Replace the block_found global with explicit data-flow
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct block_symbol *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct block_symbol *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum domain;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (startswith (field_name + len, "___")
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, NULL, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, NULL, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && !startswith (p, mapping->decoded); mapping += 1)
1007 ;
1008 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
1014 else
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
1019 }
1020
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
1023 }
1024
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
1029 char *
1030 ada_fold_name (const char *name)
1031 {
1032 static char *fold_buffer = NULL;
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1037
1038 if (name[0] == '\'')
1039 {
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
1042 }
1043 else
1044 {
1045 int i;
1046
1047 for (i = 0; i <= len; i += 1)
1048 fold_buffer[i] = tolower (name[i]);
1049 }
1050
1051 return fold_buffer;
1052 }
1053
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056 static int
1057 is_lower_alphanum (const char c)
1058 {
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060 }
1061
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
1069
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074 static void
1075 ada_remove_trailing_digits (const char *encoded, int *len)
1076 {
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
1080
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1088 *len = i - 2;
1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1090 *len = i - 1;
1091 }
1092 }
1093
1094 /* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097 static void
1098 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099 {
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114 }
1115
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118 static void
1119 ada_remove_Xbn_suffix (const char *encoded, int *len)
1120 {
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134 }
1135
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1139
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1142 is returned. */
1143
1144 const char *
1145 ada_decode (const char *encoded)
1146 {
1147 int i, j;
1148 int len0;
1149 const char *p;
1150 char *decoded;
1151 int at_start_name;
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
1154
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (startswith (encoded, "_ada_"))
1159 encoded += 5;
1160
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded[0] == '_' || encoded[0] == '<')
1165 goto Suppress;
1166
1167 len0 = strlen (encoded);
1168
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
1171
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
1178 {
1179 if (p[3] == 'X')
1180 len0 = p - encoded;
1181 else
1182 goto Suppress;
1183 }
1184
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1190 len0 -= 3;
1191
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1197 len0 -= 2;
1198
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1203 len0 -= 1;
1204
1205 /* Make decoded big enough for possible expansion by operator name. */
1206
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
1209
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1213 {
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
1222 }
1223
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
1233 /* Is this a symbol function? */
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
1237
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
1255 at_start_name = 0;
1256
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1261 i += 2;
1262
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1350 {
1351 /* Replace '__' by '.'. */
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
1357 else
1358 {
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
1365 }
1366 decoded[j] = '\000';
1367
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
1373 goto Suppress;
1374
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
1379
1380 Suppress:
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
1385 else
1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 return decoded;
1388
1389 }
1390
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab *decoded_names_store;
1397
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1403 GSYMBOL).
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1407
1408 const char *
1409 ada_decode_symbol (const struct general_symbol_info *arg)
1410 {
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
1414
1415 if (!gsymbol->ada_mangled)
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
1418 struct obstack *obstack = gsymbol->language_specific.obstack;
1419
1420 gsymbol->ada_mangled = 1;
1421
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
1425 {
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
1433
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
1438 }
1439
1440 return *resultp;
1441 }
1442
1443 static char *
1444 ada_la_decode (const char *encoded, int options)
1445 {
1446 return xstrdup (ada_decode (encoded));
1447 }
1448
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1455
1456 static int
1457 match_name (const char *sym_name, const char *name, int wild)
1458 {
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
1462 return wild_match (sym_name, name) == 0;
1463 else
1464 {
1465 int len_name = strlen (name);
1466
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (startswith (sym_name, "_ada_")
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
1472 }
1473 }
1474 \f
1475
1476 /* Arrays */
1477
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501 void
1502 ada_fixup_array_indexes_type (struct type *index_desc_type)
1503 {
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531 }
1532
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1534
1535 static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538 };
1539
1540 /* Maximum number of array dimensions we are prepared to handle. */
1541
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1543
1544
1545 /* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
1547
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1550
1551 static struct type *
1552 desc_base_type (struct type *type)
1553 {
1554 if (type == NULL)
1555 return NULL;
1556 type = ada_check_typedef (type);
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 else
1565 return type;
1566 }
1567
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1569
1570 static int
1571 is_thin_pntr (struct type *type)
1572 {
1573 return
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576 }
1577
1578 /* The descriptor type for thin pointer type TYPE. */
1579
1580 static struct type *
1581 thin_descriptor_type (struct type *type)
1582 {
1583 struct type *base_type = desc_base_type (type);
1584
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
1589 else
1590 {
1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1592
1593 if (alt_type == NULL)
1594 return base_type;
1595 else
1596 return alt_type;
1597 }
1598 }
1599
1600 /* A pointer to the array data for thin-pointer value VAL. */
1601
1602 static struct value *
1603 thin_data_pntr (struct value *val)
1604 {
1605 struct type *type = ada_check_typedef (value_type (val));
1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1607
1608 data_type = lookup_pointer_type (data_type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1611 return value_cast (data_type, value_copy (val));
1612 else
1613 return value_from_longest (data_type, value_address (val));
1614 }
1615
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1617
1618 static int
1619 is_thick_pntr (struct type *type)
1620 {
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1628
1629 static struct type *
1630 desc_bounds_type (struct type *type)
1631 {
1632 struct type *r;
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
1642 return NULL;
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
1645 return ada_check_typedef (r);
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 }
1653 return NULL;
1654 }
1655
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
1659 static struct value *
1660 desc_bounds (struct value *arr)
1661 {
1662 struct type *type = ada_check_typedef (value_type (arr));
1663
1664 if (is_thin_pntr (type))
1665 {
1666 struct type *bounds_type =
1667 desc_bounds_type (thin_descriptor_type (type));
1668 LONGEST addr;
1669
1670 if (bounds_type == NULL)
1671 error (_("Bad GNAT array descriptor"));
1672
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1677 addr = value_as_long (arr);
1678 else
1679 addr = value_address (arr);
1680
1681 return
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
1684 }
1685
1686 else if (is_thick_pntr (type))
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
1707 else
1708 return NULL;
1709 }
1710
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
1714 static int
1715 fat_pntr_bounds_bitpos (struct type *type)
1716 {
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718 }
1719
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1722
1723 static int
1724 fat_pntr_bounds_bitsize (struct type *type)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1732 }
1733
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
1738
1739 static struct type *
1740 desc_data_target_type (struct type *type)
1741 {
1742 type = desc_base_type (type);
1743
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1747 else if (is_thick_pntr (type))
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
1761
1762 static struct value *
1763 desc_data (struct value *arr)
1764 {
1765 struct type *type = value_type (arr);
1766
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1771 _("Bad GNAT array descriptor"));
1772 else
1773 return NULL;
1774 }
1775
1776
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1779
1780 static int
1781 fat_pntr_data_bitpos (struct type *type)
1782 {
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784 }
1785
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1788
1789 static int
1790 fat_pntr_data_bitsize (struct type *type)
1791 {
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
1796 else
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static struct value *
1805 desc_one_bound (struct value *bounds, int i, int which)
1806 {
1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1808 _("Bad GNAT array descriptor bounds"));
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitpos (struct type *type, int i, int which)
1817 {
1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1819 }
1820
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
1825 static int
1826 desc_bound_bitsize (struct type *type, int i, int which)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1834 }
1835
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
1839 static struct type *
1840 desc_index_type (struct type *type, int i)
1841 {
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
1847 return NULL;
1848 }
1849
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
1853 static int
1854 desc_arity (struct type *type)
1855 {
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861 }
1862
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
1867 static int
1868 ada_is_direct_array_type (struct type *type)
1869 {
1870 if (type == NULL)
1871 return 0;
1872 type = ada_check_typedef (type);
1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type));
1875 }
1876
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1878 * to one. */
1879
1880 static int
1881 ada_is_array_type (struct type *type)
1882 {
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1891
1892 int
1893 ada_is_simple_array_type (struct type *type)
1894 {
1895 if (type == NULL)
1896 return 0;
1897 type = ada_check_typedef (type);
1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
1902 }
1903
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
1906 int
1907 ada_is_array_descriptor_type (struct type *type)
1908 {
1909 struct type *data_type = desc_data_target_type (type);
1910
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
1917 }
1918
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1922 is still needed. */
1923
1924 int
1925 ada_is_bogus_array_descriptor (struct type *type)
1926 {
1927 return
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1942 a descriptor. */
1943 struct type *
1944 ada_type_of_array (struct value *arr, int bounds)
1945 {
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
1948
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
1951
1952 if (!bounds)
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
1963 else
1964 {
1965 struct type *elt_type;
1966 int arity;
1967 struct value *descriptor;
1968
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
1971
1972 if (elt_type == NULL || arity == 0)
1973 return ada_check_typedef (value_type (arr));
1974
1975 descriptor = desc_bounds (arr);
1976 if (value_as_long (descriptor) == 0)
1977 return NULL;
1978 while (arity > 0)
1979 {
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
1984
1985 arity -= 1;
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
1989 elt_type = create_array_type (array_type, elt_type, range_type);
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
2011 }
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
2022 struct value *
2023 ada_coerce_to_simple_array_ptr (struct value *arr)
2024 {
2025 if (ada_is_array_descriptor_type (value_type (arr)))
2026 {
2027 struct type *arrType = ada_type_of_array (arr, 1);
2028
2029 if (arrType == NULL)
2030 return NULL;
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2042
2043 struct value *
2044 ada_coerce_to_simple_array (struct value *arr)
2045 {
2046 if (ada_is_array_descriptor_type (value_type (arr)))
2047 {
2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2049
2050 if (arrVal == NULL)
2051 error (_("Bounds unavailable for null array pointer."));
2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2053 return value_ind (arrVal);
2054 }
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
2057 else
2058 return arr;
2059 }
2060
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2064
2065 struct type *
2066 ada_coerce_to_simple_array_type (struct type *type)
2067 {
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
2070
2071 if (ada_is_array_descriptor_type (type))
2072 return ada_check_typedef (desc_data_target_type (type));
2073
2074 return type;
2075 }
2076
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
2079 static int
2080 ada_is_packed_array_type (struct type *type)
2081 {
2082 if (type == NULL)
2083 return 0;
2084 type = desc_base_type (type);
2085 type = ada_check_typedef (type);
2086 return
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089 }
2090
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094 int
2095 ada_is_constrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104 static int
2105 ada_is_unconstrained_packed_array_type (struct type *type)
2106 {
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109 }
2110
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114 static long
2115 decode_packed_array_bitsize (struct type *type)
2116 {
2117 const char *raw_name;
2118 const char *tail;
2119 long bits;
2120
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
2135 gdb_assert (tail != NULL);
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145 }
2146
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
2163
2164 static struct type *
2165 constrained_packed_array_type (struct type *type, long *elt_bits)
2166 {
2167 struct type *new_elt_type;
2168 struct type *new_type;
2169 struct type *index_type_desc;
2170 struct type *index_type;
2171 LONGEST low_bound, high_bound;
2172
2173 type = ada_check_typedef (type);
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
2184 new_type = alloc_type_copy (type);
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
2188 create_array_type (new_type, new_elt_type, index_type);
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
2198 else
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
2201 TYPE_LENGTH (new_type) =
2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2203 }
2204
2205 TYPE_FIXED_INSTANCE (new_type) = 1;
2206 return new_type;
2207 }
2208
2209 /* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
2211
2212 static struct type *
2213 decode_constrained_packed_array_type (struct type *type)
2214 {
2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
2216 char *name;
2217 const char *tail;
2218 struct type *shadow_type;
2219 long bits;
2220
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
2229 type = desc_base_type (type);
2230
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
2237 {
2238 lim_warning (_("could not find bounds information on packed array"));
2239 return NULL;
2240 }
2241 shadow_type = check_typedef (shadow_type);
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
2247 return NULL;
2248 }
2249
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
2252 }
2253
2254 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
2258 type length is set appropriately. */
2259
2260 static struct value *
2261 decode_constrained_packed_array (struct value *arr)
2262 {
2263 struct type *type;
2264
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2274 arr = value_ind (arr);
2275
2276 type = decode_constrained_packed_array_type (value_type (arr));
2277 if (type == NULL)
2278 {
2279 error (_("can't unpack array"));
2280 return NULL;
2281 }
2282
2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2284 && ada_is_modular_type (value_type (arr)))
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
2293 mod = ada_modulus (value_type (arr)) - 1;
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
2308 return coerce_unspec_val_to_type (arr, type);
2309 }
2310
2311
2312 /* The value of the element of packed array ARR at the ARITY indices
2313 given in IND. ARR must be a simple array. */
2314
2315 static struct value *
2316 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2317 {
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
2321 struct type *elt_type;
2322 struct value *v;
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
2326 elt_type = ada_check_typedef (value_type (arr));
2327 for (i = 0; i < arity; i += 1)
2328 {
2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
2334 else
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
2342 lim_warning (_("don't know bounds of array"));
2343 lowerbound = upperbound = 0;
2344 }
2345
2346 idx = pos_atr (ind[i]);
2347 if (idx < lowerbound || idx > upperbound)
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2353 }
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2359 bits, elt_type);
2360 return v;
2361 }
2362
2363 /* Non-zero iff TYPE includes negative integer values. */
2364
2365 static int
2366 has_negatives (struct type *type)
2367 {
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
2377 }
2378
2379
2380 /* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2383 assigning through the result will set the field fetched from.
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2388
2389 struct value *
2390 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2391 long offset, int bit_offset, int bit_size,
2392 struct type *type)
2393 {
2394 struct value *v;
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
2403 unsigned char *unpacked;
2404 unsigned long accum; /* Staging area for bits being transferred */
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2410
2411 type = ada_check_typedef (type);
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) (valaddr + offset);
2417 }
2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2419 {
2420 v = value_at (type, value_address (obj) + offset);
2421 type = value_type (v);
2422 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2423 {
2424 /* This can happen in the case of an array of dynamic objects,
2425 where the size of each element changes from element to element.
2426 In that case, we're initially given the array stride, but
2427 after resolving the element type, we find that its size is
2428 less than this stride. In that case, adjust bit_size to
2429 match TYPE's length, and recompute LEN accordingly. */
2430 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2431 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 }
2433 bytes = (unsigned char *) alloca (len);
2434 read_memory (value_address (v), bytes, len);
2435 }
2436 else
2437 {
2438 v = allocate_value (type);
2439 bytes = (unsigned char *) value_contents (obj) + offset;
2440 }
2441
2442 if (obj != NULL)
2443 {
2444 long new_offset = offset;
2445
2446 set_value_component_location (v, obj);
2447 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2448 set_value_bitsize (v, bit_size);
2449 if (value_bitpos (v) >= HOST_CHAR_BIT)
2450 {
2451 ++new_offset;
2452 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2453 }
2454 set_value_offset (v, new_offset);
2455
2456 /* Also set the parent value. This is needed when trying to
2457 assign a new value (in inferior memory). */
2458 set_value_parent (v, obj);
2459 }
2460 else
2461 set_value_bitsize (v, bit_size);
2462 unpacked = (unsigned char *) value_contents (v);
2463
2464 srcBitsLeft = bit_size;
2465 nsrc = len;
2466 ntarg = TYPE_LENGTH (type);
2467 sign = 0;
2468 if (bit_size == 0)
2469 {
2470 memset (unpacked, 0, TYPE_LENGTH (type));
2471 return v;
2472 }
2473 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2474 {
2475 src = len - 1;
2476 if (has_negatives (type)
2477 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 switch (TYPE_CODE (type))
2485 {
2486 case TYPE_CODE_ARRAY:
2487 case TYPE_CODE_UNION:
2488 case TYPE_CODE_STRUCT:
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
2494 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 ntarg = targ + 1;
2496 break;
2497 default:
2498 accumSize = 0;
2499 targ = TYPE_LENGTH (type) - 1;
2500 break;
2501 }
2502 }
2503 else
2504 {
2505 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2506
2507 src = targ = 0;
2508 unusedLS = bit_offset;
2509 accumSize = 0;
2510
2511 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2512 sign = ~0;
2513 }
2514
2515 accum = 0;
2516 while (nsrc > 0)
2517 {
2518 /* Mask for removing bits of the next source byte that are not
2519 part of the value. */
2520 unsigned int unusedMSMask =
2521 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2522 1;
2523 /* Sign-extend bits for this byte. */
2524 unsigned int signMask = sign & ~unusedMSMask;
2525
2526 accum |=
2527 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2528 accumSize += HOST_CHAR_BIT - unusedLS;
2529 if (accumSize >= HOST_CHAR_BIT)
2530 {
2531 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2532 accumSize -= HOST_CHAR_BIT;
2533 accum >>= HOST_CHAR_BIT;
2534 ntarg -= 1;
2535 targ += delta;
2536 }
2537 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2538 unusedLS = 0;
2539 nsrc -= 1;
2540 src += delta;
2541 }
2542 while (ntarg > 0)
2543 {
2544 accum |= sign << accumSize;
2545 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2546 accumSize -= HOST_CHAR_BIT;
2547 if (accumSize < 0)
2548 accumSize = 0;
2549 accum >>= HOST_CHAR_BIT;
2550 ntarg -= 1;
2551 targ += delta;
2552 }
2553
2554 if (is_dynamic_type (value_type (v)))
2555 v = value_from_contents_and_address (value_type (v), value_contents (v),
2556 0);
2557 return v;
2558 }
2559
2560 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2561 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2562 not overlap. */
2563 static void
2564 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2565 int src_offset, int n, int bits_big_endian_p)
2566 {
2567 unsigned int accum, mask;
2568 int accum_bits, chunk_size;
2569
2570 target += targ_offset / HOST_CHAR_BIT;
2571 targ_offset %= HOST_CHAR_BIT;
2572 source += src_offset / HOST_CHAR_BIT;
2573 src_offset %= HOST_CHAR_BIT;
2574 if (bits_big_endian_p)
2575 {
2576 accum = (unsigned char) *source;
2577 source += 1;
2578 accum_bits = HOST_CHAR_BIT - src_offset;
2579
2580 while (n > 0)
2581 {
2582 int unused_right;
2583
2584 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2585 accum_bits += HOST_CHAR_BIT;
2586 source += 1;
2587 chunk_size = HOST_CHAR_BIT - targ_offset;
2588 if (chunk_size > n)
2589 chunk_size = n;
2590 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2591 mask = ((1 << chunk_size) - 1) << unused_right;
2592 *target =
2593 (*target & ~mask)
2594 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2595 n -= chunk_size;
2596 accum_bits -= chunk_size;
2597 target += 1;
2598 targ_offset = 0;
2599 }
2600 }
2601 else
2602 {
2603 accum = (unsigned char) *source >> src_offset;
2604 source += 1;
2605 accum_bits = HOST_CHAR_BIT - src_offset;
2606
2607 while (n > 0)
2608 {
2609 accum = accum + ((unsigned char) *source << accum_bits);
2610 accum_bits += HOST_CHAR_BIT;
2611 source += 1;
2612 chunk_size = HOST_CHAR_BIT - targ_offset;
2613 if (chunk_size > n)
2614 chunk_size = n;
2615 mask = ((1 << chunk_size) - 1) << targ_offset;
2616 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2617 n -= chunk_size;
2618 accum_bits -= chunk_size;
2619 accum >>= chunk_size;
2620 target += 1;
2621 targ_offset = 0;
2622 }
2623 }
2624 }
2625
2626 /* Store the contents of FROMVAL into the location of TOVAL.
2627 Return a new value with the location of TOVAL and contents of
2628 FROMVAL. Handles assignment into packed fields that have
2629 floating-point or non-scalar types. */
2630
2631 static struct value *
2632 ada_value_assign (struct value *toval, struct value *fromval)
2633 {
2634 struct type *type = value_type (toval);
2635 int bits = value_bitsize (toval);
2636
2637 toval = ada_coerce_ref (toval);
2638 fromval = ada_coerce_ref (fromval);
2639
2640 if (ada_is_direct_array_type (value_type (toval)))
2641 toval = ada_coerce_to_simple_array (toval);
2642 if (ada_is_direct_array_type (value_type (fromval)))
2643 fromval = ada_coerce_to_simple_array (fromval);
2644
2645 if (!deprecated_value_modifiable (toval))
2646 error (_("Left operand of assignment is not a modifiable lvalue."));
2647
2648 if (VALUE_LVAL (toval) == lval_memory
2649 && bits > 0
2650 && (TYPE_CODE (type) == TYPE_CODE_FLT
2651 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2652 {
2653 int len = (value_bitpos (toval)
2654 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2655 int from_size;
2656 gdb_byte *buffer = alloca (len);
2657 struct value *val;
2658 CORE_ADDR to_addr = value_address (toval);
2659
2660 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2661 fromval = value_cast (type, fromval);
2662
2663 read_memory (to_addr, buffer, len);
2664 from_size = value_bitsize (fromval);
2665 if (from_size == 0)
2666 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2667 if (gdbarch_bits_big_endian (get_type_arch (type)))
2668 move_bits (buffer, value_bitpos (toval),
2669 value_contents (fromval), from_size - bits, bits, 1);
2670 else
2671 move_bits (buffer, value_bitpos (toval),
2672 value_contents (fromval), 0, bits, 0);
2673 write_memory_with_notification (to_addr, buffer, len);
2674
2675 val = value_copy (toval);
2676 memcpy (value_contents_raw (val), value_contents (fromval),
2677 TYPE_LENGTH (type));
2678 deprecated_set_value_type (val, type);
2679
2680 return val;
2681 }
2682
2683 return value_assign (toval, fromval);
2684 }
2685
2686
2687 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2688 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2689 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2690 COMPONENT, and not the inferior's memory. The current contents
2691 of COMPONENT are ignored.
2692
2693 Although not part of the initial design, this function also works
2694 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2695 had a null address, and COMPONENT had an address which is equal to
2696 its offset inside CONTAINER. */
2697
2698 static void
2699 value_assign_to_component (struct value *container, struct value *component,
2700 struct value *val)
2701 {
2702 LONGEST offset_in_container =
2703 (LONGEST) (value_address (component) - value_address (container));
2704 int bit_offset_in_container =
2705 value_bitpos (component) - value_bitpos (container);
2706 int bits;
2707
2708 val = value_cast (value_type (component), val);
2709
2710 if (value_bitsize (component) == 0)
2711 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2712 else
2713 bits = value_bitsize (component);
2714
2715 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2716 move_bits (value_contents_writeable (container) + offset_in_container,
2717 value_bitpos (container) + bit_offset_in_container,
2718 value_contents (val),
2719 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2720 bits, 1);
2721 else
2722 move_bits (value_contents_writeable (container) + offset_in_container,
2723 value_bitpos (container) + bit_offset_in_container,
2724 value_contents (val), 0, bits, 0);
2725 }
2726
2727 /* The value of the element of array ARR at the ARITY indices given in IND.
2728 ARR may be either a simple array, GNAT array descriptor, or pointer
2729 thereto. */
2730
2731 struct value *
2732 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2733 {
2734 int k;
2735 struct value *elt;
2736 struct type *elt_type;
2737
2738 elt = ada_coerce_to_simple_array (arr);
2739
2740 elt_type = ada_check_typedef (value_type (elt));
2741 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2742 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2743 return value_subscript_packed (elt, arity, ind);
2744
2745 for (k = 0; k < arity; k += 1)
2746 {
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749 elt = value_subscript (elt, pos_atr (ind[k]));
2750 }
2751 return elt;
2752 }
2753
2754 /* Assuming ARR is a pointer to a GDB array, the value of the element
2755 of *ARR at the ARITY indices given in IND.
2756 Does not read the entire array into memory. */
2757
2758 static struct value *
2759 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2760 {
2761 int k;
2762 struct type *type
2763 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2764
2765 for (k = 0; k < arity; k += 1)
2766 {
2767 LONGEST lwb, upb;
2768 struct value *lwb_value;
2769
2770 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2771 error (_("too many subscripts (%d expected)"), k);
2772 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2773 value_copy (arr));
2774 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2775 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2776 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2777 type = TYPE_TARGET_TYPE (type);
2778 }
2779
2780 return value_ind (arr);
2781 }
2782
2783 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2784 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2785 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2786 this array is LOW, as per Ada rules. */
2787 static struct value *
2788 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2789 int low, int high)
2790 {
2791 struct type *type0 = ada_check_typedef (type);
2792 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2793 struct type *index_type
2794 = create_static_range_type (NULL, base_index_type, low, high);
2795 struct type *slice_type =
2796 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2797 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2798 LONGEST base_low_pos, low_pos;
2799 CORE_ADDR base;
2800
2801 if (!discrete_position (base_index_type, low, &low_pos)
2802 || !discrete_position (base_index_type, base_low, &base_low_pos))
2803 {
2804 warning (_("unable to get positions in slice, use bounds instead"));
2805 low_pos = low;
2806 base_low_pos = base_low;
2807 }
2808
2809 base = value_as_address (array_ptr)
2810 + ((low_pos - base_low_pos)
2811 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2812 return value_at_lazy (slice_type, base);
2813 }
2814
2815
2816 static struct value *
2817 ada_value_slice (struct value *array, int low, int high)
2818 {
2819 struct type *type = ada_check_typedef (value_type (array));
2820 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2821 struct type *index_type
2822 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2823 struct type *slice_type =
2824 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2825 LONGEST low_pos, high_pos;
2826
2827 if (!discrete_position (base_index_type, low, &low_pos)
2828 || !discrete_position (base_index_type, high, &high_pos))
2829 {
2830 warning (_("unable to get positions in slice, use bounds instead"));
2831 low_pos = low;
2832 high_pos = high;
2833 }
2834
2835 return value_cast (slice_type,
2836 value_slice (array, low, high_pos - low_pos + 1));
2837 }
2838
2839 /* If type is a record type in the form of a standard GNAT array
2840 descriptor, returns the number of dimensions for type. If arr is a
2841 simple array, returns the number of "array of"s that prefix its
2842 type designation. Otherwise, returns 0. */
2843
2844 int
2845 ada_array_arity (struct type *type)
2846 {
2847 int arity;
2848
2849 if (type == NULL)
2850 return 0;
2851
2852 type = desc_base_type (type);
2853
2854 arity = 0;
2855 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2856 return desc_arity (desc_bounds_type (type));
2857 else
2858 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2859 {
2860 arity += 1;
2861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2862 }
2863
2864 return arity;
2865 }
2866
2867 /* If TYPE is a record type in the form of a standard GNAT array
2868 descriptor or a simple array type, returns the element type for
2869 TYPE after indexing by NINDICES indices, or by all indices if
2870 NINDICES is -1. Otherwise, returns NULL. */
2871
2872 struct type *
2873 ada_array_element_type (struct type *type, int nindices)
2874 {
2875 type = desc_base_type (type);
2876
2877 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2878 {
2879 int k;
2880 struct type *p_array_type;
2881
2882 p_array_type = desc_data_target_type (type);
2883
2884 k = ada_array_arity (type);
2885 if (k == 0)
2886 return NULL;
2887
2888 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2889 if (nindices >= 0 && k > nindices)
2890 k = nindices;
2891 while (k > 0 && p_array_type != NULL)
2892 {
2893 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2894 k -= 1;
2895 }
2896 return p_array_type;
2897 }
2898 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2899 {
2900 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2901 {
2902 type = TYPE_TARGET_TYPE (type);
2903 nindices -= 1;
2904 }
2905 return type;
2906 }
2907
2908 return NULL;
2909 }
2910
2911 /* The type of nth index in arrays of given type (n numbering from 1).
2912 Does not examine memory. Throws an error if N is invalid or TYPE
2913 is not an array type. NAME is the name of the Ada attribute being
2914 evaluated ('range, 'first, 'last, or 'length); it is used in building
2915 the error message. */
2916
2917 static struct type *
2918 ada_index_type (struct type *type, int n, const char *name)
2919 {
2920 struct type *result_type;
2921
2922 type = desc_base_type (type);
2923
2924 if (n < 0 || n > ada_array_arity (type))
2925 error (_("invalid dimension number to '%s"), name);
2926
2927 if (ada_is_simple_array_type (type))
2928 {
2929 int i;
2930
2931 for (i = 1; i < n; i += 1)
2932 type = TYPE_TARGET_TYPE (type);
2933 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2934 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2935 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2936 perhaps stabsread.c would make more sense. */
2937 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2938 result_type = NULL;
2939 }
2940 else
2941 {
2942 result_type = desc_index_type (desc_bounds_type (type), n);
2943 if (result_type == NULL)
2944 error (_("attempt to take bound of something that is not an array"));
2945 }
2946
2947 return result_type;
2948 }
2949
2950 /* Given that arr is an array type, returns the lower bound of the
2951 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2952 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2953 array-descriptor type. It works for other arrays with bounds supplied
2954 by run-time quantities other than discriminants. */
2955
2956 static LONGEST
2957 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2958 {
2959 struct type *type, *index_type_desc, *index_type;
2960 int i;
2961
2962 gdb_assert (which == 0 || which == 1);
2963
2964 if (ada_is_constrained_packed_array_type (arr_type))
2965 arr_type = decode_constrained_packed_array_type (arr_type);
2966
2967 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2968 return (LONGEST) - which;
2969
2970 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2971 type = TYPE_TARGET_TYPE (arr_type);
2972 else
2973 type = arr_type;
2974
2975 if (TYPE_FIXED_INSTANCE (type))
2976 {
2977 /* The array has already been fixed, so we do not need to
2978 check the parallel ___XA type again. That encoding has
2979 already been applied, so ignore it now. */
2980 index_type_desc = NULL;
2981 }
2982 else
2983 {
2984 index_type_desc = ada_find_parallel_type (type, "___XA");
2985 ada_fixup_array_indexes_type (index_type_desc);
2986 }
2987
2988 if (index_type_desc != NULL)
2989 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2990 NULL);
2991 else
2992 {
2993 struct type *elt_type = check_typedef (type);
2994
2995 for (i = 1; i < n; i++)
2996 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2997
2998 index_type = TYPE_INDEX_TYPE (elt_type);
2999 }
3000
3001 return
3002 (LONGEST) (which == 0
3003 ? ada_discrete_type_low_bound (index_type)
3004 : ada_discrete_type_high_bound (index_type));
3005 }
3006
3007 /* Given that arr is an array value, returns the lower bound of the
3008 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3009 WHICH is 1. This routine will also work for arrays with bounds
3010 supplied by run-time quantities other than discriminants. */
3011
3012 static LONGEST
3013 ada_array_bound (struct value *arr, int n, int which)
3014 {
3015 struct type *arr_type;
3016
3017 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3018 arr = value_ind (arr);
3019 arr_type = value_enclosing_type (arr);
3020
3021 if (ada_is_constrained_packed_array_type (arr_type))
3022 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3023 else if (ada_is_simple_array_type (arr_type))
3024 return ada_array_bound_from_type (arr_type, n, which);
3025 else
3026 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3027 }
3028
3029 /* Given that arr is an array value, returns the length of the
3030 nth index. This routine will also work for arrays with bounds
3031 supplied by run-time quantities other than discriminants.
3032 Does not work for arrays indexed by enumeration types with representation
3033 clauses at the moment. */
3034
3035 static LONGEST
3036 ada_array_length (struct value *arr, int n)
3037 {
3038 struct type *arr_type, *index_type;
3039 int low, high;
3040
3041 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3042 arr = value_ind (arr);
3043 arr_type = value_enclosing_type (arr);
3044
3045 if (ada_is_constrained_packed_array_type (arr_type))
3046 return ada_array_length (decode_constrained_packed_array (arr), n);
3047
3048 if (ada_is_simple_array_type (arr_type))
3049 {
3050 low = ada_array_bound_from_type (arr_type, n, 0);
3051 high = ada_array_bound_from_type (arr_type, n, 1);
3052 }
3053 else
3054 {
3055 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3056 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3057 }
3058
3059 arr_type = check_typedef (arr_type);
3060 index_type = TYPE_INDEX_TYPE (arr_type);
3061 if (index_type != NULL)
3062 {
3063 struct type *base_type;
3064 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3065 base_type = TYPE_TARGET_TYPE (index_type);
3066 else
3067 base_type = index_type;
3068
3069 low = pos_atr (value_from_longest (base_type, low));
3070 high = pos_atr (value_from_longest (base_type, high));
3071 }
3072 return high - low + 1;
3073 }
3074
3075 /* An empty array whose type is that of ARR_TYPE (an array type),
3076 with bounds LOW to LOW-1. */
3077
3078 static struct value *
3079 empty_array (struct type *arr_type, int low)
3080 {
3081 struct type *arr_type0 = ada_check_typedef (arr_type);
3082 struct type *index_type
3083 = create_static_range_type
3084 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3085 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3086
3087 return allocate_value (create_array_type (NULL, elt_type, index_type));
3088 }
3089 \f
3090
3091 /* Name resolution */
3092
3093 /* The "decoded" name for the user-definable Ada operator corresponding
3094 to OP. */
3095
3096 static const char *
3097 ada_decoded_op_name (enum exp_opcode op)
3098 {
3099 int i;
3100
3101 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3102 {
3103 if (ada_opname_table[i].op == op)
3104 return ada_opname_table[i].decoded;
3105 }
3106 error (_("Could not find operator name for opcode"));
3107 }
3108
3109
3110 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3111 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3112 undefined namespace) and converts operators that are
3113 user-defined into appropriate function calls. If CONTEXT_TYPE is
3114 non-null, it provides a preferred result type [at the moment, only
3115 type void has any effect---causing procedures to be preferred over
3116 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3117 return type is preferred. May change (expand) *EXP. */
3118
3119 static void
3120 resolve (struct expression **expp, int void_context_p)
3121 {
3122 struct type *context_type = NULL;
3123 int pc = 0;
3124
3125 if (void_context_p)
3126 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3127
3128 resolve_subexp (expp, &pc, 1, context_type);
3129 }
3130
3131 /* Resolve the operator of the subexpression beginning at
3132 position *POS of *EXPP. "Resolving" consists of replacing
3133 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3134 with their resolutions, replacing built-in operators with
3135 function calls to user-defined operators, where appropriate, and,
3136 when DEPROCEDURE_P is non-zero, converting function-valued variables
3137 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3138 are as in ada_resolve, above. */
3139
3140 static struct value *
3141 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3142 struct type *context_type)
3143 {
3144 int pc = *pos;
3145 int i;
3146 struct expression *exp; /* Convenience: == *expp. */
3147 enum exp_opcode op = (*expp)->elts[pc].opcode;
3148 struct value **argvec; /* Vector of operand types (alloca'ed). */
3149 int nargs; /* Number of operands. */
3150 int oplen;
3151
3152 argvec = NULL;
3153 nargs = 0;
3154 exp = *expp;
3155
3156 /* Pass one: resolve operands, saving their types and updating *pos,
3157 if needed. */
3158 switch (op)
3159 {
3160 case OP_FUNCALL:
3161 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3162 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3163 *pos += 7;
3164 else
3165 {
3166 *pos += 3;
3167 resolve_subexp (expp, pos, 0, NULL);
3168 }
3169 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3170 break;
3171
3172 case UNOP_ADDR:
3173 *pos += 1;
3174 resolve_subexp (expp, pos, 0, NULL);
3175 break;
3176
3177 case UNOP_QUAL:
3178 *pos += 3;
3179 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3180 break;
3181
3182 case OP_ATR_MODULUS:
3183 case OP_ATR_SIZE:
3184 case OP_ATR_TAG:
3185 case OP_ATR_FIRST:
3186 case OP_ATR_LAST:
3187 case OP_ATR_LENGTH:
3188 case OP_ATR_POS:
3189 case OP_ATR_VAL:
3190 case OP_ATR_MIN:
3191 case OP_ATR_MAX:
3192 case TERNOP_IN_RANGE:
3193 case BINOP_IN_BOUNDS:
3194 case UNOP_IN_RANGE:
3195 case OP_AGGREGATE:
3196 case OP_OTHERS:
3197 case OP_CHOICES:
3198 case OP_POSITIONAL:
3199 case OP_DISCRETE_RANGE:
3200 case OP_NAME:
3201 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3202 *pos += oplen;
3203 break;
3204
3205 case BINOP_ASSIGN:
3206 {
3207 struct value *arg1;
3208
3209 *pos += 1;
3210 arg1 = resolve_subexp (expp, pos, 0, NULL);
3211 if (arg1 == NULL)
3212 resolve_subexp (expp, pos, 1, NULL);
3213 else
3214 resolve_subexp (expp, pos, 1, value_type (arg1));
3215 break;
3216 }
3217
3218 case UNOP_CAST:
3219 *pos += 3;
3220 nargs = 1;
3221 break;
3222
3223 case BINOP_ADD:
3224 case BINOP_SUB:
3225 case BINOP_MUL:
3226 case BINOP_DIV:
3227 case BINOP_REM:
3228 case BINOP_MOD:
3229 case BINOP_EXP:
3230 case BINOP_CONCAT:
3231 case BINOP_LOGICAL_AND:
3232 case BINOP_LOGICAL_OR:
3233 case BINOP_BITWISE_AND:
3234 case BINOP_BITWISE_IOR:
3235 case BINOP_BITWISE_XOR:
3236
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243
3244 case BINOP_REPEAT:
3245 case BINOP_SUBSCRIPT:
3246 case BINOP_COMMA:
3247 *pos += 1;
3248 nargs = 2;
3249 break;
3250
3251 case UNOP_NEG:
3252 case UNOP_PLUS:
3253 case UNOP_LOGICAL_NOT:
3254 case UNOP_ABS:
3255 case UNOP_IND:
3256 *pos += 1;
3257 nargs = 1;
3258 break;
3259
3260 case OP_LONG:
3261 case OP_DOUBLE:
3262 case OP_VAR_VALUE:
3263 *pos += 4;
3264 break;
3265
3266 case OP_TYPE:
3267 case OP_BOOL:
3268 case OP_LAST:
3269 case OP_INTERNALVAR:
3270 *pos += 3;
3271 break;
3272
3273 case UNOP_MEMVAL:
3274 *pos += 3;
3275 nargs = 1;
3276 break;
3277
3278 case OP_REGISTER:
3279 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3280 break;
3281
3282 case STRUCTOP_STRUCT:
3283 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3284 nargs = 1;
3285 break;
3286
3287 case TERNOP_SLICE:
3288 *pos += 1;
3289 nargs = 3;
3290 break;
3291
3292 case OP_STRING:
3293 break;
3294
3295 default:
3296 error (_("Unexpected operator during name resolution"));
3297 }
3298
3299 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3300 for (i = 0; i < nargs; i += 1)
3301 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3302 argvec[i] = NULL;
3303 exp = *expp;
3304
3305 /* Pass two: perform any resolution on principal operator. */
3306 switch (op)
3307 {
3308 default:
3309 break;
3310
3311 case OP_VAR_VALUE:
3312 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3313 {
3314 struct block_symbol *candidates;
3315 int n_candidates;
3316
3317 n_candidates =
3318 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3319 (exp->elts[pc + 2].symbol),
3320 exp->elts[pc + 1].block, VAR_DOMAIN,
3321 &candidates);
3322
3323 if (n_candidates > 1)
3324 {
3325 /* Types tend to get re-introduced locally, so if there
3326 are any local symbols that are not types, first filter
3327 out all types. */
3328 int j;
3329 for (j = 0; j < n_candidates; j += 1)
3330 switch (SYMBOL_CLASS (candidates[j].symbol))
3331 {
3332 case LOC_REGISTER:
3333 case LOC_ARG:
3334 case LOC_REF_ARG:
3335 case LOC_REGPARM_ADDR:
3336 case LOC_LOCAL:
3337 case LOC_COMPUTED:
3338 goto FoundNonType;
3339 default:
3340 break;
3341 }
3342 FoundNonType:
3343 if (j < n_candidates)
3344 {
3345 j = 0;
3346 while (j < n_candidates)
3347 {
3348 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3349 {
3350 candidates[j] = candidates[n_candidates - 1];
3351 n_candidates -= 1;
3352 }
3353 else
3354 j += 1;
3355 }
3356 }
3357 }
3358
3359 if (n_candidates == 0)
3360 error (_("No definition found for %s"),
3361 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3362 else if (n_candidates == 1)
3363 i = 0;
3364 else if (deprocedure_p
3365 && !is_nonfunction (candidates, n_candidates))
3366 {
3367 i = ada_resolve_function
3368 (candidates, n_candidates, NULL, 0,
3369 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3370 context_type);
3371 if (i < 0)
3372 error (_("Could not find a match for %s"),
3373 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3374 }
3375 else
3376 {
3377 printf_filtered (_("Multiple matches for %s\n"),
3378 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3379 user_select_syms (candidates, n_candidates, 1);
3380 i = 0;
3381 }
3382
3383 exp->elts[pc + 1].block = candidates[i].block;
3384 exp->elts[pc + 2].symbol = candidates[i].symbol;
3385 if (innermost_block == NULL
3386 || contained_in (candidates[i].block, innermost_block))
3387 innermost_block = candidates[i].block;
3388 }
3389
3390 if (deprocedure_p
3391 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3392 == TYPE_CODE_FUNC))
3393 {
3394 replace_operator_with_call (expp, pc, 0, 0,
3395 exp->elts[pc + 2].symbol,
3396 exp->elts[pc + 1].block);
3397 exp = *expp;
3398 }
3399 break;
3400
3401 case OP_FUNCALL:
3402 {
3403 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3404 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3405 {
3406 struct block_symbol *candidates;
3407 int n_candidates;
3408
3409 n_candidates =
3410 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3411 (exp->elts[pc + 5].symbol),
3412 exp->elts[pc + 4].block, VAR_DOMAIN,
3413 &candidates);
3414 if (n_candidates == 1)
3415 i = 0;
3416 else
3417 {
3418 i = ada_resolve_function
3419 (candidates, n_candidates,
3420 argvec, nargs,
3421 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3422 context_type);
3423 if (i < 0)
3424 error (_("Could not find a match for %s"),
3425 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3426 }
3427
3428 exp->elts[pc + 4].block = candidates[i].block;
3429 exp->elts[pc + 5].symbol = candidates[i].symbol;
3430 if (innermost_block == NULL
3431 || contained_in (candidates[i].block, innermost_block))
3432 innermost_block = candidates[i].block;
3433 }
3434 }
3435 break;
3436 case BINOP_ADD:
3437 case BINOP_SUB:
3438 case BINOP_MUL:
3439 case BINOP_DIV:
3440 case BINOP_REM:
3441 case BINOP_MOD:
3442 case BINOP_CONCAT:
3443 case BINOP_BITWISE_AND:
3444 case BINOP_BITWISE_IOR:
3445 case BINOP_BITWISE_XOR:
3446 case BINOP_EQUAL:
3447 case BINOP_NOTEQUAL:
3448 case BINOP_LESS:
3449 case BINOP_GTR:
3450 case BINOP_LEQ:
3451 case BINOP_GEQ:
3452 case BINOP_EXP:
3453 case UNOP_NEG:
3454 case UNOP_PLUS:
3455 case UNOP_LOGICAL_NOT:
3456 case UNOP_ABS:
3457 if (possible_user_operator_p (op, argvec))
3458 {
3459 struct block_symbol *candidates;
3460 int n_candidates;
3461
3462 n_candidates =
3463 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3464 (struct block *) NULL, VAR_DOMAIN,
3465 &candidates);
3466 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3467 ada_decoded_op_name (op), NULL);
3468 if (i < 0)
3469 break;
3470
3471 replace_operator_with_call (expp, pc, nargs, 1,
3472 candidates[i].symbol,
3473 candidates[i].block);
3474 exp = *expp;
3475 }
3476 break;
3477
3478 case OP_TYPE:
3479 case OP_REGISTER:
3480 return NULL;
3481 }
3482
3483 *pos = pc;
3484 return evaluate_subexp_type (exp, pos);
3485 }
3486
3487 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3488 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3489 a non-pointer. */
3490 /* The term "match" here is rather loose. The match is heuristic and
3491 liberal. */
3492
3493 static int
3494 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3495 {
3496 ftype = ada_check_typedef (ftype);
3497 atype = ada_check_typedef (atype);
3498
3499 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3500 ftype = TYPE_TARGET_TYPE (ftype);
3501 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3502 atype = TYPE_TARGET_TYPE (atype);
3503
3504 switch (TYPE_CODE (ftype))
3505 {
3506 default:
3507 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3508 case TYPE_CODE_PTR:
3509 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3510 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3511 TYPE_TARGET_TYPE (atype), 0);
3512 else
3513 return (may_deref
3514 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3515 case TYPE_CODE_INT:
3516 case TYPE_CODE_ENUM:
3517 case TYPE_CODE_RANGE:
3518 switch (TYPE_CODE (atype))
3519 {
3520 case TYPE_CODE_INT:
3521 case TYPE_CODE_ENUM:
3522 case TYPE_CODE_RANGE:
3523 return 1;
3524 default:
3525 return 0;
3526 }
3527
3528 case TYPE_CODE_ARRAY:
3529 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3530 || ada_is_array_descriptor_type (atype));
3531
3532 case TYPE_CODE_STRUCT:
3533 if (ada_is_array_descriptor_type (ftype))
3534 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3535 || ada_is_array_descriptor_type (atype));
3536 else
3537 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3538 && !ada_is_array_descriptor_type (atype));
3539
3540 case TYPE_CODE_UNION:
3541 case TYPE_CODE_FLT:
3542 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3543 }
3544 }
3545
3546 /* Return non-zero if the formals of FUNC "sufficiently match" the
3547 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3548 may also be an enumeral, in which case it is treated as a 0-
3549 argument function. */
3550
3551 static int
3552 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3553 {
3554 int i;
3555 struct type *func_type = SYMBOL_TYPE (func);
3556
3557 if (SYMBOL_CLASS (func) == LOC_CONST
3558 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3559 return (n_actuals == 0);
3560 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3561 return 0;
3562
3563 if (TYPE_NFIELDS (func_type) != n_actuals)
3564 return 0;
3565
3566 for (i = 0; i < n_actuals; i += 1)
3567 {
3568 if (actuals[i] == NULL)
3569 return 0;
3570 else
3571 {
3572 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3573 i));
3574 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3575
3576 if (!ada_type_match (ftype, atype, 1))
3577 return 0;
3578 }
3579 }
3580 return 1;
3581 }
3582
3583 /* False iff function type FUNC_TYPE definitely does not produce a value
3584 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3585 FUNC_TYPE is not a valid function type with a non-null return type
3586 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3587
3588 static int
3589 return_match (struct type *func_type, struct type *context_type)
3590 {
3591 struct type *return_type;
3592
3593 if (func_type == NULL)
3594 return 1;
3595
3596 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3597 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3598 else
3599 return_type = get_base_type (func_type);
3600 if (return_type == NULL)
3601 return 1;
3602
3603 context_type = get_base_type (context_type);
3604
3605 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3606 return context_type == NULL || return_type == context_type;
3607 else if (context_type == NULL)
3608 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3609 else
3610 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3611 }
3612
3613
3614 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3615 function (if any) that matches the types of the NARGS arguments in
3616 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3617 that returns that type, then eliminate matches that don't. If
3618 CONTEXT_TYPE is void and there is at least one match that does not
3619 return void, eliminate all matches that do.
