750 type = value_type (ada_value_ind (arg1));
10751 }
10752 else
10753 {
10754 type = to_static_fixed_type
10755 (ada_aligned_type
10756 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10757 }
10758 check_size (type);
10759 return value_zero (type, lval_memory);
10760 }
10761 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10762 {
10763 /* GDB allows dereferencing an int. */
10764 if (expect_type == NULL)
10765 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10766 lval_memory);
10767 else
10768 {
10769 expect_type =
10770 to_static_fixed_type (ada_aligned_type (expect_type));
10771 return value_zero (expect_type, lval_memory);
10772 }
10773 }
10774 else
10775 error (_("Attempt to take contents of a non-pointer value."));
10776 }
10777 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10778 type = ada_check_typedef (value_type (arg1));
10779
10780 if (TYPE_CODE (type) == TYPE_CODE_INT)
10781 /* GDB allows dereferencing an int. If we were given
10782 the expect_type, then use that as the target type.
10783 Otherwise, assume that the target type is an int. */
10784 {
10785 if (expect_type != NULL)
10786 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10787 arg1));
10788 else
10789 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10790 (CORE_ADDR) value_as_address (arg1));
10791 }
10792
10793 if (ada_is_array_descriptor_type (type))
10794 /* GDB allows dereferencing GNAT array descriptors. */
10795 return ada_coerce_to_simple_array (arg1);
10796 else
10797 return ada_value_ind (arg1);
10798
10799 case STRUCTOP_STRUCT:
10800 tem = longest_to_int (exp->elts[pc + 1].longconst);
10801 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10802 preeval_pos = *pos;
10803 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10804 if (noside == EVAL_SKIP)
10805 goto nosideret;
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
10808 struct type *type1 = value_type (arg1);
10809
10810 if (ada_is_tagged_type (type1, 1))
10811 {
10812 type = ada_lookup_struct_elt_type (type1,
10813 &exp->elts[pc + 2].string,
10814 1, 1, NULL);
10815
10816 /* If the field is not found, check if it exists in the
10817 extension of this object's type. This means that we
10818 need to evaluate completely the expression. */
10819
10820 if (type == NULL)
10821 {
10822 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10823 EVAL_NORMAL);
10824 arg1 = ada_value_struct_elt (arg1,
10825 &exp->elts[pc + 2].string,
10826 0);
10827 arg1 = unwrap_value (arg1);
10828 type = value_type (ada_to_fixed_value (arg1));
10829 }
10830 }
10831 else
10832 type =
10833 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10834 0, NULL);
10835
10836 return value_zero (ada_aligned_type (type), lval_memory);
10837 }
10838 else
10839 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10840 arg1 = unwrap_value (arg1);
10841 return ada_to_fixed_value (arg1);
10842
10843 case OP_TYPE:
10844 /* The value is not supposed to be used. This is here to make it
10845 easier to accommodate expressions that contain types. */
10846 (*pos) += 2;
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 return allocate_value (exp->elts[pc + 1].type);
10851 else
10852 error (_("Attempt to use a type name as an expression"));
10853
10854 case OP_AGGREGATE:
10855 case OP_CHOICES:
10856 case OP_OTHERS:
10857 case OP_DISCRETE_RANGE:
10858 case OP_POSITIONAL:
10859 case OP_NAME:
10860 if (noside == EVAL_NORMAL)
10861 switch (op)
10862 {
10863 case OP_NAME:
10864 error (_("Undefined name, ambiguous name, or renaming used in "
10865 "component association: %s."), &exp->elts[pc+2].string);
10866 case OP_AGGREGATE:
10867 error (_("Aggregates only allowed on the right of an assignment"));
10868 default:
10869 internal_error (__FILE__, __LINE__,
10870 _("aggregate apparently mangled"));
10871 }
10872
10873 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10874 *pos += oplen - 1;
10875 for (tem = 0; tem < nargs; tem += 1)
10876 ada_evaluate_subexp (NULL, exp, pos, noside);
10877 goto nosideret;
10878 }
10879
10880 nosideret:
10881 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10882 }
10883 \f
10884
10885 /* Fixed point */
10886
10887 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10888 type name that encodes the 'small and 'delta information.
10889 Otherwise, return NULL. */
10890
10891 static const char *
10892 fixed_type_info (struct type *type)
10893 {
10894 const char *name = ada_type_name (type);
10895 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10896
10897 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10898 {
10899 const char *tail = strstr (name, "___XF_");
10900
10901 if (tail == NULL)
10902 return NULL;
10903 else
10904 return tail + 5;
10905 }
10906 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10907 return fixed_type_info (TYPE_TARGET_TYPE (type));
10908 else
10909 return NULL;
10910 }
10911
10912 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10913
10914 int
10915 ada_is_fixed_point_type (struct type *type)
10916 {
10917 return fixed_type_info (type) != NULL;
10918 }
10919
10920 /* Return non-zero iff TYPE represents a System.Address type. */
10921
10922 int
10923 ada_is_system_address_type (struct type *type)
10924 {
10925 return (TYPE_NAME (type)
10926 && strcmp (TYPE_NAME (type), "system__address") == 0);
10927 }
10928
10929 /* Assuming that TYPE is the representation of an Ada fixed-point
10930 type, return its delta, or -1 if the type is malformed and the
10931 delta cannot be determined. */
10932
10933 DOUBLEST
10934 ada_delta (struct type *type)
10935 {
10936 const char *encoding = fixed_type_info (type);
10937 DOUBLEST num, den;
10938
10939 /* Strictly speaking, num and den are encoded as integer. However,
10940 they may not fit into a long, and they will have to be converted
10941 to DOUBLEST anyway. So scan them as DOUBLEST. */
10942 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10943 &num, &den) < 2)
10944 return -1.0;
10945 else
10946 return num / den;
10947 }
10948
10949 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10950 factor ('SMALL value) associated with the type. */
10951
10952 static DOUBLEST
10953 scaling_factor (struct type *type)
10954 {
10955 const char *encoding = fixed_type_info (type);
10956 DOUBLEST num0, den0, num1, den1;
10957 int n;
10958
10959 /* Strictly speaking, num's and den's are encoded as integer. However,
10960 they may not fit into a long, and they will have to be converted
10961 to DOUBLEST anyway. So scan them as DOUBLEST. */
10962 n = sscanf (encoding,
10963 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10964 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10965 &num0, &den0, &num1, &den1);
10966
10967 if (n < 2)
10968 return 1.0;
10969 else if (n == 4)
10970 return num1 / den1;
10971 else
10972 return num0 / den0;
10973 }
10974
10975
10976 /* Assuming that X is the representation of a value of fixed-point
10977 type TYPE, return its floating-point equivalent. */
10978
10979 DOUBLEST
10980 ada_fixed_to_float (struct type *type, LONGEST x)
10981 {
10982 return (DOUBLEST) x *scaling_factor (type);
10983 }
10984
10985 /* The representation of a fixed-point value of type TYPE
10986 corresponding to the value X. */
10987
10988 LONGEST
10989 ada_float_to_fixed (struct type *type, DOUBLEST x)
10990 {
10991 return (LONGEST) (x / scaling_factor (type) + 0.5);
10992 }
10993
10994 \f
10995
10996 /* Range types */
10997
10998 /* Scan STR beginning at position K for a discriminant name, and
10999 return the value of that discriminant field of DVAL in *PX. If
11000 PNEW_K is not null, put the position of the character beyond the
11001 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11002 not alter *PX and *PNEW_K if unsuccessful. */
11003
11004 static int
11005 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11006 int *pnew_k)
11007 {
11008 static char *bound_buffer = NULL;
11009 static size_t bound_buffer_len = 0;
11010 char *bound;
11011 char *pend;
11012 struct value *bound_val;
11013
11014 if (dval == NULL || str == NULL || str[k] == '\0')
11015 return 0;
11016
11017 pend = strstr (str + k, "__");
11018 if (pend == NULL)
11019 {
11020 bound = str + k;
11021 k += strlen (bound);
11022 }
11023 else
11024 {
11025 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11026 bound = bound_buffer;
11027 strncpy (bound_buffer, str + k, pend - (str + k));
11028 bound[pend - (str + k)] = '\0';
11029 k = pend - str;
11030 }
11031
11032 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11033 if (bound_val == NULL)
11034 return 0;
11035
11036 *px = value_as_long (bound_val);
11037 if (pnew_k != NULL)
11038 *pnew_k = k;
11039 return 1;
11040 }
11041
11042 /* Value of variable named NAME in the current environment. If
11043 no such variable found, then if ERR_MSG is null, returns 0, and
11044 otherwise causes an error with message ERR_MSG. */
11045
11046 static struct value *
11047 get_var_value (char *name, char *err_msg)
11048 {
11049 struct ada_symbol_info *syms;
11050 int nsyms;
11051
11052 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11053 &syms);
11054
11055 if (nsyms != 1)
11056 {
11057 if (err_msg == NULL)
11058 return 0;
11059 else
11060 error (("%s"), err_msg);
11061 }
11062
11063 return value_of_variable (syms[0].sym, syms[0].block);
11064 }
11065
11066 /* Value of integer variable named NAME in the current environment. If
11067 no such variable found, returns 0, and sets *FLAG to 0. If
11068 successful, sets *FLAG to 1. */
11069
11070 LONGEST
11071 get_int_var_value (char *name, int *flag)
11072 {
11073 struct value *var_val = get_var_value (name, 0);
11074
11075 if (var_val == 0)
11076 {
11077 if (flag != NULL)
11078 *flag = 0;
11079 return 0;
11080 }
11081 else
11082 {
11083 if (flag != NULL)
11084 *flag = 1;
11085 return value_as_long (var_val);
11086 }
11087 }
11088
11089
11090 /* Return a range type whose base type is that of the range type named
11091 NAME in the current environment, and whose bounds are calculated
11092 from NAME according to the GNAT range encoding conventions.
