Remove TYPE_TAG_NAME
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3516 exp = expp->get ();
3517 }
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3524 {
3525 struct block_symbol *candidates;
3526 int n_candidates;
3527
3528 n_candidates =
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 &candidates);
3533 make_cleanup (xfree, candidates);
3534
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
3544 if (i < 0)
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3552 }
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
3577 {
3578 struct block_symbol *candidates;
3579 int n_candidates;
3580
3581 n_candidates =
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3584 &candidates);
3585 make_cleanup (xfree, candidates);
3586
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3589 if (i < 0)
3590 break;
3591
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3595 exp = expp->get ();
3596 }
3597 break;
3598
3599 case OP_TYPE:
3600 case OP_REGISTER:
3601 do_cleanups (old_chain);
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4040 {
4041 char *args;
4042 const char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 expp->reset (newexp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4750 e->name = copy
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4753 e->sym = sym;
4754 e->domain = domain;
4755 e->block = block;
4756 }
4757 \f
4758 /* Symbol Lookup */
4759
4760 /* Return the symbol name match type that should be used used when
4761 searching for all symbols matching LOOKUP_NAME.
4762
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4764 for Ada lookups. */
4765
4766 static symbol_name_match_type
4767 name_match_type_from_name (const char *lookup_name)
4768 {
4769 return (strstr (lookup_name, "__") == NULL
4770 ? symbol_name_match_type::WILD
4771 : symbol_name_match_type::FULL);
4772 }
4773
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780 {
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4783
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4789 }
4790
4791
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795 static int
4796 is_nonfunction (struct block_symbol syms[], int n)
4797 {
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4811
4812 static int
4813 equiv_types (struct type *type0, struct type *type1)
4814 {
4815 if (type0 == type1)
4816 return 1;
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4831
4832 static int
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4834 {
4835 if (sym0 == sym1)
4836 return 1;
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
4841 switch (SYMBOL_CLASS (sym0))
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4852
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4862 default:
4863 return 0;
4864 }
4865 }
4866
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869
4870 static void
4871 add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
4873 const struct block *block)
4874 {
4875 int i;
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 return;
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 {
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4895 return;
4896 }
4897 }
4898
4899 {
4900 struct block_symbol info;
4901
4902 info.symbol = sym;
4903 info.block = block;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4905 }
4906 }
4907
4908 /* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4910
4911 static int
4912 num_defns_collected (struct obstack *obstackp)
4913 {
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 }
4916
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4922 {
4923 if (finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4925 else
4926 return (struct block_symbol *) obstack_base (obstackp);
4927 }
4928
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4934
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4937 {
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 symbol_name_match_type match_type = name_match_type_from_name (name);
4945 lookup_name_info lookup_name (name, match_type);
4946
4947 symbol_name_matcher_ftype *match_name
4948 = ada_get_symbol_name_matcher (lookup_name);
4949
4950 ALL_MSYMBOLS (objfile, msymbol)
4951 {
4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4954 {
4955 result.minsym = msymbol;
4956 result.objfile = objfile;
4957 break;
4958 }
4959 }
4960
4961 return result;
4962 }
4963
4964 /* For all subprograms that statically enclose the subprogram of the
4965 selected frame, add symbols matching identifier NAME in DOMAIN
4966 and their blocks to the list of data in OBSTACKP, as for
4967 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4968 with a wildcard prefix. */
4969
4970 static void
4971 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4972 const lookup_name_info &lookup_name,
4973 domain_enum domain)
4974 {
4975 }
4976
4977 /* True if TYPE is definitely an artificial type supplied to a symbol
4978 for which no debugging information was given in the symbol file. */
4979
4980 static int
4981 is_nondebugging_type (struct type *type)
4982 {
4983 const char *name = ada_type_name (type);
4984
4985 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4986 }
4987
4988 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4989 that are deemed "identical" for practical purposes.
4990
4991 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4992 types and that their number of enumerals is identical (in other
4993 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4994
4995 static int
4996 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4997 {
4998 int i;
4999
5000 /* The heuristic we use here is fairly conservative. We consider
5001 that 2 enumerate types are identical if they have the same
5002 number of enumerals and that all enumerals have the same
5003 underlying value and name. */
5004
5005 /* All enums in the type should have an identical underlying value. */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5008 return 0;
5009
5010 /* All enumerals should also have the same name (modulo any numerical
5011 suffix). */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 {
5014 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5015 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5016 int len_1 = strlen (name_1);
5017 int len_2 = strlen (name_2);
5018
5019 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5021 if (len_1 != len_2
5022 || strncmp (TYPE_FIELD_NAME (type1, i),
5023 TYPE_FIELD_NAME (type2, i),
5024 len_1) != 0)
5025 return 0;
5026 }
5027
5028 return 1;
5029 }
5030
5031 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5032 that are deemed "identical" for practical purposes. Sometimes,
5033 enumerals are not strictly identical, but their types are so similar
5034 that they can be considered identical.
5035
5036 For instance, consider the following code:
5037
5038 type Color is (Black, Red, Green, Blue, White);
5039 type RGB_Color is new Color range Red .. Blue;
5040
5041 Type RGB_Color is a subrange of an implicit type which is a copy
5042 of type Color. If we call that implicit type RGB_ColorB ("B" is
5043 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5044 As a result, when an expression references any of the enumeral
5045 by name (Eg. "print green"), the expression is technically
5046 ambiguous and the user should be asked to disambiguate. But
5047 doing so would only hinder the user, since it wouldn't matter
5048 what choice he makes, the outcome would always be the same.
5049 So, for practical purposes, we consider them as the same. */
5050
5051 static int
5052 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5053 {
5054 int i;
5055
5056 /* Before performing a thorough comparison check of each type,
5057 we perform a series of inexpensive checks. We expect that these
5058 checks will quickly fail in the vast majority of cases, and thus
5059 help prevent the unnecessary use of a more expensive comparison.
5060 Said comparison also expects us to make some of these checks
5061 (see ada_identical_enum_types_p). */
5062
5063 /* Quick check: All symbols should have an enum type. */
5064 for (i = 0; i < nsyms; i++)
5065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5066 return 0;
5067
5068 /* Quick check: They should all have the same value. */
5069 for (i = 1; i < nsyms; i++)
5070 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5071 return 0;
5072
5073 /* Quick check: They should all have the same number of enumerals. */
5074 for (i = 1; i < nsyms; i++)
5075 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5076 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5077 return 0;
5078
5079 /* All the sanity checks passed, so we might have a set of
5080 identical enumeration types. Perform a more complete
5081 comparison of the type of each symbol. */
5082 for (i = 1; i < nsyms; i++)
5083 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5084 SYMBOL_TYPE (syms[0].symbol)))
5085 return 0;
5086
5087 return 1;
5088 }
5089
5090 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5091 duplicate other symbols in the list (The only case I know of where
5092 this happens is when object files containing stabs-in-ecoff are
5093 linked with files containing ordinary ecoff debugging symbols (or no
5094 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5095 Returns the number of items in the modified list. */
5096
5097 static int
5098 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5099 {
5100 int i, j;
5101
5102 /* We should never be called with less than 2 symbols, as there
5103 cannot be any extra symbol in that case. But it's easy to
5104 handle, since we have nothing to do in that case. */
5105 if (nsyms < 2)
5106 return nsyms;
5107
5108 i = 0;
5109 while (i < nsyms)
5110 {
5111 int remove_p = 0;
5112
5113 /* If two symbols have the same name and one of them is a stub type,
5114 the get rid of the stub. */
5115
5116 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5117 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5118 {
5119 for (j = 0; j < nsyms; j++)
5120 {
5121 if (j != i
5122 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5125 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5126 remove_p = 1;
5127 }
5128 }
5129
5130 /* Two symbols with the same name, same class and same address
5131 should be identical. */
5132
5133 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5134 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5135 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5136 {
5137 for (j = 0; j < nsyms; j += 1)
5138 {
5139 if (i != j
5140 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5141 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5142 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5143 && SYMBOL_CLASS (syms[i].symbol)
5144 == SYMBOL_CLASS (syms[j].symbol)
5145 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5146 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5147 remove_p = 1;
5148 }
5149 }
5150
5151 if (remove_p)
5152 {
5153 for (j = i + 1; j < nsyms; j += 1)
5154 syms[j - 1] = syms[j];
5155 nsyms -= 1;
5156 }
5157
5158 i += 1;
5159 }
5160
5161 /* If all the remaining symbols are identical enumerals, then
5162 just keep the first one and discard the rest.
5163
5164 Unlike what we did previously, we do not discard any entry
5165 unless they are ALL identical. This is because the symbol
5166 comparison is not a strict comparison, but rather a practical
5167 comparison. If all symbols are considered identical, then
5168 we can just go ahead and use the first one and discard the rest.
5169 But if we cannot reduce the list to a single element, we have
5170 to ask the user to disambiguate anyways. And if we have to
5171 present a multiple-choice menu, it's less confusing if the list
5172 isn't missing some choices that were identical and yet distinct. */
5173 if (symbols_are_identical_enums (syms, nsyms))
5174 nsyms = 1;
5175
5176 return nsyms;
5177 }
5178
5179 /* Given a type that corresponds to a renaming entity, use the type name
5180 to extract the scope (package name or function name, fully qualified,
5181 and following the GNAT encoding convention) where this renaming has been
5182 defined. */
5183
5184 static std::string
5185 xget_renaming_scope (struct type *renaming_type)
5186 {
5187 /* The renaming types adhere to the following convention:
5188 <scope>__<rename>___<XR extension>.
5189 So, to extract the scope, we search for the "___XR" extension,
5190 and then backtrack until we find the first "__". */
5191
5192 const char *name = type_name_no_tag (renaming_type);
5193 const char *suffix = strstr (name, "___XR");
5194 const char *last;
5195
5196 /* Now, backtrack a bit until we find the first "__". Start looking
5197 at suffix - 3, as the <rename> part is at least one character long. */
5198
5199 for (last = suffix - 3; last > name; last--)
5200 if (last[0] == '_' && last[1] == '_')
5201 break;
5202
5203 /* Make a copy of scope and return it. */
5204 return std::string (name, last);
5205 }
5206
5207 /* Return nonzero if NAME corresponds to a package name. */
5208
5209 static int
5210 is_package_name (const char *name)
5211 {
5212 /* Here, We take advantage of the fact that no symbols are generated
5213 for packages, while symbols are generated for each function.
5214 So the condition for NAME represent a package becomes equivalent
5215 to NAME not existing in our list of symbols. There is only one
5216 small complication with library-level functions (see below). */
5217
5218 char *fun_name;
5219
5220 /* If it is a function that has not been defined at library level,
5221 then we should be able to look it up in the symbols. */
5222 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5223 return 0;
5224
5225 /* Library-level function names start with "_ada_". See if function
5226 "_ada_" followed by NAME can be found. */
5227
5228 /* Do a quick check that NAME does not contain "__", since library-level
5229 functions names cannot contain "__" in them. */
5230 if (strstr (name, "__") != NULL)
5231 return 0;
5232
5233 fun_name = xstrprintf ("_ada_%s", name);
5234
5235 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5236 }
5237
5238 /* Return nonzero if SYM corresponds to a renaming entity that is
5239 not visible from FUNCTION_NAME. */
5240
5241 static int
5242 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5243 {
5244 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5245 return 0;
5246
5247 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5248
5249 /* If the rename has been defined in a package, then it is visible. */
5250 if (is_package_name (scope.c_str ()))
5251 return 0;
5252
5253 /* Check that the rename is in the current function scope by checking
5254 that its name starts with SCOPE. */
5255
5256 /* If the function name starts with "_ada_", it means that it is
5257 a library-level function. Strip this prefix before doing the
5258 comparison, as the encoding for the renaming does not contain
5259 this prefix. */
5260 if (startswith (function_name, "_ada_"))
5261 function_name += 5;
5262
5263 return !startswith (function_name, scope.c_str ());
5264 }
5265
5266 /* Remove entries from SYMS that corresponds to a renaming entity that
5267 is not visible from the function associated with CURRENT_BLOCK or
5268 that is superfluous due to the presence of more specific renaming
5269 information. Places surviving symbols in the initial entries of
5270 SYMS and returns the number of surviving symbols.
5271
5272 Rationale:
5273 First, in cases where an object renaming is implemented as a
5274 reference variable, GNAT may produce both the actual reference
5275 variable and the renaming encoding. In this case, we discard the
5276 latter.
5277
5278 Second, GNAT emits a type following a specified encoding for each renaming
5279 entity. Unfortunately, STABS currently does not support the definition
5280 of types that are local to a given lexical block, so all renamings types
5281 are emitted at library level. As a consequence, if an application
5282 contains two renaming entities using the same name, and a user tries to
5283 print the value of one of these entities, the result of the ada symbol
5284 lookup will also contain the wrong renaming type.
5285
5286 This function partially covers for this limitation by attempting to
5287 remove from the SYMS list renaming symbols that should be visible
5288 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5289 method with the current information available. The implementation
5290 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5291
5292 - When the user tries to print a rename in a function while there
5293 is another rename entity defined in a package: Normally, the
5294 rename in the function has precedence over the rename in the
5295 package, so the latter should be removed from the list. This is
5296 currently not the case.
5297
5298 - This function will incorrectly remove valid renames if
5299 the CURRENT_BLOCK corresponds to a function which symbol name
5300 has been changed by an "Export" pragma. As a consequence,
5301 the user will be unable to print such rename entities. */
5302
5303 static int
5304 remove_irrelevant_renamings (struct block_symbol *syms,
5305 int nsyms, const struct block *current_block)
5306 {
5307 struct symbol *current_function;
5308 const char *current_function_name;
5309 int i;
5310 int is_new_style_renaming;
5311
5312 /* If there is both a renaming foo___XR... encoded as a variable and
5313 a simple variable foo in the same block, discard the latter.
5314 First, zero out such symbols, then compress. */
5315 is_new_style_renaming = 0;
5316 for (i = 0; i < nsyms; i += 1)
5317 {
5318 struct symbol *sym = syms[i].symbol;
5319 const struct block *block = syms[i].block;
5320 const char *name;
5321 const char *suffix;
5322
5323 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5324 continue;
5325 name = SYMBOL_LINKAGE_NAME (sym);
5326 suffix = strstr (name, "___XR");
5327
5328 if (suffix != NULL)
5329 {
5330 int name_len = suffix - name;
5331 int j;
5332
5333 is_new_style_renaming = 1;
5334 for (j = 0; j < nsyms; j += 1)
5335 if (i != j && syms[j].symbol != NULL
5336 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5337 name_len) == 0
5338 && block == syms[j].block)
5339 syms[j].symbol = NULL;
5340 }
5341 }
5342 if (is_new_style_renaming)
5343 {
5344 int j, k;
5345
5346 for (j = k = 0; j < nsyms; j += 1)
5347 if (syms[j].symbol != NULL)
5348 {
5349 syms[k] = syms[j];
5350 k += 1;
5351 }
5352 return k;
5353 }
5354
5355 /* Extract the function name associated to CURRENT_BLOCK.
5356 Abort if unable to do so. */
5357
5358 if (current_block == NULL)
5359 return nsyms;
5360
5361 current_function = block_linkage_function (current_block);
5362 if (current_function == NULL)
5363 return nsyms;
5364
5365 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5366 if (current_function_name == NULL)
5367 return nsyms;
5368
5369 /* Check each of the symbols, and remove it from the list if it is
5370 a type corresponding to a renaming that is out of the scope of
5371 the current block. */
5372
5373 i = 0;
5374 while (i < nsyms)
5375 {
5376 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5377 == ADA_OBJECT_RENAMING
5378 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5379 {
5380 int j;
5381
5382 for (j = i + 1; j < nsyms; j += 1)
5383 syms[j - 1] = syms[j];
5384 nsyms -= 1;
5385 }
5386 else
5387 i += 1;
5388 }
5389
5390 return nsyms;
5391 }
5392
5393 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5394 whose name and domain match NAME and DOMAIN respectively.
5395 If no match was found, then extend the search to "enclosing"
5396 routines (in other words, if we're inside a nested function,
5397 search the symbols defined inside the enclosing functions).
5398 If WILD_MATCH_P is nonzero, perform the naming matching in
5399 "wild" mode (see function "wild_match" for more info).
5400
5401 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5402
5403 static void
5404 ada_add_local_symbols (struct obstack *obstackp,
5405 const lookup_name_info &lookup_name,
5406 const struct block *block, domain_enum domain)
5407 {
5408 int block_depth = 0;
5409
5410 while (block != NULL)
5411 {
5412 block_depth += 1;
5413 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5414
5415 /* If we found a non-function match, assume that's the one. */
5416 if (is_nonfunction (defns_collected (obstackp, 0),
5417 num_defns_collected (obstackp)))
5418 return;
5419
5420 block = BLOCK_SUPERBLOCK (block);
5421 }
5422
5423 /* If no luck so far, try to find NAME as a local symbol in some lexically
5424 enclosing subprogram. */
5425 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5426 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5427 }
5428
5429 /* An object of this type is used as the user_data argument when
5430 calling the map_matching_symbols method. */
5431
5432 struct match_data
5433 {
5434 struct objfile *objfile;
5435 struct obstack *obstackp;
5436 struct symbol *arg_sym;
5437 int found_sym;
5438 };
5439
5440 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5441 to a list of symbols. DATA0 is a pointer to a struct match_data *
5442 containing the obstack that collects the symbol list, the file that SYM
5443 must come from, a flag indicating whether a non-argument symbol has
5444 been found in the current block, and the last argument symbol
5445 passed in SYM within the current block (if any). When SYM is null,
5446 marking the end of a block, the argument symbol is added if no
5447 other has been found. */
5448
5449 static int
5450 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5451 {
5452 struct match_data *data = (struct match_data *) data0;
5453
5454 if (sym == NULL)
5455 {
5456 if (!data->found_sym && data->arg_sym != NULL)
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (data->arg_sym, data->objfile),
5459 block);
5460 data->found_sym = 0;
5461 data->arg_sym = NULL;
5462 }
5463 else
5464 {
5465 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5466 return 0;
5467 else if (SYMBOL_IS_ARGUMENT (sym))
5468 data->arg_sym = sym;
5469 else
5470 {
5471 data->found_sym = 1;
5472 add_defn_to_vec (data->obstackp,
5473 fixup_symbol_section (sym, data->objfile),
5474 block);
5475 }
5476 }
5477 return 0;
5478 }
5479
5480 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5481 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5482 symbols to OBSTACKP. Return whether we found such symbols. */
5483
5484 static int
5485 ada_add_block_renamings (struct obstack *obstackp,
5486 const struct block *block,
5487 const lookup_name_info &lookup_name,
5488 domain_enum domain)
5489 {
5490 struct using_direct *renaming;
5491 int defns_mark = num_defns_collected (obstackp);
5492
5493 symbol_name_matcher_ftype *name_match
5494 = ada_get_symbol_name_matcher (lookup_name);
5495
5496 for (renaming = block_using (block);
5497 renaming != NULL;
5498 renaming = renaming->next)
5499 {
5500 const char *r_name;
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
5525 if (name_match (r_name, lookup_name, NULL))
5526 {
5527 lookup_name_info decl_lookup_name (renaming->declaration,
5528 lookup_name.match_type ());
5529 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5530 1, NULL);
5531 }
5532 renaming->searched = 0;
5533 }
5534 return num_defns_collected (obstackp) != defns_mark;
5535 }
5536
5537 /* Implements compare_names, but only applying the comparision using
5538 the given CASING. */
5539
5540 static int
5541 compare_names_with_case (const char *string1, const char *string2,
5542 enum case_sensitivity casing)
5543 {
5544 while (*string1 != '\0' && *string2 != '\0')
5545 {
5546 char c1, c2;
5547
5548 if (isspace (*string1) || isspace (*string2))
5549 return strcmp_iw_ordered (string1, string2);
5550
5551 if (casing == case_sensitive_off)
5552 {
5553 c1 = tolower (*string1);
5554 c2 = tolower (*string2);
5555 }
5556 else
5557 {
5558 c1 = *string1;
5559 c2 = *string2;
5560 }
5561 if (c1 != c2)
5562 break;
5563
5564 string1 += 1;
5565 string2 += 1;
5566 }
5567
5568 switch (*string1)
5569 {
5570 case '(':
5571 return strcmp_iw_ordered (string1, string2);
5572 case '_':
5573 if (*string2 == '\0')
5574 {
5575 if (is_name_suffix (string1))
5576 return 0;
5577 else
5578 return 1;
5579 }
5580 /* FALLTHROUGH */
5581 default:
5582 if (*string2 == '(')
5583 return strcmp_iw_ordered (string1, string2);
5584 else
5585 {
5586 if (casing == case_sensitive_off)
5587 return tolower (*string1) - tolower (*string2);
5588 else
5589 return *string1 - *string2;
5590 }
5591 }
5592 }
5593
5594 /* Compare STRING1 to STRING2, with results as for strcmp.
5595 Compatible with strcmp_iw_ordered in that...
5596
5597 strcmp_iw_ordered (STRING1, STRING2) <= 0
5598
5599 ... implies...