3620
3621 Asks the user if there is more than one match remaining. Returns -1
3622 if there is no such symbol or none is selected. NAME is used
3623 solely for messages. May re-arrange and modify SYMS in
3624 the process; the index returned is for the modified vector. */
3625
3626 static int
3627 ada_resolve_function (struct block_symbol syms[],
3628 int nsyms, struct value **args, int nargs,
3629 const char *name, struct type *context_type)
3630 {
3631 int fallback;
3632 int k;
3633 int m; /* Number of hits */
3634
3635 m = 0;
3636 /* In the first pass of the loop, we only accept functions matching
3637 context_type. If none are found, we add a second pass of the loop
3638 where every function is accepted. */
3639 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3640 {
3641 for (k = 0; k < nsyms; k += 1)
3642 {
3643 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3644
3645 if (ada_args_match (syms[k].symbol, args, nargs)
3646 && (fallback || return_match (type, context_type)))
3647 {
3648 syms[m] = syms[k];
3649 m += 1;
3650 }
3651 }
3652 }
3653
3654 if (m == 0)
3655 return -1;
3656 else if (m > 1)
3657 {
3658 printf_filtered (_("Multiple matches for %s\n"), name);
3659 user_select_syms (syms, m, 1);
3660 return 0;
3661 }
3662 return 0;
3663 }
3664
3665 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3666 in a listing of choices during disambiguation (see sort_choices, below).
3667 The idea is that overloadings of a subprogram name from the
3668 same package should sort in their source order. We settle for ordering
3669 such symbols by their trailing number (__N or $N). */
3670
3671 static int
3672 encoded_ordered_before (const char *N0, const char *N1)
3673 {
3674 if (N1 == NULL)
3675 return 0;
3676 else if (N0 == NULL)
3677 return 1;
3678 else
3679 {
3680 int k0, k1;
3681
3682 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3683 ;
3684 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3685 ;
3686 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3687 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3688 {
3689 int n0, n1;
3690
3691 n0 = k0;
3692 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3693 n0 -= 1;
3694 n1 = k1;
3695 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3696 n1 -= 1;
3697 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3698 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3699 }
3700 return (strcmp (N0, N1) < 0);
3701 }
3702 }
3703
3704 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3705 encoded names. */
3706
3707 static void
3708 sort_choices (struct block_symbol syms[], int nsyms)
3709 {
3710 int i;
3711
3712 for (i = 1; i < nsyms; i += 1)
3713 {
3714 struct block_symbol sym = syms[i];
3715 int j;
3716
3717 for (j = i - 1; j >= 0; j -= 1)
3718 {
3719 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3720 SYMBOL_LINKAGE_NAME (sym.symbol)))
3721 break;
3722 syms[j + 1] = syms[j];
3723 }
3724 syms[j + 1] = sym;
3725 }
3726 }
3727
3728 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3729 by asking the user (if necessary), returning the number selected,
3730 and setting the first elements of SYMS items. Error if no symbols
3731 selected. */
3732
3733 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3734 to be re-integrated one of these days. */
3735
3736 int
3737 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3738 {
3739 int i;
3740 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3741 int n_chosen;
3742 int first_choice = (max_results == 1) ? 1 : 2;
3743 const char *select_mode = multiple_symbols_select_mode ();
3744
3745 if (max_results < 1)
3746 error (_("Request to select 0 symbols!"));
3747 if (nsyms <= 1)
3748 return nsyms;
3749
3750 if (select_mode == multiple_symbols_cancel)
3751 error (_("\
3752 canceled because the command is ambiguous\n\
3753 See set/show multiple-symbol."));
3754
3755 /* If select_mode is "all", then return all possible symbols.
3756 Only do that if more than one symbol can be selected, of course.
3757 Otherwise, display the menu as usual. */
3758 if (select_mode == multiple_symbols_all && max_results > 1)
3759 return nsyms;
3760
3761 printf_unfiltered (_("[0] cancel\n"));
3762 if (max_results > 1)
3763 printf_unfiltered (_("[1] all\n"));
3764
3765 sort_choices (syms, nsyms);
3766
3767 for (i = 0; i < nsyms; i += 1)
3768 {
3769 if (syms[i].symbol == NULL)
3770 continue;
3771
3772 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3773 {
3774 struct symtab_and_line sal =
3775 find_function_start_sal (syms[i].symbol, 1);
3776
3777 if (sal.symtab == NULL)
3778 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3779 i + first_choice,
3780 SYMBOL_PRINT_NAME (syms[i].symbol),
3781 sal.line);
3782 else
3783 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3784 SYMBOL_PRINT_NAME (syms[i].symbol),
3785 symtab_to_filename_for_display (sal.symtab),
3786 sal.line);
3787 continue;
3788 }
3789 else
3790 {
3791 int is_enumeral =
3792 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3793 && SYMBOL_TYPE (syms[i].symbol) != NULL
3794 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3795 struct symtab *symtab = NULL;
3796
3797 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3798 symtab = symbol_symtab (syms[i].symbol);
3799
3800 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3801 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3802 i + first_choice,
3803 SYMBOL_PRINT_NAME (syms[i].symbol),
3804 symtab_to_filename_for_display (symtab),
3805 SYMBOL_LINE (syms[i].symbol));
3806 else if (is_enumeral
3807 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3808 {
3809 printf_unfiltered (("[%d] "), i + first_choice);
3810 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3811 gdb_stdout, -1, 0, &type_print_raw_options);
3812 printf_unfiltered (_("'(%s) (enumeral)\n"),
3813 SYMBOL_PRINT_NAME (syms[i].symbol));
3814 }
3815 else if (symtab != NULL)
3816 printf_unfiltered (is_enumeral
3817 ? _("[%d] %s in %s (enumeral)\n")
3818 : _("[%d] %s at %s:?\n"),
3819 i + first_choice,
3820 SYMBOL_PRINT_NAME (syms[i].symbol),
3821 symtab_to_filename_for_display (symtab));
3822 else
3823 printf_unfiltered (is_enumeral
3824 ? _("[%d] %s (enumeral)\n")
3825 : _("[%d] %s at ?\n"),
3826 i + first_choice,
3827 SYMBOL_PRINT_NAME (syms[i].symbol));
3828 }
3829 }
3830
3831 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3832 "overload-choice");
3833
3834 for (i = 0; i < n_chosen; i += 1)
3835 syms[i] = syms[chosen[i]];
3836
3837 return n_chosen;
3838 }
3839
3840 /* Read and validate a set of numeric choices from the user in the
3841 range 0 .. N_CHOICES-1. Place the results in increasing
3842 order in CHOICES[0 .. N-1], and return N.
3843
3844 The user types choices as a sequence of numbers on one line
3845 separated by blanks, encoding them as follows:
3846
3847 + A choice of 0 means to cancel the selection, throwing an error.
3848 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3849 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3850
3851 The user is not allowed to choose more than MAX_RESULTS values.
3852
3853 ANNOTATION_SUFFIX, if present, is used to annotate the input
3854 prompts (for use with the -f switch). */
3855
3856 int
3857 get_selections (int *choices, int n_choices, int max_results,
3858 int is_all_choice, char *annotation_suffix)
3859 {
3860 char *args;
3861 char *prompt;
3862 int n_chosen;
3863 int first_choice = is_all_choice ? 2 : 1;
3864
3865 prompt = getenv ("PS2");
3866 if (prompt == NULL)
3867 prompt = "> ";
3868
3869 args = command_line_input (prompt, 0, annotation_suffix);
3870
3871 if (args == NULL)
3872 error_no_arg (_("one or more choice numbers"));
3873
3874 n_chosen = 0;
3875
3876 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3877 order, as given in args. Choices are validated. */
3878 while (1)
3879 {
3880 char *args2;
3881 int choice, j;
3882
3883 args = skip_spaces (args);
3884 if (*args == '\0' && n_chosen == 0)
3885 error_no_arg (_("one or more choice numbers"));
3886 else if (*args == '\0')
3887 break;
3888
3889 choice = strtol (args, &args2, 10);
3890 if (args == args2 || choice < 0
3891 || choice > n_choices + first_choice - 1)
3892 error (_("Argument must be choice number"));
3893 args = args2;
3894
3895 if (choice == 0)
3896 error (_("cancelled"));
3897
3898 if (choice < first_choice)
3899 {
3900 n_chosen = n_choices;
3901 for (j = 0; j < n_choices; j += 1)
3902 choices[j] = j;
3903 break;
3904 }
3905 choice -= first_choice;
3906
3907 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3908 {
3909 }
3910
3911 if (j < 0 || choice != choices[j])
3912 {
3913 int k;
3914
3915 for (k = n_chosen - 1; k > j; k -= 1)
3916 choices[k + 1] = choices[k];
3917 choices[j + 1] = choice;
3918 n_chosen += 1;
3919 }
3920 }
3921
3922 if (n_chosen > max_results)
3923 error (_("Select no more than %d of the above"), max_results);
3924
3925 return n_chosen;
3926 }
3927
3928 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3929 on the function identified by SYM and BLOCK, and taking NARGS
3930 arguments. Update *EXPP as needed to hold more space. */
3931
3932 static void
3933 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3934 int oplen, struct symbol *sym,
3935 const struct block *block)
3936 {
3937 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3938 symbol, -oplen for operator being replaced). */
3939 struct expression *newexp = (struct expression *)
3940 xzalloc (sizeof (struct expression)
3941 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3942 struct expression *exp = *expp;
3943
3944 newexp->nelts = exp->nelts + 7 - oplen;
3945 newexp->language_defn = exp->language_defn;
3946 newexp->gdbarch = exp->gdbarch;
3947 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3948 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3949 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3950
3951 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3952 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3953
3954 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3955 newexp->elts[pc + 4].block = block;
3956 newexp->elts[pc + 5].symbol = sym;
3957
3958 *expp = newexp;
3959 xfree (exp);
3960 }
3961
3962 /* Type-class predicates */
3963
3964 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3965 or FLOAT). */
3966
3967 static int
3968 numeric_type_p (struct type *type)
3969 {
3970 if (type == NULL)
3971 return 0;
3972 else
3973 {
3974 switch (TYPE_CODE (type))
3975 {
3976 case TYPE_CODE_INT:
3977 case TYPE_CODE_FLT:
3978 return 1;
3979 case TYPE_CODE_RANGE:
3980 return (type == TYPE_TARGET_TYPE (type)
3981 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3982 default:
3983 return 0;
3984 }
3985 }
3986 }
3987
3988 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3989
3990 static int
3991 integer_type_p (struct type *type)
3992 {
3993 if (type == NULL)
3994 return 0;
3995 else
3996 {
3997 switch (TYPE_CODE (type))
3998 {
3999 case TYPE_CODE_INT:
4000 return 1;
4001 case TYPE_CODE_RANGE:
4002 return (type == TYPE_TARGET_TYPE (type)
4003 || integer_type_p (TYPE_TARGET_TYPE (type)));
4004 default:
4005 return 0;
4006 }
4007 }
4008 }
4009
4010 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4011
4012 static int
4013 scalar_type_p (struct type *type)
4014 {
4015 if (type == NULL)
4016 return 0;
4017 else
4018 {
4019 switch (TYPE_CODE (type))
4020 {
4021 case TYPE_CODE_INT:
4022 case TYPE_CODE_RANGE:
4023 case TYPE_CODE_ENUM:
4024 case TYPE_CODE_FLT:
4025 return 1;
4026 default:
4027 return 0;
4028 }
4029 }
4030 }
4031
4032 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4033
4034 static int
4035 discrete_type_p (struct type *type)
4036 {
4037 if (type == NULL)
4038 return 0;
4039 else
4040 {
4041 switch (TYPE_CODE (type))
4042 {
4043 case TYPE_CODE_INT:
4044 case TYPE_CODE_RANGE:
4045 case TYPE_CODE_ENUM:
4046 case TYPE_CODE_BOOL:
4047 return 1;
4048 default:
4049 return 0;
4050 }
4051 }
4052 }
4053
4054 /* Returns non-zero if OP with operands in the vector ARGS could be
4055 a user-defined function. Errs on the side of pre-defined operators
4056 (i.e., result 0). */
4057
4058 static int
4059 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4060 {
4061 struct type *type0 =
4062 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4063 struct type *type1 =
4064 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4065
4066 if (type0 == NULL)
4067 return 0;
4068
4069 switch (op)
4070 {
4071 default:
4072 return 0;
4073
4074 case BINOP_ADD:
4075 case BINOP_SUB:
4076 case BINOP_MUL:
4077 case BINOP_DIV:
4078 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4079
4080 case BINOP_REM:
4081 case BINOP_MOD:
4082 case BINOP_BITWISE_AND:
4083 case BINOP_BITWISE_IOR:
4084 case BINOP_BITWISE_XOR:
4085 return (!(integer_type_p (type0) && integer_type_p (type1)));
4086
4087 case BINOP_EQUAL:
4088 case BINOP_NOTEQUAL:
4089 case BINOP_LESS:
4090 case BINOP_GTR:
4091 case BINOP_LEQ:
4092 case BINOP_GEQ:
4093 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4094
4095 case BINOP_CONCAT:
4096 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4097
4098 case BINOP_EXP:
4099 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4100
4101 case UNOP_NEG:
4102 case UNOP_PLUS:
4103 case UNOP_LOGICAL_NOT:
4104 case UNOP_ABS:
4105 return (!numeric_type_p (type0));
4106
4107 }
4108 }
4109 \f
4110 /* Renaming */
4111
4112 /* NOTES:
4113
4114 1. In the following, we assume that a renaming type's name may
4115 have an ___XD suffix. It would be nice if this went away at some
4116 point.
4117 2. We handle both the (old) purely type-based representation of
4118 renamings and the (new) variable-based encoding. At some point,
4119 it is devoutly to be hoped that the former goes away
4120 (FIXME: hilfinger-2007-07-09).
4121 3. Subprogram renamings are not implemented, although the XRS
4122 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4123
4124 /* If SYM encodes a renaming,
4125
4126 <renaming> renames <renamed entity>,
4127
4128 sets *LEN to the length of the renamed entity's name,
4129 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4130 the string describing the subcomponent selected from the renamed
4131 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4132 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4133 are undefined). Otherwise, returns a value indicating the category
4134 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4135 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4136 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4137 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4138 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4139 may be NULL, in which case they are not assigned.
4140
4141 [Currently, however, GCC does not generate subprogram renamings.] */
4142
4143 enum ada_renaming_category
4144 ada_parse_renaming (struct symbol *sym,
4145 const char **renamed_entity, int *len,
4146 const char **renaming_expr)
4147 {
4148 enum ada_renaming_category kind;
4149 const char *info;
4150 const char *suffix;
4151
4152 if (sym == NULL)
4153 return ADA_NOT_RENAMING;
4154 switch (SYMBOL_CLASS (sym))
4155 {
4156 default:
4157 return ADA_NOT_RENAMING;
4158 case LOC_TYPEDEF:
4159 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4160 renamed_entity, len, renaming_expr);
4161 case LOC_LOCAL:
4162 case LOC_STATIC:
4163 case LOC_COMPUTED:
4164 case LOC_OPTIMIZED_OUT:
4165 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4166 if (info == NULL)
4167 return ADA_NOT_RENAMING;
4168 switch (info[5])
4169 {
4170 case '_':
4171 kind = ADA_OBJECT_RENAMING;
4172 info += 6;
4173 break;
4174 case 'E':
4175 kind = ADA_EXCEPTION_RENAMING;
4176 info += 7;
4177 break;
4178 case 'P':
4179 kind = ADA_PACKAGE_RENAMING;
4180 info += 7;
4181 break;
4182 case 'S':
4183 kind = ADA_SUBPROGRAM_RENAMING;
4184 info += 7;
4185 break;
4186 default:
4187 return ADA_NOT_RENAMING;
4188 }
4189 }
4190
4191 if (renamed_entity != NULL)
4192 *renamed_entity = info;
4193 suffix = strstr (info, "___XE");
4194 if (suffix == NULL || suffix == info)
4195 return ADA_NOT_RENAMING;
4196 if (len != NULL)
4197 *len = strlen (info) - strlen (suffix);
4198 suffix += 5;
4199 if (renaming_expr != NULL)
4200 *renaming_expr = suffix;
4201 return kind;
4202 }
4203
4204 /* Assuming TYPE encodes a renaming according to the old encoding in
4205 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4206 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4207 ADA_NOT_RENAMING otherwise. */
4208 static enum ada_renaming_category
4209 parse_old_style_renaming (struct type *type,
4210 const char **renamed_entity, int *len,
4211 const char **renaming_expr)
4212 {
4213 enum ada_renaming_category kind;
4214 const char *name;
4215 const char *info;
4216 const char *suffix;
4217
4218 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4219 || TYPE_NFIELDS (type) != 1)
4220 return ADA_NOT_RENAMING;
4221
4222 name = type_name_no_tag (type);
4223 if (name == NULL)
4224 return ADA_NOT_RENAMING;
4225
4226 name = strstr (name, "___XR");
4227 if (name == NULL)
4228 return ADA_NOT_RENAMING;
4229 switch (name[5])
4230 {
4231 case '\0':
4232 case '_':
4233 kind = ADA_OBJECT_RENAMING;
4234 break;
4235 case 'E':
4236 kind = ADA_EXCEPTION_RENAMING;
4237 break;
4238 case 'P':
4239 kind = ADA_PACKAGE_RENAMING;
4240 break;
4241 case 'S':
4242 kind = ADA_SUBPROGRAM_RENAMING;
4243 break;
4244 default:
4245 return ADA_NOT_RENAMING;
4246 }
4247
4248 info = TYPE_FIELD_NAME (type, 0);
4249 if (info == NULL)
4250 return ADA_NOT_RENAMING;
4251 if (renamed_entity != NULL)
4252 *renamed_entity = info;
4253 suffix = strstr (info, "___XE");
4254 if (renaming_expr != NULL)
4255 *renaming_expr = suffix + 5;
4256 if (suffix == NULL || suffix == info)
4257 return ADA_NOT_RENAMING;
4258 if (len != NULL)
4259 *len = suffix - info;
4260 return kind;
4261 }
4262
4263 /* Compute the value of the given RENAMING_SYM, which is expected to
4264 be a symbol encoding a renaming expression. BLOCK is the block
4265 used to evaluate the renaming. */
4266
4267 static struct value *
4268 ada_read_renaming_var_value (struct symbol *renaming_sym,
4269 const struct block *block)
4270 {
4271 const char *sym_name;
4272 struct expression *expr;
4273 struct value *value;
4274 struct cleanup *old_chain = NULL;
4275
4276 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4277 expr = parse_exp_1 (&sym_name, 0, block, 0);
4278 old_chain = make_cleanup (free_current_contents, &expr);
4279 value = evaluate_expression (expr);
4280
4281 do_cleanups (old_chain);
4282 return value;
4283 }
4284 \f
4285
4286 /* Evaluation: Function Calls */
4287
4288 /* Return an lvalue containing the value VAL. This is the identity on
4289 lvalues, and otherwise has the side-effect of allocating memory
4290 in the inferior where a copy of the value contents is copied. */
4291
4292 static struct value *
4293 ensure_lval (struct value *val)
4294 {
4295 if (VALUE_LVAL (val) == not_lval
4296 || VALUE_LVAL (val) == lval_internalvar)
4297 {
4298 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4299 const CORE_ADDR addr =
4300 value_as_long (value_allocate_space_in_inferior (len));
4301
4302 set_value_address (val, addr);
4303 VALUE_LVAL (val) = lval_memory;
4304 write_memory (addr, value_contents (val), len);
4305 }
4306
4307 return val;
4308 }
4309
4310 /* Return the value ACTUAL, converted to be an appropriate value for a
4311 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4312 allocating any necessary descriptors (fat pointers), or copies of
4313 values not residing in memory, updating it as needed. */
4314
4315 struct value *
4316 ada_convert_actual (struct value *actual, struct type *formal_type0)
4317 {
4318 struct type *actual_type = ada_check_typedef (value_type (actual));
4319 struct type *formal_type = ada_check_typedef (formal_type0);
4320 struct type *formal_target =
4321 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4322 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4323 struct type *actual_target =
4324 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4325 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4326
4327 if (ada_is_array_descriptor_type (formal_target)
4328 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4329 return make_array_descriptor (formal_type, actual);
4330 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4331 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4332 {
4333 struct value *result;
4334
4335 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4336 && ada_is_array_descriptor_type (actual_target))
4337 result = desc_data (actual);
4338 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4339 {
4340 if (VALUE_LVAL (actual) != lval_memory)
4341 {
4342 struct value *val;
4343
4344 actual_type = ada_check_typedef (value_type (actual));
4345 val = allocate_value (actual_type);
4346 memcpy ((char *) value_contents_raw (val),
4347 (char *) value_contents (actual),
4348 TYPE_LENGTH (actual_type));
4349 actual = ensure_lval (val);
4350 }
4351 result = value_addr (actual);
4352 }
4353 else
4354 return actual;
4355 return value_cast_pointers (formal_type, result, 0);
4356 }
4357 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4358 return ada_value_ind (actual);
4359 else if (ada_is_aligner_type (formal_type))
4360 {
4361 /* We need to turn this parameter into an aligner type
4362 as well. */
4363 struct value *aligner = allocate_value (formal_type);
4364 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4365
4366 value_assign_to_component (aligner, component, actual);
4367 return aligner;
4368 }
4369
4370 return actual;
4371 }
4372
4373 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4374 type TYPE. This is usually an inefficient no-op except on some targets
4375 (such as AVR) where the representation of a pointer and an address
4376 differs. */
4377
4378 static CORE_ADDR
4379 value_pointer (struct value *value, struct type *type)
4380 {
4381 struct gdbarch *gdbarch = get_type_arch (type);
4382 unsigned len = TYPE_LENGTH (type);
4383 gdb_byte *buf = alloca (len);
4384 CORE_ADDR addr;
4385
4386 addr = value_address (value);
4387 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4388 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4389 return addr;
4390 }
4391
4392
4393 /* Push a descriptor of type TYPE for array value ARR on the stack at
4394 *SP, updating *SP to reflect the new descriptor. Return either
4395 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4396 to-descriptor type rather than a descriptor type), a struct value *
4397 representing a pointer to this descriptor. */
4398
4399 static struct value *
4400 make_array_descriptor (struct type *type, struct value *arr)
4401 {
4402 struct type *bounds_type = desc_bounds_type (type);
4403 struct type *desc_type = desc_base_type (type);
4404 struct value *descriptor = allocate_value (desc_type);
4405 struct value *bounds = allocate_value (bounds_type);
4406 int i;
4407
4408 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4409 i > 0; i -= 1)
4410 {
4411 modify_field (value_type (bounds), value_contents_writeable (bounds),
4412 ada_array_bound (arr, i, 0),
4413 desc_bound_bitpos (bounds_type, i, 0),
4414 desc_bound_bitsize (bounds_type, i, 0));
4415 modify_field (value_type (bounds), value_contents_writeable (bounds),
4416 ada_array_bound (arr, i, 1),
4417 desc_bound_bitpos (bounds_type, i, 1),
4418 desc_bound_bitsize (bounds_type, i, 1));
4419 }
4420
4421 bounds = ensure_lval (bounds);
4422
4423 modify_field (value_type (descriptor),
4424 value_contents_writeable (descriptor),
4425 value_pointer (ensure_lval (arr),
4426 TYPE_FIELD_TYPE (desc_type, 0)),
4427 fat_pntr_data_bitpos (desc_type),
4428 fat_pntr_data_bitsize (desc_type));
4429
4430 modify_field (value_type (descriptor),
4431 value_contents_writeable (descriptor),
4432 value_pointer (bounds,
4433 TYPE_FIELD_TYPE (desc_type, 1)),
4434 fat_pntr_bounds_bitpos (desc_type),
4435 fat_pntr_bounds_bitsize (desc_type));
4436
4437 descriptor = ensure_lval (descriptor);
4438
4439 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4440 return value_addr (descriptor);
4441 else
4442 return descriptor;
4443 }
4444 \f
4445 /* Symbol Cache Module */
4446
4447 /* Performance measurements made as of 2010-01-15 indicate that
4448 this cache does bring some noticeable improvements. Depending
4449 on the type of entity being printed, the cache can make it as much
4450 as an order of magnitude faster than without it.
4451
4452 The descriptive type DWARF extension has significantly reduced
4453 the need for this cache, at least when DWARF is being used. However,
4454 even in this case, some expensive name-based symbol searches are still
4455 sometimes necessary - to find an XVZ variable, mostly. */
4456
4457 /* Initialize the contents of SYM_CACHE. */
4458
4459 static void
4460 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4461 {
4462 obstack_init (&sym_cache->cache_space);
4463 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4464 }
4465
4466 /* Free the memory used by SYM_CACHE. */
4467
4468 static void
4469 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4470 {
4471 obstack_free (&sym_cache->cache_space, NULL);
4472 xfree (sym_cache);
4473 }
4474
4475 /* Return the symbol cache associated to the given program space PSPACE.
4476 If not allocated for this PSPACE yet, allocate and initialize one. */
4477
4478 static struct ada_symbol_cache *
4479 ada_get_symbol_cache (struct program_space *pspace)
4480 {
4481 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4482
4483 if (pspace_data->sym_cache == NULL)
4484 {
4485 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4486 ada_init_symbol_cache (pspace_data->sym_cache);
4487 }
4488
4489 return pspace_data->sym_cache;
4490 }
4491
4492 /* Clear all entries from the symbol cache. */
4493
4494 static void
4495 ada_clear_symbol_cache (void)
4496 {
4497 struct ada_symbol_cache *sym_cache
4498 = ada_get_symbol_cache (current_program_space);
4499
4500 obstack_free (&sym_cache->cache_space, NULL);
4501 ada_init_symbol_cache (sym_cache);
4502 }
4503
4504 /* Search our cache for an entry matching NAME and DOMAIN.
4505 Return it if found, or NULL otherwise. */
4506
4507 static struct cache_entry **
4508 find_entry (const char *name, domain_enum domain)
4509 {
4510 struct ada_symbol_cache *sym_cache
4511 = ada_get_symbol_cache (current_program_space);
4512 int h = msymbol_hash (name) % HASH_SIZE;
4513 struct cache_entry **e;
4514
4515 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4516 {
4517 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4518 return e;
4519 }
4520 return NULL;
4521 }
4522
4523 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4524 Return 1 if found, 0 otherwise.
4525
4526 If an entry was found and SYM is not NULL, set *SYM to the entry's
4527 SYM. Same principle for BLOCK if not NULL. */
4528
4529 static int
4530 lookup_cached_symbol (const char *name, domain_enum domain,
4531 struct symbol **sym, const struct block **block)
4532 {
4533 struct cache_entry **e = find_entry (name, domain);
4534
4535 if (e == NULL)
4536 return 0;
4537 if (sym != NULL)
4538 *sym = (*e)->sym;
4539 if (block != NULL)
4540 *block = (*e)->block;
4541 return 1;
4542 }
4543
4544 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4545 in domain DOMAIN, save this result in our symbol cache. */
4546
4547 static void
4548 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4549 const struct block *block)
4550 {
4551 struct ada_symbol_cache *sym_cache
4552 = ada_get_symbol_cache (current_program_space);
4553 int h;
4554 char *copy;
4555 struct cache_entry *e;
4556
4557 /* Symbols for builtin types don't have a block.
4558 For now don't cache such symbols. */
4559 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4560 return;
4561
4562 /* If the symbol is a local symbol, then do not cache it, as a search
4563 for that symbol depends on the context. To determine whether
4564 the symbol is local or not, we check the block where we found it
4565 against the global and static blocks of its associated symtab. */
4566 if (sym
4567 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4568 GLOBAL_BLOCK) != block
4569 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4570 STATIC_BLOCK) != block)
4571 return;
4572
4573 h = msymbol_hash (name) % HASH_SIZE;
4574 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4575 sizeof (*e));
4576 e->next = sym_cache->root[h];
4577 sym_cache->root[h] = e;
4578 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4579 strcpy (copy, name);
4580 e->sym = sym;
4581 e->domain = domain;
4582 e->block = block;
4583 }
4584 \f
4585 /* Symbol Lookup */
4586
4587 /* Return nonzero if wild matching should be used when searching for
4588 all symbols matching LOOKUP_NAME.
4589
4590 LOOKUP_NAME is expected to be a symbol name after transformation
4591 for Ada lookups (see ada_name_for_lookup). */
4592
4593 static int
4594 should_use_wild_match (const char *lookup_name)
4595 {
4596 return (strstr (lookup_name, "__") == NULL);
4597 }
4598
4599 /* Return the result of a standard (literal, C-like) lookup of NAME in
4600 given DOMAIN, visible from lexical block BLOCK. */
4601
4602 static struct symbol *
4603 standard_lookup (const char *name, const struct block *block,
4604 domain_enum domain)
4605 {
4606 /* Initialize it just to avoid a GCC false warning. */
4607 struct block_symbol sym = {NULL, NULL};
4608
4609 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4610 return sym.symbol;
4611 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4612 cache_symbol (name, domain, sym.symbol, sym.block);
4613 return sym.symbol;
4614 }
4615
4616
4617 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4618 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4619 since they contend in overloading in the same way. */
4620 static int
4621 is_nonfunction (struct block_symbol syms[], int n)
4622 {
4623 int i;
4624
4625 for (i = 0; i < n; i += 1)
4626 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4627 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4628 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4629 return 1;
4630
4631 return 0;
4632 }
4633
4634 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4635 struct types. Otherwise, they may not. */
4636
4637 static int
4638 equiv_types (struct type *type0, struct type *type1)
4639 {
4640 if (type0 == type1)
4641 return 1;
4642 if (type0 == NULL || type1 == NULL
4643 || TYPE_CODE (type0) != TYPE_CODE (type1))
4644 return 0;
4645 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4646 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4647 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4648 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4649 return 1;
4650
4651 return 0;
4652 }
4653
4654 /* True iff SYM0 represents the same entity as SYM1, or one that is
4655 no more defined than that of SYM1. */
4656
4657 static int
4658 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4659 {
4660 if (sym0 == sym1)
4661 return 1;
4662 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4663 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4664 return 0;
4665
4666 switch (SYMBOL_CLASS (sym0))
4667 {
4668 case LOC_UNDEF:
4669 return 1;
4670 case LOC_TYPEDEF:
4671 {
4672 struct type *type0 = SYMBOL_TYPE (sym0);
4673 struct type *type1 = SYMBOL_TYPE (sym1);
4674 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4675 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4676 int len0 = strlen (name0);
4677
4678 return
4679 TYPE_CODE (type0) == TYPE_CODE (type1)
4680 && (equiv_types (type0, type1)
4681 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4682 && startswith (name1 + len0, "___XV")));
4683 }
4684 case LOC_CONST:
4685 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4686 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4687 default:
4688 return 0;
4689 }
4690 }
4691
4692 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4693 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4694
4695 static void
4696 add_defn_to_vec (struct obstack *obstackp,
4697 struct symbol *sym,
4698 const struct block *block)
4699 {
4700 int i;
4701 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4702
4703 /* Do not try to complete stub types, as the debugger is probably
4704 already scanning all symbols matching a certain name at the
4705 time when this function is called. Trying to replace the stub
4706 type by its associated full type will cause us to restart a scan
4707 which may lead to an infinite recursion. Instead, the client
4708 collecting the matching symbols will end up collecting several
4709 matches, with at least one of them complete. It can then filter
4710 out the stub ones if needed. */
4711
4712 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4713 {
4714 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4715 return;
4716 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4717 {
4718 prevDefns[i].symbol = sym;
4719 prevDefns[i].block = block;
4720 return;
4721 }
4722 }
4723
4724 {
4725 struct block_symbol info;
4726
4727 info.symbol = sym;
4728 info.block = block;
4729 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4730 }
4731 }
4732
4733 /* Number of block_symbol structures currently collected in current vector in
4734 OBSTACKP. */
4735
4736 static int
4737 num_defns_collected (struct obstack *obstackp)
4738 {
4739 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4740 }
4741
4742 /* Vector of block_symbol structures currently collected in current vector in
4743 OBSTACKP. If FINISH, close off the vector and return its final address. */
4744
4745 static struct block_symbol *
4746 defns_collected (struct obstack *obstackp, int finish)
4747 {
4748 if (finish)
4749 return obstack_finish (obstackp);
4750 else
4751 return (struct block_symbol *) obstack_base (obstackp);
4752 }
4753
4754 /* Return a bound minimal symbol matching NAME according to Ada
4755 decoding rules. Returns an invalid symbol if there is no such
4756 minimal symbol. Names prefixed with "standard__" are handled
4757 specially: "standard__" is first stripped off, and only static and
4758 global symbols are searched. */
4759
4760 struct bound_minimal_symbol
4761 ada_lookup_simple_minsym (const char *name)
4762 {
4763 struct bound_minimal_symbol result;
4764 struct objfile *objfile;
4765 struct minimal_symbol *msymbol;
4766 const int wild_match_p = should_use_wild_match (name);
4767
4768 memset (&result, 0, sizeof (result));
4769
4770 /* Special case: If the user specifies a symbol name inside package
4771 Standard, do a non-wild matching of the symbol name without
4772 the "standard__" prefix. This was primarily introduced in order
4773 to allow the user to specifically access the standard exceptions
4774 using, for instance, Standard.Constraint_Error when Constraint_Error
4775 is ambiguous (due to the user defining its own Constraint_Error
4776 entity inside its program). */
4777 if (startswith (name, "standard__"))
4778 name += sizeof ("standard__") - 1;
4779
4780 ALL_MSYMBOLS (objfile, msymbol)
4781 {
4782 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4783 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4784 {
4785 result.minsym = msymbol;
4786 result.objfile = objfile;
4787 break;
4788 }
4789 }
4790
4791 return result;
4792 }
4793
4794 /* For all subprograms that statically enclose the subprogram of the
4795 selected frame, add symbols matching identifier NAME in DOMAIN
4796 and their blocks to the list of data in OBSTACKP, as for
4797 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4798 with a wildcard prefix. */
4799
4800 static void
4801 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4802 const char *name, domain_enum domain,
4803 int wild_match_p)
4804 {
4805 }
4806
4807 /* True if TYPE is definitely an artificial type supplied to a symbol
4808 for which no debugging information was given in the symbol file. */
4809
4810 static int
4811 is_nondebugging_type (struct type *type)
4812 {
4813 const char *name = ada_type_name (type);
4814
4815 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4816 }
4817
4818 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4819 that are deemed "identical" for practical purposes.
4820
4821 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4822 types and that their number of enumerals is identical (in other
4823 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4824
4825 static int
4826 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4827 {
4828 int i;
4829
4830 /* The heuristic we use here is fairly conservative. We consider
4831 that 2 enumerate types are identical if they have the same
4832 number of enumerals and that all enumerals have the same
4833 underlying value and name. */
4834
4835 /* All enums in the type should have an identical underlying value. */
4836 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4837 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4838 return 0;
4839
4840 /* All enumerals should also have the same name (modulo any numerical
4841 suffix). */
4842 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4843 {
4844 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4845 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4846 int len_1 = strlen (name_1);
4847 int len_2 = strlen (name_2);
4848
4849 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4850 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4851 if (len_1 != len_2
4852 || strncmp (TYPE_FIELD_NAME (type1, i),
4853 TYPE_FIELD_NAME (type2, i),
4854 len_1) != 0)
4855 return 0;
4856 }
4857
4858 return 1;
4859 }
4860
4861 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4862 that are deemed "identical" for practical purposes. Sometimes,
4863 enumerals are not strictly identical, but their types are so similar
4864 that they can be considered identical.
4865
4866 For instance, consider the following code:
4867
4868 type Color is (Black, Red, Green, Blue, White);
4869 type RGB_Color is new Color range Red .. Blue;
4870
4871 Type RGB_Color is a subrange of an implicit type which is a copy
4872 of type Color. If we call that implicit type RGB_ColorB ("B" is
4873 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4874 As a result, when an expression references any of the enumeral
4875 by name (Eg. "print green"), the expression is technically
4876 ambiguous and the user should be asked to disambiguate. But
4877 doing so would only hinder the user, since it wouldn't matter
4878 what choice he makes, the outcome would always be the same.
4879 So, for practical purposes, we consider them as the same. */
4880
4881 static int
4882 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4883 {
4884 int i;
4885
4886 /* Before performing a thorough comparison check of each type,
4887 we perform a series of inexpensive checks. We expect that these
4888 checks will quickly fail in the vast majority of cases, and thus
4889 help prevent the unnecessary use of a more expensive comparison.
4890 Said comparison also expects us to make some of these checks
4891 (see ada_identical_enum_types_p). */
4892
4893 /* Quick check: All symbols should have an enum type. */
4894 for (i = 0; i < nsyms; i++)
4895 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4896 return 0;
4897
4898 /* Quick check: They should all have the same value. */
4899 for (i = 1; i < nsyms; i++)
4900 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4901 return 0;
4902
4903 /* Quick check: They should all have the same number of enumerals. */
4904 for (i = 1; i < nsyms; i++)
4905 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4906 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4907 return 0;
4908
4909 /* All the sanity checks passed, so we might have a set of
4910 identical enumeration types. Perform a more complete
4911 comparison of the type of each symbol. */
4912 for (i = 1; i < nsyms; i++)
4913 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4914 SYMBOL_TYPE (syms[0].symbol)))
4915 return 0;
4916
4917 return 1;
4918 }
4919
4920 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4921 duplicate other symbols in the list (The only case I know of where
4922 this happens is when object files containing stabs-in-ecoff are
4923 linked with files containing ordinary ecoff debugging symbols (or no
4924 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4925 Returns the number of items in the modified list. */
4926
4927 static int
4928 remove_extra_symbols (struct block_symbol *syms, int nsyms)
4929 {
4930 int i, j;
4931
4932 /* We should never be called with less than 2 symbols, as there
4933 cannot be any extra symbol in that case. But it's easy to
4934 handle, since we have nothing to do in that case. */
4935 if (nsyms < 2)
4936 return nsyms;
4937
4938 i = 0;
4939 while (i < nsyms)
4940 {
4941 int remove_p = 0;
4942
4943 /* If two symbols have the same name and one of them is a stub type,
4944 the get rid of the stub. */
4945
4946 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4947 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4948 {
4949 for (j = 0; j < nsyms; j++)
4950 {
4951 if (j != i
4952 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4953 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4954 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4955 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4956 remove_p = 1;
4957 }
4958 }
4959
4960 /* Two symbols with the same name, same class and same address
4961 should be identical. */
4962
4963 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4964 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4965 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4966 {
4967 for (j = 0; j < nsyms; j += 1)
4968 {
4969 if (i != j
4970 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4971 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4972 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4973 && SYMBOL_CLASS (syms[i].symbol)
4974 == SYMBOL_CLASS (syms[j].symbol)
4975 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
4976 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
4977 remove_p = 1;
4978 }
4979 }
4980
4981 if (remove_p)
4982 {
4983 for (j = i + 1; j < nsyms; j += 1)
4984 syms[j - 1] = syms[j];
4985 nsyms -= 1;
4986 }
4987
4988 i += 1;
4989 }
4990
4991 /* If all the remaining symbols are identical enumerals, then
4992 just keep the first one and discard the rest.
4993
4994 Unlike what we did previously, we do not discard any entry
4995 unless they are ALL identical. This is because the symbol
4996 comparison is not a strict comparison, but rather a practical
4997 comparison. If all symbols are considered identical, then
4998 we can just go ahead and use the first one and discard the rest.
4999 But if we cannot reduce the list to a single element, we have
5000 to ask the user to disambiguate anyways. And if we have to
5001 present a multiple-choice menu, it's less confusing if the list
5002 isn't missing some choices that were identical and yet distinct. */
5003 if (symbols_are_identical_enums (syms, nsyms))
5004 nsyms = 1;
5005
5006 return nsyms;
5007 }
5008
5009 /* Given a type that corresponds to a renaming entity, use the type name
5010 to extract the scope (package name or function name, fully qualified,
5011 and following the GNAT encoding convention) where this renaming has been
5012 defined. The string returned needs to be deallocated after use. */
5013
5014 static char *
5015 xget_renaming_scope (struct type *renaming_type)
5016 {
5017 /* The renaming types adhere to the following convention:
5018 <scope>__<rename>___<XR extension>.
5019 So, to extract the scope, we search for the "___XR" extension,
5020 and then backtrack until we find the first "__". */
5021
5022 const char *name = type_name_no_tag (renaming_type);
5023 char *suffix = strstr (name, "___XR");
5024 char *last;
5025 int scope_len;
5026 char *scope;
5027
5028 /* Now, backtrack a bit until we find the first "__". Start looking
5029 at suffix - 3, as the <rename> part is at least one character long. */
5030
5031 for (last = suffix - 3; last > name; last--)
5032 if (last[0] == '_' && last[1] == '_')
5033 break;
5034
5035 /* Make a copy of scope and return it. */
5036
5037 scope_len = last - name;
5038 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5039
5040 strncpy (scope, name, scope_len);
5041 scope[scope_len] = '\0';
5042
5043 return scope;
5044 }
5045
5046 /* Return nonzero if NAME corresponds to a package name. */
5047
5048 static int
5049 is_package_name (const char *name)
5050 {
5051 /* Here, We take advantage of the fact that no symbols are generated
5052 for packages, while symbols are generated for each function.