11093 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11094 corresponding range type from debug information; fall back to using it
11095 if symbol lookup fails. If a new type must be created, allocate it
11096 like ORIG_TYPE was. The bounds information, in general, is encoded
11097 in NAME, the base type given in the named range type. */
11098
11099 static struct type *
11100 to_fixed_range_type (struct type *raw_type, struct value *dval)
11101 {
11102 const char *name;
11103 struct type *base_type;
11104 char *subtype_info;
11105
11106 gdb_assert (raw_type != NULL);
11107 gdb_assert (TYPE_NAME (raw_type) != NULL);
11108
11109 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11110 base_type = TYPE_TARGET_TYPE (raw_type);
11111 else
11112 base_type = raw_type;
11113
11114 name = TYPE_NAME (raw_type);
11115 subtype_info = strstr (name, "___XD");
11116 if (subtype_info == NULL)
11117 {
11118 LONGEST L = ada_discrete_type_low_bound (raw_type);
11119 LONGEST U = ada_discrete_type_high_bound (raw_type);
11120
11121 if (L < INT_MIN || U > INT_MAX)
11122 return raw_type;
11123 else
11124 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11125 L, U);
11126 }
11127 else
11128 {
11129 static char *name_buf = NULL;
11130 static size_t name_len = 0;
11131 int prefix_len = subtype_info - name;
11132 LONGEST L, U;
11133 struct type *type;
11134 char *bounds_str;
11135 int n;
11136
11137 GROW_VECT (name_buf, name_len, prefix_len + 5);
11138 strncpy (name_buf, name, prefix_len);
11139 name_buf[prefix_len] = '\0';
11140
11141 subtype_info += 5;
11142 bounds_str = strchr (subtype_info, '_');
11143 n = 1;
11144
11145 if (*subtype_info == 'L')
11146 {
11147 if (!ada_scan_number (bounds_str, n, &L, &n)
11148 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11149 return raw_type;
11150 if (bounds_str[n] == '_')
11151 n += 2;
11152 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11153 n += 1;
11154 subtype_info += 1;
11155 }
11156 else
11157 {
11158 int ok;
11159
11160 strcpy (name_buf + prefix_len, "___L");
11161 L = get_int_var_value (name_buf, &ok);
11162 if (!ok)
11163 {
11164 lim_warning (_("Unknown lower bound, using 1."));
11165 L = 1;
11166 }
11167 }
11168
11169 if (*subtype_info == 'U')
11170 {
11171 if (!ada_scan_number (bounds_str, n, &U, &n)
11172 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11173 return raw_type;
11174 }
11175 else
11176 {
11177 int ok;
11178
11179 strcpy (name_buf + prefix_len, "___U");
11180 U = get_int_var_value (name_buf, &ok);
11181 if (!ok)
11182 {
11183 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11184 U = L;
11185 }
11186 }
11187
11188 type = create_static_range_type (alloc_type_copy (raw_type),
11189 base_type, L, U);
11190 TYPE_NAME (type) = name;
11191 return type;
11192 }
11193 }
11194
11195 /* True iff NAME is the name of a range type. */
11196
11197 int
11198 ada_is_range_type_name (const char *name)
11199 {
11200 return (name != NULL && strstr (name, "___XD"));
11201 }
11202 \f
11203
11204 /* Modular types */
11205
11206 /* True iff TYPE is an Ada modular type. */
11207
11208 int
11209 ada_is_modular_type (struct type *type)
11210 {
11211 struct type *subranged_type = get_base_type (type);
11212
11213 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11214 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11215 && TYPE_UNSIGNED (subranged_type));
11216 }
11217
11218 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11219
11220 ULONGEST
11221 ada_modulus (struct type *type)
11222 {
11223 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11224 }
11225 \f
11226
11227 /* Ada exception catchpoint support:
11228 ---------------------------------
11229
11230 We support 3 kinds of exception catchpoints:
11231 . catchpoints on Ada exceptions
11232 . catchpoints on unhandled Ada exceptions
11233 . catchpoints on failed assertions
11234
11235 Exceptions raised during failed assertions, or unhandled exceptions
11236 could perfectly be caught with the general catchpoint on Ada exceptions.
11237 However, we can easily differentiate these two special cases, and having
11238 the option to distinguish these two cases from the rest can be useful
11239 to zero-in on certain situations.
11240
11241 Exception catchpoints are a specialized form of breakpoint,
11242 since they rely on inserting breakpoints inside known routines
11243 of the GNAT runtime. The implementation therefore uses a standard
11244 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11245 of breakpoint_ops.
11246
11247 Support in the runtime for exception catchpoints have been changed
11248 a few times already, and these changes affect the implementation
11249 of these catchpoints. In order to be able to support several
11250 variants of the runtime, we use a sniffer that will determine
11251 the runtime variant used by the program being debugged. */
11252
11253 /* Ada's standard exceptions. */
11254
11255 static char *standard_exc[] = {
11256 "constraint_error",
11257 "program_error",
11258 "storage_error",
11259 "tasking_error"
11260 };
11261
11262 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11263
11264 /* A structure that describes how to support exception catchpoints
11265 for a given executable. */
11266
11267 struct exception_support_info
11268 {
11269 /* The name of the symbol to break on in order to insert
11270 a catchpoint on exceptions. */
11271 const char *catch_exception_sym;
11272
11273 /* The name of the symbol to break on in order to insert
11274 a catchpoint on unhandled exceptions. */
11275 const char *catch_exception_unhandled_sym;
11276
11277 /* The name of the symbol to break on in order to insert
11278 a catchpoint on failed assertions. */
11279 const char *catch_assert_sym;
11280
11281 /* Assuming that the inferior just triggered an unhandled exception
11282 catchpoint, this function is responsible for returning the address
11283 in inferior memory where the name of that exception is stored.
11284 Return zero if the address could not be computed. */
11285 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11286 };
11287
11288 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11289 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11290
11291 /* The following exception support info structure describes how to
11292 implement exception catchpoints with the latest version of the
11293 Ada runtime (as of 2007-03-06). */
11294
11295 static const struct exception_support_info default_exception_support_info =
11296 {
11297 "__gnat_debug_raise_exception", /* catch_exception_sym */
11298 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11299 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11300 ada_unhandled_exception_name_addr
11301 };
11302
11303 /* The following exception support info structure describes how to
11304 implement exception catchpoints with a slightly older version
11305 of the Ada runtime. */
11306
11307 static const struct exception_support_info exception_support_info_fallback =
11308 {
11309 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11310 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11311 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11312 ada_unhandled_exception_name_addr_from_raise
11313 };
11314
11315 /* Return nonzero if we can detect the exception support routines
11316 described in EINFO.
11317
11318 This function errors out if an abnormal situation is detected
11319 (for instance, if we find the exception support routines, but
11320 that support is found to be incomplete). */
11321
11322 static int
11323 ada_has_this_exception_support (const struct exception_support_info *einfo)
11324 {
11325 struct symbol *sym;
11326
11327 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11328 that should be compiled with debugging information. As a result, we
11329 expect to find that symbol in the symtabs. */
11330
11331 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11332 if (sym == NULL)
11333 {
11334 /* Perhaps we did not find our symbol because the Ada runtime was
11335 compiled without debugging info, or simply stripped of it.
11336 It happens on some GNU/Linux distributions for instance, where
11337 users have to install a separate debug package in order to get
11338 the runtime's debugging info. In that situation, let the user
11339 know why we cannot insert an Ada exception catchpoint.
11340
11341 Note: Just for the purpose of inserting our Ada exception
11342 catchpoint, we could rely purely on the associated minimal symbol.
11343 But we would be operating in degraded mode anyway, since we are
11344 still lacking the debugging info needed later on to extract
11345 the name of the exception being raised (this name is printed in
11346 the catchpoint message, and is also used when trying to catch
11347 a specific exception). We do not handle this case for now. */
11348 struct bound_minimal_symbol msym
11349 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11350
11351 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11352 error (_("Your Ada runtime appears to be missing some debugging "
11353 "information.\nCannot insert Ada exception catchpoint "
11354 "in this configuration."));
11355
11356 return 0;
11357 }
11358
11359 /* Make sure that the symbol we found corresponds to a function. */
11360
11361 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11362 error (_("Symbol \"%s\" is not a function (class = %d)"),
11363 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11364
11365 return 1;
11366 }
11367
11368 /* Inspect the Ada runtime and determine which exception info structure
11369 should be used to provide support for exception catchpoints.
11370
11371 This function will always set the per-inferior exception_info,
11372 or raise an error. */
11373
11374 static void
11375 ada_exception_support_info_sniffer (void)
11376 {
11377 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11378
11379 /* If the exception info is already known, then no need to recompute it. */
11380 if (data->exception_info != NULL)
11381 return;
11382
11383 /* Check the latest (default) exception support info. */
11384 if (ada_has_this_exception_support (&default_exception_support_info))
11385 {
11386 data->exception_info = &default_exception_support_info;
11387 return;
11388 }
11389
11390 /* Try our fallback exception suport info. */
11391 if (ada_has_this_exception_support (&exception_support_info_fallback))
11392 {
11393 data->exception_info = &exception_support_info_fallback;
11394 return;
11395 }
11396
11397 /* Sometimes, it is normal for us to not be able to find the routine
11398 we are looking for. This happens when the program is linked with
11399 the shared version of the GNAT runtime, and the program has not been
11400 started yet. Inform the user of these two possible causes if
11401 applicable. */
11402
11403 if (ada_update_initial_language (language_unknown) != language_ada)
11404 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11405
11406 /* If the symbol does not exist, then check that the program is
11407 already started, to make sure that shared libraries have been
11408 loaded. If it is not started, this may mean that the symbol is
11409 in a shared library. */
11410
11411 if (ptid_get_pid (inferior_ptid) == 0)
11412 error (_("Unable to insert catchpoint. Try to start the program first."));
11413
11414 /* At this point, we know that we are debugging an Ada program and
11415 that the inferior has been started, but we still are not able to
11416 find the run-time symbols. That can mean that we are in
11417 configurable run time mode, or that a-except as been optimized
11418 out by the linker... In any case, at this point it is not worth
11419 supporting this feature. */
11420
11421 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11422 }
11423
11424 /* True iff FRAME is very likely to be that of a function that is
11425 part of the runtime system. This is all very heuristic, but is
11426 intended to be used as advice as to what frames are uninteresting
11427 to most users. */
11428
11429 static int
11430 is_known_support_routine (struct frame_info *frame)
11431 {
11432 struct symtab_and_line sal;
11433 char *func_name;
11434 enum language func_lang;
11435 int i;
11436 const char *fullname;
11437
11438 /* If this code does not have any debugging information (no symtab),
11439 This cannot be any user code. */
11440
11441 find_frame_sal (frame, &sal);
11442 if (sal.symtab == NULL)
11443 return 1;
11444
11445 /* If there is a symtab, but the associated source file cannot be
11446 located, then assume this is not user code: Selecting a frame
11447 for which we cannot display the code would not be very helpful
11448 for the user. This should also take care of case such as VxWorks
11449 where the kernel has some debugging info provided for a few units. */
11450
11451 fullname = symtab_to_fullname (sal.symtab);
11452 if (access (fullname, R_OK) != 0)
11453 return 1;
11454
11455 /* Check the unit filename againt the Ada runtime file naming.
11456 We also check the name of the objfile against the name of some
11457 known system libraries that sometimes come with debugging info
11458 too. */
11459
11460 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11461 {
11462 re_comp (known_runtime_file_name_patterns[i]);
11463 if (re_exec (lbasename (sal.symtab->filename)))
11464 return 1;
11465 if (sal.symtab->objfile != NULL
11466 && re_exec (objfile_name (sal.symtab->objfile)))
11467 return 1;
11468 }
11469
11470 /* Check whether the function is a GNAT-generated entity. */
11471
11472 find_frame_funname (frame, &func_name, &func_lang, NULL);
11473 if (func_name == NULL)
11474 return 1;
11475
11476 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11477 {
11478 re_comp (known_auxiliary_function_name_patterns[i]);
11479 if (re_exec (func_name))
11480 {
11481 xfree (func_name);
11482 return 1;
11483 }
11484 }
11485
11486 xfree (func_name);
11487 return 0;
11488 }
11489
11490 /* Find the first frame that contains debugging information and that is not
11491 part of the Ada run-time, starting from FI and moving upward. */
11492
11493 void
11494 ada_find_printable_frame (struct frame_info *fi)
11495 {
11496 for (; fi != NULL; fi = get_prev_frame (fi))
11497 {
11498 if (!is_known_support_routine (fi))
11499 {
11500 select_frame (fi);
11501 break;
11502 }
11503 }
11504
11505 }
11506
11507 /* Assuming that the inferior just triggered an unhandled exception
11508 catchpoint, return the address in inferior memory where the name
11509 of the exception is stored.