5600
5601 compare_names (STRING1, STRING2) <= 0
5602
5603 (they may differ as to what symbols compare equal). */
5604
5605 static int
5606 compare_names (const char *string1, const char *string2)
5607 {
5608 int result;
5609
5610 /* Similar to what strcmp_iw_ordered does, we need to perform
5611 a case-insensitive comparison first, and only resort to
5612 a second, case-sensitive, comparison if the first one was
5613 not sufficient to differentiate the two strings. */
5614
5615 result = compare_names_with_case (string1, string2, case_sensitive_off);
5616 if (result == 0)
5617 result = compare_names_with_case (string1, string2, case_sensitive_on);
5618
5619 return result;
5620 }
5621
5622 /* Convenience function to get at the Ada encoded lookup name for
5623 LOOKUP_NAME, as a C string. */
5624
5625 static const char *
5626 ada_lookup_name (const lookup_name_info &lookup_name)
5627 {
5628 return lookup_name.ada ().lookup_name ().c_str ();
5629 }
5630
5631 /* Add to OBSTACKP all non-local symbols whose name and domain match
5632 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5633 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5634 symbols otherwise. */
5635
5636 static void
5637 add_nonlocal_symbols (struct obstack *obstackp,
5638 const lookup_name_info &lookup_name,
5639 domain_enum domain, int global)
5640 {
5641 struct objfile *objfile;
5642 struct compunit_symtab *cu;
5643 struct match_data data;
5644
5645 memset (&data, 0, sizeof data);
5646 data.obstackp = obstackp;
5647
5648 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5649
5650 ALL_OBJFILES (objfile)
5651 {
5652 data.objfile = objfile;
5653
5654 if (is_wild_match)
5655 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5656 domain, global,
5657 aux_add_nonlocal_symbols, &data,
5658 symbol_name_match_type::WILD,
5659 NULL);
5660 else
5661 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5662 domain, global,
5663 aux_add_nonlocal_symbols, &data,
5664 symbol_name_match_type::FULL,
5665 compare_names);
5666
5667 ALL_OBJFILE_COMPUNITS (objfile, cu)
5668 {
5669 const struct block *global_block
5670 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5671
5672 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5673 domain))
5674 data.found_sym = 1;
5675 }
5676 }
5677
5678 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5679 {
5680 const char *name = ada_lookup_name (lookup_name);
5681 std::string name1 = std::string ("<_ada_") + name + '>';
5682
5683 ALL_OBJFILES (objfile)
5684 {
5685 data.objfile = objfile;
5686 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5687 domain, global,
5688 aux_add_nonlocal_symbols,
5689 &data,
5690 symbol_name_match_type::FULL,
5691 compare_names);
5692 }
5693 }
5694 }
5695
5696 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5697 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5698 returning the number of matches. Add these to OBSTACKP.
5699
5700 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5701 symbol match within the nest of blocks whose innermost member is BLOCK,
5702 is the one match returned (no other matches in that or
5703 enclosing blocks is returned). If there are any matches in or
5704 surrounding BLOCK, then these alone are returned.
5705
5706 Names prefixed with "standard__" are handled specially:
5707 "standard__" is first stripped off (by the lookup_name
5708 constructor), and only static and global symbols are searched.
5709
5710 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5711 to lookup global symbols. */
5712
5713 static void
5714 ada_add_all_symbols (struct obstack *obstackp,
5715 const struct block *block,
5716 const lookup_name_info &lookup_name,
5717 domain_enum domain,
5718 int full_search,
5719 int *made_global_lookup_p)
5720 {
5721 struct symbol *sym;
5722
5723 if (made_global_lookup_p)
5724 *made_global_lookup_p = 0;
5725
5726 /* Special case: If the user specifies a symbol name inside package
5727 Standard, do a non-wild matching of the symbol name without
5728 the "standard__" prefix. This was primarily introduced in order
5729 to allow the user to specifically access the standard exceptions
5730 using, for instance, Standard.Constraint_Error when Constraint_Error
5731 is ambiguous (due to the user defining its own Constraint_Error
5732 entity inside its program). */
5733 if (lookup_name.ada ().standard_p ())
5734 block = NULL;
5735
5736 /* Check the non-global symbols. If we have ANY match, then we're done. */
5737
5738 if (block != NULL)
5739 {
5740 if (full_search)
5741 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5742 else
5743 {
5744 /* In the !full_search case we're are being called by
5745 ada_iterate_over_symbols, and we don't want to search
5746 superblocks. */
5747 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5748 }
5749 if (num_defns_collected (obstackp) > 0 || !full_search)
5750 return;
5751 }
5752
5753 /* No non-global symbols found. Check our cache to see if we have
5754 already performed this search before. If we have, then return
5755 the same result. */
5756
5757 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5758 domain, &sym, &block))
5759 {
5760 if (sym != NULL)
5761 add_defn_to_vec (obstackp, sym, block);
5762 return;
5763 }
5764
5765 if (made_global_lookup_p)
5766 *made_global_lookup_p = 1;
5767
5768 /* Search symbols from all global blocks. */
5769
5770 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5771
5772 /* Now add symbols from all per-file blocks if we've gotten no hits
5773 (not strictly correct, but perhaps better than an error). */
5774
5775 if (num_defns_collected (obstackp) == 0)
5776 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5777 }
5778
5779 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5780 is non-zero, enclosing scope and in global scopes, returning the number of
5781 matches.
5782 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5783 indicating the symbols found and the blocks and symbol tables (if
5784 any) in which they were found. This vector should be freed when
5785 no longer useful.
5786
5787 When full_search is non-zero, any non-function/non-enumeral
5788 symbol match within the nest of blocks whose innermost member is BLOCK,
5789 is the one match returned (no other matches in that or
5790 enclosing blocks is returned). If there are any matches in or
5791 surrounding BLOCK, then these alone are returned.
5792
5793 Names prefixed with "standard__" are handled specially: "standard__"
5794 is first stripped off, and only static and global symbols are searched. */
5795
5796 static int
5797 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5798 const struct block *block,
5799 domain_enum domain,
5800 struct block_symbol **results,
5801 int full_search)
5802 {
5803 int syms_from_global_search;
5804 int ndefns;
5805 int results_size;
5806 auto_obstack obstack;
5807
5808 ada_add_all_symbols (&obstack, block, lookup_name,
5809 domain, full_search, &syms_from_global_search);
5810
5811 ndefns = num_defns_collected (&obstack);
5812
5813 results_size = obstack_object_size (&obstack);
5814 *results = (struct block_symbol *) malloc (results_size);
5815 memcpy (*results, defns_collected (&obstack, 1), results_size);
5816
5817 ndefns = remove_extra_symbols (*results, ndefns);
5818
5819 if (ndefns == 0 && full_search && syms_from_global_search)
5820 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5821
5822 if (ndefns == 1 && full_search && syms_from_global_search)
5823 cache_symbol (ada_lookup_name (lookup_name), domain,
5824 (*results)[0].symbol, (*results)[0].block);
5825
5826 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5827
5828 return ndefns;
5829 }
5830
5831 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5832 in global scopes, returning the number of matches, and setting *RESULTS
5833 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5834 vector should be freed when no longer useful.
5835
5836 See ada_lookup_symbol_list_worker for further details. */
5837
5838 int
5839 ada_lookup_symbol_list (const char *name, const struct block *block,
5840 domain_enum domain, struct block_symbol **results)
5841 {
5842 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5843 lookup_name_info lookup_name (name, name_match_type);
5844
5845 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5846 }
5847
5848 /* Implementation of the la_iterate_over_symbols method. */
5849
5850 static void
5851 ada_iterate_over_symbols
5852 (const struct block *block, const lookup_name_info &name,
5853 domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858 struct cleanup *old_chain;
5859
5860 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5861 old_chain = make_cleanup (xfree, results);
5862
5863 for (i = 0; i < ndefs; ++i)
5864 {
5865 if (!callback (results[i].symbol))
5866 break;
5867 }
5868
5869 do_cleanups (old_chain);
5870 }
5871
5872 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5873 to 1, but choosing the first symbol found if there are multiple
5874 choices.
5875
5876 The result is stored in *INFO, which must be non-NULL.
5877 If no match is found, INFO->SYM is set to NULL. */
5878
5879 void
5880 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5881 domain_enum domain,
5882 struct block_symbol *info)
5883 {
5884 /* Since we already have an encoded name, wrap it in '<>' to force a
5885 verbatim match. Otherwise, if the name happens to not look like
5886 an encoded name (because it doesn't include a "__"),
5887 ada_lookup_name_info would re-encode/fold it again, and that
5888 would e.g., incorrectly lowercase object renaming names like
5889 "R28b" -> "r28b". */
5890 std::string verbatim = std::string ("<") + name + '>';
5891
5892 gdb_assert (info != NULL);
5893 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5894 }
5895
5896 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5897 scope and in global scopes, or NULL if none. NAME is folded and
5898 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5899 choosing the first symbol if there are multiple choices.
5900 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5901
5902 struct block_symbol
5903 ada_lookup_symbol (const char *name, const struct block *block0,
5904 domain_enum domain, int *is_a_field_of_this)
5905 {
5906 if (is_a_field_of_this != NULL)
5907 *is_a_field_of_this = 0;
5908
5909 struct block_symbol *candidates;
5910 int n_candidates;
5911 struct cleanup *old_chain;
5912
5913 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5914 old_chain = make_cleanup (xfree, candidates);
5915
5916 if (n_candidates == 0)
5917 {
5918 do_cleanups (old_chain);
5919 return {};
5920 }
5921
5922 block_symbol info = candidates[0];
5923 info.symbol = fixup_symbol_section (info.symbol, NULL);
5924
5925 do_cleanups (old_chain);
5926
5927 return info;
5928 }
5929
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5932 const char *name,
5933 const struct block *block,
5934 const domain_enum domain)
5935 {
5936 struct block_symbol sym;
5937
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5940 return sym;
5941
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5953
5954 if (domain == VAR_DOMAIN)
5955 {
5956 struct gdbarch *gdbarch;
5957
5958 if (block == NULL)
5959 gdbarch = target_gdbarch ();
5960 else
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5964 return sym;
5965 }
5966
5967 return (struct block_symbol) {NULL, NULL};
5968 }
5969
5970
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5975
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5981
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5985
5986 static int
5987 is_name_suffix (const char *str)
5988 {
5989 int k;
5990 const char *matching;
5991 const int len = strlen (str);
5992
5993 /* Skip optional leading __[0-9]+. */
5994
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5996 {
5997 str += 3;
5998 while (isdigit (str[0]))
5999 str += 1;
6000 }
6001
6002 /* [.$][0-9]+ */
6003
6004 if (str[0] == '.' || str[0] == '$')
6005 {
6006 matching = str + 1;
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if (matching[0] == '\0')
6010 return 1;
6011 }
6012
6013 /* ___[0-9]+ */
6014
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6016 {
6017 matching = str + 3;
6018 while (isdigit (matching[0]))
6019 matching += 1;
6020 if (matching[0] == '\0')
6021 return 1;
6022 }
6023
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6025
6026 if (strcmp (str, "TKB") == 0)
6027 return 1;
6028
6029 #if 0
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6036 name ends with N.
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6043 return 1;
6044 #endif
6045
6046 /* _E[0-9]+[bs]$ */
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6054 return 1;
6055 }
6056
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6062 if (str[0] == 'X')
6063 {
6064 str += 1;
6065 while (str[0] != '_' && str[0] != '\0')
6066 {
6067 if (str[0] != 'n' && str[0] != 'b')
6068 return 0;
6069 str += 1;
6070 }
6071 }
6072
6073 if (str[0] == '\000')
6074 return 1;
6075
6076 if (str[0] == '_')
6077 {
6078 if (str[1] != '_' || str[2] == '\000')
6079 return 0;
6080 if (str[2] == '_')
6081 {
6082 if (strcmp (str + 3, "JM") == 0)
6083 return 1;
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6090 return 1;
6091 if (str[3] != 'X')
6092 return 0;
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6095 return 1;
6096 if (str[4] == 'R' && str[5] != 'T')
6097 return 1;
6098 return 0;
6099 }
6100 if (!isdigit (str[2]))
6101 return 0;
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6104 return 0;
6105 return 1;
6106 }
6107 if (str[0] == '$' && isdigit (str[1]))
6108 {
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
6112 return 1;
6113 }
6114 return 0;
6115 }
6116
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6119
6120 static int
6121 is_valid_name_for_wild_match (const char *name0)
6122 {
6123 const char *decoded_name = ada_decode (name0);
6124 int i;
6125
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6130 return 0;
6131
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6134 return 0;
6135
6136 return 1;
6137 }
6138
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6142
6143 static int
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6145 {
6146 const char *name = *namep;
6147
6148 while (1)
6149 {
6150 int t0, t1;
6151
6152 t0 = *name;
6153 if (t0 == '_')
6154 {
6155 t1 = name[1];
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6157 {
6158 name += 1;
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6160 break;
6161 else
6162 name += 1;
6163 }
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6166 {
6167 name += 2;
6168 break;
6169 }
6170 else
6171 return 0;
6172 }
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6174 name += 1;
6175 else
6176 return 0;
6177 }
6178
6179 *namep = name;
6180 return 1;
6181 }
6182
6183 /* Return true iff NAME encodes a name of the form prefix.PATN.
6184 Ignores any informational suffixes of NAME (i.e., for which
6185 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6186 simple name. */
6187
6188 static bool
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match == name0 || is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return false;
6211 }
6212 }
6213
6214 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6215 any trailing suffixes that encode debugging information or leading
6216 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6217 information that is ignored). */
6218
6219 static bool
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 size_t search_name_len = strlen (search_name);
6223
6224 if (strncmp (sym_name, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len))
6226 return true;
6227
6228 if (startswith (sym_name, "_ada_")
6229 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6230 && is_name_suffix (sym_name + search_name_len + 5))
6231 return true;
6232
6233 return false;
6234 }
6235
6236 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6237 *defn_symbols, updating the list of symbols in OBSTACKP (if
6238 necessary). OBJFILE is the section containing BLOCK. */
6239
6240 static void
6241 ada_add_block_symbols (struct obstack *obstackp,
6242 const struct block *block,
6243 const lookup_name_info &lookup_name,
6244 domain_enum domain, struct objfile *objfile)
6245 {
6246 struct block_iterator iter;
6247 /* A matching argument symbol, if any. */
6248 struct symbol *arg_sym;
6249 /* Set true when we find a matching non-argument symbol. */
6250 int found_sym;
6251 struct symbol *sym;
6252
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 for (sym = block_iter_match_first (block, lookup_name, &iter);
6256 sym != NULL;
6257 sym = block_iter_match_next (lookup_name, &iter))
6258 {
6259 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6260 SYMBOL_DOMAIN (sym), domain))
6261 {
6262 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6263 {
6264 if (SYMBOL_IS_ARGUMENT (sym))
6265 arg_sym = sym;
6266 else
6267 {
6268 found_sym = 1;
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (sym, objfile),
6271 block);
6272 }
6273 }
6274 }
6275 }
6276
6277 /* Handle renamings. */
6278
6279 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6280 found_sym = 1;
6281
6282 if (!found_sym && arg_sym != NULL)
6283 {
6284 add_defn_to_vec (obstackp,
6285 fixup_symbol_section (arg_sym, objfile),
6286 block);
6287 }
6288
6289 if (!lookup_name.ada ().wild_match_p ())
6290 {
6291 arg_sym = NULL;
6292 found_sym = 0;
6293 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6294 const char *name = ada_lookup_name.c_str ();
6295 size_t name_len = ada_lookup_name.size ();
6296
6297 ALL_BLOCK_SYMBOLS (block, iter, sym)
6298 {
6299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6300 SYMBOL_DOMAIN (sym), domain))
6301 {
6302 int cmp;
6303
6304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6305 if (cmp == 0)
6306 {
6307 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6308 if (cmp == 0)
6309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6310 name_len);
6311 }
6312
6313 if (cmp == 0
6314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6315 {
6316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6317 {
6318 if (SYMBOL_IS_ARGUMENT (sym))
6319 arg_sym = sym;
6320 else
6321 {
6322 found_sym = 1;
6323 add_defn_to_vec (obstackp,
6324 fixup_symbol_section (sym, objfile),
6325 block);
6326 }
6327 }
6328 }
6329 }
6330 }
6331
6332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6333 They aren't parameters, right? */
6334 if (!found_sym && arg_sym != NULL)
6335 {
6336 add_defn_to_vec (obstackp,
6337 fixup_symbol_section (arg_sym, objfile),
6338 block);
6339 }
6340 }
6341 }
6342 \f
6343
6344 /* Symbol Completion */
6345
6346 /* See symtab.h. */
6347
6348 bool
6349 ada_lookup_name_info::matches
6350 (const char *sym_name,
6351 symbol_name_match_type match_type,
6352 completion_match_result *comp_match_res) const
6353 {
6354 bool match = false;
6355 const char *text = m_encoded_name.c_str ();
6356 size_t text_len = m_encoded_name.size ();
6357
6358 /* First, test against the fully qualified name of the symbol. */
6359
6360 if (strncmp (sym_name, text, text_len) == 0)
6361 match = true;
6362
6363 if (match && !m_encoded_p)
6364 {
6365 /* One needed check before declaring a positive match is to verify
6366 that iff we are doing a verbatim match, the decoded version
6367 of the symbol name starts with '<'. Otherwise, this symbol name
6368 is not a suitable completion. */
6369 const char *sym_name_copy = sym_name;
6370 bool has_angle_bracket;
6371
6372 sym_name = ada_decode (sym_name);
6373 has_angle_bracket = (sym_name[0] == '<');
6374 match = (has_angle_bracket == m_verbatim_p);
6375 sym_name = sym_name_copy;
6376 }
6377
6378 if (match && !m_verbatim_p)
6379 {
6380 /* When doing non-verbatim match, another check that needs to
6381 be done is to verify that the potentially matching symbol name
6382 does not include capital letters, because the ada-mode would
6383 not be able to understand these symbol names without the
6384 angle bracket notation. */
6385 const char *tmp;
6386
6387 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6388 if (*tmp != '\0')
6389 match = false;
6390 }
6391
6392 /* Second: Try wild matching... */
6393
6394 if (!match && m_wild_match_p)
6395 {
6396 /* Since we are doing wild matching, this means that TEXT
6397 may represent an unqualified symbol name. We therefore must
6398 also compare TEXT against the unqualified name of the symbol. */
6399 sym_name = ada_unqualified_name (ada_decode (sym_name));
6400
6401 if (strncmp (sym_name, text, text_len) == 0)
6402 match = true;
6403 }
6404
6405 /* Finally: If we found a match, prepare the result to return. */
6406
6407 if (!match)
6408 return false;
6409
6410 if (comp_match_res != NULL)
6411 {
6412 std::string &match_str = comp_match_res->match.storage ();
6413
6414 if (!m_encoded_p)
6415 match_str = ada_decode (sym_name);
6416 else
6417 {
6418 if (m_verbatim_p)
6419 match_str = add_angle_brackets (sym_name);
6420 else
6421 match_str = sym_name;
6422
6423 }
6424
6425 comp_match_res->set_match (match_str.c_str ());
6426 }
6427
6428 return true;
6429 }
6430
6431 /* Add the list of possible symbol names completing TEXT to TRACKER.
6432 WORD is the entire command on which completion is made. */
6433
6434 static void
6435 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6436 complete_symbol_mode mode,
6437 symbol_name_match_type name_match_type,
6438 const char *text, const char *word,
6439 enum type_code code)
6440 {
6441 struct symbol *sym;
6442 struct compunit_symtab *s;
6443 struct minimal_symbol *msymbol;
6444 struct objfile *objfile;
6445 const struct block *b, *surrounding_static_block = 0;
6446 struct block_iterator iter;
6447
6448 gdb_assert (code == TYPE_CODE_UNDEF);
6449
6450 lookup_name_info lookup_name (text, name_match_type, true);
6451
6452 /* First, look at the partial symtab symbols. */
6453 expand_symtabs_matching (NULL,
6454 lookup_name,
6455 NULL,
6456 NULL,
6457 ALL_DOMAIN);
6458
6459 /* At this point scan through the misc symbol vectors and add each
6460 symbol you find to the list. Eventually we want to ignore
6461 anything that isn't a text symbol (everything else will be
6462 handled by the psymtab code above). */
6463
6464 ALL_MSYMBOLS (objfile, msymbol)
6465 {
6466 QUIT;
6467
6468 if (completion_skip_symbol (mode, msymbol))
6469 continue;
6470
6471 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6472
6473 /* Ada minimal symbols won't have their language set to Ada. If
6474 we let completion_list_add_name compare using the
6475 default/C-like matcher, then when completing e.g., symbols in a
6476 package named "pck", we'd match internal Ada symbols like
6477 "pckS", which are invalid in an Ada expression, unless you wrap
6478 them in '<' '>' to request a verbatim match.
