remove msymbol_objfile
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out_const (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 gdb_byte *buffer = alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2791 {
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
2817 else
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2819
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2824 }
2825
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2830
2831 static LONGEST
2832 ada_array_bound (struct value *arr, int n, int which)
2833 {
2834 struct type *arr_type = value_type (arr);
2835
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2840 else
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2842 }
2843
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2849
2850 static LONGEST
2851 ada_array_length (struct value *arr, int n)
2852 {
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2854
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2857
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2861 else
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2864 }
2865
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2871 {
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2875 low, low - 1);
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2877
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2879 }
2880 \f
2881
2882 /* Name resolution */
2883
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
2886
2887 static const char *
2888 ada_decoded_op_name (enum exp_opcode op)
2889 {
2890 int i;
2891
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2893 {
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2896 }
2897 error (_("Could not find operator name for opcode"));
2898 }
2899
2900
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2909
2910 static void
2911 resolve (struct expression **expp, int void_context_p)
2912 {
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
2920 }
2921
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2930
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2934 {
2935 int pc = *pos;
2936 int i;
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2941 int oplen;
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
2949 switch (op)
2950 {
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2961 break;
2962
2963 case UNOP_ADDR:
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
2968 case UNOP_QUAL:
2969 *pos += 3;
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2971 break;
2972
2973 case OP_ATR_MODULUS:
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3006 break;
3007 }
3008
3009 case UNOP_CAST:
3010 *pos += 3;
3011 nargs = 1;
3012 break;
3013
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3027
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
3034
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
3038 *pos += 1;
3039 nargs = 2;
3040 break;
3041
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
3050
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
3056
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
3063
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
3078 case TERNOP_SLICE:
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
3083 case OP_STRING:
3084 break;
3085
3086 default:
3087 error (_("Unexpected operator during name resolution"));
3088 }
3089
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
3102 case OP_VAR_VALUE:
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3112 &candidates);
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
3128 case LOC_COMPUTED:
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3204 &candidates);
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
3214 if (i < 0)
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3224 }
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3256 &candidates);
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3259 if (i < 0)
3260 break;
3261
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3264 exp = *expp;
3265 }
3266 break;
3267
3268 case OP_TYPE:
3269 case OP_REGISTER:
3270 return NULL;
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275 }
3276
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3279 a non-pointer. */
3280 /* The term "match" here is rather loose. The match is heuristic and
3281 liberal. */
3282
3283 static int
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3285 {
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
3294 switch (TYPE_CODE (ftype))
3295 {
3296 default:
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3302 else
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
3317
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3321
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3326 else
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334 }
3335
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3340
3341 static int
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3343 {
3344 int i;
3345 struct type *func_type = SYMBOL_TYPE (func);
3346
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
3358 if (actuals[i] == NULL)
3359 return 0;
3360 else
3361 {
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3365
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
3369 }
3370 return 1;
3371 }
3372
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378 static int
3379 return_match (struct type *func_type, struct type *context_type)
3380 {
3381 struct type *return_type;
3382
3383 if (func_type == NULL)
3384 return 1;
3385
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3388 else
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3391 return 1;
3392
3393 context_type = get_base_type (context_type);
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401 }
3402
3403
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3415
3416 static int
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3420 {
3421 int fallback;
3422 int k;
3423 int m; /* Number of hits */
3424
3425 m = 0;
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3430 {
3431 for (k = 0; k < nsyms; k += 1)
3432 {
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3450 return 0;
3451 }
3452 return 0;
3453 }
3454
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
3461 static int
3462 encoded_ordered_before (const char *N0, const char *N1)
3463 {
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
3471
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3473 ;
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3475 ;
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
3480
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
3490 return (strcmp (N0, N1) < 0);
3491 }
3492 }
3493
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
3497 static void
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3499 {
3500 int i;
3501
3502 for (i = 1; i < nsyms; i += 1)
3503 {
3504 struct ada_symbol_info sym = syms[i];
3505 int j;
3506
3507 for (j = i - 1; j >= 0; j -= 1)
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
3514 syms[j + 1] = sym;
3515 }
3516 }
3517
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
3522
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3525
3526 int
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3528 {
3529 int i;
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3534
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3537 if (nsyms <= 1)
3538 return nsyms;
3539
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3554
3555 sort_choices (syms, nsyms);
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3566
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab_to_filename_for_display (symtab));
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 const char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 old_chain = make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a bound minimal symbol matching NAME according to Ada
4409 decoding rules. Returns an invalid symbol if there is no such
4410 minimal symbol. Names prefixed with "standard__" are handled
4411 specially: "standard__" is first stripped off, and only static and
4412 global symbols are searched. */
4413
4414 struct bound_minimal_symbol
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct bound_minimal_symbol result;
4418 struct objfile *objfile;
4419 struct minimal_symbol *msymbol;
4420 const int wild_match_p = should_use_wild_match (name);
4421
4422 memset (&result, 0, sizeof (result));
4423
4424 /* Special case: If the user specifies a symbol name inside package
4425 Standard, do a non-wild matching of the symbol name without
4426 the "standard__" prefix. This was primarily introduced in order
4427 to allow the user to specifically access the standard exceptions
4428 using, for instance, Standard.Constraint_Error when Constraint_Error
4429 is ambiguous (due to the user defining its own Constraint_Error
4430 entity inside its program). */
4431 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4432 name += sizeof ("standard__") - 1;
4433
4434 ALL_MSYMBOLS (objfile, msymbol)
4435 {
4436 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4437 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4438 {
4439 result.minsym = msymbol;
4440 result.objfile = objfile;
4441 break;
4442 }
4443 }
4444
4445 return result;
4446 }
4447
4448 /* For all subprograms that statically enclose the subprogram of the
4449 selected frame, add symbols matching identifier NAME in DOMAIN
4450 and their blocks to the list of data in OBSTACKP, as for
4451 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4452 with a wildcard prefix. */
4453
4454 static void
4455 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4456 const char *name, domain_enum namespace,
4457 int wild_match_p)
4458 {
4459 }
4460
4461 /* True if TYPE is definitely an artificial type supplied to a symbol
4462 for which no debugging information was given in the symbol file. */
4463
4464 static int
4465 is_nondebugging_type (struct type *type)
4466 {
4467 const char *name = ada_type_name (type);
4468
4469 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4470 }
4471
4472 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4473 that are deemed "identical" for practical purposes.
4474
4475 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4476 types and that their number of enumerals is identical (in other
4477 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4478
4479 static int
4480 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4481 {
4482 int i;
4483
4484 /* The heuristic we use here is fairly conservative. We consider
4485 that 2 enumerate types are identical if they have the same
4486 number of enumerals and that all enumerals have the same
4487 underlying value and name. */
4488
4489 /* All enums in the type should have an identical underlying value. */
4490 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4491 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4492 return 0;
4493
4494 /* All enumerals should also have the same name (modulo any numerical
4495 suffix). */
4496 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4497 {
4498 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4499 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4500 int len_1 = strlen (name_1);
4501 int len_2 = strlen (name_2);
4502
4503 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4504 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4505 if (len_1 != len_2
4506 || strncmp (TYPE_FIELD_NAME (type1, i),
4507 TYPE_FIELD_NAME (type2, i),
4508 len_1) != 0)
4509 return 0;
4510 }
4511
4512 return 1;
4513 }
4514
4515 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4516 that are deemed "identical" for practical purposes. Sometimes,
4517 enumerals are not strictly identical, but their types are so similar
4518 that they can be considered identical.
4519
4520 For instance, consider the following code:
4521
4522 type Color is (Black, Red, Green, Blue, White);
4523 type RGB_Color is new Color range Red .. Blue;
4524
4525 Type RGB_Color is a subrange of an implicit type which is a copy
4526 of type Color. If we call that implicit type RGB_ColorB ("B" is
4527 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4528 As a result, when an expression references any of the enumeral
4529 by name (Eg. "print green"), the expression is technically
4530 ambiguous and the user should be asked to disambiguate. But
4531 doing so would only hinder the user, since it wouldn't matter
4532 what choice he makes, the outcome would always be the same.
4533 So, for practical purposes, we consider them as the same. */
4534
4535 static int
4536 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4537 {
4538 int i;
4539
4540 /* Before performing a thorough comparison check of each type,
4541 we perform a series of inexpensive checks. We expect that these
4542 checks will quickly fail in the vast majority of cases, and thus
4543 help prevent the unnecessary use of a more expensive comparison.
4544 Said comparison also expects us to make some of these checks
4545 (see ada_identical_enum_types_p). */
4546
4547 /* Quick check: All symbols should have an enum type. */
4548 for (i = 0; i < nsyms; i++)
4549 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4550 return 0;
4551
4552 /* Quick check: They should all have the same value. */
4553 for (i = 1; i < nsyms; i++)
4554 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4555 return 0;
4556
4557 /* Quick check: They should all have the same number of enumerals. */
4558 for (i = 1; i < nsyms; i++)
4559 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4560 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 /* All the sanity checks passed, so we might have a set of
4564 identical enumeration types. Perform a more complete
4565 comparison of the type of each symbol. */
4566 for (i = 1; i < nsyms; i++)
4567 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4568 SYMBOL_TYPE (syms[0].sym)))
4569 return 0;
4570
4571 return 1;
4572 }
4573
4574 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4575 duplicate other symbols in the list (The only case I know of where
4576 this happens is when object files containing stabs-in-ecoff are
4577 linked with files containing ordinary ecoff debugging symbols (or no
4578 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4579 Returns the number of items in the modified list. */
4580
4581 static int
4582 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4583 {
4584 int i, j;
4585
4586 /* We should never be called with less than 2 symbols, as there
4587 cannot be any extra symbol in that case. But it's easy to
4588 handle, since we have nothing to do in that case. */
4589 if (nsyms < 2)
4590 return nsyms;
4591
4592 i = 0;
4593 while (i < nsyms)
4594 {
4595 int remove_p = 0;
4596
4597 /* If two symbols have the same name and one of them is a stub type,
4598 the get rid of the stub. */
4599
4600 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4601 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4602 {
4603 for (j = 0; j < nsyms; j++)
4604 {
4605 if (j != i
4606 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4607 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4608 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4609 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4610 remove_p = 1;
4611 }
4612 }
4613
4614 /* Two symbols with the same name, same class and same address
4615 should be identical. */
4616
4617 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4618 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4619 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4620 {
4621 for (j = 0; j < nsyms; j += 1)
4622 {
4623 if (i != j
4624 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4625 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4626 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4627 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4628 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4629 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4630 remove_p = 1;
4631 }
4632 }
4633
4634 if (remove_p)
4635 {
4636 for (j = i + 1; j < nsyms; j += 1)
4637 syms[j - 1] = syms[j];
4638 nsyms -= 1;
4639 }
4640
4641 i += 1;
4642 }
4643
4644 /* If all the remaining symbols are identical enumerals, then
4645 just keep the first one and discard the rest.
4646
4647 Unlike what we did previously, we do not discard any entry
4648 unless they are ALL identical. This is because the symbol
4649 comparison is not a strict comparison, but rather a practical
4650 comparison. If all symbols are considered identical, then
4651 we can just go ahead and use the first one and discard the rest.
4652 But if we cannot reduce the list to a single element, we have
4653 to ask the user to disambiguate anyways. And if we have to
4654 present a multiple-choice menu, it's less confusing if the list
4655 isn't missing some choices that were identical and yet distinct. */
4656 if (symbols_are_identical_enums (syms, nsyms))
4657 nsyms = 1;
4658
4659 return nsyms;
4660 }
4661
4662 /* Given a type that corresponds to a renaming entity, use the type name
4663 to extract the scope (package name or function name, fully qualified,
4664 and following the GNAT encoding convention) where this renaming has been
4665 defined. The string returned needs to be deallocated after use. */
4666
4667 static char *
4668 xget_renaming_scope (struct type *renaming_type)
4669 {
4670 /* The renaming types adhere to the following convention:
4671 <scope>__<rename>___<XR extension>.
4672 So, to extract the scope, we search for the "___XR" extension,
4673 and then backtrack until we find the first "__". */
4674
4675 const char *name = type_name_no_tag (renaming_type);
4676 char *suffix = strstr (name, "___XR");
4677 char *last;
4678 int scope_len;
4679 char *scope;
4680
4681 /* Now, backtrack a bit until we find the first "__". Start looking
4682 at suffix - 3, as the <rename> part is at least one character long. */
4683
4684 for (last = suffix - 3; last > name; last--)
4685 if (last[0] == '_' && last[1] == '_')
4686 break;
4687
4688 /* Make a copy of scope and return it. */
4689
4690 scope_len = last - name;
4691 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4692
4693 strncpy (scope, name, scope_len);
4694 scope[scope_len] = '\0';
4695
4696 return scope;
4697 }
4698
4699 /* Return nonzero if NAME corresponds to a package name. */
4700
4701 static int
4702 is_package_name (const char *name)
4703 {
4704 /* Here, We take advantage of the fact that no symbols are generated
4705 for packages, while symbols are generated for each function.
4706 So the condition for NAME represent a package becomes equivalent
4707 to NAME not existing in our list of symbols. There is only one
4708 small complication with library-level functions (see below). */
4709
4710 char *fun_name;
4711
4712 /* If it is a function that has not been defined at library level,
4713 then we should be able to look it up in the symbols. */
4714 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4715 return 0;
4716
4717 /* Library-level function names start with "_ada_". See if function
4718 "_ada_" followed by NAME can be found. */
4719
4720 /* Do a quick check that NAME does not contain "__", since library-level
4721 functions names cannot contain "__" in them. */
4722 if (strstr (name, "__") != NULL)
4723 return 0;
4724
4725 fun_name = xstrprintf ("_ada_%s", name);
4726
4727 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4728 }
4729
4730 /* Return nonzero if SYM corresponds to a renaming entity that is
4731 not visible from FUNCTION_NAME. */
4732
4733 static int
4734 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4735 {
4736 char *scope;
4737 struct cleanup *old_chain;
4738
4739 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4740 return 0;
4741
4742 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4743 old_chain = make_cleanup (xfree, scope);
4744
4745 /* If the rename has been defined in a package, then it is visible. */
4746 if (is_package_name (scope))
4747 {
4748 do_cleanups (old_chain);
4749 return 0;
4750 }
4751
4752 /* Check that the rename is in the current function scope by checking
4753 that its name starts with SCOPE. */
4754
4755 /* If the function name starts with "_ada_", it means that it is
4756 a library-level function. Strip this prefix before doing the
4757 comparison, as the encoding for the renaming does not contain
4758 this prefix. */
4759 if (strncmp (function_name, "_ada_", 5) == 0)
4760 function_name += 5;
4761
4762 {
4763 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4764
4765 do_cleanups (old_chain);
4766 return is_invisible;
4767 }
4768 }
4769
4770 /* Remove entries from SYMS that corresponds to a renaming entity that
4771 is not visible from the function associated with CURRENT_BLOCK or
4772 that is superfluous due to the presence of more specific renaming
4773 information. Places surviving symbols in the initial entries of
4774 SYMS and returns the number of surviving symbols.
4775
4776 Rationale:
4777 First, in cases where an object renaming is implemented as a
4778 reference variable, GNAT may produce both the actual reference
4779 variable and the renaming encoding. In this case, we discard the
4780 latter.
4781
4782 Second, GNAT emits a type following a specified encoding for each renaming
4783 entity. Unfortunately, STABS currently does not support the definition
4784 of types that are local to a given lexical block, so all renamings types
4785 are emitted at library level. As a consequence, if an application
4786 contains two renaming entities using the same name, and a user tries to
4787 print the value of one of these entities, the result of the ada symbol
4788 lookup will also contain the wrong renaming type.
4789
4790 This function partially covers for this limitation by attempting to
4791 remove from the SYMS list renaming symbols that should be visible
4792 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4793 method with the current information available. The implementation
4794 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4795
4796 - When the user tries to print a rename in a function while there
4797 is another rename entity defined in a package: Normally, the
4798 rename in the function has precedence over the rename in the
4799 package, so the latter should be removed from the list. This is
4800 currently not the case.
4801
4802 - This function will incorrectly remove valid renames if
4803 the CURRENT_BLOCK corresponds to a function which symbol name
4804 has been changed by an "Export" pragma. As a consequence,
4805 the user will be unable to print such rename entities. */
4806
4807 static int
4808 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4809 int nsyms, const struct block *current_block)
4810 {
4811 struct symbol *current_function;
4812 const char *current_function_name;
4813 int i;
4814 int is_new_style_renaming;
4815
4816 /* If there is both a renaming foo___XR... encoded as a variable and
4817 a simple variable foo in the same block, discard the latter.
4818 First, zero out such symbols, then compress. */
4819 is_new_style_renaming = 0;
4820 for (i = 0; i < nsyms; i += 1)
4821 {
4822 struct symbol *sym = syms[i].sym;
4823 const struct block *block = syms[i].block;
4824 const char *name;
4825 const char *suffix;
4826
4827 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4828 continue;
4829 name = SYMBOL_LINKAGE_NAME (sym);
4830 suffix = strstr (name, "___XR");
4831
4832 if (suffix != NULL)
4833 {
4834 int name_len = suffix - name;
4835 int j;
4836
4837 is_new_style_renaming = 1;
4838 for (j = 0; j < nsyms; j += 1)
4839 if (i != j && syms[j].sym != NULL
4840 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4841 name_len) == 0
4842 && block == syms[j].block)
4843 syms[j].sym = NULL;
4844 }
4845 }
4846 if (is_new_style_renaming)
4847 {
4848 int j, k;
4849
4850 for (j = k = 0; j < nsyms; j += 1)
4851 if (syms[j].sym != NULL)
4852 {
4853 syms[k] = syms[j];
4854 k += 1;
4855 }
4856 return k;
4857 }
4858
4859 /* Extract the function name associated to CURRENT_BLOCK.
4860 Abort if unable to do so. */
4861
4862 if (current_block == NULL)
4863 return nsyms;
4864
4865 current_function = block_linkage_function (current_block);
4866 if (current_function == NULL)
4867 return nsyms;
4868
4869 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4870 if (current_function_name == NULL)
4871 return nsyms;
4872
4873 /* Check each of the symbols, and remove it from the list if it is
4874 a type corresponding to a renaming that is out of the scope of
4875 the current block. */
4876
4877 i = 0;
4878 while (i < nsyms)
4879 {
4880 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4881 == ADA_OBJECT_RENAMING
4882 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4883 {
4884 int j;
4885
4886 for (j = i + 1; j < nsyms; j += 1)
4887 syms[j - 1] = syms[j];
4888 nsyms -= 1;
4889 }
4890 else
4891 i += 1;
4892 }
4893
4894 return nsyms;
4895 }
4896
4897 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4898 whose name and domain match NAME and DOMAIN respectively.
4899 If no match was found, then extend the search to "enclosing"
4900 routines (in other words, if we're inside a nested function,
4901 search the symbols defined inside the enclosing functions).
4902 If WILD_MATCH_P is nonzero, perform the naming matching in
4903 "wild" mode (see function "wild_match" for more info).
4904
4905 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4906
4907 static void
4908 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4909 struct block *block, domain_enum domain,
4910 int wild_match_p)
4911 {
4912 int block_depth = 0;
4913
4914 while (block != NULL)
4915 {
4916 block_depth += 1;
4917 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4918 wild_match_p);
4919
4920 /* If we found a non-function match, assume that's the one. */
4921 if (is_nonfunction (defns_collected (obstackp, 0),
4922 num_defns_collected (obstackp)))
4923 return;
4924
4925 block = BLOCK_SUPERBLOCK (block);
4926 }
4927
4928 /* If no luck so far, try to find NAME as a local symbol in some lexically
4929 enclosing subprogram. */
4930 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4931 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4932 }
4933
4934 /* An object of this type is used as the user_data argument when
4935 calling the map_matching_symbols method. */
4936
4937 struct match_data
4938 {
4939 struct objfile *objfile;
4940 struct obstack *obstackp;
4941 struct symbol *arg_sym;
4942 int found_sym;
4943 };
4944
4945 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4946 to a list of symbols. DATA0 is a pointer to a struct match_data *
4947 containing the obstack that collects the symbol list, the file that SYM
4948 must come from, a flag indicating whether a non-argument symbol has
4949 been found in the current block, and the last argument symbol
4950 passed in SYM within the current block (if any). When SYM is null,
4951 marking the end of a block, the argument symbol is added if no
4952 other has been found. */
4953
4954 static int
4955 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4956 {
4957 struct match_data *data = (struct match_data *) data0;
4958
4959 if (sym == NULL)
4960 {
4961 if (!data->found_sym && data->arg_sym != NULL)
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (data->arg_sym, data->objfile),
4964 block);
4965 data->found_sym = 0;
4966 data->arg_sym = NULL;
4967 }
4968 else
4969 {
4970 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4971 return 0;
4972 else if (SYMBOL_IS_ARGUMENT (sym))
4973 data->arg_sym = sym;
4974 else
4975 {
4976 data->found_sym = 1;
4977 add_defn_to_vec (data->obstackp,
4978 fixup_symbol_section (sym, data->objfile),
4979 block);
4980 }
4981 }
4982 return 0;
4983 }
4984
4985 /* Compare STRING1 to STRING2, with results as for strcmp.
4986 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4987 implies compare_names (STRING1, STRING2) (they may differ as to
4988 what symbols compare equal). */
4989
4990 static int
4991 compare_names (const char *string1, const char *string2)
4992 {
4993 while (*string1 != '\0' && *string2 != '\0')
4994 {
4995 if (isspace (*string1) || isspace (*string2))
4996 return strcmp_iw_ordered (string1, string2);
4997 if (*string1 != *string2)
4998 break;
4999 string1 += 1;
5000 string2 += 1;
5001 }
5002 switch (*string1)
5003 {
5004 case '(':
5005 return strcmp_iw_ordered (string1, string2);
5006 case '_':
5007 if (*string2 == '\0')
5008 {
5009 if (is_name_suffix (string1))
5010 return 0;
5011 else
5012 return 1;
5013 }
5014 /* FALLTHROUGH */
5015 default:
5016 if (*string2 == '(')
5017 return strcmp_iw_ordered (string1, string2);
5018 else
5019 return *string1 - *string2;
5020 }
5021 }
5022
5023 /* Add to OBSTACKP all non-local symbols whose name and domain match
5024 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5025 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5026
5027 static void
5028 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5029 domain_enum domain, int global,
5030 int is_wild_match)
5031 {
5032 struct objfile *objfile;
5033 struct match_data data;
5034
5035 memset (&data, 0, sizeof data);
5036 data.obstackp = obstackp;
5037
5038 ALL_OBJFILES (objfile)
5039 {
5040 data.objfile = objfile;
5041
5042 if (is_wild_match)
5043 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5044 aux_add_nonlocal_symbols, &data,
5045 wild_match, NULL);
5046 else
5047 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5048 aux_add_nonlocal_symbols, &data,
5049 full_match, compare_names);
5050 }
5051
5052 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5053 {
5054 ALL_OBJFILES (objfile)
5055 {
5056 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5057 strcpy (name1, "_ada_");
5058 strcpy (name1 + sizeof ("_ada_") - 1, name);
5059 data.objfile = objfile;
5060 objfile->sf->qf->map_matching_symbols (name1, domain,
5061 objfile, global,
5062 aux_add_nonlocal_symbols,
5063 &data,
5064 full_match, compare_names);
5065 }
5066 }
5067 }
5068
5069 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5070 non-zero, enclosing scope and in global scopes, returning the number of
5071 matches.
5072 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5073 indicating the symbols found and the blocks and symbol tables (if
5074 any) in which they were found. This vector is transient---good only to
5075 the next call of ada_lookup_symbol_list.
5076
5077 When full_search is non-zero, any non-function/non-enumeral
5078 symbol match within the nest of blocks whose innermost member is BLOCK0,
5079 is the one match returned (no other matches in that or
5080 enclosing blocks is returned). If there are any matches in or
5081 surrounding BLOCK0, then these alone are returned.
5082
5083 Names prefixed with "standard__" are handled specially: "standard__"
5084 is first stripped off, and only static and global symbols are searched. */
5085
5086 static int
5087 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5088 domain_enum namespace,
5089 struct ada_symbol_info **results,
5090 int full_search)
5091 {
5092 struct symbol *sym;
5093 struct block *block;
5094 const char *name;
5095 const int wild_match_p = should_use_wild_match (name0);
5096 int cacheIfUnique;
5097 int ndefns;
5098
5099 obstack_free (&symbol_list_obstack, NULL);
5100 obstack_init (&symbol_list_obstack);
5101
5102 cacheIfUnique = 0;
5103
5104 /* Search specified block and its superiors. */
5105
5106 name = name0;
5107 block = (struct block *) block0; /* FIXME: No cast ought to be
5108 needed, but adding const will
5109 have a cascade effect. */
5110
5111 /* Special case: If the user specifies a symbol name inside package
5112 Standard, do a non-wild matching of the symbol name without
5113 the "standard__" prefix. This was primarily introduced in order
5114 to allow the user to specifically access the standard exceptions
5115 using, for instance, Standard.Constraint_Error when Constraint_Error
5116 is ambiguous (due to the user defining its own Constraint_Error
5117 entity inside its program). */
5118 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5119 {
5120 block = NULL;
5121 name = name0 + sizeof ("standard__") - 1;
5122 }
5123
5124 /* Check the non-global symbols. If we have ANY match, then we're done. */
5125
5126 if (block != NULL)
5127 {
5128 if (full_search)
5129 {
5130 ada_add_local_symbols (&symbol_list_obstack, name, block,
5131 namespace, wild_match_p);
5132 }
5133 else
5134 {
5135 /* In the !full_search case we're are being called by
5136 ada_iterate_over_symbols, and we don't want to search
5137 superblocks. */
5138 ada_add_block_symbols (&symbol_list_obstack, block, name,
5139 namespace, NULL, wild_match_p);
5140 }
5141 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5142 goto done;
5143 }
5144
5145 /* No non-global symbols found. Check our cache to see if we have
5146 already performed this search before. If we have, then return
5147 the same result. */
5148
5149 cacheIfUnique = 1;
5150 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5151 {
5152 if (sym != NULL)
5153 add_defn_to_vec (&symbol_list_obstack, sym, block);
5154 goto done;
5155 }
5156
5157 /* Search symbols from all global blocks. */
5158
5159 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5160 wild_match_p);
5161
5162 /* Now add symbols from all per-file blocks if we've gotten no hits
5163 (not strictly correct, but perhaps better than an error). */
5164
5165 if (num_defns_collected (&symbol_list_obstack) == 0)
5166 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5167 wild_match_p);
5168
5169 done:
5170 ndefns = num_defns_collected (&symbol_list_obstack);
5171 *results = defns_collected (&symbol_list_obstack, 1);
5172
5173 ndefns = remove_extra_symbols (*results, ndefns);
5174
5175 if (ndefns == 0 && full_search)
5176 cache_symbol (name0, namespace, NULL, NULL);
5177
5178 if (ndefns == 1 && full_search && cacheIfUnique)
5179 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5180
5181 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5182
5183 return ndefns;
5184 }
5185
5186 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5187 in global scopes, returning the number of matches, and setting *RESULTS
5188 to a vector of (SYM,BLOCK) tuples.
5189 See ada_lookup_symbol_list_worker for further details. */
5190
5191 int
5192 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5193 domain_enum domain, struct ada_symbol_info **results)
5194 {
5195 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5196 }
5197
5198 /* Implementation of the la_iterate_over_symbols method. */
5199
5200 static void
5201 ada_iterate_over_symbols (const struct block *block,
5202 const char *name, domain_enum domain,
5203 symbol_found_callback_ftype *callback,
5204 void *data)
5205 {
5206 int ndefs, i;
5207 struct ada_symbol_info *results;
5208
5209 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5210 for (i = 0; i < ndefs; ++i)
5211 {
5212 if (! (*callback) (results[i].sym, data))
5213 break;
5214 }
5215 }
5216
5217 /* If NAME is the name of an entity, return a string that should
5218 be used to look that entity up in Ada units. This string should
5219 be deallocated after use using xfree.
5220
5221 NAME can have any form that the "break" or "print" commands might
5222 recognize. In other words, it does not have to be the "natural"
5223 name, or the "encoded" name. */
5224
5225 char *
5226 ada_name_for_lookup (const char *name)
5227 {
5228 char *canon;
5229 int nlen = strlen (name);
5230
5231 if (name[0] == '<' && name[nlen - 1] == '>')
5232 {
5233 canon = xmalloc (nlen - 1);
5234 memcpy (canon, name + 1, nlen - 2);
5235 canon[nlen - 2] = '\0';
5236 }
5237 else
5238 canon = xstrdup (ada_encode (ada_fold_name (name)));
5239 return canon;
5240 }
5241
5242 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5243 to 1, but choosing the first symbol found if there are multiple
5244 choices.
5245
5246 The result is stored in *INFO, which must be non-NULL.
5247 If no match is found, INFO->SYM is set to NULL. */
5248
5249 void
5250 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5251 domain_enum namespace,
5252 struct ada_symbol_info *info)
5253 {
5254 struct ada_symbol_info *candidates;
5255 int n_candidates;
5256
5257 gdb_assert (info != NULL);
5258 memset (info, 0, sizeof (struct ada_symbol_info));
5259
5260 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5261 if (n_candidates == 0)
5262 return;
5263
5264 *info = candidates[0];
5265 info->sym = fixup_symbol_section (info->sym, NULL);
5266 }
5267
5268 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5269 scope and in global scopes, or NULL if none. NAME is folded and
5270 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5271 choosing the first symbol if there are multiple choices.
5272 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5273
5274 struct symbol *
5275 ada_lookup_symbol (const char *name, const struct block *block0,
5276 domain_enum namespace, int *is_a_field_of_this)
5277 {
5278 struct ada_symbol_info info;
5279
5280 if (is_a_field_of_this != NULL)
5281 *is_a_field_of_this = 0;
5282
5283 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5284 block0, namespace, &info);
5285 return info.sym;
5286 }
5287
5288 static struct symbol *
5289 ada_lookup_symbol_nonlocal (const char *name,
5290 const struct block *block,
5291 const domain_enum domain)
5292 {
5293 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5294 }
5295
5296
5297 /* True iff STR is a possible encoded suffix of a normal Ada name
5298 that is to be ignored for matching purposes. Suffixes of parallel
5299 names (e.g., XVE) are not included here. Currently, the possible suffixes
5300 are given by any of the regular expressions:
5301
5302 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5303 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5304 TKB [subprogram suffix for task bodies]
5305 _E[0-9]+[bs]$ [protected object entry suffixes]
5306 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5307
5308 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5309 match is performed. This sequence is used to differentiate homonyms,
5310 is an optional part of a valid name suffix. */
5311
5312 static int
5313 is_name_suffix (const char *str)
5314 {
5315 int k;
5316 const char *matching;
5317 const int len = strlen (str);
5318
5319 /* Skip optional leading __[0-9]+. */
5320
5321 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5322 {
5323 str += 3;
5324 while (isdigit (str[0]))
5325 str += 1;
5326 }
5327
5328 /* [.$][0-9]+ */
5329
5330 if (str[0] == '.' || str[0] == '$')
5331 {
5332 matching = str + 1;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if (matching[0] == '\0')
5336 return 1;
5337 }
5338
5339 /* ___[0-9]+ */
5340
5341 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5342 {
5343 matching = str + 3;
5344 while (isdigit (matching[0]))
5345 matching += 1;
5346 if (matching[0] == '\0')
5347 return 1;
5348 }
5349
5350 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5351
5352 if (strcmp (str, "TKB") == 0)
5353 return 1;
5354
5355 #if 0
5356 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5357 with a N at the end. Unfortunately, the compiler uses the same
5358 convention for other internal types it creates. So treating
5359 all entity names that end with an "N" as a name suffix causes
5360 some regressions. For instance, consider the case of an enumerated
5361 type. To support the 'Image attribute, it creates an array whose
5362 name ends with N.