11510
11511 Return zero if the address could not be computed. */
11512
11513 static CORE_ADDR
11514 ada_unhandled_exception_name_addr (void)
11515 {
11516 return parse_and_eval_address ("e.full_name");
11517 }
11518
11519 /* Same as ada_unhandled_exception_name_addr, except that this function
11520 should be used when the inferior uses an older version of the runtime,
11521 where the exception name needs to be extracted from a specific frame
11522 several frames up in the callstack. */
11523
11524 static CORE_ADDR
11525 ada_unhandled_exception_name_addr_from_raise (void)
11526 {
11527 int frame_level;
11528 struct frame_info *fi;
11529 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11530 struct cleanup *old_chain;
11531
11532 /* To determine the name of this exception, we need to select
11533 the frame corresponding to RAISE_SYM_NAME. This frame is
11534 at least 3 levels up, so we simply skip the first 3 frames
11535 without checking the name of their associated function. */
11536 fi = get_current_frame ();
11537 for (frame_level = 0; frame_level < 3; frame_level += 1)
11538 if (fi != NULL)
11539 fi = get_prev_frame (fi);
11540
11541 old_chain = make_cleanup (null_cleanup, NULL);
11542 while (fi != NULL)
11543 {
11544 char *func_name;
11545 enum language func_lang;
11546
11547 find_frame_funname (fi, &func_name, &func_lang, NULL);
11548 if (func_name != NULL)
11549 {
11550 make_cleanup (xfree, func_name);
11551
11552 if (strcmp (func_name,
11553 data->exception_info->catch_exception_sym) == 0)
11554 break; /* We found the frame we were looking for... */
11555 fi = get_prev_frame (fi);
11556 }
11557 }
11558 do_cleanups (old_chain);
11559
11560 if (fi == NULL)
11561 return 0;
11562
11563 select_frame (fi);
11564 return parse_and_eval_address ("id.full_name");
11565 }
11566
11567 /* Assuming the inferior just triggered an Ada exception catchpoint
11568 (of any type), return the address in inferior memory where the name
11569 of the exception is stored, if applicable.
11570
11571 Return zero if the address could not be computed, or if not relevant. */
11572
11573 static CORE_ADDR
11574 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11575 struct breakpoint *b)
11576 {
11577 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11578
11579 switch (ex)
11580 {
11581 case ada_catch_exception:
11582 return (parse_and_eval_address ("e.full_name"));
11583 break;
11584
11585 case ada_catch_exception_unhandled:
11586 return data->exception_info->unhandled_exception_name_addr ();
11587 break;
11588
11589 case ada_catch_assert:
11590 return 0; /* Exception name is not relevant in this case. */
11591 break;
11592
11593 default:
11594 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11595 break;
11596 }
11597
11598 return 0; /* Should never be reached. */
11599 }
11600
11601 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11602 any error that ada_exception_name_addr_1 might cause to be thrown.
11603 When an error is intercepted, a warning with the error message is printed,
11604 and zero is returned. */
11605
11606 static CORE_ADDR
11607 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11608 struct breakpoint *b)
11609 {
11610 volatile struct gdb_exception e;
11611 CORE_ADDR result = 0;
11612
11613 TRY_CATCH (e, RETURN_MASK_ERROR)
11614 {
11615 result = ada_exception_name_addr_1 (ex, b);
11616 }
11617
11618 if (e.reason < 0)
11619 {
11620 warning (_("failed to get exception name: %s"), e.message);
11621 return 0;
11622 }
11623
11624 return result;
11625 }
11626
11627 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11628
11629 /* Ada catchpoints.
11630
11631 In the case of catchpoints on Ada exceptions, the catchpoint will
11632 stop the target on every exception the program throws. When a user
11633 specifies the name of a specific exception, we translate this
11634 request into a condition expression (in text form), and then parse
11635 it into an expression stored in each of the catchpoint's locations.
11636 We then use this condition to check whether the exception that was
11637 raised is the one the user is interested in. If not, then the
11638 target is resumed again. We store the name of the requested
11639 exception, in order to be able to re-set the condition expression
11640 when symbols change. */
11641
11642 /* An instance of this type is used to represent an Ada catchpoint
11643 breakpoint location. It includes a "struct bp_location" as a kind
11644 of base class; users downcast to "struct bp_location *" when
11645 needed. */
11646
11647 struct ada_catchpoint_location
11648 {
11649 /* The base class. */
11650 struct bp_location base;
11651
11652 /* The condition that checks whether the exception that was raised
11653 is the specific exception the user specified on catchpoint
11654 creation. */
11655 struct expression *excep_cond_expr;
11656 };
11657
11658 /* Implement the DTOR method in the bp_location_ops structure for all
11659 Ada exception catchpoint kinds. */
11660
11661 static void
11662 ada_catchpoint_location_dtor (struct bp_location *bl)
11663 {
11664 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11665
11666 xfree (al->excep_cond_expr);
11667 }
11668
11669 /* The vtable to be used in Ada catchpoint locations. */
11670
11671 static const struct bp_location_ops ada_catchpoint_location_ops =
11672 {
11673 ada_catchpoint_location_dtor
11674 };
11675
11676 /* An instance of this type is used to represent an Ada catchpoint.
11677 It includes a "struct breakpoint" as a kind of base class; users
11678 downcast to "struct breakpoint *" when needed. */
11679
11680 struct ada_catchpoint
11681 {
11682 /* The base class. */
11683 struct breakpoint base;
11684
11685 /* The name of the specific exception the user specified. */
11686 char *excep_string;
11687 };
11688
11689 /* Parse the exception condition string in the context of each of the
11690 catchpoint's locations, and store them for later evaluation. */
11691
11692 static void
11693 create_excep_cond_exprs (struct ada_catchpoint *c)
11694 {
11695 struct cleanup *old_chain;
11696 struct bp_location *bl;
11697 char *cond_string;
11698
11699 /* Nothing to do if there's no specific exception to catch. */
11700 if (c->excep_string == NULL)
11701 return;
11702
11703 /* Same if there are no locations... */
11704 if (c->base.loc == NULL)
11705 return;
11706
11707 /* Compute the condition expression in text form, from the specific
11708 expection we want to catch. */
11709 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11710 old_chain = make_cleanup (xfree, cond_string);
11711
11712 /* Iterate over all the catchpoint's locations, and parse an
11713 expression for each. */
11714 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11715 {
11716 struct ada_catchpoint_location *ada_loc
11717 = (struct ada_catchpoint_location *) bl;
11718 struct expression *exp = NULL;
11719
11720 if (!bl->shlib_disabled)
11721 {
11722 volatile struct gdb_exception e;
11723 const char *s;
11724
11725 s = cond_string;
11726 TRY_CATCH (e, RETURN_MASK_ERROR)
11727 {
11728 exp = parse_exp_1 (&s, bl->address,
11729 block_for_pc (bl->address), 0);
11730 }
11731 if (e.reason < 0)
11732 {
11733 warning (_("failed to reevaluate internal exception condition "
11734 "for catchpoint %d: %s"),
11735 c->base.number, e.message);
11736 /* There is a bug in GCC on sparc-solaris when building with
11737 optimization which causes EXP to change unexpectedly
11738 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11739 The problem should be fixed starting with GCC 4.9.
11740 In the meantime, work around it by forcing EXP back
11741 to NULL. */
11742 exp = NULL;
11743 }
11744 }
11745
11746 ada_loc->excep_cond_expr = exp;
11747 }
11748
11749 do_cleanups (old_chain);
11750 }
11751
11752 /* Implement the DTOR method in the breakpoint_ops structure for all
11753 exception catchpoint kinds. */
11754
11755 static void
11756 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11757 {
11758 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11759
11760 xfree (c->excep_string);
11761
11762 bkpt_breakpoint_ops.dtor (b);
11763 }
11764
11765 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11766 structure for all exception catchpoint kinds. */
11767
11768 static struct bp_location *
11769 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11770 struct breakpoint *self)
11771 {
11772 struct ada_catchpoint_location *loc;
11773
11774 loc = XNEW (struct ada_catchpoint_location);
11775 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11776 loc->excep_cond_expr = NULL;
11777 return &loc->base;
11778 }
11779
11780 /* Implement the RE_SET method in the breakpoint_ops structure for all
11781 exception catchpoint kinds. */
11782
11783 static void
11784 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11785 {
11786 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11787
11788 /* Call the base class's method. This updates the catchpoint's
11789 locations. */
11790 bkpt_breakpoint_ops.re_set (b);
11791
11792 /* Reparse the exception conditional expressions. One for each
11793 location. */
11794 create_excep_cond_exprs (c);
11795 }
11796
11797 /* Returns true if we should stop for this breakpoint hit. If the
11798 user specified a specific exception, we only want to cause a stop
11799 if the program thrown that exception. */
11800
11801 static int
11802 should_stop_exception (const struct bp_location *bl)
11803 {
11804 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11805 const struct ada_catchpoint_location *ada_loc
11806 = (const struct ada_catchpoint_location *) bl;
11807 volatile struct gdb_exception ex;
11808 int stop;
11809
11810 /* With no specific exception, should always stop. */
11811 if (c->excep_string == NULL)
11812 return 1;
11813
11814 if (ada_loc->excep_cond_expr == NULL)
11815 {
11816 /* We will have a NULL expression if back when we were creating
11817 the expressions, this location's had failed to parse. */
11818 return 1;
11819 }
11820
11821 stop = 1;
11822 TRY_CATCH (ex, RETURN_MASK_ALL)
11823 {
11824 struct value *mark;
11825
11826 mark = value_mark ();
11827 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11828 value_free_to_mark (mark);
11829 }
11830 if (ex.reason < 0)
11831 exception_fprintf (gdb_stderr, ex,
11832 _("Error in testing exception condition:\n"));
11833 return stop;
11834 }
11835
11836 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11837 for all exception catchpoint kinds. */
11838
11839 static void
11840 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11841 {
11842 bs->stop = should_stop_exception (bs->bp_location_at);
11843 }
11844
11845 /* Implement the PRINT_IT method in the breakpoint_ops structure
11846 for all exception catchpoint kinds. */
11847
11848 static enum print_stop_action
11849 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11850 {
11851 struct ui_out *uiout = current_uiout;
11852 struct breakpoint *b = bs->breakpoint_at;
11853
11854 annotate_catchpoint (b->number);
11855
11856 if (ui_out_is_mi_like_p (uiout))
11857 {
11858 ui_out_field_string (uiout, "reason",
11859 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11860 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11861 }
11862
11863 ui_out_text (uiout,
11864 b->disposition == disp_del ? "\nTemporary catchpoint "
11865 : "\nCatchpoint ");
11866 ui_out_field_int (uiout, "bkptno", b->number);
11867 ui_out_text (uiout, ", ");
11868
11869 switch (ex)
11870 {
11871 case ada_catch_exception:
11872 case ada_catch_exception_unhandled:
11873 {
11874 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11875 char exception_name[256];
11876
11877 if (addr != 0)
11878 {
11879 read_memory (addr, (gdb_byte *) exception_name,
11880 sizeof (exception_name) - 1);
11881 exception_name [sizeof (exception_name) - 1] = '\0';
11882 }
11883 else
11884 {
11885 /* For some reason, we were unable to read the exception
11886 name. This could happen if the Runtime was compiled
11887 without debugging info, for instance. In that case,
11888 just replace the exception name by the generic string
11889 "exception" - it will read as "an exception" in the
11890 notification we are about to print. */
11891 memcpy (exception_name, "exception", sizeof ("exception"));
11892 }
11893 /* In the case of unhandled exception breakpoints, we print
11894 the exception name as "unhandled EXCEPTION_NAME", to make
11895 it clearer to the user which kind of catchpoint just got
11896 hit. We used ui_out_text to make sure that this extra
11897 info does not pollute the exception name in the MI case. */
11898 if (ex == ada_catch_exception_unhandled)
11899 ui_out_text (uiout, "unhandled ");
11900 ui_out_field_string (uiout, "exception-name", exception_name);
11901 }
11902 break;
11903 case ada_catch_assert:
11904 /* In this case, the name of the exception is not really
11905 important. Just print "failed assertion" to make it clearer
11906 that his program just hit an assertion-failure catchpoint.