5053 So the condition for NAME represent a package becomes equivalent
5054 to NAME not existing in our list of symbols. There is only one
5055 small complication with library-level functions (see below). */
5056
5057 char *fun_name;
5058
5059 /* If it is a function that has not been defined at library level,
5060 then we should be able to look it up in the symbols. */
5061 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5062 return 0;
5063
5064 /* Library-level function names start with "_ada_". See if function
5065 "_ada_" followed by NAME can be found. */
5066
5067 /* Do a quick check that NAME does not contain "__", since library-level
5068 functions names cannot contain "__" in them. */
5069 if (strstr (name, "__") != NULL)
5070 return 0;
5071
5072 fun_name = xstrprintf ("_ada_%s", name);
5073
5074 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5075 }
5076
5077 /* Return nonzero if SYM corresponds to a renaming entity that is
5078 not visible from FUNCTION_NAME. */
5079
5080 static int
5081 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5082 {
5083 char *scope;
5084 struct cleanup *old_chain;
5085
5086 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5087 return 0;
5088
5089 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5090 old_chain = make_cleanup (xfree, scope);
5091
5092 /* If the rename has been defined in a package, then it is visible. */
5093 if (is_package_name (scope))
5094 {
5095 do_cleanups (old_chain);
5096 return 0;
5097 }
5098
5099 /* Check that the rename is in the current function scope by checking
5100 that its name starts with SCOPE. */
5101
5102 /* If the function name starts with "_ada_", it means that it is
5103 a library-level function. Strip this prefix before doing the
5104 comparison, as the encoding for the renaming does not contain
5105 this prefix. */
5106 if (startswith (function_name, "_ada_"))
5107 function_name += 5;
5108
5109 {
5110 int is_invisible = !startswith (function_name, scope);
5111
5112 do_cleanups (old_chain);
5113 return is_invisible;
5114 }
5115 }
5116
5117 /* Remove entries from SYMS that corresponds to a renaming entity that
5118 is not visible from the function associated with CURRENT_BLOCK or
5119 that is superfluous due to the presence of more specific renaming
5120 information. Places surviving symbols in the initial entries of
5121 SYMS and returns the number of surviving symbols.
5122
5123 Rationale:
5124 First, in cases where an object renaming is implemented as a
5125 reference variable, GNAT may produce both the actual reference
5126 variable and the renaming encoding. In this case, we discard the
5127 latter.
5128
5129 Second, GNAT emits a type following a specified encoding for each renaming
5130 entity. Unfortunately, STABS currently does not support the definition
5131 of types that are local to a given lexical block, so all renamings types
5132 are emitted at library level. As a consequence, if an application
5133 contains two renaming entities using the same name, and a user tries to
5134 print the value of one of these entities, the result of the ada symbol
5135 lookup will also contain the wrong renaming type.
5136
5137 This function partially covers for this limitation by attempting to
5138 remove from the SYMS list renaming symbols that should be visible
5139 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5140 method with the current information available. The implementation
5141 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5142
5143 - When the user tries to print a rename in a function while there
5144 is another rename entity defined in a package: Normally, the
5145 rename in the function has precedence over the rename in the
5146 package, so the latter should be removed from the list. This is
5147 currently not the case.
5148
5149 - This function will incorrectly remove valid renames if
5150 the CURRENT_BLOCK corresponds to a function which symbol name
5151 has been changed by an "Export" pragma. As a consequence,
5152 the user will be unable to print such rename entities. */
5153
5154 static int
5155 remove_irrelevant_renamings (struct block_symbol *syms,
5156 int nsyms, const struct block *current_block)
5157 {
5158 struct symbol *current_function;
5159 const char *current_function_name;
5160 int i;
5161 int is_new_style_renaming;
5162
5163 /* If there is both a renaming foo___XR... encoded as a variable and
5164 a simple variable foo in the same block, discard the latter.
5165 First, zero out such symbols, then compress. */
5166 is_new_style_renaming = 0;
5167 for (i = 0; i < nsyms; i += 1)
5168 {
5169 struct symbol *sym = syms[i].symbol;
5170 const struct block *block = syms[i].block;
5171 const char *name;
5172 const char *suffix;
5173
5174 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5175 continue;
5176 name = SYMBOL_LINKAGE_NAME (sym);
5177 suffix = strstr (name, "___XR");
5178
5179 if (suffix != NULL)
5180 {
5181 int name_len = suffix - name;
5182 int j;
5183
5184 is_new_style_renaming = 1;
5185 for (j = 0; j < nsyms; j += 1)
5186 if (i != j && syms[j].symbol != NULL
5187 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5188 name_len) == 0
5189 && block == syms[j].block)
5190 syms[j].symbol = NULL;
5191 }
5192 }
5193 if (is_new_style_renaming)
5194 {
5195 int j, k;
5196
5197 for (j = k = 0; j < nsyms; j += 1)
5198 if (syms[j].symbol != NULL)
5199 {
5200 syms[k] = syms[j];
5201 k += 1;
5202 }
5203 return k;
5204 }
5205
5206 /* Extract the function name associated to CURRENT_BLOCK.
5207 Abort if unable to do so. */
5208
5209 if (current_block == NULL)
5210 return nsyms;
5211
5212 current_function = block_linkage_function (current_block);
5213 if (current_function == NULL)
5214 return nsyms;
5215
5216 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5217 if (current_function_name == NULL)
5218 return nsyms;
5219
5220 /* Check each of the symbols, and remove it from the list if it is
5221 a type corresponding to a renaming that is out of the scope of
5222 the current block. */
5223
5224 i = 0;
5225 while (i < nsyms)
5226 {
5227 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5228 == ADA_OBJECT_RENAMING
5229 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5230 {
5231 int j;
5232
5233 for (j = i + 1; j < nsyms; j += 1)
5234 syms[j - 1] = syms[j];
5235 nsyms -= 1;
5236 }
5237 else
5238 i += 1;
5239 }
5240
5241 return nsyms;
5242 }
5243
5244 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5245 whose name and domain match NAME and DOMAIN respectively.
5246 If no match was found, then extend the search to "enclosing"
5247 routines (in other words, if we're inside a nested function,
5248 search the symbols defined inside the enclosing functions).
5249 If WILD_MATCH_P is nonzero, perform the naming matching in
5250 "wild" mode (see function "wild_match" for more info).
5251
5252 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5253
5254 static void
5255 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5256 const struct block *block, domain_enum domain,
5257 int wild_match_p)
5258 {
5259 int block_depth = 0;
5260
5261 while (block != NULL)
5262 {
5263 block_depth += 1;
5264 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5265 wild_match_p);
5266
5267 /* If we found a non-function match, assume that's the one. */
5268 if (is_nonfunction (defns_collected (obstackp, 0),
5269 num_defns_collected (obstackp)))
5270 return;
5271
5272 block = BLOCK_SUPERBLOCK (block);
5273 }
5274
5275 /* If no luck so far, try to find NAME as a local symbol in some lexically
5276 enclosing subprogram. */
5277 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5278 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5279 }
5280
5281 /* An object of this type is used as the user_data argument when
5282 calling the map_matching_symbols method. */
5283
5284 struct match_data
5285 {
5286 struct objfile *objfile;
5287 struct obstack *obstackp;
5288 struct symbol *arg_sym;
5289 int found_sym;
5290 };
5291
5292 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5293 to a list of symbols. DATA0 is a pointer to a struct match_data *
5294 containing the obstack that collects the symbol list, the file that SYM
5295 must come from, a flag indicating whether a non-argument symbol has
5296 been found in the current block, and the last argument symbol
5297 passed in SYM within the current block (if any). When SYM is null,
5298 marking the end of a block, the argument symbol is added if no
5299 other has been found. */
5300
5301 static int
5302 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5303 {
5304 struct match_data *data = (struct match_data *) data0;
5305
5306 if (sym == NULL)
5307 {
5308 if (!data->found_sym && data->arg_sym != NULL)
5309 add_defn_to_vec (data->obstackp,
5310 fixup_symbol_section (data->arg_sym, data->objfile),
5311 block);
5312 data->found_sym = 0;
5313 data->arg_sym = NULL;
5314 }
5315 else
5316 {
5317 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5318 return 0;
5319 else if (SYMBOL_IS_ARGUMENT (sym))
5320 data->arg_sym = sym;
5321 else
5322 {
5323 data->found_sym = 1;
5324 add_defn_to_vec (data->obstackp,
5325 fixup_symbol_section (sym, data->objfile),
5326 block);
5327 }
5328 }
5329 return 0;
5330 }
5331
5332 /* Implements compare_names, but only applying the comparision using
5333 the given CASING. */
5334
5335 static int
5336 compare_names_with_case (const char *string1, const char *string2,
5337 enum case_sensitivity casing)
5338 {
5339 while (*string1 != '\0' && *string2 != '\0')
5340 {
5341 char c1, c2;
5342
5343 if (isspace (*string1) || isspace (*string2))
5344 return strcmp_iw_ordered (string1, string2);
5345
5346 if (casing == case_sensitive_off)
5347 {
5348 c1 = tolower (*string1);
5349 c2 = tolower (*string2);
5350 }
5351 else
5352 {
5353 c1 = *string1;
5354 c2 = *string2;
5355 }
5356 if (c1 != c2)
5357 break;
5358
5359 string1 += 1;
5360 string2 += 1;
5361 }
5362
5363 switch (*string1)
5364 {
5365 case '(':
5366 return strcmp_iw_ordered (string1, string2);
5367 case '_':
5368 if (*string2 == '\0')
5369 {
5370 if (is_name_suffix (string1))
5371 return 0;
5372 else
5373 return 1;
5374 }
5375 /* FALLTHROUGH */
5376 default:
5377 if (*string2 == '(')
5378 return strcmp_iw_ordered (string1, string2);
5379 else
5380 {
5381 if (casing == case_sensitive_off)
5382 return tolower (*string1) - tolower (*string2);
5383 else
5384 return *string1 - *string2;
5385 }
5386 }
5387 }
5388
5389 /* Compare STRING1 to STRING2, with results as for strcmp.
5390 Compatible with strcmp_iw_ordered in that...
5391
5392 strcmp_iw_ordered (STRING1, STRING2) <= 0
5393
5394 ... implies...
5395
5396 compare_names (STRING1, STRING2) <= 0
5397
5398 (they may differ as to what symbols compare equal). */
5399
5400 static int
5401 compare_names (const char *string1, const char *string2)
5402 {
5403 int result;
5404
5405 /* Similar to what strcmp_iw_ordered does, we need to perform
5406 a case-insensitive comparison first, and only resort to
5407 a second, case-sensitive, comparison if the first one was
5408 not sufficient to differentiate the two strings. */
5409
5410 result = compare_names_with_case (string1, string2, case_sensitive_off);
5411 if (result == 0)
5412 result = compare_names_with_case (string1, string2, case_sensitive_on);
5413
5414 return result;
5415 }
5416
5417 /* Add to OBSTACKP all non-local symbols whose name and domain match
5418 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5419 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5420
5421 static void
5422 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5423 domain_enum domain, int global,
5424 int is_wild_match)
5425 {
5426 struct objfile *objfile;
5427 struct match_data data;
5428
5429 memset (&data, 0, sizeof data);
5430 data.obstackp = obstackp;
5431
5432 ALL_OBJFILES (objfile)
5433 {
5434 data.objfile = objfile;
5435
5436 if (is_wild_match)
5437 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5438 aux_add_nonlocal_symbols, &data,
5439 wild_match, NULL);
5440 else
5441 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5442 aux_add_nonlocal_symbols, &data,
5443 full_match, compare_names);
5444 }
5445
5446 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5447 {
5448 ALL_OBJFILES (objfile)
5449 {
5450 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5451 strcpy (name1, "_ada_");
5452 strcpy (name1 + sizeof ("_ada_") - 1, name);
5453 data.objfile = objfile;
5454 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5455 global,
5456 aux_add_nonlocal_symbols,
5457 &data,
5458 full_match, compare_names);
5459 }
5460 }
5461 }
5462
5463 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5464 non-zero, enclosing scope and in global scopes, returning the number of
5465 matches.
5466 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5467 indicating the symbols found and the blocks and symbol tables (if
5468 any) in which they were found. This vector is transient---good only to
5469 the next call of ada_lookup_symbol_list.
5470
5471 When full_search is non-zero, any non-function/non-enumeral
5472 symbol match within the nest of blocks whose innermost member is BLOCK0,
5473 is the one match returned (no other matches in that or
5474 enclosing blocks is returned). If there are any matches in or
5475 surrounding BLOCK0, then these alone are returned.
5476
5477 Names prefixed with "standard__" are handled specially: "standard__"
5478 is first stripped off, and only static and global symbols are searched. */
5479
5480 static int
5481 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5482 domain_enum domain,
5483 struct block_symbol **results,
5484 int full_search)
5485 {
5486 struct symbol *sym;
5487 const struct block *block;
5488 const char *name;
5489 const int wild_match_p = should_use_wild_match (name0);
5490 int syms_from_global_search = 0;
5491 int ndefns;
5492
5493 obstack_free (&symbol_list_obstack, NULL);
5494 obstack_init (&symbol_list_obstack);
5495
5496 /* Search specified block and its superiors. */
5497
5498 name = name0;
5499 block = block0;
5500
5501 /* Special case: If the user specifies a symbol name inside package
5502 Standard, do a non-wild matching of the symbol name without
5503 the "standard__" prefix. This was primarily introduced in order
5504 to allow the user to specifically access the standard exceptions
5505 using, for instance, Standard.Constraint_Error when Constraint_Error
5506 is ambiguous (due to the user defining its own Constraint_Error
5507 entity inside its program). */
5508 if (startswith (name0, "standard__"))
5509 {
5510 block = NULL;
5511 name = name0 + sizeof ("standard__") - 1;
5512 }
5513
5514 /* Check the non-global symbols. If we have ANY match, then we're done. */
5515
5516 if (block != NULL)
5517 {
5518 if (full_search)
5519 {
5520 ada_add_local_symbols (&symbol_list_obstack, name, block,
5521 domain, wild_match_p);
5522 }
5523 else
5524 {
5525 /* In the !full_search case we're are being called by
5526 ada_iterate_over_symbols, and we don't want to search
5527 superblocks. */
5528 ada_add_block_symbols (&symbol_list_obstack, block, name,
5529 domain, NULL, wild_match_p);
5530 }
5531 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5532 goto done;
5533 }
5534
5535 /* No non-global symbols found. Check our cache to see if we have
5536 already performed this search before. If we have, then return
5537 the same result. */
5538
5539 if (lookup_cached_symbol (name0, domain, &sym, &block))
5540 {
5541 if (sym != NULL)
5542 add_defn_to_vec (&symbol_list_obstack, sym, block);
5543 goto done;
5544 }
5545
5546 syms_from_global_search = 1;
5547
5548 /* Search symbols from all global blocks. */
5549
5550 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
5551 wild_match_p);
5552
5553 /* Now add symbols from all per-file blocks if we've gotten no hits
5554 (not strictly correct, but perhaps better than an error). */
5555
5556 if (num_defns_collected (&symbol_list_obstack) == 0)
5557 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
5558 wild_match_p);
5559
5560 done:
5561 ndefns = num_defns_collected (&symbol_list_obstack);
5562 *results = defns_collected (&symbol_list_obstack, 1);
5563
5564 ndefns = remove_extra_symbols (*results, ndefns);
5565
5566 if (ndefns == 0 && full_search && syms_from_global_search)
5567 cache_symbol (name0, domain, NULL, NULL);
5568
5569 if (ndefns == 1 && full_search && syms_from_global_search)
5570 cache_symbol (name0, domain, (*results)[0].symbol, (*results)[0].block);
5571
5572 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5573
5574 return ndefns;
5575 }
5576
5577 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5578 in global scopes, returning the number of matches, and setting *RESULTS
5579 to a vector of (SYM,BLOCK) tuples.
5580 See ada_lookup_symbol_list_worker for further details. */
5581
5582 int
5583 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5584 domain_enum domain, struct block_symbol **results)
5585 {
5586 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5587 }
5588
5589 /* Implementation of the la_iterate_over_symbols method. */
5590
5591 static void
5592 ada_iterate_over_symbols (const struct block *block,
5593 const char *name, domain_enum domain,
5594 symbol_found_callback_ftype *callback,
5595 void *data)
5596 {
5597 int ndefs, i;
5598 struct block_symbol *results;
5599
5600 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5601 for (i = 0; i < ndefs; ++i)
5602 {
5603 if (! (*callback) (results[i].symbol, data))
5604 break;
5605 }
5606 }
5607
5608 /* If NAME is the name of an entity, return a string that should
5609 be used to look that entity up in Ada units. This string should
5610 be deallocated after use using xfree.
5611
5612 NAME can have any form that the "break" or "print" commands might
5613 recognize. In other words, it does not have to be the "natural"
5614 name, or the "encoded" name. */
5615
5616 char *
5617 ada_name_for_lookup (const char *name)
5618 {
5619 char *canon;
5620 int nlen = strlen (name);
5621
5622 if (name[0] == '<' && name[nlen - 1] == '>')
5623 {
5624 canon = xmalloc (nlen - 1);
5625 memcpy (canon, name + 1, nlen - 2);
5626 canon[nlen - 2] = '\0';
5627 }
5628 else
5629 canon = xstrdup (ada_encode (ada_fold_name (name)));
5630 return canon;
5631 }
5632
5633 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5634 to 1, but choosing the first symbol found if there are multiple
5635 choices.
5636
5637 The result is stored in *INFO, which must be non-NULL.
5638 If no match is found, INFO->SYM is set to NULL. */
5639
5640 void
5641 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5642 domain_enum domain,
5643 struct block_symbol *info)
5644 {
5645 struct block_symbol *candidates;
5646 int n_candidates;
5647
5648 gdb_assert (info != NULL);
5649 memset (info, 0, sizeof (struct block_symbol));
5650
5651 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5652 if (n_candidates == 0)
5653 return;
5654
5655 *info = candidates[0];
5656 info->symbol = fixup_symbol_section (info->symbol, NULL);
5657 }
5658
5659 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5660 scope and in global scopes, or NULL if none. NAME is folded and
5661 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5662 choosing the first symbol if there are multiple choices.
5663 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5664
5665 struct block_symbol
5666 ada_lookup_symbol (const char *name, const struct block *block0,
5667 domain_enum domain, int *is_a_field_of_this)
5668 {
5669 struct block_symbol info;
5670
5671 if (is_a_field_of_this != NULL)
5672 *is_a_field_of_this = 0;
5673
5674 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5675 block0, domain, &info);
5676 return info;
5677 }
5678
5679 static struct block_symbol
5680 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5681 const char *name,
5682 const struct block *block,
5683 const domain_enum domain)
5684 {
5685 struct block_symbol sym;
5686
5687 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5688 if (sym.symbol != NULL)
5689 return sym;
5690
5691 /* If we haven't found a match at this point, try the primitive
5692 types. In other languages, this search is performed before
5693 searching for global symbols in order to short-circuit that
5694 global-symbol search if it happens that the name corresponds
5695 to a primitive type. But we cannot do the same in Ada, because
5696 it is perfectly legitimate for a program to declare a type which
5697 has the same name as a standard type. If looking up a type in
5698 that situation, we have traditionally ignored the primitive type
5699 in favor of user-defined types. This is why, unlike most other
5700 languages, we search the primitive types this late and only after
5701 having searched the global symbols without success. */
5702
5703 if (domain == VAR_DOMAIN)
5704 {
5705 struct gdbarch *gdbarch;
5706
5707 if (block == NULL)
5708 gdbarch = target_gdbarch ();
5709 else
5710 gdbarch = block_gdbarch (block);
5711 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5712 if (sym.symbol != NULL)
5713 return sym;
5714 }
5715
5716 return (struct block_symbol) {NULL, NULL};
5717 }
5718
5719
5720 /* True iff STR is a possible encoded suffix of a normal Ada name
5721 that is to be ignored for matching purposes. Suffixes of parallel
5722 names (e.g., XVE) are not included here. Currently, the possible suffixes
5723 are given by any of the regular expressions:
5724
5725 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5726 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5727 TKB [subprogram suffix for task bodies]
5728 _E[0-9]+[bs]$ [protected object entry suffixes]
5729 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5730
5731 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5732 match is performed. This sequence is used to differentiate homonyms,
5733 is an optional part of a valid name suffix. */
5734
5735 static int
5736 is_name_suffix (const char *str)
5737 {
5738 int k;
5739 const char *matching;
5740 const int len = strlen (str);
5741
5742 /* Skip optional leading __[0-9]+. */
5743
5744 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5745 {
5746 str += 3;
5747 while (isdigit (str[0]))
5748 str += 1;
5749 }
5750
5751 /* [.$][0-9]+ */
5752
5753 if (str[0] == '.' || str[0] == '$')
5754 {
5755 matching = str + 1;
5756 while (isdigit (matching[0]))
5757 matching += 1;
5758 if (matching[0] == '\0')
5759 return 1;
5760 }
5761
5762 /* ___[0-9]+ */
5763
5764 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5765 {
5766 matching = str + 3;
5767 while (isdigit (matching[0]))
5768 matching += 1;
5769 if (matching[0] == '\0')
5770 return 1;
5771 }
5772
5773 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5774
5775 if (strcmp (str, "TKB") == 0)
5776 return 1;
5777
5778 #if 0
5779 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5780 with a N at the end. Unfortunately, the compiler uses the same
5781 convention for other internal types it creates. So treating
5782 all entity names that end with an "N" as a name suffix causes
5783 some regressions. For instance, consider the case of an enumerated
5784 type. To support the 'Image attribute, it creates an array whose
5785 name ends with N.
5786 Having a single character like this as a suffix carrying some
5787 information is a bit risky. Perhaps we should change the encoding
5788 to be something like "_N" instead. In the meantime, do not do
5789 the following check. */
5790 /* Protected Object Subprograms */
5791 if (len == 1 && str [0] == 'N')
5792 return 1;
5793 #endif
5794
5795 /* _E[0-9]+[bs]$ */
5796 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5797 {
5798 matching = str + 3;
5799 while (isdigit (matching[0]))
5800 matching += 1;
5801 if ((matching[0] == 'b' || matching[0] == 's')
5802 && matching [1] == '\0')
5803 return 1;
5804 }
5805
5806 /* ??? We should not modify STR directly, as we are doing below. This
5807 is fine in this case, but may become problematic later if we find
5808 that this alternative did not work, and want to try matching
5809 another one from the begining of STR. Since we modified it, we
5810 won't be able to find the begining of the string anymore! */
5811 if (str[0] == 'X')
5812 {
5813 str += 1;
5814 while (str[0] != '_' && str[0] != '\0')
5815 {
5816 if (str[0] != 'n' && str[0] != 'b')
5817 return 0;
5818 str += 1;
5819 }
5820 }
5821
5822 if (str[0] == '\000')
5823 return 1;
5824
5825 if (str[0] == '_')
5826 {
5827 if (str[1] != '_' || str[2] == '\000')
5828 return 0;
5829 if (str[2] == '_')
5830 {
5831 if (strcmp (str + 3, "JM") == 0)
5832 return 1;
5833 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5834 the LJM suffix in favor of the JM one. But we will
5835 still accept LJM as a valid suffix for a reasonable
5836 amount of time, just to allow ourselves to debug programs
5837 compiled using an older version of GNAT. */
5838 if (strcmp (str + 3, "LJM") == 0)
5839 return 1;
5840 if (str[3] != 'X')
5841 return 0;
5842 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5843 || str[4] == 'U' || str[4] == 'P')
5844 return 1;
5845 if (str[4] == 'R' && str[5] != 'T')
5846 return 1;
5847 return 0;
5848 }
5849 if (!isdigit (str[2]))
5850 return 0;
5851 for (k = 3; str[k] != '\0'; k += 1)
5852 if (!isdigit (str[k]) && str[k] != '_')
5853 return 0;
5854 return 1;
5855 }
5856 if (str[0] == '$' && isdigit (str[1]))
5857 {
5858 for (k = 2; str[k] != '\0'; k += 1)
5859 if (!isdigit (str[k]) && str[k] != '_')
5860 return 0;
5861 return 1;
5862 }
5863 return 0;
5864 }
5865
5866 /* Return non-zero if the string starting at NAME and ending before
5867 NAME_END contains no capital letters. */
5868
5869 static int
5870 is_valid_name_for_wild_match (const char *name0)
5871 {
5872 const char *decoded_name = ada_decode (name0);
5873 int i;
5874
5875 /* If the decoded name starts with an angle bracket, it means that
5876 NAME0 does not follow the GNAT encoding format. It should then
5877 not be allowed as a possible wild match. */
5878 if (decoded_name[0] == '<')
5879 return 0;
5880
5881 for (i=0; decoded_name[i] != '\0'; i++)
5882 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5883 return 0;
5884
5885 return 1;
5886 }
5887
5888 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5889 that could start a simple name. Assumes that *NAMEP points into
5890 the string beginning at NAME0. */
5891
5892 static int
5893 advance_wild_match (const char **namep, const char *name0, int target0)
5894 {
5895 const char *name = *namep;
5896
5897 while (1)
5898 {
5899 int t0, t1;
5900
5901 t0 = *name;
5902 if (t0 == '_')
5903 {
5904 t1 = name[1];
5905 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5906 {
5907 name += 1;
5908 if (name == name0 + 5 && startswith (name0, "_ada"))
5909 break;
5910 else
5911 name += 1;
5912 }
5913 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5914 || name[2] == target0))
5915 {
5916 name += 2;
5917 break;
5918 }
5919 else
5920 return 0;
5921 }
5922 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5923 name += 1;
5924 else
5925 return 0;
5926 }
5927
5928 *namep = name;
5929 return 1;
5930 }
5931
5932 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5933 informational suffixes of NAME (i.e., for which is_name_suffix is
5934 true). Assumes that PATN is a lower-cased Ada simple name. */
5935
5936 static int
5937 wild_match (const char *name, const char *patn)
5938 {
5939 const char *p;
5940 const char *name0 = name;
5941
5942 while (1)
5943 {
5944 const char *match = name;
5945
5946 if (*name == *patn)
5947 {
5948 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5949 if (*p != *name)
5950 break;
5951 if (*p == '\0' && is_name_suffix (name))
5952 return match != name0 && !is_valid_name_for_wild_match (name0);
5953
5954 if (name[-1] == '_')
5955 name -= 1;
5956 }
5957 if (!advance_wild_match (&name, name0, *patn))
5958 return 1;
5959 }
5960 }
5961
5962 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5963 informational suffix. */
5964
5965 static int
5966 full_match (const char *sym_name, const char *search_name)
5967 {
5968 return !match_name (sym_name, search_name, 0);
5969 }
5970
5971
5972 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5973 vector *defn_symbols, updating the list of symbols in OBSTACKP
5974 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5975 OBJFILE is the section containing BLOCK. */
5976
5977 static void
5978 ada_add_block_symbols (struct obstack *obstackp,
5979 const struct block *block, const char *name,
5980 domain_enum domain, struct objfile *objfile,
5981 int wild)
5982 {
5983 struct block_iterator iter;
5984 int name_len = strlen (name);
5985 /* A matching argument symbol, if any. */
5986 struct symbol *arg_sym;
5987 /* Set true when we find a matching non-argument symbol. */
5988 int found_sym;
5989 struct symbol *sym;
5990
5991 arg_sym = NULL;
5992 found_sym = 0;
5993 if (wild)
5994 {
5995 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5996 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5997 {
5998 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5999 SYMBOL_DOMAIN (sym), domain)
6000 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6001 {
6002 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6003 continue;
6004 else if (SYMBOL_IS_ARGUMENT (sym))
6005 arg_sym = sym;
6006 else
6007 {
6008 found_sym = 1;
6009 add_defn_to_vec (obstackp,
6010 fixup_symbol_section (sym, objfile),
6011 block);
6012 }
6013 }
6014 }
6015 }
6016 else
6017 {
6018 for (sym = block_iter_match_first (block, name, full_match, &iter);
6019 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6020 {
6021 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6022 SYMBOL_DOMAIN (sym), domain))
6023 {
6024 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6025 {
6026 if (SYMBOL_IS_ARGUMENT (sym))
6027 arg_sym = sym;
6028 else
6029 {
6030 found_sym = 1;
6031 add_defn_to_vec (obstackp,
6032 fixup_symbol_section (sym, objfile),
6033 block);
6034 }
6035 }
6036 }
6037 }
6038 }
6039
6040 if (!found_sym && arg_sym != NULL)
6041 {
6042 add_defn_to_vec (obstackp,
6043 fixup_symbol_section (arg_sym, objfile),
6044 block);
6045 }
6046
6047 if (!wild)
6048 {
6049 arg_sym = NULL;
6050 found_sym = 0;
6051
6052 ALL_BLOCK_SYMBOLS (block, iter, sym)
6053 {
6054 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6055 SYMBOL_DOMAIN (sym), domain))
6056 {
6057 int cmp;
6058
6059 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6060 if (cmp == 0)
6061 {
6062 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6063 if (cmp == 0)
6064 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6065 name_len);
6066 }
6067
6068 if (cmp == 0
6069 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6070 {
6071 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6072 {
6073 if (SYMBOL_IS_ARGUMENT (sym))
6074 arg_sym = sym;
6075 else
6076 {
6077 found_sym = 1;
6078 add_defn_to_vec (obstackp,
6079 fixup_symbol_section (sym, objfile),
6080 block);
6081 }
6082 }
6083 }
6084 }
6085 }
6086
6087 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6088 They aren't parameters, right? */
6089 if (!found_sym && arg_sym != NULL)
6090 {
6091 add_defn_to_vec (obstackp,
6092 fixup_symbol_section (arg_sym, objfile),
6093 block);
6094 }
6095 }
6096 }
6097 \f
6098
6099 /* Symbol Completion */
6100
6101 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6102 name in a form that's appropriate for the completion. The result
6103 does not need to be deallocated, but is only good until the next call.
6104
6105 TEXT_LEN is equal to the length of TEXT.
6106 Perform a wild match if WILD_MATCH_P is set.
6107 ENCODED_P should be set if TEXT represents the start of a symbol name
6108 in its encoded form. */
6109
6110 static const char *
6111 symbol_completion_match (const char *sym_name,
6112 const char *text, int text_len,
6113 int wild_match_p, int encoded_p)
6114 {
6115 const int verbatim_match = (text[0] == '<');
6116 int match = 0;
6117
6118 if (verbatim_match)
6119 {
6120 /* Strip the leading angle bracket. */
6121 text = text + 1;
6122 text_len--;
6123 }
6124
6125 /* First, test against the fully qualified name of the symbol. */
6126
6127 if (strncmp (sym_name, text, text_len) == 0)
6128 match = 1;
6129
6130 if (match && !encoded_p)
6131 {
6132 /* One needed check before declaring a positive match is to verify
6133 that iff we are doing a verbatim match, the decoded version
6134 of the symbol name starts with '<'. Otherwise, this symbol name
6135 is not a suitable completion. */
6136 const char *sym_name_copy = sym_name;
6137 int has_angle_bracket;
6138
6139 sym_name = ada_decode (sym_name);
6140 has_angle_bracket = (sym_name[0] == '<');
6141 match = (has_angle_bracket == verbatim_match);
6142 sym_name = sym_name_copy;
6143 }
6144
6145 if (match && !verbatim_match)
6146 {
6147 /* When doing non-verbatim match, another check that needs to
6148 be done is to verify that the potentially matching symbol name
6149 does not include capital letters, because the ada-mode would
6150 not be able to understand these symbol names without the
6151 angle bracket notation. */
6152 const char *tmp;
6153
6154 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6155 if (*tmp != '\0')
6156 match = 0;
6157 }
6158
6159 /* Second: Try wild matching... */
6160
6161 if (!match && wild_match_p)
6162 {
6163 /* Since we are doing wild matching, this means that TEXT
6164 may represent an unqualified symbol name. We therefore must
6165 also compare TEXT against the unqualified name of the symbol. */
6166 sym_name = ada_unqualified_name (ada_decode (sym_name));
6167
6168 if (strncmp (sym_name, text, text_len) == 0)
6169 match = 1;
6170 }
6171
6172 /* Finally: If we found a mach, prepare the result to return. */
6173
6174 if (!match)
6175 return NULL;
6176
6177 if (verbatim_match)
6178 sym_name = add_angle_brackets (sym_name);
6179
6180 if (!encoded_p)
6181 sym_name = ada_decode (sym_name);
6182
6183 return sym_name;
6184 }
6185
6186 /* A companion function to ada_make_symbol_completion_list().
6187 Check if SYM_NAME represents a symbol which name would be suitable
6188 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6189 it is appended at the end of the given string vector SV.
6190
6191 ORIG_TEXT is the string original string from the user command
6192 that needs to be completed. WORD is the entire command on which
6193 completion should be performed. These two parameters are used to
6194 determine which part of the symbol name should be added to the
6195 completion vector.
6196 if WILD_MATCH_P is set, then wild matching is performed.
6197 ENCODED_P should be set if TEXT represents a symbol name in its
6198 encoded formed (in which case the completion should also be
6199 encoded). */
6200
6201 static void
6202 symbol_completion_add (VEC(char_ptr) **sv,
6203 const char *sym_name,
6204 const char *text, int text_len,
6205 const char *orig_text, const char *word,
6206 int wild_match_p, int encoded_p)
6207 {
6208 const char *match = symbol_completion_match (sym_name, text, text_len,
6209 wild_match_p, encoded_p);
6210 char *completion;
6211
6212 if (match == NULL)
6213 return;
6214
6215 /* We found a match, so add the appropriate completion to the given
6216 string vector. */
6217
6218 if (word == orig_text)
6219 {
6220 completion = xmalloc (strlen (match) + 5);
6221 strcpy (completion, match);
6222 }
6223 else if (word > orig_text)
6224 {
6225 /* Return some portion of sym_name. */
6226 completion = xmalloc (strlen (match) + 5);
6227 strcpy (completion, match + (word - orig_text));
6228 }
6229 else
6230 {
6231 /* Return some of ORIG_TEXT plus sym_name. */
6232 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6233 strncpy (completion, word, orig_text - word);
6234 completion[orig_text - word] = '\0';
6235 strcat (completion, match);
6236 }
6237
6238 VEC_safe_push (char_ptr, *sv, completion);
6239 }
6240
6241 /* An object of this type is passed as the user_data argument to the
6242 expand_symtabs_matching method. */
6243 struct add_partial_datum
6244 {
6245 VEC(char_ptr) **completions;
6246 const char *text;
6247 int text_len;
6248 const char *text0;
6249 const char *word;
6250 int wild_match;
6251 int encoded;
6252 };
6253
6254 /* A callback for expand_symtabs_matching. */
6255
6256 static int
6257 ada_complete_symbol_matcher (const char *name, void *user_data)
6258 {
6259 struct add_partial_datum *data = user_data;
6260
6261 return symbol_completion_match (name, data->text, data->text_len,
6262 data->wild_match, data->encoded) != NULL;
6263 }
6264
6265 /* Return a list of possible symbol names completing TEXT0. WORD is
6266 the entire command on which completion is made. */
6267
6268 static VEC (char_ptr) *
6269 ada_make_symbol_completion_list (const char *text0, const char *word,
6270 enum type_code code)
6271 {
6272 char *text;
6273 int text_len;
6274 int wild_match_p;
6275 int encoded_p;
6276 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6277 struct symbol *sym;
6278 struct compunit_symtab *s;
6279 struct minimal_symbol *msymbol;
6280 struct objfile *objfile;
6281 const struct block *b, *surrounding_static_block = 0;
6282 int i;
6283 struct block_iterator iter;
6284 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6285
6286 gdb_assert (code == TYPE_CODE_UNDEF);
6287
6288 if (text0[0] == '<')
6289 {
6290 text = xstrdup (text0);
6291 make_cleanup (xfree, text);
6292 text_len = strlen (text);
6293 wild_match_p = 0;
6294 encoded_p = 1;
6295 }
6296 else
6297 {
6298 text = xstrdup (ada_encode (text0));
6299 make_cleanup (xfree, text);
6300 text_len = strlen (text);
6301 for (i = 0; i < text_len; i++)
6302 text[i] = tolower (text[i]);
6303
6304 encoded_p = (strstr (text0, "__") != NULL);
6305 /* If the name contains a ".", then the user is entering a fully
6306 qualified entity name, and the match must not be done in wild
6307 mode. Similarly, if the user wants to complete what looks like
6308 an encoded name, the match must not be done in wild mode. */
6309 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6310 }
6311
6312 /* First, look at the partial symtab symbols. */
6313 {
6314 struct add_partial_datum data;
6315
6316 data.completions = &completions;
6317 data.text = text;
6318 data.text_len = text_len;
6319 data.text0 = text0;
6320 data.word = word;
6321 data.wild_match = wild_match_p;
6322 data.encoded = encoded_p;
6323 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6324 ALL_DOMAIN, &data);
6325 }
6326
6327 /* At this point scan through the misc symbol vectors and add each
6328 symbol you find to the list. Eventually we want to ignore
6329 anything that isn't a text symbol (everything else will be
6330 handled by the psymtab code above). */
6331
6332 ALL_MSYMBOLS (objfile, msymbol)
6333 {
6334 QUIT;
6335 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6336 text, text_len, text0, word, wild_match_p,
6337 encoded_p);
6338 }
6339
6340 /* Search upwards from currently selected frame (so that we can
6341 complete on local vars. */
6342
6343 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6344 {
6345 if (!BLOCK_SUPERBLOCK (b))
6346 surrounding_static_block = b; /* For elmin of dups */
6347
6348 ALL_BLOCK_SYMBOLS (b, iter, sym)
6349 {
6350 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6351 text, text_len, text0, word,
6352 wild_match_p, encoded_p);
6353 }
6354 }
6355
6356 /* Go through the symtabs and check the externs and statics for
6357 symbols which match. */
6358
6359 ALL_COMPUNITS (objfile, s)
6360 {
6361 QUIT;
6362 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6363 ALL_BLOCK_SYMBOLS (b, iter, sym)
6364 {
6365 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6366 text, text_len, text0, word,
6367 wild_match_p, encoded_p);
6368 }
6369 }
6370
6371 ALL_COMPUNITS (objfile, s)
6372 {
6373 QUIT;
6374 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6375 /* Don't do this block twice. */
6376 if (b == surrounding_static_block)
6377 continue;
6378 ALL_BLOCK_SYMBOLS (b, iter, sym)
6379 {
6380 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6381 text, text_len, text0, word,
6382 wild_match_p, encoded_p);
6383 }
6384 }
6385
6386 do_cleanups (old_chain);
6387 return completions;
6388 }
6389
6390 /* Field Access */
6391
6392 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6393 for tagged types. */
6394
6395 static int
6396 ada_is_dispatch_table_ptr_type (struct type *type)
6397 {
6398 const char *name;
6399
6400 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6401 return 0;
6402
6403 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6404 if (name == NULL)
6405 return 0;
6406
6407 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6408 }
6409
6410 /* Return non-zero if TYPE is an interface tag. */
6411
6412 static int
6413 ada_is_interface_tag (struct type *type)
6414 {
6415 const char *name = TYPE_NAME (type);
6416
6417 if (name == NULL)
6418 return 0;
6419
6420 return (strcmp (name, "ada__tags__interface_tag") == 0);
6421 }
6422
6423 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6424 to be invisible to users. */
6425
6426 int
6427 ada_is_ignored_field (struct type *type, int field_num)
6428 {
6429 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6430 return 1;
6431
6432 /* Check the name of that field. */
6433 {
6434 const char *name = TYPE_FIELD_NAME (type, field_num);
6435
6436 /* Anonymous field names should not be printed.
6437 brobecker/2007-02-20: I don't think this can actually happen
6438 but we don't want to print the value of annonymous fields anyway. */
6439 if (name == NULL)
6440 return 1;
6441
6442 /* Normally, fields whose name start with an underscore ("_")
6443 are fields that have been internally generated by the compiler,
6444 and thus should not be printed. The "_parent" field is special,
6445 however: This is a field internally generated by the compiler
6446 for tagged types, and it contains the components inherited from
6447 the parent type. This field should not be printed as is, but
6448 should not be ignored either. */
6449 if (name[0] == '_' && !startswith (name, "_parent"))
6450 return 1;
6451 }
6452
6453 /* If this is the dispatch table of a tagged type or an interface tag,
6454 then ignore. */
6455 if (ada_is_tagged_type (type, 1)
6456 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6457 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6458 return 1;
6459
6460 /* Not a special field, so it should not be ignored. */
6461 return 0;
6462 }
6463
6464 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6465 pointer or reference type whose ultimate target has a tag field. */
6466
6467 int
6468 ada_is_tagged_type (struct type *type, int refok)
6469 {
6470 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6471 }
6472
6473 /* True iff TYPE represents the type of X'Tag */
6474
6475 int
6476 ada_is_tag_type (struct type *type)
6477 {
6478 type = ada_check_typedef (type);
6479
6480 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6481 return 0;
6482 else
6483 {
6484 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6485
6486 return (name != NULL
6487 && strcmp (name, "ada__tags__dispatch_table") == 0);
6488 }
6489 }
6490
6491 /* The type of the tag on VAL. */
6492
6493 struct type *
6494 ada_tag_type (struct value *val)
6495 {
6496 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6497 }
6498
6499 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6500 retired at Ada 05). */
6501
6502 static int
6503 is_ada95_tag (struct value *tag)
6504 {
6505 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6506 }
6507
6508 /* The value of the tag on VAL. */
6509
6510 struct value *
6511 ada_value_tag (struct value *val)
6512 {
6513 return ada_value_struct_elt (val, "_tag", 0);
6514 }
6515
6516 /* The value of the tag on the object of type TYPE whose contents are
6517 saved at VALADDR, if it is non-null, or is at memory address
6518 ADDRESS. */
6519
6520 static struct value *
6521 value_tag_from_contents_and_address (struct type *type,
6522 const gdb_byte *valaddr,
6523 CORE_ADDR address)
6524 {
6525 int tag_byte_offset;
6526 struct type *tag_type;
6527
6528 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6529 NULL, NULL, NULL))
6530 {
6531 const gdb_byte *valaddr1 = ((valaddr == NULL)
6532 ? NULL
6533 : valaddr + tag_byte_offset);
6534 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6535
6536 return value_from_contents_and_address (tag_type, valaddr1, address1);
6537 }
6538 return NULL;
6539 }
6540
6541 static struct type *
6542 type_from_tag (struct value *tag)
6543 {
6544 const char *type_name = ada_tag_name (tag);
6545
6546 if (type_name != NULL)
6547 return ada_find_any_type (ada_encode (type_name));
6548 return NULL;
6549 }
6550
6551 /* Given a value OBJ of a tagged type, return a value of this
6552 type at the base address of the object. The base address, as
6553 defined in Ada.Tags, it is the address of the primary tag of
6554 the object, and therefore where the field values of its full
6555 view can be fetched. */
6556
6557 struct value *
6558 ada_tag_value_at_base_address (struct value *obj)
6559 {
6560 struct value *val;
6561 LONGEST offset_to_top = 0;
6562 struct type *ptr_type, *obj_type;
6563 struct value *tag;
6564 CORE_ADDR base_address;
6565
6566 obj_type = value_type (obj);
6567
6568 /* It is the responsability of the caller to deref pointers. */
6569
6570 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6571 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6572 return obj;
6573
6574 tag = ada_value_tag (obj);
6575 if (!tag)
6576 return obj;
6577
6578 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6579
6580 if (is_ada95_tag (tag))
6581 return obj;
6582
6583 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6584 ptr_type = lookup_pointer_type (ptr_type);
6585 val = value_cast (ptr_type, tag);
6586 if (!val)
6587 return obj;
6588
6589 /* It is perfectly possible that an exception be raised while
6590 trying to determine the base address, just like for the tag;
6591 see ada_tag_name for more details. We do not print the error
6592 message for the same reason. */
6593
6594 TRY
6595 {
6596 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6597 }
6598
6599 CATCH (e, RETURN_MASK_ERROR)
6600 {
6601 return obj;
6602 }
6603 END_CATCH
6604
6605 /* If offset is null, nothing to do. */
6606
6607 if (offset_to_top == 0)
6608 return obj;
6609
6610 /* -1 is a special case in Ada.Tags; however, what should be done
6611 is not quite clear from the documentation. So do nothing for
6612 now. */
6613
6614 if (offset_to_top == -1)
6615 return obj;
6616
6617 base_address = value_address (obj) - offset_to_top;
6618 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6619
6620 /* Make sure that we have a proper tag at the new address.