5363 Having a single character like this as a suffix carrying some
5364 information is a bit risky. Perhaps we should change the encoding
5365 to be something like "_N" instead. In the meantime, do not do
5366 the following check. */
5367 /* Protected Object Subprograms */
5368 if (len == 1 && str [0] == 'N')
5369 return 1;
5370 #endif
5371
5372 /* _E[0-9]+[bs]$ */
5373 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5374 {
5375 matching = str + 3;
5376 while (isdigit (matching[0]))
5377 matching += 1;
5378 if ((matching[0] == 'b' || matching[0] == 's')
5379 && matching [1] == '\0')
5380 return 1;
5381 }
5382
5383 /* ??? We should not modify STR directly, as we are doing below. This
5384 is fine in this case, but may become problematic later if we find
5385 that this alternative did not work, and want to try matching
5386 another one from the begining of STR. Since we modified it, we
5387 won't be able to find the begining of the string anymore! */
5388 if (str[0] == 'X')
5389 {
5390 str += 1;
5391 while (str[0] != '_' && str[0] != '\0')
5392 {
5393 if (str[0] != 'n' && str[0] != 'b')
5394 return 0;
5395 str += 1;
5396 }
5397 }
5398
5399 if (str[0] == '\000')
5400 return 1;
5401
5402 if (str[0] == '_')
5403 {
5404 if (str[1] != '_' || str[2] == '\000')
5405 return 0;
5406 if (str[2] == '_')
5407 {
5408 if (strcmp (str + 3, "JM") == 0)
5409 return 1;
5410 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5411 the LJM suffix in favor of the JM one. But we will
5412 still accept LJM as a valid suffix for a reasonable
5413 amount of time, just to allow ourselves to debug programs
5414 compiled using an older version of GNAT. */
5415 if (strcmp (str + 3, "LJM") == 0)
5416 return 1;
5417 if (str[3] != 'X')
5418 return 0;
5419 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5420 || str[4] == 'U' || str[4] == 'P')
5421 return 1;
5422 if (str[4] == 'R' && str[5] != 'T')
5423 return 1;
5424 return 0;
5425 }
5426 if (!isdigit (str[2]))
5427 return 0;
5428 for (k = 3; str[k] != '\0'; k += 1)
5429 if (!isdigit (str[k]) && str[k] != '_')
5430 return 0;
5431 return 1;
5432 }
5433 if (str[0] == '$' && isdigit (str[1]))
5434 {
5435 for (k = 2; str[k] != '\0'; k += 1)
5436 if (!isdigit (str[k]) && str[k] != '_')
5437 return 0;
5438 return 1;
5439 }
5440 return 0;
5441 }
5442
5443 /* Return non-zero if the string starting at NAME and ending before
5444 NAME_END contains no capital letters. */
5445
5446 static int
5447 is_valid_name_for_wild_match (const char *name0)
5448 {
5449 const char *decoded_name = ada_decode (name0);
5450 int i;
5451
5452 /* If the decoded name starts with an angle bracket, it means that
5453 NAME0 does not follow the GNAT encoding format. It should then
5454 not be allowed as a possible wild match. */
5455 if (decoded_name[0] == '<')
5456 return 0;
5457
5458 for (i=0; decoded_name[i] != '\0'; i++)
5459 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5460 return 0;
5461
5462 return 1;
5463 }
5464
5465 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5466 that could start a simple name. Assumes that *NAMEP points into
5467 the string beginning at NAME0. */
5468
5469 static int
5470 advance_wild_match (const char **namep, const char *name0, int target0)
5471 {
5472 const char *name = *namep;
5473
5474 while (1)
5475 {
5476 int t0, t1;
5477
5478 t0 = *name;
5479 if (t0 == '_')
5480 {
5481 t1 = name[1];
5482 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5483 {
5484 name += 1;
5485 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5486 break;
5487 else
5488 name += 1;
5489 }
5490 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5491 || name[2] == target0))
5492 {
5493 name += 2;
5494 break;
5495 }
5496 else
5497 return 0;
5498 }
5499 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5500 name += 1;
5501 else
5502 return 0;
5503 }
5504
5505 *namep = name;
5506 return 1;
5507 }
5508
5509 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5510 informational suffixes of NAME (i.e., for which is_name_suffix is
5511 true). Assumes that PATN is a lower-cased Ada simple name. */
5512
5513 static int
5514 wild_match (const char *name, const char *patn)
5515 {
5516 const char *p;
5517 const char *name0 = name;
5518
5519 while (1)
5520 {
5521 const char *match = name;
5522
5523 if (*name == *patn)
5524 {
5525 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5526 if (*p != *name)
5527 break;
5528 if (*p == '\0' && is_name_suffix (name))
5529 return match != name0 && !is_valid_name_for_wild_match (name0);
5530
5531 if (name[-1] == '_')
5532 name -= 1;
5533 }
5534 if (!advance_wild_match (&name, name0, *patn))
5535 return 1;
5536 }
5537 }
5538
5539 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5540 informational suffix. */
5541
5542 static int
5543 full_match (const char *sym_name, const char *search_name)
5544 {
5545 return !match_name (sym_name, search_name, 0);
5546 }
5547
5548
5549 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5550 vector *defn_symbols, updating the list of symbols in OBSTACKP
5551 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5552 OBJFILE is the section containing BLOCK. */
5553
5554 static void
5555 ada_add_block_symbols (struct obstack *obstackp,
5556 struct block *block, const char *name,
5557 domain_enum domain, struct objfile *objfile,
5558 int wild)
5559 {
5560 struct block_iterator iter;
5561 int name_len = strlen (name);
5562 /* A matching argument symbol, if any. */
5563 struct symbol *arg_sym;
5564 /* Set true when we find a matching non-argument symbol. */
5565 int found_sym;
5566 struct symbol *sym;
5567
5568 arg_sym = NULL;
5569 found_sym = 0;
5570 if (wild)
5571 {
5572 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5573 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5574 {
5575 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5576 SYMBOL_DOMAIN (sym), domain)
5577 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5578 {
5579 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5580 continue;
5581 else if (SYMBOL_IS_ARGUMENT (sym))
5582 arg_sym = sym;
5583 else
5584 {
5585 found_sym = 1;
5586 add_defn_to_vec (obstackp,
5587 fixup_symbol_section (sym, objfile),
5588 block);
5589 }
5590 }
5591 }
5592 }
5593 else
5594 {
5595 for (sym = block_iter_match_first (block, name, full_match, &iter);
5596 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5597 {
5598 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5599 SYMBOL_DOMAIN (sym), domain))
5600 {
5601 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5602 {
5603 if (SYMBOL_IS_ARGUMENT (sym))
5604 arg_sym = sym;
5605 else
5606 {
5607 found_sym = 1;
5608 add_defn_to_vec (obstackp,
5609 fixup_symbol_section (sym, objfile),
5610 block);
5611 }
5612 }
5613 }
5614 }
5615 }
5616
5617 if (!found_sym && arg_sym != NULL)
5618 {
5619 add_defn_to_vec (obstackp,
5620 fixup_symbol_section (arg_sym, objfile),
5621 block);
5622 }
5623
5624 if (!wild)
5625 {
5626 arg_sym = NULL;
5627 found_sym = 0;
5628
5629 ALL_BLOCK_SYMBOLS (block, iter, sym)
5630 {
5631 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5632 SYMBOL_DOMAIN (sym), domain))
5633 {
5634 int cmp;
5635
5636 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5637 if (cmp == 0)
5638 {
5639 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5640 if (cmp == 0)
5641 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5642 name_len);
5643 }
5644
5645 if (cmp == 0
5646 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5647 {
5648 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5649 {
5650 if (SYMBOL_IS_ARGUMENT (sym))
5651 arg_sym = sym;
5652 else
5653 {
5654 found_sym = 1;
5655 add_defn_to_vec (obstackp,
5656 fixup_symbol_section (sym, objfile),
5657 block);
5658 }
5659 }
5660 }
5661 }
5662 }
5663
5664 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5665 They aren't parameters, right? */
5666 if (!found_sym && arg_sym != NULL)
5667 {
5668 add_defn_to_vec (obstackp,
5669 fixup_symbol_section (arg_sym, objfile),
5670 block);
5671 }
5672 }
5673 }
5674 \f
5675
5676 /* Symbol Completion */
5677
5678 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5679 name in a form that's appropriate for the completion. The result
5680 does not need to be deallocated, but is only good until the next call.
5681
5682 TEXT_LEN is equal to the length of TEXT.
5683 Perform a wild match if WILD_MATCH_P is set.
5684 ENCODED_P should be set if TEXT represents the start of a symbol name
5685 in its encoded form. */
5686
5687 static const char *
5688 symbol_completion_match (const char *sym_name,
5689 const char *text, int text_len,
5690 int wild_match_p, int encoded_p)
5691 {
5692 const int verbatim_match = (text[0] == '<');
5693 int match = 0;
5694
5695 if (verbatim_match)
5696 {
5697 /* Strip the leading angle bracket. */
5698 text = text + 1;
5699 text_len--;
5700 }
5701
5702 /* First, test against the fully qualified name of the symbol. */
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706
5707 if (match && !encoded_p)
5708 {
5709 /* One needed check before declaring a positive match is to verify
5710 that iff we are doing a verbatim match, the decoded version
5711 of the symbol name starts with '<'. Otherwise, this symbol name
5712 is not a suitable completion. */
5713 const char *sym_name_copy = sym_name;
5714 int has_angle_bracket;
5715
5716 sym_name = ada_decode (sym_name);
5717 has_angle_bracket = (sym_name[0] == '<');
5718 match = (has_angle_bracket == verbatim_match);
5719 sym_name = sym_name_copy;
5720 }
5721
5722 if (match && !verbatim_match)
5723 {
5724 /* When doing non-verbatim match, another check that needs to
5725 be done is to verify that the potentially matching symbol name
5726 does not include capital letters, because the ada-mode would
5727 not be able to understand these symbol names without the
5728 angle bracket notation. */
5729 const char *tmp;
5730
5731 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5732 if (*tmp != '\0')
5733 match = 0;
5734 }
5735
5736 /* Second: Try wild matching... */
5737
5738 if (!match && wild_match_p)
5739 {
5740 /* Since we are doing wild matching, this means that TEXT
5741 may represent an unqualified symbol name. We therefore must
5742 also compare TEXT against the unqualified name of the symbol. */
5743 sym_name = ada_unqualified_name (ada_decode (sym_name));
5744
5745 if (strncmp (sym_name, text, text_len) == 0)
5746 match = 1;
5747 }
5748
5749 /* Finally: If we found a mach, prepare the result to return. */
5750
5751 if (!match)
5752 return NULL;
5753
5754 if (verbatim_match)
5755 sym_name = add_angle_brackets (sym_name);
5756
5757 if (!encoded_p)
5758 sym_name = ada_decode (sym_name);
5759
5760 return sym_name;
5761 }
5762
5763 /* A companion function to ada_make_symbol_completion_list().
5764 Check if SYM_NAME represents a symbol which name would be suitable
5765 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5766 it is appended at the end of the given string vector SV.
5767
5768 ORIG_TEXT is the string original string from the user command
5769 that needs to be completed. WORD is the entire command on which
5770 completion should be performed. These two parameters are used to
5771 determine which part of the symbol name should be added to the
5772 completion vector.
5773 if WILD_MATCH_P is set, then wild matching is performed.
5774 ENCODED_P should be set if TEXT represents a symbol name in its
5775 encoded formed (in which case the completion should also be
5776 encoded). */
5777
5778 static void
5779 symbol_completion_add (VEC(char_ptr) **sv,
5780 const char *sym_name,
5781 const char *text, int text_len,
5782 const char *orig_text, const char *word,
5783 int wild_match_p, int encoded_p)
5784 {
5785 const char *match = symbol_completion_match (sym_name, text, text_len,
5786 wild_match_p, encoded_p);
5787 char *completion;
5788
5789 if (match == NULL)
5790 return;
5791
5792 /* We found a match, so add the appropriate completion to the given
5793 string vector. */
5794
5795 if (word == orig_text)
5796 {
5797 completion = xmalloc (strlen (match) + 5);
5798 strcpy (completion, match);
5799 }
5800 else if (word > orig_text)
5801 {
5802 /* Return some portion of sym_name. */
5803 completion = xmalloc (strlen (match) + 5);
5804 strcpy (completion, match + (word - orig_text));
5805 }
5806 else
5807 {
5808 /* Return some of ORIG_TEXT plus sym_name. */
5809 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5810 strncpy (completion, word, orig_text - word);
5811 completion[orig_text - word] = '\0';
5812 strcat (completion, match);
5813 }
5814
5815 VEC_safe_push (char_ptr, *sv, completion);
5816 }
5817
5818 /* An object of this type is passed as the user_data argument to the
5819 expand_partial_symbol_names method. */
5820 struct add_partial_datum
5821 {
5822 VEC(char_ptr) **completions;
5823 const char *text;
5824 int text_len;
5825 const char *text0;
5826 const char *word;
5827 int wild_match;
5828 int encoded;
5829 };
5830
5831 /* A callback for expand_partial_symbol_names. */
5832 static int
5833 ada_expand_partial_symbol_name (const char *name, void *user_data)
5834 {
5835 struct add_partial_datum *data = user_data;
5836
5837 return symbol_completion_match (name, data->text, data->text_len,
5838 data->wild_match, data->encoded) != NULL;
5839 }
5840
5841 /* Return a list of possible symbol names completing TEXT0. WORD is
5842 the entire command on which completion is made. */
5843
5844 static VEC (char_ptr) *
5845 ada_make_symbol_completion_list (const char *text0, const char *word,
5846 enum type_code code)
5847 {
5848 char *text;
5849 int text_len;
5850 int wild_match_p;
5851 int encoded_p;
5852 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5853 struct symbol *sym;
5854 struct symtab *s;
5855 struct minimal_symbol *msymbol;
5856 struct objfile *objfile;
5857 struct block *b, *surrounding_static_block = 0;
5858 int i;
5859 struct block_iterator iter;
5860 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5861
5862 gdb_assert (code == TYPE_CODE_UNDEF);
5863
5864 if (text0[0] == '<')
5865 {
5866 text = xstrdup (text0);
5867 make_cleanup (xfree, text);
5868 text_len = strlen (text);
5869 wild_match_p = 0;
5870 encoded_p = 1;
5871 }
5872 else
5873 {
5874 text = xstrdup (ada_encode (text0));
5875 make_cleanup (xfree, text);
5876 text_len = strlen (text);
5877 for (i = 0; i < text_len; i++)
5878 text[i] = tolower (text[i]);
5879
5880 encoded_p = (strstr (text0, "__") != NULL);
5881 /* If the name contains a ".", then the user is entering a fully
5882 qualified entity name, and the match must not be done in wild
5883 mode. Similarly, if the user wants to complete what looks like
5884 an encoded name, the match must not be done in wild mode. */
5885 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5886 }
5887
5888 /* First, look at the partial symtab symbols. */
5889 {
5890 struct add_partial_datum data;
5891
5892 data.completions = &completions;
5893 data.text = text;
5894 data.text_len = text_len;
5895 data.text0 = text0;
5896 data.word = word;
5897 data.wild_match = wild_match_p;
5898 data.encoded = encoded_p;
5899 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5900 }
5901
5902 /* At this point scan through the misc symbol vectors and add each
5903 symbol you find to the list. Eventually we want to ignore
5904 anything that isn't a text symbol (everything else will be
5905 handled by the psymtab code above). */
5906
5907 ALL_MSYMBOLS (objfile, msymbol)
5908 {
5909 QUIT;
5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5911 text, text_len, text0, word, wild_match_p,
5912 encoded_p);
5913 }
5914
5915 /* Search upwards from currently selected frame (so that we can
5916 complete on local vars. */
5917
5918 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5919 {
5920 if (!BLOCK_SUPERBLOCK (b))
5921 surrounding_static_block = b; /* For elmin of dups */
5922
5923 ALL_BLOCK_SYMBOLS (b, iter, sym)
5924 {
5925 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5926 text, text_len, text0, word,
5927 wild_match_p, encoded_p);
5928 }
5929 }
5930
5931 /* Go through the symtabs and check the externs and statics for
5932 symbols which match. */
5933
5934 ALL_SYMTABS (objfile, s)
5935 {
5936 QUIT;
5937 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5938 ALL_BLOCK_SYMBOLS (b, iter, sym)
5939 {
5940 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5941 text, text_len, text0, word,
5942 wild_match_p, encoded_p);
5943 }
5944 }
5945
5946 ALL_SYMTABS (objfile, s)
5947 {
5948 QUIT;
5949 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5950 /* Don't do this block twice. */
5951 if (b == surrounding_static_block)
5952 continue;
5953 ALL_BLOCK_SYMBOLS (b, iter, sym)
5954 {
5955 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5956 text, text_len, text0, word,
5957 wild_match_p, encoded_p);
5958 }
5959 }
5960
5961 do_cleanups (old_chain);
5962 return completions;
5963 }
5964
5965 /* Field Access */
5966
5967 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5968 for tagged types. */
5969
5970 static int
5971 ada_is_dispatch_table_ptr_type (struct type *type)
5972 {
5973 const char *name;
5974
5975 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5976 return 0;
5977
5978 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5979 if (name == NULL)
5980 return 0;
5981
5982 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5983 }
5984
5985 /* Return non-zero if TYPE is an interface tag. */
5986
5987 static int
5988 ada_is_interface_tag (struct type *type)
5989 {
5990 const char *name = TYPE_NAME (type);
5991
5992 if (name == NULL)
5993 return 0;
5994
5995 return (strcmp (name, "ada__tags__interface_tag") == 0);
5996 }
5997
5998 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5999 to be invisible to users. */
6000
6001 int
6002 ada_is_ignored_field (struct type *type, int field_num)
6003 {
6004 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6005 return 1;
6006
6007 /* Check the name of that field. */
6008 {
6009 const char *name = TYPE_FIELD_NAME (type, field_num);
6010
6011 /* Anonymous field names should not be printed.
6012 brobecker/2007-02-20: I don't think this can actually happen
6013 but we don't want to print the value of annonymous fields anyway. */
6014 if (name == NULL)
6015 return 1;
6016
6017 /* Normally, fields whose name start with an underscore ("_")
6018 are fields that have been internally generated by the compiler,
6019 and thus should not be printed. The "_parent" field is special,
6020 however: This is a field internally generated by the compiler
6021 for tagged types, and it contains the components inherited from
6022 the parent type. This field should not be printed as is, but
6023 should not be ignored either. */
6024 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6025 return 1;
6026 }
6027
6028 /* If this is the dispatch table of a tagged type or an interface tag,
6029 then ignore. */
6030 if (ada_is_tagged_type (type, 1)
6031 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6032 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6033 return 1;
6034
6035 /* Not a special field, so it should not be ignored. */
6036 return 0;
6037 }
6038
6039 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6040 pointer or reference type whose ultimate target has a tag field. */
6041
6042 int
6043 ada_is_tagged_type (struct type *type, int refok)
6044 {
6045 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6046 }
6047
6048 /* True iff TYPE represents the type of X'Tag */
6049
6050 int
6051 ada_is_tag_type (struct type *type)
6052 {
6053 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6054 return 0;
6055 else
6056 {
6057 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6058
6059 return (name != NULL
6060 && strcmp (name, "ada__tags__dispatch_table") == 0);
6061 }
6062 }
6063
6064 /* The type of the tag on VAL. */
6065
6066 struct type *
6067 ada_tag_type (struct value *val)
6068 {
6069 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6070 }
6071
6072 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6073 retired at Ada 05). */
6074
6075 static int
6076 is_ada95_tag (struct value *tag)
6077 {
6078 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6079 }
6080
6081 /* The value of the tag on VAL. */
6082
6083 struct value *
6084 ada_value_tag (struct value *val)
6085 {
6086 return ada_value_struct_elt (val, "_tag", 0);
6087 }
6088
6089 /* The value of the tag on the object of type TYPE whose contents are
6090 saved at VALADDR, if it is non-null, or is at memory address
6091 ADDRESS. */
6092
6093 static struct value *
6094 value_tag_from_contents_and_address (struct type *type,
6095 const gdb_byte *valaddr,
6096 CORE_ADDR address)
6097 {
6098 int tag_byte_offset;
6099 struct type *tag_type;
6100
6101 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6102 NULL, NULL, NULL))
6103 {
6104 const gdb_byte *valaddr1 = ((valaddr == NULL)
6105 ? NULL
6106 : valaddr + tag_byte_offset);
6107 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6108
6109 return value_from_contents_and_address (tag_type, valaddr1, address1);
6110 }
6111 return NULL;
6112 }
6113
6114 static struct type *
6115 type_from_tag (struct value *tag)
6116 {
6117 const char *type_name = ada_tag_name (tag);
6118
6119 if (type_name != NULL)
6120 return ada_find_any_type (ada_encode (type_name));
6121 return NULL;
6122 }
6123
6124 /* Given a value OBJ of a tagged type, return a value of this
6125 type at the base address of the object. The base address, as
6126 defined in Ada.Tags, it is the address of the primary tag of
6127 the object, and therefore where the field values of its full
6128 view can be fetched. */
6129
6130 struct value *
6131 ada_tag_value_at_base_address (struct value *obj)
6132 {
6133 volatile struct gdb_exception e;
6134 struct value *val;
6135 LONGEST offset_to_top = 0;
6136 struct type *ptr_type, *obj_type;
6137 struct value *tag;
6138 CORE_ADDR base_address;
6139
6140 obj_type = value_type (obj);
6141
6142 /* It is the responsability of the caller to deref pointers. */
6143
6144 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6145 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6146 return obj;
6147
6148 tag = ada_value_tag (obj);
6149 if (!tag)
6150 return obj;
6151
6152 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6153
6154 if (is_ada95_tag (tag))
6155 return obj;
6156
6157 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6158 ptr_type = lookup_pointer_type (ptr_type);
6159 val = value_cast (ptr_type, tag);
6160 if (!val)
6161 return obj;
6162
6163 /* It is perfectly possible that an exception be raised while
6164 trying to determine the base address, just like for the tag;
6165 see ada_tag_name for more details. We do not print the error
6166 message for the same reason. */
6167
6168 TRY_CATCH (e, RETURN_MASK_ERROR)
6169 {
6170 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6171 }
6172
6173 if (e.reason < 0)
6174 return obj;
6175
6176 /* If offset is null, nothing to do. */
6177
6178 if (offset_to_top == 0)
6179 return obj;
6180
6181 /* -1 is a special case in Ada.Tags; however, what should be done
6182 is not quite clear from the documentation. So do nothing for
6183 now. */
6184
6185 if (offset_to_top == -1)
6186 return obj;
6187
6188 base_address = value_address (obj) - offset_to_top;
6189 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6190
6191 /* Make sure that we have a proper tag at the new address.
6192 Otherwise, offset_to_top is bogus (which can happen when
6193 the object is not initialized yet). */
6194
6195 if (!tag)
6196 return obj;
6197
6198 obj_type = type_from_tag (tag);
6199
6200 if (!obj_type)
6201 return obj;
6202
6203 return value_from_contents_and_address (obj_type, NULL, base_address);
6204 }
6205
6206 /* Return the "ada__tags__type_specific_data" type. */
6207
6208 static struct type *
6209 ada_get_tsd_type (struct inferior *inf)
6210 {
6211 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6212
6213 if (data->tsd_type == 0)
6214 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6215 return data->tsd_type;
6216 }
6217
6218 /* Return the TSD (type-specific data) associated to the given TAG.
6219 TAG is assumed to be the tag of a tagged-type entity.
6220
6221 May return NULL if we are unable to get the TSD. */
6222
6223 static struct value *
6224 ada_get_tsd_from_tag (struct value *tag)
6225 {
6226 struct value *val;
6227 struct type *type;
6228
6229 /* First option: The TSD is simply stored as a field of our TAG.
6230 Only older versions of GNAT would use this format, but we have
6231 to test it first, because there are no visible markers for
6232 the current approach except the absence of that field. */
6233
6234 val = ada_value_struct_elt (tag, "tsd", 1);
6235 if (val)
6236 return val;
6237
6238 /* Try the second representation for the dispatch table (in which
6239 there is no explicit 'tsd' field in the referent of the tag pointer,
6240 and instead the tsd pointer is stored just before the dispatch
6241 table. */
6242
6243 type = ada_get_tsd_type (current_inferior());
6244 if (type == NULL)
6245 return NULL;
6246 type = lookup_pointer_type (lookup_pointer_type (type));
6247 val = value_cast (type, tag);
6248 if (val == NULL)
6249 return NULL;
6250 return value_ind (value_ptradd (val, -1));
6251 }
6252
6253 /* Given the TSD of a tag (type-specific data), return a string
6254 containing the name of the associated type.
6255
6256 The returned value is good until the next call. May return NULL
6257 if we are unable to determine the tag name. */
6258
6259 static char *
6260 ada_tag_name_from_tsd (struct value *tsd)
6261 {
6262 static char name[1024];
6263 char *p;
6264 struct value *val;
6265
6266 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6267 if (val == NULL)
6268 return NULL;
6269 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6270 for (p = name; *p != '\0'; p += 1)
6271 if (isalpha (*p))
6272 *p = tolower (*p);
6273 return name;
6274 }
6275
6276 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6277 a C string.
6278
6279 Return NULL if the TAG is not an Ada tag, or if we were unable to
6280 determine the name of that tag. The result is good until the next
6281 call. */
6282
6283 const char *
6284 ada_tag_name (struct value *tag)
6285 {
6286 volatile struct gdb_exception e;
6287 char *name = NULL;
6288
6289 if (!ada_is_tag_type (value_type (tag)))
6290 return NULL;
6291
6292 /* It is perfectly possible that an exception be raised while trying
6293 to determine the TAG's name, even under normal circumstances:
6294 The associated variable may be uninitialized or corrupted, for
6295 instance. We do not let any exception propagate past this point.
6296 instead we return NULL.
6297
6298 We also do not print the error message either (which often is very
6299 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6300 the caller print a more meaningful message if necessary. */
6301 TRY_CATCH (e, RETURN_MASK_ERROR)
6302 {
6303 struct value *tsd = ada_get_tsd_from_tag (tag);
6304
6305 if (tsd != NULL)
6306 name = ada_tag_name_from_tsd (tsd);
6307 }
6308
6309 return name;
6310 }
6311
6312 /* The parent type of TYPE, or NULL if none. */
6313
6314 struct type *
6315 ada_parent_type (struct type *type)
6316 {
6317 int i;
6318
6319 type = ada_check_typedef (type);
6320
6321 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6322 return NULL;
6323
6324 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6325 if (ada_is_parent_field (type, i))
6326 {
6327 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6328
6329 /* If the _parent field is a pointer, then dereference it. */
6330 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6331 parent_type = TYPE_TARGET_TYPE (parent_type);
6332 /* If there is a parallel XVS type, get the actual base type. */
6333 parent_type = ada_get_base_type (parent_type);
6334
6335 return ada_check_typedef (parent_type);
6336 }
6337
6338 return NULL;
6339 }
6340
6341 /* True iff field number FIELD_NUM of structure type TYPE contains the
6342 parent-type (inherited) fields of a derived type. Assumes TYPE is
6343 a structure type with at least FIELD_NUM+1 fields. */
6344
6345 int
6346 ada_is_parent_field (struct type *type, int field_num)
6347 {
6348 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6349
6350 return (name != NULL
6351 && (strncmp (name, "PARENT", 6) == 0
6352 || strncmp (name, "_parent", 7) == 0));
6353 }
6354
6355 /* True iff field number FIELD_NUM of structure type TYPE is a
6356 transparent wrapper field (which should be silently traversed when doing
6357 field selection and flattened when printing). Assumes TYPE is a
6358 structure type with at least FIELD_NUM+1 fields. Such fields are always
6359 structures. */
6360
6361 int
6362 ada_is_wrapper_field (struct type *type, int field_num)
6363 {
6364 const char *name = TYPE_FIELD_NAME (type, field_num);
6365
6366 return (name != NULL
6367 && (strncmp (name, "PARENT", 6) == 0
6368 || strcmp (name, "REP") == 0
6369 || strncmp (name, "_parent", 7) == 0
6370 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6371 }
6372
6373 /* True iff field number FIELD_NUM of structure or union type TYPE
6374 is a variant wrapper. Assumes TYPE is a structure type with at least
6375 FIELD_NUM+1 fields. */
6376
6377 int
6378 ada_is_variant_part (struct type *type, int field_num)
6379 {
6380 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6381
6382 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6383 || (is_dynamic_field (type, field_num)
6384 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6385 == TYPE_CODE_UNION)));
6386 }
6387
6388 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6389 whose discriminants are contained in the record type OUTER_TYPE,
6390 returns the type of the controlling discriminant for the variant.
6391 May return NULL if the type could not be found. */
6392
6393 struct type *
6394 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6395 {
6396 char *name = ada_variant_discrim_name (var_type);
6397
6398 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6399 }
6400
6401 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6402 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6403 represents a 'when others' clause; otherwise 0. */
6404
6405 int
6406 ada_is_others_clause (struct type *type, int field_num)
6407 {
6408 const char *name = TYPE_FIELD_NAME (type, field_num);
6409
6410 return (name != NULL && name[0] == 'O');
6411 }
6412
6413 /* Assuming that TYPE0 is the type of the variant part of a record,
6414 returns the name of the discriminant controlling the variant.
6415 The value is valid until the next call to ada_variant_discrim_name. */
6416
6417 char *
6418 ada_variant_discrim_name (struct type *type0)
6419 {
6420 static char *result = NULL;
6421 static size_t result_len = 0;
6422 struct type *type;
6423 const char *name;
6424 const char *discrim_end;
6425 const char *discrim_start;
6426
6427 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6428 type = TYPE_TARGET_TYPE (type0);
6429 else
6430 type = type0;
6431
6432 name = ada_type_name (type);
6433
6434 if (name == NULL || name[0] == '\000')
6435 return "";
6436
6437 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6438 discrim_end -= 1)
6439 {
6440 if (strncmp (discrim_end, "___XVN", 6) == 0)
6441 break;
6442 }
6443 if (discrim_end == name)
6444 return "";
6445
6446 for (discrim_start = discrim_end; discrim_start != name + 3;
6447 discrim_start -= 1)
6448 {
6449 if (discrim_start == name + 1)
6450 return "";
6451 if ((discrim_start > name + 3
6452 && strncmp (discrim_start - 3, "___", 3) == 0)
6453 || discrim_start[-1] == '.')
6454 break;
6455 }
6456
6457 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6458 strncpy (result, discrim_start, discrim_end - discrim_start);
6459 result[discrim_end - discrim_start] = '\0';
6460 return result;
6461 }
6462
6463 /* Scan STR for a subtype-encoded number, beginning at position K.
6464 Put the position of the character just past the number scanned in
6465 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6466 Return 1 if there was a valid number at the given position, and 0
6467 otherwise. A "subtype-encoded" number consists of the absolute value
6468 in decimal, followed by the letter 'm' to indicate a negative number.