11907 We used ui_out_text because this info does not belong in
11908 the MI output. */
11909 ui_out_text (uiout, "failed assertion");
11910 break;
11911 }
11912 ui_out_text (uiout, " at ");
11913 ada_find_printable_frame (get_current_frame ());
11914
11915 return PRINT_SRC_AND_LOC;
11916 }
11917
11918 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11919 for all exception catchpoint kinds. */
11920
11921 static void
11922 print_one_exception (enum ada_exception_catchpoint_kind ex,
11923 struct breakpoint *b, struct bp_location **last_loc)
11924 {
11925 struct ui_out *uiout = current_uiout;
11926 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11927 struct value_print_options opts;
11928
11929 get_user_print_options (&opts);
11930 if (opts.addressprint)
11931 {
11932 annotate_field (4);
11933 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11934 }
11935
11936 annotate_field (5);
11937 *last_loc = b->loc;
11938 switch (ex)
11939 {
11940 case ada_catch_exception:
11941 if (c->excep_string != NULL)
11942 {
11943 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11944
11945 ui_out_field_string (uiout, "what", msg);
11946 xfree (msg);
11947 }
11948 else
11949 ui_out_field_string (uiout, "what", "all Ada exceptions");
11950
11951 break;
11952
11953 case ada_catch_exception_unhandled:
11954 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11955 break;
11956
11957 case ada_catch_assert:
11958 ui_out_field_string (uiout, "what", "failed Ada assertions");
11959 break;
11960
11961 default:
11962 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11963 break;
11964 }
11965 }
11966
11967 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11968 for all exception catchpoint kinds. */
11969
11970 static void
11971 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11972 struct breakpoint *b)
11973 {
11974 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11975 struct ui_out *uiout = current_uiout;
11976
11977 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11978 : _("Catchpoint "));
11979 ui_out_field_int (uiout, "bkptno", b->number);
11980 ui_out_text (uiout, ": ");
11981
11982 switch (ex)
11983 {
11984 case ada_catch_exception:
11985 if (c->excep_string != NULL)
11986 {
11987 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11988 struct cleanup *old_chain = make_cleanup (xfree, info);
11989
11990 ui_out_text (uiout, info);
11991 do_cleanups (old_chain);
11992 }
11993 else
11994 ui_out_text (uiout, _("all Ada exceptions"));
11995 break;
11996
11997 case ada_catch_exception_unhandled:
11998 ui_out_text (uiout, _("unhandled Ada exceptions"));
11999 break;
12000
12001 case ada_catch_assert:
12002 ui_out_text (uiout, _("failed Ada assertions"));
12003 break;
12004
12005 default:
12006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 break;
12008 }
12009 }
12010
12011 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014 static void
12015 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12016 struct breakpoint *b, struct ui_file *fp)
12017 {
12018 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12019
12020 switch (ex)
12021 {
12022 case ada_catch_exception:
12023 fprintf_filtered (fp, "catch exception");
12024 if (c->excep_string != NULL)
12025 fprintf_filtered (fp, " %s", c->excep_string);
12026 break;
12027
12028 case ada_catch_exception_unhandled:
12029 fprintf_filtered (fp, "catch exception unhandled");
12030 break;
12031
12032 case ada_catch_assert:
12033 fprintf_filtered (fp, "catch assert");
12034 break;
12035
12036 default:
12037 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12038 }
12039 print_recreate_thread (b, fp);
12040 }
12041
12042 /* Virtual table for "catch exception" breakpoints. */
12043
12044 static void
12045 dtor_catch_exception (struct breakpoint *b)
12046 {
12047 dtor_exception (ada_catch_exception, b);
12048 }
12049
12050 static struct bp_location *
12051 allocate_location_catch_exception (struct breakpoint *self)
12052 {
12053 return allocate_location_exception (ada_catch_exception, self);
12054 }
12055
12056 static void
12057 re_set_catch_exception (struct breakpoint *b)
12058 {
12059 re_set_exception (ada_catch_exception, b);
12060 }
12061
12062 static void
12063 check_status_catch_exception (bpstat bs)
12064 {
12065 check_status_exception (ada_catch_exception, bs);
12066 }
12067
12068 static enum print_stop_action
12069 print_it_catch_exception (bpstat bs)
12070 {
12071 return print_it_exception (ada_catch_exception, bs);
12072 }
12073
12074 static void
12075 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12076 {
12077 print_one_exception (ada_catch_exception, b, last_loc);
12078 }
12079
12080 static void
12081 print_mention_catch_exception (struct breakpoint *b)
12082 {
12083 print_mention_exception (ada_catch_exception, b);
12084 }
12085
12086 static void
12087 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12088 {
12089 print_recreate_exception (ada_catch_exception, b, fp);
12090 }
12091
12092 static struct breakpoint_ops catch_exception_breakpoint_ops;
12093
12094 /* Virtual table for "catch exception unhandled" breakpoints. */
12095
12096 static void
12097 dtor_catch_exception_unhandled (struct breakpoint *b)
12098 {
12099 dtor_exception (ada_catch_exception_unhandled, b);
12100 }
12101
12102 static struct bp_location *
12103 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12104 {
12105 return allocate_location_exception (ada_catch_exception_unhandled, self);
12106 }
12107
12108 static void
12109 re_set_catch_exception_unhandled (struct breakpoint *b)
12110 {
12111 re_set_exception (ada_catch_exception_unhandled, b);
12112 }
12113
12114 static void
12115 check_status_catch_exception_unhandled (bpstat bs)
12116 {
12117 check_status_exception (ada_catch_exception_unhandled, bs);
12118 }
12119
12120 static enum print_stop_action
12121 print_it_catch_exception_unhandled (bpstat bs)
12122 {
12123 return print_it_exception (ada_catch_exception_unhandled, bs);
12124 }
12125
12126 static void
12127 print_one_catch_exception_unhandled (struct breakpoint *b,
12128 struct bp_location **last_loc)
12129 {
12130 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12131 }
12132
12133 static void
12134 print_mention_catch_exception_unhandled (struct breakpoint *b)
12135 {
12136 print_mention_exception (ada_catch_exception_unhandled, b);
12137 }
12138
12139 static void
12140 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12141 struct ui_file *fp)
12142 {
12143 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12144 }
12145
12146 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12147
12148 /* Virtual table for "catch assert" breakpoints. */
12149
12150 static void
12151 dtor_catch_assert (struct breakpoint *b)
12152 {
12153 dtor_exception (ada_catch_assert, b);
12154 }
12155
12156 static struct bp_location *
12157 allocate_location_catch_assert (struct breakpoint *self)
12158 {
12159 return allocate_location_exception (ada_catch_assert, self);
12160 }
12161
12162 static void
12163 re_set_catch_assert (struct breakpoint *b)
12164 {
12165 re_set_exception (ada_catch_assert, b);
12166 }
12167
12168 static void
12169 check_status_catch_assert (bpstat bs)
12170 {
12171 check_status_exception (ada_catch_assert, bs);
12172 }
12173
12174 static enum print_stop_action
12175 print_it_catch_assert (bpstat bs)
12176 {
12177 return print_it_exception (ada_catch_assert, bs);
12178 }
12179
12180 static void
12181 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12182 {
12183 print_one_exception (ada_catch_assert, b, last_loc);
12184 }
12185
12186 static void
12187 print_mention_catch_assert (struct breakpoint *b)
12188 {
12189 print_mention_exception (ada_catch_assert, b);
12190 }
12191
12192 static void
12193 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12194 {
12195 print_recreate_exception (ada_catch_assert, b, fp);
12196 }
12197
12198 static struct breakpoint_ops catch_assert_breakpoint_ops;
12199
12200 /* Return a newly allocated copy of the first space-separated token
12201 in ARGSP, and then adjust ARGSP to point immediately after that
12202 token.
12203
12204 Return NULL if ARGPS does not contain any more tokens. */
12205
12206 static char *
12207 ada_get_next_arg (char **argsp)
12208 {
12209 char *args = *argsp;
12210 char *end;
12211 char *result;
12212
12213 args = skip_spaces (args);
12214 if (args[0] == '\0')
12215 return NULL; /* No more arguments. */
12216
12217 /* Find the end of the current argument. */
12218
12219 end = skip_to_space (args);
12220
12221 /* Adjust ARGSP to point to the start of the next argument. */
12222
12223 *argsp = end;
12224
12225 /* Make a copy of the current argument and return it. */
12226
12227 result = xmalloc (end - args + 1);
12228 strncpy (result, args, end - args);
12229 result[end - args] = '\0';
12230
12231 return result;
12232 }
12233
12234 /* Split the arguments specified in a "catch exception" command.
12235 Set EX to the appropriate catchpoint type.
12236 Set EXCEP_STRING to the name of the specific exception if
12237 specified by the user.