6479
6480 Unfortunately, some Ada encoded names successfully demangle as
6481 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6482 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6483 with the wrong language set. Paper over that issue here. */
6484 if (symbol_language == language_auto
6485 || symbol_language == language_cplus)
6486 symbol_language = language_ada;
6487
6488 completion_list_add_name (tracker,
6489 symbol_language,
6490 MSYMBOL_LINKAGE_NAME (msymbol),
6491 lookup_name, text, word);
6492 }
6493
6494 /* Search upwards from currently selected frame (so that we can
6495 complete on local vars. */
6496
6497 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6498 {
6499 if (!BLOCK_SUPERBLOCK (b))
6500 surrounding_static_block = b; /* For elmin of dups */
6501
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
6506
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
6510 lookup_name, text, word);
6511 }
6512 }
6513
6514 /* Go through the symtabs and check the externs and statics for
6515 symbols which match. */
6516
6517 ALL_COMPUNITS (objfile, s)
6518 {
6519 QUIT;
6520 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
6523 if (completion_skip_symbol (mode, sym))
6524 continue;
6525
6526 completion_list_add_name (tracker,
6527 SYMBOL_LANGUAGE (sym),
6528 SYMBOL_LINKAGE_NAME (sym),
6529 lookup_name, text, word);
6530 }
6531 }
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
6544
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
6548 lookup_name, text, word);
6549 }
6550 }
6551 }
6552
6553 /* Field Access */
6554
6555 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6556 for tagged types. */
6557
6558 static int
6559 ada_is_dispatch_table_ptr_type (struct type *type)
6560 {
6561 const char *name;
6562
6563 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6564 return 0;
6565
6566 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6567 if (name == NULL)
6568 return 0;
6569
6570 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6571 }
6572
6573 /* Return non-zero if TYPE is an interface tag. */
6574
6575 static int
6576 ada_is_interface_tag (struct type *type)
6577 {
6578 const char *name = TYPE_NAME (type);
6579
6580 if (name == NULL)
6581 return 0;
6582
6583 return (strcmp (name, "ada__tags__interface_tag") == 0);
6584 }
6585
6586 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6587 to be invisible to users. */
6588
6589 int
6590 ada_is_ignored_field (struct type *type, int field_num)
6591 {
6592 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6593 return 1;
6594
6595 /* Check the name of that field. */
6596 {
6597 const char *name = TYPE_FIELD_NAME (type, field_num);
6598
6599 /* Anonymous field names should not be printed.
6600 brobecker/2007-02-20: I don't think this can actually happen
6601 but we don't want to print the value of annonymous fields anyway. */
6602 if (name == NULL)
6603 return 1;
6604
6605 /* Normally, fields whose name start with an underscore ("_")
6606 are fields that have been internally generated by the compiler,
6607 and thus should not be printed. The "_parent" field is special,
6608 however: This is a field internally generated by the compiler
6609 for tagged types, and it contains the components inherited from
6610 the parent type. This field should not be printed as is, but
6611 should not be ignored either. */
6612 if (name[0] == '_' && !startswith (name, "_parent"))
6613 return 1;
6614 }
6615
6616 /* If this is the dispatch table of a tagged type or an interface tag,
6617 then ignore. */
6618 if (ada_is_tagged_type (type, 1)
6619 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6620 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6621 return 1;
6622
6623 /* Not a special field, so it should not be ignored. */
6624 return 0;
6625 }
6626
6627 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6628 pointer or reference type whose ultimate target has a tag field. */
6629
6630 int
6631 ada_is_tagged_type (struct type *type, int refok)
6632 {
6633 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6634 }
6635
6636 /* True iff TYPE represents the type of X'Tag */
6637
6638 int
6639 ada_is_tag_type (struct type *type)
6640 {
6641 type = ada_check_typedef (type);
6642
6643 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6644 return 0;
6645 else
6646 {
6647 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6648
6649 return (name != NULL
6650 && strcmp (name, "ada__tags__dispatch_table") == 0);
6651 }
6652 }
6653
6654 /* The type of the tag on VAL. */
6655
6656 struct type *
6657 ada_tag_type (struct value *val)
6658 {
6659 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6660 }
6661
6662 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6663 retired at Ada 05). */
6664
6665 static int
6666 is_ada95_tag (struct value *tag)
6667 {
6668 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6669 }
6670
6671 /* The value of the tag on VAL. */
6672
6673 struct value *
6674 ada_value_tag (struct value *val)
6675 {
6676 return ada_value_struct_elt (val, "_tag", 0);
6677 }
6678
6679 /* The value of the tag on the object of type TYPE whose contents are
6680 saved at VALADDR, if it is non-null, or is at memory address
6681 ADDRESS. */
6682
6683 static struct value *
6684 value_tag_from_contents_and_address (struct type *type,
6685 const gdb_byte *valaddr,
6686 CORE_ADDR address)
6687 {
6688 int tag_byte_offset;
6689 struct type *tag_type;
6690
6691 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6692 NULL, NULL, NULL))
6693 {
6694 const gdb_byte *valaddr1 = ((valaddr == NULL)
6695 ? NULL
6696 : valaddr + tag_byte_offset);
6697 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6698
6699 return value_from_contents_and_address (tag_type, valaddr1, address1);
6700 }
6701 return NULL;
6702 }
6703
6704 static struct type *
6705 type_from_tag (struct value *tag)
6706 {
6707 const char *type_name = ada_tag_name (tag);
6708
6709 if (type_name != NULL)
6710 return ada_find_any_type (ada_encode (type_name));
6711 return NULL;
6712 }
6713
6714 /* Given a value OBJ of a tagged type, return a value of this
6715 type at the base address of the object. The base address, as
6716 defined in Ada.Tags, it is the address of the primary tag of
6717 the object, and therefore where the field values of its full
6718 view can be fetched. */
6719
6720 struct value *
6721 ada_tag_value_at_base_address (struct value *obj)
6722 {
6723 struct value *val;
6724 LONGEST offset_to_top = 0;
6725 struct type *ptr_type, *obj_type;
6726 struct value *tag;
6727 CORE_ADDR base_address;
6728
6729 obj_type = value_type (obj);
6730
6731 /* It is the responsability of the caller to deref pointers. */
6732
6733 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6734 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6735 return obj;
6736
6737 tag = ada_value_tag (obj);
6738 if (!tag)
6739 return obj;
6740
6741 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6742
6743 if (is_ada95_tag (tag))
6744 return obj;
6745
6746 ptr_type = language_lookup_primitive_type
6747 (language_def (language_ada), target_gdbarch(), "storage_offset");
6748 ptr_type = lookup_pointer_type (ptr_type);
6749 val = value_cast (ptr_type, tag);
6750 if (!val)
6751 return obj;
6752
6753 /* It is perfectly possible that an exception be raised while
6754 trying to determine the base address, just like for the tag;
6755 see ada_tag_name for more details. We do not print the error
6756 message for the same reason. */
6757
6758 TRY
6759 {
6760 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6761 }
6762
6763 CATCH (e, RETURN_MASK_ERROR)
6764 {
6765 return obj;
6766 }
6767 END_CATCH
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808 }
6809
6810 /* Return the "ada__tags__type_specific_data" type. */
6811
6812 static struct type *
6813 ada_get_tsd_type (struct inferior *inf)
6814 {
6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6816
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820 }
6821
6822 /* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
6824
6825 May return NULL if we are unable to get the TSD. */
6826
6827 static struct value *
6828 ada_get_tsd_from_tag (struct value *tag)
6829 {
6830 struct value *val;
6831 struct type *type;
6832
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
6837
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
6841
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
6846
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
6855 }
6856
6857 /* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863 static char *
6864 ada_tag_name_from_tsd (struct value *tsd)
6865 {
6866 static char name[1024];
6867 char *p;
6868 struct value *val;
6869
6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6871 if (val == NULL)
6872 return NULL;
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
6877 return name;
6878 }
6879
6880 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
6886
6887 const char *
6888 ada_tag_name (struct value *tag)
6889 {
6890 char *name = NULL;
6891
6892 if (!ada_is_tag_type (value_type (tag)))
6893 return NULL;
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
6904 TRY
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
6911 CATCH (e, RETURN_MASK_ERROR)
6912 {
6913 }
6914 END_CATCH
6915
6916 return name;
6917 }
6918
6919 /* The parent type of TYPE, or NULL if none. */
6920
6921 struct type *
6922 ada_parent_type (struct type *type)
6923 {
6924 int i;
6925
6926 type = ada_check_typedef (type);
6927
6928 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6929 return NULL;
6930
6931 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6932 if (ada_is_parent_field (type, i))
6933 {
6934 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6935
6936 /* If the _parent field is a pointer, then dereference it. */
6937 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6938 parent_type = TYPE_TARGET_TYPE (parent_type);
6939 /* If there is a parallel XVS type, get the actual base type. */
6940 parent_type = ada_get_base_type (parent_type);
6941
6942 return ada_check_typedef (parent_type);
6943 }
6944
6945 return NULL;
6946 }
6947
6948 /* True iff field number FIELD_NUM of structure type TYPE contains the
6949 parent-type (inherited) fields of a derived type. Assumes TYPE is
6950 a structure type with at least FIELD_NUM+1 fields. */
6951
6952 int
6953 ada_is_parent_field (struct type *type, int field_num)
6954 {
6955 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6956
6957 return (name != NULL
6958 && (startswith (name, "PARENT")
6959 || startswith (name, "_parent")));
6960 }
6961
6962 /* True iff field number FIELD_NUM of structure type TYPE is a
6963 transparent wrapper field (which should be silently traversed when doing
6964 field selection and flattened when printing). Assumes TYPE is a
6965 structure type with at least FIELD_NUM+1 fields. Such fields are always
6966 structures. */
6967
6968 int
6969 ada_is_wrapper_field (struct type *type, int field_num)
6970 {
6971 const char *name = TYPE_FIELD_NAME (type, field_num);
6972
6973 if (name != NULL && strcmp (name, "RETVAL") == 0)
6974 {
6975 /* This happens in functions with "out" or "in out" parameters
6976 which are passed by copy. For such functions, GNAT describes
6977 the function's return type as being a struct where the return
6978 value is in a field called RETVAL, and where the other "out"
6979 or "in out" parameters are fields of that struct. This is not
6980 a wrapper. */
6981 return 0;
6982 }
6983
6984 return (name != NULL
6985 && (startswith (name, "PARENT")
6986 || strcmp (name, "REP") == 0
6987 || startswith (name, "_parent")
6988 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6989 }
6990
6991 /* True iff field number FIELD_NUM of structure or union type TYPE
6992 is a variant wrapper. Assumes TYPE is a structure type with at least
6993 FIELD_NUM+1 fields. */
6994
6995 int
6996 ada_is_variant_part (struct type *type, int field_num)
6997 {
6998 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6999
7000 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7001 || (is_dynamic_field (type, field_num)
7002 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7003 == TYPE_CODE_UNION)));
7004 }
7005
7006 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7007 whose discriminants are contained in the record type OUTER_TYPE,
7008 returns the type of the controlling discriminant for the variant.
7009 May return NULL if the type could not be found. */
7010
7011 struct type *
7012 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7013 {
7014 const char *name = ada_variant_discrim_name (var_type);
7015
7016 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7017 }
7018
7019 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7020 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7021 represents a 'when others' clause; otherwise 0. */
7022
7023 int
7024 ada_is_others_clause (struct type *type, int field_num)
7025 {
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7027
7028 return (name != NULL && name[0] == 'O');
7029 }
7030
7031 /* Assuming that TYPE0 is the type of the variant part of a record,
7032 returns the name of the discriminant controlling the variant.
7033 The value is valid until the next call to ada_variant_discrim_name. */
7034
7035 const char *
7036 ada_variant_discrim_name (struct type *type0)
7037 {
7038 static char *result = NULL;
7039 static size_t result_len = 0;
7040 struct type *type;
7041 const char *name;
7042 const char *discrim_end;
7043 const char *discrim_start;
7044
7045 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7046 type = TYPE_TARGET_TYPE (type0);
7047 else
7048 type = type0;
7049
7050 name = ada_type_name (type);
7051
7052 if (name == NULL || name[0] == '\000')
7053 return "";
7054
7055 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7056 discrim_end -= 1)
7057 {
7058 if (startswith (discrim_end, "___XVN"))
7059 break;
7060 }
7061 if (discrim_end == name)
7062 return "";
7063
7064 for (discrim_start = discrim_end; discrim_start != name + 3;
7065 discrim_start -= 1)
7066 {
7067 if (discrim_start == name + 1)
7068 return "";
7069 if ((discrim_start > name + 3
7070 && startswith (discrim_start - 3, "___"))
7071 || discrim_start[-1] == '.')
7072 break;
7073 }
7074
7075 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7076 strncpy (result, discrim_start, discrim_end - discrim_start);
7077 result[discrim_end - discrim_start] = '\0';
7078 return result;
7079 }
7080
7081 /* Scan STR for a subtype-encoded number, beginning at position K.
7082 Put the position of the character just past the number scanned in
7083 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7084 Return 1 if there was a valid number at the given position, and 0
7085 otherwise. A "subtype-encoded" number consists of the absolute value
7086 in decimal, followed by the letter 'm' to indicate a negative number.
7087 Assumes 0m does not occur. */
7088
7089 int
7090 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7091 {
7092 ULONGEST RU;
7093
7094 if (!isdigit (str[k]))
7095 return 0;
7096
7097 /* Do it the hard way so as not to make any assumption about
7098 the relationship of unsigned long (%lu scan format code) and
7099 LONGEST. */
7100 RU = 0;
7101 while (isdigit (str[k]))
7102 {
7103 RU = RU * 10 + (str[k] - '0');
7104 k += 1;
7105 }
7106
7107 if (str[k] == 'm')
7108 {
7109 if (R != NULL)
7110 *R = (-(LONGEST) (RU - 1)) - 1;
7111 k += 1;
7112 }
7113 else if (R != NULL)
7114 *R = (LONGEST) RU;
7115
7116 /* NOTE on the above: Technically, C does not say what the results of
7117 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7118 number representable as a LONGEST (although either would probably work
7119 in most implementations). When RU>0, the locution in the then branch
7120 above is always equivalent to the negative of RU. */
7121
7122 if (new_k != NULL)
7123 *new_k = k;
7124 return 1;
7125 }
7126
7127 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7128 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7129 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7130
7131 int
7132 ada_in_variant (LONGEST val, struct type *type, int field_num)
7133 {
7134 const char *name = TYPE_FIELD_NAME (type, field_num);
7135 int p;
7136
7137 p = 0;
7138 while (1)
7139 {
7140 switch (name[p])
7141 {
7142 case '\0':
7143 return 0;
7144 case 'S':
7145 {
7146 LONGEST W;
7147
7148 if (!ada_scan_number (name, p + 1, &W, &p))
7149 return 0;
7150 if (val == W)
7151 return 1;
7152 break;
7153 }
7154 case 'R':
7155 {
7156 LONGEST L, U;
7157
7158 if (!ada_scan_number (name, p + 1, &L, &p)
7159 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7160 return 0;
7161 if (val >= L && val <= U)
7162 return 1;
7163 break;
7164 }
7165 case 'O':
7166 return 1;
7167 default:
7168 return 0;
7169 }
7170 }
7171 }
7172
7173 /* FIXME: Lots of redundancy below. Try to consolidate. */
7174
7175 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7176 ARG_TYPE, extract and return the value of one of its (non-static)
7177 fields. FIELDNO says which field. Differs from value_primitive_field
7178 only in that it can handle packed values of arbitrary type. */
7179
7180 static struct value *
7181 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7182 struct type *arg_type)
7183 {
7184 struct type *type;
7185
7186 arg_type = ada_check_typedef (arg_type);
7187 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7188
7189 /* Handle packed fields. */
7190
7191 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7192 {
7193 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7194 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7195
7196 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7197 offset + bit_pos / 8,
7198 bit_pos % 8, bit_size, type);
7199 }
7200 else
7201 return value_primitive_field (arg1, offset, fieldno, arg_type);
7202 }
7203
7204 /* Find field with name NAME in object of type TYPE. If found,
7205 set the following for each argument that is non-null:
7206 - *FIELD_TYPE_P to the field's type;
7207 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7208 an object of that type;
7209 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7210 - *BIT_SIZE_P to its size in bits if the field is packed, and
7211 0 otherwise;
7212 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7213 fields up to but not including the desired field, or by the total
7214 number of fields if not found. A NULL value of NAME never
7215 matches; the function just counts visible fields in this case.
7216
7217 Notice that we need to handle when a tagged record hierarchy
7218 has some components with the same name, like in this scenario:
7219
7220 type Top_T is tagged record
7221 N : Integer := 1;
7222 U : Integer := 974;
7223 A : Integer := 48;
7224 end record;
7225
7226 type Middle_T is new Top.Top_T with record
7227 N : Character := 'a';
7228 C : Integer := 3;
7229 end record;
7230
7231 type Bottom_T is new Middle.Middle_T with record
7232 N : Float := 4.0;
7233 C : Character := '5';
7234 X : Integer := 6;
7235 A : Character := 'J';
7236 end record;
7237
7238 Let's say we now have a variable declared and initialized as follow:
7239
7240 TC : Top_A := new Bottom_T;
7241
7242 And then we use this variable to call this function
7243
7244 procedure Assign (Obj: in out Top_T; TV : Integer);
7245
7246 as follow:
7247
7248 Assign (Top_T (B), 12);
7249
7250 Now, we're in the debugger, and we're inside that procedure
7251 then and we want to print the value of obj.c:
7252
7253 Usually, the tagged record or one of the parent type owns the
7254 component to print and there's no issue but in this particular
7255 case, what does it mean to ask for Obj.C? Since the actual
7256 type for object is type Bottom_T, it could mean two things: type
7257 component C from the Middle_T view, but also component C from
7258 Bottom_T. So in that "undefined" case, when the component is
7259 not found in the non-resolved type (which includes all the
7260 components of the parent type), then resolve it and see if we
7261 get better luck once expanded.
7262
7263 In the case of homonyms in the derived tagged type, we don't
7264 guaranty anything, and pick the one that's easiest for us
7265 to program.
7266
7267 Returns 1 if found, 0 otherwise. */
7268
7269 static int
7270 find_struct_field (const char *name, struct type *type, int offset,
7271 struct type **field_type_p,
7272 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7273 int *index_p)
7274 {
7275 int i;
7276 int parent_offset = -1;
7277
7278 type = ada_check_typedef (type);
7279
7280 if (field_type_p != NULL)
7281 *field_type_p = NULL;
7282 if (byte_offset_p != NULL)
7283 *byte_offset_p = 0;
7284 if (bit_offset_p != NULL)
7285 *bit_offset_p = 0;
7286 if (bit_size_p != NULL)
7287 *bit_size_p = 0;
7288
7289 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7290 {
7291 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7292 int fld_offset = offset + bit_pos / 8;
7293 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7294
7295 if (t_field_name == NULL)
7296 continue;
7297
7298 else if (ada_is_parent_field (type, i))
7299 {
7300 /* This is a field pointing us to the parent type of a tagged
7301 type. As hinted in this function's documentation, we give
7302 preference to fields in the current record first, so what
7303 we do here is just record the index of this field before
7304 we skip it. If it turns out we couldn't find our field
7305 in the current record, then we'll get back to it and search
7306 inside it whether the field might exist in the parent. */
7307
7308 parent_offset = i;
7309 continue;
7310 }
7311
7312 else if (name != NULL && field_name_match (t_field_name, name))
7313 {
7314 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7315
7316 if (field_type_p != NULL)
7317 *field_type_p = TYPE_FIELD_TYPE (type, i);
7318 if (byte_offset_p != NULL)
7319 *byte_offset_p = fld_offset;
7320 if (bit_offset_p != NULL)
7321 *bit_offset_p = bit_pos % 8;
7322 if (bit_size_p != NULL)
7323 *bit_size_p = bit_size;
7324 return 1;
7325 }
7326 else if (ada_is_wrapper_field (type, i))
7327 {
7328 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7329 field_type_p, byte_offset_p, bit_offset_p,
7330 bit_size_p, index_p))
7331 return 1;
7332 }
7333 else if (ada_is_variant_part (type, i))
7334 {
7335 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7336 fixed type?? */
7337 int j;
7338 struct type *field_type
7339 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7340
7341 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7342 {
7343 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7344 fld_offset
7345 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7346 field_type_p, byte_offset_p,
7347 bit_offset_p, bit_size_p, index_p))
7348 return 1;
7349 }
7350 }
7351 else if (index_p != NULL)
7352 *index_p += 1;
7353 }
7354
7355 /* Field not found so far. If this is a tagged type which
7356 has a parent, try finding that field in the parent now. */
7357
7358 if (parent_offset != -1)
7359 {
7360 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7361 int fld_offset = offset + bit_pos / 8;
7362
7363 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7364 fld_offset, field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368
7369 return 0;
7370 }
7371
7372 /* Number of user-visible fields in record type TYPE. */
7373
7374 static int
7375 num_visible_fields (struct type *type)
7376 {
7377 int n;
7378
7379 n = 0;
7380 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7381 return n;
7382 }
7383
7384 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7385 and search in it assuming it has (class) type TYPE.