6469 Assumes 0m does not occur. */
6470
6471 int
6472 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6473 {
6474 ULONGEST RU;
6475
6476 if (!isdigit (str[k]))
6477 return 0;
6478
6479 /* Do it the hard way so as not to make any assumption about
6480 the relationship of unsigned long (%lu scan format code) and
6481 LONGEST. */
6482 RU = 0;
6483 while (isdigit (str[k]))
6484 {
6485 RU = RU * 10 + (str[k] - '0');
6486 k += 1;
6487 }
6488
6489 if (str[k] == 'm')
6490 {
6491 if (R != NULL)
6492 *R = (-(LONGEST) (RU - 1)) - 1;
6493 k += 1;
6494 }
6495 else if (R != NULL)
6496 *R = (LONGEST) RU;
6497
6498 /* NOTE on the above: Technically, C does not say what the results of
6499 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6500 number representable as a LONGEST (although either would probably work
6501 in most implementations). When RU>0, the locution in the then branch
6502 above is always equivalent to the negative of RU. */
6503
6504 if (new_k != NULL)
6505 *new_k = k;
6506 return 1;
6507 }
6508
6509 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6510 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6511 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6512
6513 int
6514 ada_in_variant (LONGEST val, struct type *type, int field_num)
6515 {
6516 const char *name = TYPE_FIELD_NAME (type, field_num);
6517 int p;
6518
6519 p = 0;
6520 while (1)
6521 {
6522 switch (name[p])
6523 {
6524 case '\0':
6525 return 0;
6526 case 'S':
6527 {
6528 LONGEST W;
6529
6530 if (!ada_scan_number (name, p + 1, &W, &p))
6531 return 0;
6532 if (val == W)
6533 return 1;
6534 break;
6535 }
6536 case 'R':
6537 {
6538 LONGEST L, U;
6539
6540 if (!ada_scan_number (name, p + 1, &L, &p)
6541 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6542 return 0;
6543 if (val >= L && val <= U)
6544 return 1;
6545 break;
6546 }
6547 case 'O':
6548 return 1;
6549 default:
6550 return 0;
6551 }
6552 }
6553 }
6554
6555 /* FIXME: Lots of redundancy below. Try to consolidate. */
6556
6557 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6558 ARG_TYPE, extract and return the value of one of its (non-static)
6559 fields. FIELDNO says which field. Differs from value_primitive_field
6560 only in that it can handle packed values of arbitrary type. */
6561
6562 static struct value *
6563 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6564 struct type *arg_type)
6565 {
6566 struct type *type;
6567
6568 arg_type = ada_check_typedef (arg_type);
6569 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6570
6571 /* Handle packed fields. */
6572
6573 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6574 {
6575 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6576 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6577
6578 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6579 offset + bit_pos / 8,
6580 bit_pos % 8, bit_size, type);
6581 }
6582 else
6583 return value_primitive_field (arg1, offset, fieldno, arg_type);
6584 }
6585
6586 /* Find field with name NAME in object of type TYPE. If found,
6587 set the following for each argument that is non-null:
6588 - *FIELD_TYPE_P to the field's type;
6589 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6590 an object of that type;
6591 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6592 - *BIT_SIZE_P to its size in bits if the field is packed, and
6593 0 otherwise;
6594 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6595 fields up to but not including the desired field, or by the total
6596 number of fields if not found. A NULL value of NAME never
6597 matches; the function just counts visible fields in this case.
6598
6599 Returns 1 if found, 0 otherwise. */
6600
6601 static int
6602 find_struct_field (const char *name, struct type *type, int offset,
6603 struct type **field_type_p,
6604 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6605 int *index_p)
6606 {
6607 int i;
6608
6609 type = ada_check_typedef (type);
6610
6611 if (field_type_p != NULL)
6612 *field_type_p = NULL;
6613 if (byte_offset_p != NULL)
6614 *byte_offset_p = 0;
6615 if (bit_offset_p != NULL)
6616 *bit_offset_p = 0;
6617 if (bit_size_p != NULL)
6618 *bit_size_p = 0;
6619
6620 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6621 {
6622 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6623 int fld_offset = offset + bit_pos / 8;
6624 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6625
6626 if (t_field_name == NULL)
6627 continue;
6628
6629 else if (name != NULL && field_name_match (t_field_name, name))
6630 {
6631 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6632
6633 if (field_type_p != NULL)
6634 *field_type_p = TYPE_FIELD_TYPE (type, i);
6635 if (byte_offset_p != NULL)
6636 *byte_offset_p = fld_offset;
6637 if (bit_offset_p != NULL)
6638 *bit_offset_p = bit_pos % 8;
6639 if (bit_size_p != NULL)
6640 *bit_size_p = bit_size;
6641 return 1;
6642 }
6643 else if (ada_is_wrapper_field (type, i))
6644 {
6645 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6646 field_type_p, byte_offset_p, bit_offset_p,
6647 bit_size_p, index_p))
6648 return 1;
6649 }
6650 else if (ada_is_variant_part (type, i))
6651 {
6652 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6653 fixed type?? */
6654 int j;
6655 struct type *field_type
6656 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6657
6658 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6659 {
6660 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6661 fld_offset
6662 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6663 field_type_p, byte_offset_p,
6664 bit_offset_p, bit_size_p, index_p))
6665 return 1;
6666 }
6667 }
6668 else if (index_p != NULL)
6669 *index_p += 1;
6670 }
6671 return 0;
6672 }
6673
6674 /* Number of user-visible fields in record type TYPE. */
6675
6676 static int
6677 num_visible_fields (struct type *type)
6678 {
6679 int n;
6680
6681 n = 0;
6682 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6683 return n;
6684 }
6685
6686 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6687 and search in it assuming it has (class) type TYPE.
6688 If found, return value, else return NULL.
6689
6690 Searches recursively through wrapper fields (e.g., '_parent'). */
6691
6692 static struct value *
6693 ada_search_struct_field (char *name, struct value *arg, int offset,
6694 struct type *type)
6695 {
6696 int i;
6697
6698 type = ada_check_typedef (type);
6699 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6700 {
6701 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6702
6703 if (t_field_name == NULL)
6704 continue;
6705
6706 else if (field_name_match (t_field_name, name))
6707 return ada_value_primitive_field (arg, offset, i, type);
6708
6709 else if (ada_is_wrapper_field (type, i))
6710 {
6711 struct value *v = /* Do not let indent join lines here. */
6712 ada_search_struct_field (name, arg,
6713 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6714 TYPE_FIELD_TYPE (type, i));
6715
6716 if (v != NULL)
6717 return v;
6718 }
6719
6720 else if (ada_is_variant_part (type, i))
6721 {
6722 /* PNH: Do we ever get here? See find_struct_field. */
6723 int j;
6724 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6725 i));
6726 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6727
6728 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6729 {
6730 struct value *v = ada_search_struct_field /* Force line
6731 break. */
6732 (name, arg,
6733 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6734 TYPE_FIELD_TYPE (field_type, j));
6735
6736 if (v != NULL)
6737 return v;
6738 }
6739 }
6740 }
6741 return NULL;
6742 }
6743
6744 static struct value *ada_index_struct_field_1 (int *, struct value *,
6745 int, struct type *);
6746
6747
6748 /* Return field #INDEX in ARG, where the index is that returned by
6749 * find_struct_field through its INDEX_P argument. Adjust the address
6750 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6751 * If found, return value, else return NULL. */
6752
6753 static struct value *
6754 ada_index_struct_field (int index, struct value *arg, int offset,
6755 struct type *type)
6756 {
6757 return ada_index_struct_field_1 (&index, arg, offset, type);
6758 }
6759
6760
6761 /* Auxiliary function for ada_index_struct_field. Like
6762 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6763 * *INDEX_P. */
6764
6765 static struct value *
6766 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6767 struct type *type)
6768 {
6769 int i;
6770 type = ada_check_typedef (type);
6771
6772 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6773 {
6774 if (TYPE_FIELD_NAME (type, i) == NULL)
6775 continue;
6776 else if (ada_is_wrapper_field (type, i))
6777 {
6778 struct value *v = /* Do not let indent join lines here. */
6779 ada_index_struct_field_1 (index_p, arg,
6780 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6781 TYPE_FIELD_TYPE (type, i));
6782
6783 if (v != NULL)
6784 return v;
6785 }
6786
6787 else if (ada_is_variant_part (type, i))
6788 {
6789 /* PNH: Do we ever get here? See ada_search_struct_field,
6790 find_struct_field. */
6791 error (_("Cannot assign this kind of variant record"));
6792 }
6793 else if (*index_p == 0)
6794 return ada_value_primitive_field (arg, offset, i, type);
6795 else
6796 *index_p -= 1;
6797 }
6798 return NULL;
6799 }
6800
6801 /* Given ARG, a value of type (pointer or reference to a)*
6802 structure/union, extract the component named NAME from the ultimate
6803 target structure/union and return it as a value with its
6804 appropriate type.
6805
6806 The routine searches for NAME among all members of the structure itself
6807 and (recursively) among all members of any wrapper members
6808 (e.g., '_parent').
6809
6810 If NO_ERR, then simply return NULL in case of error, rather than
6811 calling error. */
6812
6813 struct value *
6814 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6815 {
6816 struct type *t, *t1;
6817 struct value *v;
6818
6819 v = NULL;
6820 t1 = t = ada_check_typedef (value_type (arg));
6821 if (TYPE_CODE (t) == TYPE_CODE_REF)
6822 {
6823 t1 = TYPE_TARGET_TYPE (t);
6824 if (t1 == NULL)
6825 goto BadValue;
6826 t1 = ada_check_typedef (t1);
6827 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6828 {
6829 arg = coerce_ref (arg);
6830 t = t1;
6831 }
6832 }
6833
6834 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6835 {
6836 t1 = TYPE_TARGET_TYPE (t);
6837 if (t1 == NULL)
6838 goto BadValue;
6839 t1 = ada_check_typedef (t1);
6840 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6841 {
6842 arg = value_ind (arg);
6843 t = t1;
6844 }
6845 else
6846 break;
6847 }
6848
6849 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6850 goto BadValue;
6851
6852 if (t1 == t)
6853 v = ada_search_struct_field (name, arg, 0, t);
6854 else
6855 {
6856 int bit_offset, bit_size, byte_offset;
6857 struct type *field_type;
6858 CORE_ADDR address;
6859
6860 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6861 address = value_address (ada_value_ind (arg));
6862 else
6863 address = value_address (ada_coerce_ref (arg));
6864
6865 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6866 if (find_struct_field (name, t1, 0,
6867 &field_type, &byte_offset, &bit_offset,
6868 &bit_size, NULL))
6869 {
6870 if (bit_size != 0)
6871 {
6872 if (TYPE_CODE (t) == TYPE_CODE_REF)
6873 arg = ada_coerce_ref (arg);
6874 else
6875 arg = ada_value_ind (arg);
6876 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6877 bit_offset, bit_size,
6878 field_type);
6879 }
6880 else
6881 v = value_at_lazy (field_type, address + byte_offset);
6882 }
6883 }
6884
6885 if (v != NULL || no_err)
6886 return v;
6887 else
6888 error (_("There is no member named %s."), name);
6889
6890 BadValue:
6891 if (no_err)
6892 return NULL;
6893 else
6894 error (_("Attempt to extract a component of "
6895 "a value that is not a record."));
6896 }
6897
6898 /* Given a type TYPE, look up the type of the component of type named NAME.
6899 If DISPP is non-null, add its byte displacement from the beginning of a
6900 structure (pointed to by a value) of type TYPE to *DISPP (does not
6901 work for packed fields).
6902
6903 Matches any field whose name has NAME as a prefix, possibly
6904 followed by "___".
6905
6906 TYPE can be either a struct or union. If REFOK, TYPE may also
6907 be a (pointer or reference)+ to a struct or union, and the
6908 ultimate target type will be searched.
6909
6910 Looks recursively into variant clauses and parent types.
6911
6912 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6913 TYPE is not a type of the right kind. */
6914
6915 static struct type *
6916 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6917 int noerr, int *dispp)
6918 {
6919 int i;
6920
6921 if (name == NULL)
6922 goto BadName;
6923
6924 if (refok && type != NULL)
6925 while (1)
6926 {
6927 type = ada_check_typedef (type);
6928 if (TYPE_CODE (type) != TYPE_CODE_PTR
6929 && TYPE_CODE (type) != TYPE_CODE_REF)
6930 break;
6931 type = TYPE_TARGET_TYPE (type);
6932 }
6933
6934 if (type == NULL
6935 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6936 && TYPE_CODE (type) != TYPE_CODE_UNION))
6937 {
6938 if (noerr)
6939 return NULL;
6940 else
6941 {
6942 target_terminal_ours ();
6943 gdb_flush (gdb_stdout);
6944 if (type == NULL)
6945 error (_("Type (null) is not a structure or union type"));
6946 else
6947 {
6948 /* XXX: type_sprint */
6949 fprintf_unfiltered (gdb_stderr, _("Type "));
6950 type_print (type, "", gdb_stderr, -1);
6951 error (_(" is not a structure or union type"));
6952 }
6953 }
6954 }
6955
6956 type = to_static_fixed_type (type);
6957
6958 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6959 {
6960 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6961 struct type *t;
6962 int disp;
6963
6964 if (t_field_name == NULL)
6965 continue;
6966
6967 else if (field_name_match (t_field_name, name))
6968 {
6969 if (dispp != NULL)
6970 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6971 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6972 }
6973
6974 else if (ada_is_wrapper_field (type, i))
6975 {
6976 disp = 0;
6977 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6978 0, 1, &disp);
6979 if (t != NULL)
6980 {
6981 if (dispp != NULL)
6982 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6983 return t;
6984 }
6985 }
6986
6987 else if (ada_is_variant_part (type, i))
6988 {
6989 int j;
6990 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6991 i));
6992
6993 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6994 {
6995 /* FIXME pnh 2008/01/26: We check for a field that is
6996 NOT wrapped in a struct, since the compiler sometimes
6997 generates these for unchecked variant types. Revisit
6998 if the compiler changes this practice. */
6999 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7000 disp = 0;
7001 if (v_field_name != NULL
7002 && field_name_match (v_field_name, name))
7003 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7004 else
7005 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7006 j),
7007 name, 0, 1, &disp);
7008
7009 if (t != NULL)
7010 {
7011 if (dispp != NULL)
7012 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7013 return t;
7014 }
7015 }
7016 }
7017
7018 }
7019
7020 BadName:
7021 if (!noerr)
7022 {
7023 target_terminal_ours ();
7024 gdb_flush (gdb_stdout);
7025 if (name == NULL)
7026 {
7027 /* XXX: type_sprint */
7028 fprintf_unfiltered (gdb_stderr, _("Type "));
7029 type_print (type, "", gdb_stderr, -1);
7030 error (_(" has no component named <null>"));
7031 }
7032 else
7033 {
7034 /* XXX: type_sprint */
7035 fprintf_unfiltered (gdb_stderr, _("Type "));
7036 type_print (type, "", gdb_stderr, -1);
7037 error (_(" has no component named %s"), name);
7038 }
7039 }
7040
7041 return NULL;
7042 }
7043
7044 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7045 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7046 represents an unchecked union (that is, the variant part of a
7047 record that is named in an Unchecked_Union pragma). */
7048
7049 static int
7050 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7051 {
7052 char *discrim_name = ada_variant_discrim_name (var_type);
7053
7054 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7055 == NULL);
7056 }
7057
7058
7059 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7060 within a value of type OUTER_TYPE that is stored in GDB at
7061 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7062 numbering from 0) is applicable. Returns -1 if none are. */
7063
7064 int
7065 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7066 const gdb_byte *outer_valaddr)
7067 {
7068 int others_clause;
7069 int i;
7070 char *discrim_name = ada_variant_discrim_name (var_type);
7071 struct value *outer;
7072 struct value *discrim;
7073 LONGEST discrim_val;
7074
7075 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7076 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7077 if (discrim == NULL)
7078 return -1;
7079 discrim_val = value_as_long (discrim);
7080
7081 others_clause = -1;
7082 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7083 {
7084 if (ada_is_others_clause (var_type, i))
7085 others_clause = i;
7086 else if (ada_in_variant (discrim_val, var_type, i))
7087 return i;
7088 }
7089
7090 return others_clause;
7091 }
7092 \f
7093
7094
7095 /* Dynamic-Sized Records */
7096
7097 /* Strategy: The type ostensibly attached to a value with dynamic size
7098 (i.e., a size that is not statically recorded in the debugging
7099 data) does not accurately reflect the size or layout of the value.
7100 Our strategy is to convert these values to values with accurate,
7101 conventional types that are constructed on the fly. */
7102
7103 /* There is a subtle and tricky problem here. In general, we cannot
7104 determine the size of dynamic records without its data. However,
7105 the 'struct value' data structure, which GDB uses to represent
7106 quantities in the inferior process (the target), requires the size
7107 of the type at the time of its allocation in order to reserve space
7108 for GDB's internal copy of the data. That's why the
7109 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7110 rather than struct value*s.
7111
7112 However, GDB's internal history variables ($1, $2, etc.) are
7113 struct value*s containing internal copies of the data that are not, in
7114 general, the same as the data at their corresponding addresses in
7115 the target. Fortunately, the types we give to these values are all
7116 conventional, fixed-size types (as per the strategy described
7117 above), so that we don't usually have to perform the
7118 'to_fixed_xxx_type' conversions to look at their values.
7119 Unfortunately, there is one exception: if one of the internal
7120 history variables is an array whose elements are unconstrained
7121 records, then we will need to create distinct fixed types for each
7122 element selected. */
7123
7124 /* The upshot of all of this is that many routines take a (type, host
7125 address, target address) triple as arguments to represent a value.
7126 The host address, if non-null, is supposed to contain an internal
7127 copy of the relevant data; otherwise, the program is to consult the
7128 target at the target address. */
7129
7130 /* Assuming that VAL0 represents a pointer value, the result of
7131 dereferencing it. Differs from value_ind in its treatment of
7132 dynamic-sized types. */
7133
7134 struct value *
7135 ada_value_ind (struct value *val0)
7136 {
7137 struct value *val = value_ind (val0);
7138
7139 if (ada_is_tagged_type (value_type (val), 0))
7140 val = ada_tag_value_at_base_address (val);
7141
7142 return ada_to_fixed_value (val);
7143 }
7144
7145 /* The value resulting from dereferencing any "reference to"
7146 qualifiers on VAL0. */
7147
7148 static struct value *
7149 ada_coerce_ref (struct value *val0)
7150 {
7151 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7152 {
7153 struct value *val = val0;
7154
7155 val = coerce_ref (val);
7156
7157 if (ada_is_tagged_type (value_type (val), 0))
7158 val = ada_tag_value_at_base_address (val);
7159
7160 return ada_to_fixed_value (val);
7161 }
7162 else
7163 return val0;
7164 }
7165
7166 /* Return OFF rounded upward if necessary to a multiple of
7167 ALIGNMENT (a power of 2). */
7168
7169 static unsigned int
7170 align_value (unsigned int off, unsigned int alignment)
7171 {
7172 return (off + alignment - 1) & ~(alignment - 1);
7173 }
7174
7175 /* Return the bit alignment required for field #F of template type TYPE. */
7176
7177 static unsigned int
7178 field_alignment (struct type *type, int f)
7179 {
7180 const char *name = TYPE_FIELD_NAME (type, f);
7181 int len;
7182 int align_offset;
7183
7184 /* The field name should never be null, unless the debugging information
7185 is somehow malformed. In this case, we assume the field does not
7186 require any alignment. */
7187 if (name == NULL)
7188 return 1;
7189
7190 len = strlen (name);
7191
7192 if (!isdigit (name[len - 1]))
7193 return 1;
7194
7195 if (isdigit (name[len - 2]))
7196 align_offset = len - 2;
7197 else
7198 align_offset = len - 1;
7199
7200 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7201 return TARGET_CHAR_BIT;
7202
7203 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7204 }
7205
7206 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7207
7208 static struct symbol *
7209 ada_find_any_type_symbol (const char *name)
7210 {
7211 struct symbol *sym;
7212
7213 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7214 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7215 return sym;
7216
7217 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7218 return sym;
7219 }
7220
7221 /* Find a type named NAME. Ignores ambiguity. This routine will look
7222 solely for types defined by debug info, it will not search the GDB
7223 primitive types. */
7224
7225 static struct type *
7226 ada_find_any_type (const char *name)
7227 {
7228 struct symbol *sym = ada_find_any_type_symbol (name);
7229
7230 if (sym != NULL)
7231 return SYMBOL_TYPE (sym);
7232
7233 return NULL;
7234 }
7235
7236 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7237 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7238 symbol, in which case it is returned. Otherwise, this looks for
7239 symbols whose name is that of NAME_SYM suffixed with "___XR".
7240 Return symbol if found, and NULL otherwise. */
7241
7242 struct symbol *
7243 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7244 {
7245 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7246 struct symbol *sym;
7247
7248 if (strstr (name, "___XR") != NULL)
7249 return name_sym;
7250
7251 sym = find_old_style_renaming_symbol (name, block);
7252
7253 if (sym != NULL)
7254 return sym;
7255
7256 /* Not right yet. FIXME pnh 7/20/2007. */
7257 sym = ada_find_any_type_symbol (name);
7258 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7259 return sym;
7260 else
7261 return NULL;
7262 }
7263
7264 static struct symbol *
7265 find_old_style_renaming_symbol (const char *name, const struct block *block)
7266 {
7267 const struct symbol *function_sym = block_linkage_function (block);
7268 char *rename;
7269
7270 if (function_sym != NULL)
7271 {
7272 /* If the symbol is defined inside a function, NAME is not fully
7273 qualified. This means we need to prepend the function name
7274 as well as adding the ``___XR'' suffix to build the name of
7275 the associated renaming symbol. */
7276 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7277 /* Function names sometimes contain suffixes used
7278 for instance to qualify nested subprograms. When building
7279 the XR type name, we need to make sure that this suffix is
7280 not included. So do not include any suffix in the function
7281 name length below. */
7282 int function_name_len = ada_name_prefix_len (function_name);
7283 const int rename_len = function_name_len + 2 /* "__" */
7284 + strlen (name) + 6 /* "___XR\0" */ ;
7285
7286 /* Strip the suffix if necessary. */
7287 ada_remove_trailing_digits (function_name, &function_name_len);
7288 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7289 ada_remove_Xbn_suffix (function_name, &function_name_len);
7290
7291 /* Library-level functions are a special case, as GNAT adds
7292 a ``_ada_'' prefix to the function name to avoid namespace
7293 pollution. However, the renaming symbols themselves do not
7294 have this prefix, so we need to skip this prefix if present. */
7295 if (function_name_len > 5 /* "_ada_" */
7296 && strstr (function_name, "_ada_") == function_name)
7297 {
7298 function_name += 5;
7299 function_name_len -= 5;
7300 }
7301
7302 rename = (char *) alloca (rename_len * sizeof (char));
7303 strncpy (rename, function_name, function_name_len);
7304 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7305 "__%s___XR", name);
7306 }
7307 else
7308 {
7309 const int rename_len = strlen (name) + 6;
7310
7311 rename = (char *) alloca (rename_len * sizeof (char));
7312 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7313 }
7314
7315 return ada_find_any_type_symbol (rename);
7316 }
7317
7318 /* Because of GNAT encoding conventions, several GDB symbols may match a
7319 given type name. If the type denoted by TYPE0 is to be preferred to
7320 that of TYPE1 for purposes of type printing, return non-zero;
7321 otherwise return 0. */
7322
7323 int
7324 ada_prefer_type (struct type *type0, struct type *type1)
7325 {
7326 if (type1 == NULL)
7327 return 1;
7328 else if (type0 == NULL)
7329 return 0;
7330 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7331 return 1;
7332 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7333 return 0;
7334 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7335 return 1;
7336 else if (ada_is_constrained_packed_array_type (type0))
7337 return 1;
7338 else if (ada_is_array_descriptor_type (type0)
7339 && !ada_is_array_descriptor_type (type1))
7340 return 1;
7341 else
7342 {
7343 const char *type0_name = type_name_no_tag (type0);
7344 const char *type1_name = type_name_no_tag (type1);
7345
7346 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7347 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7348 return 1;
7349 }
7350 return 0;
7351 }
7352
7353 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7354 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7355
7356 const char *
7357 ada_type_name (struct type *type)
7358 {
7359 if (type == NULL)
7360 return NULL;
7361 else if (TYPE_NAME (type) != NULL)
7362 return TYPE_NAME (type);
7363 else
7364 return TYPE_TAG_NAME (type);
7365 }
7366
7367 /* Search the list of "descriptive" types associated to TYPE for a type
7368 whose name is NAME. */
7369
7370 static struct type *
7371 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7372 {
7373 struct type *result;
7374
7375 /* If there no descriptive-type info, then there is no parallel type
7376 to be found. */
7377 if (!HAVE_GNAT_AUX_INFO (type))
7378 return NULL;
7379
7380 result = TYPE_DESCRIPTIVE_TYPE (type);
7381 while (result != NULL)
7382 {
7383 const char *result_name = ada_type_name (result);
7384
7385 if (result_name == NULL)
7386 {
7387 warning (_("unexpected null name on descriptive type"));
7388 return NULL;
7389 }
7390
7391 /* If the names match, stop. */
7392 if (strcmp (result_name, name) == 0)
7393 break;
7394
7395 /* Otherwise, look at the next item on the list, if any. */
7396 if (HAVE_GNAT_AUX_INFO (result))
7397 result = TYPE_DESCRIPTIVE_TYPE (result);
7398 else
7399 result = NULL;
7400 }
7401
7402 /* If we didn't find a match, see whether this is a packed array. With
7403 older compilers, the descriptive type information is either absent or
7404 irrelevant when it comes to packed arrays so the above lookup fails.
7405 Fall back to using a parallel lookup by name in this case. */
7406 if (result == NULL && ada_is_constrained_packed_array_type (type))
7407 return ada_find_any_type (name);
7408
7409 return result;
7410 }
7411
7412 /* Find a parallel type to TYPE with the specified NAME, using the
7413 descriptive type taken from the debugging information, if available,
7414 and otherwise using the (slower) name-based method. */
7415
7416 static struct type *
7417 ada_find_parallel_type_with_name (struct type *type, const char *name)
7418 {
7419 struct type *result = NULL;
7420
7421 if (HAVE_GNAT_AUX_INFO (type))
7422 result = find_parallel_type_by_descriptive_type (type, name);
7423 else
7424 result = ada_find_any_type (name);
7425
7426 return result;
7427 }
7428
7429 /* Same as above, but specify the name of the parallel type by appending
7430 SUFFIX to the name of TYPE. */
7431
7432 struct type *
7433 ada_find_parallel_type (struct type *type, const char *suffix)
7434 {
7435 char *name;
7436 const char *typename = ada_type_name (type);
7437 int len;
7438
7439 if (typename == NULL)
7440 return NULL;
7441
7442 len = strlen (typename);
7443
7444 name = (char *) alloca (len + strlen (suffix) + 1);
7445
7446 strcpy (name, typename);
7447 strcpy (name + len, suffix);
7448
7449 return ada_find_parallel_type_with_name (type, name);
7450 }
7451
7452 /* If TYPE is a variable-size record type, return the corresponding template
7453 type describing its fields. Otherwise, return NULL. */
7454
7455 static struct type *
7456 dynamic_template_type (struct type *type)
7457 {
7458 type = ada_check_typedef (type);
7459
7460 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7461 || ada_type_name (type) == NULL)
7462 return NULL;
7463 else
7464 {
7465 int len = strlen (ada_type_name (type));
7466
7467 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7468 return type;
7469 else
7470 return ada_find_parallel_type (type, "___XVE");
7471 }
7472 }
7473
7474 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7475 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7476
7477 static int
7478 is_dynamic_field (struct type *templ_type, int field_num)
7479 {
7480 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7481
7482 return name != NULL
7483 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7484 && strstr (name, "___XVL") != NULL;
7485 }
7486
7487 /* The index of the variant field of TYPE, or -1 if TYPE does not
7488 represent a variant record type. */
7489
7490 static int
7491 variant_field_index (struct type *type)
7492 {
7493 int f;
7494
7495 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7496 return -1;
7497
7498 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7499 {
7500 if (ada_is_variant_part (type, f))
7501 return f;
7502 }
7503 return -1;
7504 }
7505
7506 /* A record type with no fields. */
7507
7508 static struct type *
7509 empty_record (struct type *template)
7510 {
7511 struct type *type = alloc_type_copy (template);
7512
7513 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7514 TYPE_NFIELDS (type) = 0;
7515 TYPE_FIELDS (type) = NULL;
7516 INIT_CPLUS_SPECIFIC (type);
7517 TYPE_NAME (type) = "<empty>";
7518 TYPE_TAG_NAME (type) = NULL;
7519 TYPE_LENGTH (type) = 0;
7520 return type;
7521 }
7522
7523 /* An ordinary record type (with fixed-length fields) that describes
7524 the value of type TYPE at VALADDR or ADDRESS (see comments at
7525 the beginning of this section) VAL according to GNAT conventions.
7526 DVAL0 should describe the (portion of a) record that contains any
7527 necessary discriminants. It should be NULL if value_type (VAL) is
7528 an outer-level type (i.e., as opposed to a branch of a variant.) A
7529 variant field (unless unchecked) is replaced by a particular branch
7530 of the variant.
7531
7532 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7533 length are not statically known are discarded. As a consequence,
7534 VALADDR, ADDRESS and DVAL0 are ignored.
7535
7536 NOTE: Limitations: For now, we assume that dynamic fields and
7537 variants occupy whole numbers of bytes. However, they need not be
7538 byte-aligned. */
7539
7540 struct type *
7541 ada_template_to_fixed_record_type_1 (struct type *type,
7542 const gdb_byte *valaddr,
7543 CORE_ADDR address, struct value *dval0,
7544 int keep_dynamic_fields)
7545 {
7546 struct value *mark = value_mark ();
7547 struct value *dval;
7548 struct type *rtype;
7549 int nfields, bit_len;
7550 int variant_field;
7551 long off;
7552 int fld_bit_len;
7553 int f;
7554
7555 /* Compute the number of fields in this record type that are going
7556 to be processed: unless keep_dynamic_fields, this includes only
7557 fields whose position and length are static will be processed. */
7558 if (keep_dynamic_fields)
7559 nfields = TYPE_NFIELDS (type);
7560 else
7561 {
7562 nfields = 0;
7563 while (nfields < TYPE_NFIELDS (type)
7564 && !ada_is_variant_part (type, nfields)
7565 && !is_dynamic_field (type, nfields))
7566 nfields++;
7567 }
7568
7569 rtype = alloc_type_copy (type);
7570 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7571 INIT_CPLUS_SPECIFIC (rtype);
7572 TYPE_NFIELDS (rtype) = nfields;
7573 TYPE_FIELDS (rtype) = (struct field *)
7574 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7575 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7576 TYPE_NAME (rtype) = ada_type_name (type);
7577 TYPE_TAG_NAME (rtype) = NULL;
7578 TYPE_FIXED_INSTANCE (rtype) = 1;
7579
7580 off = 0;
7581 bit_len = 0;
7582 variant_field = -1;
7583
7584 for (f = 0; f < nfields; f += 1)
7585 {
7586 off = align_value (off, field_alignment (type, f))
7587 + TYPE_FIELD_BITPOS (type, f);
7588 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7589 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7590
7591 if (ada_is_variant_part (type, f))
7592 {
7593 variant_field = f;
7594 fld_bit_len = 0;
7595 }
7596 else if (is_dynamic_field (type, f))
7597 {
7598 const gdb_byte *field_valaddr = valaddr;
7599 CORE_ADDR field_address = address;
7600 struct type *field_type =
7601 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7602
7603 if (dval0 == NULL)
7604 {
7605 /* rtype's length is computed based on the run-time
7606 value of discriminants. If the discriminants are not
7607 initialized, the type size may be completely bogus and
7608 GDB may fail to allocate a value for it. So check the
7609 size first before creating the value. */
7610 check_size (rtype);
7611 dval = value_from_contents_and_address (rtype, valaddr, address);
7612 }
7613 else
7614 dval = dval0;
7615
7616 /* If the type referenced by this field is an aligner type, we need
7617 to unwrap that aligner type, because its size might not be set.
7618 Keeping the aligner type would cause us to compute the wrong
7619 size for this field, impacting the offset of the all the fields
7620 that follow this one. */
7621 if (ada_is_aligner_type (field_type))
7622 {
7623 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7624
7625 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7626 field_address = cond_offset_target (field_address, field_offset);
7627 field_type = ada_aligned_type (field_type);
7628 }
7629
7630 field_valaddr = cond_offset_host (field_valaddr,
7631 off / TARGET_CHAR_BIT);
7632 field_address = cond_offset_target (field_address,
7633 off / TARGET_CHAR_BIT);
7634
7635 /* Get the fixed type of the field. Note that, in this case,
7636 we do not want to get the real type out of the tag: if
7637 the current field is the parent part of a tagged record,
7638 we will get the tag of the object. Clearly wrong: the real
7639 type of the parent is not the real type of the child. We
7640 would end up in an infinite loop. */
7641 field_type = ada_get_base_type (field_type);
7642 field_type = ada_to_fixed_type (field_type, field_valaddr,
7643 field_address, dval, 0);
7644 /* If the field size is already larger than the maximum
7645 object size, then the record itself will necessarily
7646 be larger than the maximum object size. We need to make
7647 this check now, because the size might be so ridiculously
7648 large (due to an uninitialized variable in the inferior)
7649 that it would cause an overflow when adding it to the
7650 record size. */
7651 check_size (field_type);
7652
7653 TYPE_FIELD_TYPE (rtype, f) = field_type;
7654 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7655 /* The multiplication can potentially overflow. But because
7656 the field length has been size-checked just above, and
7657 assuming that the maximum size is a reasonable value,
7658 an overflow should not happen in practice. So rather than
7659 adding overflow recovery code to this already complex code,
7660 we just assume that it's not going to happen. */
7661 fld_bit_len =
7662 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7663 }
7664 else
7665 {
7666 /* Note: If this field's type is a typedef, it is important
7667 to preserve the typedef layer.