12238 If a condition is found at the end of the arguments, the condition
12239 expression is stored in COND_STRING (memory must be deallocated
12240 after use). Otherwise COND_STRING is set to NULL. */
12241
12242 static void
12243 catch_ada_exception_command_split (char *args,
12244 enum ada_exception_catchpoint_kind *ex,
12245 char **excep_string,
12246 char **cond_string)
12247 {
12248 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12249 char *exception_name;
12250 char *cond = NULL;
12251
12252 exception_name = ada_get_next_arg (&args);
12253 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12254 {
12255 /* This is not an exception name; this is the start of a condition
12256 expression for a catchpoint on all exceptions. So, "un-get"
12257 this token, and set exception_name to NULL. */
12258 xfree (exception_name);
12259 exception_name = NULL;
12260 args -= 2;
12261 }
12262 make_cleanup (xfree, exception_name);
12263
12264 /* Check to see if we have a condition. */
12265
12266 args = skip_spaces (args);
12267 if (strncmp (args, "if", 2) == 0
12268 && (isspace (args[2]) || args[2] == '\0'))
12269 {
12270 args += 2;
12271 args = skip_spaces (args);
12272
12273 if (args[0] == '\0')
12274 error (_("Condition missing after `if' keyword"));
12275 cond = xstrdup (args);
12276 make_cleanup (xfree, cond);
12277
12278 args += strlen (args);
12279 }
12280
12281 /* Check that we do not have any more arguments. Anything else
12282 is unexpected. */
12283
12284 if (args[0] != '\0')
12285 error (_("Junk at end of expression"));
12286
12287 discard_cleanups (old_chain);
12288
12289 if (exception_name == NULL)
12290 {
12291 /* Catch all exceptions. */
12292 *ex = ada_catch_exception;
12293 *excep_string = NULL;
12294 }
12295 else if (strcmp (exception_name, "unhandled") == 0)
12296 {
12297 /* Catch unhandled exceptions. */
12298 *ex = ada_catch_exception_unhandled;
12299 *excep_string = NULL;
12300 }
12301 else
12302 {
12303 /* Catch a specific exception. */
12304 *ex = ada_catch_exception;
12305 *excep_string = exception_name;
12306 }
12307 *cond_string = cond;
12308 }
12309
12310 /* Return the name of the symbol on which we should break in order to
12311 implement a catchpoint of the EX kind. */
12312
12313 static const char *
12314 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12315 {
12316 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12317
12318 gdb_assert (data->exception_info != NULL);
12319
12320 switch (ex)
12321 {
12322 case ada_catch_exception:
12323 return (data->exception_info->catch_exception_sym);
12324 break;
12325 case ada_catch_exception_unhandled:
12326 return (data->exception_info->catch_exception_unhandled_sym);
12327 break;
12328 case ada_catch_assert:
12329 return (data->exception_info->catch_assert_sym);
12330 break;
12331 default:
12332 internal_error (__FILE__, __LINE__,
12333 _("unexpected catchpoint kind (%d)"), ex);
12334 }
12335 }
12336
12337 /* Return the breakpoint ops "virtual table" used for catchpoints
12338 of the EX kind. */
12339
12340 static const struct breakpoint_ops *
12341 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12342 {
12343 switch (ex)
12344 {
12345 case ada_catch_exception:
12346 return (&catch_exception_breakpoint_ops);
12347 break;
12348 case ada_catch_exception_unhandled:
12349 return (&catch_exception_unhandled_breakpoint_ops);
12350 break;
12351 case ada_catch_assert:
12352 return (&catch_assert_breakpoint_ops);
12353 break;
12354 default:
12355 internal_error (__FILE__, __LINE__,
12356 _("unexpected catchpoint kind (%d)"), ex);
12357 }
12358 }
12359
12360 /* Return the condition that will be used to match the current exception
12361 being raised with the exception that the user wants to catch. This
12362 assumes that this condition is used when the inferior just triggered
12363 an exception catchpoint.
12364
12365 The string returned is a newly allocated string that needs to be
12366 deallocated later. */
12367
12368 static char *
12369 ada_exception_catchpoint_cond_string (const char *excep_string)
12370 {
12371 int i;
12372
12373 /* The standard exceptions are a special case. They are defined in
12374 runtime units that have been compiled without debugging info; if
12375 EXCEP_STRING is the not-fully-qualified name of a standard
12376 exception (e.g. "constraint_error") then, during the evaluation
12377 of the condition expression, the symbol lookup on this name would
12378 *not* return this standard exception. The catchpoint condition
12379 may then be set only on user-defined exceptions which have the
12380 same not-fully-qualified name (e.g. my_package.constraint_error).
12381
12382 To avoid this unexcepted behavior, these standard exceptions are
12383 systematically prefixed by "standard". This means that "catch
12384 exception constraint_error" is rewritten into "catch exception
12385 standard.constraint_error".
12386
12387 If an exception named contraint_error is defined in another package of
12388 the inferior program, then the only way to specify this exception as a
12389 breakpoint condition is to use its fully-qualified named:
12390 e.g. my_package.constraint_error. */
12391
12392 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12393 {
12394 if (strcmp (standard_exc [i], excep_string) == 0)
12395 {
12396 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12397 excep_string);
12398 }
12399 }
12400 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12401 }
12402
12403 /* Return the symtab_and_line that should be used to insert an exception
12404 catchpoint of the TYPE kind.
12405
12406 EXCEP_STRING should contain the name of a specific exception that
12407 the catchpoint should catch, or NULL otherwise.
12408
12409 ADDR_STRING returns the name of the function where the real
12410 breakpoint that implements the catchpoints is set, depending on the
12411 type of catchpoint we need to create. */
12412
12413 static struct symtab_and_line
12414 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12415 char **addr_string, const struct breakpoint_ops **ops)
12416 {
12417 const char *sym_name;
12418 struct symbol *sym;
12419
12420 /* First, find out which exception support info to use. */
12421 ada_exception_support_info_sniffer ();
12422
12423 /* Then lookup the function on which we will break in order to catch
12424 the Ada exceptions requested by the user. */
12425 sym_name = ada_exception_sym_name (ex);
12426 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12427
12428 /* We can assume that SYM is not NULL at this stage. If the symbol
12429 did not exist, ada_exception_support_info_sniffer would have
12430 raised an exception.
12431
12432 Also, ada_exception_support_info_sniffer should have already
12433 verified that SYM is a function symbol. */
12434 gdb_assert (sym != NULL);
12435 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12436
12437 /* Set ADDR_STRING. */
12438 *addr_string = xstrdup (sym_name);
12439
12440 /* Set OPS. */
12441 *ops = ada_exception_breakpoint_ops (ex);
12442
12443 return find_function_start_sal (sym, 1);
12444 }
12445
12446 /* Create an Ada exception catchpoint.
12447
12448 EX_KIND is the kind of exception catchpoint to be created.
12449
12450 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12451 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12452 of the exception to which this catchpoint applies. When not NULL,
12453 the string must be allocated on the heap, and its deallocation
12454 is no longer the responsibility of the caller.
12455
12456 COND_STRING, if not NULL, is the catchpoint condition. This string
12457 must be allocated on the heap, and its deallocation is no longer
12458 the responsibility of the caller.
12459
12460 TEMPFLAG, if nonzero, means that the underlying breakpoint
12461 should be temporary.
12462
12463 FROM_TTY is the usual argument passed to all commands implementations. */
12464
12465 void
12466 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12467 enum ada_exception_catchpoint_kind ex_kind,
12468 char *excep_string,
12469 char *cond_string,
12470 int tempflag,
12471 int disabled,
12472 int from_tty)
12473 {
12474 struct ada_catchpoint *c;
12475 char *addr_string = NULL;
12476 const struct breakpoint_ops *ops = NULL;
12477 struct symtab_and_line sal
12478 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12479
12480 c = XNEW (struct ada_catchpoint);
12481 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12482 ops, tempflag, disabled, from_tty);
12483 c->excep_string = excep_string;
12484 create_excep_cond_exprs (c);
12485 if (cond_string != NULL)
12486 set_breakpoint_condition (&c->base, cond_string, from_tty);
12487 install_breakpoint (0, &c->base, 1);
12488 }
12489
12490 /* Implement the "catch exception" command. */
12491
12492 static void
12493 catch_ada_exception_command (char *arg, int from_tty,
12494 struct cmd_list_element *command)
12495 {
12496 struct gdbarch *gdbarch = get_current_arch ();
12497 int tempflag;
12498 enum ada_exception_catchpoint_kind ex_kind;
12499 char *excep_string = NULL;
12500 char *cond_string = NULL;
12501
12502 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12503
12504 if (!arg)
12505 arg = "";
12506 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12507 &cond_string);
12508 create_ada_exception_catchpoint (gdbarch, ex_kind,
12509 excep_string, cond_string,
12510 tempflag, 1 /* enabled */,
12511 from_tty);
12512 }
12513
12514 /* Split the arguments specified in a "catch assert" command.
12515
12516 ARGS contains the command's arguments (or the empty string if
12517 no arguments were passed).
12518
12519 If ARGS contains a condition, set COND_STRING to that condition
12520 (the memory needs to be deallocated after use). */
12521
12522 static void
12523 catch_ada_assert_command_split (char *args, char **cond_string)
12524 {
12525 args = skip_spaces (args);
12526
12527 /* Check whether a condition was provided. */
12528 if (strncmp (args, "if", 2) == 0
12529 && (isspace (args[2]) || args[2] == '\0'))
12530 {
12531 args += 2;
12532 args = skip_spaces (args);
12533 if (args[0] == '\0')
12534 error (_("condition missing after `if' keyword"));
12535 *cond_string = xstrdup (args);
12536 }
12537
12538 /* Otherwise, there should be no other argument at the end of
12539 the command. */
12540 else if (args[0] != '\0')
12541 error (_("Junk at end of arguments."));
12542 }
12543
12544 /* Implement the "catch assert" command. */
12545
12546 static void
12547 catch_assert_command (char *arg, int from_tty,
12548 struct cmd_list_element *command)
12549 {
12550 struct gdbarch *gdbarch = get_current_arch ();
12551 int tempflag;
12552 char *cond_string = NULL;
12553
12554 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12555
12556 if (!arg)
12557 arg = "";
12558 catch_ada_assert_command_split (arg, &cond_string);
12559 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12560 NULL, cond_string,
12561 tempflag, 1 /* enabled */,
12562 from_tty);
12563 }
12564
12565 /* Return non-zero if the symbol SYM is an Ada exception object. */
12566
12567 static int
12568 ada_is_exception_sym (struct symbol *sym)
12569 {
12570 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12571
12572 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12573 && SYMBOL_CLASS (sym) != LOC_BLOCK
12574 && SYMBOL_CLASS (sym) != LOC_CONST
12575 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12576 && type_name != NULL && strcmp (type_name, "exception") == 0);
12577 }
12578
12579 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12580 Ada exception object. This matches all exceptions except the ones
12581 defined by the Ada language. */
12582
12583 static int
12584 ada_is_non_standard_exception_sym (struct symbol *sym)
12585 {
12586 int i;
12587
12588 if (!ada_is_exception_sym (sym))
12589 return 0;
12590
12591 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12592 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12593 return 0; /* A standard exception. */
12594
12595 /* Numeric_Error is also a standard exception, so exclude it.
12596 See the STANDARD_EXC description for more details as to why
12597 this exception is not listed in that array. */
12598 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12599 return 0;
12600
12601 return 1;
12602 }
12603
12604 /* A helper function for qsort, comparing two struct ada_exc_info
12605 objects.