7386 If found, return value, else return NULL.
7387
7388 Searches recursively through wrapper fields (e.g., '_parent').
7389
7390 In the case of homonyms in the tagged types, please refer to the
7391 long explanation in find_struct_field's function documentation. */
7392
7393 static struct value *
7394 ada_search_struct_field (const char *name, struct value *arg, int offset,
7395 struct type *type)
7396 {
7397 int i;
7398 int parent_offset = -1;
7399
7400 type = ada_check_typedef (type);
7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7402 {
7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7404
7405 if (t_field_name == NULL)
7406 continue;
7407
7408 else if (ada_is_parent_field (type, i))
7409 {
7410 /* This is a field pointing us to the parent type of a tagged
7411 type. As hinted in this function's documentation, we give
7412 preference to fields in the current record first, so what
7413 we do here is just record the index of this field before
7414 we skip it. If it turns out we couldn't find our field
7415 in the current record, then we'll get back to it and search
7416 inside it whether the field might exist in the parent. */
7417
7418 parent_offset = i;
7419 continue;
7420 }
7421
7422 else if (field_name_match (t_field_name, name))
7423 return ada_value_primitive_field (arg, offset, i, type);
7424
7425 else if (ada_is_wrapper_field (type, i))
7426 {
7427 struct value *v = /* Do not let indent join lines here. */
7428 ada_search_struct_field (name, arg,
7429 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7430 TYPE_FIELD_TYPE (type, i));
7431
7432 if (v != NULL)
7433 return v;
7434 }
7435
7436 else if (ada_is_variant_part (type, i))
7437 {
7438 /* PNH: Do we ever get here? See find_struct_field. */
7439 int j;
7440 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7441 i));
7442 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7443
7444 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7445 {
7446 struct value *v = ada_search_struct_field /* Force line
7447 break. */
7448 (name, arg,
7449 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7450 TYPE_FIELD_TYPE (field_type, j));
7451
7452 if (v != NULL)
7453 return v;
7454 }
7455 }
7456 }
7457
7458 /* Field not found so far. If this is a tagged type which
7459 has a parent, try finding that field in the parent now. */
7460
7461 if (parent_offset != -1)
7462 {
7463 struct value *v = ada_search_struct_field (
7464 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7465 TYPE_FIELD_TYPE (type, parent_offset));
7466
7467 if (v != NULL)
7468 return v;
7469 }
7470
7471 return NULL;
7472 }
7473
7474 static struct value *ada_index_struct_field_1 (int *, struct value *,
7475 int, struct type *);
7476
7477
7478 /* Return field #INDEX in ARG, where the index is that returned by
7479 * find_struct_field through its INDEX_P argument. Adjust the address
7480 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7481 * If found, return value, else return NULL. */
7482
7483 static struct value *
7484 ada_index_struct_field (int index, struct value *arg, int offset,
7485 struct type *type)
7486 {
7487 return ada_index_struct_field_1 (&index, arg, offset, type);
7488 }
7489
7490
7491 /* Auxiliary function for ada_index_struct_field. Like
7492 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7493 * *INDEX_P. */
7494
7495 static struct value *
7496 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7497 struct type *type)
7498 {
7499 int i;
7500 type = ada_check_typedef (type);
7501
7502 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7503 {
7504 if (TYPE_FIELD_NAME (type, i) == NULL)
7505 continue;
7506 else if (ada_is_wrapper_field (type, i))
7507 {
7508 struct value *v = /* Do not let indent join lines here. */
7509 ada_index_struct_field_1 (index_p, arg,
7510 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7511 TYPE_FIELD_TYPE (type, i));
7512
7513 if (v != NULL)
7514 return v;
7515 }
7516
7517 else if (ada_is_variant_part (type, i))
7518 {
7519 /* PNH: Do we ever get here? See ada_search_struct_field,
7520 find_struct_field. */
7521 error (_("Cannot assign this kind of variant record"));
7522 }
7523 else if (*index_p == 0)
7524 return ada_value_primitive_field (arg, offset, i, type);
7525 else
7526 *index_p -= 1;
7527 }
7528 return NULL;
7529 }
7530
7531 /* Given ARG, a value of type (pointer or reference to a)*
7532 structure/union, extract the component named NAME from the ultimate
7533 target structure/union and return it as a value with its
7534 appropriate type.
7535
7536 The routine searches for NAME among all members of the structure itself
7537 and (recursively) among all members of any wrapper members
7538 (e.g., '_parent').
7539
7540 If NO_ERR, then simply return NULL in case of error, rather than
7541 calling error. */
7542
7543 struct value *
7544 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7545 {
7546 struct type *t, *t1;
7547 struct value *v;
7548
7549 v = NULL;
7550 t1 = t = ada_check_typedef (value_type (arg));
7551 if (TYPE_CODE (t) == TYPE_CODE_REF)
7552 {
7553 t1 = TYPE_TARGET_TYPE (t);
7554 if (t1 == NULL)
7555 goto BadValue;
7556 t1 = ada_check_typedef (t1);
7557 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7558 {
7559 arg = coerce_ref (arg);
7560 t = t1;
7561 }
7562 }
7563
7564 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7565 {
7566 t1 = TYPE_TARGET_TYPE (t);
7567 if (t1 == NULL)
7568 goto BadValue;
7569 t1 = ada_check_typedef (t1);
7570 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7571 {
7572 arg = value_ind (arg);
7573 t = t1;
7574 }
7575 else
7576 break;
7577 }
7578
7579 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7580 goto BadValue;
7581
7582 if (t1 == t)
7583 v = ada_search_struct_field (name, arg, 0, t);
7584 else
7585 {
7586 int bit_offset, bit_size, byte_offset;
7587 struct type *field_type;
7588 CORE_ADDR address;
7589
7590 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7591 address = value_address (ada_value_ind (arg));
7592 else
7593 address = value_address (ada_coerce_ref (arg));
7594
7595 /* Check to see if this is a tagged type. We also need to handle
7596 the case where the type is a reference to a tagged type, but
7597 we have to be careful to exclude pointers to tagged types.
7598 The latter should be shown as usual (as a pointer), whereas
7599 a reference should mostly be transparent to the user. */
7600
7601 if (ada_is_tagged_type (t1, 0)
7602 || (TYPE_CODE (t1) == TYPE_CODE_REF
7603 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7604 {
7605 /* We first try to find the searched field in the current type.
7606 If not found then let's look in the fixed type. */
7607
7608 if (!find_struct_field (name, t1, 0,
7609 &field_type, &byte_offset, &bit_offset,
7610 &bit_size, NULL))
7611 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7612 address, NULL, 1);
7613 }
7614 else
7615 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7616 address, NULL, 1);
7617
7618 if (find_struct_field (name, t1, 0,
7619 &field_type, &byte_offset, &bit_offset,
7620 &bit_size, NULL))
7621 {
7622 if (bit_size != 0)
7623 {
7624 if (TYPE_CODE (t) == TYPE_CODE_REF)
7625 arg = ada_coerce_ref (arg);
7626 else
7627 arg = ada_value_ind (arg);
7628 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7629 bit_offset, bit_size,
7630 field_type);
7631 }
7632 else
7633 v = value_at_lazy (field_type, address + byte_offset);
7634 }
7635 }
7636
7637 if (v != NULL || no_err)
7638 return v;
7639 else
7640 error (_("There is no member named %s."), name);
7641
7642 BadValue:
7643 if (no_err)
7644 return NULL;
7645 else
7646 error (_("Attempt to extract a component of "
7647 "a value that is not a record."));
7648 }
7649
7650 /* Return a string representation of type TYPE. */
7651
7652 static std::string
7653 type_as_string (struct type *type)
7654 {
7655 string_file tmp_stream;
7656
7657 type_print (type, "", &tmp_stream, -1);
7658
7659 return std::move (tmp_stream.string ());
7660 }
7661
7662 /* Given a type TYPE, look up the type of the component of type named NAME.
7663 If DISPP is non-null, add its byte displacement from the beginning of a
7664 structure (pointed to by a value) of type TYPE to *DISPP (does not
7665 work for packed fields).
7666
7667 Matches any field whose name has NAME as a prefix, possibly
7668 followed by "___".
7669
7670 TYPE can be either a struct or union. If REFOK, TYPE may also
7671 be a (pointer or reference)+ to a struct or union, and the
7672 ultimate target type will be searched.
7673
7674 Looks recursively into variant clauses and parent types.
7675
7676 In the case of homonyms in the tagged types, please refer to the
7677 long explanation in find_struct_field's function documentation.
7678
7679 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7680 TYPE is not a type of the right kind. */
7681
7682 static struct type *
7683 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7684 int noerr)
7685 {
7686 int i;
7687 int parent_offset = -1;
7688
7689 if (name == NULL)
7690 goto BadName;
7691
7692 if (refok && type != NULL)
7693 while (1)
7694 {
7695 type = ada_check_typedef (type);
7696 if (TYPE_CODE (type) != TYPE_CODE_PTR
7697 && TYPE_CODE (type) != TYPE_CODE_REF)
7698 break;
7699 type = TYPE_TARGET_TYPE (type);
7700 }
7701
7702 if (type == NULL
7703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7704 && TYPE_CODE (type) != TYPE_CODE_UNION))
7705 {
7706 if (noerr)
7707 return NULL;
7708
7709 error (_("Type %s is not a structure or union type"),
7710 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7711 }
7712
7713 type = to_static_fixed_type (type);
7714
7715 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7716 {
7717 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7718 struct type *t;
7719
7720 if (t_field_name == NULL)
7721 continue;
7722
7723 else if (ada_is_parent_field (type, i))
7724 {
7725 /* This is a field pointing us to the parent type of a tagged
7726 type. As hinted in this function's documentation, we give
7727 preference to fields in the current record first, so what
7728 we do here is just record the index of this field before
7729 we skip it. If it turns out we couldn't find our field
7730 in the current record, then we'll get back to it and search
7731 inside it whether the field might exist in the parent. */
7732
7733 parent_offset = i;
7734 continue;
7735 }
7736
7737 else if (field_name_match (t_field_name, name))
7738 return TYPE_FIELD_TYPE (type, i);
7739
7740 else if (ada_is_wrapper_field (type, i))
7741 {
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7743 0, 1);
7744 if (t != NULL)
7745 return t;
7746 }
7747
7748 else if (ada_is_variant_part (type, i))
7749 {
7750 int j;
7751 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7752 i));
7753
7754 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7755 {
7756 /* FIXME pnh 2008/01/26: We check for a field that is
7757 NOT wrapped in a struct, since the compiler sometimes
7758 generates these for unchecked variant types. Revisit
7759 if the compiler changes this practice. */
7760 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7761
7762 if (v_field_name != NULL
7763 && field_name_match (v_field_name, name))
7764 t = TYPE_FIELD_TYPE (field_type, j);
7765 else
7766 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7767 j),
7768 name, 0, 1);
7769
7770 if (t != NULL)
7771 return t;
7772 }
7773 }
7774
7775 }
7776
7777 /* Field not found so far. If this is a tagged type which
7778 has a parent, try finding that field in the parent now. */
7779
7780 if (parent_offset != -1)
7781 {
7782 struct type *t;
7783
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7785 name, 0, 1);
7786 if (t != NULL)
7787 return t;
7788 }
7789
7790 BadName:
7791 if (!noerr)
7792 {
7793 const char *name_str = name != NULL ? name : _("<null>");
7794
7795 error (_("Type %s has no component named %s"),
7796 type_as_string (type).c_str (), name_str);
7797 }
7798
7799 return NULL;
7800 }
7801
7802 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7803 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7804 represents an unchecked union (that is, the variant part of a
7805 record that is named in an Unchecked_Union pragma). */
7806
7807 static int
7808 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7809 {
7810 const char *discrim_name = ada_variant_discrim_name (var_type);
7811
7812 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7813 }
7814
7815
7816 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7817 within a value of type OUTER_TYPE that is stored in GDB at
7818 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7819 numbering from 0) is applicable. Returns -1 if none are. */
7820
7821 int
7822 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7823 const gdb_byte *outer_valaddr)
7824 {
7825 int others_clause;
7826 int i;
7827 const char *discrim_name = ada_variant_discrim_name (var_type);
7828 struct value *outer;
7829 struct value *discrim;
7830 LONGEST discrim_val;
7831
7832 /* Using plain value_from_contents_and_address here causes problems
7833 because we will end up trying to resolve a type that is currently
7834 being constructed. */
7835 outer = value_from_contents_and_address_unresolved (outer_type,
7836 outer_valaddr, 0);
7837 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7838 if (discrim == NULL)
7839 return -1;
7840 discrim_val = value_as_long (discrim);
7841
7842 others_clause = -1;
7843 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7844 {
7845 if (ada_is_others_clause (var_type, i))
7846 others_clause = i;
7847 else if (ada_in_variant (discrim_val, var_type, i))
7848 return i;
7849 }
7850
7851 return others_clause;
7852 }
7853 \f
7854
7855
7856 /* Dynamic-Sized Records */
7857
7858 /* Strategy: The type ostensibly attached to a value with dynamic size
7859 (i.e., a size that is not statically recorded in the debugging
7860 data) does not accurately reflect the size or layout of the value.
7861 Our strategy is to convert these values to values with accurate,
7862 conventional types that are constructed on the fly. */
7863
7864 /* There is a subtle and tricky problem here. In general, we cannot
7865 determine the size of dynamic records without its data. However,
7866 the 'struct value' data structure, which GDB uses to represent
7867 quantities in the inferior process (the target), requires the size
7868 of the type at the time of its allocation in order to reserve space
7869 for GDB's internal copy of the data. That's why the
7870 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7871 rather than struct value*s.
7872
7873 However, GDB's internal history variables ($1, $2, etc.) are
7874 struct value*s containing internal copies of the data that are not, in
7875 general, the same as the data at their corresponding addresses in
7876 the target. Fortunately, the types we give to these values are all
7877 conventional, fixed-size types (as per the strategy described
7878 above), so that we don't usually have to perform the
7879 'to_fixed_xxx_type' conversions to look at their values.
7880 Unfortunately, there is one exception: if one of the internal
7881 history variables is an array whose elements are unconstrained
7882 records, then we will need to create distinct fixed types for each
7883 element selected. */
7884
7885 /* The upshot of all of this is that many routines take a (type, host
7886 address, target address) triple as arguments to represent a value.
7887 The host address, if non-null, is supposed to contain an internal
7888 copy of the relevant data; otherwise, the program is to consult the
7889 target at the target address. */
7890
7891 /* Assuming that VAL0 represents a pointer value, the result of
7892 dereferencing it. Differs from value_ind in its treatment of
7893 dynamic-sized types. */
7894
7895 struct value *
7896 ada_value_ind (struct value *val0)
7897 {
7898 struct value *val = value_ind (val0);
7899
7900 if (ada_is_tagged_type (value_type (val), 0))
7901 val = ada_tag_value_at_base_address (val);
7902
7903 return ada_to_fixed_value (val);
7904 }
7905
7906 /* The value resulting from dereferencing any "reference to"
7907 qualifiers on VAL0. */
7908
7909 static struct value *
7910 ada_coerce_ref (struct value *val0)
7911 {
7912 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7913 {
7914 struct value *val = val0;
7915
7916 val = coerce_ref (val);
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
7921 return ada_to_fixed_value (val);
7922 }
7923 else
7924 return val0;
7925 }
7926
7927 /* Return OFF rounded upward if necessary to a multiple of
7928 ALIGNMENT (a power of 2). */
7929
7930 static unsigned int
7931 align_value (unsigned int off, unsigned int alignment)
7932 {
7933 return (off + alignment - 1) & ~(alignment - 1);
7934 }
7935
7936 /* Return the bit alignment required for field #F of template type TYPE. */
7937
7938 static unsigned int
7939 field_alignment (struct type *type, int f)
7940 {
7941 const char *name = TYPE_FIELD_NAME (type, f);
7942 int len;
7943 int align_offset;
7944
7945 /* The field name should never be null, unless the debugging information
7946 is somehow malformed. In this case, we assume the field does not
7947 require any alignment. */
7948 if (name == NULL)
7949 return 1;
7950
7951 len = strlen (name);
7952
7953 if (!isdigit (name[len - 1]))
7954 return 1;
7955
7956 if (isdigit (name[len - 2]))
7957 align_offset = len - 2;
7958 else
7959 align_offset = len - 1;
7960
7961 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7962 return TARGET_CHAR_BIT;
7963
7964 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7965 }
7966
7967 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7968
7969 static struct symbol *
7970 ada_find_any_type_symbol (const char *name)
7971 {
7972 struct symbol *sym;
7973
7974 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7975 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7976 return sym;
7977
7978 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7979 return sym;
7980 }
7981
7982 /* Find a type named NAME. Ignores ambiguity. This routine will look
7983 solely for types defined by debug info, it will not search the GDB
7984 primitive types. */
7985
7986 static struct type *
7987 ada_find_any_type (const char *name)
7988 {
7989 struct symbol *sym = ada_find_any_type_symbol (name);
7990
7991 if (sym != NULL)
7992 return SYMBOL_TYPE (sym);
7993
7994 return NULL;
7995 }
7996
7997 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7998 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7999 symbol, in which case it is returned. Otherwise, this looks for
8000 symbols whose name is that of NAME_SYM suffixed with "___XR".
8001 Return symbol if found, and NULL otherwise. */
8002
8003 struct symbol *
8004 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8005 {
8006 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8007 struct symbol *sym;
8008
8009 if (strstr (name, "___XR") != NULL)
8010 return name_sym;
8011
8012 sym = find_old_style_renaming_symbol (name, block);
8013
8014 if (sym != NULL)
8015 return sym;
8016
8017 /* Not right yet. FIXME pnh 7/20/2007. */
8018 sym = ada_find_any_type_symbol (name);
8019 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8020 return sym;
8021 else
8022 return NULL;
8023 }
8024
8025 static struct symbol *
8026 find_old_style_renaming_symbol (const char *name, const struct block *block)
8027 {
8028 const struct symbol *function_sym = block_linkage_function (block);
8029 char *rename;
8030
8031 if (function_sym != NULL)
8032 {
8033 /* If the symbol is defined inside a function, NAME is not fully
8034 qualified. This means we need to prepend the function name
8035 as well as adding the ``___XR'' suffix to build the name of
8036 the associated renaming symbol. */
8037 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8038 /* Function names sometimes contain suffixes used
8039 for instance to qualify nested subprograms. When building
8040 the XR type name, we need to make sure that this suffix is
8041 not included. So do not include any suffix in the function
8042 name length below. */
8043 int function_name_len = ada_name_prefix_len (function_name);
8044 const int rename_len = function_name_len + 2 /* "__" */
8045 + strlen (name) + 6 /* "___XR\0" */ ;
8046
8047 /* Strip the suffix if necessary. */
8048 ada_remove_trailing_digits (function_name, &function_name_len);
8049 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8050 ada_remove_Xbn_suffix (function_name, &function_name_len);
8051
8052 /* Library-level functions are a special case, as GNAT adds
8053 a ``_ada_'' prefix to the function name to avoid namespace
8054 pollution. However, the renaming symbols themselves do not
8055 have this prefix, so we need to skip this prefix if present. */
8056 if (function_name_len > 5 /* "_ada_" */
8057 && strstr (function_name, "_ada_") == function_name)
8058 {
8059 function_name += 5;
8060 function_name_len -= 5;
8061 }
8062
8063 rename = (char *) alloca (rename_len * sizeof (char));
8064 strncpy (rename, function_name, function_name_len);
8065 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8066 "__%s___XR", name);
8067 }
8068 else
8069 {
8070 const int rename_len = strlen (name) + 6;
8071
8072 rename = (char *) alloca (rename_len * sizeof (char));
8073 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8074 }
8075
8076 return ada_find_any_type_symbol (rename);
8077 }
8078
8079 /* Because of GNAT encoding conventions, several GDB symbols may match a
8080 given type name. If the type denoted by TYPE0 is to be preferred to
8081 that of TYPE1 for purposes of type printing, return non-zero;
8082 otherwise return 0. */
8083
8084 int
8085 ada_prefer_type (struct type *type0, struct type *type1)
8086 {
8087 if (type1 == NULL)
8088 return 1;
8089 else if (type0 == NULL)
8090 return 0;
8091 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8092 return 1;
8093 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8094 return 0;
8095 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8096 return 1;
8097 else if (ada_is_constrained_packed_array_type (type0))
8098 return 1;
8099 else if (ada_is_array_descriptor_type (type0)
8100 && !ada_is_array_descriptor_type (type1))
8101 return 1;
8102 else
8103 {
8104 const char *type0_name = type_name_no_tag (type0);
8105 const char *type1_name = type_name_no_tag (type1);
8106
8107 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8108 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8109 return 1;
8110 }
8111 return 0;
8112 }
8113
8114 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8115 null. */
8116
8117 const char *
8118 ada_type_name (struct type *type)
8119 {
8120 if (type == NULL)
8121 return NULL;
8122 return TYPE_NAME (type);
8123 }
8124
8125 /* Search the list of "descriptive" types associated to TYPE for a type
8126 whose name is NAME. */
8127
8128 static struct type *
8129 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8130 {
8131 struct type *result, *tmp;
8132
8133 if (ada_ignore_descriptive_types_p)
8134 return NULL;
8135
8136 /* If there no descriptive-type info, then there is no parallel type
8137 to be found. */
8138 if (!HAVE_GNAT_AUX_INFO (type))
8139 return NULL;
8140
8141 result = TYPE_DESCRIPTIVE_TYPE (type);
8142 while (result != NULL)
8143 {
8144 const char *result_name = ada_type_name (result);
8145
8146 if (result_name == NULL)
8147 {
8148 warning (_("unexpected null name on descriptive type"));
8149 return NULL;
8150 }
8151
8152 /* If the names match, stop. */
8153 if (strcmp (result_name, name) == 0)
8154 break;
8155
8156 /* Otherwise, look at the next item on the list, if any. */
8157 if (HAVE_GNAT_AUX_INFO (result))
8158 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8159 else
8160 tmp = NULL;
8161
8162 /* If not found either, try after having resolved the typedef. */
8163 if (tmp != NULL)
8164 result = tmp;
8165 else
8166 {
8167 result = check_typedef (result);
8168 if (HAVE_GNAT_AUX_INFO (result))
8169 result = TYPE_DESCRIPTIVE_TYPE (result);
8170 else
8171 result = NULL;
8172 }
8173 }
8174
8175 /* If we didn't find a match, see whether this is a packed array. With
8176 older compilers, the descriptive type information is either absent or
8177 irrelevant when it comes to packed arrays so the above lookup fails.