6621 Otherwise, offset_to_top is bogus (which can happen when
6622 the object is not initialized yet). */
6623
6624 if (!tag)
6625 return obj;
6626
6627 obj_type = type_from_tag (tag);
6628
6629 if (!obj_type)
6630 return obj;
6631
6632 return value_from_contents_and_address (obj_type, NULL, base_address);
6633 }
6634
6635 /* Return the "ada__tags__type_specific_data" type. */
6636
6637 static struct type *
6638 ada_get_tsd_type (struct inferior *inf)
6639 {
6640 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6641
6642 if (data->tsd_type == 0)
6643 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6644 return data->tsd_type;
6645 }
6646
6647 /* Return the TSD (type-specific data) associated to the given TAG.
6648 TAG is assumed to be the tag of a tagged-type entity.
6649
6650 May return NULL if we are unable to get the TSD. */
6651
6652 static struct value *
6653 ada_get_tsd_from_tag (struct value *tag)
6654 {
6655 struct value *val;
6656 struct type *type;
6657
6658 /* First option: The TSD is simply stored as a field of our TAG.
6659 Only older versions of GNAT would use this format, but we have
6660 to test it first, because there are no visible markers for
6661 the current approach except the absence of that field. */
6662
6663 val = ada_value_struct_elt (tag, "tsd", 1);
6664 if (val)
6665 return val;
6666
6667 /* Try the second representation for the dispatch table (in which
6668 there is no explicit 'tsd' field in the referent of the tag pointer,
6669 and instead the tsd pointer is stored just before the dispatch
6670 table. */
6671
6672 type = ada_get_tsd_type (current_inferior());
6673 if (type == NULL)
6674 return NULL;
6675 type = lookup_pointer_type (lookup_pointer_type (type));
6676 val = value_cast (type, tag);
6677 if (val == NULL)
6678 return NULL;
6679 return value_ind (value_ptradd (val, -1));
6680 }
6681
6682 /* Given the TSD of a tag (type-specific data), return a string
6683 containing the name of the associated type.
6684
6685 The returned value is good until the next call. May return NULL
6686 if we are unable to determine the tag name. */
6687
6688 static char *
6689 ada_tag_name_from_tsd (struct value *tsd)
6690 {
6691 static char name[1024];
6692 char *p;
6693 struct value *val;
6694
6695 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6696 if (val == NULL)
6697 return NULL;
6698 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6699 for (p = name; *p != '\0'; p += 1)
6700 if (isalpha (*p))
6701 *p = tolower (*p);
6702 return name;
6703 }
6704
6705 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6706 a C string.
6707
6708 Return NULL if the TAG is not an Ada tag, or if we were unable to
6709 determine the name of that tag. The result is good until the next
6710 call. */
6711
6712 const char *
6713 ada_tag_name (struct value *tag)
6714 {
6715 char *name = NULL;
6716
6717 if (!ada_is_tag_type (value_type (tag)))
6718 return NULL;
6719
6720 /* It is perfectly possible that an exception be raised while trying
6721 to determine the TAG's name, even under normal circumstances:
6722 The associated variable may be uninitialized or corrupted, for
6723 instance. We do not let any exception propagate past this point.
6724 instead we return NULL.
6725
6726 We also do not print the error message either (which often is very
6727 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6728 the caller print a more meaningful message if necessary. */
6729 TRY
6730 {
6731 struct value *tsd = ada_get_tsd_from_tag (tag);
6732
6733 if (tsd != NULL)
6734 name = ada_tag_name_from_tsd (tsd);
6735 }
6736 CATCH (e, RETURN_MASK_ERROR)
6737 {
6738 }
6739 END_CATCH
6740
6741 return name;
6742 }
6743
6744 /* The parent type of TYPE, or NULL if none. */
6745
6746 struct type *
6747 ada_parent_type (struct type *type)
6748 {
6749 int i;
6750
6751 type = ada_check_typedef (type);
6752
6753 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6754 return NULL;
6755
6756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6757 if (ada_is_parent_field (type, i))
6758 {
6759 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6760
6761 /* If the _parent field is a pointer, then dereference it. */
6762 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6763 parent_type = TYPE_TARGET_TYPE (parent_type);
6764 /* If there is a parallel XVS type, get the actual base type. */
6765 parent_type = ada_get_base_type (parent_type);
6766
6767 return ada_check_typedef (parent_type);
6768 }
6769
6770 return NULL;
6771 }
6772
6773 /* True iff field number FIELD_NUM of structure type TYPE contains the
6774 parent-type (inherited) fields of a derived type. Assumes TYPE is
6775 a structure type with at least FIELD_NUM+1 fields. */
6776
6777 int
6778 ada_is_parent_field (struct type *type, int field_num)
6779 {
6780 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6781
6782 return (name != NULL
6783 && (startswith (name, "PARENT")
6784 || startswith (name, "_parent")));
6785 }
6786
6787 /* True iff field number FIELD_NUM of structure type TYPE is a
6788 transparent wrapper field (which should be silently traversed when doing
6789 field selection and flattened when printing). Assumes TYPE is a
6790 structure type with at least FIELD_NUM+1 fields. Such fields are always
6791 structures. */
6792
6793 int
6794 ada_is_wrapper_field (struct type *type, int field_num)
6795 {
6796 const char *name = TYPE_FIELD_NAME (type, field_num);
6797
6798 return (name != NULL
6799 && (startswith (name, "PARENT")
6800 || strcmp (name, "REP") == 0
6801 || startswith (name, "_parent")
6802 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6803 }
6804
6805 /* True iff field number FIELD_NUM of structure or union type TYPE
6806 is a variant wrapper. Assumes TYPE is a structure type with at least
6807 FIELD_NUM+1 fields. */
6808
6809 int
6810 ada_is_variant_part (struct type *type, int field_num)
6811 {
6812 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6813
6814 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6815 || (is_dynamic_field (type, field_num)
6816 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6817 == TYPE_CODE_UNION)));
6818 }
6819
6820 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6821 whose discriminants are contained in the record type OUTER_TYPE,
6822 returns the type of the controlling discriminant for the variant.
6823 May return NULL if the type could not be found. */
6824
6825 struct type *
6826 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6827 {
6828 char *name = ada_variant_discrim_name (var_type);
6829
6830 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6831 }
6832
6833 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6834 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6835 represents a 'when others' clause; otherwise 0. */
6836
6837 int
6838 ada_is_others_clause (struct type *type, int field_num)
6839 {
6840 const char *name = TYPE_FIELD_NAME (type, field_num);
6841
6842 return (name != NULL && name[0] == 'O');
6843 }
6844
6845 /* Assuming that TYPE0 is the type of the variant part of a record,
6846 returns the name of the discriminant controlling the variant.
6847 The value is valid until the next call to ada_variant_discrim_name. */
6848
6849 char *
6850 ada_variant_discrim_name (struct type *type0)
6851 {
6852 static char *result = NULL;
6853 static size_t result_len = 0;
6854 struct type *type;
6855 const char *name;
6856 const char *discrim_end;
6857 const char *discrim_start;
6858
6859 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6860 type = TYPE_TARGET_TYPE (type0);
6861 else
6862 type = type0;
6863
6864 name = ada_type_name (type);
6865
6866 if (name == NULL || name[0] == '\000')
6867 return "";
6868
6869 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6870 discrim_end -= 1)
6871 {
6872 if (startswith (discrim_end, "___XVN"))
6873 break;
6874 }
6875 if (discrim_end == name)
6876 return "";
6877
6878 for (discrim_start = discrim_end; discrim_start != name + 3;
6879 discrim_start -= 1)
6880 {
6881 if (discrim_start == name + 1)
6882 return "";
6883 if ((discrim_start > name + 3
6884 && startswith (discrim_start - 3, "___"))
6885 || discrim_start[-1] == '.')
6886 break;
6887 }
6888
6889 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6890 strncpy (result, discrim_start, discrim_end - discrim_start);
6891 result[discrim_end - discrim_start] = '\0';
6892 return result;
6893 }
6894
6895 /* Scan STR for a subtype-encoded number, beginning at position K.
6896 Put the position of the character just past the number scanned in
6897 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6898 Return 1 if there was a valid number at the given position, and 0
6899 otherwise. A "subtype-encoded" number consists of the absolute value
6900 in decimal, followed by the letter 'm' to indicate a negative number.
6901 Assumes 0m does not occur. */
6902
6903 int
6904 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6905 {
6906 ULONGEST RU;
6907
6908 if (!isdigit (str[k]))
6909 return 0;
6910
6911 /* Do it the hard way so as not to make any assumption about
6912 the relationship of unsigned long (%lu scan format code) and
6913 LONGEST. */
6914 RU = 0;
6915 while (isdigit (str[k]))
6916 {
6917 RU = RU * 10 + (str[k] - '0');
6918 k += 1;
6919 }
6920
6921 if (str[k] == 'm')
6922 {
6923 if (R != NULL)
6924 *R = (-(LONGEST) (RU - 1)) - 1;
6925 k += 1;
6926 }
6927 else if (R != NULL)
6928 *R = (LONGEST) RU;
6929
6930 /* NOTE on the above: Technically, C does not say what the results of
6931 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6932 number representable as a LONGEST (although either would probably work
6933 in most implementations). When RU>0, the locution in the then branch
6934 above is always equivalent to the negative of RU. */
6935
6936 if (new_k != NULL)
6937 *new_k = k;
6938 return 1;
6939 }
6940
6941 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6942 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6943 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6944
6945 int
6946 ada_in_variant (LONGEST val, struct type *type, int field_num)
6947 {
6948 const char *name = TYPE_FIELD_NAME (type, field_num);
6949 int p;
6950
6951 p = 0;
6952 while (1)
6953 {
6954 switch (name[p])
6955 {
6956 case '\0':
6957 return 0;
6958 case 'S':
6959 {
6960 LONGEST W;
6961
6962 if (!ada_scan_number (name, p + 1, &W, &p))
6963 return 0;
6964 if (val == W)
6965 return 1;
6966 break;
6967 }
6968 case 'R':
6969 {
6970 LONGEST L, U;
6971
6972 if (!ada_scan_number (name, p + 1, &L, &p)
6973 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6974 return 0;
6975 if (val >= L && val <= U)
6976 return 1;
6977 break;
6978 }
6979 case 'O':
6980 return 1;
6981 default:
6982 return 0;
6983 }
6984 }
6985 }
6986
6987 /* FIXME: Lots of redundancy below. Try to consolidate. */
6988
6989 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6990 ARG_TYPE, extract and return the value of one of its (non-static)
6991 fields. FIELDNO says which field. Differs from value_primitive_field
6992 only in that it can handle packed values of arbitrary type. */
6993
6994 static struct value *
6995 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6996 struct type *arg_type)
6997 {
6998 struct type *type;
6999
7000 arg_type = ada_check_typedef (arg_type);
7001 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7002
7003 /* Handle packed fields. */
7004
7005 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7006 {
7007 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7008 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7009
7010 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7011 offset + bit_pos / 8,
7012 bit_pos % 8, bit_size, type);
7013 }
7014 else
7015 return value_primitive_field (arg1, offset, fieldno, arg_type);
7016 }
7017
7018 /* Find field with name NAME in object of type TYPE. If found,
7019 set the following for each argument that is non-null:
7020 - *FIELD_TYPE_P to the field's type;
7021 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7022 an object of that type;
7023 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7024 - *BIT_SIZE_P to its size in bits if the field is packed, and
7025 0 otherwise;
7026 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7027 fields up to but not including the desired field, or by the total
7028 number of fields if not found. A NULL value of NAME never
7029 matches; the function just counts visible fields in this case.
7030
7031 Returns 1 if found, 0 otherwise. */
7032
7033 static int
7034 find_struct_field (const char *name, struct type *type, int offset,
7035 struct type **field_type_p,
7036 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7037 int *index_p)
7038 {
7039 int i;
7040
7041 type = ada_check_typedef (type);
7042
7043 if (field_type_p != NULL)
7044 *field_type_p = NULL;
7045 if (byte_offset_p != NULL)
7046 *byte_offset_p = 0;
7047 if (bit_offset_p != NULL)
7048 *bit_offset_p = 0;
7049 if (bit_size_p != NULL)
7050 *bit_size_p = 0;
7051
7052 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7053 {
7054 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7055 int fld_offset = offset + bit_pos / 8;
7056 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7057
7058 if (t_field_name == NULL)
7059 continue;
7060
7061 else if (name != NULL && field_name_match (t_field_name, name))
7062 {
7063 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7064
7065 if (field_type_p != NULL)
7066 *field_type_p = TYPE_FIELD_TYPE (type, i);
7067 if (byte_offset_p != NULL)
7068 *byte_offset_p = fld_offset;
7069 if (bit_offset_p != NULL)
7070 *bit_offset_p = bit_pos % 8;
7071 if (bit_size_p != NULL)
7072 *bit_size_p = bit_size;
7073 return 1;
7074 }
7075 else if (ada_is_wrapper_field (type, i))
7076 {
7077 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7078 field_type_p, byte_offset_p, bit_offset_p,
7079 bit_size_p, index_p))
7080 return 1;
7081 }
7082 else if (ada_is_variant_part (type, i))
7083 {
7084 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7085 fixed type?? */
7086 int j;
7087 struct type *field_type
7088 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7089
7090 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7091 {
7092 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7093 fld_offset
7094 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7095 field_type_p, byte_offset_p,
7096 bit_offset_p, bit_size_p, index_p))
7097 return 1;
7098 }
7099 }
7100 else if (index_p != NULL)
7101 *index_p += 1;
7102 }
7103 return 0;
7104 }
7105
7106 /* Number of user-visible fields in record type TYPE. */
7107
7108 static int
7109 num_visible_fields (struct type *type)
7110 {
7111 int n;
7112
7113 n = 0;
7114 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7115 return n;
7116 }
7117
7118 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7119 and search in it assuming it has (class) type TYPE.
7120 If found, return value, else return NULL.
7121
7122 Searches recursively through wrapper fields (e.g., '_parent'). */
7123
7124 static struct value *
7125 ada_search_struct_field (char *name, struct value *arg, int offset,
7126 struct type *type)
7127 {
7128 int i;
7129
7130 type = ada_check_typedef (type);
7131 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7132 {
7133 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7134
7135 if (t_field_name == NULL)
7136 continue;
7137
7138 else if (field_name_match (t_field_name, name))
7139 return ada_value_primitive_field (arg, offset, i, type);
7140
7141 else if (ada_is_wrapper_field (type, i))
7142 {
7143 struct value *v = /* Do not let indent join lines here. */
7144 ada_search_struct_field (name, arg,
7145 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7146 TYPE_FIELD_TYPE (type, i));
7147
7148 if (v != NULL)
7149 return v;
7150 }
7151
7152 else if (ada_is_variant_part (type, i))
7153 {
7154 /* PNH: Do we ever get here? See find_struct_field. */
7155 int j;
7156 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7157 i));
7158 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7159
7160 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7161 {
7162 struct value *v = ada_search_struct_field /* Force line
7163 break. */
7164 (name, arg,
7165 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7166 TYPE_FIELD_TYPE (field_type, j));
7167
7168 if (v != NULL)
7169 return v;
7170 }
7171 }
7172 }
7173 return NULL;
7174 }
7175
7176 static struct value *ada_index_struct_field_1 (int *, struct value *,
7177 int, struct type *);
7178
7179
7180 /* Return field #INDEX in ARG, where the index is that returned by
7181 * find_struct_field through its INDEX_P argument. Adjust the address
7182 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7183 * If found, return value, else return NULL. */
7184
7185 static struct value *
7186 ada_index_struct_field (int index, struct value *arg, int offset,
7187 struct type *type)
7188 {
7189 return ada_index_struct_field_1 (&index, arg, offset, type);
7190 }
7191
7192
7193 /* Auxiliary function for ada_index_struct_field. Like
7194 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7195 * *INDEX_P. */
7196
7197 static struct value *
7198 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7199 struct type *type)
7200 {
7201 int i;
7202 type = ada_check_typedef (type);
7203
7204 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7205 {
7206 if (TYPE_FIELD_NAME (type, i) == NULL)
7207 continue;
7208 else if (ada_is_wrapper_field (type, i))
7209 {
7210 struct value *v = /* Do not let indent join lines here. */
7211 ada_index_struct_field_1 (index_p, arg,
7212 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7213 TYPE_FIELD_TYPE (type, i));
7214
7215 if (v != NULL)
7216 return v;
7217 }
7218
7219 else if (ada_is_variant_part (type, i))
7220 {
7221 /* PNH: Do we ever get here? See ada_search_struct_field,
7222 find_struct_field. */
7223 error (_("Cannot assign this kind of variant record"));
7224 }
7225 else if (*index_p == 0)
7226 return ada_value_primitive_field (arg, offset, i, type);
7227 else
7228 *index_p -= 1;
7229 }
7230 return NULL;
7231 }
7232
7233 /* Given ARG, a value of type (pointer or reference to a)*
7234 structure/union, extract the component named NAME from the ultimate
7235 target structure/union and return it as a value with its
7236 appropriate type.
7237
7238 The routine searches for NAME among all members of the structure itself
7239 and (recursively) among all members of any wrapper members
7240 (e.g., '_parent').
7241
7242 If NO_ERR, then simply return NULL in case of error, rather than
7243 calling error. */
7244
7245 struct value *
7246 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7247 {
7248 struct type *t, *t1;
7249 struct value *v;
7250
7251 v = NULL;
7252 t1 = t = ada_check_typedef (value_type (arg));
7253 if (TYPE_CODE (t) == TYPE_CODE_REF)
7254 {
7255 t1 = TYPE_TARGET_TYPE (t);
7256 if (t1 == NULL)
7257 goto BadValue;
7258 t1 = ada_check_typedef (t1);
7259 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7260 {
7261 arg = coerce_ref (arg);
7262 t = t1;
7263 }
7264 }
7265
7266 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7267 {
7268 t1 = TYPE_TARGET_TYPE (t);
7269 if (t1 == NULL)
7270 goto BadValue;
7271 t1 = ada_check_typedef (t1);
7272 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7273 {
7274 arg = value_ind (arg);
7275 t = t1;
7276 }
7277 else
7278 break;
7279 }
7280
7281 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7282 goto BadValue;
7283
7284 if (t1 == t)
7285 v = ada_search_struct_field (name, arg, 0, t);
7286 else
7287 {
7288 int bit_offset, bit_size, byte_offset;
7289 struct type *field_type;
7290 CORE_ADDR address;
7291
7292 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7293 address = value_address (ada_value_ind (arg));
7294 else
7295 address = value_address (ada_coerce_ref (arg));
7296
7297 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7298 if (find_struct_field (name, t1, 0,
7299 &field_type, &byte_offset, &bit_offset,
7300 &bit_size, NULL))
7301 {
7302 if (bit_size != 0)
7303 {
7304 if (TYPE_CODE (t) == TYPE_CODE_REF)
7305 arg = ada_coerce_ref (arg);
7306 else
7307 arg = ada_value_ind (arg);
7308 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7309 bit_offset, bit_size,
7310 field_type);
7311 }
7312 else
7313 v = value_at_lazy (field_type, address + byte_offset);
7314 }
7315 }
7316
7317 if (v != NULL || no_err)
7318 return v;
7319 else
7320 error (_("There is no member named %s."), name);
7321
7322 BadValue:
7323 if (no_err)
7324 return NULL;
7325 else
7326 error (_("Attempt to extract a component of "
7327 "a value that is not a record."));
7328 }
7329
7330 /* Given a type TYPE, look up the type of the component of type named NAME.
7331 If DISPP is non-null, add its byte displacement from the beginning of a
7332 structure (pointed to by a value) of type TYPE to *DISPP (does not
7333 work for packed fields).
7334
7335 Matches any field whose name has NAME as a prefix, possibly
7336 followed by "___".
7337
7338 TYPE can be either a struct or union. If REFOK, TYPE may also
7339 be a (pointer or reference)+ to a struct or union, and the
7340 ultimate target type will be searched.
7341
7342 Looks recursively into variant clauses and parent types.
7343
7344 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7345 TYPE is not a type of the right kind. */
7346
7347 static struct type *
7348 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7349 int noerr, int *dispp)
7350 {
7351 int i;
7352
7353 if (name == NULL)
7354 goto BadName;
7355
7356 if (refok && type != NULL)
7357 while (1)
7358 {
7359 type = ada_check_typedef (type);
7360 if (TYPE_CODE (type) != TYPE_CODE_PTR
7361 && TYPE_CODE (type) != TYPE_CODE_REF)
7362 break;
7363 type = TYPE_TARGET_TYPE (type);
7364 }
7365
7366 if (type == NULL
7367 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7368 && TYPE_CODE (type) != TYPE_CODE_UNION))
7369 {
7370 if (noerr)
7371 return NULL;
7372 else
7373 {
7374 target_terminal_ours ();
7375 gdb_flush (gdb_stdout);
7376 if (type == NULL)
7377 error (_("Type (null) is not a structure or union type"));
7378 else
7379 {
7380 /* XXX: type_sprint */
7381 fprintf_unfiltered (gdb_stderr, _("Type "));
7382 type_print (type, "", gdb_stderr, -1);
7383 error (_(" is not a structure or union type"));
7384 }
7385 }
7386 }
7387
7388 type = to_static_fixed_type (type);
7389
7390 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7391 {
7392 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7393 struct type *t;
7394 int disp;
7395
7396 if (t_field_name == NULL)
7397 continue;
7398
7399 else if (field_name_match (t_field_name, name))
7400 {
7401 if (dispp != NULL)
7402 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7403 return TYPE_FIELD_TYPE (type, i);
7404 }
7405
7406 else if (ada_is_wrapper_field (type, i))
7407 {
7408 disp = 0;
7409 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7410 0, 1, &disp);
7411 if (t != NULL)
7412 {
7413 if (dispp != NULL)
7414 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7415 return t;
7416 }
7417 }
7418
7419 else if (ada_is_variant_part (type, i))
7420 {
7421 int j;
7422 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7423 i));
7424
7425 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7426 {
7427 /* FIXME pnh 2008/01/26: We check for a field that is
7428 NOT wrapped in a struct, since the compiler sometimes
7429 generates these for unchecked variant types. Revisit
7430 if the compiler changes this practice. */
7431 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7432 disp = 0;
7433 if (v_field_name != NULL
7434 && field_name_match (v_field_name, name))
7435 t = TYPE_FIELD_TYPE (field_type, j);
7436 else
7437 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7438 j),
7439 name, 0, 1, &disp);
7440
7441 if (t != NULL)
7442 {
7443 if (dispp != NULL)
7444 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7445 return t;
7446 }
7447 }
7448 }
7449
7450 }
7451
7452 BadName:
7453 if (!noerr)
7454 {
7455 target_terminal_ours ();
7456 gdb_flush (gdb_stdout);
7457 if (name == NULL)
7458 {
7459 /* XXX: type_sprint */
7460 fprintf_unfiltered (gdb_stderr, _("Type "));
7461 type_print (type, "", gdb_stderr, -1);
7462 error (_(" has no component named <null>"));
7463 }
7464 else
7465 {
7466 /* XXX: type_sprint */
7467 fprintf_unfiltered (gdb_stderr, _("Type "));
7468 type_print (type, "", gdb_stderr, -1);
7469 error (_(" has no component named %s"), name);
7470 }
7471 }
7472
7473 return NULL;
7474 }
7475
7476 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7477 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7478 represents an unchecked union (that is, the variant part of a
7479 record that is named in an Unchecked_Union pragma). */
7480
7481 static int
7482 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7483 {
7484 char *discrim_name = ada_variant_discrim_name (var_type);
7485
7486 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7487 == NULL);
7488 }
7489
7490
7491 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7492 within a value of type OUTER_TYPE that is stored in GDB at
7493 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7494 numbering from 0) is applicable. Returns -1 if none are. */
7495
7496 int
7497 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7498 const gdb_byte *outer_valaddr)
7499 {
7500 int others_clause;
7501 int i;
7502 char *discrim_name = ada_variant_discrim_name (var_type);
7503 struct value *outer;
7504 struct value *discrim;
7505 LONGEST discrim_val;
7506
7507 /* Using plain value_from_contents_and_address here causes problems
7508 because we will end up trying to resolve a type that is currently
7509 being constructed. */
7510 outer = value_from_contents_and_address_unresolved (outer_type,
7511 outer_valaddr, 0);
7512 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7513 if (discrim == NULL)
7514 return -1;
7515 discrim_val = value_as_long (discrim);
7516
7517 others_clause = -1;
7518 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7519 {
7520 if (ada_is_others_clause (var_type, i))
7521 others_clause = i;
7522 else if (ada_in_variant (discrim_val, var_type, i))
7523 return i;
7524 }
7525
7526 return others_clause;
7527 }
7528 \f
7529
7530
7531 /* Dynamic-Sized Records */
7532
7533 /* Strategy: The type ostensibly attached to a value with dynamic size
7534 (i.e., a size that is not statically recorded in the debugging
7535 data) does not accurately reflect the size or layout of the value.
7536 Our strategy is to convert these values to values with accurate,
7537 conventional types that are constructed on the fly. */
7538
7539 /* There is a subtle and tricky problem here. In general, we cannot
7540 determine the size of dynamic records without its data. However,
7541 the 'struct value' data structure, which GDB uses to represent
7542 quantities in the inferior process (the target), requires the size
7543 of the type at the time of its allocation in order to reserve space
7544 for GDB's internal copy of the data. That's why the
7545 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7546 rather than struct value*s.
7547
7548 However, GDB's internal history variables ($1, $2, etc.) are
7549 struct value*s containing internal copies of the data that are not, in
7550 general, the same as the data at their corresponding addresses in
7551 the target. Fortunately, the types we give to these values are all
7552 conventional, fixed-size types (as per the strategy described
7553 above), so that we don't usually have to perform the
7554 'to_fixed_xxx_type' conversions to look at their values.
7555 Unfortunately, there is one exception: if one of the internal
7556 history variables is an array whose elements are unconstrained
7557 records, then we will need to create distinct fixed types for each
7558 element selected. */
7559
7560 /* The upshot of all of this is that many routines take a (type, host
7561 address, target address) triple as arguments to represent a value.
7562 The host address, if non-null, is supposed to contain an internal
7563 copy of the relevant data; otherwise, the program is to consult the
7564 target at the target address. */
7565
7566 /* Assuming that VAL0 represents a pointer value, the result of
7567 dereferencing it. Differs from value_ind in its treatment of
7568 dynamic-sized types. */
7569
7570 struct value *
7571 ada_value_ind (struct value *val0)
7572 {
7573 struct value *val = value_ind (val0);
7574
7575 if (ada_is_tagged_type (value_type (val), 0))
7576 val = ada_tag_value_at_base_address (val);
7577
7578 return ada_to_fixed_value (val);
7579 }
7580
7581 /* The value resulting from dereferencing any "reference to"
7582 qualifiers on VAL0. */
7583
7584 static struct value *
7585 ada_coerce_ref (struct value *val0)
7586 {
7587 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7588 {
7589 struct value *val = val0;
7590
7591 val = coerce_ref (val);
7592
7593 if (ada_is_tagged_type (value_type (val), 0))
7594 val = ada_tag_value_at_base_address (val);
7595
7596 return ada_to_fixed_value (val);
7597 }
7598 else
7599 return val0;
7600 }
7601
7602 /* Return OFF rounded upward if necessary to a multiple of
7603 ALIGNMENT (a power of 2). */
7604
7605 static unsigned int
7606 align_value (unsigned int off, unsigned int alignment)
7607 {
7608 return (off + alignment - 1) & ~(alignment - 1);
7609 }
7610
7611 /* Return the bit alignment required for field #F of template type TYPE. */
7612
7613 static unsigned int
7614 field_alignment (struct type *type, int f)
7615 {
7616 const char *name = TYPE_FIELD_NAME (type, f);
7617 int len;
7618 int align_offset;
7619
7620 /* The field name should never be null, unless the debugging information
7621 is somehow malformed. In this case, we assume the field does not
7622 require any alignment. */
7623 if (name == NULL)
7624 return 1;
7625
7626 len = strlen (name);
7627
7628 if (!isdigit (name[len - 1]))
7629 return 1;
7630
7631 if (isdigit (name[len - 2]))
7632 align_offset = len - 2;
7633 else
7634 align_offset = len - 1;
7635
7636 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7637 return TARGET_CHAR_BIT;
7638
7639 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7640 }
7641
7642 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7643
7644 static struct symbol *
7645 ada_find_any_type_symbol (const char *name)
7646 {
7647 struct symbol *sym;
7648
7649 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7650 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7651 return sym;
7652
7653 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7654 return sym;
7655 }
7656
7657 /* Find a type named NAME. Ignores ambiguity. This routine will look
7658 solely for types defined by debug info, it will not search the GDB
7659 primitive types. */
7660
7661 static struct type *
7662 ada_find_any_type (const char *name)
7663 {
7664 struct symbol *sym = ada_find_any_type_symbol (name);
7665
7666 if (sym != NULL)
7667 return SYMBOL_TYPE (sym);
7668
7669 return NULL;
7670 }
7671
7672 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7673 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7674 symbol, in which case it is returned. Otherwise, this looks for
7675 symbols whose name is that of NAME_SYM suffixed with "___XR".
7676 Return symbol if found, and NULL otherwise. */
7677
7678 struct symbol *
7679 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7680 {
7681 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7682 struct symbol *sym;
7683
7684 if (strstr (name, "___XR") != NULL)
7685 return name_sym;
7686
7687 sym = find_old_style_renaming_symbol (name, block);
7688
7689 if (sym != NULL)
7690 return sym;
7691
7692 /* Not right yet. FIXME pnh 7/20/2007. */
7693 sym = ada_find_any_type_symbol (name);
7694 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7695 return sym;
7696 else
7697 return NULL;
7698 }
7699
7700 static struct symbol *
7701 find_old_style_renaming_symbol (const char *name, const struct block *block)
7702 {
7703 const struct symbol *function_sym = block_linkage_function (block);
7704 char *rename;
7705
7706 if (function_sym != NULL)
7707 {
7708 /* If the symbol is defined inside a function, NAME is not fully
7709 qualified. This means we need to prepend the function name
7710 as well as adding the ``___XR'' suffix to build the name of
7711 the associated renaming symbol. */
7712 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7713 /* Function names sometimes contain suffixes used
7714 for instance to qualify nested subprograms. When building
7715 the XR type name, we need to make sure that this suffix is
7716 not included. So do not include any suffix in the function
7717 name length below. */
7718 int function_name_len = ada_name_prefix_len (function_name);
7719 const int rename_len = function_name_len + 2 /* "__" */
7720 + strlen (name) + 6 /* "___XR\0" */ ;
7721
7722 /* Strip the suffix if necessary. */
7723 ada_remove_trailing_digits (function_name, &function_name_len);
7724 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7725 ada_remove_Xbn_suffix (function_name, &function_name_len);
7726
7727 /* Library-level functions are a special case, as GNAT adds
7728 a ``_ada_'' prefix to the function name to avoid namespace
7729 pollution. However, the renaming symbols themselves do not
7730 have this prefix, so we need to skip this prefix if present. */
7731 if (function_name_len > 5 /* "_ada_" */
7732 && strstr (function_name, "_ada_") == function_name)
7733 {
7734 function_name += 5;
7735 function_name_len -= 5;
7736 }
7737
7738 rename = (char *) alloca (rename_len * sizeof (char));
7739 strncpy (rename, function_name, function_name_len);
7740 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7741 "__%s___XR", name);
7742 }
7743 else
7744 {
7745 const int rename_len = strlen (name) + 6;
7746
7747 rename = (char *) alloca (rename_len * sizeof (char));
7748 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7749 }
7750
7751 return ada_find_any_type_symbol (rename);
7752 }
7753
7754 /* Because of GNAT encoding conventions, several GDB symbols may match a
7755 given type name. If the type denoted by TYPE0 is to be preferred to
7756 that of TYPE1 for purposes of type printing, return non-zero;
7757 otherwise return 0. */
7758
7759 int
7760 ada_prefer_type (struct type *type0, struct type *type1)
7761 {
7762 if (type1 == NULL)
7763 return 1;
7764 else if (type0 == NULL)
7765 return 0;
7766 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7767 return 1;
7768 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7769 return 0;
7770 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7771 return 1;
7772 else if (ada_is_constrained_packed_array_type (type0))
7773 return 1;
7774 else if (ada_is_array_descriptor_type (type0)
7775 && !ada_is_array_descriptor_type (type1))
7776 return 1;
7777 else
7778 {
7779 const char *type0_name = type_name_no_tag (type0);
7780 const char *type1_name = type_name_no_tag (type1);
7781
7782 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7783 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7784 return 1;
7785 }
7786 return 0;
7787 }
7788
7789 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7790 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7791
7792 const char *
7793 ada_type_name (struct type *type)
7794 {
7795 if (type == NULL)
7796 return NULL;
7797 else if (TYPE_NAME (type) != NULL)
7798 return TYPE_NAME (type);
7799 else
7800 return TYPE_TAG_NAME (type);
7801 }
7802
7803 /* Search the list of "descriptive" types associated to TYPE for a type
7804 whose name is NAME. */
7805
7806 static struct type *
7807 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7808 {
7809 struct type *result, *tmp;
7810
7811 if (ada_ignore_descriptive_types_p)
7812 return NULL;
7813
7814 /* If there no descriptive-type info, then there is no parallel type
7815 to be found. */
7816 if (!HAVE_GNAT_AUX_INFO (type))
7817 return NULL;
7818
7819 result = TYPE_DESCRIPTIVE_TYPE (type);
7820 while (result != NULL)
7821 {
7822 const char *result_name = ada_type_name (result);
7823
7824 if (result_name == NULL)
7825 {
7826 warning (_("unexpected null name on descriptive type"));
7827 return NULL;
7828 }
7829
7830 /* If the names match, stop. */
7831 if (strcmp (result_name, name) == 0)
7832 break;
7833
7834 /* Otherwise, look at the next item on the list, if any. */
7835 if (HAVE_GNAT_AUX_INFO (result))
7836 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7837 else
7838 tmp = NULL;
7839
7840 /* If not found either, try after having resolved the typedef. */
7841 if (tmp != NULL)
7842 result = tmp;
7843 else
7844 {
7845 result = check_typedef (result);
7846 if (HAVE_GNAT_AUX_INFO (result))
7847 result = TYPE_DESCRIPTIVE_TYPE (result);
7848 else
7849 result = NULL;
7850 }
7851 }
7852
7853 /* If we didn't find a match, see whether this is a packed array. With
7854 older compilers, the descriptive type information is either absent or
7855 irrelevant when it comes to packed arrays so the above lookup fails.
7856 Fall back to using a parallel lookup by name in this case. */
7857 if (result == NULL && ada_is_constrained_packed_array_type (type))
7858 return ada_find_any_type (name);
7859
7860 return result;
7861 }
7862
7863 /* Find a parallel type to TYPE with the specified NAME, using the
7864 descriptive type taken from the debugging information, if available,
7865 and otherwise using the (slower) name-based method. */
7866
7867 static struct type *
7868 ada_find_parallel_type_with_name (struct type *type, const char *name)
7869 {
7870 struct type *result = NULL;
7871
7872 if (HAVE_GNAT_AUX_INFO (type))
7873 result = find_parallel_type_by_descriptive_type (type, name);
7874 else
7875 result = ada_find_any_type (name);
7876
7877 return result;
7878 }
7879
7880 /* Same as above, but specify the name of the parallel type by appending
7881 SUFFIX to the name of TYPE. */
7882
7883 struct type *
7884 ada_find_parallel_type (struct type *type, const char *suffix)
7885 {
7886 char *name;
7887 const char *type_name = ada_type_name (type);
7888 int len;
7889
7890 if (type_name == NULL)
7891 return NULL;
7892
7893 len = strlen (type_name);
7894
7895 name = (char *) alloca (len + strlen (suffix) + 1);
7896
7897 strcpy (name, type_name);
7898 strcpy (name + len, suffix);
7899
7900 return ada_find_parallel_type_with_name (type, name);
7901 }
7902
7903 /* If TYPE is a variable-size record type, return the corresponding template
7904 type describing its fields. Otherwise, return NULL. */
7905
7906 static struct type *
7907 dynamic_template_type (struct type *type)
7908 {
7909 type = ada_check_typedef (type);
7910
7911 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7912 || ada_type_name (type) == NULL)
7913 return NULL;
7914 else
7915 {
7916 int len = strlen (ada_type_name (type));
7917
7918 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7919 return type;
7920 else
7921 return ada_find_parallel_type (type, "___XVE");
7922 }
7923 }
7924
7925 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7926 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7927
7928 static int
7929 is_dynamic_field (struct type *templ_type, int field_num)
7930 {
7931 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7932
7933 return name != NULL
7934 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7935 && strstr (name, "___XVL") != NULL;
7936 }
7937
7938 /* The index of the variant field of TYPE, or -1 if TYPE does not
7939 represent a variant record type. */
7940
7941 static int
7942 variant_field_index (struct type *type)
7943 {
7944 int f;
7945
7946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7947 return -1;
7948
7949 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7950 {
7951 if (ada_is_variant_part (type, f))
7952 return f;
7953 }
7954 return -1;
7955 }
7956
7957 /* A record type with no fields. */
7958
7959 static struct type *
7960 empty_record (struct type *templ)
7961 {
7962 struct type *type = alloc_type_copy (templ);
7963
7964 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7965 TYPE_NFIELDS (type) = 0;
7966 TYPE_FIELDS (type) = NULL;
7967 INIT_CPLUS_SPECIFIC (type);
7968 TYPE_NAME (type) = "<empty>";
7969 TYPE_TAG_NAME (type) = NULL;
7970 TYPE_LENGTH (type) = 0;
7971 return type;
7972 }
7973
7974 /* An ordinary record type (with fixed-length fields) that describes
7975 the value of type TYPE at VALADDR or ADDRESS (see comments at
7976 the beginning of this section) VAL according to GNAT conventions.
7977 DVAL0 should describe the (portion of a) record that contains any
7978 necessary discriminants. It should be NULL if value_type (VAL) is
7979 an outer-level type (i.e., as opposed to a branch of a variant.) A
7980 variant field (unless unchecked) is replaced by a particular branch
7981 of the variant.
7982
7983 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7984 length are not statically known are discarded. As a consequence,
7985 VALADDR, ADDRESS and DVAL0 are ignored.
7986
7987 NOTE: Limitations: For now, we assume that dynamic fields and
7988 variants occupy whole numbers of bytes. However, they need not be
7989 byte-aligned. */
7990
7991 struct type *
7992 ada_template_to_fixed_record_type_1 (struct type *type,
7993 const gdb_byte *valaddr,
7994 CORE_ADDR address, struct value *dval0,
7995 int keep_dynamic_fields)
7996 {
7997 struct value *mark = value_mark ();
7998 struct value *dval;
7999 struct type *rtype;
8000 int nfields, bit_len;
8001 int variant_field;
8002 long off;
8003 int fld_bit_len;
8004 int f;
8005
8006 /* Compute the number of fields in this record type that are going
8007 to be processed: unless keep_dynamic_fields, this includes only
8008 fields whose position and length are static will be processed. */
8009 if (keep_dynamic_fields)
8010 nfields = TYPE_NFIELDS (type);
8011 else
8012 {
8013 nfields = 0;
8014 while (nfields < TYPE_NFIELDS (type)
8015 && !ada_is_variant_part (type, nfields)
8016 && !is_dynamic_field (type, nfields))
8017 nfields++;
8018 }
8019
8020 rtype = alloc_type_copy (type);
8021 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8022 INIT_CPLUS_SPECIFIC (rtype);
8023 TYPE_NFIELDS (rtype) = nfields;
8024 TYPE_FIELDS (rtype) = (struct field *)
8025 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8026 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8027 TYPE_NAME (rtype) = ada_type_name (type);
8028 TYPE_TAG_NAME (rtype) = NULL;
8029 TYPE_FIXED_INSTANCE (rtype) = 1;
8030
8031 off = 0;
8032 bit_len = 0;
8033 variant_field = -1;
8034
8035 for (f = 0; f < nfields; f += 1)
8036 {
8037 off = align_value (off, field_alignment (type, f))
8038 + TYPE_FIELD_BITPOS (type, f);
8039 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8040 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8041
8042 if (ada_is_variant_part (type, f))
8043 {
8044 variant_field = f;
8045 fld_bit_len = 0;
8046 }
8047 else if (is_dynamic_field (type, f))
8048 {
8049 const gdb_byte *field_valaddr = valaddr;
8050 CORE_ADDR field_address = address;
8051 struct type *field_type =
8052 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8053
8054 if (dval0 == NULL)
8055 {
8056 /* rtype's length is computed based on the run-time
8057 value of discriminants. If the discriminants are not
8058 initialized, the type size may be completely bogus and
8059 GDB may fail to allocate a value for it. So check the
8060 size first before creating the value. */
8061 ada_ensure_varsize_limit (rtype);
8062 /* Using plain value_from_contents_and_address here
8063 causes problems because we will end up trying to
8064 resolve a type that is currently being
8065 constructed. */
8066 dval = value_from_contents_and_address_unresolved (rtype,
8067 valaddr,
8068 address);
8069 rtype = value_type (dval);
8070 }
8071 else
8072 dval = dval0;
8073
8074 /* If the type referenced by this field is an aligner type, we need
8075 to unwrap that aligner type, because its size might not be set.
8076 Keeping the aligner type would cause us to compute the wrong
8077 size for this field, impacting the offset of the all the fields
8078 that follow this one. */
8079 if (ada_is_aligner_type (field_type))
8080 {
8081 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8082
8083 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8084 field_address = cond_offset_target (field_address, field_offset);
8085 field_type = ada_aligned_type (field_type);
8086 }
8087
8088 field_valaddr = cond_offset_host (field_valaddr,
8089 off / TARGET_CHAR_BIT);
8090 field_address = cond_offset_target (field_address,
8091 off / TARGET_CHAR_BIT);
8092
8093 /* Get the fixed type of the field. Note that, in this case,
8094 we do not want to get the real type out of the tag: if
8095 the current field is the parent part of a tagged record,
8096 we will get the tag of the object. Clearly wrong: the real
8097 type of the parent is not the real type of the child. We
8098 would end up in an infinite loop. */
8099 field_type = ada_get_base_type (field_type);
8100 field_type = ada_to_fixed_type (field_type, field_valaddr,
8101 field_address, dval, 0);
8102 /* If the field size is already larger than the maximum
8103 object size, then the record itself will necessarily
8104 be larger than the maximum object size. We need to make
8105 this check now, because the size might be so ridiculously
8106 large (due to an uninitialized variable in the inferior)
8107 that it would cause an overflow when adding it to the
8108 record size. */
8109 ada_ensure_varsize_limit (field_type);
8110
8111 TYPE_FIELD_TYPE (rtype, f) = field_type;
8112 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8113 /* The multiplication can potentially overflow. But because
8114 the field length has been size-checked just above, and
8115 assuming that the maximum size is a reasonable value,
8116 an overflow should not happen in practice. So rather than
8117 adding overflow recovery code to this already complex code,
8118 we just assume that it's not going to happen. */
8119 fld_bit_len =
8120 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8121 }
8122 else
8123 {
8124 /* Note: If this field's type is a typedef, it is important
8125 to preserve the typedef layer.