12606
12607 The comparison is determined first by exception name, and then
12608 by exception address. */
12609
12610 static int
12611 compare_ada_exception_info (const void *a, const void *b)
12612 {
12613 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12614 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12615 int result;
12616
12617 result = strcmp (exc_a->name, exc_b->name);
12618 if (result != 0)
12619 return result;
12620
12621 if (exc_a->addr < exc_b->addr)
12622 return -1;
12623 if (exc_a->addr > exc_b->addr)
12624 return 1;
12625
12626 return 0;
12627 }
12628
12629 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12630 routine, but keeping the first SKIP elements untouched.
12631
12632 All duplicates are also removed. */
12633
12634 static void
12635 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12636 int skip)
12637 {
12638 struct ada_exc_info *to_sort
12639 = VEC_address (ada_exc_info, *exceptions) + skip;
12640 int to_sort_len
12641 = VEC_length (ada_exc_info, *exceptions) - skip;
12642 int i, j;
12643
12644 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12645 compare_ada_exception_info);
12646
12647 for (i = 1, j = 1; i < to_sort_len; i++)
12648 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12649 to_sort[j++] = to_sort[i];
12650 to_sort_len = j;
12651 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12652 }
12653
12654 /* A function intended as the "name_matcher" callback in the struct
12655 quick_symbol_functions' expand_symtabs_matching method.
12656
12657 SEARCH_NAME is the symbol's search name.
12658
12659 If USER_DATA is not NULL, it is a pointer to a regext_t object
12660 used to match the symbol (by natural name). Otherwise, when USER_DATA
12661 is null, no filtering is performed, and all symbols are a positive
12662 match. */
12663
12664 static int
12665 ada_exc_search_name_matches (const char *search_name, void *user_data)
12666 {
12667 regex_t *preg = user_data;
12668
12669 if (preg == NULL)
12670 return 1;
12671
12672 /* In Ada, the symbol "search name" is a linkage name, whereas
12673 the regular expression used to do the matching refers to
12674 the natural name. So match against the decoded name. */
12675 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12676 }
12677
12678 /* Add all exceptions defined by the Ada standard whose name match
12679 a regular expression.
12680
12681 If PREG is not NULL, then this regexp_t object is used to
12682 perform the symbol name matching. Otherwise, no name-based
12683 filtering is performed.
12684
12685 EXCEPTIONS is a vector of exceptions to which matching exceptions
12686 gets pushed. */
12687
12688 static void
12689 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12690 {
12691 int i;
12692
12693 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12694 {
12695 if (preg == NULL
12696 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12697 {
12698 struct bound_minimal_symbol msymbol
12699 = ada_lookup_simple_minsym (standard_exc[i]);
12700
12701 if (msymbol.minsym != NULL)
12702 {
12703 struct ada_exc_info info
12704 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12705
12706 VEC_safe_push (ada_exc_info, *exceptions, &info);
12707 }
12708 }
12709 }
12710 }
12711
12712 /* Add all Ada exceptions defined locally and accessible from the given
12713 FRAME.
12714
12715 If PREG is not NULL, then this regexp_t object is used to
12716 perform the symbol name matching. Otherwise, no name-based
12717 filtering is performed.
12718
12719 EXCEPTIONS is a vector of exceptions to which matching exceptions
12720 gets pushed. */
12721
12722 static void
12723 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12724 VEC(ada_exc_info) **exceptions)
12725 {
12726 struct block *block = get_frame_block (frame, 0);
12727
12728 while (block != 0)
12729 {
12730 struct block_iterator iter;
12731 struct symbol *sym;
12732
12733 ALL_BLOCK_SYMBOLS (block, iter, sym)
12734 {
12735 switch (SYMBOL_CLASS (sym))
12736 {
12737 case LOC_TYPEDEF:
12738 case LOC_BLOCK:
12739 case LOC_CONST:
12740 break;
12741 default:
12742 if (ada_is_exception_sym (sym))
12743 {
12744 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12745 SYMBOL_VALUE_ADDRESS (sym)};
12746
12747 VEC_safe_push (ada_exc_info, *exceptions, &info);
12748 }
12749 }
12750 }
12751 if (BLOCK_FUNCTION (block) != NULL)
12752 break;
12753 block = BLOCK_SUPERBLOCK (block);
12754 }
12755 }
12756
12757 /* Add all exceptions defined globally whose name name match
12758 a regular expression, excluding standard exceptions.
12759
12760 The reason we exclude standard exceptions is that they need
12761 to be handled separately: Standard exceptions are defined inside
12762 a runtime unit which is normally not compiled with debugging info,
12763 and thus usually do not show up in our symbol search. However,
12764 if the unit was in fact built with debugging info, we need to
12765 exclude them because they would duplicate the entry we found
12766 during the special loop that specifically searches for those
12767 standard exceptions.
12768
12769 If PREG is not NULL, then this regexp_t object is used to
12770 perform the symbol name matching. Otherwise, no name-based
12771 filtering is performed.
12772
12773 EXCEPTIONS is a vector of exceptions to which matching exceptions
12774 gets pushed. */
12775
12776 static void
12777 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12778 {
12779 struct objfile *objfile;
12780 struct symtab *s;
12781
12782 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12783 VARIABLES_DOMAIN, preg);
12784
12785 ALL_PRIMARY_SYMTABS (objfile, s)
12786 {
12787 struct blockvector *bv = BLOCKVECTOR (s);
12788 int i;
12789
12790 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12791 {
12792 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12793 struct block_iterator iter;
12794 struct symbol *sym;
12795
12796 ALL_BLOCK_SYMBOLS (b, iter, sym)
12797 if (ada_is_non_standard_exception_sym (sym)
12798 && (preg == NULL
12799 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12800 0, NULL, 0) == 0))
12801 {
12802 struct ada_exc_info info
12803 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12804
12805 VEC_safe_push (ada_exc_info, *exceptions, &info);
12806 }
12807 }
12808 }
12809 }
12810
12811 /* Implements ada_exceptions_list with the regular expression passed
12812 as a regex_t, rather than a string.
12813
12814 If not NULL, PREG is used to filter out exceptions whose names
12815 do not match. Otherwise, all exceptions are listed. */
12816
12817 static VEC(ada_exc_info) *
12818 ada_exceptions_list_1 (regex_t *preg)
12819 {
12820 VEC(ada_exc_info) *result = NULL;
12821 struct cleanup *old_chain
12822 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12823 int prev_len;
12824
12825 /* First, list the known standard exceptions. These exceptions
12826 need to be handled separately, as they are usually defined in
12827 runtime units that have been compiled without debugging info. */
12828
12829 ada_add_standard_exceptions (preg, &result);
12830
12831 /* Next, find all exceptions whose scope is local and accessible
12832 from the currently selected frame. */
12833
12834 if (has_stack_frames ())
12835 {
12836 prev_len = VEC_length (ada_exc_info, result);
12837 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12838 &result);
12839 if (VEC_length (ada_exc_info, result) > prev_len)
12840 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12841 }
12842
12843 /* Add all exceptions whose scope is global. */
12844
12845 prev_len = VEC_length (ada_exc_info, result);
12846 ada_add_global_exceptions (preg, &result);
12847 if (VEC_length (ada_exc_info, result) > prev_len)
12848 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12849
12850 discard_cleanups (old_chain);
12851 return result;
12852 }
12853
12854 /* Return a vector of ada_exc_info.
12855
12856 If REGEXP is NULL, all exceptions are included in the result.
12857 Otherwise, it should contain a valid regular expression,
12858 and only the exceptions whose names match that regular expression
12859 are included in the result.
12860
12861 The exceptions are sorted in the following order:
12862 - Standard exceptions (defined by the Ada language), in
12863 alphabetical order;
12864 - Exceptions only visible from the current frame, in
12865 alphabetical order;
12866 - Exceptions whose scope is global, in alphabetical order. */
12867
12868 VEC(ada_exc_info) *
12869 ada_exceptions_list (const char *regexp)
12870 {
12871 VEC(ada_exc_info) *result = NULL;
12872 struct cleanup *old_chain = NULL;
12873 regex_t reg;
12874
12875 if (regexp != NULL)
12876 old_chain = compile_rx_or_error (&reg, regexp,
12877 _("invalid regular expression"));
12878
12879 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12880
12881 if (old_chain != NULL)
12882 do_cleanups (old_chain);
12883 return result;
12884 }
12885
12886 /* Implement the "info exceptions" command. */
12887
12888 static void
12889 info_exceptions_command (char *regexp, int from_tty)
12890 {
12891 VEC(ada_exc_info) *exceptions;
12892 struct cleanup *cleanup;
12893 struct gdbarch *gdbarch = get_current_arch ();
12894 int ix;
12895 struct ada_exc_info *info;
12896
12897 exceptions = ada_exceptions_list (regexp);
12898 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12899
12900 if (regexp != NULL)
12901 printf_filtered
12902 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12903 else
12904 printf_filtered (_("All defined Ada exceptions:\n"));
12905
12906 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12907 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12908
12909 do_cleanups (cleanup);
12910 }
12911
12912 /* Operators */
12913 /* Information about operators given special treatment in functions
12914 below. */
12915 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12916
12917 #define ADA_OPERATORS \
12918 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12919 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12920 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12921 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12922 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12923 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12924 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12925 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12926 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12927 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12928 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12929 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12930 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12931 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12932 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12933 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12934 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12935 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12936 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12937
12938 static void
12939 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12940 int *argsp)
12941 {
12942 switch (exp->elts[pc - 1].opcode)
12943 {
12944 default:
12945 operator_length_standard (exp, pc, oplenp, argsp);
12946 break;
12947
12948 #define OP_DEFN(op, len, args, binop) \
12949 case op: *oplenp = len; *argsp = args; break;