8178 Fall back to using a parallel lookup by name in this case. */
8179 if (result == NULL && ada_is_constrained_packed_array_type (type))
8180 return ada_find_any_type (name);
8181
8182 return result;
8183 }
8184
8185 /* Find a parallel type to TYPE with the specified NAME, using the
8186 descriptive type taken from the debugging information, if available,
8187 and otherwise using the (slower) name-based method. */
8188
8189 static struct type *
8190 ada_find_parallel_type_with_name (struct type *type, const char *name)
8191 {
8192 struct type *result = NULL;
8193
8194 if (HAVE_GNAT_AUX_INFO (type))
8195 result = find_parallel_type_by_descriptive_type (type, name);
8196 else
8197 result = ada_find_any_type (name);
8198
8199 return result;
8200 }
8201
8202 /* Same as above, but specify the name of the parallel type by appending
8203 SUFFIX to the name of TYPE. */
8204
8205 struct type *
8206 ada_find_parallel_type (struct type *type, const char *suffix)
8207 {
8208 char *name;
8209 const char *type_name = ada_type_name (type);
8210 int len;
8211
8212 if (type_name == NULL)
8213 return NULL;
8214
8215 len = strlen (type_name);
8216
8217 name = (char *) alloca (len + strlen (suffix) + 1);
8218
8219 strcpy (name, type_name);
8220 strcpy (name + len, suffix);
8221
8222 return ada_find_parallel_type_with_name (type, name);
8223 }
8224
8225 /* If TYPE is a variable-size record type, return the corresponding template
8226 type describing its fields. Otherwise, return NULL. */
8227
8228 static struct type *
8229 dynamic_template_type (struct type *type)
8230 {
8231 type = ada_check_typedef (type);
8232
8233 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8234 || ada_type_name (type) == NULL)
8235 return NULL;
8236 else
8237 {
8238 int len = strlen (ada_type_name (type));
8239
8240 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8241 return type;
8242 else
8243 return ada_find_parallel_type (type, "___XVE");
8244 }
8245 }
8246
8247 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8248 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8249
8250 static int
8251 is_dynamic_field (struct type *templ_type, int field_num)
8252 {
8253 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8254
8255 return name != NULL
8256 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8257 && strstr (name, "___XVL") != NULL;
8258 }
8259
8260 /* The index of the variant field of TYPE, or -1 if TYPE does not
8261 represent a variant record type. */
8262
8263 static int
8264 variant_field_index (struct type *type)
8265 {
8266 int f;
8267
8268 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8269 return -1;
8270
8271 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8272 {
8273 if (ada_is_variant_part (type, f))
8274 return f;
8275 }
8276 return -1;
8277 }
8278
8279 /* A record type with no fields. */
8280
8281 static struct type *
8282 empty_record (struct type *templ)
8283 {
8284 struct type *type = alloc_type_copy (templ);
8285
8286 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8287 TYPE_NFIELDS (type) = 0;
8288 TYPE_FIELDS (type) = NULL;
8289 INIT_CPLUS_SPECIFIC (type);
8290 TYPE_NAME (type) = "<empty>";
8291 TYPE_LENGTH (type) = 0;
8292 return type;
8293 }
8294
8295 /* An ordinary record type (with fixed-length fields) that describes
8296 the value of type TYPE at VALADDR or ADDRESS (see comments at
8297 the beginning of this section) VAL according to GNAT conventions.
8298 DVAL0 should describe the (portion of a) record that contains any
8299 necessary discriminants. It should be NULL if value_type (VAL) is
8300 an outer-level type (i.e., as opposed to a branch of a variant.) A
8301 variant field (unless unchecked) is replaced by a particular branch
8302 of the variant.
8303
8304 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8305 length are not statically known are discarded. As a consequence,
8306 VALADDR, ADDRESS and DVAL0 are ignored.
8307
8308 NOTE: Limitations: For now, we assume that dynamic fields and
8309 variants occupy whole numbers of bytes. However, they need not be
8310 byte-aligned. */
8311
8312 struct type *
8313 ada_template_to_fixed_record_type_1 (struct type *type,
8314 const gdb_byte *valaddr,
8315 CORE_ADDR address, struct value *dval0,
8316 int keep_dynamic_fields)
8317 {
8318 struct value *mark = value_mark ();
8319 struct value *dval;
8320 struct type *rtype;
8321 int nfields, bit_len;
8322 int variant_field;
8323 long off;
8324 int fld_bit_len;
8325 int f;
8326
8327 /* Compute the number of fields in this record type that are going
8328 to be processed: unless keep_dynamic_fields, this includes only
8329 fields whose position and length are static will be processed. */
8330 if (keep_dynamic_fields)
8331 nfields = TYPE_NFIELDS (type);
8332 else
8333 {
8334 nfields = 0;
8335 while (nfields < TYPE_NFIELDS (type)
8336 && !ada_is_variant_part (type, nfields)
8337 && !is_dynamic_field (type, nfields))
8338 nfields++;
8339 }
8340
8341 rtype = alloc_type_copy (type);
8342 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8343 INIT_CPLUS_SPECIFIC (rtype);
8344 TYPE_NFIELDS (rtype) = nfields;
8345 TYPE_FIELDS (rtype) = (struct field *)
8346 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8347 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8348 TYPE_NAME (rtype) = ada_type_name (type);
8349 TYPE_FIXED_INSTANCE (rtype) = 1;
8350
8351 off = 0;
8352 bit_len = 0;
8353 variant_field = -1;
8354
8355 for (f = 0; f < nfields; f += 1)
8356 {
8357 off = align_value (off, field_alignment (type, f))
8358 + TYPE_FIELD_BITPOS (type, f);
8359 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8360 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8361
8362 if (ada_is_variant_part (type, f))
8363 {
8364 variant_field = f;
8365 fld_bit_len = 0;
8366 }
8367 else if (is_dynamic_field (type, f))
8368 {
8369 const gdb_byte *field_valaddr = valaddr;
8370 CORE_ADDR field_address = address;
8371 struct type *field_type =
8372 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8373
8374 if (dval0 == NULL)
8375 {
8376 /* rtype's length is computed based on the run-time
8377 value of discriminants. If the discriminants are not
8378 initialized, the type size may be completely bogus and
8379 GDB may fail to allocate a value for it. So check the
8380 size first before creating the value. */
8381 ada_ensure_varsize_limit (rtype);
8382 /* Using plain value_from_contents_and_address here
8383 causes problems because we will end up trying to
8384 resolve a type that is currently being
8385 constructed. */
8386 dval = value_from_contents_and_address_unresolved (rtype,
8387 valaddr,
8388 address);
8389 rtype = value_type (dval);
8390 }
8391 else
8392 dval = dval0;
8393
8394 /* If the type referenced by this field is an aligner type, we need
8395 to unwrap that aligner type, because its size might not be set.
8396 Keeping the aligner type would cause us to compute the wrong
8397 size for this field, impacting the offset of the all the fields
8398 that follow this one. */
8399 if (ada_is_aligner_type (field_type))
8400 {
8401 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8402
8403 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8404 field_address = cond_offset_target (field_address, field_offset);
8405 field_type = ada_aligned_type (field_type);
8406 }
8407
8408 field_valaddr = cond_offset_host (field_valaddr,
8409 off / TARGET_CHAR_BIT);
8410 field_address = cond_offset_target (field_address,
8411 off / TARGET_CHAR_BIT);
8412
8413 /* Get the fixed type of the field. Note that, in this case,
8414 we do not want to get the real type out of the tag: if
8415 the current field is the parent part of a tagged record,
8416 we will get the tag of the object. Clearly wrong: the real
8417 type of the parent is not the real type of the child. We
8418 would end up in an infinite loop. */
8419 field_type = ada_get_base_type (field_type);
8420 field_type = ada_to_fixed_type (field_type, field_valaddr,
8421 field_address, dval, 0);
8422 /* If the field size is already larger than the maximum
8423 object size, then the record itself will necessarily
8424 be larger than the maximum object size. We need to make
8425 this check now, because the size might be so ridiculously
8426 large (due to an uninitialized variable in the inferior)
8427 that it would cause an overflow when adding it to the
8428 record size. */
8429 ada_ensure_varsize_limit (field_type);
8430
8431 TYPE_FIELD_TYPE (rtype, f) = field_type;
8432 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8433 /* The multiplication can potentially overflow. But because
8434 the field length has been size-checked just above, and
8435 assuming that the maximum size is a reasonable value,
8436 an overflow should not happen in practice. So rather than
8437 adding overflow recovery code to this already complex code,
8438 we just assume that it's not going to happen. */
8439 fld_bit_len =
8440 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8441 }
8442 else
8443 {
8444 /* Note: If this field's type is a typedef, it is important
8445 to preserve the typedef layer.
8446
8447 Otherwise, we might be transforming a typedef to a fat
8448 pointer (encoding a pointer to an unconstrained array),
8449 into a basic fat pointer (encoding an unconstrained
8450 array). As both types are implemented using the same
8451 structure, the typedef is the only clue which allows us
8452 to distinguish between the two options. Stripping it
8453 would prevent us from printing this field appropriately. */
8454 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8456 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8457 fld_bit_len =
8458 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8459 else
8460 {
8461 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8462
8463 /* We need to be careful of typedefs when computing
8464 the length of our field. If this is a typedef,
8465 get the length of the target type, not the length
8466 of the typedef. */
8467 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8468 field_type = ada_typedef_target_type (field_type);
8469
8470 fld_bit_len =
8471 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8472 }
8473 }
8474 if (off + fld_bit_len > bit_len)
8475 bit_len = off + fld_bit_len;
8476 off += fld_bit_len;
8477 TYPE_LENGTH (rtype) =
8478 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8479 }
8480
8481 /* We handle the variant part, if any, at the end because of certain
8482 odd cases in which it is re-ordered so as NOT to be the last field of
8483 the record. This can happen in the presence of representation
8484 clauses. */
8485 if (variant_field >= 0)
8486 {
8487 struct type *branch_type;
8488
8489 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8490
8491 if (dval0 == NULL)
8492 {
8493 /* Using plain value_from_contents_and_address here causes
8494 problems because we will end up trying to resolve a type
8495 that is currently being constructed. */
8496 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8497 address);
8498 rtype = value_type (dval);
8499 }
8500 else
8501 dval = dval0;
8502
8503 branch_type =
8504 to_fixed_variant_branch_type
8505 (TYPE_FIELD_TYPE (type, variant_field),
8506 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8507 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8508 if (branch_type == NULL)
8509 {
8510 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8511 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8512 TYPE_NFIELDS (rtype) -= 1;
8513 }
8514 else
8515 {
8516 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8517 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8518 fld_bit_len =
8519 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8520 TARGET_CHAR_BIT;
8521 if (off + fld_bit_len > bit_len)
8522 bit_len = off + fld_bit_len;
8523 TYPE_LENGTH (rtype) =
8524 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8525 }
8526 }
8527
8528 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8529 should contain the alignment of that record, which should be a strictly
8530 positive value. If null or negative, then something is wrong, most
8531 probably in the debug info. In that case, we don't round up the size
8532 of the resulting type. If this record is not part of another structure,
8533 the current RTYPE length might be good enough for our purposes. */
8534 if (TYPE_LENGTH (type) <= 0)
8535 {
8536 if (TYPE_NAME (rtype))
8537 warning (_("Invalid type size for `%s' detected: %d."),
8538 TYPE_NAME (rtype), TYPE_LENGTH (type));
8539 else
8540 warning (_("Invalid type size for <unnamed> detected: %d."),
8541 TYPE_LENGTH (type));
8542 }
8543 else
8544 {
8545 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8546 TYPE_LENGTH (type));
8547 }
8548
8549 value_free_to_mark (mark);
8550 if (TYPE_LENGTH (rtype) > varsize_limit)
8551 error (_("record type with dynamic size is larger than varsize-limit"));
8552 return rtype;
8553 }
8554
8555 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8556 of 1. */
8557
8558 static struct type *
8559 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8560 CORE_ADDR address, struct value *dval0)
8561 {
8562 return ada_template_to_fixed_record_type_1 (type, valaddr,
8563 address, dval0, 1);
8564 }
8565
8566 /* An ordinary record type in which ___XVL-convention fields and
8567 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8568 static approximations, containing all possible fields. Uses
8569 no runtime values. Useless for use in values, but that's OK,
8570 since the results are used only for type determinations. Works on both
8571 structs and unions. Representation note: to save space, we memorize
8572 the result of this function in the TYPE_TARGET_TYPE of the
8573 template type. */
8574
8575 static struct type *
8576 template_to_static_fixed_type (struct type *type0)
8577 {
8578 struct type *type;
8579 int nfields;
8580 int f;
8581
8582 /* No need no do anything if the input type is already fixed. */
8583 if (TYPE_FIXED_INSTANCE (type0))
8584 return type0;
8585
8586 /* Likewise if we already have computed the static approximation. */
8587 if (TYPE_TARGET_TYPE (type0) != NULL)
8588 return TYPE_TARGET_TYPE (type0);
8589
8590 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8591 type = type0;
8592 nfields = TYPE_NFIELDS (type0);
8593
8594 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8595 recompute all over next time. */
8596 TYPE_TARGET_TYPE (type0) = type;
8597
8598 for (f = 0; f < nfields; f += 1)
8599 {
8600 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8601 struct type *new_type;
8602
8603 if (is_dynamic_field (type0, f))
8604 {
8605 field_type = ada_check_typedef (field_type);
8606 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8607 }
8608 else
8609 new_type = static_unwrap_type (field_type);
8610
8611 if (new_type != field_type)
8612 {
8613 /* Clone TYPE0 only the first time we get a new field type. */
8614 if (type == type0)
8615 {
8616 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8617 TYPE_CODE (type) = TYPE_CODE (type0);
8618 INIT_CPLUS_SPECIFIC (type);
8619 TYPE_NFIELDS (type) = nfields;
8620 TYPE_FIELDS (type) = (struct field *)
8621 TYPE_ALLOC (type, nfields * sizeof (struct field));
8622 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8623 sizeof (struct field) * nfields);
8624 TYPE_NAME (type) = ada_type_name (type0);
8625 TYPE_FIXED_INSTANCE (type) = 1;
8626 TYPE_LENGTH (type) = 0;
8627 }
8628 TYPE_FIELD_TYPE (type, f) = new_type;
8629 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8630 }
8631 }
8632
8633 return type;
8634 }
8635
8636 /* Given an object of type TYPE whose contents are at VALADDR and
8637 whose address in memory is ADDRESS, returns a revision of TYPE,
8638 which should be a non-dynamic-sized record, in which the variant
8639 part, if any, is replaced with the appropriate branch. Looks
8640 for discriminant values in DVAL0, which can be NULL if the record
8641 contains the necessary discriminant values. */
8642
8643 static struct type *
8644 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8645 CORE_ADDR address, struct value *dval0)
8646 {
8647 struct value *mark = value_mark ();
8648 struct value *dval;
8649 struct type *rtype;
8650 struct type *branch_type;
8651 int nfields = TYPE_NFIELDS (type);
8652 int variant_field = variant_field_index (type);
8653
8654 if (variant_field == -1)
8655 return type;
8656
8657 if (dval0 == NULL)
8658 {
8659 dval = value_from_contents_and_address (type, valaddr, address);
8660 type = value_type (dval);
8661 }
8662 else
8663 dval = dval0;
8664
8665 rtype = alloc_type_copy (type);
8666 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8667 INIT_CPLUS_SPECIFIC (rtype);
8668 TYPE_NFIELDS (rtype) = nfields;
8669 TYPE_FIELDS (rtype) =
8670 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8671 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8672 sizeof (struct field) * nfields);
8673 TYPE_NAME (rtype) = ada_type_name (type);
8674 TYPE_FIXED_INSTANCE (rtype) = 1;
8675 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8676
8677 branch_type = to_fixed_variant_branch_type
8678 (TYPE_FIELD_TYPE (type, variant_field),
8679 cond_offset_host (valaddr,
8680 TYPE_FIELD_BITPOS (type, variant_field)
8681 / TARGET_CHAR_BIT),
8682 cond_offset_target (address,
8683 TYPE_FIELD_BITPOS (type, variant_field)
8684 / TARGET_CHAR_BIT), dval);
8685 if (branch_type == NULL)
8686 {
8687 int f;
8688
8689 for (f = variant_field + 1; f < nfields; f += 1)
8690 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8691 TYPE_NFIELDS (rtype) -= 1;
8692 }
8693 else
8694 {
8695 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8696 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8697 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8698 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8699 }
8700 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8701
8702 value_free_to_mark (mark);
8703 return rtype;
8704 }
8705
8706 /* An ordinary record type (with fixed-length fields) that describes
8707 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8708 beginning of this section]. Any necessary discriminants' values
8709 should be in DVAL, a record value; it may be NULL if the object
8710 at ADDR itself contains any necessary discriminant values.
8711 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8712 values from the record are needed. Except in the case that DVAL,
8713 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8714 unchecked) is replaced by a particular branch of the variant.
8715
8716 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8717 is questionable and may be removed. It can arise during the
8718 processing of an unconstrained-array-of-record type where all the
8719 variant branches have exactly the same size. This is because in
8720 such cases, the compiler does not bother to use the XVS convention
8721 when encoding the record. I am currently dubious of this
8722 shortcut and suspect the compiler should be altered. FIXME. */
8723
8724 static struct type *
8725 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8726 CORE_ADDR address, struct value *dval)
8727 {
8728 struct type *templ_type;
8729
8730 if (TYPE_FIXED_INSTANCE (type0))
8731 return type0;
8732
8733 templ_type = dynamic_template_type (type0);
8734
8735 if (templ_type != NULL)
8736 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8737 else if (variant_field_index (type0) >= 0)
8738 {
8739 if (dval == NULL && valaddr == NULL && address == 0)
8740 return type0;
8741 return to_record_with_fixed_variant_part (type0, valaddr, address,
8742 dval);
8743 }
8744 else
8745 {
8746 TYPE_FIXED_INSTANCE (type0) = 1;
8747 return type0;
8748 }
8749
8750 }
8751
8752 /* An ordinary record type (with fixed-length fields) that describes
8753 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8754 union type. Any necessary discriminants' values should be in DVAL,
8755 a record value. That is, this routine selects the appropriate
8756 branch of the union at ADDR according to the discriminant value
8757 indicated in the union's type name. Returns VAR_TYPE0 itself if
8758 it represents a variant subject to a pragma Unchecked_Union. */
8759
8760 static struct type *
8761 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8762 CORE_ADDR address, struct value *dval)
8763 {
8764 int which;
8765 struct type *templ_type;
8766 struct type *var_type;
8767
8768 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8769 var_type = TYPE_TARGET_TYPE (var_type0);
8770 else
8771 var_type = var_type0;
8772
8773 templ_type = ada_find_parallel_type (var_type, "___XVU");
8774
8775 if (templ_type != NULL)
8776 var_type = templ_type;
8777
8778 if (is_unchecked_variant (var_type, value_type (dval)))
8779 return var_type0;
8780 which =
8781 ada_which_variant_applies (var_type,
8782 value_type (dval), value_contents (dval));
8783
8784 if (which < 0)
8785 return empty_record (var_type);
8786 else if (is_dynamic_field (var_type, which))
8787 return to_fixed_record_type
8788 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8789 valaddr, address, dval);
8790 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8791 return
8792 to_fixed_record_type
8793 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8794 else
8795 return TYPE_FIELD_TYPE (var_type, which);
8796 }
8797
8798 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8799 ENCODING_TYPE, a type following the GNAT conventions for discrete
8800 type encodings, only carries redundant information. */
8801
8802 static int
8803 ada_is_redundant_range_encoding (struct type *range_type,
8804 struct type *encoding_type)
8805 {
8806 const char *bounds_str;
8807 int n;
8808 LONGEST lo, hi;
8809
8810 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8811
8812 if (TYPE_CODE (get_base_type (range_type))
8813 != TYPE_CODE (get_base_type (encoding_type)))
8814 {
8815 /* The compiler probably used a simple base type to describe
8816 the range type instead of the range's actual base type,
8817 expecting us to get the real base type from the encoding
8818 anyway. In this situation, the encoding cannot be ignored
8819 as redundant. */
8820 return 0;
8821 }
8822
8823 if (is_dynamic_type (range_type))
8824 return 0;
8825
8826 if (TYPE_NAME (encoding_type) == NULL)
8827 return 0;
8828
8829 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8830 if (bounds_str == NULL)
8831 return 0;
8832
8833 n = 8; /* Skip "___XDLU_". */
8834 if (!ada_scan_number (bounds_str, n, &lo, &n))
8835 return 0;
8836 if (TYPE_LOW_BOUND (range_type) != lo)
8837 return 0;
8838
8839 n += 2; /* Skip the "__" separator between the two bounds. */
8840 if (!ada_scan_number (bounds_str, n, &hi, &n))
8841 return 0;
8842 if (TYPE_HIGH_BOUND (range_type) != hi)
8843 return 0;
8844
8845 return 1;
8846 }
8847
8848 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8849 a type following the GNAT encoding for describing array type
8850 indices, only carries redundant information. */
8851
8852 static int
8853 ada_is_redundant_index_type_desc (struct type *array_type,
8854 struct type *desc_type)
8855 {
8856 struct type *this_layer = check_typedef (array_type);
8857 int i;
8858
8859 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8860 {
8861 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8862 TYPE_FIELD_TYPE (desc_type, i)))
8863 return 0;
8864 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8865 }
8866
8867 return 1;
8868 }
8869
8870 /* Assuming that TYPE0 is an array type describing the type of a value
8871 at ADDR, and that DVAL describes a record containing any
8872 discriminants used in TYPE0, returns a type for the value that
8873 contains no dynamic components (that is, no components whose sizes
8874 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8875 true, gives an error message if the resulting type's size is over
8876 varsize_limit. */
8877
8878 static struct type *
8879 to_fixed_array_type (struct type *type0, struct value *dval,
8880 int ignore_too_big)
8881 {
8882 struct type *index_type_desc;
8883 struct type *result;
8884 int constrained_packed_array_p;
8885 static const char *xa_suffix = "___XA";
8886
8887 type0 = ada_check_typedef (type0);
8888 if (TYPE_FIXED_INSTANCE (type0))
8889 return type0;
8890
8891 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8892 if (constrained_packed_array_p)
8893 type0 = decode_constrained_packed_array_type (type0);
8894
8895 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8896
8897 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8898 encoding suffixed with 'P' may still be generated. If so,
8899 it should be used to find the XA type. */
8900
8901 if (index_type_desc == NULL)
8902 {
8903 const char *type_name = ada_type_name (type0);
8904
8905 if (type_name != NULL)
8906 {
8907 const int len = strlen (type_name);
8908 char *name = (char *) alloca (len + strlen (xa_suffix));
8909
8910 if (type_name[len - 1] == 'P')
8911 {
8912 strcpy (name, type_name);
8913 strcpy (name + len - 1, xa_suffix);
8914 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8915 }
8916 }
8917 }
8918
8919 ada_fixup_array_indexes_type (index_type_desc);
8920 if (index_type_desc != NULL
8921 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8922 {
8923 /* Ignore this ___XA parallel type, as it does not bring any
8924 useful information. This allows us to avoid creating fixed
8925 versions of the array's index types, which would be identical
8926 to the original ones. This, in turn, can also help avoid
8927 the creation of fixed versions of the array itself. */
8928 index_type_desc = NULL;
8929 }
8930
8931 if (index_type_desc == NULL)
8932 {
8933 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8934
8935 /* NOTE: elt_type---the fixed version of elt_type0---should never
8936 depend on the contents of the array in properly constructed
8937 debugging data. */
8938 /* Create a fixed version of the array element type.