8126
8127 Otherwise, we might be transforming a typedef to a fat
8128 pointer (encoding a pointer to an unconstrained array),
8129 into a basic fat pointer (encoding an unconstrained
8130 array). As both types are implemented using the same
8131 structure, the typedef is the only clue which allows us
8132 to distinguish between the two options. Stripping it
8133 would prevent us from printing this field appropriately. */
8134 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8135 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8136 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8137 fld_bit_len =
8138 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8139 else
8140 {
8141 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8142
8143 /* We need to be careful of typedefs when computing
8144 the length of our field. If this is a typedef,
8145 get the length of the target type, not the length
8146 of the typedef. */
8147 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8148 field_type = ada_typedef_target_type (field_type);
8149
8150 fld_bit_len =
8151 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8152 }
8153 }
8154 if (off + fld_bit_len > bit_len)
8155 bit_len = off + fld_bit_len;
8156 off += fld_bit_len;
8157 TYPE_LENGTH (rtype) =
8158 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8159 }
8160
8161 /* We handle the variant part, if any, at the end because of certain
8162 odd cases in which it is re-ordered so as NOT to be the last field of
8163 the record. This can happen in the presence of representation
8164 clauses. */
8165 if (variant_field >= 0)
8166 {
8167 struct type *branch_type;
8168
8169 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8170
8171 if (dval0 == NULL)
8172 {
8173 /* Using plain value_from_contents_and_address here causes
8174 problems because we will end up trying to resolve a type
8175 that is currently being constructed. */
8176 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8177 address);
8178 rtype = value_type (dval);
8179 }
8180 else
8181 dval = dval0;
8182
8183 branch_type =
8184 to_fixed_variant_branch_type
8185 (TYPE_FIELD_TYPE (type, variant_field),
8186 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8187 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8188 if (branch_type == NULL)
8189 {
8190 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8191 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8192 TYPE_NFIELDS (rtype) -= 1;
8193 }
8194 else
8195 {
8196 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8197 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8198 fld_bit_len =
8199 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8200 TARGET_CHAR_BIT;
8201 if (off + fld_bit_len > bit_len)
8202 bit_len = off + fld_bit_len;
8203 TYPE_LENGTH (rtype) =
8204 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8205 }
8206 }
8207
8208 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8209 should contain the alignment of that record, which should be a strictly
8210 positive value. If null or negative, then something is wrong, most
8211 probably in the debug info. In that case, we don't round up the size
8212 of the resulting type. If this record is not part of another structure,
8213 the current RTYPE length might be good enough for our purposes. */
8214 if (TYPE_LENGTH (type) <= 0)
8215 {
8216 if (TYPE_NAME (rtype))
8217 warning (_("Invalid type size for `%s' detected: %d."),
8218 TYPE_NAME (rtype), TYPE_LENGTH (type));
8219 else
8220 warning (_("Invalid type size for <unnamed> detected: %d."),
8221 TYPE_LENGTH (type));
8222 }
8223 else
8224 {
8225 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8226 TYPE_LENGTH (type));
8227 }
8228
8229 value_free_to_mark (mark);
8230 if (TYPE_LENGTH (rtype) > varsize_limit)
8231 error (_("record type with dynamic size is larger than varsize-limit"));
8232 return rtype;
8233 }
8234
8235 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8236 of 1. */
8237
8238 static struct type *
8239 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8240 CORE_ADDR address, struct value *dval0)
8241 {
8242 return ada_template_to_fixed_record_type_1 (type, valaddr,
8243 address, dval0, 1);
8244 }
8245
8246 /* An ordinary record type in which ___XVL-convention fields and
8247 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8248 static approximations, containing all possible fields. Uses
8249 no runtime values. Useless for use in values, but that's OK,
8250 since the results are used only for type determinations. Works on both
8251 structs and unions. Representation note: to save space, we memorize
8252 the result of this function in the TYPE_TARGET_TYPE of the
8253 template type. */
8254
8255 static struct type *
8256 template_to_static_fixed_type (struct type *type0)
8257 {
8258 struct type *type;
8259 int nfields;
8260 int f;
8261
8262 /* No need no do anything if the input type is already fixed. */
8263 if (TYPE_FIXED_INSTANCE (type0))
8264 return type0;
8265
8266 /* Likewise if we already have computed the static approximation. */
8267 if (TYPE_TARGET_TYPE (type0) != NULL)
8268 return TYPE_TARGET_TYPE (type0);
8269
8270 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8271 type = type0;
8272 nfields = TYPE_NFIELDS (type0);
8273
8274 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8275 recompute all over next time. */
8276 TYPE_TARGET_TYPE (type0) = type;
8277
8278 for (f = 0; f < nfields; f += 1)
8279 {
8280 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8281 struct type *new_type;
8282
8283 if (is_dynamic_field (type0, f))
8284 {
8285 field_type = ada_check_typedef (field_type);
8286 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8287 }
8288 else
8289 new_type = static_unwrap_type (field_type);
8290
8291 if (new_type != field_type)
8292 {
8293 /* Clone TYPE0 only the first time we get a new field type. */
8294 if (type == type0)
8295 {
8296 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8297 TYPE_CODE (type) = TYPE_CODE (type0);
8298 INIT_CPLUS_SPECIFIC (type);
8299 TYPE_NFIELDS (type) = nfields;
8300 TYPE_FIELDS (type) = (struct field *)
8301 TYPE_ALLOC (type, nfields * sizeof (struct field));
8302 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8303 sizeof (struct field) * nfields);
8304 TYPE_NAME (type) = ada_type_name (type0);
8305 TYPE_TAG_NAME (type) = NULL;
8306 TYPE_FIXED_INSTANCE (type) = 1;
8307 TYPE_LENGTH (type) = 0;
8308 }
8309 TYPE_FIELD_TYPE (type, f) = new_type;
8310 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8311 }
8312 }
8313
8314 return type;
8315 }
8316
8317 /* Given an object of type TYPE whose contents are at VALADDR and
8318 whose address in memory is ADDRESS, returns a revision of TYPE,
8319 which should be a non-dynamic-sized record, in which the variant
8320 part, if any, is replaced with the appropriate branch. Looks
8321 for discriminant values in DVAL0, which can be NULL if the record
8322 contains the necessary discriminant values. */
8323
8324 static struct type *
8325 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8326 CORE_ADDR address, struct value *dval0)
8327 {
8328 struct value *mark = value_mark ();
8329 struct value *dval;
8330 struct type *rtype;
8331 struct type *branch_type;
8332 int nfields = TYPE_NFIELDS (type);
8333 int variant_field = variant_field_index (type);
8334
8335 if (variant_field == -1)
8336 return type;
8337
8338 if (dval0 == NULL)
8339 {
8340 dval = value_from_contents_and_address (type, valaddr, address);
8341 type = value_type (dval);
8342 }
8343 else
8344 dval = dval0;
8345
8346 rtype = alloc_type_copy (type);
8347 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8348 INIT_CPLUS_SPECIFIC (rtype);
8349 TYPE_NFIELDS (rtype) = nfields;
8350 TYPE_FIELDS (rtype) =
8351 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8352 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8353 sizeof (struct field) * nfields);
8354 TYPE_NAME (rtype) = ada_type_name (type);
8355 TYPE_TAG_NAME (rtype) = NULL;
8356 TYPE_FIXED_INSTANCE (rtype) = 1;
8357 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8358
8359 branch_type = to_fixed_variant_branch_type
8360 (TYPE_FIELD_TYPE (type, variant_field),
8361 cond_offset_host (valaddr,
8362 TYPE_FIELD_BITPOS (type, variant_field)
8363 / TARGET_CHAR_BIT),
8364 cond_offset_target (address,
8365 TYPE_FIELD_BITPOS (type, variant_field)
8366 / TARGET_CHAR_BIT), dval);
8367 if (branch_type == NULL)
8368 {
8369 int f;
8370
8371 for (f = variant_field + 1; f < nfields; f += 1)
8372 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8373 TYPE_NFIELDS (rtype) -= 1;
8374 }
8375 else
8376 {
8377 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8378 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8379 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8380 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8381 }
8382 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8383
8384 value_free_to_mark (mark);
8385 return rtype;
8386 }
8387
8388 /* An ordinary record type (with fixed-length fields) that describes
8389 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8390 beginning of this section]. Any necessary discriminants' values
8391 should be in DVAL, a record value; it may be NULL if the object
8392 at ADDR itself contains any necessary discriminant values.
8393 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8394 values from the record are needed. Except in the case that DVAL,
8395 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8396 unchecked) is replaced by a particular branch of the variant.
8397
8398 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8399 is questionable and may be removed. It can arise during the
8400 processing of an unconstrained-array-of-record type where all the
8401 variant branches have exactly the same size. This is because in
8402 such cases, the compiler does not bother to use the XVS convention
8403 when encoding the record. I am currently dubious of this
8404 shortcut and suspect the compiler should be altered. FIXME. */
8405
8406 static struct type *
8407 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8408 CORE_ADDR address, struct value *dval)
8409 {
8410 struct type *templ_type;
8411
8412 if (TYPE_FIXED_INSTANCE (type0))
8413 return type0;
8414
8415 templ_type = dynamic_template_type (type0);
8416
8417 if (templ_type != NULL)
8418 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8419 else if (variant_field_index (type0) >= 0)
8420 {
8421 if (dval == NULL && valaddr == NULL && address == 0)
8422 return type0;
8423 return to_record_with_fixed_variant_part (type0, valaddr, address,
8424 dval);
8425 }
8426 else
8427 {
8428 TYPE_FIXED_INSTANCE (type0) = 1;
8429 return type0;
8430 }
8431
8432 }
8433
8434 /* An ordinary record type (with fixed-length fields) that describes
8435 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8436 union type. Any necessary discriminants' values should be in DVAL,
8437 a record value. That is, this routine selects the appropriate
8438 branch of the union at ADDR according to the discriminant value
8439 indicated in the union's type name. Returns VAR_TYPE0 itself if
8440 it represents a variant subject to a pragma Unchecked_Union. */
8441
8442 static struct type *
8443 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8444 CORE_ADDR address, struct value *dval)
8445 {
8446 int which;
8447 struct type *templ_type;
8448 struct type *var_type;
8449
8450 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8451 var_type = TYPE_TARGET_TYPE (var_type0);
8452 else
8453 var_type = var_type0;
8454
8455 templ_type = ada_find_parallel_type (var_type, "___XVU");
8456
8457 if (templ_type != NULL)
8458 var_type = templ_type;
8459
8460 if (is_unchecked_variant (var_type, value_type (dval)))
8461 return var_type0;
8462 which =
8463 ada_which_variant_applies (var_type,
8464 value_type (dval), value_contents (dval));
8465
8466 if (which < 0)
8467 return empty_record (var_type);
8468 else if (is_dynamic_field (var_type, which))
8469 return to_fixed_record_type
8470 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8471 valaddr, address, dval);
8472 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8473 return
8474 to_fixed_record_type
8475 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8476 else
8477 return TYPE_FIELD_TYPE (var_type, which);
8478 }
8479
8480 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8481 ENCODING_TYPE, a type following the GNAT conventions for discrete
8482 type encodings, only carries redundant information. */
8483
8484 static int
8485 ada_is_redundant_range_encoding (struct type *range_type,
8486 struct type *encoding_type)
8487 {
8488 struct type *fixed_range_type;
8489 char *bounds_str;
8490 int n;
8491 LONGEST lo, hi;
8492
8493 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8494
8495 if (TYPE_CODE (get_base_type (range_type))
8496 != TYPE_CODE (get_base_type (encoding_type)))
8497 {
8498 /* The compiler probably used a simple base type to describe
8499 the range type instead of the range's actual base type,
8500 expecting us to get the real base type from the encoding
8501 anyway. In this situation, the encoding cannot be ignored
8502 as redundant. */
8503 return 0;
8504 }
8505
8506 if (is_dynamic_type (range_type))
8507 return 0;
8508
8509 if (TYPE_NAME (encoding_type) == NULL)
8510 return 0;
8511
8512 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8513 if (bounds_str == NULL)
8514 return 0;
8515
8516 n = 8; /* Skip "___XDLU_". */
8517 if (!ada_scan_number (bounds_str, n, &lo, &n))
8518 return 0;
8519 if (TYPE_LOW_BOUND (range_type) != lo)
8520 return 0;
8521
8522 n += 2; /* Skip the "__" separator between the two bounds. */
8523 if (!ada_scan_number (bounds_str, n, &hi, &n))
8524 return 0;
8525 if (TYPE_HIGH_BOUND (range_type) != hi)
8526 return 0;
8527
8528 return 1;
8529 }
8530
8531 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8532 a type following the GNAT encoding for describing array type
8533 indices, only carries redundant information. */
8534
8535 static int
8536 ada_is_redundant_index_type_desc (struct type *array_type,
8537 struct type *desc_type)
8538 {
8539 struct type *this_layer = check_typedef (array_type);
8540 int i;
8541
8542 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8543 {
8544 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8545 TYPE_FIELD_TYPE (desc_type, i)))
8546 return 0;
8547 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8548 }
8549
8550 return 1;
8551 }
8552
8553 /* Assuming that TYPE0 is an array type describing the type of a value
8554 at ADDR, and that DVAL describes a record containing any
8555 discriminants used in TYPE0, returns a type for the value that
8556 contains no dynamic components (that is, no components whose sizes
8557 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8558 true, gives an error message if the resulting type's size is over
8559 varsize_limit. */
8560
8561 static struct type *
8562 to_fixed_array_type (struct type *type0, struct value *dval,
8563 int ignore_too_big)
8564 {
8565 struct type *index_type_desc;
8566 struct type *result;
8567 int constrained_packed_array_p;
8568 static const char *xa_suffix = "___XA";
8569
8570 type0 = ada_check_typedef (type0);
8571 if (TYPE_FIXED_INSTANCE (type0))
8572 return type0;
8573
8574 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8575 if (constrained_packed_array_p)
8576 type0 = decode_constrained_packed_array_type (type0);
8577
8578 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8579
8580 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8581 encoding suffixed with 'P' may still be generated. If so,
8582 it should be used to find the XA type. */
8583
8584 if (index_type_desc == NULL)
8585 {
8586 const char *type_name = ada_type_name (type0);
8587
8588 if (type_name != NULL)
8589 {
8590 const int len = strlen (type_name);
8591 char *name = (char *) alloca (len + strlen (xa_suffix));
8592
8593 if (type_name[len - 1] == 'P')
8594 {
8595 strcpy (name, type_name);
8596 strcpy (name + len - 1, xa_suffix);
8597 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8598 }
8599 }
8600 }
8601
8602 ada_fixup_array_indexes_type (index_type_desc);
8603 if (index_type_desc != NULL
8604 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8605 {
8606 /* Ignore this ___XA parallel type, as it does not bring any
8607 useful information. This allows us to avoid creating fixed
8608 versions of the array's index types, which would be identical
8609 to the original ones. This, in turn, can also help avoid
8610 the creation of fixed versions of the array itself. */
8611 index_type_desc = NULL;
8612 }
8613
8614 if (index_type_desc == NULL)
8615 {
8616 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8617
8618 /* NOTE: elt_type---the fixed version of elt_type0---should never
8619 depend on the contents of the array in properly constructed
8620 debugging data. */
8621 /* Create a fixed version of the array element type.
8622 We're not providing the address of an element here,
8623 and thus the actual object value cannot be inspected to do
8624 the conversion. This should not be a problem, since arrays of
8625 unconstrained objects are not allowed. In particular, all
8626 the elements of an array of a tagged type should all be of
8627 the same type specified in the debugging info. No need to
8628 consult the object tag. */
8629 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8630
8631 /* Make sure we always create a new array type when dealing with
8632 packed array types, since we're going to fix-up the array
8633 type length and element bitsize a little further down. */
8634 if (elt_type0 == elt_type && !constrained_packed_array_p)
8635 result = type0;
8636 else
8637 result = create_array_type (alloc_type_copy (type0),
8638 elt_type, TYPE_INDEX_TYPE (type0));
8639 }
8640 else
8641 {
8642 int i;
8643 struct type *elt_type0;
8644
8645 elt_type0 = type0;
8646 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8647 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8648
8649 /* NOTE: result---the fixed version of elt_type0---should never
8650 depend on the contents of the array in properly constructed
8651 debugging data. */
8652 /* Create a fixed version of the array element type.
8653 We're not providing the address of an element here,
8654 and thus the actual object value cannot be inspected to do
8655 the conversion. This should not be a problem, since arrays of
8656 unconstrained objects are not allowed. In particular, all
8657 the elements of an array of a tagged type should all be of
8658 the same type specified in the debugging info. No need to
8659 consult the object tag. */
8660 result =
8661 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8662
8663 elt_type0 = type0;
8664 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8665 {
8666 struct type *range_type =
8667 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8668
8669 result = create_array_type (alloc_type_copy (elt_type0),
8670 result, range_type);
8671 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8672 }
8673 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8674 error (_("array type with dynamic size is larger than varsize-limit"));
8675 }
8676
8677 /* We want to preserve the type name. This can be useful when
8678 trying to get the type name of a value that has already been
8679 printed (for instance, if the user did "print VAR; whatis $". */
8680 TYPE_NAME (result) = TYPE_NAME (type0);
8681
8682 if (constrained_packed_array_p)
8683 {
8684 /* So far, the resulting type has been created as if the original
8685 type was a regular (non-packed) array type. As a result, the
8686 bitsize of the array elements needs to be set again, and the array
8687 length needs to be recomputed based on that bitsize. */
8688 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8689 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8690
8691 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8692 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8693 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8694 TYPE_LENGTH (result)++;
8695 }
8696
8697 TYPE_FIXED_INSTANCE (result) = 1;
8698 return result;
8699 }
8700
8701
8702 /* A standard type (containing no dynamically sized components)
8703 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8704 DVAL describes a record containing any discriminants used in TYPE0,
8705 and may be NULL if there are none, or if the object of type TYPE at
8706 ADDRESS or in VALADDR contains these discriminants.
8707
8708 If CHECK_TAG is not null, in the case of tagged types, this function
8709 attempts to locate the object's tag and use it to compute the actual
8710 type. However, when ADDRESS is null, we cannot use it to determine the
8711 location of the tag, and therefore compute the tagged type's actual type.
8712 So we return the tagged type without consulting the tag. */
8713
8714 static struct type *
8715 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8716 CORE_ADDR address, struct value *dval, int check_tag)
8717 {
8718 type = ada_check_typedef (type);
8719 switch (TYPE_CODE (type))
8720 {
8721 default:
8722 return type;
8723 case TYPE_CODE_STRUCT:
8724 {
8725 struct type *static_type = to_static_fixed_type (type);
8726 struct type *fixed_record_type =
8727 to_fixed_record_type (type, valaddr, address, NULL);
8728
8729 /* If STATIC_TYPE is a tagged type and we know the object's address,
8730 then we can determine its tag, and compute the object's actual
8731 type from there. Note that we have to use the fixed record
8732 type (the parent part of the record may have dynamic fields
8733 and the way the location of _tag is expressed may depend on
8734 them). */
8735
8736 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8737 {
8738 struct value *tag =
8739 value_tag_from_contents_and_address
8740 (fixed_record_type,
8741 valaddr,
8742 address);
8743 struct type *real_type = type_from_tag (tag);
8744 struct value *obj =
8745 value_from_contents_and_address (fixed_record_type,
8746 valaddr,
8747 address);
8748 fixed_record_type = value_type (obj);
8749 if (real_type != NULL)
8750 return to_fixed_record_type
8751 (real_type, NULL,
8752 value_address (ada_tag_value_at_base_address (obj)), NULL);
8753 }
8754
8755 /* Check to see if there is a parallel ___XVZ variable.
8756 If there is, then it provides the actual size of our type. */
8757 else if (ada_type_name (fixed_record_type) != NULL)
8758 {
8759 const char *name = ada_type_name (fixed_record_type);
8760 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8761 int xvz_found = 0;
8762 LONGEST size;
8763
8764 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8765 size = get_int_var_value (xvz_name, &xvz_found);
8766 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8767 {
8768 fixed_record_type = copy_type (fixed_record_type);
8769 TYPE_LENGTH (fixed_record_type) = size;
8770
8771 /* The FIXED_RECORD_TYPE may have be a stub. We have
8772 observed this when the debugging info is STABS, and
8773 apparently it is something that is hard to fix.
8774
8775 In practice, we don't need the actual type definition
8776 at all, because the presence of the XVZ variable allows us
8777 to assume that there must be a XVS type as well, which we
8778 should be able to use later, when we need the actual type
8779 definition.
8780
8781 In the meantime, pretend that the "fixed" type we are
8782 returning is NOT a stub, because this can cause trouble
8783 when using this type to create new types targeting it.
8784 Indeed, the associated creation routines often check
8785 whether the target type is a stub and will try to replace
8786 it, thus using a type with the wrong size. This, in turn,
8787 might cause the new type to have the wrong size too.
8788 Consider the case of an array, for instance, where the size
8789 of the array is computed from the number of elements in
8790 our array multiplied by the size of its element. */
8791 TYPE_STUB (fixed_record_type) = 0;
8792 }
8793 }
8794 return fixed_record_type;
8795 }
8796 case TYPE_CODE_ARRAY:
8797 return to_fixed_array_type (type, dval, 1);
8798 case TYPE_CODE_UNION:
8799 if (dval == NULL)
8800 return type;
8801 else
8802 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8803 }
8804 }
8805
8806 /* The same as ada_to_fixed_type_1, except that it preserves the type
8807 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8808
8809 The typedef layer needs be preserved in order to differentiate between
8810 arrays and array pointers when both types are implemented using the same
8811 fat pointer. In the array pointer case, the pointer is encoded as
8812 a typedef of the pointer type. For instance, considering:
8813
8814 type String_Access is access String;
8815 S1 : String_Access := null;
8816
8817 To the debugger, S1 is defined as a typedef of type String. But
8818 to the user, it is a pointer. So if the user tries to print S1,
8819 we should not dereference the array, but print the array address
8820 instead.
8821
8822 If we didn't preserve the typedef layer, we would lose the fact that
8823 the type is to be presented as a pointer (needs de-reference before
8824 being printed). And we would also use the source-level type name. */
8825
8826 struct type *
8827 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8828 CORE_ADDR address, struct value *dval, int check_tag)
8829
8830 {
8831 struct type *fixed_type =
8832 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8833
8834 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8835 then preserve the typedef layer.
8836
8837 Implementation note: We can only check the main-type portion of
8838 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8839 from TYPE now returns a type that has the same instance flags
8840 as TYPE. For instance, if TYPE is a "typedef const", and its
8841 target type is a "struct", then the typedef elimination will return
8842 a "const" version of the target type. See check_typedef for more
8843 details about how the typedef layer elimination is done.
8844
8845 brobecker/2010-11-19: It seems to me that the only case where it is
8846 useful to preserve the typedef layer is when dealing with fat pointers.
8847 Perhaps, we could add a check for that and preserve the typedef layer
8848 only in that situation. But this seems unecessary so far, probably
8849 because we call check_typedef/ada_check_typedef pretty much everywhere.
8850 */
8851 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8852 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8853 == TYPE_MAIN_TYPE (fixed_type)))
8854 return type;
8855
8856 return fixed_type;
8857 }
8858
8859 /* A standard (static-sized) type corresponding as well as possible to
8860 TYPE0, but based on no runtime data. */
8861
8862 static struct type *
8863 to_static_fixed_type (struct type *type0)
8864 {
8865 struct type *type;
8866
8867 if (type0 == NULL)
8868 return NULL;
8869
8870 if (TYPE_FIXED_INSTANCE (type0))
8871 return type0;
8872
8873 type0 = ada_check_typedef (type0);
8874
8875 switch (TYPE_CODE (type0))
8876 {
8877 default:
8878 return type0;
8879 case TYPE_CODE_STRUCT:
8880 type = dynamic_template_type (type0);
8881 if (type != NULL)
8882 return template_to_static_fixed_type (type);
8883 else
8884 return template_to_static_fixed_type (type0);
8885 case TYPE_CODE_UNION:
8886 type = ada_find_parallel_type (type0, "___XVU");
8887 if (type != NULL)
8888 return template_to_static_fixed_type (type);
8889 else
8890 return template_to_static_fixed_type (type0);
8891 }
8892 }
8893
8894 /* A static approximation of TYPE with all type wrappers removed. */
8895
8896 static struct type *
8897 static_unwrap_type (struct type *type)
8898 {
8899 if (ada_is_aligner_type (type))
8900 {
8901 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8902 if (ada_type_name (type1) == NULL)
8903 TYPE_NAME (type1) = ada_type_name (type);
8904
8905 return static_unwrap_type (type1);
8906 }
8907 else
8908 {
8909 struct type *raw_real_type = ada_get_base_type (type);
8910
8911 if (raw_real_type == type)
8912 return type;
8913 else
8914 return to_static_fixed_type (raw_real_type);
8915 }
8916 }
8917
8918 /* In some cases, incomplete and private types require
8919 cross-references that are not resolved as records (for example,
8920 type Foo;
8921 type FooP is access Foo;
8922 V: FooP;
8923 type Foo is array ...;
8924 ). In these cases, since there is no mechanism for producing
8925 cross-references to such types, we instead substitute for FooP a
8926 stub enumeration type that is nowhere resolved, and whose tag is
8927 the name of the actual type. Call these types "non-record stubs". */
8928
8929 /* A type equivalent to TYPE that is not a non-record stub, if one
8930 exists, otherwise TYPE. */
8931
8932 struct type *
8933 ada_check_typedef (struct type *type)
8934 {
8935 if (type == NULL)
8936 return NULL;
8937
8938 /* If our type is a typedef type of a fat pointer, then we're done.
8939 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8940 what allows us to distinguish between fat pointers that represent
8941 array types, and fat pointers that represent array access types
8942 (in both cases, the compiler implements them as fat pointers). */
8943 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8944 && is_thick_pntr (ada_typedef_target_type (type)))
8945 return type;
8946
8947 type = check_typedef (type);
8948 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8949 || !TYPE_STUB (type)
8950 || TYPE_TAG_NAME (type) == NULL)
8951 return type;
8952 else
8953 {
8954 const char *name = TYPE_TAG_NAME (type);
8955 struct type *type1 = ada_find_any_type (name);
8956
8957 if (type1 == NULL)
8958 return type;
8959
8960 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8961 stubs pointing to arrays, as we don't create symbols for array
8962 types, only for the typedef-to-array types). If that's the case,
8963 strip the typedef layer. */
8964 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8965 type1 = ada_check_typedef (type1);
8966
8967 return type1;
8968 }
8969 }
8970
8971 /* A value representing the data at VALADDR/ADDRESS as described by
8972 type TYPE0, but with a standard (static-sized) type that correctly
8973 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8974 type, then return VAL0 [this feature is simply to avoid redundant
8975 creation of struct values]. */
8976
8977 static struct value *
8978 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8979 struct value *val0)
8980 {
8981 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8982
8983 if (type == type0 && val0 != NULL)
8984 return val0;
8985 else
8986 return value_from_contents_and_address (type, 0, address);
8987 }
8988
8989 /* A value representing VAL, but with a standard (static-sized) type
8990 that correctly describes it. Does not necessarily create a new
8991 value. */
8992
8993 struct value *
8994 ada_to_fixed_value (struct value *val)
8995 {
8996 val = unwrap_value (val);
8997 val = ada_to_fixed_value_create (value_type (val),
8998 value_address (val),
8999 val);
9000 return val;
9001 }
9002 \f
9003
9004 /* Attributes */
9005
9006 /* Table mapping attribute numbers to names.
9007 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9008
9009 static const char *attribute_names[] = {
9010 "<?>",
9011
9012 "first",
9013 "last",
9014 "length",
9015 "image",
9016 "max",
9017 "min",
9018 "modulus",
9019 "pos",
9020 "size",
9021 "tag",
9022 "val",
9023 0
9024 };
9025
9026 const char *
9027 ada_attribute_name (enum exp_opcode n)
9028 {
9029 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9030 return attribute_names[n - OP_ATR_FIRST + 1];
9031 else
9032 return attribute_names[0];
9033 }
9034
9035 /* Evaluate the 'POS attribute applied to ARG. */
9036
9037 static LONGEST
9038 pos_atr (struct value *arg)
9039 {
9040 struct value *val = coerce_ref (arg);
9041 struct type *type = value_type (val);
9042 LONGEST result;
9043
9044 if (!discrete_type_p (type))
9045 error (_("'POS only defined on discrete types"));
9046
9047 if (!discrete_position (type, value_as_long (val), &result))
9048 error (_("enumeration value is invalid: can't find 'POS"));
9049
9050 return result;
9051 }
9052
9053 static struct value *
9054 value_pos_atr (struct type *type, struct value *arg)
9055 {
9056 return value_from_longest (type, pos_atr (arg));
9057 }
9058
9059 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9060
9061 static struct value *
9062 value_val_atr (struct type *type, struct value *arg)
9063 {
9064 if (!discrete_type_p (type))
9065 error (_("'VAL only defined on discrete types"));
9066 if (!integer_type_p (value_type (arg)))
9067 error (_("'VAL requires integral argument"));
9068
9069 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9070 {
9071 long pos = value_as_long (arg);
9072
9073 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9074 error (_("argument to 'VAL out of range"));
9075 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9076 }
9077 else
9078 return value_from_longest (type, value_as_long (arg));
9079 }
9080 \f
9081
9082 /* Evaluation */
9083
9084 /* True if TYPE appears to be an Ada character type.
9085 [At the moment, this is true only for Character and Wide_Character;
9086 It is a heuristic test that could stand improvement]. */
9087
9088 int
9089 ada_is_character_type (struct type *type)
9090 {
9091 const char *name;
9092
9093 /* If the type code says it's a character, then assume it really is,
9094 and don't check any further. */
9095 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9096 return 1;
9097
9098 /* Otherwise, assume it's a character type iff it is a discrete type
9099 with a known character type name. */
9100 name = ada_type_name (type);
9101 return (name != NULL
9102 && (TYPE_CODE (type) == TYPE_CODE_INT
9103 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9104 && (strcmp (name, "character") == 0
9105 || strcmp (name, "wide_character") == 0
9106 || strcmp (name, "wide_wide_character") == 0
9107 || strcmp (name, "unsigned char") == 0));
9108 }
9109
9110 /* True if TYPE appears to be an Ada string type. */
9111
9112 int
9113 ada_is_string_type (struct type *type)
9114 {
9115 type = ada_check_typedef (type);
9116 if (type != NULL
9117 && TYPE_CODE (type) != TYPE_CODE_PTR
9118 && (ada_is_simple_array_type (type)
9119 || ada_is_array_descriptor_type (type))
9120 && ada_array_arity (type) == 1)
9121 {
9122 struct type *elttype = ada_array_element_type (type, 1);
9123
9124 return ada_is_character_type (elttype);
9125 }
9126 else
9127 return 0;
9128 }
9129
9130 /* The compiler sometimes provides a parallel XVS type for a given
9131 PAD type. Normally, it is safe to follow the PAD type directly,
9132 but older versions of the compiler have a bug that causes the offset
9133 of its "F" field to be wrong. Following that field in that case
9134 would lead to incorrect results, but this can be worked around
9135 by ignoring the PAD type and using the associated XVS type instead.
9136
9137 Set to True if the debugger should trust the contents of PAD types.
9138 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9139 static int trust_pad_over_xvs = 1;
9140
9141 /* True if TYPE is a struct type introduced by the compiler to force the
9142 alignment of a value. Such types have a single field with a
9143 distinctive name. */
9144
9145 int
9146 ada_is_aligner_type (struct type *type)
9147 {
9148 type = ada_check_typedef (type);
9149
9150 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9151 return 0;
9152
9153 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9154 && TYPE_NFIELDS (type) == 1
9155 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9156 }
9157
9158 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9159 the parallel type. */
9160
9161 struct type *
9162 ada_get_base_type (struct type *raw_type)
9163 {
9164 struct type *real_type_namer;
9165 struct type *raw_real_type;
9166
9167 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9168 return raw_type;
9169
9170 if (ada_is_aligner_type (raw_type))
9171 /* The encoding specifies that we should always use the aligner type.
9172 So, even if this aligner type has an associated XVS type, we should
9173 simply ignore it.
9174
9175 According to the compiler gurus, an XVS type parallel to an aligner
9176 type may exist because of a stabs limitation. In stabs, aligner
9177 types are empty because the field has a variable-sized type, and
9178 thus cannot actually be used as an aligner type. As a result,
9179 we need the associated parallel XVS type to decode the type.
9180 Since the policy in the compiler is to not change the internal
9181 representation based on the debugging info format, we sometimes
9182 end up having a redundant XVS type parallel to the aligner type. */
9183 return raw_type;
9184
9185 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9186 if (real_type_namer == NULL
9187 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9188 || TYPE_NFIELDS (real_type_namer) != 1)
9189 return raw_type;
9190
9191 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9192 {
9193 /* This is an older encoding form where the base type needs to be
9194 looked up by name. We prefer the newer enconding because it is
9195 more efficient. */
9196 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9197 if (raw_real_type == NULL)
9198 return raw_type;
9199 else
9200 return raw_real_type;
9201 }
9202
9203 /* The field in our XVS type is a reference to the base type. */
9204 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9205 }
9206
9207 /* The type of value designated by TYPE, with all aligners removed. */
9208
9209 struct type *
9210 ada_aligned_type (struct type *type)
9211 {
9212 if (ada_is_aligner_type (type))
9213 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9214 else
9215 return ada_get_base_type (type);
9216 }
9217
9218
9219 /* The address of the aligned value in an object at address VALADDR
9220 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9221
9222 const gdb_byte *
9223 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9224 {
9225 if (ada_is_aligner_type (type))
9226 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9227 valaddr +
9228 TYPE_FIELD_BITPOS (type,
9229 0) / TARGET_CHAR_BIT);
9230 else
9231 return valaddr;
9232 }
9233
9234
9235
9236 /* The printed representation of an enumeration literal with encoded
9237 name NAME. The value is good to the next call of ada_enum_name. */
9238 const char *
9239 ada_enum_name (const char *name)
9240 {
9241 static char *result;
9242 static size_t result_len = 0;
9243 char *tmp;
9244
9245 /* First, unqualify the enumeration name:
9246 1. Search for the last '.' character. If we find one, then skip
9247 all the preceding characters, the unqualified name starts
9248 right after that dot.
9249 2. Otherwise, we may be debugging on a target where the compiler
9250 translates dots into "__". Search forward for double underscores,
9251 but stop searching when we hit an overloading suffix, which is
9252 of the form "__" followed by digits. */
9253
9254 tmp = strrchr (name, '.');
9255 if (tmp != NULL)
9256 name = tmp + 1;
9257 else
9258 {
9259 while ((tmp = strstr (name, "__")) != NULL)
9260 {
9261 if (isdigit (tmp[2]))
9262 break;
9263 else
9264 name = tmp + 2;
9265 }
9266 }
9267
9268 if (name[0] == 'Q')
9269 {
9270 int v;
9271
9272 if (name[1] == 'U' || name[1] == 'W')
9273 {
9274 if (sscanf (name + 2, "%x", &v) != 1)
9275 return name;
9276 }
9277 else
9278 return name;
9279
9280 GROW_VECT (result, result_len, 16);
9281 if (isascii (v) && isprint (v))
9282 xsnprintf (result, result_len, "'%c'", v);
9283 else if (name[1] == 'U')
9284 xsnprintf (result, result_len, "[\"%02x\"]", v);
9285 else
9286 xsnprintf (result, result_len, "[\"%04x\"]", v);
9287
9288 return result;
9289 }
9290 else
9291 {
9292 tmp = strstr (name, "__");
9293 if (tmp == NULL)
9294 tmp = strstr (name, "$");
9295 if (tmp != NULL)
9296 {
9297 GROW_VECT (result, result_len, tmp - name + 1);
9298 strncpy (result, name, tmp - name);
9299 result[tmp - name] = '\0';
9300 return result;
9301 }
9302
9303 return name;
9304 }
9305 }
9306
9307 /* Evaluate the subexpression of EXP starting at *POS as for
9308 evaluate_type, updating *POS to point just past the evaluated
9309 expression. */
9310
9311 static struct value *
9312 evaluate_subexp_type (struct expression *exp, int *pos)
9313 {
9314 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9315 }
9316
9317 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9318 value it wraps. */
9319
9320 static struct value *
9321 unwrap_value (struct value *val)
9322 {
9323 struct type *type = ada_check_typedef (value_type (val));
9324
9325 if (ada_is_aligner_type (type))
9326 {
9327 struct value *v = ada_value_struct_elt (val, "F", 0);
9328 struct type *val_type = ada_check_typedef (value_type (v));
9329
9330 if (ada_type_name (val_type) == NULL)
9331 TYPE_NAME (val_type) = ada_type_name (type);
9332
9333 return unwrap_value (v);
9334 }
9335 else
9336 {
9337 struct type *raw_real_type =
9338 ada_check_typedef (ada_get_base_type (type));
9339
9340 /* If there is no parallel XVS or XVE type, then the value is
9341 already unwrapped. Return it without further modification. */
9342 if ((type == raw_real_type)
9343 && ada_find_parallel_type (type, "___XVE") == NULL)
9344 return val;
9345
9346 return
9347 coerce_unspec_val_to_type
9348 (val, ada_to_fixed_type (raw_real_type, 0,
9349 value_address (val),
9350 NULL, 1));
9351 }
9352 }
9353
9354 static struct value *
9355 cast_to_fixed (struct type *type, struct value *arg)
9356 {
9357 LONGEST val;
9358
9359 if (type == value_type (arg))
9360 return arg;
9361 else if (ada_is_fixed_point_type (value_type (arg)))
9362 val = ada_float_to_fixed (type,
9363 ada_fixed_to_float (value_type (arg),
9364 value_as_long (arg)));
9365 else
9366 {
9367 DOUBLEST argd = value_as_double (arg);
9368
9369 val = ada_float_to_fixed (type, argd);
9370 }
9371
9372 return value_from_longest (type, val);
9373 }
9374
9375 static struct value *
9376 cast_from_fixed (struct type *type, struct value *arg)
9377 {
9378 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9379 value_as_long (arg));
9380
9381 return value_from_double (type, val);
9382 }
9383
9384 /* Given two array types T1 and T2, return nonzero iff both arrays
9385 contain the same number of elements. */
9386
9387 static int
9388 ada_same_array_size_p (struct type *t1, struct type *t2)
9389 {
9390 LONGEST lo1, hi1, lo2, hi2;
9391
9392 /* Get the array bounds in order to verify that the size of
9393 the two arrays match. */
9394 if (!get_array_bounds (t1, &lo1, &hi1)
9395 || !get_array_bounds (t2, &lo2, &hi2))
9396 error (_("unable to determine array bounds"));
9397
9398 /* To make things easier for size comparison, normalize a bit
9399 the case of empty arrays by making sure that the difference
9400 between upper bound and lower bound is always -1. */
9401 if (lo1 > hi1)
9402 hi1 = lo1 - 1;
9403 if (lo2 > hi2)
9404 hi2 = lo2 - 1;
9405
9406 return (hi1 - lo1 == hi2 - lo2);
9407 }
9408
9409 /* Assuming that VAL is an array of integrals, and TYPE represents
9410 an array with the same number of elements, but with wider integral
9411 elements, return an array "casted" to TYPE. In practice, this
9412 means that the returned array is built by casting each element
9413 of the original array into TYPE's (wider) element type. */
9414
9415 static struct value *
9416 ada_promote_array_of_integrals (struct type *type, struct value *val)
9417 {
9418 struct type *elt_type = TYPE_TARGET_TYPE (type);
9419 LONGEST lo, hi;
9420 struct value *res;
9421 LONGEST i;
9422
9423 /* Verify that both val and type are arrays of scalars, and
9424 that the size of val's elements is smaller than the size
9425 of type's element. */
9426 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9427 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9428 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9429 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9430 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9431 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9432
9433 if (!get_array_bounds (type, &lo, &hi))
9434 error (_("unable to determine array bounds"));
9435
9436 res = allocate_value (type);
9437
9438 /* Promote each array element. */
9439 for (i = 0; i < hi - lo + 1; i++)
9440 {
9441 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9442
9443 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9444 value_contents_all (elt), TYPE_LENGTH (elt_type));
9445 }
9446
9447 return res;
9448 }
9449
9450 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9451 return the converted value. */
9452
9453 static struct value *
9454 coerce_for_assign (struct type *type, struct value *val)
9455 {
9456 struct type *type2 = value_type (val);
9457
9458 if (type == type2)
9459 return val;
9460
9461 type2 = ada_check_typedef (type2);
9462 type = ada_check_typedef (type);
9463
9464 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9465 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9466 {
9467 val = ada_value_ind (val);
9468 type2 = value_type (val);
9469 }
9470
9471 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9472 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9473 {
9474 if (!ada_same_array_size_p (type, type2))
9475 error (_("cannot assign arrays of different length"));
9476
9477 if (is_integral_type (TYPE_TARGET_TYPE (type))
9478 && is_integral_type (TYPE_TARGET_TYPE (type2))
9479 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9480 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9481 {
9482 /* Allow implicit promotion of the array elements to
9483 a wider type. */
9484 return ada_promote_array_of_integrals (type, val);
9485 }
9486
9487 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9488 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9489 error (_("Incompatible types in assignment"));
9490 deprecated_set_value_type (val, type);
9491 }
9492 return val;
9493 }
9494
9495 static struct value *
9496 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9497 {
9498 struct value *val;
9499 struct type *type1, *type2;
9500 LONGEST v, v1, v2;
9501
9502 arg1 = coerce_ref (arg1);
9503 arg2 = coerce_ref (arg2);
9504 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9505 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9506
9507 if (TYPE_CODE (type1) != TYPE_CODE_INT
9508 || TYPE_CODE (type2) != TYPE_CODE_INT)
9509 return value_binop (arg1, arg2, op);
9510
9511 switch (op)
9512 {
9513 case BINOP_MOD:
9514 case BINOP_DIV:
9515 case BINOP_REM:
9516 break;
9517 default:
9518 return value_binop (arg1, arg2, op);
9519 }
9520
9521 v2 = value_as_long (arg2);
9522 if (v2 == 0)
9523 error (_("second operand of %s must not be zero."), op_string (op));
9524
9525 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9526 return value_binop (arg1, arg2, op);
9527
9528 v1 = value_as_long (arg1);
9529 switch (op)
9530 {
9531 case BINOP_DIV:
9532 v = v1 / v2;
9533 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9534 v += v > 0 ? -1 : 1;
9535 break;
9536 case BINOP_REM:
9537 v = v1 % v2;
9538 if (v * v1 < 0)
9539 v -= v2;
9540 break;
9541 default:
9542 /* Should not reach this point. */
9543 v = 0;
9544 }
9545
9546 val = allocate_value (type1);
9547 store_unsigned_integer (value_contents_raw (val),
9548 TYPE_LENGTH (value_type (val)),
9549 gdbarch_byte_order (get_type_arch (type1)), v);
9550 return val;
9551 }
9552
9553 static int
9554 ada_value_equal (struct value *arg1, struct value *arg2)
9555 {
9556 if (ada_is_direct_array_type (value_type (arg1))
9557 || ada_is_direct_array_type (value_type (arg2)))
9558 {
9559 /* Automatically dereference any array reference before
9560 we attempt to perform the comparison. */
9561 arg1 = ada_coerce_ref (arg1);
9562 arg2 = ada_coerce_ref (arg2);
9563
9564 arg1 = ada_coerce_to_simple_array (arg1);
9565 arg2 = ada_coerce_to_simple_array (arg2);
9566 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9567 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9568 error (_("Attempt to compare array with non-array"));
9569 /* FIXME: The following works only for types whose
9570 representations use all bits (no padding or undefined bits)
9571 and do not have user-defined equality. */
9572 return
9573 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9574 && memcmp (value_contents (arg1), value_contents (arg2),
9575 TYPE_LENGTH (value_type (arg1))) == 0;
9576 }
9577 return value_equal (arg1, arg2);
9578 }
9579
9580 /* Total number of component associations in the aggregate starting at
9581 index PC in EXP. Assumes that index PC is the start of an
9582 OP_AGGREGATE. */
9583
9584 static int
9585 num_component_specs (struct expression *exp, int pc)
9586 {
9587 int n, m, i;
9588
9589 m = exp->elts[pc + 1].longconst;
9590 pc += 3;
9591 n = 0;
9592 for (i = 0; i < m; i += 1)
9593 {
9594 switch (exp->elts[pc].opcode)
9595 {
9596 default:
9597 n += 1;
9598 break;
9599 case OP_CHOICES:
9600 n += exp->elts[pc + 1].longconst;
9601 break;
9602 }
9603 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9604 }
9605 return n;
9606 }
9607
9608 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9609 component of LHS (a simple array or a record), updating *POS past
9610 the expression, assuming that LHS is contained in CONTAINER. Does
9611 not modify the inferior's memory, nor does it modify LHS (unless
9612 LHS == CONTAINER). */
9613
9614 static void
9615 assign_component (struct value *container, struct value *lhs, LONGEST index,
9616 struct expression *exp, int *pos)
9617 {
9618 struct value *mark = value_mark ();
9619 struct value *elt;
9620
9621 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9622 {
9623 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9624 struct value *index_val = value_from_longest (index_type, index);
9625
9626 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9627 }
9628 else
9629 {
9630 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9631 elt = ada_to_fixed_value (elt);
9632 }
9633
9634 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9635 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9636 else
9637 value_assign_to_component (container, elt,
9638 ada_evaluate_subexp (NULL, exp, pos,
9639 EVAL_NORMAL));
9640
9641 value_free_to_mark (mark);
9642 }
9643
9644 /* Assuming that LHS represents an lvalue having a record or array
9645 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9646 of that aggregate's value to LHS, advancing *POS past the
9647 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9648 lvalue containing LHS (possibly LHS itself). Does not modify
9649 the inferior's memory, nor does it modify the contents of
9650 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9651
9652 static struct value *
9653 assign_aggregate (struct value *container,
9654 struct value *lhs, struct expression *exp,
9655 int *pos, enum noside noside)
9656 {
9657 struct type *lhs_type;
9658 int n = exp->elts[*pos+1].longconst;
9659 LONGEST low_index, high_index;
9660 int num_specs;
9661 LONGEST *indices;
9662 int max_indices, num_indices;
9663 int i;
9664
9665 *pos += 3;
9666 if (noside != EVAL_NORMAL)
9667 {
9668 for (i = 0; i < n; i += 1)
9669 ada_evaluate_subexp (NULL, exp, pos, noside);
9670 return container;
9671 }
9672
9673 container = ada_coerce_ref (container);
9674 if (ada_is_direct_array_type (value_type (container)))
9675 container = ada_coerce_to_simple_array (container);
9676 lhs = ada_coerce_ref (lhs);
9677 if (!deprecated_value_modifiable (lhs))
9678 error (_("Left operand of assignment is not a modifiable lvalue."));
9679
9680 lhs_type = value_type (lhs);
9681 if (ada_is_direct_array_type (lhs_type))
9682 {
9683 lhs = ada_coerce_to_simple_array (lhs);
9684 lhs_type = value_type (lhs);
9685 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9686 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9687 }
9688 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9689 {
9690 low_index = 0;
9691 high_index = num_visible_fields (lhs_type) - 1;
9692 }
9693 else
9694 error (_("Left-hand side must be array or record."));
9695
9696 num_specs = num_component_specs (exp, *pos - 3);
9697 max_indices = 4 * num_specs + 4;
9698 indices = alloca (max_indices * sizeof (indices[0]));
9699 indices[0] = indices[1] = low_index - 1;
9700 indices[2] = indices[3] = high_index + 1;
9701 num_indices = 4;
9702
9703 for (i = 0; i < n; i += 1)
9704 {
9705 switch (exp->elts[*pos].opcode)
9706 {
9707 case OP_CHOICES:
9708 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9709 &num_indices, max_indices,
9710 low_index, high_index);
9711 break;
9712 case OP_POSITIONAL:
9713 aggregate_assign_positional (container, lhs, exp, pos, indices,
9714 &num_indices, max_indices,
9715 low_index, high_index);
9716 break;
9717 case OP_OTHERS:
9718 if (i != n-1)
9719 error (_("Misplaced 'others' clause"));
9720 aggregate_assign_others (container, lhs, exp, pos, indices,
9721 num_indices, low_index, high_index);
9722 break;
9723 default:
9724 error (_("Internal error: bad aggregate clause"));
9725 }
9726 }
9727
9728 return container;
9729 }
9730
9731 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9732 construct at *POS, updating *POS past the construct, given that
9733 the positions are relative to lower bound LOW, where HIGH is the
9734 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9735 updating *NUM_INDICES as needed. CONTAINER is as for
9736 assign_aggregate. */
9737 static void
9738 aggregate_assign_positional (struct value *container,
9739 struct value *lhs, struct expression *exp,
9740 int *pos, LONGEST *indices, int *num_indices,
9741 int max_indices, LONGEST low, LONGEST high)
9742 {
9743 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9744
9745 if (ind - 1 == high)
9746 warning (_("Extra components in aggregate ignored."));
9747 if (ind <= high)
9748 {
9749 add_component_interval (ind, ind, indices, num_indices, max_indices);
9750 *pos += 3;
9751 assign_component (container, lhs, ind, exp, pos);
9752 }
9753 else
9754 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9755 }
9756
9757 /* Assign into the components of LHS indexed by the OP_CHOICES
9758 construct at *POS, updating *POS past the construct, given that
9759 the allowable indices are LOW..HIGH. Record the indices assigned
9760 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9761 needed. CONTAINER is as for assign_aggregate. */
9762 static void
9763 aggregate_assign_from_choices (struct value *container,
9764 struct value *lhs, struct expression *exp,
9765 int *pos, LONGEST *indices, int *num_indices,
9766 int max_indices, LONGEST low, LONGEST high)
9767 {
9768 int j;
9769 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9770 int choice_pos, expr_pc;
9771 int is_array = ada_is_direct_array_type (value_type (lhs));
9772
9773 choice_pos = *pos += 3;
9774
9775 for (j = 0; j < n_choices; j += 1)
9776 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9777 expr_pc = *pos;
9778 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9779
9780 for (j = 0; j < n_choices; j += 1)
9781 {
9782 LONGEST lower, upper;
9783 enum exp_opcode op = exp->elts[choice_pos].opcode;
9784
9785 if (op == OP_DISCRETE_RANGE)
9786 {
9787 choice_pos += 1;
9788 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9789 EVAL_NORMAL));
9790 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9791 EVAL_NORMAL));
9792 }
9793 else if (is_array)
9794 {
9795 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9796 EVAL_NORMAL));
9797 upper = lower;
9798 }
9799 else
9800 {
9801 int ind;
9802 const char *name;
9803
9804 switch (op)
9805 {
9806 case OP_NAME:
9807 name = &exp->elts[choice_pos + 2].string;
9808 break;
9809 case OP_VAR_VALUE:
9810 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9811 break;
9812 default:
9813 error (_("Invalid record component association."));
9814 }
9815 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9816 ind = 0;
9817 if (! find_struct_field (name, value_type (lhs), 0,
9818 NULL, NULL, NULL, NULL, &ind))
9819 error (_("Unknown component name: %s."), name);
9820 lower = upper = ind;
9821 }
9822
9823 if (lower <= upper && (lower < low || upper > high))
9824 error (_("Index in component association out of bounds."));
9825
9826 add_component_interval (lower, upper, indices, num_indices,
9827 max_indices);
9828 while (lower <= upper)
9829 {
9830 int pos1;
9831
9832 pos1 = expr_pc;
9833 assign_component (container, lhs, lower, exp, &pos1);
9834 lower += 1;
9835 }
9836 }
9837 }
9838
9839 /* Assign the value of the expression in the OP_OTHERS construct in
9840 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9841 have not been previously assigned. The index intervals already assigned
9842 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9843 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9844 static void
9845 aggregate_assign_others (struct value *container,
9846 struct value *lhs, struct expression *exp,
9847 int *pos, LONGEST *indices, int num_indices,
9848 LONGEST low, LONGEST high)
9849 {
9850 int i;
9851 int expr_pc = *pos + 1;
9852
9853 for (i = 0; i < num_indices - 2; i += 2)
9854 {
9855 LONGEST ind;
9856
9857 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9858 {
9859 int localpos;
9860
9861 localpos = expr_pc;
9862 assign_component (container, lhs, ind, exp, &localpos);
9863 }
9864 }
9865 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9866 }
9867
9868 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9869 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9870 modifying *SIZE as needed. It is an error if *SIZE exceeds
9871 MAX_SIZE. The resulting intervals do not overlap. */
9872 static void
9873 add_component_interval (LONGEST low, LONGEST high,
9874 LONGEST* indices, int *size, int max_size)
9875 {
9876 int i, j;
9877
9878 for (i = 0; i < *size; i += 2) {
9879 if (high >= indices[i] && low <= indices[i + 1])
9880 {
9881 int kh;
9882
9883 for (kh = i + 2; kh < *size; kh += 2)
9884 if (high < indices[kh])
9885 break;
9886 if (low < indices[i])
9887 indices[i] = low;
9888 indices[i + 1] = indices[kh - 1];
9889 if (high > indices[i + 1])
9890 indices[i + 1] = high;
9891 memcpy (indices + i + 2, indices + kh, *size - kh);
9892 *size -= kh - i - 2;
9893 return;
9894 }
9895 else if (high < indices[i])
9896 break;
9897 }
9898
9899 if (*size == max_size)
9900 error (_("Internal error: miscounted aggregate components."));
9901 *size += 2;
9902 for (j = *size-1; j >= i+2; j -= 1)
9903 indices[j] = indices[j - 2];
9904 indices[i] = low;
9905 indices[i + 1] = high;
9906 }
9907
9908 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9909 is different. */
9910
9911 static struct value *
9912 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9913 {
9914 if (type == ada_check_typedef (value_type (arg2)))
9915 return arg2;
9916
9917 if (ada_is_fixed_point_type (type))
9918 return (cast_to_fixed (type, arg2));
9919
9920 if (ada_is_fixed_point_type (value_type (arg2)))
9921 return cast_from_fixed (type, arg2);
9922
9923 return value_cast (type, arg2);
9924 }
9925
9926 /* Evaluating Ada expressions, and printing their result.