12950 ADA_OPERATORS;
12951 #undef OP_DEFN
12952
12953 case OP_AGGREGATE:
12954 *oplenp = 3;
12955 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12956 break;
12957
12958 case OP_CHOICES:
12959 *oplenp = 3;
12960 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12961 break;
12962 }
12963 }
12964
12965 /* Implementation of the exp_descriptor method operator_check. */
12966
12967 static int
12968 ada_operator_check (struct expression *exp, int pos,
12969 int (*objfile_func) (struct objfile *objfile, void *data),
12970 void *data)
12971 {
12972 const union exp_element *const elts = exp->elts;
12973 struct type *type = NULL;
12974
12975 switch (elts[pos].opcode)
12976 {
12977 case UNOP_IN_RANGE:
12978 case UNOP_QUAL:
12979 type = elts[pos + 1].type;
12980 break;
12981
12982 default:
12983 return operator_check_standard (exp, pos, objfile_func, data);
12984 }
12985
12986 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12987
12988 if (type && TYPE_OBJFILE (type)
12989 && (*objfile_func) (TYPE_OBJFILE (type), data))
12990 return 1;
12991
12992 return 0;
12993 }
12994
12995 static char *
12996 ada_op_name (enum exp_opcode opcode)
12997 {
12998 switch (opcode)
12999 {
13000 default:
13001 return op_name_standard (opcode);
13002
13003 #define OP_DEFN(op, len, args, binop) case op: return #op;
13004 ADA_OPERATORS;
13005 #undef OP_DEFN
13006
13007 case OP_AGGREGATE:
13008 return "OP_AGGREGATE";
13009 case OP_CHOICES:
13010 return "OP_CHOICES";
13011 case OP_NAME:
13012 return "OP_NAME";
13013 }
13014 }
13015
13016 /* As for operator_length, but assumes PC is pointing at the first
13017 element of the operator, and gives meaningful results only for the
13018 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13019
13020 static void
13021 ada_forward_operator_length (struct expression *exp, int pc,
13022 int *oplenp, int *argsp)
13023 {
13024 switch (exp->elts[pc].opcode)
13025 {
13026 default:
13027 *oplenp = *argsp = 0;
13028 break;
13029
13030 #define OP_DEFN(op, len, args, binop) \
13031 case op: *oplenp = len; *argsp = args; break;
13032 ADA_OPERATORS;
13033 #undef OP_DEFN
13034
13035 case OP_AGGREGATE:
13036 *oplenp = 3;
13037 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13038 break;
13039
13040 case OP_CHOICES:
13041 *oplenp = 3;
13042 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13043 break;
13044
13045 case OP_STRING:
13046 case OP_NAME:
13047 {
13048 int len = longest_to_int (exp->elts[pc + 1].longconst);
13049
13050 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13051 *argsp = 0;
13052 break;
13053 }
13054 }
13055 }
13056
13057 static int
13058 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13059 {
13060 enum exp_opcode op = exp->elts[elt].opcode;
13061 int oplen, nargs;
13062 int pc = elt;
13063 int i;
13064
13065 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13066
13067 switch (op)
13068 {
13069 /* Ada attributes ('Foo). */
13070 case OP_ATR_FIRST:
13071 case OP_ATR_LAST:
13072 case OP_ATR_LENGTH:
13073 case OP_ATR_IMAGE:
13074 case OP_ATR_MAX:
13075 case OP_ATR_MIN:
13076 case OP_ATR_MODULUS:
13077 case OP_ATR_POS:
13078 case OP_ATR_SIZE:
13079 case OP_ATR_TAG:
13080 case OP_ATR_VAL:
13081 break;
13082
13083 case UNOP_IN_RANGE:
13084 case UNOP_QUAL:
13085 /* XXX: gdb_sprint_host_address, type_sprint */
13086 fprintf_filtered (stream, _("Type @"));
13087 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13088 fprintf_filtered (stream, " (");
13089 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13090 fprintf_filtered (stream, ")");
13091 break;
13092 case BINOP_IN_BOUNDS:
13093 fprintf_filtered (stream, " (%d)",
13094 longest_to_int (exp->elts[pc + 2].longconst));
13095 break;
13096 case TERNOP_IN_RANGE:
13097 break;
13098
13099 case OP_AGGREGATE:
13100 case OP_OTHERS:
13101 case OP_DISCRETE_RANGE:
13102 case OP_POSITIONAL:
13103 case OP_CHOICES:
13104 break;
13105
13106 case OP_NAME:
13107 case OP_STRING:
13108 {
13109 char *name = &exp->elts[elt + 2].string;
13110 int len = longest_to_int (exp->elts[elt + 1].longconst);
13111
13112 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13113 break;
13114 }
13115
13116 default:
13117 return dump_subexp_body_standard (exp, stream, elt);
13118 }
13119
13120 elt += oplen;
13121 for (i = 0; i < nargs; i += 1)
13122 elt = dump_subexp (exp, stream, elt);
13123
13124 return elt;
13125 }
13126
13127 /* The Ada extension of print_subexp (q.v.). */
13128
13129 static void
13130 ada_print_subexp (struct expression *exp, int *pos,
13131 struct ui_file *stream, enum precedence prec)
13132 {
13133 int oplen, nargs, i;
13134 int pc = *pos;
13135 enum exp_opcode op = exp->elts[pc].opcode;
13136
13137 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13138
13139 *pos += oplen;
13140 switch (op)
13141 {
13142 default:
13143 *pos -= oplen;
13144 print_subexp_standard (exp, pos, stream, prec);
13145 return;
13146
13147 case OP_VAR_VALUE:
13148 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13149 return;
13150
13151 case BINOP_IN_BOUNDS:
13152 /* XXX: sprint_subexp */
13153 print_subexp (exp, pos, stream, PREC_SUFFIX);
13154 fputs_filtered (" in ", stream);
13155 print_subexp (exp, pos, stream, PREC_SUFFIX);
13156 fputs_filtered ("'range", stream);
13157 if (exp->elts[pc + 1].longconst > 1)
13158 fprintf_filtered (stream, "(%ld)",
13159 (long) exp->elts[pc + 1].longconst);
13160 return;
13161
13162 case TERNOP_IN_RANGE:
13163 if (prec >= PREC_EQUAL)
13164 fputs_filtered ("(", stream);
13165 /* XXX: sprint_subexp */
13166 print_subexp (exp, pos, stream, PREC_SUFFIX);
13167 fputs_filtered (" in ", stream);
13168 print_subexp (exp, pos, stream, PREC_EQUAL);
13169 fputs_filtered (" .. ", stream);
13170 print_subexp (exp, pos, stream, PREC_EQUAL);
13171 if (prec >= PREC_EQUAL)
13172 fputs_filtered (")", stream);
13173 return;
13174
13175 case OP_ATR_FIRST:
13176 case OP_ATR_LAST:
13177 case OP_ATR_LENGTH:
13178 case OP_ATR_IMAGE:
13179 case OP_ATR_MAX:
13180 case OP_ATR_MIN:
13181 case OP_ATR_MODULUS:
13182 case OP_ATR_POS:
13183 case OP_ATR_SIZE:
13184 case OP_ATR_TAG:
13185 case OP_ATR_VAL:
13186 if (exp->elts[*pos].opcode == OP_TYPE)
13187 {
13188 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13189 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13190 &type_print_raw_options);
13191 *pos += 3;
13192 }
13193 else
13194 print_subexp (exp, pos, stream, PREC_SUFFIX);
13195 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13196 if (nargs > 1)
13197 {
13198 int tem;
13199
13200 for (tem = 1; tem < nargs; tem += 1)
13201 {
13202 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13203 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13204 }
13205 fputs_filtered (")", stream);
13206 }
13207 return;
13208
13209 case UNOP_QUAL:
13210 type_print (exp->elts[pc + 1].type, "", stream, 0);
13211 fputs_filtered ("'(", stream);
13212 print_subexp (exp, pos, stream, PREC_PREFIX);
13213 fputs_filtered (")", stream);
13214 return;
13215
13216 case UNOP_IN_RANGE:
13217 /* XXX: sprint_subexp */
13218 print_subexp (exp, pos, stream, PREC_SUFFIX);
13219 fputs_filtered (" in ", stream);
13220 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13221 &type_print_raw_options);
13222 return;
13223
13224 case OP_DISCRETE_RANGE:
13225 print_subexp (exp, pos, stream, PREC_SUFFIX);
13226 fputs_filtered ("..", stream);
13227 print_subexp (exp, pos, stream, PREC_SUFFIX);
13228 return;
13229
13230 case OP_OTHERS:
13231 fputs_filtered ("others => ", stream);
13232 print_subexp (exp, pos, stream, PREC_SUFFIX);
13233 return;
13234
13235 case OP_CHOICES:
13236 for (i = 0; i < nargs-1; i += 1)
13237 {
13238 if (i > 0)
13239 fputs_filtered ("|", stream);
13240 print_subexp (exp, pos, stream, PREC_SUFFIX);
13241 }
13242 fputs_filtered (" => ", stream);
13243 print_subexp (exp, pos, stream, PREC_SUFFIX);
13244 return;
13245
13246 case OP_POSITIONAL:
13247 print_subexp (exp, pos, stream, PREC_SUFFIX);
13248 return;
13249
13250 case OP_AGGREGATE:
13251 fputs_filtered ("(", stream);
13252 for (i = 0; i < nargs; i += 1)
13253 {
13254 if (i > 0)
13255 fputs_filtered (", ", stream);
13256 print_subexp (exp, pos, stream, PREC_SUFFIX);
13257 }
13258 fputs_filtered (")", stream);
13259 return;
13260 }
13261 }
13262
13263 /* Table mapping opcodes into strings for printing operators
13264 and precedences of the operators. */
13265
13266 static const struct op_print ada_op_print_tab[] = {
13267 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13268 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13269 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13270 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13271 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13272 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13273 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13274 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13275 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13276 {">=", BINOP_GEQ, PREC_ORDER, 0},
13277 {">", BINOP_GTR, PREC_ORDER, 0},
13278 {"<", BINOP_LESS, PREC_ORDER, 0},
13279 {">>", BINOP_RSH, PREC_SHIFT, 0},
13280 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13281 {"+", BINOP_ADD, PREC_ADD, 0},
13282 {"-", BINOP_SUB, PREC_ADD, 0},
13283 {"&", BINOP_CONCAT, PREC_ADD, 0},
13284 {"*", BINOP_MUL, PREC_MUL, 0},
13285 {"/", BINOP_DIV, PREC_MUL, 0},
13286 {"rem", BINOP_REM, PREC_MUL, 0},
13287 {"mod", BINOP_MOD, PREC_MUL, 0},
13288 {"**", BINOP_EXP, PREC_REPEAT, 0},
13289 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13290 {"-", UNOP_NEG, PREC_PREFIX, 0},
13291 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13292 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13293 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13294 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13295 {".all", UNOP_IND, PREC_SUFFIX, 1},
13296 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13297 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13298 {NULL, 0, 0, 0}
13299 };
13300 \f
13301 enum ada_primitive_types {
13302 ada_primitive_type_int,
13303 ada_primitive_type_long,
13304 ada_primitive_type_short,
13305 ada_primitive_type_char,
13306 ada_primitive_type_float,
13307 ada_primitive_type_double,
13308 ada_primitive_type_void,
13309 ada_primitive_type_long_long,
13310 ada_primitive_type_long_double,
13311 ada_primitive_type_natural,
13312 ada_primitive_type_positive,
13313 ada_primitive_type_system_address,
13314 nr_ada_primitive_types
13315 };
13316
13317 static void
13318 ada_language_arch_info (struct gdbarch *gdbarch,
13319 struct language_arch_info *lai)
13320 {
13321 const struct builtin_type *builtin = builtin_type (gdbarch);
13322
13323 lai->primitive_type_vector
13324 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13325 struct type *);
13326
13327 lai->primitive_type_vector [ada_primitive_type_int]
13328 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13329 0, "integer");
13330 lai->primitive_type_vector [ada_primitive_type_long]
13331 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13332 0, "long_integer");
13333 lai->primitive_type_vector [ada_primitive_type_short]
13334 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13335 0, "short_integer");
13336 lai->string_char_type
13337 = lai->primitive_type_vector [ada_primitive_type_char]