8939 We're not providing the address of an element here,
8940 and thus the actual object value cannot be inspected to do
8941 the conversion. This should not be a problem, since arrays of
8942 unconstrained objects are not allowed. In particular, all
8943 the elements of an array of a tagged type should all be of
8944 the same type specified in the debugging info. No need to
8945 consult the object tag. */
8946 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8947
8948 /* Make sure we always create a new array type when dealing with
8949 packed array types, since we're going to fix-up the array
8950 type length and element bitsize a little further down. */
8951 if (elt_type0 == elt_type && !constrained_packed_array_p)
8952 result = type0;
8953 else
8954 result = create_array_type (alloc_type_copy (type0),
8955 elt_type, TYPE_INDEX_TYPE (type0));
8956 }
8957 else
8958 {
8959 int i;
8960 struct type *elt_type0;
8961
8962 elt_type0 = type0;
8963 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8965
8966 /* NOTE: result---the fixed version of elt_type0---should never
8967 depend on the contents of the array in properly constructed
8968 debugging data. */
8969 /* Create a fixed version of the array element type.
8970 We're not providing the address of an element here,
8971 and thus the actual object value cannot be inspected to do
8972 the conversion. This should not be a problem, since arrays of
8973 unconstrained objects are not allowed. In particular, all
8974 the elements of an array of a tagged type should all be of
8975 the same type specified in the debugging info. No need to
8976 consult the object tag. */
8977 result =
8978 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8979
8980 elt_type0 = type0;
8981 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8982 {
8983 struct type *range_type =
8984 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8985
8986 result = create_array_type (alloc_type_copy (elt_type0),
8987 result, range_type);
8988 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8989 }
8990 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8991 error (_("array type with dynamic size is larger than varsize-limit"));
8992 }
8993
8994 /* We want to preserve the type name. This can be useful when
8995 trying to get the type name of a value that has already been
8996 printed (for instance, if the user did "print VAR; whatis $". */
8997 TYPE_NAME (result) = TYPE_NAME (type0);
8998
8999 if (constrained_packed_array_p)
9000 {
9001 /* So far, the resulting type has been created as if the original
9002 type was a regular (non-packed) array type. As a result, the
9003 bitsize of the array elements needs to be set again, and the array
9004 length needs to be recomputed based on that bitsize. */
9005 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9006 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9007
9008 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9009 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9010 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9011 TYPE_LENGTH (result)++;
9012 }
9013
9014 TYPE_FIXED_INSTANCE (result) = 1;
9015 return result;
9016 }
9017
9018
9019 /* A standard type (containing no dynamically sized components)
9020 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9021 DVAL describes a record containing any discriminants used in TYPE0,
9022 and may be NULL if there are none, or if the object of type TYPE at
9023 ADDRESS or in VALADDR contains these discriminants.
9024
9025 If CHECK_TAG is not null, in the case of tagged types, this function
9026 attempts to locate the object's tag and use it to compute the actual
9027 type. However, when ADDRESS is null, we cannot use it to determine the
9028 location of the tag, and therefore compute the tagged type's actual type.
9029 So we return the tagged type without consulting the tag. */
9030
9031 static struct type *
9032 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9033 CORE_ADDR address, struct value *dval, int check_tag)
9034 {
9035 type = ada_check_typedef (type);
9036 switch (TYPE_CODE (type))
9037 {
9038 default:
9039 return type;
9040 case TYPE_CODE_STRUCT:
9041 {
9042 struct type *static_type = to_static_fixed_type (type);
9043 struct type *fixed_record_type =
9044 to_fixed_record_type (type, valaddr, address, NULL);
9045
9046 /* If STATIC_TYPE is a tagged type and we know the object's address,
9047 then we can determine its tag, and compute the object's actual
9048 type from there. Note that we have to use the fixed record
9049 type (the parent part of the record may have dynamic fields
9050 and the way the location of _tag is expressed may depend on
9051 them). */
9052
9053 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9054 {
9055 struct value *tag =
9056 value_tag_from_contents_and_address
9057 (fixed_record_type,
9058 valaddr,
9059 address);
9060 struct type *real_type = type_from_tag (tag);
9061 struct value *obj =
9062 value_from_contents_and_address (fixed_record_type,
9063 valaddr,
9064 address);
9065 fixed_record_type = value_type (obj);
9066 if (real_type != NULL)
9067 return to_fixed_record_type
9068 (real_type, NULL,
9069 value_address (ada_tag_value_at_base_address (obj)), NULL);
9070 }
9071
9072 /* Check to see if there is a parallel ___XVZ variable.
9073 If there is, then it provides the actual size of our type. */
9074 else if (ada_type_name (fixed_record_type) != NULL)
9075 {
9076 const char *name = ada_type_name (fixed_record_type);
9077 char *xvz_name
9078 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9079 bool xvz_found = false;
9080 LONGEST size;
9081
9082 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9083 TRY
9084 {
9085 xvz_found = get_int_var_value (xvz_name, size);
9086 }
9087 CATCH (except, RETURN_MASK_ERROR)
9088 {
9089 /* We found the variable, but somehow failed to read
9090 its value. Rethrow the same error, but with a little
9091 bit more information, to help the user understand
9092 what went wrong (Eg: the variable might have been
9093 optimized out). */
9094 throw_error (except.error,
9095 _("unable to read value of %s (%s)"),
9096 xvz_name, except.message);
9097 }
9098 END_CATCH
9099
9100 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9101 {
9102 fixed_record_type = copy_type (fixed_record_type);
9103 TYPE_LENGTH (fixed_record_type) = size;
9104
9105 /* The FIXED_RECORD_TYPE may have be a stub. We have
9106 observed this when the debugging info is STABS, and
9107 apparently it is something that is hard to fix.
9108
9109 In practice, we don't need the actual type definition
9110 at all, because the presence of the XVZ variable allows us
9111 to assume that there must be a XVS type as well, which we
9112 should be able to use later, when we need the actual type
9113 definition.
9114
9115 In the meantime, pretend that the "fixed" type we are
9116 returning is NOT a stub, because this can cause trouble
9117 when using this type to create new types targeting it.
9118 Indeed, the associated creation routines often check
9119 whether the target type is a stub and will try to replace
9120 it, thus using a type with the wrong size. This, in turn,
9121 might cause the new type to have the wrong size too.
9122 Consider the case of an array, for instance, where the size
9123 of the array is computed from the number of elements in
9124 our array multiplied by the size of its element. */
9125 TYPE_STUB (fixed_record_type) = 0;
9126 }
9127 }
9128 return fixed_record_type;
9129 }
9130 case TYPE_CODE_ARRAY:
9131 return to_fixed_array_type (type, dval, 1);
9132 case TYPE_CODE_UNION:
9133 if (dval == NULL)
9134 return type;
9135 else
9136 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9137 }
9138 }
9139
9140 /* The same as ada_to_fixed_type_1, except that it preserves the type
9141 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9142
9143 The typedef layer needs be preserved in order to differentiate between
9144 arrays and array pointers when both types are implemented using the same
9145 fat pointer. In the array pointer case, the pointer is encoded as
9146 a typedef of the pointer type. For instance, considering:
9147
9148 type String_Access is access String;
9149 S1 : String_Access := null;
9150
9151 To the debugger, S1 is defined as a typedef of type String. But
9152 to the user, it is a pointer. So if the user tries to print S1,
9153 we should not dereference the array, but print the array address
9154 instead.
9155
9156 If we didn't preserve the typedef layer, we would lose the fact that
9157 the type is to be presented as a pointer (needs de-reference before
9158 being printed). And we would also use the source-level type name. */
9159
9160 struct type *
9161 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9162 CORE_ADDR address, struct value *dval, int check_tag)
9163
9164 {
9165 struct type *fixed_type =
9166 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9167
9168 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9169 then preserve the typedef layer.
9170
9171 Implementation note: We can only check the main-type portion of
9172 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9173 from TYPE now returns a type that has the same instance flags
9174 as TYPE. For instance, if TYPE is a "typedef const", and its
9175 target type is a "struct", then the typedef elimination will return
9176 a "const" version of the target type. See check_typedef for more
9177 details about how the typedef layer elimination is done.
9178
9179 brobecker/2010-11-19: It seems to me that the only case where it is
9180 useful to preserve the typedef layer is when dealing with fat pointers.
9181 Perhaps, we could add a check for that and preserve the typedef layer
9182 only in that situation. But this seems unecessary so far, probably
9183 because we call check_typedef/ada_check_typedef pretty much everywhere.
9184 */
9185 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9186 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9187 == TYPE_MAIN_TYPE (fixed_type)))
9188 return type;
9189
9190 return fixed_type;
9191 }
9192
9193 /* A standard (static-sized) type corresponding as well as possible to
9194 TYPE0, but based on no runtime data. */
9195
9196 static struct type *
9197 to_static_fixed_type (struct type *type0)
9198 {
9199 struct type *type;
9200
9201 if (type0 == NULL)
9202 return NULL;
9203
9204 if (TYPE_FIXED_INSTANCE (type0))
9205 return type0;
9206
9207 type0 = ada_check_typedef (type0);
9208
9209 switch (TYPE_CODE (type0))
9210 {
9211 default:
9212 return type0;
9213 case TYPE_CODE_STRUCT:
9214 type = dynamic_template_type (type0);
9215 if (type != NULL)
9216 return template_to_static_fixed_type (type);
9217 else
9218 return template_to_static_fixed_type (type0);
9219 case TYPE_CODE_UNION:
9220 type = ada_find_parallel_type (type0, "___XVU");
9221 if (type != NULL)
9222 return template_to_static_fixed_type (type);
9223 else
9224 return template_to_static_fixed_type (type0);
9225 }
9226 }
9227
9228 /* A static approximation of TYPE with all type wrappers removed. */
9229
9230 static struct type *
9231 static_unwrap_type (struct type *type)
9232 {
9233 if (ada_is_aligner_type (type))
9234 {
9235 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9236 if (ada_type_name (type1) == NULL)
9237 TYPE_NAME (type1) = ada_type_name (type);
9238
9239 return static_unwrap_type (type1);
9240 }
9241 else
9242 {
9243 struct type *raw_real_type = ada_get_base_type (type);
9244
9245 if (raw_real_type == type)
9246 return type;
9247 else
9248 return to_static_fixed_type (raw_real_type);
9249 }
9250 }
9251
9252 /* In some cases, incomplete and private types require
9253 cross-references that are not resolved as records (for example,
9254 type Foo;
9255 type FooP is access Foo;
9256 V: FooP;
9257 type Foo is array ...;
9258 ). In these cases, since there is no mechanism for producing
9259 cross-references to such types, we instead substitute for FooP a
9260 stub enumeration type that is nowhere resolved, and whose tag is
9261 the name of the actual type. Call these types "non-record stubs". */
9262
9263 /* A type equivalent to TYPE that is not a non-record stub, if one
9264 exists, otherwise TYPE. */
9265
9266 struct type *
9267 ada_check_typedef (struct type *type)
9268 {
9269 if (type == NULL)
9270 return NULL;
9271
9272 /* If our type is a typedef type of a fat pointer, then we're done.
9273 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9274 what allows us to distinguish between fat pointers that represent
9275 array types, and fat pointers that represent array access types
9276 (in both cases, the compiler implements them as fat pointers). */
9277 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9278 && is_thick_pntr (ada_typedef_target_type (type)))
9279 return type;
9280
9281 type = check_typedef (type);
9282 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9283 || !TYPE_STUB (type)
9284 || TYPE_NAME (type) == NULL)
9285 return type;
9286 else
9287 {
9288 const char *name = TYPE_NAME (type);
9289 struct type *type1 = ada_find_any_type (name);
9290
9291 if (type1 == NULL)
9292 return type;
9293
9294 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9295 stubs pointing to arrays, as we don't create symbols for array
9296 types, only for the typedef-to-array types). If that's the case,
9297 strip the typedef layer. */
9298 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9299 type1 = ada_check_typedef (type1);
9300
9301 return type1;
9302 }
9303 }
9304
9305 /* A value representing the data at VALADDR/ADDRESS as described by
9306 type TYPE0, but with a standard (static-sized) type that correctly
9307 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9308 type, then return VAL0 [this feature is simply to avoid redundant
9309 creation of struct values]. */
9310
9311 static struct value *
9312 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9313 struct value *val0)
9314 {
9315 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9316
9317 if (type == type0 && val0 != NULL)
9318 return val0;
9319
9320 if (VALUE_LVAL (val0) != lval_memory)
9321 {
9322 /* Our value does not live in memory; it could be a convenience
9323 variable, for instance. Create a not_lval value using val0's
9324 contents. */
9325 return value_from_contents (type, value_contents (val0));
9326 }
9327
9328 return value_from_contents_and_address (type, 0, address);
9329 }
9330
9331 /* A value representing VAL, but with a standard (static-sized) type
9332 that correctly describes it. Does not necessarily create a new
9333 value. */
9334
9335 struct value *
9336 ada_to_fixed_value (struct value *val)
9337 {
9338 val = unwrap_value (val);
9339 val = ada_to_fixed_value_create (value_type (val),
9340 value_address (val),
9341 val);
9342 return val;
9343 }
9344 \f
9345
9346 /* Attributes */
9347
9348 /* Table mapping attribute numbers to names.
9349 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9350
9351 static const char *attribute_names[] = {
9352 "<?>",
9353
9354 "first",
9355 "last",
9356 "length",
9357 "image",
9358 "max",
9359 "min",
9360 "modulus",
9361 "pos",
9362 "size",
9363 "tag",
9364 "val",
9365 0
9366 };
9367
9368 const char *
9369 ada_attribute_name (enum exp_opcode n)
9370 {
9371 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9372 return attribute_names[n - OP_ATR_FIRST + 1];
9373 else
9374 return attribute_names[0];
9375 }
9376
9377 /* Evaluate the 'POS attribute applied to ARG. */
9378
9379 static LONGEST
9380 pos_atr (struct value *arg)
9381 {
9382 struct value *val = coerce_ref (arg);
9383 struct type *type = value_type (val);
9384 LONGEST result;
9385
9386 if (!discrete_type_p (type))
9387 error (_("'POS only defined on discrete types"));
9388
9389 if (!discrete_position (type, value_as_long (val), &result))
9390 error (_("enumeration value is invalid: can't find 'POS"));
9391
9392 return result;
9393 }
9394
9395 static struct value *
9396 value_pos_atr (struct type *type, struct value *arg)
9397 {
9398 return value_from_longest (type, pos_atr (arg));
9399 }
9400
9401 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9402
9403 static struct value *
9404 value_val_atr (struct type *type, struct value *arg)
9405 {
9406 if (!discrete_type_p (type))
9407 error (_("'VAL only defined on discrete types"));
9408 if (!integer_type_p (value_type (arg)))
9409 error (_("'VAL requires integral argument"));
9410
9411 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9412 {
9413 long pos = value_as_long (arg);
9414
9415 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9416 error (_("argument to 'VAL out of range"));
9417 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9418 }
9419 else
9420 return value_from_longest (type, value_as_long (arg));
9421 }
9422 \f
9423
9424 /* Evaluation */
9425
9426 /* True if TYPE appears to be an Ada character type.
9427 [At the moment, this is true only for Character and Wide_Character;
9428 It is a heuristic test that could stand improvement]. */
9429
9430 int
9431 ada_is_character_type (struct type *type)
9432 {
9433 const char *name;
9434
9435 /* If the type code says it's a character, then assume it really is,
9436 and don't check any further. */
9437 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9438 return 1;
9439
9440 /* Otherwise, assume it's a character type iff it is a discrete type
9441 with a known character type name. */
9442 name = ada_type_name (type);
9443 return (name != NULL
9444 && (TYPE_CODE (type) == TYPE_CODE_INT
9445 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9446 && (strcmp (name, "character") == 0
9447 || strcmp (name, "wide_character") == 0
9448 || strcmp (name, "wide_wide_character") == 0
9449 || strcmp (name, "unsigned char") == 0));
9450 }
9451
9452 /* True if TYPE appears to be an Ada string type. */
9453
9454 int
9455 ada_is_string_type (struct type *type)
9456 {
9457 type = ada_check_typedef (type);
9458 if (type != NULL
9459 && TYPE_CODE (type) != TYPE_CODE_PTR
9460 && (ada_is_simple_array_type (type)
9461 || ada_is_array_descriptor_type (type))
9462 && ada_array_arity (type) == 1)
9463 {
9464 struct type *elttype = ada_array_element_type (type, 1);
9465
9466 return ada_is_character_type (elttype);
9467 }
9468 else
9469 return 0;
9470 }
9471
9472 /* The compiler sometimes provides a parallel XVS type for a given
9473 PAD type. Normally, it is safe to follow the PAD type directly,
9474 but older versions of the compiler have a bug that causes the offset
9475 of its "F" field to be wrong. Following that field in that case
9476 would lead to incorrect results, but this can be worked around
9477 by ignoring the PAD type and using the associated XVS type instead.
9478
9479 Set to True if the debugger should trust the contents of PAD types.
9480 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9481 static int trust_pad_over_xvs = 1;
9482
9483 /* True if TYPE is a struct type introduced by the compiler to force the
9484 alignment of a value. Such types have a single field with a
9485 distinctive name. */
9486
9487 int
9488 ada_is_aligner_type (struct type *type)
9489 {
9490 type = ada_check_typedef (type);
9491
9492 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9493 return 0;
9494
9495 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9496 && TYPE_NFIELDS (type) == 1
9497 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9498 }
9499
9500 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9501 the parallel type. */
9502
9503 struct type *
9504 ada_get_base_type (struct type *raw_type)
9505 {
9506 struct type *real_type_namer;
9507 struct type *raw_real_type;
9508
9509 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9510 return raw_type;
9511
9512 if (ada_is_aligner_type (raw_type))
9513 /* The encoding specifies that we should always use the aligner type.
9514 So, even if this aligner type has an associated XVS type, we should
9515 simply ignore it.
9516
9517 According to the compiler gurus, an XVS type parallel to an aligner
9518 type may exist because of a stabs limitation. In stabs, aligner
9519 types are empty because the field has a variable-sized type, and
9520 thus cannot actually be used as an aligner type. As a result,
9521 we need the associated parallel XVS type to decode the type.
9522 Since the policy in the compiler is to not change the internal
9523 representation based on the debugging info format, we sometimes
9524 end up having a redundant XVS type parallel to the aligner type. */
9525 return raw_type;
9526
9527 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9528 if (real_type_namer == NULL
9529 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9530 || TYPE_NFIELDS (real_type_namer) != 1)
9531 return raw_type;
9532
9533 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9534 {
9535 /* This is an older encoding form where the base type needs to be
9536 looked up by name. We prefer the newer enconding because it is
9537 more efficient. */
9538 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9539 if (raw_real_type == NULL)
9540 return raw_type;
9541 else
9542 return raw_real_type;
9543 }
9544
9545 /* The field in our XVS type is a reference to the base type. */
9546 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9547 }
9548
9549 /* The type of value designated by TYPE, with all aligners removed. */
9550
9551 struct type *
9552 ada_aligned_type (struct type *type)
9553 {
9554 if (ada_is_aligner_type (type))
9555 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9556 else
9557 return ada_get_base_type (type);
9558 }
9559
9560
9561 /* The address of the aligned value in an object at address VALADDR
9562 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9563
9564 const gdb_byte *
9565 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9566 {
9567 if (ada_is_aligner_type (type))
9568 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9569 valaddr +
9570 TYPE_FIELD_BITPOS (type,
9571 0) / TARGET_CHAR_BIT);
9572 else
9573 return valaddr;
9574 }
9575
9576
9577
9578 /* The printed representation of an enumeration literal with encoded
9579 name NAME. The value is good to the next call of ada_enum_name. */
9580 const char *
9581 ada_enum_name (const char *name)
9582 {
9583 static char *result;
9584 static size_t result_len = 0;
9585 const char *tmp;
9586
9587 /* First, unqualify the enumeration name:
9588 1. Search for the last '.' character. If we find one, then skip
9589 all the preceding characters, the unqualified name starts
9590 right after that dot.