7668
7669 Otherwise, we might be transforming a typedef to a fat
7670 pointer (encoding a pointer to an unconstrained array),
7671 into a basic fat pointer (encoding an unconstrained
7672 array). As both types are implemented using the same
7673 structure, the typedef is the only clue which allows us
7674 to distinguish between the two options. Stripping it
7675 would prevent us from printing this field appropriately. */
7676 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7677 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7678 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7679 fld_bit_len =
7680 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7681 else
7682 {
7683 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7684
7685 /* We need to be careful of typedefs when computing
7686 the length of our field. If this is a typedef,
7687 get the length of the target type, not the length
7688 of the typedef. */
7689 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7690 field_type = ada_typedef_target_type (field_type);
7691
7692 fld_bit_len =
7693 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7694 }
7695 }
7696 if (off + fld_bit_len > bit_len)
7697 bit_len = off + fld_bit_len;
7698 off += fld_bit_len;
7699 TYPE_LENGTH (rtype) =
7700 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7701 }
7702
7703 /* We handle the variant part, if any, at the end because of certain
7704 odd cases in which it is re-ordered so as NOT to be the last field of
7705 the record. This can happen in the presence of representation
7706 clauses. */
7707 if (variant_field >= 0)
7708 {
7709 struct type *branch_type;
7710
7711 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7712
7713 if (dval0 == NULL)
7714 dval = value_from_contents_and_address (rtype, valaddr, address);
7715 else
7716 dval = dval0;
7717
7718 branch_type =
7719 to_fixed_variant_branch_type
7720 (TYPE_FIELD_TYPE (type, variant_field),
7721 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7722 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7723 if (branch_type == NULL)
7724 {
7725 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7727 TYPE_NFIELDS (rtype) -= 1;
7728 }
7729 else
7730 {
7731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7733 fld_bit_len =
7734 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7735 TARGET_CHAR_BIT;
7736 if (off + fld_bit_len > bit_len)
7737 bit_len = off + fld_bit_len;
7738 TYPE_LENGTH (rtype) =
7739 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7740 }
7741 }
7742
7743 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7744 should contain the alignment of that record, which should be a strictly
7745 positive value. If null or negative, then something is wrong, most
7746 probably in the debug info. In that case, we don't round up the size
7747 of the resulting type. If this record is not part of another structure,
7748 the current RTYPE length might be good enough for our purposes. */
7749 if (TYPE_LENGTH (type) <= 0)
7750 {
7751 if (TYPE_NAME (rtype))
7752 warning (_("Invalid type size for `%s' detected: %d."),
7753 TYPE_NAME (rtype), TYPE_LENGTH (type));
7754 else
7755 warning (_("Invalid type size for <unnamed> detected: %d."),
7756 TYPE_LENGTH (type));
7757 }
7758 else
7759 {
7760 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7761 TYPE_LENGTH (type));
7762 }
7763
7764 value_free_to_mark (mark);
7765 if (TYPE_LENGTH (rtype) > varsize_limit)
7766 error (_("record type with dynamic size is larger than varsize-limit"));
7767 return rtype;
7768 }
7769
7770 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7771 of 1. */
7772
7773 static struct type *
7774 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7775 CORE_ADDR address, struct value *dval0)
7776 {
7777 return ada_template_to_fixed_record_type_1 (type, valaddr,
7778 address, dval0, 1);
7779 }
7780
7781 /* An ordinary record type in which ___XVL-convention fields and
7782 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7783 static approximations, containing all possible fields. Uses
7784 no runtime values. Useless for use in values, but that's OK,
7785 since the results are used only for type determinations. Works on both
7786 structs and unions. Representation note: to save space, we memorize
7787 the result of this function in the TYPE_TARGET_TYPE of the
7788 template type. */
7789
7790 static struct type *
7791 template_to_static_fixed_type (struct type *type0)
7792 {
7793 struct type *type;
7794 int nfields;
7795 int f;
7796
7797 if (TYPE_TARGET_TYPE (type0) != NULL)
7798 return TYPE_TARGET_TYPE (type0);
7799
7800 nfields = TYPE_NFIELDS (type0);
7801 type = type0;
7802
7803 for (f = 0; f < nfields; f += 1)
7804 {
7805 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7806 struct type *new_type;
7807
7808 if (is_dynamic_field (type0, f))
7809 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7810 else
7811 new_type = static_unwrap_type (field_type);
7812 if (type == type0 && new_type != field_type)
7813 {
7814 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7815 TYPE_CODE (type) = TYPE_CODE (type0);
7816 INIT_CPLUS_SPECIFIC (type);
7817 TYPE_NFIELDS (type) = nfields;
7818 TYPE_FIELDS (type) = (struct field *)
7819 TYPE_ALLOC (type, nfields * sizeof (struct field));
7820 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7821 sizeof (struct field) * nfields);
7822 TYPE_NAME (type) = ada_type_name (type0);
7823 TYPE_TAG_NAME (type) = NULL;
7824 TYPE_FIXED_INSTANCE (type) = 1;
7825 TYPE_LENGTH (type) = 0;
7826 }
7827 TYPE_FIELD_TYPE (type, f) = new_type;
7828 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7829 }
7830 return type;
7831 }
7832
7833 /* Given an object of type TYPE whose contents are at VALADDR and
7834 whose address in memory is ADDRESS, returns a revision of TYPE,
7835 which should be a non-dynamic-sized record, in which the variant
7836 part, if any, is replaced with the appropriate branch. Looks
7837 for discriminant values in DVAL0, which can be NULL if the record
7838 contains the necessary discriminant values. */
7839
7840 static struct type *
7841 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7842 CORE_ADDR address, struct value *dval0)
7843 {
7844 struct value *mark = value_mark ();
7845 struct value *dval;
7846 struct type *rtype;
7847 struct type *branch_type;
7848 int nfields = TYPE_NFIELDS (type);
7849 int variant_field = variant_field_index (type);
7850
7851 if (variant_field == -1)
7852 return type;
7853
7854 if (dval0 == NULL)
7855 dval = value_from_contents_and_address (type, valaddr, address);
7856 else
7857 dval = dval0;
7858
7859 rtype = alloc_type_copy (type);
7860 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7861 INIT_CPLUS_SPECIFIC (rtype);
7862 TYPE_NFIELDS (rtype) = nfields;
7863 TYPE_FIELDS (rtype) =
7864 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7865 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7866 sizeof (struct field) * nfields);
7867 TYPE_NAME (rtype) = ada_type_name (type);
7868 TYPE_TAG_NAME (rtype) = NULL;
7869 TYPE_FIXED_INSTANCE (rtype) = 1;
7870 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7871
7872 branch_type = to_fixed_variant_branch_type
7873 (TYPE_FIELD_TYPE (type, variant_field),
7874 cond_offset_host (valaddr,
7875 TYPE_FIELD_BITPOS (type, variant_field)
7876 / TARGET_CHAR_BIT),
7877 cond_offset_target (address,
7878 TYPE_FIELD_BITPOS (type, variant_field)
7879 / TARGET_CHAR_BIT), dval);
7880 if (branch_type == NULL)
7881 {
7882 int f;
7883
7884 for (f = variant_field + 1; f < nfields; f += 1)
7885 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7886 TYPE_NFIELDS (rtype) -= 1;
7887 }
7888 else
7889 {
7890 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7891 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7892 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7893 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7894 }
7895 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7896
7897 value_free_to_mark (mark);
7898 return rtype;
7899 }
7900
7901 /* An ordinary record type (with fixed-length fields) that describes
7902 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7903 beginning of this section]. Any necessary discriminants' values
7904 should be in DVAL, a record value; it may be NULL if the object
7905 at ADDR itself contains any necessary discriminant values.
7906 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7907 values from the record are needed. Except in the case that DVAL,
7908 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7909 unchecked) is replaced by a particular branch of the variant.
7910
7911 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7912 is questionable and may be removed. It can arise during the
7913 processing of an unconstrained-array-of-record type where all the
7914 variant branches have exactly the same size. This is because in
7915 such cases, the compiler does not bother to use the XVS convention
7916 when encoding the record. I am currently dubious of this
7917 shortcut and suspect the compiler should be altered. FIXME. */
7918
7919 static struct type *
7920 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7921 CORE_ADDR address, struct value *dval)
7922 {
7923 struct type *templ_type;
7924
7925 if (TYPE_FIXED_INSTANCE (type0))
7926 return type0;
7927
7928 templ_type = dynamic_template_type (type0);
7929
7930 if (templ_type != NULL)
7931 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7932 else if (variant_field_index (type0) >= 0)
7933 {
7934 if (dval == NULL && valaddr == NULL && address == 0)
7935 return type0;
7936 return to_record_with_fixed_variant_part (type0, valaddr, address,
7937 dval);
7938 }
7939 else
7940 {
7941 TYPE_FIXED_INSTANCE (type0) = 1;
7942 return type0;
7943 }
7944
7945 }
7946
7947 /* An ordinary record type (with fixed-length fields) that describes
7948 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7949 union type. Any necessary discriminants' values should be in DVAL,
7950 a record value. That is, this routine selects the appropriate
7951 branch of the union at ADDR according to the discriminant value
7952 indicated in the union's type name. Returns VAR_TYPE0 itself if
7953 it represents a variant subject to a pragma Unchecked_Union. */
7954
7955 static struct type *
7956 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7957 CORE_ADDR address, struct value *dval)
7958 {
7959 int which;
7960 struct type *templ_type;
7961 struct type *var_type;
7962
7963 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7964 var_type = TYPE_TARGET_TYPE (var_type0);
7965 else
7966 var_type = var_type0;
7967
7968 templ_type = ada_find_parallel_type (var_type, "___XVU");
7969
7970 if (templ_type != NULL)
7971 var_type = templ_type;
7972
7973 if (is_unchecked_variant (var_type, value_type (dval)))
7974 return var_type0;
7975 which =
7976 ada_which_variant_applies (var_type,
7977 value_type (dval), value_contents (dval));
7978
7979 if (which < 0)
7980 return empty_record (var_type);
7981 else if (is_dynamic_field (var_type, which))
7982 return to_fixed_record_type
7983 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7984 valaddr, address, dval);
7985 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7986 return
7987 to_fixed_record_type
7988 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7989 else
7990 return TYPE_FIELD_TYPE (var_type, which);
7991 }
7992
7993 /* Assuming that TYPE0 is an array type describing the type of a value
7994 at ADDR, and that DVAL describes a record containing any
7995 discriminants used in TYPE0, returns a type for the value that
7996 contains no dynamic components (that is, no components whose sizes
7997 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7998 true, gives an error message if the resulting type's size is over
7999 varsize_limit. */
8000
8001 static struct type *
8002 to_fixed_array_type (struct type *type0, struct value *dval,
8003 int ignore_too_big)
8004 {
8005 struct type *index_type_desc;
8006 struct type *result;
8007 int constrained_packed_array_p;
8008
8009 type0 = ada_check_typedef (type0);
8010 if (TYPE_FIXED_INSTANCE (type0))
8011 return type0;
8012
8013 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8014 if (constrained_packed_array_p)
8015 type0 = decode_constrained_packed_array_type (type0);
8016
8017 index_type_desc = ada_find_parallel_type (type0, "___XA");
8018 ada_fixup_array_indexes_type (index_type_desc);
8019 if (index_type_desc == NULL)
8020 {
8021 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8022
8023 /* NOTE: elt_type---the fixed version of elt_type0---should never
8024 depend on the contents of the array in properly constructed
8025 debugging data. */
8026 /* Create a fixed version of the array element type.
8027 We're not providing the address of an element here,
8028 and thus the actual object value cannot be inspected to do
8029 the conversion. This should not be a problem, since arrays of
8030 unconstrained objects are not allowed. In particular, all
8031 the elements of an array of a tagged type should all be of
8032 the same type specified in the debugging info. No need to
8033 consult the object tag. */
8034 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8035
8036 /* Make sure we always create a new array type when dealing with
8037 packed array types, since we're going to fix-up the array
8038 type length and element bitsize a little further down. */
8039 if (elt_type0 == elt_type && !constrained_packed_array_p)
8040 result = type0;
8041 else
8042 result = create_array_type (alloc_type_copy (type0),
8043 elt_type, TYPE_INDEX_TYPE (type0));
8044 }
8045 else
8046 {
8047 int i;
8048 struct type *elt_type0;
8049
8050 elt_type0 = type0;
8051 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8052 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8053
8054 /* NOTE: result---the fixed version of elt_type0---should never
8055 depend on the contents of the array in properly constructed
8056 debugging data. */
8057 /* Create a fixed version of the array element type.
8058 We're not providing the address of an element here,
8059 and thus the actual object value cannot be inspected to do
8060 the conversion. This should not be a problem, since arrays of
8061 unconstrained objects are not allowed. In particular, all
8062 the elements of an array of a tagged type should all be of
8063 the same type specified in the debugging info. No need to
8064 consult the object tag. */
8065 result =
8066 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8067
8068 elt_type0 = type0;
8069 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8070 {
8071 struct type *range_type =
8072 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8073
8074 result = create_array_type (alloc_type_copy (elt_type0),
8075 result, range_type);
8076 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8077 }
8078 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8079 error (_("array type with dynamic size is larger than varsize-limit"));
8080 }
8081
8082 /* We want to preserve the type name. This can be useful when
8083 trying to get the type name of a value that has already been
8084 printed (for instance, if the user did "print VAR; whatis $". */
8085 TYPE_NAME (result) = TYPE_NAME (type0);
8086
8087 if (constrained_packed_array_p)
8088 {
8089 /* So far, the resulting type has been created as if the original
8090 type was a regular (non-packed) array type. As a result, the
8091 bitsize of the array elements needs to be set again, and the array
8092 length needs to be recomputed based on that bitsize. */
8093 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8094 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8095
8096 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8097 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8098 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8099 TYPE_LENGTH (result)++;
8100 }
8101
8102 TYPE_FIXED_INSTANCE (result) = 1;
8103 return result;
8104 }
8105
8106
8107 /* A standard type (containing no dynamically sized components)
8108 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8109 DVAL describes a record containing any discriminants used in TYPE0,
8110 and may be NULL if there are none, or if the object of type TYPE at
8111 ADDRESS or in VALADDR contains these discriminants.
8112
8113 If CHECK_TAG is not null, in the case of tagged types, this function
8114 attempts to locate the object's tag and use it to compute the actual
8115 type. However, when ADDRESS is null, we cannot use it to determine the
8116 location of the tag, and therefore compute the tagged type's actual type.
8117 So we return the tagged type without consulting the tag. */
8118
8119 static struct type *
8120 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8121 CORE_ADDR address, struct value *dval, int check_tag)
8122 {
8123 type = ada_check_typedef (type);
8124 switch (TYPE_CODE (type))
8125 {
8126 default:
8127 return type;
8128 case TYPE_CODE_STRUCT:
8129 {
8130 struct type *static_type = to_static_fixed_type (type);
8131 struct type *fixed_record_type =
8132 to_fixed_record_type (type, valaddr, address, NULL);
8133
8134 /* If STATIC_TYPE is a tagged type and we know the object's address,
8135 then we can determine its tag, and compute the object's actual
8136 type from there. Note that we have to use the fixed record
8137 type (the parent part of the record may have dynamic fields
8138 and the way the location of _tag is expressed may depend on
8139 them). */
8140
8141 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8142 {
8143 struct value *tag =
8144 value_tag_from_contents_and_address
8145 (fixed_record_type,
8146 valaddr,
8147 address);
8148 struct type *real_type = type_from_tag (tag);
8149 struct value *obj =
8150 value_from_contents_and_address (fixed_record_type,
8151 valaddr,
8152 address);
8153 if (real_type != NULL)
8154 return to_fixed_record_type
8155 (real_type, NULL,
8156 value_address (ada_tag_value_at_base_address (obj)), NULL);
8157 }
8158
8159 /* Check to see if there is a parallel ___XVZ variable.
8160 If there is, then it provides the actual size of our type. */
8161 else if (ada_type_name (fixed_record_type) != NULL)
8162 {
8163 const char *name = ada_type_name (fixed_record_type);
8164 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8165 int xvz_found = 0;
8166 LONGEST size;
8167
8168 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8169 size = get_int_var_value (xvz_name, &xvz_found);
8170 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8171 {
8172 fixed_record_type = copy_type (fixed_record_type);
8173 TYPE_LENGTH (fixed_record_type) = size;
8174
8175 /* The FIXED_RECORD_TYPE may have be a stub. We have
8176 observed this when the debugging info is STABS, and
8177 apparently it is something that is hard to fix.
8178
8179 In practice, we don't need the actual type definition
8180 at all, because the presence of the XVZ variable allows us
8181 to assume that there must be a XVS type as well, which we
8182 should be able to use later, when we need the actual type
8183 definition.
8184
8185 In the meantime, pretend that the "fixed" type we are
8186 returning is NOT a stub, because this can cause trouble
8187 when using this type to create new types targeting it.
8188 Indeed, the associated creation routines often check
8189 whether the target type is a stub and will try to replace
8190 it, thus using a type with the wrong size. This, in turn,
8191 might cause the new type to have the wrong size too.
8192 Consider the case of an array, for instance, where the size
8193 of the array is computed from the number of elements in
8194 our array multiplied by the size of its element. */
8195 TYPE_STUB (fixed_record_type) = 0;
8196 }
8197 }
8198 return fixed_record_type;
8199 }
8200 case TYPE_CODE_ARRAY:
8201 return to_fixed_array_type (type, dval, 1);
8202 case TYPE_CODE_UNION:
8203 if (dval == NULL)
8204 return type;
8205 else
8206 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8207 }
8208 }
8209
8210 /* The same as ada_to_fixed_type_1, except that it preserves the type
8211 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8212
8213 The typedef layer needs be preserved in order to differentiate between
8214 arrays and array pointers when both types are implemented using the same
8215 fat pointer. In the array pointer case, the pointer is encoded as
8216 a typedef of the pointer type. For instance, considering:
8217
8218 type String_Access is access String;
8219 S1 : String_Access := null;
8220
8221 To the debugger, S1 is defined as a typedef of type String. But
8222 to the user, it is a pointer. So if the user tries to print S1,
8223 we should not dereference the array, but print the array address
8224 instead.
8225
8226 If we didn't preserve the typedef layer, we would lose the fact that
8227 the type is to be presented as a pointer (needs de-reference before
8228 being printed). And we would also use the source-level type name. */
8229
8230 struct type *
8231 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8232 CORE_ADDR address, struct value *dval, int check_tag)
8233
8234 {
8235 struct type *fixed_type =
8236 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8237
8238 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8239 then preserve the typedef layer.
8240
8241 Implementation note: We can only check the main-type portion of
8242 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8243 from TYPE now returns a type that has the same instance flags
8244 as TYPE. For instance, if TYPE is a "typedef const", and its
8245 target type is a "struct", then the typedef elimination will return
8246 a "const" version of the target type. See check_typedef for more
8247 details about how the typedef layer elimination is done.
8248
8249 brobecker/2010-11-19: It seems to me that the only case where it is
8250 useful to preserve the typedef layer is when dealing with fat pointers.
8251 Perhaps, we could add a check for that and preserve the typedef layer
8252 only in that situation. But this seems unecessary so far, probably
8253 because we call check_typedef/ada_check_typedef pretty much everywhere.
8254 */
8255 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8256 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8257 == TYPE_MAIN_TYPE (fixed_type)))
8258 return type;
8259
8260 return fixed_type;
8261 }
8262
8263 /* A standard (static-sized) type corresponding as well as possible to
8264 TYPE0, but based on no runtime data. */
8265
8266 static struct type *
8267 to_static_fixed_type (struct type *type0)
8268 {
8269 struct type *type;
8270
8271 if (type0 == NULL)
8272 return NULL;
8273
8274 if (TYPE_FIXED_INSTANCE (type0))
8275 return type0;
8276
8277 type0 = ada_check_typedef (type0);
8278
8279 switch (TYPE_CODE (type0))
8280 {
8281 default:
8282 return type0;
8283 case TYPE_CODE_STRUCT:
8284 type = dynamic_template_type (type0);
8285 if (type != NULL)
8286 return template_to_static_fixed_type (type);
8287 else
8288 return template_to_static_fixed_type (type0);
8289 case TYPE_CODE_UNION:
8290 type = ada_find_parallel_type (type0, "___XVU");
8291 if (type != NULL)
8292 return template_to_static_fixed_type (type);
8293 else
8294 return template_to_static_fixed_type (type0);
8295 }
8296 }
8297
8298 /* A static approximation of TYPE with all type wrappers removed. */
8299
8300 static struct type *
8301 static_unwrap_type (struct type *type)
8302 {
8303 if (ada_is_aligner_type (type))
8304 {
8305 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8306 if (ada_type_name (type1) == NULL)
8307 TYPE_NAME (type1) = ada_type_name (type);
8308
8309 return static_unwrap_type (type1);
8310 }
8311 else
8312 {
8313 struct type *raw_real_type = ada_get_base_type (type);
8314
8315 if (raw_real_type == type)
8316 return type;
8317 else
8318 return to_static_fixed_type (raw_real_type);
8319 }
8320 }
8321
8322 /* In some cases, incomplete and private types require
8323 cross-references that are not resolved as records (for example,
8324 type Foo;
8325 type FooP is access Foo;
8326 V: FooP;
8327 type Foo is array ...;
8328 ). In these cases, since there is no mechanism for producing
8329 cross-references to such types, we instead substitute for FooP a
8330 stub enumeration type that is nowhere resolved, and whose tag is
8331 the name of the actual type. Call these types "non-record stubs". */
8332
8333 /* A type equivalent to TYPE that is not a non-record stub, if one
8334 exists, otherwise TYPE. */
8335
8336 struct type *
8337 ada_check_typedef (struct type *type)
8338 {
8339 if (type == NULL)
8340 return NULL;
8341
8342 /* If our type is a typedef type of a fat pointer, then we're done.
8343 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8344 what allows us to distinguish between fat pointers that represent
8345 array types, and fat pointers that represent array access types
8346 (in both cases, the compiler implements them as fat pointers). */
8347 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8348 && is_thick_pntr (ada_typedef_target_type (type)))
8349 return type;
8350
8351 CHECK_TYPEDEF (type);
8352 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8353 || !TYPE_STUB (type)
8354 || TYPE_TAG_NAME (type) == NULL)
8355 return type;
8356 else
8357 {
8358 const char *name = TYPE_TAG_NAME (type);
8359 struct type *type1 = ada_find_any_type (name);
8360
8361 if (type1 == NULL)
8362 return type;
8363
8364 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8365 stubs pointing to arrays, as we don't create symbols for array
8366 types, only for the typedef-to-array types). If that's the case,
8367 strip the typedef layer. */
8368 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8369 type1 = ada_check_typedef (type1);
8370
8371 return type1;
8372 }
8373 }
8374
8375 /* A value representing the data at VALADDR/ADDRESS as described by
8376 type TYPE0, but with a standard (static-sized) type that correctly
8377 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8378 type, then return VAL0 [this feature is simply to avoid redundant
8379 creation of struct values]. */
8380
8381 static struct value *
8382 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8383 struct value *val0)
8384 {
8385 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8386
8387 if (type == type0 && val0 != NULL)
8388 return val0;
8389 else
8390 return value_from_contents_and_address (type, 0, address);
8391 }
8392
8393 /* A value representing VAL, but with a standard (static-sized) type
8394 that correctly describes it. Does not necessarily create a new
8395 value. */
8396
8397 struct value *
8398 ada_to_fixed_value (struct value *val)
8399 {
8400 val = unwrap_value (val);
8401 val = ada_to_fixed_value_create (value_type (val),
8402 value_address (val),
8403 val);
8404 return val;
8405 }
8406 \f
8407
8408 /* Attributes */
8409
8410 /* Table mapping attribute numbers to names.
8411 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8412
8413 static const char *attribute_names[] = {
8414 "<?>",
8415
8416 "first",
8417 "last",
8418 "length",
8419 "image",
8420 "max",
8421 "min",
8422 "modulus",
8423 "pos",
8424 "size",
8425 "tag",
8426 "val",
8427 0
8428 };
8429
8430 const char *
8431 ada_attribute_name (enum exp_opcode n)
8432 {
8433 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8434 return attribute_names[n - OP_ATR_FIRST + 1];
8435 else
8436 return attribute_names[0];
8437 }
8438
8439 /* Evaluate the 'POS attribute applied to ARG. */
8440
8441 static LONGEST
8442 pos_atr (struct value *arg)
8443 {
8444 struct value *val = coerce_ref (arg);
8445 struct type *type = value_type (val);
8446
8447 if (!discrete_type_p (type))
8448 error (_("'POS only defined on discrete types"));
8449
8450 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8451 {
8452 int i;
8453 LONGEST v = value_as_long (val);
8454
8455 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8456 {
8457 if (v == TYPE_FIELD_ENUMVAL (type, i))
8458 return i;
8459 }
8460 error (_("enumeration value is invalid: can't find 'POS"));
8461 }
8462 else
8463 return value_as_long (val);
8464 }
8465
8466 static struct value *
8467 value_pos_atr (struct type *type, struct value *arg)
8468 {
8469 return value_from_longest (type, pos_atr (arg));
8470 }
8471
8472 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8473
8474 static struct value *
8475 value_val_atr (struct type *type, struct value *arg)
8476 {
8477 if (!discrete_type_p (type))
8478 error (_("'VAL only defined on discrete types"));
8479 if (!integer_type_p (value_type (arg)))
8480 error (_("'VAL requires integral argument"));
8481
8482 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8483 {
8484 long pos = value_as_long (arg);
8485
8486 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8487 error (_("argument to 'VAL out of range"));
8488 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8489 }
8490 else
8491 return value_from_longest (type, value_as_long (arg));
8492 }
8493 \f
8494
8495 /* Evaluation */
8496
8497 /* True if TYPE appears to be an Ada character type.
8498 [At the moment, this is true only for Character and Wide_Character;
8499 It is a heuristic test that could stand improvement]. */
8500
8501 int
8502 ada_is_character_type (struct type *type)
8503 {
8504 const char *name;
8505
8506 /* If the type code says it's a character, then assume it really is,
8507 and don't check any further. */
8508 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8509 return 1;
8510
8511 /* Otherwise, assume it's a character type iff it is a discrete type
8512 with a known character type name. */
8513 name = ada_type_name (type);
8514 return (name != NULL
8515 && (TYPE_CODE (type) == TYPE_CODE_INT
8516 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8517 && (strcmp (name, "character") == 0
8518 || strcmp (name, "wide_character") == 0
8519 || strcmp (name, "wide_wide_character") == 0
8520 || strcmp (name, "unsigned char") == 0));
8521 }
8522
8523 /* True if TYPE appears to be an Ada string type. */
8524
8525 int
8526 ada_is_string_type (struct type *type)
8527 {
8528 type = ada_check_typedef (type);
8529 if (type != NULL
8530 && TYPE_CODE (type) != TYPE_CODE_PTR
8531 && (ada_is_simple_array_type (type)
8532 || ada_is_array_descriptor_type (type))
8533 && ada_array_arity (type) == 1)
8534 {
8535 struct type *elttype = ada_array_element_type (type, 1);
8536
8537 return ada_is_character_type (elttype);
8538 }
8539 else
8540 return 0;
8541 }
8542
8543 /* The compiler sometimes provides a parallel XVS type for a given
8544 PAD type. Normally, it is safe to follow the PAD type directly,
8545 but older versions of the compiler have a bug that causes the offset
8546 of its "F" field to be wrong. Following that field in that case
8547 would lead to incorrect results, but this can be worked around
8548 by ignoring the PAD type and using the associated XVS type instead.
8549
8550 Set to True if the debugger should trust the contents of PAD types.
8551 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8552 static int trust_pad_over_xvs = 1;
8553
8554 /* True if TYPE is a struct type introduced by the compiler to force the
8555 alignment of a value. Such types have a single field with a
8556 distinctive name. */
8557
8558 int
8559 ada_is_aligner_type (struct type *type)
8560 {
8561 type = ada_check_typedef (type);
8562
8563 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8564 return 0;
8565
8566 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8567 && TYPE_NFIELDS (type) == 1
8568 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8569 }
8570
8571 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8572 the parallel type. */
8573
8574 struct type *
8575 ada_get_base_type (struct type *raw_type)
8576 {
8577 struct type *real_type_namer;
8578 struct type *raw_real_type;
8579
8580 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8581 return raw_type;
8582
8583 if (ada_is_aligner_type (raw_type))
8584 /* The encoding specifies that we should always use the aligner type.
8585 So, even if this aligner type has an associated XVS type, we should
8586 simply ignore it.
8587
8588 According to the compiler gurus, an XVS type parallel to an aligner
8589 type may exist because of a stabs limitation. In stabs, aligner
8590 types are empty because the field has a variable-sized type, and
8591 thus cannot actually be used as an aligner type. As a result,
8592 we need the associated parallel XVS type to decode the type.
8593 Since the policy in the compiler is to not change the internal
8594 representation based on the debugging info format, we sometimes
8595 end up having a redundant XVS type parallel to the aligner type. */
8596 return raw_type;
8597
8598 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8599 if (real_type_namer == NULL
8600 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8601 || TYPE_NFIELDS (real_type_namer) != 1)
8602 return raw_type;
8603
8604 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8605 {
8606 /* This is an older encoding form where the base type needs to be
8607 looked up by name. We prefer the newer enconding because it is
8608 more efficient. */
8609 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8610 if (raw_real_type == NULL)
8611 return raw_type;
8612 else
8613 return raw_real_type;
8614 }
8615
8616 /* The field in our XVS type is a reference to the base type. */
8617 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8618 }
8619
8620 /* The type of value designated by TYPE, with all aligners removed. */
8621
8622 struct type *
8623 ada_aligned_type (struct type *type)
8624 {
8625 if (ada_is_aligner_type (type))
8626 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8627 else
8628 return ada_get_base_type (type);
8629 }
8630
8631
8632 /* The address of the aligned value in an object at address VALADDR
8633 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8634
8635 const gdb_byte *
8636 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8637 {
8638 if (ada_is_aligner_type (type))
8639 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8640 valaddr +
8641 TYPE_FIELD_BITPOS (type,
8642 0) / TARGET_CHAR_BIT);
8643 else
8644 return valaddr;
8645 }
8646
8647
8648
8649 /* The printed representation of an enumeration literal with encoded
8650 name NAME. The value is good to the next call of ada_enum_name. */
8651 const char *
8652 ada_enum_name (const char *name)
8653 {
8654 static char *result;
8655 static size_t result_len = 0;
8656 char *tmp;
8657
8658 /* First, unqualify the enumeration name:
8659 1. Search for the last '.' character. If we find one, then skip
8660 all the preceding characters, the unqualified name starts
8661 right after that dot.