13338 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13339 lai->primitive_type_vector [ada_primitive_type_float]
13340 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13341 "float", NULL);
13342 lai->primitive_type_vector [ada_primitive_type_double]
13343 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13344 "long_float", NULL);
13345 lai->primitive_type_vector [ada_primitive_type_long_long]
13346 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13347 0, "long_long_integer");
13348 lai->primitive_type_vector [ada_primitive_type_long_double]
13349 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13350 "long_long_float", NULL);
13351 lai->primitive_type_vector [ada_primitive_type_natural]
13352 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13353 0, "natural");
13354 lai->primitive_type_vector [ada_primitive_type_positive]
13355 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13356 0, "positive");
13357 lai->primitive_type_vector [ada_primitive_type_void]
13358 = builtin->builtin_void;
13359
13360 lai->primitive_type_vector [ada_primitive_type_system_address]
13361 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13362 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13363 = "system__address";
13364
13365 lai->bool_type_symbol = NULL;
13366 lai->bool_type_default = builtin->builtin_bool;
13367 }
13368 \f
13369 /* Language vector */
13370
13371 /* Not really used, but needed in the ada_language_defn. */
13372
13373 static void
13374 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13375 {
13376 ada_emit_char (c, type, stream, quoter, 1);
13377 }
13378
13379 static int
13380 parse (struct parser_state *ps)
13381 {
13382 warnings_issued = 0;
13383 return ada_parse (ps);
13384 }
13385
13386 static const struct exp_descriptor ada_exp_descriptor = {
13387 ada_print_subexp,
13388 ada_operator_length,
13389 ada_operator_check,
13390 ada_op_name,
13391 ada_dump_subexp_body,
13392 ada_evaluate_subexp
13393 };
13394
13395 /* Implement the "la_get_symbol_name_cmp" language_defn method
13396 for Ada. */
13397
13398 static symbol_name_cmp_ftype
13399 ada_get_symbol_name_cmp (const char *lookup_name)
13400 {
13401 if (should_use_wild_match (lookup_name))
13402 return wild_match;
13403 else
13404 return compare_names;
13405 }
13406
13407 /* Implement the "la_read_var_value" language_defn method for Ada. */
13408
13409 static struct value *
13410 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13411 {
13412 struct block *frame_block = NULL;
13413 struct symbol *renaming_sym = NULL;
13414
13415 /* The only case where default_read_var_value is not sufficient
13416 is when VAR is a renaming... */
13417 if (frame)
13418 frame_block = get_frame_block (frame, NULL);
13419 if (frame_block)
13420 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13421 if (renaming_sym != NULL)
13422 return ada_read_renaming_var_value (renaming_sym, frame_block);
13423
13424 /* This is a typical case where we expect the default_read_var_value
13425 function to work. */
13426 return default_read_var_value (var, frame);
13427 }
13428
13429 const struct language_defn ada_language_defn = {
13430 "ada", /* Language name */
13431 "Ada",
13432 language_ada,
13433 range_check_off,
13434 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13435 that's not quite what this means. */
13436 array_row_major,
13437 macro_expansion_no,
13438 &ada_exp_descriptor,
13439 parse,
13440 ada_error,
13441 resolve,
13442 ada_printchar, /* Print a character constant */
13443 ada_printstr, /* Function to print string constant */
13444 emit_char, /* Function to print single char (not used) */
13445 ada_print_type, /* Print a type using appropriate syntax */
13446 ada_print_typedef, /* Print a typedef using appropriate syntax */
13447 ada_val_print, /* Print a value using appropriate syntax */
13448 ada_value_print, /* Print a top-level value */
13449 ada_read_var_value, /* la_read_var_value */
13450 NULL, /* Language specific skip_trampoline */
13451 NULL, /* name_of_this */
13452 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13453 basic_lookup_transparent_type, /* lookup_transparent_type */
13454 ada_la_decode, /* Language specific symbol demangler */
13455 NULL, /* Language specific
13456 class_name_from_physname */
13457 ada_op_print_tab, /* expression operators for printing */
13458 0, /* c-style arrays */
13459 1, /* String lower bound */
13460 ada_get_gdb_completer_word_break_characters,
13461 ada_make_symbol_completion_list,
13462 ada_language_arch_info,
13463 ada_print_array_index,
13464 default_pass_by_reference,
13465 c_get_string,
13466 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13467 ada_iterate_over_symbols,
13468 &ada_varobj_ops,
13469 LANG_MAGIC
13470 };
13471
13472 /* Provide a prototype to silence -Wmissing-prototypes. */
13473 extern initialize_file_ftype _initialize_ada_language;
13474
13475 /* Command-list for the "set/show ada" prefix command. */
13476 static struct cmd_list_element *set_ada_list;
13477 static struct cmd_list_element *show_ada_list;
13478
13479 /* Implement the "set ada" prefix command. */
13480
13481 static void
13482 set_ada_command (char *arg, int from_tty)
13483 {
13484 printf_unfiltered (_(\
13485 "\"set ada\" must be followed by the name of a setting.\n"));
13486 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13487 }
13488
13489 /* Implement the "show ada" prefix command. */
13490
13491 static void
13492 show_ada_command (char *args, int from_tty)
13493 {
13494 cmd_show_list (show_ada_list, from_tty, "");
13495 }
13496
13497 static void
13498 initialize_ada_catchpoint_ops (void)
13499 {
13500 struct breakpoint_ops *ops;
13501
13502 initialize_breakpoint_ops ();
13503
13504 ops = &catch_exception_breakpoint_ops;
13505 *ops = bkpt_breakpoint_ops;
13506 ops->dtor = dtor_catch_exception;
13507 ops->allocate_location = allocate_location_catch_exception;
13508 ops->re_set = re_set_catch_exception;
13509 ops->check_status = check_status_catch_exception;
13510 ops->print_it = print_it_catch_exception;
13511 ops->print_one = print_one_catch_exception;
13512 ops->print_mention = print_mention_catch_exception;
13513 ops->print_recreate = print_recreate_catch_exception;
13514
13515 ops = &catch_exception_unhandled_breakpoint_ops;
13516 *ops = bkpt_breakpoint_ops;
13517 ops->dtor = dtor_catch_exception_unhandled;
13518 ops->allocate_location = allocate_location_catch_exception_unhandled;
13519 ops->re_set = re_set_catch_exception_unhandled;
13520 ops->check_status = check_status_catch_exception_unhandled;
13521 ops->print_it = print_it_catch_exception_unhandled;
13522 ops->print_one = print_one_catch_exception_unhandled;
13523 ops->print_mention = print_mention_catch_exception_unhandled;
13524 ops->print_recreate = print_recreate_catch_exception_unhandled;
13525
13526 ops = &catch_assert_breakpoint_ops;
13527 *ops = bkpt_breakpoint_ops;
13528 ops->dtor = dtor_catch_assert;
13529 ops->allocate_location = allocate_location_catch_assert;
13530 ops->re_set = re_set_catch_assert;
13531 ops->check_status = check_status_catch_assert;
13532 ops->print_it = print_it_catch_assert;
13533 ops->print_one = print_one_catch_assert;
13534 ops->print_mention = print_mention_catch_assert;
13535 ops->print_recreate = print_recreate_catch_assert;
13536 }
13537
13538 /* This module's 'new_objfile' observer. */
13539
13540 static void
13541 ada_new_objfile_observer (struct objfile *objfile)
13542 {
13543 ada_clear_symbol_cache ();
13544 }
13545
13546 /* This module's 'free_objfile' observer. */
13547
13548 static void
13549 ada_free_objfile_observer (struct objfile *objfile)
13550 {
13551 ada_clear_symbol_cache ();
13552 }
13553
13554 void
13555 _initialize_ada_language (void)
13556 {
13557 add_language (&ada_language_defn);
13558
13559 initialize_ada_catchpoint_ops ();
13560
13561 add_prefix_cmd ("ada", no_class, set_ada_command,
13562 _("Prefix command for changing Ada-specfic settings"),
13563 &set_ada_list, "set ada ", 0, &setlist);
13564
13565 add_prefix_cmd ("ada", no_class, show_ada_command,
13566 _("Generic command for showing Ada-specific settings."),
13567 &show_ada_list, "show ada ", 0, &showlist);
13568
13569 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13570 &trust_pad_over_xvs, _("\
13571 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13572 Show whether an optimization trusting PAD types over XVS types is activated"),
13573 _("\
13574 This is related to the encoding used by the GNAT compiler. The debugger\n\
13575 should normally trust the contents of PAD types, but certain older versions\n\
13576 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13577 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13578 work around this bug. It is always safe to turn this option \"off\", but\n\
13579 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13580 this option to \"off\" unless necessary."),
13581 NULL, NULL, &set_ada_list, &show_ada_list);
13582
13583 add_catch_command ("exception", _("\
13584 Catch Ada exceptions, when raised.\n\
13585 With an argument, catch only exceptions with the given name."),
13586 catch_ada_exception_command,
13587 NULL,
13588 CATCH_PERMANENT,
13589 CATCH_TEMPORARY);
13590 add_catch_command ("assert", _("\
13591 Catch failed Ada assertions, when raised.\n\
13592 With an argument, catch only exceptions with the given name."),
13593 catch_assert_command,
13594 NULL,
13595 CATCH_PERMANENT,
13596 CATCH_TEMPORARY);
13597
13598 varsize_limit = 65536;
13599
13600 add_info ("exceptions", info_exceptions_command,
13601 _("\
13602 List all Ada exception names.\n\
13603 If a regular expression is passed as an argument, only those matching\n\
13604 the regular expression are listed."));
13605
13606 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13607 _("Set Ada maintenance-related variables."),
13608 &maint_set_ada_cmdlist, "maintenance set ada ",
13609 0/*allow-unknown*/, &maintenance_set_cmdlist);
13610
13611 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13612 _("Show Ada maintenance-related variables"),
13613 &maint_show_ada_cmdlist, "maintenance show ada ",
13614 0/*allow-unknown*/, &maintenance_show_cmdlist);
13615
13616 add_setshow_boolean_cmd
13617 ("ignore-descriptive-types", class_maintenance,
13618 &ada_ignore_descriptive_types_p,
13619 _("Set whether descriptive types generated by GNAT should be ignored."),
13620 _("Show whether descriptive types generated by GNAT should be ignored."),
13621 _("\
13622 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13623 DWARF attribute."),
13624 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13625
13626 obstack_init (&symbol_list_obstack);
13627
13628 decoded_names_store = htab_create_alloc
13629 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13630 NULL, xcalloc, xfree);
13631
13632 /* The ada-lang observers. */
13633 observer_attach_new_objfile (ada_new_objfile_observer);
13634 observer_attach_free_objfile (ada_free_objfile_observer);
13635 observer_attach_inferior_exit (ada_inferior_exit);
13636
13637 /* Setup various context-specific data. */
13638 ada_inferior_data
13639 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13640 ada_pspace_data_handle
13641 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13642 }
This page took 0.324496 seconds and 4 git commands to generate.