9927 ------------------------------------------------------
9928
9929 1. Introduction:
9930 ----------------
9931
9932 We usually evaluate an Ada expression in order to print its value.
9933 We also evaluate an expression in order to print its type, which
9934 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9935 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9936 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9937 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9938 similar.
9939
9940 Evaluating expressions is a little more complicated for Ada entities
9941 than it is for entities in languages such as C. The main reason for
9942 this is that Ada provides types whose definition might be dynamic.
9943 One example of such types is variant records. Or another example
9944 would be an array whose bounds can only be known at run time.
9945
9946 The following description is a general guide as to what should be
9947 done (and what should NOT be done) in order to evaluate an expression
9948 involving such types, and when. This does not cover how the semantic
9949 information is encoded by GNAT as this is covered separatly. For the
9950 document used as the reference for the GNAT encoding, see exp_dbug.ads
9951 in the GNAT sources.
9952
9953 Ideally, we should embed each part of this description next to its
9954 associated code. Unfortunately, the amount of code is so vast right
9955 now that it's hard to see whether the code handling a particular
9956 situation might be duplicated or not. One day, when the code is
9957 cleaned up, this guide might become redundant with the comments
9958 inserted in the code, and we might want to remove it.
9959
9960 2. ``Fixing'' an Entity, the Simple Case:
9961 -----------------------------------------
9962
9963 When evaluating Ada expressions, the tricky issue is that they may
9964 reference entities whose type contents and size are not statically
9965 known. Consider for instance a variant record:
9966
9967 type Rec (Empty : Boolean := True) is record
9968 case Empty is
9969 when True => null;
9970 when False => Value : Integer;
9971 end case;
9972 end record;
9973 Yes : Rec := (Empty => False, Value => 1);
9974 No : Rec := (empty => True);
9975
9976 The size and contents of that record depends on the value of the
9977 descriminant (Rec.Empty). At this point, neither the debugging
9978 information nor the associated type structure in GDB are able to
9979 express such dynamic types. So what the debugger does is to create
9980 "fixed" versions of the type that applies to the specific object.
9981 We also informally refer to this opperation as "fixing" an object,
9982 which means creating its associated fixed type.
9983
9984 Example: when printing the value of variable "Yes" above, its fixed
9985 type would look like this:
9986
9987 type Rec is record
9988 Empty : Boolean;
9989 Value : Integer;
9990 end record;
9991
9992 On the other hand, if we printed the value of "No", its fixed type
9993 would become:
9994
9995 type Rec is record
9996 Empty : Boolean;
9997 end record;
9998
9999 Things become a little more complicated when trying to fix an entity
10000 with a dynamic type that directly contains another dynamic type,
10001 such as an array of variant records, for instance. There are
10002 two possible cases: Arrays, and records.
10003
10004 3. ``Fixing'' Arrays:
10005 ---------------------
10006
10007 The type structure in GDB describes an array in terms of its bounds,
10008 and the type of its elements. By design, all elements in the array
10009 have the same type and we cannot represent an array of variant elements
10010 using the current type structure in GDB. When fixing an array,
10011 we cannot fix the array element, as we would potentially need one
10012 fixed type per element of the array. As a result, the best we can do
10013 when fixing an array is to produce an array whose bounds and size
10014 are correct (allowing us to read it from memory), but without having
10015 touched its element type. Fixing each element will be done later,
10016 when (if) necessary.
10017
10018 Arrays are a little simpler to handle than records, because the same
10019 amount of memory is allocated for each element of the array, even if
10020 the amount of space actually used by each element differs from element
10021 to element. Consider for instance the following array of type Rec:
10022
10023 type Rec_Array is array (1 .. 2) of Rec;
10024
10025 The actual amount of memory occupied by each element might be different
10026 from element to element, depending on the value of their discriminant.
10027 But the amount of space reserved for each element in the array remains
10028 fixed regardless. So we simply need to compute that size using
10029 the debugging information available, from which we can then determine
10030 the array size (we multiply the number of elements of the array by
10031 the size of each element).
10032
10033 The simplest case is when we have an array of a constrained element
10034 type. For instance, consider the following type declarations:
10035
10036 type Bounded_String (Max_Size : Integer) is
10037 Length : Integer;
10038 Buffer : String (1 .. Max_Size);
10039 end record;
10040 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10041
10042 In this case, the compiler describes the array as an array of
10043 variable-size elements (identified by its XVS suffix) for which
10044 the size can be read in the parallel XVZ variable.
10045
10046 In the case of an array of an unconstrained element type, the compiler
10047 wraps the array element inside a private PAD type. This type should not
10048 be shown to the user, and must be "unwrap"'ed before printing. Note
10049 that we also use the adjective "aligner" in our code to designate
10050 these wrapper types.
10051
10052 In some cases, the size allocated for each element is statically
10053 known. In that case, the PAD type already has the correct size,
10054 and the array element should remain unfixed.
10055
10056 But there are cases when this size is not statically known.
10057 For instance, assuming that "Five" is an integer variable:
10058
10059 type Dynamic is array (1 .. Five) of Integer;
10060 type Wrapper (Has_Length : Boolean := False) is record
10061 Data : Dynamic;
10062 case Has_Length is
10063 when True => Length : Integer;
10064 when False => null;
10065 end case;
10066 end record;
10067 type Wrapper_Array is array (1 .. 2) of Wrapper;
10068
10069 Hello : Wrapper_Array := (others => (Has_Length => True,
10070 Data => (others => 17),
10071 Length => 1));
10072
10073
10074 The debugging info would describe variable Hello as being an
10075 array of a PAD type. The size of that PAD type is not statically
10076 known, but can be determined using a parallel XVZ variable.
10077 In that case, a copy of the PAD type with the correct size should
10078 be used for the fixed array.
10079
10080 3. ``Fixing'' record type objects:
10081 ----------------------------------
10082
10083 Things are slightly different from arrays in the case of dynamic
10084 record types. In this case, in order to compute the associated
10085 fixed type, we need to determine the size and offset of each of
10086 its components. This, in turn, requires us to compute the fixed
10087 type of each of these components.
10088
10089 Consider for instance the example:
10090
10091 type Bounded_String (Max_Size : Natural) is record
10092 Str : String (1 .. Max_Size);
10093 Length : Natural;
10094 end record;
10095 My_String : Bounded_String (Max_Size => 10);
10096
10097 In that case, the position of field "Length" depends on the size
10098 of field Str, which itself depends on the value of the Max_Size
10099 discriminant. In order to fix the type of variable My_String,
10100 we need to fix the type of field Str. Therefore, fixing a variant
10101 record requires us to fix each of its components.
10102
10103 However, if a component does not have a dynamic size, the component
10104 should not be fixed. In particular, fields that use a PAD type
10105 should not fixed. Here is an example where this might happen
10106 (assuming type Rec above):
10107
10108 type Container (Big : Boolean) is record
10109 First : Rec;
10110 After : Integer;
10111 case Big is
10112 when True => Another : Integer;
10113 when False => null;
10114 end case;
10115 end record;
10116 My_Container : Container := (Big => False,
10117 First => (Empty => True),
10118 After => 42);
10119
10120 In that example, the compiler creates a PAD type for component First,
10121 whose size is constant, and then positions the component After just
10122 right after it. The offset of component After is therefore constant
10123 in this case.
10124
10125 The debugger computes the position of each field based on an algorithm
10126 that uses, among other things, the actual position and size of the field
10127 preceding it. Let's now imagine that the user is trying to print
10128 the value of My_Container. If the type fixing was recursive, we would
10129 end up computing the offset of field After based on the size of the
10130 fixed version of field First. And since in our example First has
10131 only one actual field, the size of the fixed type is actually smaller
10132 than the amount of space allocated to that field, and thus we would
10133 compute the wrong offset of field After.
10134
10135 To make things more complicated, we need to watch out for dynamic
10136 components of variant records (identified by the ___XVL suffix in
10137 the component name). Even if the target type is a PAD type, the size
10138 of that type might not be statically known. So the PAD type needs
10139 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10140 we might end up with the wrong size for our component. This can be
10141 observed with the following type declarations:
10142
10143 type Octal is new Integer range 0 .. 7;
10144 type Octal_Array is array (Positive range <>) of Octal;
10145 pragma Pack (Octal_Array);
10146
10147 type Octal_Buffer (Size : Positive) is record
10148 Buffer : Octal_Array (1 .. Size);
10149 Length : Integer;
10150 end record;
10151
10152 In that case, Buffer is a PAD type whose size is unset and needs
10153 to be computed by fixing the unwrapped type.
10154
10155 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10156 ----------------------------------------------------------
10157
10158 Lastly, when should the sub-elements of an entity that remained unfixed
10159 thus far, be actually fixed?
10160
10161 The answer is: Only when referencing that element. For instance
10162 when selecting one component of a record, this specific component
10163 should be fixed at that point in time. Or when printing the value
10164 of a record, each component should be fixed before its value gets
10165 printed. Similarly for arrays, the element of the array should be
10166 fixed when printing each element of the array, or when extracting
10167 one element out of that array. On the other hand, fixing should
10168 not be performed on the elements when taking a slice of an array!
10169
10170 Note that one of the side-effects of miscomputing the offset and
10171 size of each field is that we end up also miscomputing the size
10172 of the containing type. This can have adverse results when computing
10173 the value of an entity. GDB fetches the value of an entity based
10174 on the size of its type, and thus a wrong size causes GDB to fetch
10175 the wrong amount of memory. In the case where the computed size is
10176 too small, GDB fetches too little data to print the value of our
10177 entiry. Results in this case as unpredicatble, as we usually read
10178 past the buffer containing the data =:-o. */
10179
10180 /* Implement the evaluate_exp routine in the exp_descriptor structure
10181 for the Ada language. */
10182
10183 static struct value *
10184 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10185 int *pos, enum noside noside)
10186 {
10187 enum exp_opcode op;
10188 int tem;
10189 int pc;
10190 int preeval_pos;
10191 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10192 struct type *type;
10193 int nargs, oplen;
10194 struct value **argvec;
10195
10196 pc = *pos;
10197 *pos += 1;
10198 op = exp->elts[pc].opcode;
10199
10200 switch (op)
10201 {
10202 default:
10203 *pos -= 1;
10204 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10205
10206 if (noside == EVAL_NORMAL)
10207 arg1 = unwrap_value (arg1);
10208
10209 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10210 then we need to perform the conversion manually, because
10211 evaluate_subexp_standard doesn't do it. This conversion is
10212 necessary in Ada because the different kinds of float/fixed
10213 types in Ada have different representations.
10214
10215 Similarly, we need to perform the conversion from OP_LONG
10216 ourselves. */
10217 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10218 arg1 = ada_value_cast (expect_type, arg1, noside);
10219
10220 return arg1;
10221
10222 case OP_STRING:
10223 {
10224 struct value *result;
10225
10226 *pos -= 1;
10227 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10228 /* The result type will have code OP_STRING, bashed there from
10229 OP_ARRAY. Bash it back. */
10230 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10231 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10232 return result;
10233 }
10234
10235 case UNOP_CAST:
10236 (*pos) += 2;
10237 type = exp->elts[pc + 1].type;
10238 arg1 = evaluate_subexp (type, exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 arg1 = ada_value_cast (type, arg1, noside);
10242 return arg1;
10243
10244 case UNOP_QUAL:
10245 (*pos) += 2;
10246 type = exp->elts[pc + 1].type;
10247 return ada_evaluate_subexp (type, exp, pos, noside);
10248
10249 case BINOP_ASSIGN:
10250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10251 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10252 {
10253 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10254 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10255 return arg1;
10256 return ada_value_assign (arg1, arg1);
10257 }
10258 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10259 except if the lhs of our assignment is a convenience variable.
10260 In the case of assigning to a convenience variable, the lhs
10261 should be exactly the result of the evaluation of the rhs. */
10262 type = value_type (arg1);
10263 if (VALUE_LVAL (arg1) == lval_internalvar)
10264 type = NULL;
10265 arg2 = evaluate_subexp (type, exp, pos, noside);
10266 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10267 return arg1;
10268 if (ada_is_fixed_point_type (value_type (arg1)))
10269 arg2 = cast_to_fixed (value_type (arg1), arg2);
10270 else if (ada_is_fixed_point_type (value_type (arg2)))
10271 error
10272 (_("Fixed-point values must be assigned to fixed-point variables"));
10273 else
10274 arg2 = coerce_for_assign (value_type (arg1), arg2);
10275 return ada_value_assign (arg1, arg2);
10276
10277 case BINOP_ADD:
10278 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10279 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10280 if (noside == EVAL_SKIP)
10281 goto nosideret;
10282 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10283 return (value_from_longest
10284 (value_type (arg1),
10285 value_as_long (arg1) + value_as_long (arg2)));
10286 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10287 return (value_from_longest
10288 (value_type (arg2),
10289 value_as_long (arg1) + value_as_long (arg2)));
10290 if ((ada_is_fixed_point_type (value_type (arg1))
10291 || ada_is_fixed_point_type (value_type (arg2)))
10292 && value_type (arg1) != value_type (arg2))
10293 error (_("Operands of fixed-point addition must have the same type"));
10294 /* Do the addition, and cast the result to the type of the first
10295 argument. We cannot cast the result to a reference type, so if
10296 ARG1 is a reference type, find its underlying type. */
10297 type = value_type (arg1);
10298 while (TYPE_CODE (type) == TYPE_CODE_REF)
10299 type = TYPE_TARGET_TYPE (type);
10300 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10301 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10302
10303 case BINOP_SUB:
10304 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10305 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10306 if (noside == EVAL_SKIP)
10307 goto nosideret;
10308 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10309 return (value_from_longest
10310 (value_type (arg1),
10311 value_as_long (arg1) - value_as_long (arg2)));
10312 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10313 return (value_from_longest
10314 (value_type (arg2),
10315 value_as_long (arg1) - value_as_long (arg2)));
10316 if ((ada_is_fixed_point_type (value_type (arg1))
10317 || ada_is_fixed_point_type (value_type (arg2)))
10318 && value_type (arg1) != value_type (arg2))
10319 error (_("Operands of fixed-point subtraction "
10320 "must have the same type"));
10321 /* Do the substraction, and cast the result to the type of the first
10322 argument. We cannot cast the result to a reference type, so if
10323 ARG1 is a reference type, find its underlying type. */
10324 type = value_type (arg1);
10325 while (TYPE_CODE (type) == TYPE_CODE_REF)
10326 type = TYPE_TARGET_TYPE (type);
10327 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10328 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10329
10330 case BINOP_MUL:
10331 case BINOP_DIV:
10332 case BINOP_REM:
10333 case BINOP_MOD:
10334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10335 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 if (noside == EVAL_SKIP)
10337 goto nosideret;
10338 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339 {
10340 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10341 return value_zero (value_type (arg1), not_lval);
10342 }
10343 else
10344 {
10345 type = builtin_type (exp->gdbarch)->builtin_double;
10346 if (ada_is_fixed_point_type (value_type (arg1)))
10347 arg1 = cast_from_fixed (type, arg1);
10348 if (ada_is_fixed_point_type (value_type (arg2)))
10349 arg2 = cast_from_fixed (type, arg2);
10350 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10351 return ada_value_binop (arg1, arg2, op);
10352 }
10353
10354 case BINOP_EQUAL:
10355 case BINOP_NOTEQUAL:
10356 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10357 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10358 if (noside == EVAL_SKIP)
10359 goto nosideret;
10360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10361 tem = 0;
10362 else
10363 {
10364 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10365 tem = ada_value_equal (arg1, arg2);
10366 }
10367 if (op == BINOP_NOTEQUAL)
10368 tem = !tem;
10369 type = language_bool_type (exp->language_defn, exp->gdbarch);
10370 return value_from_longest (type, (LONGEST) tem);
10371
10372 case UNOP_NEG:
10373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10374 if (noside == EVAL_SKIP)
10375 goto nosideret;
10376 else if (ada_is_fixed_point_type (value_type (arg1)))
10377 return value_cast (value_type (arg1), value_neg (arg1));
10378 else
10379 {
10380 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10381 return value_neg (arg1);
10382 }
10383
10384 case BINOP_LOGICAL_AND:
10385 case BINOP_LOGICAL_OR:
10386 case UNOP_LOGICAL_NOT:
10387 {
10388 struct value *val;
10389
10390 *pos -= 1;
10391 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10392 type = language_bool_type (exp->language_defn, exp->gdbarch);
10393 return value_cast (type, val);
10394 }
10395
10396 case BINOP_BITWISE_AND:
10397 case BINOP_BITWISE_IOR:
10398 case BINOP_BITWISE_XOR:
10399 {
10400 struct value *val;
10401
10402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10403 *pos = pc;
10404 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10405
10406 return value_cast (value_type (arg1), val);
10407 }
10408
10409 case OP_VAR_VALUE:
10410 *pos -= 1;
10411
10412 if (noside == EVAL_SKIP)
10413 {
10414 *pos += 4;
10415 goto nosideret;
10416 }
10417
10418 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10419 /* Only encountered when an unresolved symbol occurs in a
10420 context other than a function call, in which case, it is
10421 invalid. */
10422 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10423 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10424
10425 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10426 {
10427 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10428 /* Check to see if this is a tagged type. We also need to handle
10429 the case where the type is a reference to a tagged type, but
10430 we have to be careful to exclude pointers to tagged types.
10431 The latter should be shown as usual (as a pointer), whereas
10432 a reference should mostly be transparent to the user. */
10433 if (ada_is_tagged_type (type, 0)
10434 || (TYPE_CODE (type) == TYPE_CODE_REF
10435 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10436 {
10437 /* Tagged types are a little special in the fact that the real
10438 type is dynamic and can only be determined by inspecting the
10439 object's tag. This means that we need to get the object's
10440 value first (EVAL_NORMAL) and then extract the actual object
10441 type from its tag.
10442
10443 Note that we cannot skip the final step where we extract
10444 the object type from its tag, because the EVAL_NORMAL phase
10445 results in dynamic components being resolved into fixed ones.
10446 This can cause problems when trying to print the type
10447 description of tagged types whose parent has a dynamic size:
10448 We use the type name of the "_parent" component in order
10449 to print the name of the ancestor type in the type description.
10450 If that component had a dynamic size, the resolution into
10451 a fixed type would result in the loss of that type name,
10452 thus preventing us from printing the name of the ancestor
10453 type in the type description. */
10454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10455
10456 if (TYPE_CODE (type) != TYPE_CODE_REF)
10457 {
10458 struct type *actual_type;
10459
10460 actual_type = type_from_tag (ada_value_tag (arg1));
10461 if (actual_type == NULL)
10462 /* If, for some reason, we were unable to determine
10463 the actual type from the tag, then use the static
10464 approximation that we just computed as a fallback.
10465 This can happen if the debugging information is
10466 incomplete, for instance. */
10467 actual_type = type;
10468 return value_zero (actual_type, not_lval);
10469 }
10470 else
10471 {
10472 /* In the case of a ref, ada_coerce_ref takes care
10473 of determining the actual type. But the evaluation
10474 should return a ref as it should be valid to ask
10475 for its address; so rebuild a ref after coerce. */
10476 arg1 = ada_coerce_ref (arg1);
10477 return value_ref (arg1);
10478 }
10479 }
10480
10481 /* Records and unions for which GNAT encodings have been
10482 generated need to be statically fixed as well.
10483 Otherwise, non-static fixing produces a type where
10484 all dynamic properties are removed, which prevents "ptype"
10485 from being able to completely describe the type.
10486 For instance, a case statement in a variant record would be
10487 replaced by the relevant components based on the actual
10488 value of the discriminants. */
10489 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10490 && dynamic_template_type (type) != NULL)
10491 || (TYPE_CODE (type) == TYPE_CODE_UNION
10492 && ada_find_parallel_type (type, "___XVU") != NULL))
10493 {
10494 *pos += 4;
10495 return value_zero (to_static_fixed_type (type), not_lval);
10496 }
10497 }
10498
10499 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10500 return ada_to_fixed_value (arg1);
10501
10502 case OP_FUNCALL:
10503 (*pos) += 2;
10504
10505 /* Allocate arg vector, including space for the function to be
10506 called in argvec[0] and a terminating NULL. */
10507 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10508 argvec =
10509 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10510
10511 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10513 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10514 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10515 else
10516 {
10517 for (tem = 0; tem <= nargs; tem += 1)
10518 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 argvec[tem] = 0;
10520
10521 if (noside == EVAL_SKIP)
10522 goto nosideret;
10523 }
10524
10525 if (ada_is_constrained_packed_array_type
10526 (desc_base_type (value_type (argvec[0]))))
10527 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10528 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10529 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10530 /* This is a packed array that has already been fixed, and
10531 therefore already coerced to a simple array. Nothing further
10532 to do. */
10533 ;
10534 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10535 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10536 && VALUE_LVAL (argvec[0]) == lval_memory))
10537 argvec[0] = value_addr (argvec[0]);
10538
10539 type = ada_check_typedef (value_type (argvec[0]));
10540
10541 /* Ada allows us to implicitly dereference arrays when subscripting
10542 them. So, if this is an array typedef (encoding use for array
10543 access types encoded as fat pointers), strip it now. */
10544 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10545 type = ada_typedef_target_type (type);
10546
10547 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10548 {
10549 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10550 {
10551 case TYPE_CODE_FUNC:
10552 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10553 break;
10554 case TYPE_CODE_ARRAY:
10555 break;
10556 case TYPE_CODE_STRUCT:
10557 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10558 argvec[0] = ada_value_ind (argvec[0]);
10559 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10560 break;
10561 default:
10562 error (_("cannot subscript or call something of type `%s'"),
10563 ada_type_name (value_type (argvec[0])));
10564 break;
10565 }
10566 }
10567
10568 switch (TYPE_CODE (type))
10569 {
10570 case TYPE_CODE_FUNC:
10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10572 {
10573 struct type *rtype = TYPE_TARGET_TYPE (type);
10574
10575 if (TYPE_GNU_IFUNC (type))
10576 return allocate_value (TYPE_TARGET_TYPE (rtype));
10577 return allocate_value (rtype);
10578 }
10579 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10580 case TYPE_CODE_INTERNAL_FUNCTION:
10581 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 /* We don't know anything about what the internal
10583 function might return, but we have to return
10584 something. */
10585 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10586 not_lval);
10587 else
10588 return call_internal_function (exp->gdbarch, exp->language_defn,
10589 argvec[0], nargs, argvec + 1);
10590
10591 case TYPE_CODE_STRUCT:
10592 {
10593 int arity;
10594
10595 arity = ada_array_arity (type);
10596 type = ada_array_element_type (type, nargs);
10597 if (type == NULL)
10598 error (_("cannot subscript or call a record"));
10599 if (arity != nargs)
10600 error (_("wrong number of subscripts; expecting %d"), arity);
10601 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10602 return value_zero (ada_aligned_type (type), lval_memory);
10603 return
10604 unwrap_value (ada_value_subscript
10605 (argvec[0], nargs, argvec + 1));
10606 }
10607 case TYPE_CODE_ARRAY:
10608 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10609 {
10610 type = ada_array_element_type (type, nargs);
10611 if (type == NULL)
10612 error (_("element type of array unknown"));
10613 else
10614 return value_zero (ada_aligned_type (type), lval_memory);
10615 }
10616 return
10617 unwrap_value (ada_value_subscript
10618 (ada_coerce_to_simple_array (argvec[0]),
10619 nargs, argvec + 1));
10620 case TYPE_CODE_PTR: /* Pointer to array */
10621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 {
10623 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10624 type = ada_array_element_type (type, nargs);
10625 if (type == NULL)
10626 error (_("element type of array unknown"));
10627 else
10628 return value_zero (ada_aligned_type (type), lval_memory);
10629 }
10630 return
10631 unwrap_value (ada_value_ptr_subscript (argvec[0],
10632 nargs, argvec + 1));
10633
10634 default:
10635 error (_("Attempt to index or call something other than an "
10636 "array or function"));
10637 }
10638
10639 case TERNOP_SLICE:
10640 {
10641 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 struct value *low_bound_val =
10643 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 struct value *high_bound_val =
10645 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10646 LONGEST low_bound;
10647 LONGEST high_bound;
10648
10649 low_bound_val = coerce_ref (low_bound_val);
10650 high_bound_val = coerce_ref (high_bound_val);
10651 low_bound = value_as_long (low_bound_val);
10652 high_bound = value_as_long (high_bound_val);
10653
10654 if (noside == EVAL_SKIP)
10655 goto nosideret;
10656
10657 /* If this is a reference to an aligner type, then remove all
10658 the aligners. */
10659 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10660 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10661 TYPE_TARGET_TYPE (value_type (array)) =
10662 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10663
10664 if (ada_is_constrained_packed_array_type (value_type (array)))
10665 error (_("cannot slice a packed array"));
10666
10667 /* If this is a reference to an array or an array lvalue,
10668 convert to a pointer. */
10669 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10670 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10671 && VALUE_LVAL (array) == lval_memory))
10672 array = value_addr (array);
10673
10674 if (noside == EVAL_AVOID_SIDE_EFFECTS
10675 && ada_is_array_descriptor_type (ada_check_typedef
10676 (value_type (array))))
10677 return empty_array (ada_type_of_array (array, 0), low_bound);
10678
10679 array = ada_coerce_to_simple_array_ptr (array);
10680
10681 /* If we have more than one level of pointer indirection,
10682 dereference the value until we get only one level. */
10683 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10684 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10685 == TYPE_CODE_PTR))
10686 array = value_ind (array);
10687
10688 /* Make sure we really do have an array type before going further,
10689 to avoid a SEGV when trying to get the index type or the target
10690 type later down the road if the debug info generated by
10691 the compiler is incorrect or incomplete. */
10692 if (!ada_is_simple_array_type (value_type (array)))
10693 error (_("cannot take slice of non-array"));
10694
10695 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10696 == TYPE_CODE_PTR)
10697 {
10698 struct type *type0 = ada_check_typedef (value_type (array));
10699
10700 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10701 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10702 else
10703 {
10704 struct type *arr_type0 =
10705 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10706
10707 return ada_value_slice_from_ptr (array, arr_type0,
10708 longest_to_int (low_bound),
10709 longest_to_int (high_bound));
10710 }
10711 }
10712 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10713 return array;
10714 else if (high_bound < low_bound)
10715 return empty_array (value_type (array), low_bound);
10716 else
10717 return ada_value_slice (array, longest_to_int (low_bound),
10718 longest_to_int (high_bound));
10719 }
10720
10721 case UNOP_IN_RANGE:
10722 (*pos) += 2;
10723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 type = check_typedef (exp->elts[pc + 1].type);
10725
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728
10729 switch (TYPE_CODE (type))
10730 {
10731 default:
10732 lim_warning (_("Membership test incompletely implemented; "
10733 "always returns true"));
10734 type = language_bool_type (exp->language_defn, exp->gdbarch);
10735 return value_from_longest (type, (LONGEST) 1);
10736
10737 case TYPE_CODE_RANGE:
10738 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10739 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10740 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10741 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10742 type = language_bool_type (exp->language_defn, exp->gdbarch);
10743 return
10744 value_from_longest (type,
10745 (value_less (arg1, arg3)
10746 || value_equal (arg1, arg3))
10747 && (value_less (arg2, arg1)
10748 || value_equal (arg2, arg1)));
10749 }
10750
10751 case BINOP_IN_BOUNDS:
10752 (*pos) += 2;
10753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10754 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10755
10756 if (noside == EVAL_SKIP)
10757 goto nosideret;
10758
10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10760 {
10761 type = language_bool_type (exp->language_defn, exp->gdbarch);
10762 return value_zero (type, not_lval);
10763 }
10764
10765 tem = longest_to_int (exp->elts[pc + 1].longconst);
10766
10767 type = ada_index_type (value_type (arg2), tem, "range");
10768 if (!type)
10769 type = value_type (arg1);
10770
10771 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10772 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10773
10774 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10775 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10776 type = language_bool_type (exp->language_defn, exp->gdbarch);
10777 return
10778 value_from_longest (type,
10779 (value_less (arg1, arg3)
10780 || value_equal (arg1, arg3))
10781 && (value_less (arg2, arg1)
10782 || value_equal (arg2, arg1)));
10783
10784 case TERNOP_IN_RANGE:
10785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10786 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10787 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10788
10789 if (noside == EVAL_SKIP)
10790 goto nosideret;
10791
10792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10793 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10794 type = language_bool_type (exp->language_defn, exp->gdbarch);
10795 return
10796 value_from_longest (type,
10797 (value_less (arg1, arg3)
10798 || value_equal (arg1, arg3))
10799 && (value_less (arg2, arg1)
10800 || value_equal (arg2, arg1)));
10801
10802 case OP_ATR_FIRST:
10803 case OP_ATR_LAST:
10804 case OP_ATR_LENGTH:
10805 {
10806 struct type *type_arg;
10807
10808 if (exp->elts[*pos].opcode == OP_TYPE)
10809 {
10810 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10811 arg1 = NULL;
10812 type_arg = check_typedef (exp->elts[pc + 2].type);
10813 }
10814 else
10815 {
10816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10817 type_arg = NULL;
10818 }
10819
10820 if (exp->elts[*pos].opcode != OP_LONG)
10821 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10822 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10823 *pos += 4;
10824
10825 if (noside == EVAL_SKIP)
10826 goto nosideret;
10827
10828 if (type_arg == NULL)
10829 {
10830 arg1 = ada_coerce_ref (arg1);
10831
10832 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10833 arg1 = ada_coerce_to_simple_array (arg1);
10834
10835 if (op == OP_ATR_LENGTH)
10836 type = builtin_type (exp->gdbarch)->builtin_int;
10837 else
10838 {
10839 type = ada_index_type (value_type (arg1), tem,
10840 ada_attribute_name (op));
10841 if (type == NULL)
10842 type = builtin_type (exp->gdbarch)->builtin_int;
10843 }
10844
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 return allocate_value (type);
10847
10848 switch (op)
10849 {
10850 default: /* Should never happen. */
10851 error (_("unexpected attribute encountered"));
10852 case OP_ATR_FIRST:
10853 return value_from_longest
10854 (type, ada_array_bound (arg1, tem, 0));
10855 case OP_ATR_LAST:
10856 return value_from_longest
10857 (type, ada_array_bound (arg1, tem, 1));
10858 case OP_ATR_LENGTH:
10859 return value_from_longest
10860 (type, ada_array_length (arg1, tem));
10861 }
10862 }
10863 else if (discrete_type_p (type_arg))
10864 {
10865 struct type *range_type;
10866 const char *name = ada_type_name (type_arg);
10867
10868 range_type = NULL;
10869 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10870 range_type = to_fixed_range_type (type_arg, NULL);
10871 if (range_type == NULL)
10872 range_type = type_arg;
10873 switch (op)
10874 {
10875 default:
10876 error (_("unexpected attribute encountered"));
10877 case OP_ATR_FIRST:
10878 return value_from_longest
10879 (range_type, ada_discrete_type_low_bound (range_type));
10880 case OP_ATR_LAST:
10881 return value_from_longest
10882 (range_type, ada_discrete_type_high_bound (range_type));
10883 case OP_ATR_LENGTH:
10884 error (_("the 'length attribute applies only to array types"));
10885 }
10886 }
10887 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10888 error (_("unimplemented type attribute"));
10889 else
10890 {
10891 LONGEST low, high;
10892
10893 if (ada_is_constrained_packed_array_type (type_arg))
10894 type_arg = decode_constrained_packed_array_type (type_arg);
10895
10896 if (op == OP_ATR_LENGTH)
10897 type = builtin_type (exp->gdbarch)->builtin_int;
10898 else
10899 {
10900 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10901 if (type == NULL)
10902 type = builtin_type (exp->gdbarch)->builtin_int;
10903 }
10904
10905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10906 return allocate_value (type);
10907
10908 switch (op)
10909 {
10910 default:
10911 error (_("unexpected attribute encountered"));
10912 case OP_ATR_FIRST:
10913 low = ada_array_bound_from_type (type_arg, tem, 0);
10914 return value_from_longest (type, low);
10915 case OP_ATR_LAST:
10916 high = ada_array_bound_from_type (type_arg, tem, 1);
10917 return value_from_longest (type, high);
10918 case OP_ATR_LENGTH:
10919 low = ada_array_bound_from_type (type_arg, tem, 0);
10920 high = ada_array_bound_from_type (type_arg, tem, 1);
10921 return value_from_longest (type, high - low + 1);
10922 }
10923 }
10924 }
10925
10926 case OP_ATR_TAG:
10927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10928 if (noside == EVAL_SKIP)
10929 goto nosideret;
10930
10931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return value_zero (ada_tag_type (arg1), not_lval);
10933
10934 return ada_value_tag (arg1);
10935
10936 case OP_ATR_MIN:
10937 case OP_ATR_MAX:
10938 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10941 if (noside == EVAL_SKIP)
10942 goto nosideret;
10943 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 return value_zero (value_type (arg1), not_lval);
10945 else
10946 {
10947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10948 return value_binop (arg1, arg2,
10949 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10950 }
10951
10952 case OP_ATR_MODULUS:
10953 {
10954 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10955
10956 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10957 if (noside == EVAL_SKIP)
10958 goto nosideret;
10959
10960 if (!ada_is_modular_type (type_arg))
10961 error (_("'modulus must be applied to modular type"));
10962
10963 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10964 ada_modulus (type_arg));
10965 }
10966
10967
10968 case OP_ATR_POS:
10969 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 if (noside == EVAL_SKIP)
10972 goto nosideret;
10973 type = builtin_type (exp->gdbarch)->builtin_int;
10974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10975 return value_zero (type, not_lval);
10976 else
10977 return value_pos_atr (type, arg1);
10978
10979 case OP_ATR_SIZE:
10980 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 type = value_type (arg1);
10982
10983 /* If the argument is a reference, then dereference its type, since
10984 the user is really asking for the size of the actual object,
10985 not the size of the pointer. */
10986 if (TYPE_CODE (type) == TYPE_CODE_REF)
10987 type = TYPE_TARGET_TYPE (type);
10988
10989 if (noside == EVAL_SKIP)
10990 goto nosideret;
10991 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10993 else
10994 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10995 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10996
10997 case OP_ATR_VAL:
10998 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10999 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11000 type = exp->elts[pc + 2].type;
11001 if (noside == EVAL_SKIP)
11002 goto nosideret;
11003 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 return value_zero (type, not_lval);
11005 else
11006 return value_val_atr (type, arg1);
11007
11008 case BINOP_EXP:
11009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 if (noside == EVAL_SKIP)
11012 goto nosideret;
11013 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11014 return value_zero (value_type (arg1), not_lval);
11015 else
11016 {
11017 /* For integer exponentiation operations,
11018 only promote the first argument. */
11019 if (is_integral_type (value_type (arg2)))
11020 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11021 else
11022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11023
11024 return value_binop (arg1, arg2, op);
11025 }
11026
11027 case UNOP_PLUS:
11028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11029 if (noside == EVAL_SKIP)
11030 goto nosideret;
11031 else
11032 return arg1;
11033
11034 case UNOP_ABS:
11035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11036 if (noside == EVAL_SKIP)
11037 goto nosideret;
11038 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11039 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11040 return value_neg (arg1);
11041 else
11042 return arg1;
11043
11044 case UNOP_IND:
11045 preeval_pos = *pos;
11046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11047 if (noside == EVAL_SKIP)
11048 goto nosideret;
11049 type = ada_check_typedef (value_type (arg1));
11050 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11051 {
11052 if (ada_is_array_descriptor_type (type))
11053 /* GDB allows dereferencing GNAT array descriptors. */
11054 {
11055 struct type *arrType = ada_type_of_array (arg1, 0);
11056
11057 if (arrType == NULL)
11058 error (_("Attempt to dereference null array pointer."));
11059 return value_at_lazy (arrType, 0);
11060 }
11061 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11062 || TYPE_CODE (type) == TYPE_CODE_REF
11063 /* In C you can dereference an array to get the 1st elt. */
11064 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11065 {
11066 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11067 only be determined by inspecting the object's tag.