8662 2. Otherwise, we may be debugging on a target where the compiler
8663 translates dots into "__". Search forward for double underscores,
8664 but stop searching when we hit an overloading suffix, which is
8665 of the form "__" followed by digits. */
8666
8667 tmp = strrchr (name, '.');
8668 if (tmp != NULL)
8669 name = tmp + 1;
8670 else
8671 {
8672 while ((tmp = strstr (name, "__")) != NULL)
8673 {
8674 if (isdigit (tmp[2]))
8675 break;
8676 else
8677 name = tmp + 2;
8678 }
8679 }
8680
8681 if (name[0] == 'Q')
8682 {
8683 int v;
8684
8685 if (name[1] == 'U' || name[1] == 'W')
8686 {
8687 if (sscanf (name + 2, "%x", &v) != 1)
8688 return name;
8689 }
8690 else
8691 return name;
8692
8693 GROW_VECT (result, result_len, 16);
8694 if (isascii (v) && isprint (v))
8695 xsnprintf (result, result_len, "'%c'", v);
8696 else if (name[1] == 'U')
8697 xsnprintf (result, result_len, "[\"%02x\"]", v);
8698 else
8699 xsnprintf (result, result_len, "[\"%04x\"]", v);
8700
8701 return result;
8702 }
8703 else
8704 {
8705 tmp = strstr (name, "__");
8706 if (tmp == NULL)
8707 tmp = strstr (name, "$");
8708 if (tmp != NULL)
8709 {
8710 GROW_VECT (result, result_len, tmp - name + 1);
8711 strncpy (result, name, tmp - name);
8712 result[tmp - name] = '\0';
8713 return result;
8714 }
8715
8716 return name;
8717 }
8718 }
8719
8720 /* Evaluate the subexpression of EXP starting at *POS as for
8721 evaluate_type, updating *POS to point just past the evaluated
8722 expression. */
8723
8724 static struct value *
8725 evaluate_subexp_type (struct expression *exp, int *pos)
8726 {
8727 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8728 }
8729
8730 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8731 value it wraps. */
8732
8733 static struct value *
8734 unwrap_value (struct value *val)
8735 {
8736 struct type *type = ada_check_typedef (value_type (val));
8737
8738 if (ada_is_aligner_type (type))
8739 {
8740 struct value *v = ada_value_struct_elt (val, "F", 0);
8741 struct type *val_type = ada_check_typedef (value_type (v));
8742
8743 if (ada_type_name (val_type) == NULL)
8744 TYPE_NAME (val_type) = ada_type_name (type);
8745
8746 return unwrap_value (v);
8747 }
8748 else
8749 {
8750 struct type *raw_real_type =
8751 ada_check_typedef (ada_get_base_type (type));
8752
8753 /* If there is no parallel XVS or XVE type, then the value is
8754 already unwrapped. Return it without further modification. */
8755 if ((type == raw_real_type)
8756 && ada_find_parallel_type (type, "___XVE") == NULL)
8757 return val;
8758
8759 return
8760 coerce_unspec_val_to_type
8761 (val, ada_to_fixed_type (raw_real_type, 0,
8762 value_address (val),
8763 NULL, 1));
8764 }
8765 }
8766
8767 static struct value *
8768 cast_to_fixed (struct type *type, struct value *arg)
8769 {
8770 LONGEST val;
8771
8772 if (type == value_type (arg))
8773 return arg;
8774 else if (ada_is_fixed_point_type (value_type (arg)))
8775 val = ada_float_to_fixed (type,
8776 ada_fixed_to_float (value_type (arg),
8777 value_as_long (arg)));
8778 else
8779 {
8780 DOUBLEST argd = value_as_double (arg);
8781
8782 val = ada_float_to_fixed (type, argd);
8783 }
8784
8785 return value_from_longest (type, val);
8786 }
8787
8788 static struct value *
8789 cast_from_fixed (struct type *type, struct value *arg)
8790 {
8791 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8792 value_as_long (arg));
8793
8794 return value_from_double (type, val);
8795 }
8796
8797 /* Given two array types T1 and T2, return nonzero iff both arrays
8798 contain the same number of elements. */
8799
8800 static int
8801 ada_same_array_size_p (struct type *t1, struct type *t2)
8802 {
8803 LONGEST lo1, hi1, lo2, hi2;
8804
8805 /* Get the array bounds in order to verify that the size of
8806 the two arrays match. */
8807 if (!get_array_bounds (t1, &lo1, &hi1)
8808 || !get_array_bounds (t2, &lo2, &hi2))
8809 error (_("unable to determine array bounds"));
8810
8811 /* To make things easier for size comparison, normalize a bit
8812 the case of empty arrays by making sure that the difference
8813 between upper bound and lower bound is always -1. */
8814 if (lo1 > hi1)
8815 hi1 = lo1 - 1;
8816 if (lo2 > hi2)
8817 hi2 = lo2 - 1;
8818
8819 return (hi1 - lo1 == hi2 - lo2);
8820 }
8821
8822 /* Assuming that VAL is an array of integrals, and TYPE represents
8823 an array with the same number of elements, but with wider integral
8824 elements, return an array "casted" to TYPE. In practice, this
8825 means that the returned array is built by casting each element
8826 of the original array into TYPE's (wider) element type. */
8827
8828 static struct value *
8829 ada_promote_array_of_integrals (struct type *type, struct value *val)
8830 {
8831 struct type *elt_type = TYPE_TARGET_TYPE (type);
8832 LONGEST lo, hi;
8833 struct value *res;
8834 LONGEST i;
8835
8836 /* Verify that both val and type are arrays of scalars, and
8837 that the size of val's elements is smaller than the size
8838 of type's element. */
8839 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8840 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8841 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8842 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8843 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8844 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8845
8846 if (!get_array_bounds (type, &lo, &hi))
8847 error (_("unable to determine array bounds"));
8848
8849 res = allocate_value (type);
8850
8851 /* Promote each array element. */
8852 for (i = 0; i < hi - lo + 1; i++)
8853 {
8854 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8855
8856 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8857 value_contents_all (elt), TYPE_LENGTH (elt_type));
8858 }
8859
8860 return res;
8861 }
8862
8863 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8864 return the converted value. */
8865
8866 static struct value *
8867 coerce_for_assign (struct type *type, struct value *val)
8868 {
8869 struct type *type2 = value_type (val);
8870
8871 if (type == type2)
8872 return val;
8873
8874 type2 = ada_check_typedef (type2);
8875 type = ada_check_typedef (type);
8876
8877 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8878 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8879 {
8880 val = ada_value_ind (val);
8881 type2 = value_type (val);
8882 }
8883
8884 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8885 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8886 {
8887 if (!ada_same_array_size_p (type, type2))
8888 error (_("cannot assign arrays of different length"));
8889
8890 if (is_integral_type (TYPE_TARGET_TYPE (type))
8891 && is_integral_type (TYPE_TARGET_TYPE (type2))
8892 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8893 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8894 {
8895 /* Allow implicit promotion of the array elements to
8896 a wider type. */
8897 return ada_promote_array_of_integrals (type, val);
8898 }
8899
8900 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8901 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8902 error (_("Incompatible types in assignment"));
8903 deprecated_set_value_type (val, type);
8904 }
8905 return val;
8906 }
8907
8908 static struct value *
8909 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8910 {
8911 struct value *val;
8912 struct type *type1, *type2;
8913 LONGEST v, v1, v2;
8914
8915 arg1 = coerce_ref (arg1);
8916 arg2 = coerce_ref (arg2);
8917 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8918 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8919
8920 if (TYPE_CODE (type1) != TYPE_CODE_INT
8921 || TYPE_CODE (type2) != TYPE_CODE_INT)
8922 return value_binop (arg1, arg2, op);
8923
8924 switch (op)
8925 {
8926 case BINOP_MOD:
8927 case BINOP_DIV:
8928 case BINOP_REM:
8929 break;
8930 default:
8931 return value_binop (arg1, arg2, op);
8932 }
8933
8934 v2 = value_as_long (arg2);
8935 if (v2 == 0)
8936 error (_("second operand of %s must not be zero."), op_string (op));
8937
8938 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8939 return value_binop (arg1, arg2, op);
8940
8941 v1 = value_as_long (arg1);
8942 switch (op)
8943 {
8944 case BINOP_DIV:
8945 v = v1 / v2;
8946 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8947 v += v > 0 ? -1 : 1;
8948 break;
8949 case BINOP_REM:
8950 v = v1 % v2;
8951 if (v * v1 < 0)
8952 v -= v2;
8953 break;
8954 default:
8955 /* Should not reach this point. */
8956 v = 0;
8957 }
8958
8959 val = allocate_value (type1);
8960 store_unsigned_integer (value_contents_raw (val),
8961 TYPE_LENGTH (value_type (val)),
8962 gdbarch_byte_order (get_type_arch (type1)), v);
8963 return val;
8964 }
8965
8966 static int
8967 ada_value_equal (struct value *arg1, struct value *arg2)
8968 {
8969 if (ada_is_direct_array_type (value_type (arg1))
8970 || ada_is_direct_array_type (value_type (arg2)))
8971 {
8972 /* Automatically dereference any array reference before
8973 we attempt to perform the comparison. */
8974 arg1 = ada_coerce_ref (arg1);
8975 arg2 = ada_coerce_ref (arg2);
8976
8977 arg1 = ada_coerce_to_simple_array (arg1);
8978 arg2 = ada_coerce_to_simple_array (arg2);
8979 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8980 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8981 error (_("Attempt to compare array with non-array"));
8982 /* FIXME: The following works only for types whose
8983 representations use all bits (no padding or undefined bits)
8984 and do not have user-defined equality. */
8985 return
8986 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8987 && memcmp (value_contents (arg1), value_contents (arg2),
8988 TYPE_LENGTH (value_type (arg1))) == 0;
8989 }
8990 return value_equal (arg1, arg2);
8991 }
8992
8993 /* Total number of component associations in the aggregate starting at
8994 index PC in EXP. Assumes that index PC is the start of an
8995 OP_AGGREGATE. */
8996
8997 static int
8998 num_component_specs (struct expression *exp, int pc)
8999 {
9000 int n, m, i;
9001
9002 m = exp->elts[pc + 1].longconst;
9003 pc += 3;
9004 n = 0;
9005 for (i = 0; i < m; i += 1)
9006 {
9007 switch (exp->elts[pc].opcode)
9008 {
9009 default:
9010 n += 1;
9011 break;
9012 case OP_CHOICES:
9013 n += exp->elts[pc + 1].longconst;
9014 break;
9015 }
9016 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9017 }
9018 return n;
9019 }
9020
9021 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9022 component of LHS (a simple array or a record), updating *POS past
9023 the expression, assuming that LHS is contained in CONTAINER. Does
9024 not modify the inferior's memory, nor does it modify LHS (unless
9025 LHS == CONTAINER). */
9026
9027 static void
9028 assign_component (struct value *container, struct value *lhs, LONGEST index,
9029 struct expression *exp, int *pos)
9030 {
9031 struct value *mark = value_mark ();
9032 struct value *elt;
9033
9034 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9035 {
9036 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9037 struct value *index_val = value_from_longest (index_type, index);
9038
9039 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9040 }
9041 else
9042 {
9043 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9044 elt = ada_to_fixed_value (elt);
9045 }
9046
9047 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9048 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9049 else
9050 value_assign_to_component (container, elt,
9051 ada_evaluate_subexp (NULL, exp, pos,
9052 EVAL_NORMAL));
9053
9054 value_free_to_mark (mark);
9055 }
9056
9057 /* Assuming that LHS represents an lvalue having a record or array
9058 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9059 of that aggregate's value to LHS, advancing *POS past the
9060 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9061 lvalue containing LHS (possibly LHS itself). Does not modify
9062 the inferior's memory, nor does it modify the contents of
9063 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9064
9065 static struct value *
9066 assign_aggregate (struct value *container,
9067 struct value *lhs, struct expression *exp,
9068 int *pos, enum noside noside)
9069 {
9070 struct type *lhs_type;
9071 int n = exp->elts[*pos+1].longconst;
9072 LONGEST low_index, high_index;
9073 int num_specs;
9074 LONGEST *indices;
9075 int max_indices, num_indices;
9076 int i;
9077
9078 *pos += 3;
9079 if (noside != EVAL_NORMAL)
9080 {
9081 for (i = 0; i < n; i += 1)
9082 ada_evaluate_subexp (NULL, exp, pos, noside);
9083 return container;
9084 }
9085
9086 container = ada_coerce_ref (container);
9087 if (ada_is_direct_array_type (value_type (container)))
9088 container = ada_coerce_to_simple_array (container);
9089 lhs = ada_coerce_ref (lhs);
9090 if (!deprecated_value_modifiable (lhs))
9091 error (_("Left operand of assignment is not a modifiable lvalue."));
9092
9093 lhs_type = value_type (lhs);
9094 if (ada_is_direct_array_type (lhs_type))
9095 {
9096 lhs = ada_coerce_to_simple_array (lhs);
9097 lhs_type = value_type (lhs);
9098 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9099 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9100 }
9101 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9102 {
9103 low_index = 0;
9104 high_index = num_visible_fields (lhs_type) - 1;
9105 }
9106 else
9107 error (_("Left-hand side must be array or record."));
9108
9109 num_specs = num_component_specs (exp, *pos - 3);
9110 max_indices = 4 * num_specs + 4;
9111 indices = alloca (max_indices * sizeof (indices[0]));
9112 indices[0] = indices[1] = low_index - 1;
9113 indices[2] = indices[3] = high_index + 1;
9114 num_indices = 4;
9115
9116 for (i = 0; i < n; i += 1)
9117 {
9118 switch (exp->elts[*pos].opcode)
9119 {
9120 case OP_CHOICES:
9121 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9122 &num_indices, max_indices,
9123 low_index, high_index);
9124 break;
9125 case OP_POSITIONAL:
9126 aggregate_assign_positional (container, lhs, exp, pos, indices,
9127 &num_indices, max_indices,
9128 low_index, high_index);
9129 break;
9130 case OP_OTHERS:
9131 if (i != n-1)
9132 error (_("Misplaced 'others' clause"));
9133 aggregate_assign_others (container, lhs, exp, pos, indices,
9134 num_indices, low_index, high_index);
9135 break;
9136 default:
9137 error (_("Internal error: bad aggregate clause"));
9138 }
9139 }
9140
9141 return container;
9142 }
9143
9144 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9145 construct at *POS, updating *POS past the construct, given that
9146 the positions are relative to lower bound LOW, where HIGH is the
9147 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9148 updating *NUM_INDICES as needed. CONTAINER is as for
9149 assign_aggregate. */
9150 static void
9151 aggregate_assign_positional (struct value *container,
9152 struct value *lhs, struct expression *exp,
9153 int *pos, LONGEST *indices, int *num_indices,
9154 int max_indices, LONGEST low, LONGEST high)
9155 {
9156 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9157
9158 if (ind - 1 == high)
9159 warning (_("Extra components in aggregate ignored."));
9160 if (ind <= high)
9161 {
9162 add_component_interval (ind, ind, indices, num_indices, max_indices);
9163 *pos += 3;
9164 assign_component (container, lhs, ind, exp, pos);
9165 }
9166 else
9167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9168 }
9169
9170 /* Assign into the components of LHS indexed by the OP_CHOICES
9171 construct at *POS, updating *POS past the construct, given that
9172 the allowable indices are LOW..HIGH. Record the indices assigned
9173 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9174 needed. CONTAINER is as for assign_aggregate. */
9175 static void
9176 aggregate_assign_from_choices (struct value *container,
9177 struct value *lhs, struct expression *exp,
9178 int *pos, LONGEST *indices, int *num_indices,
9179 int max_indices, LONGEST low, LONGEST high)
9180 {
9181 int j;
9182 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9183 int choice_pos, expr_pc;
9184 int is_array = ada_is_direct_array_type (value_type (lhs));
9185
9186 choice_pos = *pos += 3;
9187
9188 for (j = 0; j < n_choices; j += 1)
9189 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9190 expr_pc = *pos;
9191 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9192
9193 for (j = 0; j < n_choices; j += 1)
9194 {
9195 LONGEST lower, upper;
9196 enum exp_opcode op = exp->elts[choice_pos].opcode;
9197
9198 if (op == OP_DISCRETE_RANGE)
9199 {
9200 choice_pos += 1;
9201 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9202 EVAL_NORMAL));
9203 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9204 EVAL_NORMAL));
9205 }
9206 else if (is_array)
9207 {
9208 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9209 EVAL_NORMAL));
9210 upper = lower;
9211 }
9212 else
9213 {
9214 int ind;
9215 const char *name;
9216
9217 switch (op)
9218 {
9219 case OP_NAME:
9220 name = &exp->elts[choice_pos + 2].string;
9221 break;
9222 case OP_VAR_VALUE:
9223 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9224 break;
9225 default:
9226 error (_("Invalid record component association."));
9227 }
9228 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9229 ind = 0;
9230 if (! find_struct_field (name, value_type (lhs), 0,
9231 NULL, NULL, NULL, NULL, &ind))
9232 error (_("Unknown component name: %s."), name);
9233 lower = upper = ind;
9234 }
9235
9236 if (lower <= upper && (lower < low || upper > high))
9237 error (_("Index in component association out of bounds."));
9238
9239 add_component_interval (lower, upper, indices, num_indices,
9240 max_indices);
9241 while (lower <= upper)
9242 {
9243 int pos1;
9244
9245 pos1 = expr_pc;
9246 assign_component (container, lhs, lower, exp, &pos1);
9247 lower += 1;
9248 }
9249 }
9250 }
9251
9252 /* Assign the value of the expression in the OP_OTHERS construct in
9253 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9254 have not been previously assigned. The index intervals already assigned
9255 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9256 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9257 static void
9258 aggregate_assign_others (struct value *container,
9259 struct value *lhs, struct expression *exp,
9260 int *pos, LONGEST *indices, int num_indices,
9261 LONGEST low, LONGEST high)
9262 {
9263 int i;
9264 int expr_pc = *pos + 1;
9265
9266 for (i = 0; i < num_indices - 2; i += 2)
9267 {
9268 LONGEST ind;
9269
9270 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9271 {
9272 int localpos;
9273
9274 localpos = expr_pc;
9275 assign_component (container, lhs, ind, exp, &localpos);
9276 }
9277 }
9278 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9279 }
9280
9281 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9282 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9283 modifying *SIZE as needed. It is an error if *SIZE exceeds
9284 MAX_SIZE. The resulting intervals do not overlap. */
9285 static void
9286 add_component_interval (LONGEST low, LONGEST high,
9287 LONGEST* indices, int *size, int max_size)
9288 {
9289 int i, j;
9290
9291 for (i = 0; i < *size; i += 2) {
9292 if (high >= indices[i] && low <= indices[i + 1])
9293 {
9294 int kh;
9295
9296 for (kh = i + 2; kh < *size; kh += 2)
9297 if (high < indices[kh])
9298 break;
9299 if (low < indices[i])
9300 indices[i] = low;
9301 indices[i + 1] = indices[kh - 1];
9302 if (high > indices[i + 1])
9303 indices[i + 1] = high;
9304 memcpy (indices + i + 2, indices + kh, *size - kh);
9305 *size -= kh - i - 2;
9306 return;
9307 }
9308 else if (high < indices[i])
9309 break;
9310 }
9311
9312 if (*size == max_size)
9313 error (_("Internal error: miscounted aggregate components."));
9314 *size += 2;
9315 for (j = *size-1; j >= i+2; j -= 1)
9316 indices[j] = indices[j - 2];
9317 indices[i] = low;
9318 indices[i + 1] = high;
9319 }
9320
9321 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9322 is different. */
9323
9324 static struct value *
9325 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9326 {
9327 if (type == ada_check_typedef (value_type (arg2)))
9328 return arg2;
9329
9330 if (ada_is_fixed_point_type (type))
9331 return (cast_to_fixed (type, arg2));
9332
9333 if (ada_is_fixed_point_type (value_type (arg2)))
9334 return cast_from_fixed (type, arg2);
9335
9336 return value_cast (type, arg2);
9337 }
9338
9339 /* Evaluating Ada expressions, and printing their result.
9340 ------------------------------------------------------
9341
9342 1. Introduction:
9343 ----------------
9344
9345 We usually evaluate an Ada expression in order to print its value.
9346 We also evaluate an expression in order to print its type, which
9347 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9348 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9349 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9350 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9351 similar.
9352
9353 Evaluating expressions is a little more complicated for Ada entities
9354 than it is for entities in languages such as C. The main reason for
9355 this is that Ada provides types whose definition might be dynamic.
9356 One example of such types is variant records. Or another example
9357 would be an array whose bounds can only be known at run time.
9358
9359 The following description is a general guide as to what should be
9360 done (and what should NOT be done) in order to evaluate an expression
9361 involving such types, and when. This does not cover how the semantic
9362 information is encoded by GNAT as this is covered separatly. For the
9363 document used as the reference for the GNAT encoding, see exp_dbug.ads
9364 in the GNAT sources.
9365
9366 Ideally, we should embed each part of this description next to its
9367 associated code. Unfortunately, the amount of code is so vast right
9368 now that it's hard to see whether the code handling a particular
9369 situation might be duplicated or not. One day, when the code is
9370 cleaned up, this guide might become redundant with the comments
9371 inserted in the code, and we might want to remove it.
9372
9373 2. ``Fixing'' an Entity, the Simple Case:
9374 -----------------------------------------
9375
9376 When evaluating Ada expressions, the tricky issue is that they may
9377 reference entities whose type contents and size are not statically
9378 known. Consider for instance a variant record:
9379
9380 type Rec (Empty : Boolean := True) is record
9381 case Empty is
9382 when True => null;
9383 when False => Value : Integer;
9384 end case;
9385 end record;
9386 Yes : Rec := (Empty => False, Value => 1);
9387 No : Rec := (empty => True);
9388
9389 The size and contents of that record depends on the value of the
9390 descriminant (Rec.Empty). At this point, neither the debugging
9391 information nor the associated type structure in GDB are able to
9392 express such dynamic types. So what the debugger does is to create
9393 "fixed" versions of the type that applies to the specific object.
9394 We also informally refer to this opperation as "fixing" an object,
9395 which means creating its associated fixed type.
9396
9397 Example: when printing the value of variable "Yes" above, its fixed
9398 type would look like this:
9399
9400 type Rec is record
9401 Empty : Boolean;
9402 Value : Integer;
9403 end record;
9404
9405 On the other hand, if we printed the value of "No", its fixed type
9406 would become:
9407
9408 type Rec is record
9409 Empty : Boolean;
9410 end record;
9411
9412 Things become a little more complicated when trying to fix an entity
9413 with a dynamic type that directly contains another dynamic type,
9414 such as an array of variant records, for instance. There are
9415 two possible cases: Arrays, and records.
9416
9417 3. ``Fixing'' Arrays:
9418 ---------------------
9419
9420 The type structure in GDB describes an array in terms of its bounds,
9421 and the type of its elements. By design, all elements in the array
9422 have the same type and we cannot represent an array of variant elements
9423 using the current type structure in GDB. When fixing an array,
9424 we cannot fix the array element, as we would potentially need one
9425 fixed type per element of the array. As a result, the best we can do
9426 when fixing an array is to produce an array whose bounds and size
9427 are correct (allowing us to read it from memory), but without having
9428 touched its element type. Fixing each element will be done later,
9429 when (if) necessary.
9430
9431 Arrays are a little simpler to handle than records, because the same
9432 amount of memory is allocated for each element of the array, even if
9433 the amount of space actually used by each element differs from element
9434 to element. Consider for instance the following array of type Rec:
9435
9436 type Rec_Array is array (1 .. 2) of Rec;
9437
9438 The actual amount of memory occupied by each element might be different
9439 from element to element, depending on the value of their discriminant.
9440 But the amount of space reserved for each element in the array remains
9441 fixed regardless. So we simply need to compute that size using
9442 the debugging information available, from which we can then determine
9443 the array size (we multiply the number of elements of the array by
9444 the size of each element).
9445
9446 The simplest case is when we have an array of a constrained element
9447 type. For instance, consider the following type declarations:
9448
9449 type Bounded_String (Max_Size : Integer) is
9450 Length : Integer;
9451 Buffer : String (1 .. Max_Size);
9452 end record;
9453 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9454
9455 In this case, the compiler describes the array as an array of
9456 variable-size elements (identified by its XVS suffix) for which
9457 the size can be read in the parallel XVZ variable.
9458
9459 In the case of an array of an unconstrained element type, the compiler
9460 wraps the array element inside a private PAD type. This type should not
9461 be shown to the user, and must be "unwrap"'ed before printing. Note
9462 that we also use the adjective "aligner" in our code to designate
9463 these wrapper types.
9464
9465 In some cases, the size allocated for each element is statically
9466 known. In that case, the PAD type already has the correct size,
9467 and the array element should remain unfixed.
9468
9469 But there are cases when this size is not statically known.
9470 For instance, assuming that "Five" is an integer variable:
9471
9472 type Dynamic is array (1 .. Five) of Integer;
9473 type Wrapper (Has_Length : Boolean := False) is record
9474 Data : Dynamic;
9475 case Has_Length is
9476 when True => Length : Integer;
9477 when False => null;
9478 end case;
9479 end record;
9480 type Wrapper_Array is array (1 .. 2) of Wrapper;
9481
9482 Hello : Wrapper_Array := (others => (Has_Length => True,
9483 Data => (others => 17),
9484 Length => 1));
9485
9486
9487 The debugging info would describe variable Hello as being an
9488 array of a PAD type. The size of that PAD type is not statically
9489 known, but can be determined using a parallel XVZ variable.
9490 In that case, a copy of the PAD type with the correct size should
9491 be used for the fixed array.
9492
9493 3. ``Fixing'' record type objects:
9494 ----------------------------------
9495
9496 Things are slightly different from arrays in the case of dynamic
9497 record types. In this case, in order to compute the associated
9498 fixed type, we need to determine the size and offset of each of
9499 its components. This, in turn, requires us to compute the fixed
9500 type of each of these components.
9501
9502 Consider for instance the example:
9503
9504 type Bounded_String (Max_Size : Natural) is record
9505 Str : String (1 .. Max_Size);
9506 Length : Natural;
9507 end record;
9508 My_String : Bounded_String (Max_Size => 10);
9509
9510 In that case, the position of field "Length" depends on the size
9511 of field Str, which itself depends on the value of the Max_Size
9512 discriminant. In order to fix the type of variable My_String,
9513 we need to fix the type of field Str. Therefore, fixing a variant
9514 record requires us to fix each of its components.
9515
9516 However, if a component does not have a dynamic size, the component
9517 should not be fixed. In particular, fields that use a PAD type
9518 should not fixed. Here is an example where this might happen
9519 (assuming type Rec above):
9520
9521 type Container (Big : Boolean) is record
9522 First : Rec;
9523 After : Integer;
9524 case Big is
9525 when True => Another : Integer;
9526 when False => null;
9527 end case;
9528 end record;
9529 My_Container : Container := (Big => False,
9530 First => (Empty => True),
9531 After => 42);
9532
9533 In that example, the compiler creates a PAD type for component First,
9534 whose size is constant, and then positions the component After just
9535 right after it. The offset of component After is therefore constant
9536 in this case.
9537
9538 The debugger computes the position of each field based on an algorithm
9539 that uses, among other things, the actual position and size of the field
9540 preceding it. Let's now imagine that the user is trying to print
9541 the value of My_Container. If the type fixing was recursive, we would
9542 end up computing the offset of field After based on the size of the
9543 fixed version of field First. And since in our example First has
9544 only one actual field, the size of the fixed type is actually smaller
9545 than the amount of space allocated to that field, and thus we would
9546 compute the wrong offset of field After.
9547
9548 To make things more complicated, we need to watch out for dynamic
9549 components of variant records (identified by the ___XVL suffix in
9550 the component name). Even if the target type is a PAD type, the size
9551 of that type might not be statically known. So the PAD type needs
9552 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9553 we might end up with the wrong size for our component. This can be
9554 observed with the following type declarations:
9555
9556 type Octal is new Integer range 0 .. 7;
9557 type Octal_Array is array (Positive range <>) of Octal;
9558 pragma Pack (Octal_Array);
9559
9560 type Octal_Buffer (Size : Positive) is record
9561 Buffer : Octal_Array (1 .. Size);
9562 Length : Integer;
9563 end record;
9564
9565 In that case, Buffer is a PAD type whose size is unset and needs
9566 to be computed by fixing the unwrapped type.
9567
9568 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9569 ----------------------------------------------------------
9570
9571 Lastly, when should the sub-elements of an entity that remained unfixed
9572 thus far, be actually fixed?
9573
9574 The answer is: Only when referencing that element. For instance
9575 when selecting one component of a record, this specific component
9576 should be fixed at that point in time. Or when printing the value
9577 of a record, each component should be fixed before its value gets
9578 printed. Similarly for arrays, the element of the array should be
9579 fixed when printing each element of the array, or when extracting
9580 one element out of that array. On the other hand, fixing should
9581 not be performed on the elements when taking a slice of an array!
9582
9583 Note that one of the side-effects of miscomputing the offset and
9584 size of each field is that we end up also miscomputing the size
9585 of the containing type. This can have adverse results when computing
9586 the value of an entity. GDB fetches the value of an entity based
9587 on the size of its type, and thus a wrong size causes GDB to fetch
9588 the wrong amount of memory. In the case where the computed size is
9589 too small, GDB fetches too little data to print the value of our
9590 entiry. Results in this case as unpredicatble, as we usually read
9591 past the buffer containing the data =:-o. */
9592
9593 /* Implement the evaluate_exp routine in the exp_descriptor structure
9594 for the Ada language. */
9595
9596 static struct value *
9597 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9598 int *pos, enum noside noside)
9599 {
9600 enum exp_opcode op;
9601 int tem;
9602 int pc;
9603 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9604 struct type *type;
9605 int nargs, oplen;
9606 struct value **argvec;
9607
9608 pc = *pos;
9609 *pos += 1;
9610 op = exp->elts[pc].opcode;
9611
9612 switch (op)
9613 {
9614 default:
9615 *pos -= 1;
9616 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9617
9618 if (noside == EVAL_NORMAL)
9619 arg1 = unwrap_value (arg1);
9620
9621 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9622 then we need to perform the conversion manually, because
9623 evaluate_subexp_standard doesn't do it. This conversion is
9624 necessary in Ada because the different kinds of float/fixed
9625 types in Ada have different representations.
9626
9627 Similarly, we need to perform the conversion from OP_LONG
9628 ourselves. */
9629 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9630 arg1 = ada_value_cast (expect_type, arg1, noside);
9631
9632 return arg1;
9633
9634 case OP_STRING:
9635 {
9636 struct value *result;
9637
9638 *pos -= 1;
9639 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9640 /* The result type will have code OP_STRING, bashed there from
9641 OP_ARRAY. Bash it back. */
9642 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9643 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9644 return result;
9645 }
9646
9647 case UNOP_CAST:
9648 (*pos) += 2;
9649 type = exp->elts[pc + 1].type;
9650 arg1 = evaluate_subexp (type, exp, pos, noside);
9651 if (noside == EVAL_SKIP)
9652 goto nosideret;
9653 arg1 = ada_value_cast (type, arg1, noside);
9654 return arg1;
9655
9656 case UNOP_QUAL:
9657 (*pos) += 2;
9658 type = exp->elts[pc + 1].type;
9659 return ada_evaluate_subexp (type, exp, pos, noside);
9660
9661 case BINOP_ASSIGN:
9662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9663 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9664 {
9665 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9666 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9667 return arg1;
9668 return ada_value_assign (arg1, arg1);
9669 }
9670 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9671 except if the lhs of our assignment is a convenience variable.