9591 2. Otherwise, we may be debugging on a target where the compiler
9592 translates dots into "__". Search forward for double underscores,
9593 but stop searching when we hit an overloading suffix, which is
9594 of the form "__" followed by digits. */
9595
9596 tmp = strrchr (name, '.');
9597 if (tmp != NULL)
9598 name = tmp + 1;
9599 else
9600 {
9601 while ((tmp = strstr (name, "__")) != NULL)
9602 {
9603 if (isdigit (tmp[2]))
9604 break;
9605 else
9606 name = tmp + 2;
9607 }
9608 }
9609
9610 if (name[0] == 'Q')
9611 {
9612 int v;
9613
9614 if (name[1] == 'U' || name[1] == 'W')
9615 {
9616 if (sscanf (name + 2, "%x", &v) != 1)
9617 return name;
9618 }
9619 else
9620 return name;
9621
9622 GROW_VECT (result, result_len, 16);
9623 if (isascii (v) && isprint (v))
9624 xsnprintf (result, result_len, "'%c'", v);
9625 else if (name[1] == 'U')
9626 xsnprintf (result, result_len, "[\"%02x\"]", v);
9627 else
9628 xsnprintf (result, result_len, "[\"%04x\"]", v);
9629
9630 return result;
9631 }
9632 else
9633 {
9634 tmp = strstr (name, "__");
9635 if (tmp == NULL)
9636 tmp = strstr (name, "$");
9637 if (tmp != NULL)
9638 {
9639 GROW_VECT (result, result_len, tmp - name + 1);
9640 strncpy (result, name, tmp - name);
9641 result[tmp - name] = '\0';
9642 return result;
9643 }
9644
9645 return name;
9646 }
9647 }
9648
9649 /* Evaluate the subexpression of EXP starting at *POS as for
9650 evaluate_type, updating *POS to point just past the evaluated
9651 expression. */
9652
9653 static struct value *
9654 evaluate_subexp_type (struct expression *exp, int *pos)
9655 {
9656 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9657 }
9658
9659 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9660 value it wraps. */
9661
9662 static struct value *
9663 unwrap_value (struct value *val)
9664 {
9665 struct type *type = ada_check_typedef (value_type (val));
9666
9667 if (ada_is_aligner_type (type))
9668 {
9669 struct value *v = ada_value_struct_elt (val, "F", 0);
9670 struct type *val_type = ada_check_typedef (value_type (v));
9671
9672 if (ada_type_name (val_type) == NULL)
9673 TYPE_NAME (val_type) = ada_type_name (type);
9674
9675 return unwrap_value (v);
9676 }
9677 else
9678 {
9679 struct type *raw_real_type =
9680 ada_check_typedef (ada_get_base_type (type));
9681
9682 /* If there is no parallel XVS or XVE type, then the value is
9683 already unwrapped. Return it without further modification. */
9684 if ((type == raw_real_type)
9685 && ada_find_parallel_type (type, "___XVE") == NULL)
9686 return val;
9687
9688 return
9689 coerce_unspec_val_to_type
9690 (val, ada_to_fixed_type (raw_real_type, 0,
9691 value_address (val),
9692 NULL, 1));
9693 }
9694 }
9695
9696 static struct value *
9697 cast_from_fixed (struct type *type, struct value *arg)
9698 {
9699 struct value *scale = ada_scaling_factor (value_type (arg));
9700 arg = value_cast (value_type (scale), arg);
9701
9702 arg = value_binop (arg, scale, BINOP_MUL);
9703 return value_cast (type, arg);
9704 }
9705
9706 static struct value *
9707 cast_to_fixed (struct type *type, struct value *arg)
9708 {
9709 if (type == value_type (arg))
9710 return arg;
9711
9712 struct value *scale = ada_scaling_factor (type);
9713 if (ada_is_fixed_point_type (value_type (arg)))
9714 arg = cast_from_fixed (value_type (scale), arg);
9715 else
9716 arg = value_cast (value_type (scale), arg);
9717
9718 arg = value_binop (arg, scale, BINOP_DIV);
9719 return value_cast (type, arg);
9720 }
9721
9722 /* Given two array types T1 and T2, return nonzero iff both arrays
9723 contain the same number of elements. */
9724
9725 static int
9726 ada_same_array_size_p (struct type *t1, struct type *t2)
9727 {
9728 LONGEST lo1, hi1, lo2, hi2;
9729
9730 /* Get the array bounds in order to verify that the size of
9731 the two arrays match. */
9732 if (!get_array_bounds (t1, &lo1, &hi1)
9733 || !get_array_bounds (t2, &lo2, &hi2))
9734 error (_("unable to determine array bounds"));
9735
9736 /* To make things easier for size comparison, normalize a bit
9737 the case of empty arrays by making sure that the difference
9738 between upper bound and lower bound is always -1. */
9739 if (lo1 > hi1)
9740 hi1 = lo1 - 1;
9741 if (lo2 > hi2)
9742 hi2 = lo2 - 1;
9743
9744 return (hi1 - lo1 == hi2 - lo2);
9745 }
9746
9747 /* Assuming that VAL is an array of integrals, and TYPE represents
9748 an array with the same number of elements, but with wider integral
9749 elements, return an array "casted" to TYPE. In practice, this
9750 means that the returned array is built by casting each element
9751 of the original array into TYPE's (wider) element type. */
9752
9753 static struct value *
9754 ada_promote_array_of_integrals (struct type *type, struct value *val)
9755 {
9756 struct type *elt_type = TYPE_TARGET_TYPE (type);
9757 LONGEST lo, hi;
9758 struct value *res;
9759 LONGEST i;
9760
9761 /* Verify that both val and type are arrays of scalars, and
9762 that the size of val's elements is smaller than the size
9763 of type's element. */
9764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9765 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9766 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9767 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9768 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9769 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9770
9771 if (!get_array_bounds (type, &lo, &hi))
9772 error (_("unable to determine array bounds"));
9773
9774 res = allocate_value (type);
9775
9776 /* Promote each array element. */
9777 for (i = 0; i < hi - lo + 1; i++)
9778 {
9779 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9780
9781 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9782 value_contents_all (elt), TYPE_LENGTH (elt_type));
9783 }
9784
9785 return res;
9786 }
9787
9788 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9789 return the converted value. */
9790
9791 static struct value *
9792 coerce_for_assign (struct type *type, struct value *val)
9793 {
9794 struct type *type2 = value_type (val);
9795
9796 if (type == type2)
9797 return val;
9798
9799 type2 = ada_check_typedef (type2);
9800 type = ada_check_typedef (type);
9801
9802 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9803 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9804 {
9805 val = ada_value_ind (val);
9806 type2 = value_type (val);
9807 }
9808
9809 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9811 {
9812 if (!ada_same_array_size_p (type, type2))
9813 error (_("cannot assign arrays of different length"));
9814
9815 if (is_integral_type (TYPE_TARGET_TYPE (type))
9816 && is_integral_type (TYPE_TARGET_TYPE (type2))
9817 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9818 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9819 {
9820 /* Allow implicit promotion of the array elements to
9821 a wider type. */
9822 return ada_promote_array_of_integrals (type, val);
9823 }
9824
9825 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9826 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9827 error (_("Incompatible types in assignment"));
9828 deprecated_set_value_type (val, type);
9829 }
9830 return val;
9831 }
9832
9833 static struct value *
9834 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9835 {
9836 struct value *val;
9837 struct type *type1, *type2;
9838 LONGEST v, v1, v2;
9839
9840 arg1 = coerce_ref (arg1);
9841 arg2 = coerce_ref (arg2);
9842 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9843 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9844
9845 if (TYPE_CODE (type1) != TYPE_CODE_INT
9846 || TYPE_CODE (type2) != TYPE_CODE_INT)
9847 return value_binop (arg1, arg2, op);
9848
9849 switch (op)
9850 {
9851 case BINOP_MOD:
9852 case BINOP_DIV:
9853 case BINOP_REM:
9854 break;
9855 default:
9856 return value_binop (arg1, arg2, op);
9857 }
9858
9859 v2 = value_as_long (arg2);
9860 if (v2 == 0)
9861 error (_("second operand of %s must not be zero."), op_string (op));
9862
9863 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9864 return value_binop (arg1, arg2, op);
9865
9866 v1 = value_as_long (arg1);
9867 switch (op)
9868 {
9869 case BINOP_DIV:
9870 v = v1 / v2;
9871 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9872 v += v > 0 ? -1 : 1;
9873 break;
9874 case BINOP_REM:
9875 v = v1 % v2;
9876 if (v * v1 < 0)
9877 v -= v2;
9878 break;
9879 default:
9880 /* Should not reach this point. */
9881 v = 0;
9882 }
9883
9884 val = allocate_value (type1);
9885 store_unsigned_integer (value_contents_raw (val),
9886 TYPE_LENGTH (value_type (val)),
9887 gdbarch_byte_order (get_type_arch (type1)), v);
9888 return val;
9889 }
9890
9891 static int
9892 ada_value_equal (struct value *arg1, struct value *arg2)
9893 {
9894 if (ada_is_direct_array_type (value_type (arg1))
9895 || ada_is_direct_array_type (value_type (arg2)))
9896 {
9897 struct type *arg1_type, *arg2_type;
9898
9899 /* Automatically dereference any array reference before
9900 we attempt to perform the comparison. */
9901 arg1 = ada_coerce_ref (arg1);
9902 arg2 = ada_coerce_ref (arg2);
9903
9904 arg1 = ada_coerce_to_simple_array (arg1);
9905 arg2 = ada_coerce_to_simple_array (arg2);
9906
9907 arg1_type = ada_check_typedef (value_type (arg1));
9908 arg2_type = ada_check_typedef (value_type (arg2));
9909
9910 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9911 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9912 error (_("Attempt to compare array with non-array"));
9913 /* FIXME: The following works only for types whose
9914 representations use all bits (no padding or undefined bits)
9915 and do not have user-defined equality. */
9916 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9917 && memcmp (value_contents (arg1), value_contents (arg2),
9918 TYPE_LENGTH (arg1_type)) == 0);
9919 }
9920 return value_equal (arg1, arg2);
9921 }
9922
9923 /* Total number of component associations in the aggregate starting at
9924 index PC in EXP. Assumes that index PC is the start of an
9925 OP_AGGREGATE. */
9926
9927 static int
9928 num_component_specs (struct expression *exp, int pc)
9929 {
9930 int n, m, i;
9931
9932 m = exp->elts[pc + 1].longconst;
9933 pc += 3;
9934 n = 0;
9935 for (i = 0; i < m; i += 1)
9936 {
9937 switch (exp->elts[pc].opcode)
9938 {
9939 default:
9940 n += 1;
9941 break;
9942 case OP_CHOICES:
9943 n += exp->elts[pc + 1].longconst;
9944 break;
9945 }
9946 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9947 }
9948 return n;
9949 }
9950
9951 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9952 component of LHS (a simple array or a record), updating *POS past
9953 the expression, assuming that LHS is contained in CONTAINER. Does
9954 not modify the inferior's memory, nor does it modify LHS (unless
9955 LHS == CONTAINER). */
9956
9957 static void
9958 assign_component (struct value *container, struct value *lhs, LONGEST index,
9959 struct expression *exp, int *pos)
9960 {
9961 struct value *mark = value_mark ();
9962 struct value *elt;
9963 struct type *lhs_type = check_typedef (value_type (lhs));
9964
9965 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9966 {
9967 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9968 struct value *index_val = value_from_longest (index_type, index);
9969
9970 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9971 }
9972 else
9973 {
9974 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9975 elt = ada_to_fixed_value (elt);
9976 }
9977
9978 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9979 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9980 else
9981 value_assign_to_component (container, elt,
9982 ada_evaluate_subexp (NULL, exp, pos,
9983 EVAL_NORMAL));
9984
9985 value_free_to_mark (mark);
9986 }
9987
9988 /* Assuming that LHS represents an lvalue having a record or array
9989 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9990 of that aggregate's value to LHS, advancing *POS past the
9991 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9992 lvalue containing LHS (possibly LHS itself). Does not modify
9993 the inferior's memory, nor does it modify the contents of
9994 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9995
9996 static struct value *
9997 assign_aggregate (struct value *container,
9998 struct value *lhs, struct expression *exp,
9999 int *pos, enum noside noside)
10000 {
10001 struct type *lhs_type;
10002 int n = exp->elts[*pos+1].longconst;
10003 LONGEST low_index, high_index;
10004 int num_specs;
10005 LONGEST *indices;
10006 int max_indices, num_indices;
10007 int i;
10008
10009 *pos += 3;
10010 if (noside != EVAL_NORMAL)
10011 {
10012 for (i = 0; i < n; i += 1)
10013 ada_evaluate_subexp (NULL, exp, pos, noside);
10014 return container;
10015 }
10016
10017 container = ada_coerce_ref (container);
10018 if (ada_is_direct_array_type (value_type (container)))
10019 container = ada_coerce_to_simple_array (container);
10020 lhs = ada_coerce_ref (lhs);
10021 if (!deprecated_value_modifiable (lhs))
10022 error (_("Left operand of assignment is not a modifiable lvalue."));
10023
10024 lhs_type = check_typedef (value_type (lhs));
10025 if (ada_is_direct_array_type (lhs_type))
10026 {
10027 lhs = ada_coerce_to_simple_array (lhs);
10028 lhs_type = check_typedef (value_type (lhs));
10029 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10030 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10031 }
10032 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10033 {
10034 low_index = 0;
10035 high_index = num_visible_fields (lhs_type) - 1;
10036 }
10037 else
10038 error (_("Left-hand side must be array or record."));
10039
10040 num_specs = num_component_specs (exp, *pos - 3);
10041 max_indices = 4 * num_specs + 4;
10042 indices = XALLOCAVEC (LONGEST, max_indices);
10043 indices[0] = indices[1] = low_index - 1;
10044 indices[2] = indices[3] = high_index + 1;
10045 num_indices = 4;
10046
10047 for (i = 0; i < n; i += 1)
10048 {
10049 switch (exp->elts[*pos].opcode)
10050 {
10051 case OP_CHOICES:
10052 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10053 &num_indices, max_indices,
10054 low_index, high_index);
10055 break;
10056 case OP_POSITIONAL:
10057 aggregate_assign_positional (container, lhs, exp, pos, indices,
10058 &num_indices, max_indices,
10059 low_index, high_index);
10060 break;
10061 case OP_OTHERS:
10062 if (i != n-1)
10063 error (_("Misplaced 'others' clause"));
10064 aggregate_assign_others (container, lhs, exp, pos, indices,
10065 num_indices, low_index, high_index);
10066 break;
10067 default:
10068 error (_("Internal error: bad aggregate clause"));
10069 }
10070 }
10071
10072 return container;
10073 }
10074
10075 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10076 construct at *POS, updating *POS past the construct, given that
10077 the positions are relative to lower bound LOW, where HIGH is the
10078 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10079 updating *NUM_INDICES as needed. CONTAINER is as for
10080 assign_aggregate. */
10081 static void
10082 aggregate_assign_positional (struct value *container,
10083 struct value *lhs, struct expression *exp,
10084 int *pos, LONGEST *indices, int *num_indices,
10085 int max_indices, LONGEST low, LONGEST high)
10086 {
10087 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10088
10089 if (ind - 1 == high)
10090 warning (_("Extra components in aggregate ignored."));
10091 if (ind <= high)
10092 {
10093 add_component_interval (ind, ind, indices, num_indices, max_indices);
10094 *pos += 3;
10095 assign_component (container, lhs, ind, exp, pos);
10096 }
10097 else
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 }
10100
10101 /* Assign into the components of LHS indexed by the OP_CHOICES
10102 construct at *POS, updating *POS past the construct, given that
10103 the allowable indices are LOW..HIGH. Record the indices assigned
10104 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10105 needed. CONTAINER is as for assign_aggregate. */
10106 static void
10107 aggregate_assign_from_choices (struct value *container,
10108 struct value *lhs, struct expression *exp,
10109 int *pos, LONGEST *indices, int *num_indices,
10110 int max_indices, LONGEST low, LONGEST high)
10111 {
10112 int j;
10113 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10114 int choice_pos, expr_pc;
10115 int is_array = ada_is_direct_array_type (value_type (lhs));
10116
10117 choice_pos = *pos += 3;
10118
10119 for (j = 0; j < n_choices; j += 1)
10120 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10121 expr_pc = *pos;
10122 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10123
10124 for (j = 0; j < n_choices; j += 1)
10125 {
10126 LONGEST lower, upper;
10127 enum exp_opcode op = exp->elts[choice_pos].opcode;
10128
10129 if (op == OP_DISCRETE_RANGE)
10130 {
10131 choice_pos += 1;
10132 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10133 EVAL_NORMAL));
10134 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10135 EVAL_NORMAL));
10136 }
10137 else if (is_array)
10138 {
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10140 EVAL_NORMAL));
10141 upper = lower;
10142 }
10143 else
10144 {
10145 int ind;
10146 const char *name;
10147
10148 switch (op)
10149 {
10150 case OP_NAME:
10151 name = &exp->elts[choice_pos + 2].string;
10152 break;
10153 case OP_VAR_VALUE:
10154 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10155 break;
10156 default:
10157 error (_("Invalid record component association."));
10158 }
10159 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10160 ind = 0;
10161 if (! find_struct_field (name, value_type (lhs), 0,
10162 NULL, NULL, NULL, NULL, &ind))
10163 error (_("Unknown component name: %s."), name);
10164 lower = upper = ind;
10165 }
10166
10167 if (lower <= upper && (lower < low || upper > high))
10168 error (_("Index in component association out of bounds."));
10169
10170 add_component_interval (lower, upper, indices, num_indices,
10171 max_indices);
10172 while (lower <= upper)
10173 {
10174 int pos1;
10175
10176 pos1 = expr_pc;
10177 assign_component (container, lhs, lower, exp, &pos1);
10178 lower += 1;
10179 }
10180 }
10181 }
10182
10183 /* Assign the value of the expression in the OP_OTHERS construct in
10184 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10185 have not been previously assigned. The index intervals already assigned
10186 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10187 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10188 static void
10189 aggregate_assign_others (struct value *container,
10190 struct value *lhs, struct expression *exp,
10191 int *pos, LONGEST *indices, int num_indices,
10192 LONGEST low, LONGEST high)
10193 {
10194 int i;
10195 int expr_pc = *pos + 1;
10196
10197 for (i = 0; i < num_indices - 2; i += 2)
10198 {
10199 LONGEST ind;
10200
10201 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10202 {
10203 int localpos;
10204
10205 localpos = expr_pc;
10206 assign_component (container, lhs, ind, exp, &localpos);
10207 }
10208 }
10209 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10210 }
10211
10212 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10213 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10214 modifying *SIZE as needed. It is an error if *SIZE exceeds
10215 MAX_SIZE. The resulting intervals do not overlap. */
10216 static void
10217 add_component_interval (LONGEST low, LONGEST high,
10218 LONGEST* indices, int *size, int max_size)
10219 {
10220 int i, j;
10221
10222 for (i = 0; i < *size; i += 2) {
10223 if (high >= indices[i] && low <= indices[i + 1])
10224 {
10225 int kh;
10226
10227 for (kh = i + 2; kh < *size; kh += 2)
10228 if (high < indices[kh])
10229 break;
10230 if (low < indices[i])
10231 indices[i] = low;
10232 indices[i + 1] = indices[kh - 1];
10233 if (high > indices[i + 1])
10234 indices[i + 1] = high;
10235 memcpy (indices + i + 2, indices + kh, *size - kh);
10236 *size -= kh - i - 2;
10237 return;
10238 }
10239 else if (high < indices[i])
10240 break;
10241 }
10242
10243 if (*size == max_size)
10244 error (_("Internal error: miscounted aggregate components."));
10245 *size += 2;
10246 for (j = *size-1; j >= i+2; j -= 1)
10247 indices[j] = indices[j - 2];
10248 indices[i] = low;
10249 indices[i + 1] = high;
10250 }
10251
10252 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10253 is different. */
10254
10255 static struct value *
10256 ada_value_cast (struct type *type, struct value *arg2)
10257 {
10258 if (type == ada_check_typedef (value_type (arg2)))
10259 return arg2;
10260
10261 if (ada_is_fixed_point_type (type))
10262 return (cast_to_fixed (type, arg2));
10263
10264 if (ada_is_fixed_point_type (value_type (arg2)))
10265 return cast_from_fixed (type, arg2);
10266
10267 return value_cast (type, arg2);
10268 }
10269
10270 /* Evaluating Ada expressions, and printing their result.
10271 ------------------------------------------------------
10272
10273 1. Introduction:
10274 ----------------
10275
10276 We usually evaluate an Ada expression in order to print its value.
10277 We also evaluate an expression in order to print its type, which
10278 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10279 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10280 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10281 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10282 similar.
10283
10284 Evaluating expressions is a little more complicated for Ada entities
10285 than it is for entities in languages such as C. The main reason for
10286 this is that Ada provides types whose definition might be dynamic.
10287 One example of such types is variant records. Or another example
10288 would be an array whose bounds can only be known at run time.