11068 This means that we need to evaluate completely the
11069 expression in order to get its type. */
11070
11071 if ((TYPE_CODE (type) == TYPE_CODE_REF
11072 || TYPE_CODE (type) == TYPE_CODE_PTR)
11073 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11074 {
11075 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11076 EVAL_NORMAL);
11077 type = value_type (ada_value_ind (arg1));
11078 }
11079 else
11080 {
11081 type = to_static_fixed_type
11082 (ada_aligned_type
11083 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11084 }
11085 ada_ensure_varsize_limit (type);
11086 return value_zero (type, lval_memory);
11087 }
11088 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11089 {
11090 /* GDB allows dereferencing an int. */
11091 if (expect_type == NULL)
11092 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11093 lval_memory);
11094 else
11095 {
11096 expect_type =
11097 to_static_fixed_type (ada_aligned_type (expect_type));
11098 return value_zero (expect_type, lval_memory);
11099 }
11100 }
11101 else
11102 error (_("Attempt to take contents of a non-pointer value."));
11103 }
11104 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11105 type = ada_check_typedef (value_type (arg1));
11106
11107 if (TYPE_CODE (type) == TYPE_CODE_INT)
11108 /* GDB allows dereferencing an int. If we were given
11109 the expect_type, then use that as the target type.
11110 Otherwise, assume that the target type is an int. */
11111 {
11112 if (expect_type != NULL)
11113 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11114 arg1));
11115 else
11116 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11117 (CORE_ADDR) value_as_address (arg1));
11118 }
11119
11120 if (ada_is_array_descriptor_type (type))
11121 /* GDB allows dereferencing GNAT array descriptors. */
11122 return ada_coerce_to_simple_array (arg1);
11123 else
11124 return ada_value_ind (arg1);
11125
11126 case STRUCTOP_STRUCT:
11127 tem = longest_to_int (exp->elts[pc + 1].longconst);
11128 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11129 preeval_pos = *pos;
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 if (noside == EVAL_SKIP)
11132 goto nosideret;
11133 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11134 {
11135 struct type *type1 = value_type (arg1);
11136
11137 if (ada_is_tagged_type (type1, 1))
11138 {
11139 type = ada_lookup_struct_elt_type (type1,
11140 &exp->elts[pc + 2].string,
11141 1, 1, NULL);
11142
11143 /* If the field is not found, check if it exists in the
11144 extension of this object's type. This means that we
11145 need to evaluate completely the expression. */
11146
11147 if (type == NULL)
11148 {
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11150 EVAL_NORMAL);
11151 arg1 = ada_value_struct_elt (arg1,
11152 &exp->elts[pc + 2].string,
11153 0);
11154 arg1 = unwrap_value (arg1);
11155 type = value_type (ada_to_fixed_value (arg1));
11156 }
11157 }
11158 else
11159 type =
11160 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11161 0, NULL);
11162
11163 return value_zero (ada_aligned_type (type), lval_memory);
11164 }
11165 else
11166 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11167 arg1 = unwrap_value (arg1);
11168 return ada_to_fixed_value (arg1);
11169
11170 case OP_TYPE:
11171 /* The value is not supposed to be used. This is here to make it
11172 easier to accommodate expressions that contain types. */
11173 (*pos) += 2;
11174 if (noside == EVAL_SKIP)
11175 goto nosideret;
11176 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11177 return allocate_value (exp->elts[pc + 1].type);
11178 else
11179 error (_("Attempt to use a type name as an expression"));
11180
11181 case OP_AGGREGATE:
11182 case OP_CHOICES:
11183 case OP_OTHERS:
11184 case OP_DISCRETE_RANGE:
11185 case OP_POSITIONAL:
11186 case OP_NAME:
11187 if (noside == EVAL_NORMAL)
11188 switch (op)
11189 {
11190 case OP_NAME:
11191 error (_("Undefined name, ambiguous name, or renaming used in "
11192 "component association: %s."), &exp->elts[pc+2].string);
11193 case OP_AGGREGATE:
11194 error (_("Aggregates only allowed on the right of an assignment"));
11195 default:
11196 internal_error (__FILE__, __LINE__,
11197 _("aggregate apparently mangled"));
11198 }
11199
11200 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11201 *pos += oplen - 1;
11202 for (tem = 0; tem < nargs; tem += 1)
11203 ada_evaluate_subexp (NULL, exp, pos, noside);
11204 goto nosideret;
11205 }
11206
11207 nosideret:
11208 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11209 }
11210 \f
11211
11212 /* Fixed point */
11213
11214 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11215 type name that encodes the 'small and 'delta information.
11216 Otherwise, return NULL. */
11217
11218 static const char *
11219 fixed_type_info (struct type *type)
11220 {
11221 const char *name = ada_type_name (type);
11222 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11223
11224 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11225 {
11226 const char *tail = strstr (name, "___XF_");
11227
11228 if (tail == NULL)
11229 return NULL;
11230 else
11231 return tail + 5;
11232 }
11233 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11234 return fixed_type_info (TYPE_TARGET_TYPE (type));
11235 else
11236 return NULL;
11237 }
11238
11239 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11240
11241 int
11242 ada_is_fixed_point_type (struct type *type)
11243 {
11244 return fixed_type_info (type) != NULL;
11245 }
11246
11247 /* Return non-zero iff TYPE represents a System.Address type. */
11248
11249 int
11250 ada_is_system_address_type (struct type *type)
11251 {
11252 return (TYPE_NAME (type)
11253 && strcmp (TYPE_NAME (type), "system__address") == 0);
11254 }
11255
11256 /* Assuming that TYPE is the representation of an Ada fixed-point
11257 type, return its delta, or -1 if the type is malformed and the
11258 delta cannot be determined. */
11259
11260 DOUBLEST
11261 ada_delta (struct type *type)
11262 {
11263 const char *encoding = fixed_type_info (type);
11264 DOUBLEST num, den;
11265
11266 /* Strictly speaking, num and den are encoded as integer. However,
11267 they may not fit into a long, and they will have to be converted
11268 to DOUBLEST anyway. So scan them as DOUBLEST. */
11269 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11270 &num, &den) < 2)
11271 return -1.0;
11272 else
11273 return num / den;
11274 }
11275
11276 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11277 factor ('SMALL value) associated with the type. */
11278
11279 static DOUBLEST
11280 scaling_factor (struct type *type)
11281 {
11282 const char *encoding = fixed_type_info (type);
11283 DOUBLEST num0, den0, num1, den1;
11284 int n;
11285
11286 /* Strictly speaking, num's and den's are encoded as integer. However,
11287 they may not fit into a long, and they will have to be converted
11288 to DOUBLEST anyway. So scan them as DOUBLEST. */
11289 n = sscanf (encoding,
11290 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11291 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11292 &num0, &den0, &num1, &den1);
11293
11294 if (n < 2)
11295 return 1.0;
11296 else if (n == 4)
11297 return num1 / den1;
11298 else
11299 return num0 / den0;
11300 }
11301
11302
11303 /* Assuming that X is the representation of a value of fixed-point
11304 type TYPE, return its floating-point equivalent. */
11305
11306 DOUBLEST
11307 ada_fixed_to_float (struct type *type, LONGEST x)
11308 {
11309 return (DOUBLEST) x *scaling_factor (type);
11310 }
11311
11312 /* The representation of a fixed-point value of type TYPE
11313 corresponding to the value X. */
11314
11315 LONGEST
11316 ada_float_to_fixed (struct type *type, DOUBLEST x)
11317 {
11318 return (LONGEST) (x / scaling_factor (type) + 0.5);
11319 }
11320
11321 \f
11322
11323 /* Range types */
11324
11325 /* Scan STR beginning at position K for a discriminant name, and
11326 return the value of that discriminant field of DVAL in *PX. If
11327 PNEW_K is not null, put the position of the character beyond the
11328 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11329 not alter *PX and *PNEW_K if unsuccessful. */
11330
11331 static int
11332 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11333 int *pnew_k)
11334 {
11335 static char *bound_buffer = NULL;
11336 static size_t bound_buffer_len = 0;
11337 char *bound;
11338 char *pend;
11339 struct value *bound_val;
11340
11341 if (dval == NULL || str == NULL || str[k] == '\0')
11342 return 0;
11343
11344 pend = strstr (str + k, "__");
11345 if (pend == NULL)
11346 {
11347 bound = str + k;
11348 k += strlen (bound);
11349 }
11350 else
11351 {
11352 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11353 bound = bound_buffer;
11354 strncpy (bound_buffer, str + k, pend - (str + k));
11355 bound[pend - (str + k)] = '\0';
11356 k = pend - str;
11357 }
11358
11359 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11360 if (bound_val == NULL)
11361 return 0;
11362
11363 *px = value_as_long (bound_val);
11364 if (pnew_k != NULL)
11365 *pnew_k = k;
11366 return 1;
11367 }
11368
11369 /* Value of variable named NAME in the current environment. If
11370 no such variable found, then if ERR_MSG is null, returns 0, and
11371 otherwise causes an error with message ERR_MSG. */
11372
11373 static struct value *
11374 get_var_value (char *name, char *err_msg)
11375 {
11376 struct block_symbol *syms;
11377 int nsyms;
11378
11379 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11380 &syms);
11381
11382 if (nsyms != 1)
11383 {
11384 if (err_msg == NULL)
11385 return 0;
11386 else
11387 error (("%s"), err_msg);
11388 }
11389
11390 return value_of_variable (syms[0].symbol, syms[0].block);
11391 }
11392
11393 /* Value of integer variable named NAME in the current environment. If
11394 no such variable found, returns 0, and sets *FLAG to 0. If
11395 successful, sets *FLAG to 1. */
11396
11397 LONGEST
11398 get_int_var_value (char *name, int *flag)
11399 {
11400 struct value *var_val = get_var_value (name, 0);
11401
11402 if (var_val == 0)
11403 {
11404 if (flag != NULL)
11405 *flag = 0;
11406 return 0;
11407 }
11408 else
11409 {
11410 if (flag != NULL)
11411 *flag = 1;
11412 return value_as_long (var_val);
11413 }
11414 }
11415
11416
11417 /* Return a range type whose base type is that of the range type named
11418 NAME in the current environment, and whose bounds are calculated
11419 from NAME according to the GNAT range encoding conventions.
11420 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11421 corresponding range type from debug information; fall back to using it
11422 if symbol lookup fails. If a new type must be created, allocate it
11423 like ORIG_TYPE was. The bounds information, in general, is encoded
11424 in NAME, the base type given in the named range type. */
11425
11426 static struct type *
11427 to_fixed_range_type (struct type *raw_type, struct value *dval)
11428 {
11429 const char *name;
11430 struct type *base_type;
11431 char *subtype_info;
11432
11433 gdb_assert (raw_type != NULL);
11434 gdb_assert (TYPE_NAME (raw_type) != NULL);
11435
11436 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11437 base_type = TYPE_TARGET_TYPE (raw_type);
11438 else
11439 base_type = raw_type;
11440
11441 name = TYPE_NAME (raw_type);
11442 subtype_info = strstr (name, "___XD");
11443 if (subtype_info == NULL)
11444 {
11445 LONGEST L = ada_discrete_type_low_bound (raw_type);
11446 LONGEST U = ada_discrete_type_high_bound (raw_type);
11447
11448 if (L < INT_MIN || U > INT_MAX)
11449 return raw_type;
11450 else
11451 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11452 L, U);
11453 }
11454 else
11455 {
11456 static char *name_buf = NULL;
11457 static size_t name_len = 0;
11458 int prefix_len = subtype_info - name;
11459 LONGEST L, U;
11460 struct type *type;
11461 char *bounds_str;
11462 int n;
11463
11464 GROW_VECT (name_buf, name_len, prefix_len + 5);
11465 strncpy (name_buf, name, prefix_len);
11466 name_buf[prefix_len] = '\0';
11467
11468 subtype_info += 5;
11469 bounds_str = strchr (subtype_info, '_');
11470 n = 1;
11471
11472 if (*subtype_info == 'L')
11473 {
11474 if (!ada_scan_number (bounds_str, n, &L, &n)
11475 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11476 return raw_type;
11477 if (bounds_str[n] == '_')
11478 n += 2;
11479 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11480 n += 1;
11481 subtype_info += 1;
11482 }
11483 else
11484 {
11485 int ok;
11486
11487 strcpy (name_buf + prefix_len, "___L");
11488 L = get_int_var_value (name_buf, &ok);
11489 if (!ok)
11490 {
11491 lim_warning (_("Unknown lower bound, using 1."));
11492 L = 1;
11493 }
11494 }
11495
11496 if (*subtype_info == 'U')
11497 {
11498 if (!ada_scan_number (bounds_str, n, &U, &n)
11499 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11500 return raw_type;
11501 }
11502 else
11503 {
11504 int ok;
11505
11506 strcpy (name_buf + prefix_len, "___U");
11507 U = get_int_var_value (name_buf, &ok);
11508 if (!ok)
11509 {
11510 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11511 U = L;
11512 }
11513 }
11514
11515 type = create_static_range_type (alloc_type_copy (raw_type),
11516 base_type, L, U);
11517 TYPE_NAME (type) = name;
11518 return type;
11519 }
11520 }
11521
11522 /* True iff NAME is the name of a range type. */
11523
11524 int
11525 ada_is_range_type_name (const char *name)
11526 {
11527 return (name != NULL && strstr (name, "___XD"));
11528 }
11529 \f
11530
11531 /* Modular types */
11532
11533 /* True iff TYPE is an Ada modular type. */
11534
11535 int
11536 ada_is_modular_type (struct type *type)
11537 {
11538 struct type *subranged_type = get_base_type (type);
11539
11540 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11541 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11542 && TYPE_UNSIGNED (subranged_type));
11543 }
11544
11545 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11546
11547 ULONGEST
11548 ada_modulus (struct type *type)
11549 {
11550 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11551 }
11552 \f
11553
11554 /* Ada exception catchpoint support:
11555 ---------------------------------
11556
11557 We support 3 kinds of exception catchpoints:
11558 . catchpoints on Ada exceptions
11559 . catchpoints on unhandled Ada exceptions
11560 . catchpoints on failed assertions
11561
11562 Exceptions raised during failed assertions, or unhandled exceptions
11563 could perfectly be caught with the general catchpoint on Ada exceptions.
11564 However, we can easily differentiate these two special cases, and having
11565 the option to distinguish these two cases from the rest can be useful
11566 to zero-in on certain situations.
11567
11568 Exception catchpoints are a specialized form of breakpoint,
11569 since they rely on inserting breakpoints inside known routines
11570 of the GNAT runtime. The implementation therefore uses a standard
11571 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11572 of breakpoint_ops.
11573
11574 Support in the runtime for exception catchpoints have been changed
11575 a few times already, and these changes affect the implementation
11576 of these catchpoints. In order to be able to support several
11577 variants of the runtime, we use a sniffer that will determine
11578 the runtime variant used by the program being debugged. */
11579
11580 /* Ada's standard exceptions.
11581
11582 The Ada 83 standard also defined Numeric_Error. But there so many
11583 situations where it was unclear from the Ada 83 Reference Manual
11584 (RM) whether Constraint_Error or Numeric_Error should be raised,
11585 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11586 Interpretation saying that anytime the RM says that Numeric_Error
11587 should be raised, the implementation may raise Constraint_Error.
11588 Ada 95 went one step further and pretty much removed Numeric_Error
11589 from the list of standard exceptions (it made it a renaming of
11590 Constraint_Error, to help preserve compatibility when compiling
11591 an Ada83 compiler). As such, we do not include Numeric_Error from
11592 this list of standard exceptions. */
11593
11594 static char *standard_exc[] = {
11595 "constraint_error",
11596 "program_error",
11597 "storage_error",
11598 "tasking_error"
11599 };
11600
11601 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11602
11603 /* A structure that describes how to support exception catchpoints
11604 for a given executable. */
11605
11606 struct exception_support_info
11607 {
11608 /* The name of the symbol to break on in order to insert
11609 a catchpoint on exceptions. */
11610 const char *catch_exception_sym;
11611
11612 /* The name of the symbol to break on in order to insert
11613 a catchpoint on unhandled exceptions. */
11614 const char *catch_exception_unhandled_sym;
11615
11616 /* The name of the symbol to break on in order to insert
11617 a catchpoint on failed assertions. */
11618 const char *catch_assert_sym;
11619
11620 /* Assuming that the inferior just triggered an unhandled exception
11621 catchpoint, this function is responsible for returning the address
11622 in inferior memory where the name of that exception is stored.
11623 Return zero if the address could not be computed. */
11624 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11625 };
11626
11627 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11628 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11629
11630 /* The following exception support info structure describes how to
11631 implement exception catchpoints with the latest version of the
11632 Ada runtime (as of 2007-03-06). */
11633
11634 static const struct exception_support_info default_exception_support_info =
11635 {
11636 "__gnat_debug_raise_exception", /* catch_exception_sym */
11637 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11638 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11639 ada_unhandled_exception_name_addr
11640 };
11641
11642 /* The following exception support info structure describes how to
11643 implement exception catchpoints with a slightly older version
11644 of the Ada runtime. */
11645
11646 static const struct exception_support_info exception_support_info_fallback =
11647 {
11648 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11649 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11650 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11651 ada_unhandled_exception_name_addr_from_raise
11652 };
11653
11654 /* Return nonzero if we can detect the exception support routines
11655 described in EINFO.
11656
11657 This function errors out if an abnormal situation is detected
11658 (for instance, if we find the exception support routines, but
11659 that support is found to be incomplete). */
11660
11661 static int
11662 ada_has_this_exception_support (const struct exception_support_info *einfo)
11663 {
11664 struct symbol *sym;
11665
11666 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11667 that should be compiled with debugging information. As a result, we
11668 expect to find that symbol in the symtabs. */
11669
11670 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11671 if (sym == NULL)
11672 {
11673 /* Perhaps we did not find our symbol because the Ada runtime was
11674 compiled without debugging info, or simply stripped of it.
11675 It happens on some GNU/Linux distributions for instance, where
11676 users have to install a separate debug package in order to get
11677 the runtime's debugging info. In that situation, let the user
11678 know why we cannot insert an Ada exception catchpoint.
11679
11680 Note: Just for the purpose of inserting our Ada exception
11681 catchpoint, we could rely purely on the associated minimal symbol.
11682 But we would be operating in degraded mode anyway, since we are
11683 still lacking the debugging info needed later on to extract
11684 the name of the exception being raised (this name is printed in
11685 the catchpoint message, and is also used when trying to catch
11686 a specific exception). We do not handle this case for now. */
11687 struct bound_minimal_symbol msym
11688 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11689
11690 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11691 error (_("Your Ada runtime appears to be missing some debugging "
11692 "information.\nCannot insert Ada exception catchpoint "
11693 "in this configuration."));
11694
11695 return 0;
11696 }
11697
11698 /* Make sure that the symbol we found corresponds to a function. */
11699
11700 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11701 error (_("Symbol \"%s\" is not a function (class = %d)"),
11702 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11703
11704 return 1;
11705 }
11706
11707 /* Inspect the Ada runtime and determine which exception info structure
11708 should be used to provide support for exception catchpoints.
11709
11710 This function will always set the per-inferior exception_info,
11711 or raise an error. */
11712
11713 static void
11714 ada_exception_support_info_sniffer (void)
11715 {
11716 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11717
11718 /* If the exception info is already known, then no need to recompute it. */
11719 if (data->exception_info != NULL)
11720 return;
11721
11722 /* Check the latest (default) exception support info. */
11723 if (ada_has_this_exception_support (&default_exception_support_info))
11724 {
11725 data->exception_info = &default_exception_support_info;
11726 return;
11727 }
11728
11729 /* Try our fallback exception suport info. */
11730 if (ada_has_this_exception_support (&exception_support_info_fallback))
11731 {
11732 data->exception_info = &exception_support_info_fallback;
11733 return;
11734 }
11735
11736 /* Sometimes, it is normal for us to not be able to find the routine
11737 we are looking for. This happens when the program is linked with
11738 the shared version of the GNAT runtime, and the program has not been
11739 started yet. Inform the user of these two possible causes if
11740 applicable. */
11741
11742 if (ada_update_initial_language (language_unknown) != language_ada)
11743 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11744
11745 /* If the symbol does not exist, then check that the program is
11746 already started, to make sure that shared libraries have been
11747 loaded. If it is not started, this may mean that the symbol is
11748 in a shared library. */
11749
11750 if (ptid_get_pid (inferior_ptid) == 0)
11751 error (_("Unable to insert catchpoint. Try to start the program first."));
11752
11753 /* At this point, we know that we are debugging an Ada program and
11754 that the inferior has been started, but we still are not able to
11755 find the run-time symbols. That can mean that we are in
11756 configurable run time mode, or that a-except as been optimized
11757 out by the linker... In any case, at this point it is not worth
11758 supporting this feature. */
11759
11760 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11761 }
11762
11763 /* True iff FRAME is very likely to be that of a function that is
11764 part of the runtime system. This is all very heuristic, but is
11765 intended to be used as advice as to what frames are uninteresting
11766 to most users. */
11767
11768 static int
11769 is_known_support_routine (struct frame_info *frame)
11770 {
11771 struct symtab_and_line sal;
11772 char *func_name;
11773 enum language func_lang;
11774 int i;
11775 const char *fullname;
11776
11777 /* If this code does not have any debugging information (no symtab),
11778 This cannot be any user code. */
11779
11780 find_frame_sal (frame, &sal);
11781 if (sal.symtab == NULL)
11782 return 1;
11783
11784 /* If there is a symtab, but the associated source file cannot be
11785 located, then assume this is not user code: Selecting a frame
11786 for which we cannot display the code would not be very helpful
11787 for the user. This should also take care of case such as VxWorks
11788 where the kernel has some debugging info provided for a few units. */
11789
11790 fullname = symtab_to_fullname (sal.symtab);
11791 if (access (fullname, R_OK) != 0)
11792 return 1;
11793
11794 /* Check the unit filename againt the Ada runtime file naming.
11795 We also check the name of the objfile against the name of some
11796 known system libraries that sometimes come with debugging info
11797 too. */
11798
11799 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11800 {
11801 re_comp (known_runtime_file_name_patterns[i]);
11802 if (re_exec (lbasename (sal.symtab->filename)))
11803 return 1;
11804 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11805 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11806 return 1;
11807 }
11808
11809 /* Check whether the function is a GNAT-generated entity. */
11810
11811 find_frame_funname (frame, &func_name, &func_lang, NULL);
11812 if (func_name == NULL)
11813 return 1;
11814
11815 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11816 {
11817 re_comp (known_auxiliary_function_name_patterns[i]);
11818 if (re_exec (func_name))
11819 {
11820 xfree (func_name);
11821 return 1;
11822 }
11823 }
11824
11825 xfree (func_name);
11826 return 0;
11827 }
11828
11829 /* Find the first frame that contains debugging information and that is not
11830 part of the Ada run-time, starting from FI and moving upward. */
11831
11832 void
11833 ada_find_printable_frame (struct frame_info *fi)
11834 {
11835 for (; fi != NULL; fi = get_prev_frame (fi))
11836 {
11837 if (!is_known_support_routine (fi))
11838 {
11839 select_frame (fi);
11840 break;
11841 }
11842 }
11843
11844 }
11845
11846 /* Assuming that the inferior just triggered an unhandled exception
11847 catchpoint, return the address in inferior memory where the name
11848 of the exception is stored.
11849
11850 Return zero if the address could not be computed. */
11851
11852 static CORE_ADDR
11853 ada_unhandled_exception_name_addr (void)
11854 {
11855 return parse_and_eval_address ("e.full_name");
11856 }
11857
11858 /* Same as ada_unhandled_exception_name_addr, except that this function
11859 should be used when the inferior uses an older version of the runtime,
11860 where the exception name needs to be extracted from a specific frame
11861 several frames up in the callstack. */
11862
11863 static CORE_ADDR
11864 ada_unhandled_exception_name_addr_from_raise (void)
11865 {
11866 int frame_level;
11867 struct frame_info *fi;
11868 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11869 struct cleanup *old_chain;
11870
11871 /* To determine the name of this exception, we need to select
11872 the frame corresponding to RAISE_SYM_NAME. This frame is
11873 at least 3 levels up, so we simply skip the first 3 frames
11874 without checking the name of their associated function. */
11875 fi = get_current_frame ();
11876 for (frame_level = 0; frame_level < 3; frame_level += 1)
11877 if (fi != NULL)
11878 fi = get_prev_frame (fi);
11879
11880 old_chain = make_cleanup (null_cleanup, NULL);
11881 while (fi != NULL)
11882 {
11883 char *func_name;
11884 enum language func_lang;
11885
11886 find_frame_funname (fi, &func_name, &func_lang, NULL);
11887 if (func_name != NULL)
11888 {
11889 make_cleanup (xfree, func_name);
11890
11891 if (strcmp (func_name,
11892 data->exception_info->catch_exception_sym) == 0)
11893 break; /* We found the frame we were looking for... */
11894 fi = get_prev_frame (fi);
11895 }
11896 }
11897 do_cleanups (old_chain);
11898
11899 if (fi == NULL)
11900 return 0;
11901
11902 select_frame (fi);
11903 return parse_and_eval_address ("id.full_name");
11904 }
11905
11906 /* Assuming the inferior just triggered an Ada exception catchpoint
11907 (of any type), return the address in inferior memory where the name
11908 of the exception is stored, if applicable.
11909
11910 Return zero if the address could not be computed, or if not relevant. */
11911
11912 static CORE_ADDR
11913 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11914 struct breakpoint *b)
11915 {
11916 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11917
11918 switch (ex)
11919 {
11920 case ada_catch_exception:
11921 return (parse_and_eval_address ("e.full_name"));
11922 break;
11923
11924 case ada_catch_exception_unhandled:
11925 return data->exception_info->unhandled_exception_name_addr ();
11926 break;
11927
11928 case ada_catch_assert:
11929 return 0; /* Exception name is not relevant in this case. */
11930 break;
11931
11932 default:
11933 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11934 break;
11935 }
11936
11937 return 0; /* Should never be reached. */
11938 }
11939
11940 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11941 any error that ada_exception_name_addr_1 might cause to be thrown.
11942 When an error is intercepted, a warning with the error message is printed,
11943 and zero is returned. */
11944
11945 static CORE_ADDR
11946 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11947 struct breakpoint *b)
11948 {
11949 CORE_ADDR result = 0;
11950
11951 TRY
11952 {
11953 result = ada_exception_name_addr_1 (ex, b);
11954 }
11955
11956 CATCH (e, RETURN_MASK_ERROR)
11957 {
11958 warning (_("failed to get exception name: %s"), e.message);
11959 return 0;
11960 }
11961 END_CATCH
11962
11963 return result;
11964 }
11965
11966 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11967
11968 /* Ada catchpoints.
11969
11970 In the case of catchpoints on Ada exceptions, the catchpoint will
11971 stop the target on every exception the program throws. When a user
11972 specifies the name of a specific exception, we translate this
11973 request into a condition expression (in text form), and then parse
11974 it into an expression stored in each of the catchpoint's locations.
11975 We then use this condition to check whether the exception that was
11976 raised is the one the user is interested in. If not, then the
11977 target is resumed again. We store the name of the requested
11978 exception, in order to be able to re-set the condition expression
11979 when symbols change. */
11980
11981 /* An instance of this type is used to represent an Ada catchpoint
11982 breakpoint location. It includes a "struct bp_location" as a kind
11983 of base class; users downcast to "struct bp_location *" when
11984 needed. */
11985
11986 struct ada_catchpoint_location
11987 {
11988 /* The base class. */
11989 struct bp_location base;
11990
11991 /* The condition that checks whether the exception that was raised
11992 is the specific exception the user specified on catchpoint
11993 creation. */
11994 struct expression *excep_cond_expr;
11995 };
11996
11997 /* Implement the DTOR method in the bp_location_ops structure for all
11998 Ada exception catchpoint kinds. */
11999
12000 static void
12001 ada_catchpoint_location_dtor (struct bp_location *bl)
12002 {
12003 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12004
12005 xfree (al->excep_cond_expr);
12006 }
12007
12008 /* The vtable to be used in Ada catchpoint locations. */
12009
12010 static const struct bp_location_ops ada_catchpoint_location_ops =
12011 {
12012 ada_catchpoint_location_dtor
12013 };
12014
12015 /* An instance of this type is used to represent an Ada catchpoint.
12016 It includes a "struct breakpoint" as a kind of base class; users
12017 downcast to "struct breakpoint *" when needed. */
12018
12019 struct ada_catchpoint
12020 {
12021 /* The base class. */
12022 struct breakpoint base;
12023
12024 /* The name of the specific exception the user specified. */
12025 char *excep_string;
12026 };
12027
12028 /* Parse the exception condition string in the context of each of the
12029 catchpoint's locations, and store them for later evaluation. */
12030
12031 static void
12032 create_excep_cond_exprs (struct ada_catchpoint *c)
12033 {
12034 struct cleanup *old_chain;
12035 struct bp_location *bl;
12036 char *cond_string;
12037
12038 /* Nothing to do if there's no specific exception to catch. */
12039 if (c->excep_string == NULL)
12040 return;
12041
12042 /* Same if there are no locations... */
12043 if (c->base.loc == NULL)
12044 return;
12045
12046 /* Compute the condition expression in text form, from the specific
12047 expection we want to catch. */
12048 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12049 old_chain = make_cleanup (xfree, cond_string);
12050
12051 /* Iterate over all the catchpoint's locations, and parse an
12052 expression for each. */
12053 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12054 {
12055 struct ada_catchpoint_location *ada_loc
12056 = (struct ada_catchpoint_location *) bl;
12057 struct expression *exp = NULL;
12058
12059 if (!bl->shlib_disabled)
12060 {
12061 const char *s;
12062
12063 s = cond_string;
12064 TRY
12065 {
12066 exp = parse_exp_1 (&s, bl->address,
12067 block_for_pc (bl->address), 0);
12068 }
12069 CATCH (e, RETURN_MASK_ERROR)
12070 {
12071 warning (_("failed to reevaluate internal exception condition "
12072 "for catchpoint %d: %s"),
12073 c->base.number, e.message);
12074 /* There is a bug in GCC on sparc-solaris when building with
12075 optimization which causes EXP to change unexpectedly
12076 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12077 The problem should be fixed starting with GCC 4.9.
12078 In the meantime, work around it by forcing EXP back
12079 to NULL. */
12080 exp = NULL;
12081 }
12082 END_CATCH
12083 }
12084
12085 ada_loc->excep_cond_expr = exp;
12086 }
12087
12088 do_cleanups (old_chain);
12089 }
12090
12091 /* Implement the DTOR method in the breakpoint_ops structure for all
12092 exception catchpoint kinds. */
12093
12094 static void
12095 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12096 {
12097 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12098
12099 xfree (c->excep_string);
12100
12101 bkpt_breakpoint_ops.dtor (b);
12102 }
12103
12104 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12105 structure for all exception catchpoint kinds. */
12106
12107 static struct bp_location *
12108 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12109 struct breakpoint *self)
12110 {
12111 struct ada_catchpoint_location *loc;
12112
12113 loc = XNEW (struct ada_catchpoint_location);
12114 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12115 loc->excep_cond_expr = NULL;
12116 return &loc->base;
12117 }
12118
12119 /* Implement the RE_SET method in the breakpoint_ops structure for all
12120 exception catchpoint kinds. */
12121
12122 static void
12123 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12124 {
12125 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12126
12127 /* Call the base class's method. This updates the catchpoint's
12128 locations. */
12129 bkpt_breakpoint_ops.re_set (b);
12130
12131 /* Reparse the exception conditional expressions. One for each
12132 location. */
12133 create_excep_cond_exprs (c);
12134 }
12135
12136 /* Returns true if we should stop for this breakpoint hit. If the
12137 user specified a specific exception, we only want to cause a stop
12138 if the program thrown that exception. */
12139
12140 static int
12141 should_stop_exception (const struct bp_location *bl)
12142 {
12143 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12144 const struct ada_catchpoint_location *ada_loc
12145 = (const struct ada_catchpoint_location *) bl;
12146 int stop;
12147
12148 /* With no specific exception, should always stop. */
12149 if (c->excep_string == NULL)
12150 return 1;
12151
12152 if (ada_loc->excep_cond_expr == NULL)
12153 {
12154 /* We will have a NULL expression if back when we were creating
12155 the expressions, this location's had failed to parse. */
12156 return 1;
12157 }
12158
12159 stop = 1;
12160 TRY
12161 {
12162 struct value *mark;
12163
12164 mark = value_mark ();
12165 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12166 value_free_to_mark (mark);
12167 }
12168 CATCH (ex, RETURN_MASK_ALL)
12169 {
12170 exception_fprintf (gdb_stderr, ex,
12171 _("Error in testing exception condition:\n"));
12172 }
12173 END_CATCH
12174
12175 return stop;
12176 }
12177
12178 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12179 for all exception catchpoint kinds. */
12180
12181 static void
12182 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12183 {
12184 bs->stop = should_stop_exception (bs->bp_location_at);
12185 }
12186
12187 /* Implement the PRINT_IT method in the breakpoint_ops structure
12188 for all exception catchpoint kinds. */
12189
12190 static enum print_stop_action
12191 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12192 {
12193 struct ui_out *uiout = current_uiout;
12194 struct breakpoint *b = bs->breakpoint_at;
12195
12196 annotate_catchpoint (b->number);
12197
12198 if (ui_out_is_mi_like_p (uiout))
12199 {
12200 ui_out_field_string (uiout, "reason",
12201 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12202 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12203 }
12204
12205 ui_out_text (uiout,
12206 b->disposition == disp_del ? "\nTemporary catchpoint "
12207 : "\nCatchpoint ");
12208 ui_out_field_int (uiout, "bkptno", b->number);
12209 ui_out_text (uiout, ", ");
12210
12211 switch (ex)
12212 {
12213 case ada_catch_exception:
12214 case ada_catch_exception_unhandled:
12215 {
12216 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12217 char exception_name[256];
12218
12219 if (addr != 0)
12220 {
12221 read_memory (addr, (gdb_byte *) exception_name,
12222 sizeof (exception_name) - 1);
12223 exception_name [sizeof (exception_name) - 1] = '\0';
12224 }
12225 else
12226 {
12227 /* For some reason, we were unable to read the exception
12228 name. This could happen if the Runtime was compiled
12229 without debugging info, for instance. In that case,
12230 just replace the exception name by the generic string
12231 "exception" - it will read as "an exception" in the
12232 notification we are about to print. */
12233 memcpy (exception_name, "exception", sizeof ("exception"));
12234 }
12235 /* In the case of unhandled exception breakpoints, we print
12236 the exception name as "unhandled EXCEPTION_NAME", to make
12237 it clearer to the user which kind of catchpoint just got
12238 hit. We used ui_out_text to make sure that this extra
12239 info does not pollute the exception name in the MI case. */
12240 if (ex == ada_catch_exception_unhandled)
12241 ui_out_text (uiout, "unhandled ");
12242 ui_out_field_string (uiout, "exception-name", exception_name);
12243 }
12244 break;
12245 case ada_catch_assert:
12246 /* In this case, the name of the exception is not really
12247 important. Just print "failed assertion" to make it clearer
12248 that his program just hit an assertion-failure catchpoint.
12249 We used ui_out_text because this info does not belong in
12250 the MI output. */
12251 ui_out_text (uiout, "failed assertion");
12252 break;
12253 }
12254 ui_out_text (uiout, " at ");
12255 ada_find_printable_frame (get_current_frame ());
12256
12257 return PRINT_SRC_AND_LOC;
12258 }
12259
12260 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12261 for all exception catchpoint kinds. */
12262
12263 static void
12264 print_one_exception (enum ada_exception_catchpoint_kind ex,
12265 struct breakpoint *b, struct bp_location **last_loc)
12266 {
12267 struct ui_out *uiout = current_uiout;
12268 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12269 struct value_print_options opts;
12270
12271 get_user_print_options (&opts);
12272 if (opts.addressprint)
12273 {
12274 annotate_field (4);
12275 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12276 }
12277
12278 annotate_field (5);
12279 *last_loc = b->loc;
12280 switch (ex)
12281 {
12282 case ada_catch_exception:
12283 if (c->excep_string != NULL)
12284 {
12285 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12286
12287 ui_out_field_string (uiout, "what", msg);
12288 xfree (msg);
12289 }
12290 else
12291 ui_out_field_string (uiout, "what", "all Ada exceptions");
12292
12293 break;
12294
12295 case ada_catch_exception_unhandled:
12296 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12297 break;
12298
12299 case ada_catch_assert:
12300 ui_out_field_string (uiout, "what", "failed Ada assertions");
12301 break;
12302
12303 default:
12304 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12305 break;
12306 }
12307 }
12308
12309 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12310 for all exception catchpoint kinds. */
12311
12312 static void
12313 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12314 struct breakpoint *b)
12315 {
12316 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12317 struct ui_out *uiout = current_uiout;
12318
12319 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12320 : _("Catchpoint "));
12321 ui_out_field_int (uiout, "bkptno", b->number);
12322 ui_out_text (uiout, ": ");
12323
12324 switch (ex)
12325 {
12326 case ada_catch_exception:
12327 if (c->excep_string != NULL)
12328 {
12329 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12330 struct cleanup *old_chain = make_cleanup (xfree, info);
12331
12332 ui_out_text (uiout, info);
12333 do_cleanups (old_chain);
12334 }
12335 else
12336 ui_out_text (uiout, _("all Ada exceptions"));
12337 break;
12338
12339 case ada_catch_exception_unhandled:
12340 ui_out_text (uiout, _("unhandled Ada exceptions"));
12341 break;
12342
12343 case ada_catch_assert:
12344 ui_out_text (uiout, _("failed Ada assertions"));
12345 break;
12346
12347 default:
12348 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12349 break;
12350 }
12351 }
12352
12353 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12354 for all exception catchpoint kinds. */
12355
12356 static void
12357 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12358 struct breakpoint *b, struct ui_file *fp)
12359 {
12360 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12361
12362 switch (ex)
12363 {
12364 case ada_catch_exception:
12365 fprintf_filtered (fp, "catch exception");
12366 if (c->excep_string != NULL)
12367 fprintf_filtered (fp, " %s", c->excep_string);
12368 break;
12369
12370 case ada_catch_exception_unhandled:
12371 fprintf_filtered (fp, "catch exception unhandled");
12372 break;
12373
12374 case ada_catch_assert:
12375 fprintf_filtered (fp, "catch assert");
12376 break;
12377
12378 default:
12379 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12380 }
12381 print_recreate_thread (b, fp);
12382 }
12383
12384 /* Virtual table for "catch exception" breakpoints. */
12385
12386 static void
12387 dtor_catch_exception (struct breakpoint *b)
12388 {
12389 dtor_exception (ada_catch_exception, b);
12390 }
12391
12392 static struct bp_location *
12393 allocate_location_catch_exception (struct breakpoint *self)
12394 {
12395 return allocate_location_exception (ada_catch_exception, self);
12396 }
12397
12398 static void
12399 re_set_catch_exception (struct breakpoint *b)
12400 {
12401 re_set_exception (ada_catch_exception, b);
12402 }
12403
12404 static void
12405 check_status_catch_exception (bpstat bs)
12406 {
12407 check_status_exception (ada_catch_exception, bs);
12408 }
12409
12410 static enum print_stop_action
12411 print_it_catch_exception (bpstat bs)
12412 {
12413 return print_it_exception (ada_catch_exception, bs);
12414 }
12415
12416 static void
12417 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12418 {
12419 print_one_exception (ada_catch_exception, b, last_loc);
12420 }
12421
12422 static void
12423 print_mention_catch_exception (struct breakpoint *b)
12424 {
12425 print_mention_exception (ada_catch_exception, b);
12426 }
12427
12428 static void
12429 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12430 {
12431 print_recreate_exception (ada_catch_exception, b, fp);
12432 }
12433
12434 static struct breakpoint_ops catch_exception_breakpoint_ops;
12435
12436 /* Virtual table for "catch exception unhandled" breakpoints. */
12437
12438 static void
12439 dtor_catch_exception_unhandled (struct breakpoint *b)
12440 {
12441 dtor_exception (ada_catch_exception_unhandled, b);
12442 }
12443
12444 static struct bp_location *
12445 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12446 {
12447 return allocate_location_exception (ada_catch_exception_unhandled, self);
12448 }
12449
12450 static void
12451 re_set_catch_exception_unhandled (struct breakpoint *b)
12452 {
12453 re_set_exception (ada_catch_exception_unhandled, b);
12454 }
12455
12456 static void
12457 check_status_catch_exception_unhandled (bpstat bs)
12458 {
12459 check_status_exception (ada_catch_exception_unhandled, bs);
12460 }
12461
12462 static enum print_stop_action
12463 print_it_catch_exception_unhandled (bpstat bs)
12464 {
12465 return print_it_exception (ada_catch_exception_unhandled, bs);
12466 }
12467
12468 static void
12469 print_one_catch_exception_unhandled (struct breakpoint *b,
12470 struct bp_location **last_loc)
12471 {
12472 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12473 }
12474
12475 static void
12476 print_mention_catch_exception_unhandled (struct breakpoint *b)
12477 {
12478 print_mention_exception (ada_catch_exception_unhandled, b);
12479 }
12480
12481 static void
12482 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12483 struct ui_file *fp)
12484 {
12485 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12486 }
12487
12488 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12489
12490 /* Virtual table for "catch assert" breakpoints. */
12491
12492 static void
12493 dtor_catch_assert (struct breakpoint *b)
12494 {
12495 dtor_exception (ada_catch_assert, b);
12496 }
12497
12498 static struct bp_location *
12499 allocate_location_catch_assert (struct breakpoint *self)
12500 {
12501 return allocate_location_exception (ada_catch_assert, self);
12502 }
12503
12504 static void
12505 re_set_catch_assert (struct breakpoint *b)
12506 {
12507 re_set_exception (ada_catch_assert, b);
12508 }
12509
12510 static void
12511 check_status_catch_assert (bpstat bs)
12512 {
12513 check_status_exception (ada_catch_assert, bs);
12514 }
12515
12516 static enum print_stop_action
12517 print_it_catch_assert (bpstat bs)
12518 {
12519 return print_it_exception (ada_catch_assert, bs);
12520 }
12521
12522 static void
12523 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12524 {
12525 print_one_exception (ada_catch_assert, b, last_loc);
12526 }
12527
12528 static void
12529 print_mention_catch_assert (struct breakpoint *b)
12530 {
12531 print_mention_exception (ada_catch_assert, b);
12532 }
12533
12534 static void
12535 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12536 {
12537 print_recreate_exception (ada_catch_assert, b, fp);
12538 }
12539
12540 static struct breakpoint_ops catch_assert_breakpoint_ops;
12541
12542 /* Return a newly allocated copy of the first space-separated token
12543 in ARGSP, and then adjust ARGSP to point immediately after that
12544 token.
12545
12546 Return NULL if ARGPS does not contain any more tokens. */
12547
12548 static char *
12549 ada_get_next_arg (char **argsp)
12550 {
12551 char *args = *argsp;
12552 char *end;
12553 char *result;
12554
12555 args = skip_spaces (args);
12556 if (args[0] == '\0')
12557 return NULL; /* No more arguments. */
12558
12559 /* Find the end of the current argument. */
12560
12561 end = skip_to_space (args);
12562
12563 /* Adjust ARGSP to point to the start of the next argument. */
12564
12565 *argsp = end;
12566
12567 /* Make a copy of the current argument and return it. */
12568
12569 result = xmalloc (end - args + 1);
12570 strncpy (result, args, end - args);
12571 result[end - args] = '\0';
12572
12573 return result;
12574 }
12575
12576 /* Split the arguments specified in a "catch exception" command.