9672 In the case of assigning to a convenience variable, the lhs
9673 should be exactly the result of the evaluation of the rhs. */
9674 type = value_type (arg1);
9675 if (VALUE_LVAL (arg1) == lval_internalvar)
9676 type = NULL;
9677 arg2 = evaluate_subexp (type, exp, pos, noside);
9678 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9679 return arg1;
9680 if (ada_is_fixed_point_type (value_type (arg1)))
9681 arg2 = cast_to_fixed (value_type (arg1), arg2);
9682 else if (ada_is_fixed_point_type (value_type (arg2)))
9683 error
9684 (_("Fixed-point values must be assigned to fixed-point variables"));
9685 else
9686 arg2 = coerce_for_assign (value_type (arg1), arg2);
9687 return ada_value_assign (arg1, arg2);
9688
9689 case BINOP_ADD:
9690 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9691 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9692 if (noside == EVAL_SKIP)
9693 goto nosideret;
9694 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9695 return (value_from_longest
9696 (value_type (arg1),
9697 value_as_long (arg1) + value_as_long (arg2)));
9698 if ((ada_is_fixed_point_type (value_type (arg1))
9699 || ada_is_fixed_point_type (value_type (arg2)))
9700 && value_type (arg1) != value_type (arg2))
9701 error (_("Operands of fixed-point addition must have the same type"));
9702 /* Do the addition, and cast the result to the type of the first
9703 argument. We cannot cast the result to a reference type, so if
9704 ARG1 is a reference type, find its underlying type. */
9705 type = value_type (arg1);
9706 while (TYPE_CODE (type) == TYPE_CODE_REF)
9707 type = TYPE_TARGET_TYPE (type);
9708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9709 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9710
9711 case BINOP_SUB:
9712 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9713 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9714 if (noside == EVAL_SKIP)
9715 goto nosideret;
9716 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9717 return (value_from_longest
9718 (value_type (arg1),
9719 value_as_long (arg1) - value_as_long (arg2)));
9720 if ((ada_is_fixed_point_type (value_type (arg1))
9721 || ada_is_fixed_point_type (value_type (arg2)))
9722 && value_type (arg1) != value_type (arg2))
9723 error (_("Operands of fixed-point subtraction "
9724 "must have the same type"));
9725 /* Do the substraction, and cast the result to the type of the first
9726 argument. We cannot cast the result to a reference type, so if
9727 ARG1 is a reference type, find its underlying type. */
9728 type = value_type (arg1);
9729 while (TYPE_CODE (type) == TYPE_CODE_REF)
9730 type = TYPE_TARGET_TYPE (type);
9731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9732 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9733
9734 case BINOP_MUL:
9735 case BINOP_DIV:
9736 case BINOP_REM:
9737 case BINOP_MOD:
9738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9739 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9740 if (noside == EVAL_SKIP)
9741 goto nosideret;
9742 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9743 {
9744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9745 return value_zero (value_type (arg1), not_lval);
9746 }
9747 else
9748 {
9749 type = builtin_type (exp->gdbarch)->builtin_double;
9750 if (ada_is_fixed_point_type (value_type (arg1)))
9751 arg1 = cast_from_fixed (type, arg1);
9752 if (ada_is_fixed_point_type (value_type (arg2)))
9753 arg2 = cast_from_fixed (type, arg2);
9754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9755 return ada_value_binop (arg1, arg2, op);
9756 }
9757
9758 case BINOP_EQUAL:
9759 case BINOP_NOTEQUAL:
9760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9761 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9763 goto nosideret;
9764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9765 tem = 0;
9766 else
9767 {
9768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9769 tem = ada_value_equal (arg1, arg2);
9770 }
9771 if (op == BINOP_NOTEQUAL)
9772 tem = !tem;
9773 type = language_bool_type (exp->language_defn, exp->gdbarch);
9774 return value_from_longest (type, (LONGEST) tem);
9775
9776 case UNOP_NEG:
9777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9778 if (noside == EVAL_SKIP)
9779 goto nosideret;
9780 else if (ada_is_fixed_point_type (value_type (arg1)))
9781 return value_cast (value_type (arg1), value_neg (arg1));
9782 else
9783 {
9784 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9785 return value_neg (arg1);
9786 }
9787
9788 case BINOP_LOGICAL_AND:
9789 case BINOP_LOGICAL_OR:
9790 case UNOP_LOGICAL_NOT:
9791 {
9792 struct value *val;
9793
9794 *pos -= 1;
9795 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9796 type = language_bool_type (exp->language_defn, exp->gdbarch);
9797 return value_cast (type, val);
9798 }
9799
9800 case BINOP_BITWISE_AND:
9801 case BINOP_BITWISE_IOR:
9802 case BINOP_BITWISE_XOR:
9803 {
9804 struct value *val;
9805
9806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9807 *pos = pc;
9808 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9809
9810 return value_cast (value_type (arg1), val);
9811 }
9812
9813 case OP_VAR_VALUE:
9814 *pos -= 1;
9815
9816 if (noside == EVAL_SKIP)
9817 {
9818 *pos += 4;
9819 goto nosideret;
9820 }
9821 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9822 /* Only encountered when an unresolved symbol occurs in a
9823 context other than a function call, in which case, it is
9824 invalid. */
9825 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9827 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9828 {
9829 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9830 /* Check to see if this is a tagged type. We also need to handle
9831 the case where the type is a reference to a tagged type, but
9832 we have to be careful to exclude pointers to tagged types.
9833 The latter should be shown as usual (as a pointer), whereas
9834 a reference should mostly be transparent to the user. */
9835 if (ada_is_tagged_type (type, 0)
9836 || (TYPE_CODE(type) == TYPE_CODE_REF
9837 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9838 {
9839 /* Tagged types are a little special in the fact that the real
9840 type is dynamic and can only be determined by inspecting the
9841 object's tag. This means that we need to get the object's
9842 value first (EVAL_NORMAL) and then extract the actual object
9843 type from its tag.
9844
9845 Note that we cannot skip the final step where we extract
9846 the object type from its tag, because the EVAL_NORMAL phase
9847 results in dynamic components being resolved into fixed ones.
9848 This can cause problems when trying to print the type
9849 description of tagged types whose parent has a dynamic size:
9850 We use the type name of the "_parent" component in order
9851 to print the name of the ancestor type in the type description.
9852 If that component had a dynamic size, the resolution into
9853 a fixed type would result in the loss of that type name,
9854 thus preventing us from printing the name of the ancestor
9855 type in the type description. */
9856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9857
9858 if (TYPE_CODE (type) != TYPE_CODE_REF)
9859 {
9860 struct type *actual_type;
9861
9862 actual_type = type_from_tag (ada_value_tag (arg1));
9863 if (actual_type == NULL)
9864 /* If, for some reason, we were unable to determine
9865 the actual type from the tag, then use the static
9866 approximation that we just computed as a fallback.
9867 This can happen if the debugging information is
9868 incomplete, for instance. */
9869 actual_type = type;
9870 return value_zero (actual_type, not_lval);
9871 }
9872 else
9873 {
9874 /* In the case of a ref, ada_coerce_ref takes care
9875 of determining the actual type. But the evaluation
9876 should return a ref as it should be valid to ask
9877 for its address; so rebuild a ref after coerce. */
9878 arg1 = ada_coerce_ref (arg1);
9879 return value_ref (arg1);
9880 }
9881 }
9882
9883 *pos += 4;
9884 return value_zero
9885 (to_static_fixed_type
9886 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9887 not_lval);
9888 }
9889 else
9890 {
9891 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9892 return ada_to_fixed_value (arg1);
9893 }
9894
9895 case OP_FUNCALL:
9896 (*pos) += 2;
9897
9898 /* Allocate arg vector, including space for the function to be
9899 called in argvec[0] and a terminating NULL. */
9900 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9901 argvec =
9902 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9903
9904 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9905 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9906 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9907 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9908 else
9909 {
9910 for (tem = 0; tem <= nargs; tem += 1)
9911 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9912 argvec[tem] = 0;
9913
9914 if (noside == EVAL_SKIP)
9915 goto nosideret;
9916 }
9917
9918 if (ada_is_constrained_packed_array_type
9919 (desc_base_type (value_type (argvec[0]))))
9920 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9921 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9922 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9923 /* This is a packed array that has already been fixed, and
9924 therefore already coerced to a simple array. Nothing further
9925 to do. */
9926 ;
9927 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9928 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9929 && VALUE_LVAL (argvec[0]) == lval_memory))
9930 argvec[0] = value_addr (argvec[0]);
9931
9932 type = ada_check_typedef (value_type (argvec[0]));
9933
9934 /* Ada allows us to implicitly dereference arrays when subscripting
9935 them. So, if this is an array typedef (encoding use for array
9936 access types encoded as fat pointers), strip it now. */
9937 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9938 type = ada_typedef_target_type (type);
9939
9940 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9941 {
9942 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9943 {
9944 case TYPE_CODE_FUNC:
9945 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9946 break;
9947 case TYPE_CODE_ARRAY:
9948 break;
9949 case TYPE_CODE_STRUCT:
9950 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9951 argvec[0] = ada_value_ind (argvec[0]);
9952 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9953 break;
9954 default:
9955 error (_("cannot subscript or call something of type `%s'"),
9956 ada_type_name (value_type (argvec[0])));
9957 break;
9958 }
9959 }
9960
9961 switch (TYPE_CODE (type))
9962 {
9963 case TYPE_CODE_FUNC:
9964 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9965 {
9966 struct type *rtype = TYPE_TARGET_TYPE (type);
9967
9968 if (TYPE_GNU_IFUNC (type))
9969 return allocate_value (TYPE_TARGET_TYPE (rtype));
9970 return allocate_value (rtype);
9971 }
9972 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9973 case TYPE_CODE_INTERNAL_FUNCTION:
9974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9975 /* We don't know anything about what the internal
9976 function might return, but we have to return
9977 something. */
9978 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9979 not_lval);
9980 else
9981 return call_internal_function (exp->gdbarch, exp->language_defn,
9982 argvec[0], nargs, argvec + 1);
9983
9984 case TYPE_CODE_STRUCT:
9985 {
9986 int arity;
9987
9988 arity = ada_array_arity (type);
9989 type = ada_array_element_type (type, nargs);
9990 if (type == NULL)
9991 error (_("cannot subscript or call a record"));
9992 if (arity != nargs)
9993 error (_("wrong number of subscripts; expecting %d"), arity);
9994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9995 return value_zero (ada_aligned_type (type), lval_memory);
9996 return
9997 unwrap_value (ada_value_subscript
9998 (argvec[0], nargs, argvec + 1));
9999 }
10000 case TYPE_CODE_ARRAY:
10001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10002 {
10003 type = ada_array_element_type (type, nargs);
10004 if (type == NULL)
10005 error (_("element type of array unknown"));
10006 else
10007 return value_zero (ada_aligned_type (type), lval_memory);
10008 }
10009 return
10010 unwrap_value (ada_value_subscript
10011 (ada_coerce_to_simple_array (argvec[0]),
10012 nargs, argvec + 1));
10013 case TYPE_CODE_PTR: /* Pointer to array */
10014 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10016 {
10017 type = ada_array_element_type (type, nargs);
10018 if (type == NULL)
10019 error (_("element type of array unknown"));
10020 else
10021 return value_zero (ada_aligned_type (type), lval_memory);
10022 }
10023 return
10024 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10025 nargs, argvec + 1));
10026
10027 default:
10028 error (_("Attempt to index or call something other than an "
10029 "array or function"));
10030 }
10031
10032 case TERNOP_SLICE:
10033 {
10034 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10035 struct value *low_bound_val =
10036 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10037 struct value *high_bound_val =
10038 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10039 LONGEST low_bound;
10040 LONGEST high_bound;
10041
10042 low_bound_val = coerce_ref (low_bound_val);
10043 high_bound_val = coerce_ref (high_bound_val);
10044 low_bound = pos_atr (low_bound_val);
10045 high_bound = pos_atr (high_bound_val);
10046
10047 if (noside == EVAL_SKIP)
10048 goto nosideret;
10049
10050 /* If this is a reference to an aligner type, then remove all
10051 the aligners. */
10052 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10053 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10054 TYPE_TARGET_TYPE (value_type (array)) =
10055 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10056
10057 if (ada_is_constrained_packed_array_type (value_type (array)))
10058 error (_("cannot slice a packed array"));
10059
10060 /* If this is a reference to an array or an array lvalue,
10061 convert to a pointer. */
10062 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10063 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10064 && VALUE_LVAL (array) == lval_memory))
10065 array = value_addr (array);
10066
10067 if (noside == EVAL_AVOID_SIDE_EFFECTS
10068 && ada_is_array_descriptor_type (ada_check_typedef
10069 (value_type (array))))
10070 return empty_array (ada_type_of_array (array, 0), low_bound);
10071
10072 array = ada_coerce_to_simple_array_ptr (array);
10073
10074 /* If we have more than one level of pointer indirection,
10075 dereference the value until we get only one level. */
10076 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10077 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10078 == TYPE_CODE_PTR))
10079 array = value_ind (array);
10080
10081 /* Make sure we really do have an array type before going further,
10082 to avoid a SEGV when trying to get the index type or the target
10083 type later down the road if the debug info generated by
10084 the compiler is incorrect or incomplete. */
10085 if (!ada_is_simple_array_type (value_type (array)))
10086 error (_("cannot take slice of non-array"));
10087
10088 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10089 == TYPE_CODE_PTR)
10090 {
10091 struct type *type0 = ada_check_typedef (value_type (array));
10092
10093 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10094 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10095 else
10096 {
10097 struct type *arr_type0 =
10098 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10099
10100 return ada_value_slice_from_ptr (array, arr_type0,
10101 longest_to_int (low_bound),
10102 longest_to_int (high_bound));
10103 }
10104 }
10105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10106 return array;
10107 else if (high_bound < low_bound)
10108 return empty_array (value_type (array), low_bound);
10109 else
10110 return ada_value_slice (array, longest_to_int (low_bound),
10111 longest_to_int (high_bound));
10112 }
10113
10114 case UNOP_IN_RANGE:
10115 (*pos) += 2;
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 type = check_typedef (exp->elts[pc + 1].type);
10118
10119 if (noside == EVAL_SKIP)
10120 goto nosideret;
10121
10122 switch (TYPE_CODE (type))
10123 {
10124 default:
10125 lim_warning (_("Membership test incompletely implemented; "
10126 "always returns true"));
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return value_from_longest (type, (LONGEST) 1);
10129
10130 case TYPE_CODE_RANGE:
10131 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10132 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10133 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10135 type = language_bool_type (exp->language_defn, exp->gdbarch);
10136 return
10137 value_from_longest (type,
10138 (value_less (arg1, arg3)
10139 || value_equal (arg1, arg3))
10140 && (value_less (arg2, arg1)
10141 || value_equal (arg2, arg1)));
10142 }
10143
10144 case BINOP_IN_BOUNDS:
10145 (*pos) += 2;
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10148
10149 if (noside == EVAL_SKIP)
10150 goto nosideret;
10151
10152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10153 {
10154 type = language_bool_type (exp->language_defn, exp->gdbarch);
10155 return value_zero (type, not_lval);
10156 }
10157
10158 tem = longest_to_int (exp->elts[pc + 1].longconst);
10159
10160 type = ada_index_type (value_type (arg2), tem, "range");
10161 if (!type)
10162 type = value_type (arg1);
10163
10164 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10165 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10166
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10169 type = language_bool_type (exp->language_defn, exp->gdbarch);
10170 return
10171 value_from_longest (type,
10172 (value_less (arg1, arg3)
10173 || value_equal (arg1, arg3))
10174 && (value_less (arg2, arg1)
10175 || value_equal (arg2, arg1)));
10176
10177 case TERNOP_IN_RANGE:
10178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10180 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10181
10182 if (noside == EVAL_SKIP)
10183 goto nosideret;
10184
10185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10187 type = language_bool_type (exp->language_defn, exp->gdbarch);
10188 return
10189 value_from_longest (type,
10190 (value_less (arg1, arg3)
10191 || value_equal (arg1, arg3))
10192 && (value_less (arg2, arg1)
10193 || value_equal (arg2, arg1)));
10194
10195 case OP_ATR_FIRST:
10196 case OP_ATR_LAST:
10197 case OP_ATR_LENGTH:
10198 {
10199 struct type *type_arg;
10200
10201 if (exp->elts[*pos].opcode == OP_TYPE)
10202 {
10203 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10204 arg1 = NULL;
10205 type_arg = check_typedef (exp->elts[pc + 2].type);
10206 }
10207 else
10208 {
10209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10210 type_arg = NULL;
10211 }
10212
10213 if (exp->elts[*pos].opcode != OP_LONG)
10214 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10215 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10216 *pos += 4;
10217
10218 if (noside == EVAL_SKIP)
10219 goto nosideret;
10220
10221 if (type_arg == NULL)
10222 {
10223 arg1 = ada_coerce_ref (arg1);
10224
10225 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10226 arg1 = ada_coerce_to_simple_array (arg1);
10227
10228 type = ada_index_type (value_type (arg1), tem,
10229 ada_attribute_name (op));
10230 if (type == NULL)
10231 type = builtin_type (exp->gdbarch)->builtin_int;
10232
10233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10234 return allocate_value (type);
10235
10236 switch (op)
10237 {
10238 default: /* Should never happen. */
10239 error (_("unexpected attribute encountered"));
10240 case OP_ATR_FIRST:
10241 return value_from_longest
10242 (type, ada_array_bound (arg1, tem, 0));
10243 case OP_ATR_LAST:
10244 return value_from_longest
10245 (type, ada_array_bound (arg1, tem, 1));
10246 case OP_ATR_LENGTH:
10247 return value_from_longest
10248 (type, ada_array_length (arg1, tem));
10249 }
10250 }
10251 else if (discrete_type_p (type_arg))
10252 {
10253 struct type *range_type;
10254 const char *name = ada_type_name (type_arg);
10255
10256 range_type = NULL;
10257 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10258 range_type = to_fixed_range_type (type_arg, NULL);
10259 if (range_type == NULL)
10260 range_type = type_arg;
10261 switch (op)
10262 {
10263 default:
10264 error (_("unexpected attribute encountered"));
10265 case OP_ATR_FIRST:
10266 return value_from_longest
10267 (range_type, ada_discrete_type_low_bound (range_type));
10268 case OP_ATR_LAST:
10269 return value_from_longest
10270 (range_type, ada_discrete_type_high_bound (range_type));
10271 case OP_ATR_LENGTH:
10272 error (_("the 'length attribute applies only to array types"));
10273 }
10274 }
10275 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10276 error (_("unimplemented type attribute"));
10277 else
10278 {
10279 LONGEST low, high;
10280
10281 if (ada_is_constrained_packed_array_type (type_arg))
10282 type_arg = decode_constrained_packed_array_type (type_arg);
10283
10284 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10285 if (type == NULL)
10286 type = builtin_type (exp->gdbarch)->builtin_int;
10287
10288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10289 return allocate_value (type);
10290
10291 switch (op)
10292 {
10293 default:
10294 error (_("unexpected attribute encountered"));
10295 case OP_ATR_FIRST:
10296 low = ada_array_bound_from_type (type_arg, tem, 0);
10297 return value_from_longest (type, low);
10298 case OP_ATR_LAST:
10299 high = ada_array_bound_from_type (type_arg, tem, 1);
10300 return value_from_longest (type, high);
10301 case OP_ATR_LENGTH:
10302 low = ada_array_bound_from_type (type_arg, tem, 0);
10303 high = ada_array_bound_from_type (type_arg, tem, 1);
10304 return value_from_longest (type, high - low + 1);
10305 }
10306 }
10307 }
10308
10309 case OP_ATR_TAG:
10310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10311 if (noside == EVAL_SKIP)
10312 goto nosideret;
10313
10314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10315 return value_zero (ada_tag_type (arg1), not_lval);
10316
10317 return ada_value_tag (arg1);
10318
10319 case OP_ATR_MIN:
10320 case OP_ATR_MAX:
10321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10324 if (noside == EVAL_SKIP)
10325 goto nosideret;
10326 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10327 return value_zero (value_type (arg1), not_lval);
10328 else
10329 {
10330 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10331 return value_binop (arg1, arg2,
10332 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10333 }
10334
10335 case OP_ATR_MODULUS:
10336 {
10337 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10338
10339 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10340 if (noside == EVAL_SKIP)
10341 goto nosideret;
10342
10343 if (!ada_is_modular_type (type_arg))
10344 error (_("'modulus must be applied to modular type"));
10345
10346 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10347 ada_modulus (type_arg));
10348 }
10349
10350
10351 case OP_ATR_POS:
10352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10354 if (noside == EVAL_SKIP)
10355 goto nosideret;
10356 type = builtin_type (exp->gdbarch)->builtin_int;
10357 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10358 return value_zero (type, not_lval);
10359 else
10360 return value_pos_atr (type, arg1);
10361
10362 case OP_ATR_SIZE:
10363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10364 type = value_type (arg1);
10365
10366 /* If the argument is a reference, then dereference its type, since
10367 the user is really asking for the size of the actual object,
10368 not the size of the pointer. */
10369 if (TYPE_CODE (type) == TYPE_CODE_REF)
10370 type = TYPE_TARGET_TYPE (type);
10371
10372 if (noside == EVAL_SKIP)
10373 goto nosideret;
10374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10375 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10376 else
10377 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10378 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10379
10380 case OP_ATR_VAL:
10381 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10383 type = exp->elts[pc + 2].type;
10384 if (noside == EVAL_SKIP)
10385 goto nosideret;
10386 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10387 return value_zero (type, not_lval);
10388 else
10389 return value_val_atr (type, arg1);
10390
10391 case BINOP_EXP:
10392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10393 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (noside == EVAL_SKIP)
10395 goto nosideret;
10396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10397 return value_zero (value_type (arg1), not_lval);
10398 else
10399 {
10400 /* For integer exponentiation operations,
10401 only promote the first argument. */
10402 if (is_integral_type (value_type (arg2)))
10403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10404 else
10405 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10406
10407 return value_binop (arg1, arg2, op);
10408 }
10409
10410 case UNOP_PLUS:
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 if (noside == EVAL_SKIP)
10413 goto nosideret;
10414 else
10415 return arg1;
10416
10417 case UNOP_ABS:
10418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10419 if (noside == EVAL_SKIP)
10420 goto nosideret;
10421 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10422 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10423 return value_neg (arg1);
10424 else
10425 return arg1;
10426
10427 case UNOP_IND:
10428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10429 if (noside == EVAL_SKIP)
10430 goto nosideret;
10431 type = ada_check_typedef (value_type (arg1));
10432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10433 {
10434 if (ada_is_array_descriptor_type (type))
10435 /* GDB allows dereferencing GNAT array descriptors. */
10436 {
10437 struct type *arrType = ada_type_of_array (arg1, 0);
10438
10439 if (arrType == NULL)
10440 error (_("Attempt to dereference null array pointer."));
10441 return value_at_lazy (arrType, 0);
10442 }
10443 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10444 || TYPE_CODE (type) == TYPE_CODE_REF
10445 /* In C you can dereference an array to get the 1st elt. */
10446 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10447 {
10448 type = to_static_fixed_type
10449 (ada_aligned_type
10450 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10451 check_size (type);
10452 return value_zero (type, lval_memory);
10453 }
10454 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10455 {
10456 /* GDB allows dereferencing an int. */
10457 if (expect_type == NULL)
10458 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10459 lval_memory);
10460 else
10461 {
10462 expect_type =
10463 to_static_fixed_type (ada_aligned_type (expect_type));
10464 return value_zero (expect_type, lval_memory);
10465 }
10466 }
10467 else
10468 error (_("Attempt to take contents of a non-pointer value."));
10469 }
10470 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10471 type = ada_check_typedef (value_type (arg1));
10472
10473 if (TYPE_CODE (type) == TYPE_CODE_INT)
10474 /* GDB allows dereferencing an int. If we were given
10475 the expect_type, then use that as the target type.
10476 Otherwise, assume that the target type is an int. */
10477 {
10478 if (expect_type != NULL)
10479 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10480 arg1));
10481 else
10482 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10483 (CORE_ADDR) value_as_address (arg1));
10484 }
10485
10486 if (ada_is_array_descriptor_type (type))
10487 /* GDB allows dereferencing GNAT array descriptors. */
10488 return ada_coerce_to_simple_array (arg1);
10489 else
10490 return ada_value_ind (arg1);
10491
10492 case STRUCTOP_STRUCT:
10493 tem = longest_to_int (exp->elts[pc + 1].longconst);
10494 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10495 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10496 if (noside == EVAL_SKIP)
10497 goto nosideret;
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10499 {
10500 struct type *type1 = value_type (arg1);
10501
10502 if (ada_is_tagged_type (type1, 1))
10503 {
10504 type = ada_lookup_struct_elt_type (type1,
10505 &exp->elts[pc + 2].string,
10506 1, 1, NULL);
10507 if (type == NULL)
10508 /* In this case, we assume that the field COULD exist
10509 in some extension of the type. Return an object of
10510 "type" void, which will match any formal
10511 (see ada_type_match). */
10512 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10513 lval_memory);
10514 }
10515 else
10516 type =
10517 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10518 0, NULL);
10519
10520 return value_zero (ada_aligned_type (type), lval_memory);
10521 }
10522 else
10523 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10524 arg1 = unwrap_value (arg1);
10525 return ada_to_fixed_value (arg1);
10526
10527 case OP_TYPE:
10528 /* The value is not supposed to be used. This is here to make it
10529 easier to accommodate expressions that contain types. */
10530 (*pos) += 2;
10531 if (noside == EVAL_SKIP)
10532 goto nosideret;
10533 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10534 return allocate_value (exp->elts[pc + 1].type);
10535 else
10536 error (_("Attempt to use a type name as an expression"));
10537
10538 case OP_AGGREGATE:
10539 case OP_CHOICES:
10540 case OP_OTHERS:
10541 case OP_DISCRETE_RANGE:
10542 case OP_POSITIONAL:
10543 case OP_NAME:
10544 if (noside == EVAL_NORMAL)
10545 switch (op)
10546 {
10547 case OP_NAME:
10548 error (_("Undefined name, ambiguous name, or renaming used in "
10549 "component association: %s."), &exp->elts[pc+2].string);
10550 case OP_AGGREGATE:
10551 error (_("Aggregates only allowed on the right of an assignment"));
10552 default:
10553 internal_error (__FILE__, __LINE__,
10554 _("aggregate apparently mangled"));
10555 }
10556
10557 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10558 *pos += oplen - 1;
10559 for (tem = 0; tem < nargs; tem += 1)
10560 ada_evaluate_subexp (NULL, exp, pos, noside);
10561 goto nosideret;
10562 }
10563
10564 nosideret:
10565 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10566 }
10567 \f
10568
10569 /* Fixed point */
10570
10571 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10572 type name that encodes the 'small and 'delta information.
10573 Otherwise, return NULL. */
10574
10575 static const char *
10576 fixed_type_info (struct type *type)
10577 {
10578 const char *name = ada_type_name (type);
10579 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10580
10581 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10582 {
10583 const char *tail = strstr (name, "___XF_");
10584
10585 if (tail == NULL)
10586 return NULL;
10587 else
10588 return tail + 5;
10589 }
10590 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10591 return fixed_type_info (TYPE_TARGET_TYPE (type));
10592 else
10593 return NULL;
10594 }
10595
10596 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10597
10598 int
10599 ada_is_fixed_point_type (struct type *type)
10600 {
10601 return fixed_type_info (type) != NULL;
10602 }
10603
10604 /* Return non-zero iff TYPE represents a System.Address type. */
10605
10606 int
10607 ada_is_system_address_type (struct type *type)
10608 {
10609 return (TYPE_NAME (type)
10610 && strcmp (TYPE_NAME (type), "system__address") == 0);
10611 }
10612
10613 /* Assuming that TYPE is the representation of an Ada fixed-point
10614 type, return its delta, or -1 if the type is malformed and the
10615 delta cannot be determined. */
10616
10617 DOUBLEST
10618 ada_delta (struct type *type)
10619 {
10620 const char *encoding = fixed_type_info (type);
10621 DOUBLEST num, den;
10622
10623 /* Strictly speaking, num and den are encoded as integer. However,
10624 they may not fit into a long, and they will have to be converted
10625 to DOUBLEST anyway. So scan them as DOUBLEST. */
10626 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10627 &num, &den) < 2)
10628 return -1.0;
10629 else
10630 return num / den;
10631 }
10632
10633 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10634 factor ('SMALL value) associated with the type. */
10635
10636 static DOUBLEST
10637 scaling_factor (struct type *type)
10638 {
10639 const char *encoding = fixed_type_info (type);
10640 DOUBLEST num0, den0, num1, den1;
10641 int n;
10642
10643 /* Strictly speaking, num's and den's are encoded as integer. However,
10644 they may not fit into a long, and they will have to be converted
10645 to DOUBLEST anyway. So scan them as DOUBLEST. */
10646 n = sscanf (encoding,
10647 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10648 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10649 &num0, &den0, &num1, &den1);
10650
10651 if (n < 2)
10652 return 1.0;
10653 else if (n == 4)
10654 return num1 / den1;
10655 else
10656 return num0 / den0;
10657 }
10658
10659
10660 /* Assuming that X is the representation of a value of fixed-point
10661 type TYPE, return its floating-point equivalent. */
10662
10663 DOUBLEST
10664 ada_fixed_to_float (struct type *type, LONGEST x)
10665 {
10666 return (DOUBLEST) x *scaling_factor (type);
10667 }
10668
10669 /* The representation of a fixed-point value of type TYPE
10670 corresponding to the value X. */
10671
10672 LONGEST
10673 ada_float_to_fixed (struct type *type, DOUBLEST x)
10674 {
10675 return (LONGEST) (x / scaling_factor (type) + 0.5);
10676 }
10677
10678 \f
10679
10680 /* Range types */
10681
10682 /* Scan STR beginning at position K for a discriminant name, and
10683 return the value of that discriminant field of DVAL in *PX. If
10684 PNEW_K is not null, put the position of the character beyond the
10685 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10686 not alter *PX and *PNEW_K if unsuccessful. */
10687
10688 static int
10689 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10690 int *pnew_k)
10691 {
10692 static char *bound_buffer = NULL;
10693 static size_t bound_buffer_len = 0;
10694 char *bound;
10695 char *pend;
10696 struct value *bound_val;
10697
10698 if (dval == NULL || str == NULL || str[k] == '\0')
10699 return 0;
10700
10701 pend = strstr (str + k, "__");
10702 if (pend == NULL)
10703 {
10704 bound = str + k;
10705 k += strlen (bound);
10706 }
10707 else
10708 {
10709 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10710 bound = bound_buffer;
10711 strncpy (bound_buffer, str + k, pend - (str + k));
10712 bound[pend - (str + k)] = '\0';
10713 k = pend - str;
10714 }
10715
10716 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10717 if (bound_val == NULL)
10718 return 0;
10719
10720 *px = value_as_long (bound_val);
10721 if (pnew_k != NULL)
10722 *pnew_k = k;
10723 return 1;
10724 }
10725
10726 /* Value of variable named NAME in the current environment. If
10727 no such variable found, then if ERR_MSG is null, returns 0, and
10728 otherwise causes an error with message ERR_MSG. */
10729
10730 static struct value *
10731 get_var_value (char *name, char *err_msg)
10732 {
10733 struct ada_symbol_info *syms;
10734 int nsyms;
10735
10736 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10737 &syms);
10738
10739 if (nsyms != 1)
10740 {
10741 if (err_msg == NULL)
10742 return 0;
10743 else
10744 error (("%s"), err_msg);
10745 }
10746
10747 return value_of_variable (syms[0].sym, syms[0].block);
10748 }
10749
10750 /* Value of integer variable named NAME in the current environment. If
10751 no such variable found, returns 0, and sets *FLAG to 0. If
10752 successful, sets *FLAG to 1. */
10753
10754 LONGEST
10755 get_int_var_value (char *name, int *flag)
10756 {
10757 struct value *var_val = get_var_value (name, 0);
10758
10759 if (var_val == 0)
10760 {
10761 if (flag != NULL)
10762 *flag = 0;
10763 return 0;
10764 }
10765 else
10766 {
10767 if (flag != NULL)
10768 *flag = 1;
10769 return value_as_long (var_val);
10770 }
10771 }
10772
10773
10774 /* Return a range type whose base type is that of the range type named
10775 NAME in the current environment, and whose bounds are calculated
10776 from NAME according to the GNAT range encoding conventions.
10777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10778 corresponding range type from debug information; fall back to using it
10779 if symbol lookup fails. If a new type must be created, allocate it
10780 like ORIG_TYPE was. The bounds information, in general, is encoded
10781 in NAME, the base type given in the named range type. */
10782
10783 static struct type *
10784 to_fixed_range_type (struct type *raw_type, struct value *dval)
10785 {
10786 const char *name;
10787 struct type *base_type;
10788 char *subtype_info;
10789
10790 gdb_assert (raw_type != NULL);
10791 gdb_assert (TYPE_NAME (raw_type) != NULL);
10792
10793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10794 base_type = TYPE_TARGET_TYPE (raw_type);
10795 else
10796 base_type = raw_type;
10797
10798 name = TYPE_NAME (raw_type);
10799 subtype_info = strstr (name, "___XD");
10800 if (subtype_info == NULL)
10801 {
10802 LONGEST L = ada_discrete_type_low_bound (raw_type);
10803 LONGEST U = ada_discrete_type_high_bound (raw_type);
10804
10805 if (L < INT_MIN || U > INT_MAX)
10806 return raw_type;
10807 else
10808 return create_range_type (alloc_type_copy (raw_type), raw_type,
10809 ada_discrete_type_low_bound (raw_type),
10810 ada_discrete_type_high_bound (raw_type));
10811 }
10812 else
10813 {
10814 static char *name_buf = NULL;
10815 static size_t name_len = 0;
10816 int prefix_len = subtype_info - name;
10817 LONGEST L, U;
10818 struct type *type;
10819 char *bounds_str;
10820 int n;
10821
10822 GROW_VECT (name_buf, name_len, prefix_len + 5);
10823 strncpy (name_buf, name, prefix_len);
10824 name_buf[prefix_len] = '\0';
10825
10826 subtype_info += 5;
10827 bounds_str = strchr (subtype_info, '_');
10828 n = 1;
10829
10830 if (*subtype_info == 'L')
10831 {
10832 if (!ada_scan_number (bounds_str, n, &L, &n)
10833 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10834 return raw_type;
10835 if (bounds_str[n] == '_')
10836 n += 2;
10837 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10838 n += 1;
10839 subtype_info += 1;
10840 }
10841 else
10842 {
10843 int ok;
10844
10845 strcpy (name_buf + prefix_len, "___L");
10846 L = get_int_var_value (name_buf, &ok);
10847 if (!ok)
10848 {
10849 lim_warning (_("Unknown lower bound, using 1."));
10850 L = 1;
10851 }
10852 }
10853
10854 if (*subtype_info == 'U')
10855 {
10856 if (!ada_scan_number (bounds_str, n, &U, &n)
10857 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10858 return raw_type;
10859 }
10860 else
10861 {
10862 int ok;
10863
10864 strcpy (name_buf + prefix_len, "___U");
10865 U = get_int_var_value (name_buf, &ok);
10866 if (!ok)
10867 {
10868 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10869 U = L;
10870 }
10871 }
10872
10873 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10874 TYPE_NAME (type) = name;
10875 return type;
10876 }
10877 }
10878
10879 /* True iff NAME is the name of a range type. */
10880
10881 int
10882 ada_is_range_type_name (const char *name)
10883 {
10884 return (name != NULL && strstr (name, "___XD"));
10885 }
10886 \f
10887
10888 /* Modular types */
10889
10890 /* True iff TYPE is an Ada modular type. */
10891
10892 int
10893 ada_is_modular_type (struct type *type)
10894 {
10895 struct type *subranged_type = get_base_type (type);
10896
10897 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10898 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10899 && TYPE_UNSIGNED (subranged_type));
10900 }
10901
10902 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10903
10904 ULONGEST
10905 ada_modulus (struct type *type)
10906 {
10907 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10908 }
10909 \f
10910
10911 /* Ada exception catchpoint support:
10912 ---------------------------------
10913
10914 We support 3 kinds of exception catchpoints:
10915 . catchpoints on Ada exceptions
10916 . catchpoints on unhandled Ada exceptions
10917 . catchpoints on failed assertions
10918
10919 Exceptions raised during failed assertions, or unhandled exceptions
10920 could perfectly be caught with the general catchpoint on Ada exceptions.
10921 However, we can easily differentiate these two special cases, and having
10922 the option to distinguish these two cases from the rest can be useful
10923 to zero-in on certain situations.
10924
10925 Exception catchpoints are a specialized form of breakpoint,
10926 since they rely on inserting breakpoints inside known routines
10927 of the GNAT runtime. The implementation therefore uses a standard
10928 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10929 of breakpoint_ops.
10930
10931 Support in the runtime for exception catchpoints have been changed
10932 a few times already, and these changes affect the implementation
10933 of these catchpoints. In order to be able to support several
10934 variants of the runtime, we use a sniffer that will determine
10935 the runtime variant used by the program being debugged. */
10936
10937 /* The different types of catchpoints that we introduced for catching
10938 Ada exceptions. */
10939
10940 enum exception_catchpoint_kind
10941 {
10942 ex_catch_exception,
10943 ex_catch_exception_unhandled,
10944 ex_catch_assert
10945 };
10946
10947 /* Ada's standard exceptions. */
10948
10949 static char *standard_exc[] = {
10950 "constraint_error",
10951 "program_error",
10952 "storage_error",
10953 "tasking_error"
10954 };
10955
10956 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10957
10958 /* A structure that describes how to support exception catchpoints
10959 for a given executable. */
10960
10961 struct exception_support_info
10962 {
10963 /* The name of the symbol to break on in order to insert
10964 a catchpoint on exceptions. */
10965 const char *catch_exception_sym;
10966
10967 /* The name of the symbol to break on in order to insert
10968 a catchpoint on unhandled exceptions. */
10969 const char *catch_exception_unhandled_sym;
10970
10971 /* The name of the symbol to break on in order to insert
10972 a catchpoint on failed assertions. */
10973 const char *catch_assert_sym;
10974
10975 /* Assuming that the inferior just triggered an unhandled exception
10976 catchpoint, this function is responsible for returning the address
10977 in inferior memory where the name of that exception is stored.
10978 Return zero if the address could not be computed. */
10979 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10980 };
10981
10982 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10983 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10984
10985 /* The following exception support info structure describes how to
10986 implement exception catchpoints with the latest version of the
10987 Ada runtime (as of 2007-03-06). */
10988
10989 static const struct exception_support_info default_exception_support_info =
10990 {
10991 "__gnat_debug_raise_exception", /* catch_exception_sym */
10992 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10993 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10994 ada_unhandled_exception_name_addr
10995 };
10996
10997 /* The following exception support info structure describes how to
10998 implement exception catchpoints with a slightly older version
10999 of the Ada runtime. */
11000
11001 static const struct exception_support_info exception_support_info_fallback =
11002 {
11003 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11004 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11005 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11006 ada_unhandled_exception_name_addr_from_raise
11007 };
11008
11009 /* Return nonzero if we can detect the exception support routines
11010 described in EINFO.
11011
11012 This function errors out if an abnormal situation is detected
11013 (for instance, if we find the exception support routines, but
11014 that support is found to be incomplete). */
11015
11016 static int
11017 ada_has_this_exception_support (const struct exception_support_info *einfo)
11018 {
11019 struct symbol *sym;
11020
11021 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11022 that should be compiled with debugging information. As a result, we
11023 expect to find that symbol in the symtabs. */
11024
11025 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11026 if (sym == NULL)
11027 {
11028 /* Perhaps we did not find our symbol because the Ada runtime was
11029 compiled without debugging info, or simply stripped of it.
11030 It happens on some GNU/Linux distributions for instance, where
11031 users have to install a separate debug package in order to get
11032 the runtime's debugging info. In that situation, let the user
11033 know why we cannot insert an Ada exception catchpoint.
11034
11035 Note: Just for the purpose of inserting our Ada exception
11036 catchpoint, we could rely purely on the associated minimal symbol.
11037 But we would be operating in degraded mode anyway, since we are
11038 still lacking the debugging info needed later on to extract
11039 the name of the exception being raised (this name is printed in
11040 the catchpoint message, and is also used when trying to catch
11041 a specific exception). We do not handle this case for now. */
11042 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11043 error (_("Your Ada runtime appears to be missing some debugging "
11044 "information.\nCannot insert Ada exception catchpoint "
11045 "in this configuration."));
11046
11047 return 0;
11048 }
11049
11050 /* Make sure that the symbol we found corresponds to a function. */
11051
11052 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11053 error (_("Symbol \"%s\" is not a function (class = %d)"),
11054 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11055
11056 return 1;
11057 }
11058
11059 /* Inspect the Ada runtime and determine which exception info structure
11060 should be used to provide support for exception catchpoints.
11061
11062 This function will always set the per-inferior exception_info,
11063 or raise an error. */
11064
11065 static void
11066 ada_exception_support_info_sniffer (void)
11067 {
11068 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11069
11070 /* If the exception info is already known, then no need to recompute it. */
11071 if (data->exception_info != NULL)
11072 return;
11073
11074 /* Check the latest (default) exception support info. */
11075 if (ada_has_this_exception_support (&default_exception_support_info))
11076 {
11077 data->exception_info = &default_exception_support_info;
11078 return;
11079 }
11080
11081 /* Try our fallback exception suport info. */
11082 if (ada_has_this_exception_support (&exception_support_info_fallback))
11083 {
11084 data->exception_info = &exception_support_info_fallback;
11085 return;
11086 }
11087
11088 /* Sometimes, it is normal for us to not be able to find the routine
11089 we are looking for. This happens when the program is linked with
11090 the shared version of the GNAT runtime, and the program has not been
11091 started yet. Inform the user of these two possible causes if
11092 applicable. */
11093
11094 if (ada_update_initial_language (language_unknown) != language_ada)
11095 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11096
11097 /* If the symbol does not exist, then check that the program is
11098 already started, to make sure that shared libraries have been
11099 loaded. If it is not started, this may mean that the symbol is
11100 in a shared library. */
11101
11102 if (ptid_get_pid (inferior_ptid) == 0)
11103 error (_("Unable to insert catchpoint. Try to start the program first."));
11104
11105 /* At this point, we know that we are debugging an Ada program and
11106 that the inferior has been started, but we still are not able to
11107 find the run-time symbols. That can mean that we are in
11108 configurable run time mode, or that a-except as been optimized
11109 out by the linker... In any case, at this point it is not worth
11110 supporting this feature. */
11111
11112 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11113 }
11114
11115 /* True iff FRAME is very likely to be that of a function that is
11116 part of the runtime system. This is all very heuristic, but is
11117 intended to be used as advice as to what frames are uninteresting
11118 to most users. */
11119
11120 static int
11121 is_known_support_routine (struct frame_info *frame)
11122 {
11123 struct symtab_and_line sal;
11124 char *func_name;
11125 enum language func_lang;
11126 int i;
11127 const char *fullname;
11128
11129 /* If this code does not have any debugging information (no symtab),
11130 This cannot be any user code. */
11131
11132 find_frame_sal (frame, &sal);
11133 if (sal.symtab == NULL)
11134 return 1;
11135
11136 /* If there is a symtab, but the associated source file cannot be
11137 located, then assume this is not user code: Selecting a frame
11138 for which we cannot display the code would not be very helpful
11139 for the user. This should also take care of case such as VxWorks
11140 where the kernel has some debugging info provided for a few units. */
11141
11142 fullname = symtab_to_fullname (sal.symtab);
11143 if (access (fullname, R_OK) != 0)
11144 return 1;
11145
11146 /* Check the unit filename againt the Ada runtime file naming.
11147 We also check the name of the objfile against the name of some
11148 known system libraries that sometimes come with debugging info
11149 too. */
11150
11151 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11152 {
11153 re_comp (known_runtime_file_name_patterns[i]);
11154 if (re_exec (lbasename (sal.symtab->filename)))
11155 return 1;
11156 if (sal.symtab->objfile != NULL
11157 && re_exec (sal.symtab->objfile->name))
11158 return 1;
11159 }
11160
11161 /* Check whether the function is a GNAT-generated entity. */
11162
11163 find_frame_funname (frame, &func_name, &func_lang, NULL);
11164 if (func_name == NULL)
11165 return 1;
11166
11167 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11168 {
11169 re_comp (known_auxiliary_function_name_patterns[i]);
11170 if (re_exec (func_name))
11171 {
11172 xfree (func_name);
11173 return 1;
11174 }
11175 }
11176
11177 xfree (func_name);
11178 return 0;
11179 }
11180
11181 /* Find the first frame that contains debugging information and that is not
11182 part of the Ada run-time, starting from FI and moving upward. */
11183
11184 void
11185 ada_find_printable_frame (struct frame_info *fi)
11186 {
11187 for (; fi != NULL; fi = get_prev_frame (fi))
11188 {
11189 if (!is_known_support_routine (fi))
11190 {
11191 select_frame (fi);
11192 break;
11193 }
11194 }
11195
11196 }
11197
11198 /* Assuming that the inferior just triggered an unhandled exception
11199 catchpoint, return the address in inferior memory where the name
11200 of the exception is stored.
11201
11202 Return zero if the address could not be computed. */
11203
11204 static CORE_ADDR
11205 ada_unhandled_exception_name_addr (void)
11206 {
11207 return parse_and_eval_address ("e.full_name");
11208 }
11209
11210 /* Same as ada_unhandled_exception_name_addr, except that this function
11211 should be used when the inferior uses an older version of the runtime,
11212 where the exception name needs to be extracted from a specific frame
11213 several frames up in the callstack. */
11214
11215 static CORE_ADDR
11216 ada_unhandled_exception_name_addr_from_raise (void)
11217 {
11218 int frame_level;
11219 struct frame_info *fi;
11220 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11221 struct cleanup *old_chain;
11222
11223 /* To determine the name of this exception, we need to select
11224 the frame corresponding to RAISE_SYM_NAME. This frame is
11225 at least 3 levels up, so we simply skip the first 3 frames
11226 without checking the name of their associated function. */
11227 fi = get_current_frame ();
11228 for (frame_level = 0; frame_level < 3; frame_level += 1)
11229 if (fi != NULL)
11230 fi = get_prev_frame (fi);
11231
11232 old_chain = make_cleanup (null_cleanup, NULL);
11233 while (fi != NULL)
11234 {
11235 char *func_name;
11236 enum language func_lang;
11237
11238 find_frame_funname (fi, &func_name, &func_lang, NULL);
11239 if (func_name != NULL)
11240 {
11241 make_cleanup (xfree, func_name);
11242
11243 if (strcmp (func_name,
11244 data->exception_info->catch_exception_sym) == 0)
11245 break; /* We found the frame we were looking for... */
11246 fi = get_prev_frame (fi);
11247 }
11248 }
11249 do_cleanups (old_chain);
11250
11251 if (fi == NULL)
11252 return 0;
11253
11254 select_frame (fi);
11255 return parse_and_eval_address ("id.full_name");
11256 }
11257
11258 /* Assuming the inferior just triggered an Ada exception catchpoint
11259 (of any type), return the address in inferior memory where the name
11260 of the exception is stored, if applicable.
11261
11262 Return zero if the address could not be computed, or if not relevant. */
11263
11264 static CORE_ADDR
11265 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11266 struct breakpoint *b)
11267 {
11268 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11269
11270 switch (ex)
11271 {
11272 case ex_catch_exception:
11273 return (parse_and_eval_address ("e.full_name"));
11274 break;
11275
11276 case ex_catch_exception_unhandled:
11277 return data->exception_info->unhandled_exception_name_addr ();
11278 break;
11279
11280 case ex_catch_assert:
11281 return 0; /* Exception name is not relevant in this case. */
11282 break;
11283
11284 default:
11285 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11286 break;
11287 }
11288
11289 return 0; /* Should never be reached. */
11290 }
11291
11292 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11293 any error that ada_exception_name_addr_1 might cause to be thrown.
11294 When an error is intercepted, a warning with the error message is printed,
11295 and zero is returned. */
11296
11297 static CORE_ADDR
11298 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11299 struct breakpoint *b)
11300 {
11301 volatile struct gdb_exception e;
11302 CORE_ADDR result = 0;
11303
11304 TRY_CATCH (e, RETURN_MASK_ERROR)
11305 {
11306 result = ada_exception_name_addr_1 (ex, b);
11307 }
11308
11309 if (e.reason < 0)
11310 {
11311 warning (_("failed to get exception name: %s"), e.message);
11312 return 0;
11313 }
11314
11315 return result;
11316 }
11317
11318 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11319 char *, char **,
11320 const struct breakpoint_ops **);
11321 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11322
11323 /* Ada catchpoints.
11324
11325 In the case of catchpoints on Ada exceptions, the catchpoint will
11326 stop the target on every exception the program throws. When a user
11327 specifies the name of a specific exception, we translate this
11328 request into a condition expression (in text form), and then parse
11329 it into an expression stored in each of the catchpoint's locations.
11330 We then use this condition to check whether the exception that was
11331 raised is the one the user is interested in. If not, then the
11332 target is resumed again. We store the name of the requested
11333 exception, in order to be able to re-set the condition expression
11334 when symbols change. */
11335
11336 /* An instance of this type is used to represent an Ada catchpoint
11337 breakpoint location. It includes a "struct bp_location" as a kind
11338 of base class; users downcast to "struct bp_location *" when
11339 needed. */
11340
11341 struct ada_catchpoint_location
11342 {
11343 /* The base class. */
11344 struct bp_location base;
11345
11346 /* The condition that checks whether the exception that was raised
11347 is the specific exception the user specified on catchpoint
11348 creation. */
11349 struct expression *excep_cond_expr;
11350 };
11351
11352 /* Implement the DTOR method in the bp_location_ops structure for all
11353 Ada exception catchpoint kinds. */
11354
11355 static void
11356 ada_catchpoint_location_dtor (struct bp_location *bl)
11357 {
11358 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11359
11360 xfree (al->excep_cond_expr);
11361 }
11362
11363 /* The vtable to be used in Ada catchpoint locations. */
11364
11365 static const struct bp_location_ops ada_catchpoint_location_ops =
11366 {
11367 ada_catchpoint_location_dtor
11368 };
11369
11370 /* An instance of this type is used to represent an Ada catchpoint.
11371 It includes a "struct breakpoint" as a kind of base class; users
11372 downcast to "struct breakpoint *" when needed. */
11373
11374 struct ada_catchpoint
11375 {
11376 /* The base class. */
11377 struct breakpoint base;
11378
11379 /* The name of the specific exception the user specified. */
11380 char *excep_string;
11381 };
11382
11383 /* Parse the exception condition string in the context of each of the
11384 catchpoint's locations, and store them for later evaluation. */
11385
11386 static void
11387 create_excep_cond_exprs (struct ada_catchpoint *c)
11388 {
11389 struct cleanup *old_chain;
11390 struct bp_location *bl;
11391 char *cond_string;
11392
11393 /* Nothing to do if there's no specific exception to catch. */
11394 if (c->excep_string == NULL)
11395 return;
11396
11397 /* Same if there are no locations... */
11398 if (c->base.loc == NULL)
11399 return;
11400
11401 /* Compute the condition expression in text form, from the specific
11402 expection we want to catch. */
11403 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11404 old_chain = make_cleanup (xfree, cond_string);
11405
11406 /* Iterate over all the catchpoint's locations, and parse an
11407 expression for each. */
11408 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11409 {
11410 struct ada_catchpoint_location *ada_loc
11411 = (struct ada_catchpoint_location *) bl;
11412 struct expression *exp = NULL;
11413
11414 if (!bl->shlib_disabled)
11415 {
11416 volatile struct gdb_exception e;
11417 const char *s;
11418
11419 s = cond_string;
11420 TRY_CATCH (e, RETURN_MASK_ERROR)
11421 {
11422 exp = parse_exp_1 (&s, bl->address,
11423 block_for_pc (bl->address), 0);
11424 }
11425 if (e.reason < 0)
11426 warning (_("failed to reevaluate internal exception condition "
11427 "for catchpoint %d: %s"),
11428 c->base.number, e.message);
11429 }
11430
11431 ada_loc->excep_cond_expr = exp;
11432 }
11433
11434 do_cleanups (old_chain);
11435 }
11436
11437 /* Implement the DTOR method in the breakpoint_ops structure for all
11438 exception catchpoint kinds. */
11439
11440 static void
11441 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11442 {
11443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11444
11445 xfree (c->excep_string);
11446
11447 bkpt_breakpoint_ops.dtor (b);
11448 }
11449
11450 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11451 structure for all exception catchpoint kinds. */
11452
11453 static struct bp_location *
11454 allocate_location_exception (enum exception_catchpoint_kind ex,
11455 struct breakpoint *self)
11456 {
11457 struct ada_catchpoint_location *loc;
11458
11459 loc = XNEW (struct ada_catchpoint_location);
11460 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11461 loc->excep_cond_expr = NULL;
11462 return &loc->base;
11463 }
11464
11465 /* Implement the RE_SET method in the breakpoint_ops structure for all
11466 exception catchpoint kinds. */
11467
11468 static void
11469 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11470 {
11471 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11472
11473 /* Call the base class's method. This updates the catchpoint's
11474 locations. */
11475 bkpt_breakpoint_ops.re_set (b);
11476
11477 /* Reparse the exception conditional expressions. One for each
11478 location. */
11479 create_excep_cond_exprs (c);
11480 }
11481
11482 /* Returns true if we should stop for this breakpoint hit. If the
11483 user specified a specific exception, we only want to cause a stop
11484 if the program thrown that exception. */
11485
11486 static int
11487 should_stop_exception (const struct bp_location *bl)
11488 {
11489 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11490 const struct ada_catchpoint_location *ada_loc
11491 = (const struct ada_catchpoint_location *) bl;
11492 volatile struct gdb_exception ex;
11493 int stop;
11494
11495 /* With no specific exception, should always stop. */
11496 if (c->excep_string == NULL)
11497 return 1;
11498
11499 if (ada_loc->excep_cond_expr == NULL)
11500 {
11501 /* We will have a NULL expression if back when we were creating
11502 the expressions, this location's had failed to parse. */
11503 return 1;
11504 }
11505
11506 stop = 1;
11507 TRY_CATCH (ex, RETURN_MASK_ALL)
11508 {
11509 struct value *mark;
11510
11511 mark = value_mark ();
11512 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11513 value_free_to_mark (mark);
11514 }
11515 if (ex.reason < 0)
11516 exception_fprintf (gdb_stderr, ex,
11517 _("Error in testing exception condition:\n"));
11518 return stop;
11519 }
11520
11521 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11522 for all exception catchpoint kinds. */
11523
11524 static void
11525 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11526 {
11527 bs->stop = should_stop_exception (bs->bp_location_at);
11528 }
11529
11530 /* Implement the PRINT_IT method in the breakpoint_ops structure
11531 for all exception catchpoint kinds. */
11532
11533 static enum print_stop_action
11534 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11535 {
11536 struct ui_out *uiout = current_uiout;
11537 struct breakpoint *b = bs->breakpoint_at;
11538
11539 annotate_catchpoint (b->number);
11540
11541 if (ui_out_is_mi_like_p (uiout))
11542 {
11543 ui_out_field_string (uiout, "reason",
11544 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11545 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11546 }
11547
11548 ui_out_text (uiout,
11549 b->disposition == disp_del ? "\nTemporary catchpoint "
11550 : "\nCatchpoint ");
11551 ui_out_field_int (uiout, "bkptno", b->number);
11552 ui_out_text (uiout, ", ");
11553
11554 switch (ex)
11555 {
11556 case ex_catch_exception:
11557 case ex_catch_exception_unhandled:
11558 {
11559 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11560 char exception_name[256];
11561
11562 if (addr != 0)
11563 {
11564 read_memory (addr, (gdb_byte *) exception_name,
11565 sizeof (exception_name) - 1);
11566 exception_name [sizeof (exception_name) - 1] = '\0';
11567 }
11568 else
11569 {
11570 /* For some reason, we were unable to read the exception
11571 name. This could happen if the Runtime was compiled
11572 without debugging info, for instance. In that case,
11573 just replace the exception name by the generic string
11574 "exception" - it will read as "an exception" in the
11575 notification we are about to print. */
11576 memcpy (exception_name, "exception", sizeof ("exception"));
11577 }
11578 /* In the case of unhandled exception breakpoints, we print
11579 the exception name as "unhandled EXCEPTION_NAME", to make
11580 it clearer to the user which kind of catchpoint just got
11581 hit. We used ui_out_text to make sure that this extra
11582 info does not pollute the exception name in the MI case. */
11583 if (ex == ex_catch_exception_unhandled)
11584 ui_out_text (uiout, "unhandled ");
11585 ui_out_field_string (uiout, "exception-name", exception_name);
11586 }
11587 break;
11588 case ex_catch_assert:
11589 /* In this case, the name of the exception is not really
11590 important. Just print "failed assertion" to make it clearer
11591 that his program just hit an assertion-failure catchpoint.
11592 We used ui_out_text because this info does not belong in
11593 the MI output. */
11594 ui_out_text (uiout, "failed assertion");
11595 break;
11596 }
11597 ui_out_text (uiout, " at ");
11598 ada_find_printable_frame (get_current_frame ());
11599
11600 return PRINT_SRC_AND_LOC;
11601 }
11602
11603 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11604 for all exception catchpoint kinds. */
11605
11606 static void
11607 print_one_exception (enum exception_catchpoint_kind ex,
11608 struct breakpoint *b, struct bp_location **last_loc)
11609 {
11610 struct ui_out *uiout = current_uiout;
11611 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11612 struct value_print_options opts;
11613
11614 get_user_print_options (&opts);
11615 if (opts.addressprint)
11616 {
11617 annotate_field (4);
11618 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11619 }
11620
11621 annotate_field (5);
11622 *last_loc = b->loc;
11623 switch (ex)
11624 {
11625 case ex_catch_exception:
11626 if (c->excep_string != NULL)
11627 {
11628 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11629
11630 ui_out_field_string (uiout, "what", msg);
11631 xfree (msg);
11632 }
11633 else
11634 ui_out_field_string (uiout, "what", "all Ada exceptions");
11635
11636 break;
11637
11638 case ex_catch_exception_unhandled:
11639 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11640 break;
11641
11642 case ex_catch_assert:
11643 ui_out_field_string (uiout, "what", "failed Ada assertions");
11644 break;
11645
11646 default:
11647 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11648 break;
11649 }
11650 }
11651
11652 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11653 for all exception catchpoint kinds. */
11654
11655 static void
11656 print_mention_exception (enum exception_catchpoint_kind ex,
11657 struct breakpoint *b)
11658 {
11659 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11660 struct ui_out *uiout = current_uiout;
11661
11662 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11663 : _("Catchpoint "));
11664 ui_out_field_int (uiout, "bkptno", b->number);
11665 ui_out_text (uiout, ": ");
11666
11667 switch (ex)
11668 {
11669 case ex_catch_exception:
11670 if (c->excep_string != NULL)
11671 {
11672 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11673 struct cleanup *old_chain = make_cleanup (xfree, info);
11674
11675 ui_out_text (uiout, info);
11676 do_cleanups (old_chain);
11677 }
11678 else
11679 ui_out_text (uiout, _("all Ada exceptions"));
11680 break;
11681
11682 case ex_catch_exception_unhandled:
11683 ui_out_text (uiout, _("unhandled Ada exceptions"));
11684 break;
11685
11686 case ex_catch_assert:
11687 ui_out_text (uiout, _("failed Ada assertions"));
11688 break;
11689
11690 default:
11691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11692 break;
11693 }
11694 }
11695
11696 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11697 for all exception catchpoint kinds. */
11698
11699 static void
11700 print_recreate_exception (enum exception_catchpoint_kind ex,
11701 struct breakpoint *b, struct ui_file *fp)
11702 {
11703 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11704
11705 switch (ex)
11706 {
11707 case ex_catch_exception:
11708 fprintf_filtered (fp, "catch exception");
11709 if (c->excep_string != NULL)
11710 fprintf_filtered (fp, " %s", c->excep_string);
11711 break;
11712
11713 case ex_catch_exception_unhandled:
11714 fprintf_filtered (fp, "catch exception unhandled");
11715 break;
11716
11717 case ex_catch_assert:
11718 fprintf_filtered (fp, "catch assert");
11719 break;
11720
11721 default:
11722 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11723 }
11724 print_recreate_thread (b, fp);
11725 }
11726
11727 /* Virtual table for "catch exception" breakpoints. */
11728
11729 static void
11730 dtor_catch_exception (struct breakpoint *b)
11731 {
11732 dtor_exception (ex_catch_exception, b);
11733 }
11734
11735 static struct bp_location *
11736 allocate_location_catch_exception (struct breakpoint *self)
11737 {
11738 return allocate_location_exception (ex_catch_exception, self);
11739 }
11740
11741 static void
11742 re_set_catch_exception (struct breakpoint *b)
11743 {
11744 re_set_exception (ex_catch_exception, b);
11745 }
11746
11747 static void
11748 check_status_catch_exception (bpstat bs)
11749 {
11750 check_status_exception (ex_catch_exception, bs);
11751 }
11752
11753 static enum print_stop_action
11754 print_it_catch_exception (bpstat bs)
11755 {
11756 return print_it_exception (ex_catch_exception, bs);
11757 }
11758
11759 static void
11760 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11761 {
11762 print_one_exception (ex_catch_exception, b, last_loc);
11763 }
11764
11765 static void
11766 print_mention_catch_exception (struct breakpoint *b)
11767 {
11768 print_mention_exception (ex_catch_exception, b);
11769 }
11770
11771 static void
11772 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11773 {
11774 print_recreate_exception (ex_catch_exception, b, fp);
11775 }
11776
11777 static struct breakpoint_ops catch_exception_breakpoint_ops;
11778
11779 /* Virtual table for "catch exception unhandled" breakpoints. */
11780
11781 static void
11782 dtor_catch_exception_unhandled (struct breakpoint *b)
11783 {
11784 dtor_exception (ex_catch_exception_unhandled, b);
11785 }
11786
11787 static struct bp_location *
11788 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11789 {
11790 return allocate_location_exception (ex_catch_exception_unhandled, self);
11791 }
11792
11793 static void
11794 re_set_catch_exception_unhandled (struct breakpoint *b)
11795 {
11796 re_set_exception (ex_catch_exception_unhandled, b);
11797 }
11798
11799 static void
11800 check_status_catch_exception_unhandled (bpstat bs)
11801 {
11802 check_status_exception (ex_catch_exception_unhandled, bs);
11803 }
11804
11805 static enum print_stop_action
11806 print_it_catch_exception_unhandled (bpstat bs)
11807 {
11808 return print_it_exception (ex_catch_exception_unhandled, bs);
11809 }
11810
11811 static void
11812 print_one_catch_exception_unhandled (struct breakpoint *b,
11813 struct bp_location **last_loc)
11814 {
11815 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11816 }
11817
11818 static void
11819 print_mention_catch_exception_unhandled (struct breakpoint *b)
11820 {
11821 print_mention_exception (ex_catch_exception_unhandled, b);
11822 }
11823
11824 static void
11825 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11826 struct ui_file *fp)
11827 {
11828 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11829 }
11830
11831 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11832
11833 /* Virtual table for "catch assert" breakpoints. */
11834
11835 static void
11836 dtor_catch_assert (struct breakpoint *b)
11837 {
11838 dtor_exception (ex_catch_assert, b);
11839 }
11840
11841 static struct bp_location *
11842 allocate_location_catch_assert (struct breakpoint *self)
11843 {
11844 return allocate_location_exception (ex_catch_assert, self);
11845 }
11846
11847 static void
11848 re_set_catch_assert (struct breakpoint *b)
11849 {
11850 re_set_exception (ex_catch_assert, b);
11851 }
11852
11853 static void
11854 check_status_catch_assert (bpstat bs)
11855 {
11856 check_status_exception (ex_catch_assert, bs);
11857 }
11858
11859 static enum print_stop_action
11860 print_it_catch_assert (bpstat bs)
11861 {
11862 return print_it_exception (ex_catch_assert, bs);
11863 }
11864
11865 static void
11866 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11867 {
11868 print_one_exception (ex_catch_assert, b, last_loc);
11869 }
11870
11871 static void
11872 print_mention_catch_assert (struct breakpoint *b)
11873 {
11874 print_mention_exception (ex_catch_assert, b);
11875 }
11876
11877 static void
11878 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11879 {
11880 print_recreate_exception (ex_catch_assert, b, fp);
11881 }
11882
11883 static struct breakpoint_ops catch_assert_breakpoint_ops;
11884
11885 /* Return a newly allocated copy of the first space-separated token
11886 in ARGSP, and then adjust ARGSP to point immediately after that
11887 token.
11888
11889 Return NULL if ARGPS does not contain any more tokens. */
11890
11891 static char *
11892 ada_get_next_arg (char **argsp)
11893 {
11894 char *args = *argsp;
11895 char *end;
11896 char *result;
11897
11898 args = skip_spaces (args);
11899 if (args[0] == '\0')
11900 return NULL; /* No more arguments. */
11901
11902 /* Find the end of the current argument. */
11903
11904 end = skip_to_space (args);
11905
11906 /* Adjust ARGSP to point to the start of the next argument. */
11907
11908 *argsp = end;
11909
11910 /* Make a copy of the current argument and return it. */
11911
11912 result = xmalloc (end - args + 1);
11913 strncpy (result, args, end - args);
11914 result[end - args] = '\0';
11915
11916 return result;
11917 }
11918
11919 /* Split the arguments specified in a "catch exception" command.
11920 Set EX to the appropriate catchpoint type.
11921 Set EXCEP_STRING to the name of the specific exception if
11922 specified by the user.