12577 Set EX to the appropriate catchpoint type.
12578 Set EXCEP_STRING to the name of the specific exception if
12579 specified by the user.
12580 If a condition is found at the end of the arguments, the condition
12581 expression is stored in COND_STRING (memory must be deallocated
12582 after use). Otherwise COND_STRING is set to NULL. */
12583
12584 static void
12585 catch_ada_exception_command_split (char *args,
12586 enum ada_exception_catchpoint_kind *ex,
12587 char **excep_string,
12588 char **cond_string)
12589 {
12590 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12591 char *exception_name;
12592 char *cond = NULL;
12593
12594 exception_name = ada_get_next_arg (&args);
12595 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12596 {
12597 /* This is not an exception name; this is the start of a condition
12598 expression for a catchpoint on all exceptions. So, "un-get"
12599 this token, and set exception_name to NULL. */
12600 xfree (exception_name);
12601 exception_name = NULL;
12602 args -= 2;
12603 }
12604 make_cleanup (xfree, exception_name);
12605
12606 /* Check to see if we have a condition. */
12607
12608 args = skip_spaces (args);
12609 if (startswith (args, "if")
12610 && (isspace (args[2]) || args[2] == '\0'))
12611 {
12612 args += 2;
12613 args = skip_spaces (args);
12614
12615 if (args[0] == '\0')
12616 error (_("Condition missing after `if' keyword"));
12617 cond = xstrdup (args);
12618 make_cleanup (xfree, cond);
12619
12620 args += strlen (args);
12621 }
12622
12623 /* Check that we do not have any more arguments. Anything else
12624 is unexpected. */
12625
12626 if (args[0] != '\0')
12627 error (_("Junk at end of expression"));
12628
12629 discard_cleanups (old_chain);
12630
12631 if (exception_name == NULL)
12632 {
12633 /* Catch all exceptions. */
12634 *ex = ada_catch_exception;
12635 *excep_string = NULL;
12636 }
12637 else if (strcmp (exception_name, "unhandled") == 0)
12638 {
12639 /* Catch unhandled exceptions. */
12640 *ex = ada_catch_exception_unhandled;
12641 *excep_string = NULL;
12642 }
12643 else
12644 {
12645 /* Catch a specific exception. */
12646 *ex = ada_catch_exception;
12647 *excep_string = exception_name;
12648 }
12649 *cond_string = cond;
12650 }
12651
12652 /* Return the name of the symbol on which we should break in order to
12653 implement a catchpoint of the EX kind. */
12654
12655 static const char *
12656 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12657 {
12658 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12659
12660 gdb_assert (data->exception_info != NULL);
12661
12662 switch (ex)
12663 {
12664 case ada_catch_exception:
12665 return (data->exception_info->catch_exception_sym);
12666 break;
12667 case ada_catch_exception_unhandled:
12668 return (data->exception_info->catch_exception_unhandled_sym);
12669 break;
12670 case ada_catch_assert:
12671 return (data->exception_info->catch_assert_sym);
12672 break;
12673 default:
12674 internal_error (__FILE__, __LINE__,
12675 _("unexpected catchpoint kind (%d)"), ex);
12676 }
12677 }
12678
12679 /* Return the breakpoint ops "virtual table" used for catchpoints
12680 of the EX kind. */
12681
12682 static const struct breakpoint_ops *
12683 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12684 {
12685 switch (ex)
12686 {
12687 case ada_catch_exception:
12688 return (&catch_exception_breakpoint_ops);
12689 break;
12690 case ada_catch_exception_unhandled:
12691 return (&catch_exception_unhandled_breakpoint_ops);
12692 break;
12693 case ada_catch_assert:
12694 return (&catch_assert_breakpoint_ops);
12695 break;
12696 default:
12697 internal_error (__FILE__, __LINE__,
12698 _("unexpected catchpoint kind (%d)"), ex);
12699 }
12700 }
12701
12702 /* Return the condition that will be used to match the current exception
12703 being raised with the exception that the user wants to catch. This
12704 assumes that this condition is used when the inferior just triggered
12705 an exception catchpoint.
12706
12707 The string returned is a newly allocated string that needs to be
12708 deallocated later. */
12709
12710 static char *
12711 ada_exception_catchpoint_cond_string (const char *excep_string)
12712 {
12713 int i;
12714
12715 /* The standard exceptions are a special case. They are defined in
12716 runtime units that have been compiled without debugging info; if
12717 EXCEP_STRING is the not-fully-qualified name of a standard
12718 exception (e.g. "constraint_error") then, during the evaluation
12719 of the condition expression, the symbol lookup on this name would
12720 *not* return this standard exception. The catchpoint condition
12721 may then be set only on user-defined exceptions which have the
12722 same not-fully-qualified name (e.g. my_package.constraint_error).
12723
12724 To avoid this unexcepted behavior, these standard exceptions are
12725 systematically prefixed by "standard". This means that "catch
12726 exception constraint_error" is rewritten into "catch exception
12727 standard.constraint_error".
12728
12729 If an exception named contraint_error is defined in another package of
12730 the inferior program, then the only way to specify this exception as a
12731 breakpoint condition is to use its fully-qualified named:
12732 e.g. my_package.constraint_error. */
12733
12734 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12735 {
12736 if (strcmp (standard_exc [i], excep_string) == 0)
12737 {
12738 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12739 excep_string);
12740 }
12741 }
12742 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12743 }
12744
12745 /* Return the symtab_and_line that should be used to insert an exception
12746 catchpoint of the TYPE kind.
12747
12748 EXCEP_STRING should contain the name of a specific exception that
12749 the catchpoint should catch, or NULL otherwise.
12750
12751 ADDR_STRING returns the name of the function where the real
12752 breakpoint that implements the catchpoints is set, depending on the
12753 type of catchpoint we need to create. */
12754
12755 static struct symtab_and_line
12756 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12757 char **addr_string, const struct breakpoint_ops **ops)
12758 {
12759 const char *sym_name;
12760 struct symbol *sym;
12761
12762 /* First, find out which exception support info to use. */
12763 ada_exception_support_info_sniffer ();
12764
12765 /* Then lookup the function on which we will break in order to catch
12766 the Ada exceptions requested by the user. */
12767 sym_name = ada_exception_sym_name (ex);
12768 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12769
12770 /* We can assume that SYM is not NULL at this stage. If the symbol
12771 did not exist, ada_exception_support_info_sniffer would have
12772 raised an exception.
12773
12774 Also, ada_exception_support_info_sniffer should have already
12775 verified that SYM is a function symbol. */
12776 gdb_assert (sym != NULL);
12777 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12778
12779 /* Set ADDR_STRING. */
12780 *addr_string = xstrdup (sym_name);
12781
12782 /* Set OPS. */
12783 *ops = ada_exception_breakpoint_ops (ex);
12784
12785 return find_function_start_sal (sym, 1);
12786 }
12787
12788 /* Create an Ada exception catchpoint.
12789
12790 EX_KIND is the kind of exception catchpoint to be created.
12791
12792 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12793 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12794 of the exception to which this catchpoint applies. When not NULL,
12795 the string must be allocated on the heap, and its deallocation
12796 is no longer the responsibility of the caller.
12797
12798 COND_STRING, if not NULL, is the catchpoint condition. This string
12799 must be allocated on the heap, and its deallocation is no longer
12800 the responsibility of the caller.
12801
12802 TEMPFLAG, if nonzero, means that the underlying breakpoint
12803 should be temporary.
12804
12805 FROM_TTY is the usual argument passed to all commands implementations. */
12806
12807 void
12808 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12809 enum ada_exception_catchpoint_kind ex_kind,
12810 char *excep_string,
12811 char *cond_string,
12812 int tempflag,
12813 int disabled,
12814 int from_tty)
12815 {
12816 struct ada_catchpoint *c;
12817 char *addr_string = NULL;
12818 const struct breakpoint_ops *ops = NULL;
12819 struct symtab_and_line sal
12820 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12821
12822 c = XNEW (struct ada_catchpoint);
12823 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12824 ops, tempflag, disabled, from_tty);
12825 c->excep_string = excep_string;
12826 create_excep_cond_exprs (c);
12827 if (cond_string != NULL)
12828 set_breakpoint_condition (&c->base, cond_string, from_tty);
12829 install_breakpoint (0, &c->base, 1);
12830 }
12831
12832 /* Implement the "catch exception" command. */
12833
12834 static void
12835 catch_ada_exception_command (char *arg, int from_tty,
12836 struct cmd_list_element *command)
12837 {
12838 struct gdbarch *gdbarch = get_current_arch ();
12839 int tempflag;
12840 enum ada_exception_catchpoint_kind ex_kind;
12841 char *excep_string = NULL;
12842 char *cond_string = NULL;
12843
12844 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12845
12846 if (!arg)
12847 arg = "";
12848 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12849 &cond_string);
12850 create_ada_exception_catchpoint (gdbarch, ex_kind,
12851 excep_string, cond_string,
12852 tempflag, 1 /* enabled */,
12853 from_tty);
12854 }
12855
12856 /* Split the arguments specified in a "catch assert" command.
12857
12858 ARGS contains the command's arguments (or the empty string if
12859 no arguments were passed).
12860
12861 If ARGS contains a condition, set COND_STRING to that condition
12862 (the memory needs to be deallocated after use). */
12863
12864 static void
12865 catch_ada_assert_command_split (char *args, char **cond_string)
12866 {
12867 args = skip_spaces (args);
12868
12869 /* Check whether a condition was provided. */
12870 if (startswith (args, "if")
12871 && (isspace (args[2]) || args[2] == '\0'))
12872 {
12873 args += 2;
12874 args = skip_spaces (args);
12875 if (args[0] == '\0')
12876 error (_("condition missing after `if' keyword"));
12877 *cond_string = xstrdup (args);
12878 }
12879
12880 /* Otherwise, there should be no other argument at the end of
12881 the command. */
12882 else if (args[0] != '\0')
12883 error (_("Junk at end of arguments."));
12884 }
12885
12886 /* Implement the "catch assert" command. */
12887
12888 static void
12889 catch_assert_command (char *arg, int from_tty,
12890 struct cmd_list_element *command)
12891 {
12892 struct gdbarch *gdbarch = get_current_arch ();
12893 int tempflag;
12894 char *cond_string = NULL;
12895
12896 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12897
12898 if (!arg)
12899 arg = "";
12900 catch_ada_assert_command_split (arg, &cond_string);
12901 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12902 NULL, cond_string,
12903 tempflag, 1 /* enabled */,
12904 from_tty);
12905 }
12906
12907 /* Return non-zero if the symbol SYM is an Ada exception object. */
12908
12909 static int
12910 ada_is_exception_sym (struct symbol *sym)
12911 {
12912 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12913
12914 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12915 && SYMBOL_CLASS (sym) != LOC_BLOCK
12916 && SYMBOL_CLASS (sym) != LOC_CONST
12917 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12918 && type_name != NULL && strcmp (type_name, "exception") == 0);
12919 }
12920
12921 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12922 Ada exception object. This matches all exceptions except the ones
12923 defined by the Ada language. */
12924
12925 static int
12926 ada_is_non_standard_exception_sym (struct symbol *sym)
12927 {
12928 int i;
12929
12930 if (!ada_is_exception_sym (sym))
12931 return 0;
12932
12933 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12934 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12935 return 0; /* A standard exception. */
12936
12937 /* Numeric_Error is also a standard exception, so exclude it.
12938 See the STANDARD_EXC description for more details as to why
12939 this exception is not listed in that array. */
12940 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12941 return 0;
12942
12943 return 1;
12944 }
12945
12946 /* A helper function for qsort, comparing two struct ada_exc_info
12947 objects.
12948
12949 The comparison is determined first by exception name, and then
12950 by exception address. */
12951
12952 static int
12953 compare_ada_exception_info (const void *a, const void *b)
12954 {
12955 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12956 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12957 int result;
12958
12959 result = strcmp (exc_a->name, exc_b->name);
12960 if (result != 0)
12961 return result;
12962
12963 if (exc_a->addr < exc_b->addr)
12964 return -1;
12965 if (exc_a->addr > exc_b->addr)
12966 return 1;
12967
12968 return 0;
12969 }
12970
12971 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12972 routine, but keeping the first SKIP elements untouched.
12973
12974 All duplicates are also removed. */
12975
12976 static void
12977 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12978 int skip)
12979 {
12980 struct ada_exc_info *to_sort
12981 = VEC_address (ada_exc_info, *exceptions) + skip;
12982 int to_sort_len
12983 = VEC_length (ada_exc_info, *exceptions) - skip;
12984 int i, j;
12985
12986 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12987 compare_ada_exception_info);
12988
12989 for (i = 1, j = 1; i < to_sort_len; i++)
12990 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12991 to_sort[j++] = to_sort[i];
12992 to_sort_len = j;
12993 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12994 }
12995
12996 /* A function intended as the "name_matcher" callback in the struct
12997 quick_symbol_functions' expand_symtabs_matching method.
12998
12999 SEARCH_NAME is the symbol's search name.
13000
13001 If USER_DATA is not NULL, it is a pointer to a regext_t object
13002 used to match the symbol (by natural name). Otherwise, when USER_DATA
13003 is null, no filtering is performed, and all symbols are a positive
13004 match. */
13005
13006 static int
13007 ada_exc_search_name_matches (const char *search_name, void *user_data)
13008 {
13009 regex_t *preg = user_data;
13010
13011 if (preg == NULL)
13012 return 1;
13013
13014 /* In Ada, the symbol "search name" is a linkage name, whereas
13015 the regular expression used to do the matching refers to
13016 the natural name. So match against the decoded name. */
13017 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13018 }
13019
13020 /* Add all exceptions defined by the Ada standard whose name match
13021 a regular expression.
13022
13023 If PREG is not NULL, then this regexp_t object is used to
13024 perform the symbol name matching. Otherwise, no name-based
13025 filtering is performed.
13026
13027 EXCEPTIONS is a vector of exceptions to which matching exceptions
13028 gets pushed. */
13029
13030 static void
13031 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13032 {
13033 int i;
13034
13035 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13036 {
13037 if (preg == NULL
13038 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13039 {
13040 struct bound_minimal_symbol msymbol
13041 = ada_lookup_simple_minsym (standard_exc[i]);
13042
13043 if (msymbol.minsym != NULL)
13044 {
13045 struct ada_exc_info info
13046 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13047
13048 VEC_safe_push (ada_exc_info, *exceptions, &info);
13049 }
13050 }
13051 }
13052 }
13053
13054 /* Add all Ada exceptions defined locally and accessible from the given
13055 FRAME.
13056
13057 If PREG is not NULL, then this regexp_t object is used to
13058 perform the symbol name matching. Otherwise, no name-based
13059 filtering is performed.
13060
13061 EXCEPTIONS is a vector of exceptions to which matching exceptions
13062 gets pushed. */
13063
13064 static void
13065 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13066 VEC(ada_exc_info) **exceptions)
13067 {
13068 const struct block *block = get_frame_block (frame, 0);
13069
13070 while (block != 0)
13071 {
13072 struct block_iterator iter;
13073 struct symbol *sym;
13074
13075 ALL_BLOCK_SYMBOLS (block, iter, sym)
13076 {
13077 switch (SYMBOL_CLASS (sym))
13078 {
13079 case LOC_TYPEDEF:
13080 case LOC_BLOCK:
13081 case LOC_CONST:
13082 break;
13083 default:
13084 if (ada_is_exception_sym (sym))
13085 {
13086 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13087 SYMBOL_VALUE_ADDRESS (sym)};
13088
13089 VEC_safe_push (ada_exc_info, *exceptions, &info);
13090 }
13091 }
13092 }
13093 if (BLOCK_FUNCTION (block) != NULL)
13094 break;
13095 block = BLOCK_SUPERBLOCK (block);
13096 }
13097 }
13098
13099 /* Add all exceptions defined globally whose name name match
13100 a regular expression, excluding standard exceptions.
13101
13102 The reason we exclude standard exceptions is that they need
13103 to be handled separately: Standard exceptions are defined inside
13104 a runtime unit which is normally not compiled with debugging info,
13105 and thus usually do not show up in our symbol search. However,
13106 if the unit was in fact built with debugging info, we need to
13107 exclude them because they would duplicate the entry we found
13108 during the special loop that specifically searches for those
13109 standard exceptions.
13110
13111 If PREG is not NULL, then this regexp_t object is used to
13112 perform the symbol name matching. Otherwise, no name-based
13113 filtering is performed.
13114
13115 EXCEPTIONS is a vector of exceptions to which matching exceptions
13116 gets pushed. */
13117
13118 static void
13119 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13120 {
13121 struct objfile *objfile;
13122 struct compunit_symtab *s;
13123
13124 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13125 VARIABLES_DOMAIN, preg);
13126
13127 ALL_COMPUNITS (objfile, s)
13128 {
13129 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13130 int i;
13131
13132 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13133 {
13134 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13135 struct block_iterator iter;
13136 struct symbol *sym;
13137
13138 ALL_BLOCK_SYMBOLS (b, iter, sym)
13139 if (ada_is_non_standard_exception_sym (sym)
13140 && (preg == NULL
13141 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13142 0, NULL, 0) == 0))
13143 {
13144 struct ada_exc_info info
13145 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13146
13147 VEC_safe_push (ada_exc_info, *exceptions, &info);
13148 }
13149 }
13150 }
13151 }
13152
13153 /* Implements ada_exceptions_list with the regular expression passed
13154 as a regex_t, rather than a string.
13155
13156 If not NULL, PREG is used to filter out exceptions whose names
13157 do not match. Otherwise, all exceptions are listed. */
13158
13159 static VEC(ada_exc_info) *
13160 ada_exceptions_list_1 (regex_t *preg)
13161 {
13162 VEC(ada_exc_info) *result = NULL;
13163 struct cleanup *old_chain
13164 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13165 int prev_len;
13166
13167 /* First, list the known standard exceptions. These exceptions
13168 need to be handled separately, as they are usually defined in
13169 runtime units that have been compiled without debugging info. */
13170
13171 ada_add_standard_exceptions (preg, &result);
13172
13173 /* Next, find all exceptions whose scope is local and accessible
13174 from the currently selected frame. */
13175
13176 if (has_stack_frames ())
13177 {
13178 prev_len = VEC_length (ada_exc_info, result);
13179 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13180 &result);
13181 if (VEC_length (ada_exc_info, result) > prev_len)
13182 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13183 }
13184
13185 /* Add all exceptions whose scope is global. */
13186
13187 prev_len = VEC_length (ada_exc_info, result);
13188 ada_add_global_exceptions (preg, &result);
13189 if (VEC_length (ada_exc_info, result) > prev_len)
13190 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13191
13192 discard_cleanups (old_chain);
13193 return result;
13194 }
13195
13196 /* Return a vector of ada_exc_info.
13197
13198 If REGEXP is NULL, all exceptions are included in the result.
13199 Otherwise, it should contain a valid regular expression,
13200 and only the exceptions whose names match that regular expression
13201 are included in the result.
13202
13203 The exceptions are sorted in the following order:
13204 - Standard exceptions (defined by the Ada language), in
13205 alphabetical order;
13206 - Exceptions only visible from the current frame, in
13207 alphabetical order;
13208 - Exceptions whose scope is global, in alphabetical order. */
13209
13210 VEC(ada_exc_info) *
13211 ada_exceptions_list (const char *regexp)
13212 {
13213 VEC(ada_exc_info) *result = NULL;
13214 struct cleanup *old_chain = NULL;
13215 regex_t reg;
13216
13217 if (regexp != NULL)
13218 old_chain = compile_rx_or_error (&reg, regexp,
13219 _("invalid regular expression"));
13220
13221 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13222
13223 if (old_chain != NULL)
13224 do_cleanups (old_chain);
13225 return result;
13226 }
13227
13228 /* Implement the "info exceptions" command. */
13229
13230 static void
13231 info_exceptions_command (char *regexp, int from_tty)
13232 {
13233 VEC(ada_exc_info) *exceptions;
13234 struct cleanup *cleanup;
13235 struct gdbarch *gdbarch = get_current_arch ();
13236 int ix;
13237 struct ada_exc_info *info;
13238
13239 exceptions = ada_exceptions_list (regexp);
13240 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13241
13242 if (regexp != NULL)
13243 printf_filtered
13244 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13245 else
13246 printf_filtered (_("All defined Ada exceptions:\n"));
13247
13248 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13249 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13250
13251 do_cleanups (cleanup);
13252 }
13253
13254 /* Operators */
13255 /* Information about operators given special treatment in functions
13256 below. */
13257 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13258
13259 #define ADA_OPERATORS \
13260 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13261 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13262 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13263 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13264 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13265 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13266 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13267 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13268 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13269 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13270 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13271 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13272 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13273 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13274 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13275 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13276 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13277 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13278 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13279
13280 static void
13281 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13282 int *argsp)
13283 {
13284 switch (exp->elts[pc - 1].opcode)
13285 {
13286 default:
13287 operator_length_standard (exp, pc, oplenp, argsp);
13288 break;
13289
13290 #define OP_DEFN(op, len, args, binop) \
13291 case op: *oplenp = len; *argsp = args; break;
13292 ADA_OPERATORS;
13293 #undef OP_DEFN
13294
13295 case OP_AGGREGATE:
13296 *oplenp = 3;
13297 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13298 break;
13299
13300 case OP_CHOICES:
13301 *oplenp = 3;
13302 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13303 break;
13304 }
13305 }
13306
13307 /* Implementation of the exp_descriptor method operator_check. */
13308
13309 static int
13310 ada_operator_check (struct expression *exp, int pos,
13311 int (*objfile_func) (struct objfile *objfile, void *data),
13312 void *data)
13313 {
13314 const union exp_element *const elts = exp->elts;
13315 struct type *type = NULL;
13316
13317 switch (elts[pos].opcode)
13318 {
13319 case UNOP_IN_RANGE:
13320 case UNOP_QUAL:
13321 type = elts[pos + 1].type;
13322 break;
13323
13324 default:
13325 return operator_check_standard (exp, pos, objfile_func, data);
13326 }
13327
13328 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13329
13330 if (type && TYPE_OBJFILE (type)
13331 && (*objfile_func) (TYPE_OBJFILE (type), data))
13332 return 1;
13333
13334 return 0;
13335 }
13336
13337 static char *
13338 ada_op_name (enum exp_opcode opcode)
13339 {
13340 switch (opcode)
13341 {
13342 default:
13343 return op_name_standard (opcode);
13344
13345 #define OP_DEFN(op, len, args, binop) case op: return #op;
13346 ADA_OPERATORS;
13347 #undef OP_DEFN
13348
13349 case OP_AGGREGATE:
13350 return "OP_AGGREGATE";
13351 case OP_CHOICES:
13352 return "OP_CHOICES";
13353 case OP_NAME:
13354 return "OP_NAME";
13355 }
13356 }
13357
13358 /* As for operator_length, but assumes PC is pointing at the first
13359 element of the operator, and gives meaningful results only for the
13360 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13361
13362 static void
13363 ada_forward_operator_length (struct expression *exp, int pc,
13364 int *oplenp, int *argsp)
13365 {
13366 switch (exp->elts[pc].opcode)
13367 {
13368 default:
13369 *oplenp = *argsp = 0;
13370 break;
13371
13372 #define OP_DEFN(op, len, args, binop) \
13373 case op: *oplenp = len; *argsp = args; break;
13374 ADA_OPERATORS;
13375 #undef OP_DEFN
13376
13377 case OP_AGGREGATE:
13378 *oplenp = 3;
13379 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13380 break;
13381
13382 case OP_CHOICES:
13383 *oplenp = 3;
13384 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13385 break;
13386
13387 case OP_STRING:
13388 case OP_NAME:
13389 {
13390 int len = longest_to_int (exp->elts[pc + 1].longconst);
13391
13392 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13393 *argsp = 0;
13394 break;
13395 }
13396 }
13397 }
13398
13399 static int
13400 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13401 {
13402 enum exp_opcode op = exp->elts[elt].opcode;
13403 int oplen, nargs;
13404 int pc = elt;
13405 int i;
13406
13407 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13408
13409 switch (op)
13410 {
13411 /* Ada attributes ('Foo). */
13412 case OP_ATR_FIRST:
13413 case OP_ATR_LAST:
13414 case OP_ATR_LENGTH:
13415 case OP_ATR_IMAGE:
13416 case OP_ATR_MAX:
13417 case OP_ATR_MIN:
13418 case OP_ATR_MODULUS:
13419 case OP_ATR_POS:
13420 case OP_ATR_SIZE:
13421 case OP_ATR_TAG:
13422 case OP_ATR_VAL:
13423 break;
13424
13425 case UNOP_IN_RANGE:
13426 case UNOP_QUAL:
13427 /* XXX: gdb_sprint_host_address, type_sprint */
13428 fprintf_filtered (stream, _("Type @"));
13429 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13430 fprintf_filtered (stream, " (");
13431 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13432 fprintf_filtered (stream, ")");
13433 break;
13434 case BINOP_IN_BOUNDS:
13435 fprintf_filtered (stream, " (%d)",
13436 longest_to_int (exp->elts[pc + 2].longconst));
13437 break;
13438 case TERNOP_IN_RANGE:
13439 break;
13440
13441 case OP_AGGREGATE:
13442 case OP_OTHERS:
13443 case OP_DISCRETE_RANGE:
13444 case OP_POSITIONAL:
13445 case OP_CHOICES:
13446 break;
13447
13448 case OP_NAME:
13449 case OP_STRING:
13450 {
13451 char *name = &exp->elts[elt + 2].string;
13452 int len = longest_to_int (exp->elts[elt + 1].longconst);
13453
13454 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13455 break;
13456 }
13457
13458 default:
13459 return dump_subexp_body_standard (exp, stream, elt);
13460 }
13461
13462 elt += oplen;
13463 for (i = 0; i < nargs; i += 1)
13464 elt = dump_subexp (exp, stream, elt);
13465
13466 return elt;
13467 }
13468
13469 /* The Ada extension of print_subexp (q.v.). */
13470
13471 static void
13472 ada_print_subexp (struct expression *exp, int *pos,
13473 struct ui_file *stream, enum precedence prec)
13474 {
13475 int oplen, nargs, i;
13476 int pc = *pos;
13477 enum exp_opcode op = exp->elts[pc].opcode;
13478
13479 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13480
13481 *pos += oplen;
13482 switch (op)
13483 {
13484 default:
13485 *pos -= oplen;
13486 print_subexp_standard (exp, pos, stream, prec);
13487 return;
13488
13489 case OP_VAR_VALUE:
13490 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13491 return;
13492
13493 case BINOP_IN_BOUNDS:
13494 /* XXX: sprint_subexp */
13495 print_subexp (exp, pos, stream, PREC_SUFFIX);
13496 fputs_filtered (" in ", stream);
13497 print_subexp (exp, pos, stream, PREC_SUFFIX);
13498 fputs_filtered ("'range", stream);
13499 if (exp->elts[pc + 1].longconst > 1)
13500 fprintf_filtered (stream, "(%ld)",
13501 (long) exp->elts[pc + 1].longconst);
13502 return;
13503
13504 case TERNOP_IN_RANGE:
13505 if (prec >= PREC_EQUAL)
13506 fputs_filtered ("(", stream);
13507 /* XXX: sprint_subexp */
13508 print_subexp (exp, pos, stream, PREC_SUFFIX);
13509 fputs_filtered (" in ", stream);
13510 print_subexp (exp, pos, stream, PREC_EQUAL);
13511 fputs_filtered (" .. ", stream);
13512 print_subexp (exp, pos, stream, PREC_EQUAL);
13513 if (prec >= PREC_EQUAL)
13514 fputs_filtered (")", stream);
13515 return;
13516
13517 case OP_ATR_FIRST:
13518 case OP_ATR_LAST:
13519 case OP_ATR_LENGTH:
13520 case OP_ATR_IMAGE:
13521 case OP_ATR_MAX:
13522 case OP_ATR_MIN:
13523 case OP_ATR_MODULUS:
13524 case OP_ATR_POS:
13525 case OP_ATR_SIZE:
13526 case OP_ATR_TAG:
13527 case OP_ATR_VAL:
13528 if (exp->elts[*pos].opcode == OP_TYPE)
13529 {
13530 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13531 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13532 &type_print_raw_options);
13533 *pos += 3;
13534 }
13535 else
13536 print_subexp (exp, pos, stream, PREC_SUFFIX);
13537 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13538 if (nargs > 1)
13539 {
13540 int tem;
13541
13542 for (tem = 1; tem < nargs; tem += 1)
13543 {
13544 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13545 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13546 }
13547 fputs_filtered (")", stream);
13548 }
13549 return;
13550
13551 case UNOP_QUAL:
13552 type_print (exp->elts[pc + 1].type, "", stream, 0);
13553 fputs_filtered ("'(", stream);
13554 print_subexp (exp, pos, stream, PREC_PREFIX);
13555 fputs_filtered (")", stream);
13556 return;
13557
13558 case UNOP_IN_RANGE:
13559 /* XXX: sprint_subexp */
13560 print_subexp (exp, pos, stream, PREC_SUFFIX);
13561 fputs_filtered (" in ", stream);
13562 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13563 &type_print_raw_options);
13564 return;
13565
13566 case OP_DISCRETE_RANGE:
13567 print_subexp (exp, pos, stream, PREC_SUFFIX);
13568 fputs_filtered ("..", stream);
13569 print_subexp (exp, pos, stream, PREC_SUFFIX);
13570 return;
13571
13572 case OP_OTHERS:
13573 fputs_filtered ("others => ", stream);
13574 print_subexp (exp, pos, stream, PREC_SUFFIX);
13575 return;
13576
13577 case OP_CHOICES:
13578 for (i = 0; i < nargs-1; i += 1)
13579 {
13580 if (i > 0)
13581 fputs_filtered ("|", stream);
13582 print_subexp (exp, pos, stream, PREC_SUFFIX);
13583 }
13584 fputs_filtered (" => ", stream);
13585 print_subexp (exp, pos, stream, PREC_SUFFIX);
13586 return;
13587
13588 case OP_POSITIONAL:
13589 print_subexp (exp, pos, stream, PREC_SUFFIX);
13590 return;
13591
13592 case OP_AGGREGATE:
13593 fputs_filtered ("(", stream);
13594 for (i = 0; i < nargs; i += 1)
13595 {
13596 if (i > 0)
13597 fputs_filtered (", ", stream);
13598 print_subexp (exp, pos, stream, PREC_SUFFIX);
13599 }
13600 fputs_filtered (")", stream);
13601 return;
13602 }
13603 }
13604
13605 /* Table mapping opcodes into strings for printing operators
13606 and precedences of the operators. */
13607
13608 static const struct op_print ada_op_print_tab[] = {
13609 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13610 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13611 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13612 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13613 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13614 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13615 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13616 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13617 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13618 {">=", BINOP_GEQ, PREC_ORDER, 0},
13619 {">", BINOP_GTR, PREC_ORDER, 0},
13620 {"<", BINOP_LESS, PREC_ORDER, 0},
13621 {">>", BINOP_RSH, PREC_SHIFT, 0},
13622 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13623 {"+", BINOP_ADD, PREC_ADD, 0},
13624 {"-", BINOP_SUB, PREC_ADD, 0},
13625 {"&", BINOP_CONCAT, PREC_ADD, 0},
13626 {"*", BINOP_MUL, PREC_MUL, 0},
13627 {"/", BINOP_DIV, PREC_MUL, 0},
13628 {"rem", BINOP_REM, PREC_MUL, 0},
13629 {"mod", BINOP_MOD, PREC_MUL, 0},
13630 {"**", BINOP_EXP, PREC_REPEAT, 0},
13631 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13632 {"-", UNOP_NEG, PREC_PREFIX, 0},
13633 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13634 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13635 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13636 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13637 {".all", UNOP_IND, PREC_SUFFIX, 1},
13638 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13639 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13640 {NULL, OP_NULL, PREC_SUFFIX, 0}
13641 };
13642 \f
13643 enum ada_primitive_types {
13644 ada_primitive_type_int,
13645 ada_primitive_type_long,
13646 ada_primitive_type_short,
13647 ada_primitive_type_char,
13648 ada_primitive_type_float,
13649 ada_primitive_type_double,
13650 ada_primitive_type_void,
13651 ada_primitive_type_long_long,
13652 ada_primitive_type_long_double,
13653 ada_primitive_type_natural,
13654 ada_primitive_type_positive,
13655 ada_primitive_type_system_address,
13656 nr_ada_primitive_types
13657 };
13658
13659 static void
13660 ada_language_arch_info (struct gdbarch *gdbarch,
13661 struct language_arch_info *lai)
13662 {
13663 const struct builtin_type *builtin = builtin_type (gdbarch);
13664
13665 lai->primitive_type_vector
13666 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13667 struct type *);
13668
13669 lai->primitive_type_vector [ada_primitive_type_int]
13670 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13671 0, "integer");
13672 lai->primitive_type_vector [ada_primitive_type_long]
13673 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13674 0, "long_integer");
13675 lai->primitive_type_vector [ada_primitive_type_short]
13676 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13677 0, "short_integer");
13678 lai->string_char_type
13679 = lai->primitive_type_vector [ada_primitive_type_char]
13680 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13681 lai->primitive_type_vector [ada_primitive_type_float]
13682 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13683 "float", NULL);
13684 lai->primitive_type_vector [ada_primitive_type_double]
13685 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13686 "long_float", NULL);
13687 lai->primitive_type_vector [ada_primitive_type_long_long]
13688 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13689 0, "long_long_integer");
13690 lai->primitive_type_vector [ada_primitive_type_long_double]
13691 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13692 "long_long_float", NULL);
13693 lai->primitive_type_vector [ada_primitive_type_natural]
13694 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13695 0, "natural");
13696 lai->primitive_type_vector [ada_primitive_type_positive]
13697 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13698 0, "positive");
13699 lai->primitive_type_vector [ada_primitive_type_void]
13700 = builtin->builtin_void;
13701
13702 lai->primitive_type_vector [ada_primitive_type_system_address]
13703 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13704 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13705 = "system__address";
13706
13707 lai->bool_type_symbol = NULL;
13708 lai->bool_type_default = builtin->builtin_bool;
13709 }
13710 \f
13711 /* Language vector */
13712
13713 /* Not really used, but needed in the ada_language_defn. */
13714
13715 static void
13716 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13717 {
13718 ada_emit_char (c, type, stream, quoter, 1);
13719 }
13720
13721 static int
13722 parse (struct parser_state *ps)
13723 {
13724 warnings_issued = 0;
13725 return ada_parse (ps);
13726 }
13727
13728 static const struct exp_descriptor ada_exp_descriptor = {
13729 ada_print_subexp,
13730 ada_operator_length,
13731 ada_operator_check,
13732 ada_op_name,
13733 ada_dump_subexp_body,
13734 ada_evaluate_subexp
13735 };
13736
13737 /* Implement the "la_get_symbol_name_cmp" language_defn method
13738 for Ada. */
13739
13740 static symbol_name_cmp_ftype
13741 ada_get_symbol_name_cmp (const char *lookup_name)
13742 {
13743 if (should_use_wild_match (lookup_name))
13744 return wild_match;
13745 else
13746 return compare_names;
13747 }
13748
13749 /* Implement the "la_read_var_value" language_defn method for Ada. */
13750
13751 static struct value *
13752 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13753 {
13754 const struct block *frame_block = NULL;
13755 struct symbol *renaming_sym = NULL;
13756
13757 /* The only case where default_read_var_value is not sufficient
13758 is when VAR is a renaming... */
13759 if (frame)
13760 frame_block = get_frame_block (frame, NULL);
13761 if (frame_block)
13762 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13763 if (renaming_sym != NULL)
13764 return ada_read_renaming_var_value (renaming_sym, frame_block);
13765
13766 /* This is a typical case where we expect the default_read_var_value
13767 function to work. */
13768 return default_read_var_value (var, frame);
13769 }
13770
13771 const struct language_defn ada_language_defn = {
13772 "ada", /* Language name */
13773 "Ada",
13774 language_ada,
13775 range_check_off,
13776 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13777 that's not quite what this means. */
13778 array_row_major,
13779 macro_expansion_no,
13780 &ada_exp_descriptor,
13781 parse,
13782 ada_error,
13783 resolve,
13784 ada_printchar, /* Print a character constant */
13785 ada_printstr, /* Function to print string constant */
13786 emit_char, /* Function to print single char (not used) */
13787 ada_print_type, /* Print a type using appropriate syntax */
13788 ada_print_typedef, /* Print a typedef using appropriate syntax */
13789 ada_val_print, /* Print a value using appropriate syntax */
13790 ada_value_print, /* Print a top-level value */
13791 ada_read_var_value, /* la_read_var_value */
13792 NULL, /* Language specific skip_trampoline */
13793 NULL, /* name_of_this */
13794 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13795 basic_lookup_transparent_type, /* lookup_transparent_type */
13796 ada_la_decode, /* Language specific symbol demangler */
13797 NULL, /* Language specific
13798 class_name_from_physname */
13799 ada_op_print_tab, /* expression operators for printing */
13800 0, /* c-style arrays */
13801 1, /* String lower bound */
13802 ada_get_gdb_completer_word_break_characters,
13803 ada_make_symbol_completion_list,
13804 ada_language_arch_info,
13805 ada_print_array_index,
13806 default_pass_by_reference,
13807 c_get_string,
13808 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13809 ada_iterate_over_symbols,
13810 &ada_varobj_ops,
13811 NULL,
13812 NULL,
13813 LANG_MAGIC
13814 };
13815
13816 /* Provide a prototype to silence -Wmissing-prototypes. */
13817 extern initialize_file_ftype _initialize_ada_language;
13818
13819 /* Command-list for the "set/show ada" prefix command. */
13820 static struct cmd_list_element *set_ada_list;
13821 static struct cmd_list_element *show_ada_list;
13822
13823 /* Implement the "set ada" prefix command. */
13824
13825 static void
13826 set_ada_command (char *arg, int from_tty)
13827 {
13828 printf_unfiltered (_(\
13829 "\"set ada\" must be followed by the name of a setting.\n"));
13830 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13831 }
13832
13833 /* Implement the "show ada" prefix command. */
13834
13835 static void
13836 show_ada_command (char *args, int from_tty)
13837 {
13838 cmd_show_list (show_ada_list, from_tty, "");
13839 }
13840
13841 static void
13842 initialize_ada_catchpoint_ops (void)
13843 {
13844 struct breakpoint_ops *ops;
13845
13846 initialize_breakpoint_ops ();
13847
13848 ops = &catch_exception_breakpoint_ops;
13849 *ops = bkpt_breakpoint_ops;
13850 ops->dtor = dtor_catch_exception;
13851 ops->allocate_location = allocate_location_catch_exception;
13852 ops->re_set = re_set_catch_exception;
13853 ops->check_status = check_status_catch_exception;
13854 ops->print_it = print_it_catch_exception;
13855 ops->print_one = print_one_catch_exception;
13856 ops->print_mention = print_mention_catch_exception;
13857 ops->print_recreate = print_recreate_catch_exception;
13858
13859 ops = &catch_exception_unhandled_breakpoint_ops;
13860 *ops = bkpt_breakpoint_ops;
13861 ops->dtor = dtor_catch_exception_unhandled;
13862 ops->allocate_location = allocate_location_catch_exception_unhandled;
13863 ops->re_set = re_set_catch_exception_unhandled;
13864 ops->check_status = check_status_catch_exception_unhandled;
13865 ops->print_it = print_it_catch_exception_unhandled;
13866 ops->print_one = print_one_catch_exception_unhandled;
13867 ops->print_mention = print_mention_catch_exception_unhandled;
13868 ops->print_recreate = print_recreate_catch_exception_unhandled;
13869
13870 ops = &catch_assert_breakpoint_ops;
13871 *ops = bkpt_breakpoint_ops;
13872 ops->dtor = dtor_catch_assert;
13873 ops->allocate_location = allocate_location_catch_assert;
13874 ops->re_set = re_set_catch_assert;
13875 ops->check_status = check_status_catch_assert;
13876 ops->print_it = print_it_catch_assert;
13877 ops->print_one = print_one_catch_assert;
13878 ops->print_mention = print_mention_catch_assert;
13879 ops->print_recreate = print_recreate_catch_assert;
13880 }
13881
13882 /* This module's 'new_objfile' observer. */
13883
13884 static void
13885 ada_new_objfile_observer (struct objfile *objfile)
13886 {
13887 ada_clear_symbol_cache ();
13888 }
13889
13890 /* This module's 'free_objfile' observer. */
13891
13892 static void
13893 ada_free_objfile_observer (struct objfile *objfile)
13894 {
13895 ada_clear_symbol_cache ();
13896 }
13897
13898 void
13899 _initialize_ada_language (void)
13900 {
13901 add_language (&ada_language_defn);
13902
13903 initialize_ada_catchpoint_ops ();
13904
13905 add_prefix_cmd ("ada", no_class, set_ada_command,
13906 _("Prefix command for changing Ada-specfic settings"),
13907 &set_ada_list, "set ada ", 0, &setlist);
13908
13909 add_prefix_cmd ("ada", no_class, show_ada_command,
13910 _("Generic command for showing Ada-specific settings."),
13911 &show_ada_list, "show ada ", 0, &showlist);
13912
13913 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13914 &trust_pad_over_xvs, _("\
13915 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13916 Show whether an optimization trusting PAD types over XVS types is activated"),
13917 _("\
13918 This is related to the encoding used by the GNAT compiler. The debugger\n\
13919 should normally trust the contents of PAD types, but certain older versions\n\
13920 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13921 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13922 work around this bug. It is always safe to turn this option \"off\", but\n\
13923 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13924 this option to \"off\" unless necessary."),
13925 NULL, NULL, &set_ada_list, &show_ada_list);
13926
13927 add_catch_command ("exception", _("\
13928 Catch Ada exceptions, when raised.\n\
13929 With an argument, catch only exceptions with the given name."),
13930 catch_ada_exception_command,
13931 NULL,
13932 CATCH_PERMANENT,
13933 CATCH_TEMPORARY);
13934 add_catch_command ("assert", _("\
13935 Catch failed Ada assertions, when raised.\n\
13936 With an argument, catch only exceptions with the given name."),
13937 catch_assert_command,
13938 NULL,
13939 CATCH_PERMANENT,
13940 CATCH_TEMPORARY);
13941
13942 varsize_limit = 65536;
13943
13944 add_info ("exceptions", info_exceptions_command,
13945 _("\
13946 List all Ada exception names.\n\
13947 If a regular expression is passed as an argument, only those matching\n\
13948 the regular expression are listed."));
13949
13950 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13951 _("Set Ada maintenance-related variables."),
13952 &maint_set_ada_cmdlist, "maintenance set ada ",
13953 0/*allow-unknown*/, &maintenance_set_cmdlist);
13954
13955 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13956 _("Show Ada maintenance-related variables"),
13957 &maint_show_ada_cmdlist, "maintenance show ada ",
13958 0/*allow-unknown*/, &maintenance_show_cmdlist);
13959
13960 add_setshow_boolean_cmd
13961 ("ignore-descriptive-types", class_maintenance,
13962 &ada_ignore_descriptive_types_p,
13963 _("Set whether descriptive types generated by GNAT should be ignored."),
13964 _("Show whether descriptive types generated by GNAT should be ignored."),
13965 _("\
13966 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13967 DWARF attribute."),
13968 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13969
13970 obstack_init (&symbol_list_obstack);
13971
13972 decoded_names_store = htab_create_alloc
13973 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13974 NULL, xcalloc, xfree);
13975
13976 /* The ada-lang observers. */
13977 observer_attach_new_objfile (ada_new_objfile_observer);
13978 observer_attach_free_objfile (ada_free_objfile_observer);
13979 observer_attach_inferior_exit (ada_inferior_exit);
13980
13981 /* Setup various context-specific data. */
13982 ada_inferior_data
13983 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13984 ada_pspace_data_handle
13985 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13986 }
This page took 0.365992 seconds and 4 git commands to generate.