11923 If a condition is found at the end of the arguments, the condition
11924 expression is stored in COND_STRING (memory must be deallocated
11925 after use). Otherwise COND_STRING is set to NULL. */
11926
11927 static void
11928 catch_ada_exception_command_split (char *args,
11929 enum exception_catchpoint_kind *ex,
11930 char **excep_string,
11931 char **cond_string)
11932 {
11933 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11934 char *exception_name;
11935 char *cond = NULL;
11936
11937 exception_name = ada_get_next_arg (&args);
11938 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11939 {
11940 /* This is not an exception name; this is the start of a condition
11941 expression for a catchpoint on all exceptions. So, "un-get"
11942 this token, and set exception_name to NULL. */
11943 xfree (exception_name);
11944 exception_name = NULL;
11945 args -= 2;
11946 }
11947 make_cleanup (xfree, exception_name);
11948
11949 /* Check to see if we have a condition. */
11950
11951 args = skip_spaces (args);
11952 if (strncmp (args, "if", 2) == 0
11953 && (isspace (args[2]) || args[2] == '\0'))
11954 {
11955 args += 2;
11956 args = skip_spaces (args);
11957
11958 if (args[0] == '\0')
11959 error (_("Condition missing after `if' keyword"));
11960 cond = xstrdup (args);
11961 make_cleanup (xfree, cond);
11962
11963 args += strlen (args);
11964 }
11965
11966 /* Check that we do not have any more arguments. Anything else
11967 is unexpected. */
11968
11969 if (args[0] != '\0')
11970 error (_("Junk at end of expression"));
11971
11972 discard_cleanups (old_chain);
11973
11974 if (exception_name == NULL)
11975 {
11976 /* Catch all exceptions. */
11977 *ex = ex_catch_exception;
11978 *excep_string = NULL;
11979 }
11980 else if (strcmp (exception_name, "unhandled") == 0)
11981 {
11982 /* Catch unhandled exceptions. */
11983 *ex = ex_catch_exception_unhandled;
11984 *excep_string = NULL;
11985 }
11986 else
11987 {
11988 /* Catch a specific exception. */
11989 *ex = ex_catch_exception;
11990 *excep_string = exception_name;
11991 }
11992 *cond_string = cond;
11993 }
11994
11995 /* Return the name of the symbol on which we should break in order to
11996 implement a catchpoint of the EX kind. */
11997
11998 static const char *
11999 ada_exception_sym_name (enum exception_catchpoint_kind ex)
12000 {
12001 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12002
12003 gdb_assert (data->exception_info != NULL);
12004
12005 switch (ex)
12006 {
12007 case ex_catch_exception:
12008 return (data->exception_info->catch_exception_sym);
12009 break;
12010 case ex_catch_exception_unhandled:
12011 return (data->exception_info->catch_exception_unhandled_sym);
12012 break;
12013 case ex_catch_assert:
12014 return (data->exception_info->catch_assert_sym);
12015 break;
12016 default:
12017 internal_error (__FILE__, __LINE__,
12018 _("unexpected catchpoint kind (%d)"), ex);
12019 }
12020 }
12021
12022 /* Return the breakpoint ops "virtual table" used for catchpoints
12023 of the EX kind. */
12024
12025 static const struct breakpoint_ops *
12026 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
12027 {
12028 switch (ex)
12029 {
12030 case ex_catch_exception:
12031 return (&catch_exception_breakpoint_ops);
12032 break;
12033 case ex_catch_exception_unhandled:
12034 return (&catch_exception_unhandled_breakpoint_ops);
12035 break;
12036 case ex_catch_assert:
12037 return (&catch_assert_breakpoint_ops);
12038 break;
12039 default:
12040 internal_error (__FILE__, __LINE__,
12041 _("unexpected catchpoint kind (%d)"), ex);
12042 }
12043 }
12044
12045 /* Return the condition that will be used to match the current exception
12046 being raised with the exception that the user wants to catch. This
12047 assumes that this condition is used when the inferior just triggered
12048 an exception catchpoint.
12049
12050 The string returned is a newly allocated string that needs to be
12051 deallocated later. */
12052
12053 static char *
12054 ada_exception_catchpoint_cond_string (const char *excep_string)
12055 {
12056 int i;
12057
12058 /* The standard exceptions are a special case. They are defined in
12059 runtime units that have been compiled without debugging info; if
12060 EXCEP_STRING is the not-fully-qualified name of a standard
12061 exception (e.g. "constraint_error") then, during the evaluation
12062 of the condition expression, the symbol lookup on this name would
12063 *not* return this standard exception. The catchpoint condition
12064 may then be set only on user-defined exceptions which have the
12065 same not-fully-qualified name (e.g. my_package.constraint_error).
12066
12067 To avoid this unexcepted behavior, these standard exceptions are
12068 systematically prefixed by "standard". This means that "catch
12069 exception constraint_error" is rewritten into "catch exception
12070 standard.constraint_error".
12071
12072 If an exception named contraint_error is defined in another package of
12073 the inferior program, then the only way to specify this exception as a
12074 breakpoint condition is to use its fully-qualified named:
12075 e.g. my_package.constraint_error. */
12076
12077 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12078 {
12079 if (strcmp (standard_exc [i], excep_string) == 0)
12080 {
12081 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12082 excep_string);
12083 }
12084 }
12085 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12086 }
12087
12088 /* Return the symtab_and_line that should be used to insert an exception
12089 catchpoint of the TYPE kind.
12090
12091 EXCEP_STRING should contain the name of a specific exception that
12092 the catchpoint should catch, or NULL otherwise.
12093
12094 ADDR_STRING returns the name of the function where the real
12095 breakpoint that implements the catchpoints is set, depending on the
12096 type of catchpoint we need to create. */
12097
12098 static struct symtab_and_line
12099 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12100 char **addr_string, const struct breakpoint_ops **ops)
12101 {
12102 const char *sym_name;
12103 struct symbol *sym;
12104
12105 /* First, find out which exception support info to use. */
12106 ada_exception_support_info_sniffer ();
12107
12108 /* Then lookup the function on which we will break in order to catch
12109 the Ada exceptions requested by the user. */
12110 sym_name = ada_exception_sym_name (ex);
12111 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12112
12113 /* We can assume that SYM is not NULL at this stage. If the symbol
12114 did not exist, ada_exception_support_info_sniffer would have
12115 raised an exception.
12116
12117 Also, ada_exception_support_info_sniffer should have already
12118 verified that SYM is a function symbol. */
12119 gdb_assert (sym != NULL);
12120 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12121
12122 /* Set ADDR_STRING. */
12123 *addr_string = xstrdup (sym_name);
12124
12125 /* Set OPS. */
12126 *ops = ada_exception_breakpoint_ops (ex);
12127
12128 return find_function_start_sal (sym, 1);
12129 }
12130
12131 /* Parse the arguments (ARGS) of the "catch exception" command.
12132
12133 If the user asked the catchpoint to catch only a specific
12134 exception, then save the exception name in ADDR_STRING.
12135
12136 If the user provided a condition, then set COND_STRING to
12137 that condition expression (the memory must be deallocated
12138 after use). Otherwise, set COND_STRING to NULL.
12139
12140 See ada_exception_sal for a description of all the remaining
12141 function arguments of this function. */
12142
12143 static struct symtab_and_line
12144 ada_decode_exception_location (char *args, char **addr_string,
12145 char **excep_string,
12146 char **cond_string,
12147 const struct breakpoint_ops **ops)
12148 {
12149 enum exception_catchpoint_kind ex;
12150
12151 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12152 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12153 }
12154
12155 /* Create an Ada exception catchpoint. */
12156
12157 static void
12158 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12159 struct symtab_and_line sal,
12160 char *addr_string,
12161 char *excep_string,
12162 char *cond_string,
12163 const struct breakpoint_ops *ops,
12164 int tempflag,
12165 int from_tty)
12166 {
12167 struct ada_catchpoint *c;
12168
12169 c = XNEW (struct ada_catchpoint);
12170 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12171 ops, tempflag, from_tty);
12172 c->excep_string = excep_string;
12173 create_excep_cond_exprs (c);
12174 if (cond_string != NULL)
12175 set_breakpoint_condition (&c->base, cond_string, from_tty);
12176 install_breakpoint (0, &c->base, 1);
12177 }
12178
12179 /* Implement the "catch exception" command. */
12180
12181 static void
12182 catch_ada_exception_command (char *arg, int from_tty,
12183 struct cmd_list_element *command)
12184 {
12185 struct gdbarch *gdbarch = get_current_arch ();
12186 int tempflag;
12187 struct symtab_and_line sal;
12188 char *addr_string = NULL;
12189 char *excep_string = NULL;
12190 char *cond_string = NULL;
12191 const struct breakpoint_ops *ops = NULL;
12192
12193 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12194
12195 if (!arg)
12196 arg = "";
12197 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12198 &cond_string, &ops);
12199 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12200 excep_string, cond_string, ops,
12201 tempflag, from_tty);
12202 }
12203
12204 /* Assuming that ARGS contains the arguments of a "catch assert"
12205 command, parse those arguments and return a symtab_and_line object
12206 for a failed assertion catchpoint.
12207
12208 Set ADDR_STRING to the name of the function where the real
12209 breakpoint that implements the catchpoint is set.
12210
12211 If ARGS contains a condition, set COND_STRING to that condition
12212 (the memory needs to be deallocated after use). Otherwise, set
12213 COND_STRING to NULL. */
12214
12215 static struct symtab_and_line
12216 ada_decode_assert_location (char *args, char **addr_string,
12217 char **cond_string,
12218 const struct breakpoint_ops **ops)
12219 {
12220 args = skip_spaces (args);
12221
12222 /* Check whether a condition was provided. */
12223 if (strncmp (args, "if", 2) == 0
12224 && (isspace (args[2]) || args[2] == '\0'))
12225 {
12226 args += 2;
12227 args = skip_spaces (args);
12228 if (args[0] == '\0')
12229 error (_("condition missing after `if' keyword"));
12230 *cond_string = xstrdup (args);
12231 }
12232
12233 /* Otherwise, there should be no other argument at the end of
12234 the command. */
12235 else if (args[0] != '\0')
12236 error (_("Junk at end of arguments."));
12237
12238 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12239 }
12240
12241 /* Implement the "catch assert" command. */
12242
12243 static void
12244 catch_assert_command (char *arg, int from_tty,
12245 struct cmd_list_element *command)
12246 {
12247 struct gdbarch *gdbarch = get_current_arch ();
12248 int tempflag;
12249 struct symtab_and_line sal;
12250 char *addr_string = NULL;
12251 char *cond_string = NULL;
12252 const struct breakpoint_ops *ops = NULL;
12253
12254 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12255
12256 if (!arg)
12257 arg = "";
12258 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12259 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12260 NULL, cond_string, ops, tempflag,
12261 from_tty);
12262 }
12263 /* Operators */
12264 /* Information about operators given special treatment in functions
12265 below. */
12266 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12267
12268 #define ADA_OPERATORS \
12269 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12270 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12271 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12272 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12273 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12274 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12275 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12276 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12277 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12278 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12279 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12280 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12281 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12282 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12283 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12284 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12285 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12286 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12287 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12288
12289 static void
12290 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12291 int *argsp)
12292 {
12293 switch (exp->elts[pc - 1].opcode)
12294 {
12295 default:
12296 operator_length_standard (exp, pc, oplenp, argsp);
12297 break;
12298
12299 #define OP_DEFN(op, len, args, binop) \
12300 case op: *oplenp = len; *argsp = args; break;
12301 ADA_OPERATORS;
12302 #undef OP_DEFN
12303
12304 case OP_AGGREGATE:
12305 *oplenp = 3;
12306 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12307 break;
12308
12309 case OP_CHOICES:
12310 *oplenp = 3;
12311 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12312 break;
12313 }
12314 }
12315
12316 /* Implementation of the exp_descriptor method operator_check. */
12317
12318 static int
12319 ada_operator_check (struct expression *exp, int pos,
12320 int (*objfile_func) (struct objfile *objfile, void *data),
12321 void *data)
12322 {
12323 const union exp_element *const elts = exp->elts;
12324 struct type *type = NULL;
12325
12326 switch (elts[pos].opcode)
12327 {
12328 case UNOP_IN_RANGE:
12329 case UNOP_QUAL:
12330 type = elts[pos + 1].type;
12331 break;
12332
12333 default:
12334 return operator_check_standard (exp, pos, objfile_func, data);
12335 }
12336
12337 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12338
12339 if (type && TYPE_OBJFILE (type)
12340 && (*objfile_func) (TYPE_OBJFILE (type), data))
12341 return 1;
12342
12343 return 0;
12344 }
12345
12346 static char *
12347 ada_op_name (enum exp_opcode opcode)
12348 {
12349 switch (opcode)
12350 {
12351 default:
12352 return op_name_standard (opcode);
12353
12354 #define OP_DEFN(op, len, args, binop) case op: return #op;
12355 ADA_OPERATORS;
12356 #undef OP_DEFN
12357
12358 case OP_AGGREGATE:
12359 return "OP_AGGREGATE";
12360 case OP_CHOICES:
12361 return "OP_CHOICES";
12362 case OP_NAME:
12363 return "OP_NAME";
12364 }
12365 }
12366
12367 /* As for operator_length, but assumes PC is pointing at the first
12368 element of the operator, and gives meaningful results only for the
12369 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12370
12371 static void
12372 ada_forward_operator_length (struct expression *exp, int pc,
12373 int *oplenp, int *argsp)
12374 {
12375 switch (exp->elts[pc].opcode)
12376 {
12377 default:
12378 *oplenp = *argsp = 0;
12379 break;
12380
12381 #define OP_DEFN(op, len, args, binop) \
12382 case op: *oplenp = len; *argsp = args; break;
12383 ADA_OPERATORS;
12384 #undef OP_DEFN
12385
12386 case OP_AGGREGATE:
12387 *oplenp = 3;
12388 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12389 break;
12390
12391 case OP_CHOICES:
12392 *oplenp = 3;
12393 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12394 break;
12395
12396 case OP_STRING:
12397 case OP_NAME:
12398 {
12399 int len = longest_to_int (exp->elts[pc + 1].longconst);
12400
12401 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12402 *argsp = 0;
12403 break;
12404 }
12405 }
12406 }
12407
12408 static int
12409 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12410 {
12411 enum exp_opcode op = exp->elts[elt].opcode;
12412 int oplen, nargs;
12413 int pc = elt;
12414 int i;
12415
12416 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12417
12418 switch (op)
12419 {
12420 /* Ada attributes ('Foo). */
12421 case OP_ATR_FIRST:
12422 case OP_ATR_LAST:
12423 case OP_ATR_LENGTH:
12424 case OP_ATR_IMAGE:
12425 case OP_ATR_MAX:
12426 case OP_ATR_MIN:
12427 case OP_ATR_MODULUS:
12428 case OP_ATR_POS:
12429 case OP_ATR_SIZE:
12430 case OP_ATR_TAG:
12431 case OP_ATR_VAL:
12432 break;
12433
12434 case UNOP_IN_RANGE:
12435 case UNOP_QUAL:
12436 /* XXX: gdb_sprint_host_address, type_sprint */
12437 fprintf_filtered (stream, _("Type @"));
12438 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12439 fprintf_filtered (stream, " (");
12440 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12441 fprintf_filtered (stream, ")");
12442 break;
12443 case BINOP_IN_BOUNDS:
12444 fprintf_filtered (stream, " (%d)",
12445 longest_to_int (exp->elts[pc + 2].longconst));
12446 break;
12447 case TERNOP_IN_RANGE:
12448 break;
12449
12450 case OP_AGGREGATE:
12451 case OP_OTHERS:
12452 case OP_DISCRETE_RANGE:
12453 case OP_POSITIONAL:
12454 case OP_CHOICES:
12455 break;
12456
12457 case OP_NAME:
12458 case OP_STRING:
12459 {
12460 char *name = &exp->elts[elt + 2].string;
12461 int len = longest_to_int (exp->elts[elt + 1].longconst);
12462
12463 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12464 break;
12465 }
12466
12467 default:
12468 return dump_subexp_body_standard (exp, stream, elt);
12469 }
12470
12471 elt += oplen;
12472 for (i = 0; i < nargs; i += 1)
12473 elt = dump_subexp (exp, stream, elt);
12474
12475 return elt;
12476 }
12477
12478 /* The Ada extension of print_subexp (q.v.). */
12479
12480 static void
12481 ada_print_subexp (struct expression *exp, int *pos,
12482 struct ui_file *stream, enum precedence prec)
12483 {
12484 int oplen, nargs, i;
12485 int pc = *pos;
12486 enum exp_opcode op = exp->elts[pc].opcode;
12487
12488 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12489
12490 *pos += oplen;
12491 switch (op)
12492 {
12493 default:
12494 *pos -= oplen;
12495 print_subexp_standard (exp, pos, stream, prec);
12496 return;
12497
12498 case OP_VAR_VALUE:
12499 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12500 return;
12501
12502 case BINOP_IN_BOUNDS:
12503 /* XXX: sprint_subexp */
12504 print_subexp (exp, pos, stream, PREC_SUFFIX);
12505 fputs_filtered (" in ", stream);
12506 print_subexp (exp, pos, stream, PREC_SUFFIX);
12507 fputs_filtered ("'range", stream);
12508 if (exp->elts[pc + 1].longconst > 1)
12509 fprintf_filtered (stream, "(%ld)",
12510 (long) exp->elts[pc + 1].longconst);
12511 return;
12512
12513 case TERNOP_IN_RANGE:
12514 if (prec >= PREC_EQUAL)
12515 fputs_filtered ("(", stream);
12516 /* XXX: sprint_subexp */
12517 print_subexp (exp, pos, stream, PREC_SUFFIX);
12518 fputs_filtered (" in ", stream);
12519 print_subexp (exp, pos, stream, PREC_EQUAL);
12520 fputs_filtered (" .. ", stream);
12521 print_subexp (exp, pos, stream, PREC_EQUAL);
12522 if (prec >= PREC_EQUAL)
12523 fputs_filtered (")", stream);
12524 return;
12525
12526 case OP_ATR_FIRST:
12527 case OP_ATR_LAST:
12528 case OP_ATR_LENGTH:
12529 case OP_ATR_IMAGE:
12530 case OP_ATR_MAX:
12531 case OP_ATR_MIN:
12532 case OP_ATR_MODULUS:
12533 case OP_ATR_POS:
12534 case OP_ATR_SIZE:
12535 case OP_ATR_TAG:
12536 case OP_ATR_VAL:
12537 if (exp->elts[*pos].opcode == OP_TYPE)
12538 {
12539 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12540 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12541 &type_print_raw_options);
12542 *pos += 3;
12543 }
12544 else
12545 print_subexp (exp, pos, stream, PREC_SUFFIX);
12546 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12547 if (nargs > 1)
12548 {
12549 int tem;
12550
12551 for (tem = 1; tem < nargs; tem += 1)
12552 {
12553 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12554 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12555 }
12556 fputs_filtered (")", stream);
12557 }
12558 return;
12559
12560 case UNOP_QUAL:
12561 type_print (exp->elts[pc + 1].type, "", stream, 0);
12562 fputs_filtered ("'(", stream);
12563 print_subexp (exp, pos, stream, PREC_PREFIX);
12564 fputs_filtered (")", stream);
12565 return;
12566
12567 case UNOP_IN_RANGE:
12568 /* XXX: sprint_subexp */
12569 print_subexp (exp, pos, stream, PREC_SUFFIX);
12570 fputs_filtered (" in ", stream);
12571 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12572 &type_print_raw_options);
12573 return;
12574
12575 case OP_DISCRETE_RANGE:
12576 print_subexp (exp, pos, stream, PREC_SUFFIX);
12577 fputs_filtered ("..", stream);
12578 print_subexp (exp, pos, stream, PREC_SUFFIX);
12579 return;
12580
12581 case OP_OTHERS:
12582 fputs_filtered ("others => ", stream);
12583 print_subexp (exp, pos, stream, PREC_SUFFIX);
12584 return;
12585
12586 case OP_CHOICES:
12587 for (i = 0; i < nargs-1; i += 1)
12588 {
12589 if (i > 0)
12590 fputs_filtered ("|", stream);
12591 print_subexp (exp, pos, stream, PREC_SUFFIX);
12592 }
12593 fputs_filtered (" => ", stream);
12594 print_subexp (exp, pos, stream, PREC_SUFFIX);
12595 return;
12596
12597 case OP_POSITIONAL:
12598 print_subexp (exp, pos, stream, PREC_SUFFIX);
12599 return;
12600
12601 case OP_AGGREGATE:
12602 fputs_filtered ("(", stream);
12603 for (i = 0; i < nargs; i += 1)
12604 {
12605 if (i > 0)
12606 fputs_filtered (", ", stream);
12607 print_subexp (exp, pos, stream, PREC_SUFFIX);
12608 }
12609 fputs_filtered (")", stream);
12610 return;
12611 }
12612 }
12613
12614 /* Table mapping opcodes into strings for printing operators
12615 and precedences of the operators. */
12616
12617 static const struct op_print ada_op_print_tab[] = {
12618 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12619 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12620 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12621 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12622 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12623 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12624 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12625 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12626 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12627 {">=", BINOP_GEQ, PREC_ORDER, 0},
12628 {">", BINOP_GTR, PREC_ORDER, 0},
12629 {"<", BINOP_LESS, PREC_ORDER, 0},
12630 {">>", BINOP_RSH, PREC_SHIFT, 0},
12631 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12632 {"+", BINOP_ADD, PREC_ADD, 0},
12633 {"-", BINOP_SUB, PREC_ADD, 0},
12634 {"&", BINOP_CONCAT, PREC_ADD, 0},
12635 {"*", BINOP_MUL, PREC_MUL, 0},
12636 {"/", BINOP_DIV, PREC_MUL, 0},
12637 {"rem", BINOP_REM, PREC_MUL, 0},
12638 {"mod", BINOP_MOD, PREC_MUL, 0},
12639 {"**", BINOP_EXP, PREC_REPEAT, 0},
12640 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12641 {"-", UNOP_NEG, PREC_PREFIX, 0},
12642 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12643 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12644 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12645 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12646 {".all", UNOP_IND, PREC_SUFFIX, 1},
12647 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12648 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12649 {NULL, 0, 0, 0}
12650 };
12651 \f
12652 enum ada_primitive_types {
12653 ada_primitive_type_int,
12654 ada_primitive_type_long,
12655 ada_primitive_type_short,
12656 ada_primitive_type_char,
12657 ada_primitive_type_float,
12658 ada_primitive_type_double,
12659 ada_primitive_type_void,
12660 ada_primitive_type_long_long,
12661 ada_primitive_type_long_double,
12662 ada_primitive_type_natural,
12663 ada_primitive_type_positive,
12664 ada_primitive_type_system_address,
12665 nr_ada_primitive_types
12666 };
12667
12668 static void
12669 ada_language_arch_info (struct gdbarch *gdbarch,
12670 struct language_arch_info *lai)
12671 {
12672 const struct builtin_type *builtin = builtin_type (gdbarch);
12673
12674 lai->primitive_type_vector
12675 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12676 struct type *);
12677
12678 lai->primitive_type_vector [ada_primitive_type_int]
12679 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12680 0, "integer");
12681 lai->primitive_type_vector [ada_primitive_type_long]
12682 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12683 0, "long_integer");
12684 lai->primitive_type_vector [ada_primitive_type_short]
12685 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12686 0, "short_integer");
12687 lai->string_char_type
12688 = lai->primitive_type_vector [ada_primitive_type_char]
12689 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12690 lai->primitive_type_vector [ada_primitive_type_float]
12691 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12692 "float", NULL);
12693 lai->primitive_type_vector [ada_primitive_type_double]
12694 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12695 "long_float", NULL);
12696 lai->primitive_type_vector [ada_primitive_type_long_long]
12697 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12698 0, "long_long_integer");
12699 lai->primitive_type_vector [ada_primitive_type_long_double]
12700 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12701 "long_long_float", NULL);
12702 lai->primitive_type_vector [ada_primitive_type_natural]
12703 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12704 0, "natural");
12705 lai->primitive_type_vector [ada_primitive_type_positive]
12706 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12707 0, "positive");
12708 lai->primitive_type_vector [ada_primitive_type_void]
12709 = builtin->builtin_void;
12710
12711 lai->primitive_type_vector [ada_primitive_type_system_address]
12712 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12713 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12714 = "system__address";
12715
12716 lai->bool_type_symbol = NULL;
12717 lai->bool_type_default = builtin->builtin_bool;
12718 }
12719 \f
12720 /* Language vector */
12721
12722 /* Not really used, but needed in the ada_language_defn. */
12723
12724 static void
12725 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12726 {
12727 ada_emit_char (c, type, stream, quoter, 1);
12728 }
12729
12730 static int
12731 parse (void)
12732 {
12733 warnings_issued = 0;
12734 return ada_parse ();
12735 }
12736
12737 static const struct exp_descriptor ada_exp_descriptor = {
12738 ada_print_subexp,
12739 ada_operator_length,
12740 ada_operator_check,
12741 ada_op_name,
12742 ada_dump_subexp_body,
12743 ada_evaluate_subexp
12744 };
12745
12746 /* Implement the "la_get_symbol_name_cmp" language_defn method
12747 for Ada. */
12748
12749 static symbol_name_cmp_ftype
12750 ada_get_symbol_name_cmp (const char *lookup_name)
12751 {
12752 if (should_use_wild_match (lookup_name))
12753 return wild_match;
12754 else
12755 return compare_names;
12756 }
12757
12758 /* Implement the "la_read_var_value" language_defn method for Ada. */
12759
12760 static struct value *
12761 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12762 {
12763 struct block *frame_block = NULL;
12764 struct symbol *renaming_sym = NULL;
12765
12766 /* The only case where default_read_var_value is not sufficient
12767 is when VAR is a renaming... */
12768 if (frame)
12769 frame_block = get_frame_block (frame, NULL);
12770 if (frame_block)
12771 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12772 if (renaming_sym != NULL)
12773 return ada_read_renaming_var_value (renaming_sym, frame_block);
12774
12775 /* This is a typical case where we expect the default_read_var_value
12776 function to work. */
12777 return default_read_var_value (var, frame);
12778 }
12779
12780 const struct language_defn ada_language_defn = {
12781 "ada", /* Language name */
12782 language_ada,
12783 range_check_off,
12784 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12785 that's not quite what this means. */
12786 array_row_major,
12787 macro_expansion_no,
12788 &ada_exp_descriptor,
12789 parse,
12790 ada_error,
12791 resolve,
12792 ada_printchar, /* Print a character constant */
12793 ada_printstr, /* Function to print string constant */
12794 emit_char, /* Function to print single char (not used) */
12795 ada_print_type, /* Print a type using appropriate syntax */
12796 ada_print_typedef, /* Print a typedef using appropriate syntax */
12797 ada_val_print, /* Print a value using appropriate syntax */
12798 ada_value_print, /* Print a top-level value */
12799 ada_read_var_value, /* la_read_var_value */
12800 NULL, /* Language specific skip_trampoline */
12801 NULL, /* name_of_this */
12802 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12803 basic_lookup_transparent_type, /* lookup_transparent_type */
12804 ada_la_decode, /* Language specific symbol demangler */
12805 NULL, /* Language specific
12806 class_name_from_physname */
12807 ada_op_print_tab, /* expression operators for printing */
12808 0, /* c-style arrays */
12809 1, /* String lower bound */
12810 ada_get_gdb_completer_word_break_characters,
12811 ada_make_symbol_completion_list,
12812 ada_language_arch_info,
12813 ada_print_array_index,
12814 default_pass_by_reference,
12815 c_get_string,
12816 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12817 ada_iterate_over_symbols,
12818 LANG_MAGIC
12819 };
12820
12821 /* Provide a prototype to silence -Wmissing-prototypes. */
12822 extern initialize_file_ftype _initialize_ada_language;
12823
12824 /* Command-list for the "set/show ada" prefix command. */
12825 static struct cmd_list_element *set_ada_list;
12826 static struct cmd_list_element *show_ada_list;
12827
12828 /* Implement the "set ada" prefix command. */
12829
12830 static void
12831 set_ada_command (char *arg, int from_tty)
12832 {
12833 printf_unfiltered (_(\
12834 "\"set ada\" must be followed by the name of a setting.\n"));
12835 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12836 }
12837
12838 /* Implement the "show ada" prefix command. */
12839
12840 static void
12841 show_ada_command (char *args, int from_tty)
12842 {
12843 cmd_show_list (show_ada_list, from_tty, "");
12844 }
12845
12846 static void
12847 initialize_ada_catchpoint_ops (void)
12848 {
12849 struct breakpoint_ops *ops;
12850
12851 initialize_breakpoint_ops ();
12852
12853 ops = &catch_exception_breakpoint_ops;
12854 *ops = bkpt_breakpoint_ops;
12855 ops->dtor = dtor_catch_exception;
12856 ops->allocate_location = allocate_location_catch_exception;
12857 ops->re_set = re_set_catch_exception;
12858 ops->check_status = check_status_catch_exception;
12859 ops->print_it = print_it_catch_exception;
12860 ops->print_one = print_one_catch_exception;
12861 ops->print_mention = print_mention_catch_exception;
12862 ops->print_recreate = print_recreate_catch_exception;
12863
12864 ops = &catch_exception_unhandled_breakpoint_ops;
12865 *ops = bkpt_breakpoint_ops;
12866 ops->dtor = dtor_catch_exception_unhandled;
12867 ops->allocate_location = allocate_location_catch_exception_unhandled;
12868 ops->re_set = re_set_catch_exception_unhandled;
12869 ops->check_status = check_status_catch_exception_unhandled;
12870 ops->print_it = print_it_catch_exception_unhandled;
12871 ops->print_one = print_one_catch_exception_unhandled;
12872 ops->print_mention = print_mention_catch_exception_unhandled;
12873 ops->print_recreate = print_recreate_catch_exception_unhandled;
12874
12875 ops = &catch_assert_breakpoint_ops;
12876 *ops = bkpt_breakpoint_ops;
12877 ops->dtor = dtor_catch_assert;
12878 ops->allocate_location = allocate_location_catch_assert;
12879 ops->re_set = re_set_catch_assert;
12880 ops->check_status = check_status_catch_assert;
12881 ops->print_it = print_it_catch_assert;
12882 ops->print_one = print_one_catch_assert;
12883 ops->print_mention = print_mention_catch_assert;
12884 ops->print_recreate = print_recreate_catch_assert;
12885 }
12886
12887 void
12888 _initialize_ada_language (void)
12889 {
12890 add_language (&ada_language_defn);
12891
12892 initialize_ada_catchpoint_ops ();
12893
12894 add_prefix_cmd ("ada", no_class, set_ada_command,
12895 _("Prefix command for changing Ada-specfic settings"),
12896 &set_ada_list, "set ada ", 0, &setlist);
12897
12898 add_prefix_cmd ("ada", no_class, show_ada_command,
12899 _("Generic command for showing Ada-specific settings."),
12900 &show_ada_list, "show ada ", 0, &showlist);
12901
12902 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12903 &trust_pad_over_xvs, _("\
12904 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12905 Show whether an optimization trusting PAD types over XVS types is activated"),
12906 _("\
12907 This is related to the encoding used by the GNAT compiler. The debugger\n\
12908 should normally trust the contents of PAD types, but certain older versions\n\
12909 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12910 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12911 work around this bug. It is always safe to turn this option \"off\", but\n\
12912 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12913 this option to \"off\" unless necessary."),
12914 NULL, NULL, &set_ada_list, &show_ada_list);
12915
12916 add_catch_command ("exception", _("\
12917 Catch Ada exceptions, when raised.\n\
12918 With an argument, catch only exceptions with the given name."),
12919 catch_ada_exception_command,
12920 NULL,
12921 CATCH_PERMANENT,
12922 CATCH_TEMPORARY);
12923 add_catch_command ("assert", _("\
12924 Catch failed Ada assertions, when raised.\n\
12925 With an argument, catch only exceptions with the given name."),
12926 catch_assert_command,
12927 NULL,
12928 CATCH_PERMANENT,
12929 CATCH_TEMPORARY);
12930
12931 varsize_limit = 65536;
12932
12933 obstack_init (&symbol_list_obstack);
12934
12935 decoded_names_store = htab_create_alloc
12936 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12937 NULL, xcalloc, xfree);
12938
12939 /* Setup per-inferior data. */
12940 observer_attach_inferior_exit (ada_inferior_exit);
12941 ada_inferior_data
12942 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12943 }
This page took 0.310504 seconds and 4 git commands to generate.