10289
10290 The following description is a general guide as to what should be
10291 done (and what should NOT be done) in order to evaluate an expression
10292 involving such types, and when. This does not cover how the semantic
10293 information is encoded by GNAT as this is covered separatly. For the
10294 document used as the reference for the GNAT encoding, see exp_dbug.ads
10295 in the GNAT sources.
10296
10297 Ideally, we should embed each part of this description next to its
10298 associated code. Unfortunately, the amount of code is so vast right
10299 now that it's hard to see whether the code handling a particular
10300 situation might be duplicated or not. One day, when the code is
10301 cleaned up, this guide might become redundant with the comments
10302 inserted in the code, and we might want to remove it.
10303
10304 2. ``Fixing'' an Entity, the Simple Case:
10305 -----------------------------------------
10306
10307 When evaluating Ada expressions, the tricky issue is that they may
10308 reference entities whose type contents and size are not statically
10309 known. Consider for instance a variant record:
10310
10311 type Rec (Empty : Boolean := True) is record
10312 case Empty is
10313 when True => null;
10314 when False => Value : Integer;
10315 end case;
10316 end record;
10317 Yes : Rec := (Empty => False, Value => 1);
10318 No : Rec := (empty => True);
10319
10320 The size and contents of that record depends on the value of the
10321 descriminant (Rec.Empty). At this point, neither the debugging
10322 information nor the associated type structure in GDB are able to
10323 express such dynamic types. So what the debugger does is to create
10324 "fixed" versions of the type that applies to the specific object.
10325 We also informally refer to this opperation as "fixing" an object,
10326 which means creating its associated fixed type.
10327
10328 Example: when printing the value of variable "Yes" above, its fixed
10329 type would look like this:
10330
10331 type Rec is record
10332 Empty : Boolean;
10333 Value : Integer;
10334 end record;
10335
10336 On the other hand, if we printed the value of "No", its fixed type
10337 would become:
10338
10339 type Rec is record
10340 Empty : Boolean;
10341 end record;
10342
10343 Things become a little more complicated when trying to fix an entity
10344 with a dynamic type that directly contains another dynamic type,
10345 such as an array of variant records, for instance. There are
10346 two possible cases: Arrays, and records.
10347
10348 3. ``Fixing'' Arrays:
10349 ---------------------
10350
10351 The type structure in GDB describes an array in terms of its bounds,
10352 and the type of its elements. By design, all elements in the array
10353 have the same type and we cannot represent an array of variant elements
10354 using the current type structure in GDB. When fixing an array,
10355 we cannot fix the array element, as we would potentially need one
10356 fixed type per element of the array. As a result, the best we can do
10357 when fixing an array is to produce an array whose bounds and size
10358 are correct (allowing us to read it from memory), but without having
10359 touched its element type. Fixing each element will be done later,
10360 when (if) necessary.
10361
10362 Arrays are a little simpler to handle than records, because the same
10363 amount of memory is allocated for each element of the array, even if
10364 the amount of space actually used by each element differs from element
10365 to element. Consider for instance the following array of type Rec:
10366
10367 type Rec_Array is array (1 .. 2) of Rec;
10368
10369 The actual amount of memory occupied by each element might be different
10370 from element to element, depending on the value of their discriminant.
10371 But the amount of space reserved for each element in the array remains
10372 fixed regardless. So we simply need to compute that size using
10373 the debugging information available, from which we can then determine
10374 the array size (we multiply the number of elements of the array by
10375 the size of each element).
10376
10377 The simplest case is when we have an array of a constrained element
10378 type. For instance, consider the following type declarations:
10379
10380 type Bounded_String (Max_Size : Integer) is
10381 Length : Integer;
10382 Buffer : String (1 .. Max_Size);
10383 end record;
10384 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10385
10386 In this case, the compiler describes the array as an array of
10387 variable-size elements (identified by its XVS suffix) for which
10388 the size can be read in the parallel XVZ variable.
10389
10390 In the case of an array of an unconstrained element type, the compiler
10391 wraps the array element inside a private PAD type. This type should not
10392 be shown to the user, and must be "unwrap"'ed before printing. Note
10393 that we also use the adjective "aligner" in our code to designate
10394 these wrapper types.
10395
10396 In some cases, the size allocated for each element is statically
10397 known. In that case, the PAD type already has the correct size,
10398 and the array element should remain unfixed.
10399
10400 But there are cases when this size is not statically known.
10401 For instance, assuming that "Five" is an integer variable:
10402
10403 type Dynamic is array (1 .. Five) of Integer;
10404 type Wrapper (Has_Length : Boolean := False) is record
10405 Data : Dynamic;
10406 case Has_Length is
10407 when True => Length : Integer;
10408 when False => null;
10409 end case;
10410 end record;
10411 type Wrapper_Array is array (1 .. 2) of Wrapper;
10412
10413 Hello : Wrapper_Array := (others => (Has_Length => True,
10414 Data => (others => 17),
10415 Length => 1));
10416
10417
10418 The debugging info would describe variable Hello as being an
10419 array of a PAD type. The size of that PAD type is not statically
10420 known, but can be determined using a parallel XVZ variable.
10421 In that case, a copy of the PAD type with the correct size should
10422 be used for the fixed array.
10423
10424 3. ``Fixing'' record type objects:
10425 ----------------------------------
10426
10427 Things are slightly different from arrays in the case of dynamic
10428 record types. In this case, in order to compute the associated
10429 fixed type, we need to determine the size and offset of each of
10430 its components. This, in turn, requires us to compute the fixed
10431 type of each of these components.
10432
10433 Consider for instance the example:
10434
10435 type Bounded_String (Max_Size : Natural) is record
10436 Str : String (1 .. Max_Size);
10437 Length : Natural;
10438 end record;
10439 My_String : Bounded_String (Max_Size => 10);
10440
10441 In that case, the position of field "Length" depends on the size
10442 of field Str, which itself depends on the value of the Max_Size
10443 discriminant. In order to fix the type of variable My_String,
10444 we need to fix the type of field Str. Therefore, fixing a variant
10445 record requires us to fix each of its components.
10446
10447 However, if a component does not have a dynamic size, the component
10448 should not be fixed. In particular, fields that use a PAD type
10449 should not fixed. Here is an example where this might happen
10450 (assuming type Rec above):
10451
10452 type Container (Big : Boolean) is record
10453 First : Rec;
10454 After : Integer;
10455 case Big is
10456 when True => Another : Integer;
10457 when False => null;
10458 end case;
10459 end record;
10460 My_Container : Container := (Big => False,
10461 First => (Empty => True),
10462 After => 42);
10463
10464 In that example, the compiler creates a PAD type for component First,
10465 whose size is constant, and then positions the component After just
10466 right after it. The offset of component After is therefore constant
10467 in this case.
10468
10469 The debugger computes the position of each field based on an algorithm
10470 that uses, among other things, the actual position and size of the field
10471 preceding it. Let's now imagine that the user is trying to print
10472 the value of My_Container. If the type fixing was recursive, we would
10473 end up computing the offset of field After based on the size of the
10474 fixed version of field First. And since in our example First has
10475 only one actual field, the size of the fixed type is actually smaller
10476 than the amount of space allocated to that field, and thus we would
10477 compute the wrong offset of field After.
10478
10479 To make things more complicated, we need to watch out for dynamic
10480 components of variant records (identified by the ___XVL suffix in
10481 the component name). Even if the target type is a PAD type, the size
10482 of that type might not be statically known. So the PAD type needs
10483 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10484 we might end up with the wrong size for our component. This can be
10485 observed with the following type declarations:
10486
10487 type Octal is new Integer range 0 .. 7;
10488 type Octal_Array is array (Positive range <>) of Octal;
10489 pragma Pack (Octal_Array);
10490
10491 type Octal_Buffer (Size : Positive) is record
10492 Buffer : Octal_Array (1 .. Size);
10493 Length : Integer;
10494 end record;
10495
10496 In that case, Buffer is a PAD type whose size is unset and needs
10497 to be computed by fixing the unwrapped type.
10498
10499 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10500 ----------------------------------------------------------
10501
10502 Lastly, when should the sub-elements of an entity that remained unfixed
10503 thus far, be actually fixed?
10504
10505 The answer is: Only when referencing that element. For instance
10506 when selecting one component of a record, this specific component
10507 should be fixed at that point in time. Or when printing the value
10508 of a record, each component should be fixed before its value gets
10509 printed. Similarly for arrays, the element of the array should be
10510 fixed when printing each element of the array, or when extracting
10511 one element out of that array. On the other hand, fixing should
10512 not be performed on the elements when taking a slice of an array!
10513
10514 Note that one of the side effects of miscomputing the offset and
10515 size of each field is that we end up also miscomputing the size
10516 of the containing type. This can have adverse results when computing
10517 the value of an entity. GDB fetches the value of an entity based
10518 on the size of its type, and thus a wrong size causes GDB to fetch
10519 the wrong amount of memory. In the case where the computed size is
10520 too small, GDB fetches too little data to print the value of our
10521 entity. Results in this case are unpredictable, as we usually read
10522 past the buffer containing the data =:-o. */
10523
10524 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10525 for that subexpression cast to TO_TYPE. Advance *POS over the
10526 subexpression. */
10527
10528 static value *
10529 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10530 enum noside noside, struct type *to_type)
10531 {
10532 int pc = *pos;
10533
10534 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10535 || exp->elts[pc].opcode == OP_VAR_VALUE)
10536 {
10537 (*pos) += 4;
10538
10539 value *val;
10540 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10541 {
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 return value_zero (to_type, not_lval);
10544
10545 val = evaluate_var_msym_value (noside,
10546 exp->elts[pc + 1].objfile,
10547 exp->elts[pc + 2].msymbol);
10548 }
10549 else
10550 val = evaluate_var_value (noside,
10551 exp->elts[pc + 1].block,
10552 exp->elts[pc + 2].symbol);
10553
10554 if (noside == EVAL_SKIP)
10555 return eval_skip_value (exp);
10556
10557 val = ada_value_cast (to_type, val);
10558
10559 /* Follow the Ada language semantics that do not allow taking
10560 an address of the result of a cast (view conversion in Ada). */
10561 if (VALUE_LVAL (val) == lval_memory)
10562 {
10563 if (value_lazy (val))
10564 value_fetch_lazy (val);
10565 VALUE_LVAL (val) = not_lval;
10566 }
10567 return val;
10568 }
10569
10570 value *val = evaluate_subexp (to_type, exp, pos, noside);
10571 if (noside == EVAL_SKIP)
10572 return eval_skip_value (exp);
10573 return ada_value_cast (to_type, val);
10574 }
10575
10576 /* Implement the evaluate_exp routine in the exp_descriptor structure
10577 for the Ada language. */
10578
10579 static struct value *
10580 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10581 int *pos, enum noside noside)
10582 {
10583 enum exp_opcode op;
10584 int tem;
10585 int pc;
10586 int preeval_pos;
10587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10588 struct type *type;
10589 int nargs, oplen;
10590 struct value **argvec;
10591
10592 pc = *pos;
10593 *pos += 1;
10594 op = exp->elts[pc].opcode;
10595
10596 switch (op)
10597 {
10598 default:
10599 *pos -= 1;
10600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10601
10602 if (noside == EVAL_NORMAL)
10603 arg1 = unwrap_value (arg1);
10604
10605 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10606 then we need to perform the conversion manually, because
10607 evaluate_subexp_standard doesn't do it. This conversion is
10608 necessary in Ada because the different kinds of float/fixed
10609 types in Ada have different representations.
10610
10611 Similarly, we need to perform the conversion from OP_LONG
10612 ourselves. */
10613 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10614 arg1 = ada_value_cast (expect_type, arg1);
10615
10616 return arg1;
10617
10618 case OP_STRING:
10619 {
10620 struct value *result;
10621
10622 *pos -= 1;
10623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10624 /* The result type will have code OP_STRING, bashed there from
10625 OP_ARRAY. Bash it back. */
10626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10628 return result;
10629 }
10630
10631 case UNOP_CAST:
10632 (*pos) += 2;
10633 type = exp->elts[pc + 1].type;
10634 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10635
10636 case UNOP_QUAL:
10637 (*pos) += 2;
10638 type = exp->elts[pc + 1].type;
10639 return ada_evaluate_subexp (type, exp, pos, noside);
10640
10641 case BINOP_ASSIGN:
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10643 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10644 {
10645 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return arg1;
10648 return ada_value_assign (arg1, arg1);
10649 }
10650 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10651 except if the lhs of our assignment is a convenience variable.
10652 In the case of assigning to a convenience variable, the lhs
10653 should be exactly the result of the evaluation of the rhs. */
10654 type = value_type (arg1);
10655 if (VALUE_LVAL (arg1) == lval_internalvar)
10656 type = NULL;
10657 arg2 = evaluate_subexp (type, exp, pos, noside);
10658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10659 return arg1;
10660 if (ada_is_fixed_point_type (value_type (arg1)))
10661 arg2 = cast_to_fixed (value_type (arg1), arg2);
10662 else if (ada_is_fixed_point_type (value_type (arg2)))
10663 error
10664 (_("Fixed-point values must be assigned to fixed-point variables"));
10665 else
10666 arg2 = coerce_for_assign (value_type (arg1), arg2);
10667 return ada_value_assign (arg1, arg2);
10668
10669 case BINOP_ADD:
10670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10672 if (noside == EVAL_SKIP)
10673 goto nosideret;
10674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10675 return (value_from_longest
10676 (value_type (arg1),
10677 value_as_long (arg1) + value_as_long (arg2)));
10678 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10679 return (value_from_longest
10680 (value_type (arg2),
10681 value_as_long (arg1) + value_as_long (arg2)));
10682 if ((ada_is_fixed_point_type (value_type (arg1))
10683 || ada_is_fixed_point_type (value_type (arg2)))
10684 && value_type (arg1) != value_type (arg2))
10685 error (_("Operands of fixed-point addition must have the same type"));
10686 /* Do the addition, and cast the result to the type of the first
10687 argument. We cannot cast the result to a reference type, so if
10688 ARG1 is a reference type, find its underlying type. */
10689 type = value_type (arg1);
10690 while (TYPE_CODE (type) == TYPE_CODE_REF)
10691 type = TYPE_TARGET_TYPE (type);
10692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10694
10695 case BINOP_SUB:
10696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10698 if (noside == EVAL_SKIP)
10699 goto nosideret;
10700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10701 return (value_from_longest
10702 (value_type (arg1),
10703 value_as_long (arg1) - value_as_long (arg2)));
10704 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10705 return (value_from_longest
10706 (value_type (arg2),
10707 value_as_long (arg1) - value_as_long (arg2)));
10708 if ((ada_is_fixed_point_type (value_type (arg1))
10709 || ada_is_fixed_point_type (value_type (arg2)))
10710 && value_type (arg1) != value_type (arg2))
10711 error (_("Operands of fixed-point subtraction "
10712 "must have the same type"));
10713 /* Do the substraction, and cast the result to the type of the first
10714 argument. We cannot cast the result to a reference type, so if
10715 ARG1 is a reference type, find its underlying type. */
10716 type = value_type (arg1);
10717 while (TYPE_CODE (type) == TYPE_CODE_REF)
10718 type = TYPE_TARGET_TYPE (type);
10719 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10720 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10721
10722 case BINOP_MUL:
10723 case BINOP_DIV:
10724 case BINOP_REM:
10725 case BINOP_MOD:
10726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 if (noside == EVAL_SKIP)
10729 goto nosideret;
10730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 {
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 return value_zero (value_type (arg1), not_lval);
10734 }
10735 else
10736 {
10737 type = builtin_type (exp->gdbarch)->builtin_double;
10738 if (ada_is_fixed_point_type (value_type (arg1)))
10739 arg1 = cast_from_fixed (type, arg1);
10740 if (ada_is_fixed_point_type (value_type (arg2)))
10741 arg2 = cast_from_fixed (type, arg2);
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 return ada_value_binop (arg1, arg2, op);
10744 }
10745
10746 case BINOP_EQUAL:
10747 case BINOP_NOTEQUAL:
10748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10753 tem = 0;
10754 else
10755 {
10756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10757 tem = ada_value_equal (arg1, arg2);
10758 }
10759 if (op == BINOP_NOTEQUAL)
10760 tem = !tem;
10761 type = language_bool_type (exp->language_defn, exp->gdbarch);
10762 return value_from_longest (type, (LONGEST) tem);
10763
10764 case UNOP_NEG:
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 if (noside == EVAL_SKIP)
10767 goto nosideret;
10768 else if (ada_is_fixed_point_type (value_type (arg1)))
10769 return value_cast (value_type (arg1), value_neg (arg1));
10770 else
10771 {
10772 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10773 return value_neg (arg1);
10774 }
10775
10776 case BINOP_LOGICAL_AND:
10777 case BINOP_LOGICAL_OR:
10778 case UNOP_LOGICAL_NOT:
10779 {
10780 struct value *val;
10781
10782 *pos -= 1;
10783 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10784 type = language_bool_type (exp->language_defn, exp->gdbarch);
10785 return value_cast (type, val);
10786 }
10787
10788 case BINOP_BITWISE_AND:
10789 case BINOP_BITWISE_IOR:
10790 case BINOP_BITWISE_XOR:
10791 {
10792 struct value *val;
10793
10794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10795 *pos = pc;
10796 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10797
10798 return value_cast (value_type (arg1), val);
10799 }
10800
10801 case OP_VAR_VALUE:
10802 *pos -= 1;
10803
10804 if (noside == EVAL_SKIP)
10805 {
10806 *pos += 4;
10807 goto nosideret;
10808 }
10809
10810 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10811 /* Only encountered when an unresolved symbol occurs in a
10812 context other than a function call, in which case, it is
10813 invalid. */
10814 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10815 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10816
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 {
10819 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10820 /* Check to see if this is a tagged type. We also need to handle
10821 the case where the type is a reference to a tagged type, but
10822 we have to be careful to exclude pointers to tagged types.
10823 The latter should be shown as usual (as a pointer), whereas
10824 a reference should mostly be transparent to the user. */
10825 if (ada_is_tagged_type (type, 0)
10826 || (TYPE_CODE (type) == TYPE_CODE_REF
10827 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10828 {
10829 /* Tagged types are a little special in the fact that the real
10830 type is dynamic and can only be determined by inspecting the
10831 object's tag. This means that we need to get the object's
10832 value first (EVAL_NORMAL) and then extract the actual object
10833 type from its tag.
10834
10835 Note that we cannot skip the final step where we extract
10836 the object type from its tag, because the EVAL_NORMAL phase
10837 results in dynamic components being resolved into fixed ones.
10838 This can cause problems when trying to print the type
10839 description of tagged types whose parent has a dynamic size:
10840 We use the type name of the "_parent" component in order
10841 to print the name of the ancestor type in the type description.
10842 If that component had a dynamic size, the resolution into
10843 a fixed type would result in the loss of that type name,
10844 thus preventing us from printing the name of the ancestor
10845 type in the type description. */
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10847
10848 if (TYPE_CODE (type) != TYPE_CODE_REF)
10849 {
10850 struct type *actual_type;
10851
10852 actual_type = type_from_tag (ada_value_tag (arg1));
10853 if (actual_type == NULL)
10854 /* If, for some reason, we were unable to determine
10855 the actual type from the tag, then use the static
10856 approximation that we just computed as a fallback.
10857 This can happen if the debugging information is
10858 incomplete, for instance. */
10859 actual_type = type;
10860 return value_zero (actual_type, not_lval);
10861 }
10862 else
10863 {
10864 /* In the case of a ref, ada_coerce_ref takes care
10865 of determining the actual type. But the evaluation
10866 should return a ref as it should be valid to ask
10867 for its address; so rebuild a ref after coerce. */
10868 arg1 = ada_coerce_ref (arg1);
10869 return value_ref (arg1, TYPE_CODE_REF);
10870 }
10871 }
10872
10873 /* Records and unions for which GNAT encodings have been
10874 generated need to be statically fixed as well.
10875 Otherwise, non-static fixing produces a type where
10876 all dynamic properties are removed, which prevents "ptype"
10877 from being able to completely describe the type.
10878 For instance, a case statement in a variant record would be
10879 replaced by the relevant components based on the actual
10880 value of the discriminants. */
10881 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10882 && dynamic_template_type (type) != NULL)
10883 || (TYPE_CODE (type) == TYPE_CODE_UNION
10884 && ada_find_parallel_type (type, "___XVU") != NULL))
10885 {
10886 *pos += 4;
10887 return value_zero (to_static_fixed_type (type), not_lval);
10888 }
10889 }
10890
10891 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10892 return ada_to_fixed_value (arg1);
10893
10894 case OP_FUNCALL:
10895 (*pos) += 2;
10896
10897 /* Allocate arg vector, including space for the function to be
10898 called in argvec[0] and a terminating NULL. */
10899 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10900 argvec = XALLOCAVEC (struct value *, nargs + 2);
10901
10902 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10903 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10905 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10906 else
10907 {
10908 for (tem = 0; tem <= nargs; tem += 1)
10909 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 argvec[tem] = 0;
10911
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914 }
10915
10916 if (ada_is_constrained_packed_array_type
10917 (desc_base_type (value_type (argvec[0]))))
10918 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10919 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10920 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10921 /* This is a packed array that has already been fixed, and
10922 therefore already coerced to a simple array. Nothing further
10923 to do. */
10924 ;
10925 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10926 {
10927 /* Make sure we dereference references so that all the code below
10928 feels like it's really handling the referenced value. Wrapping
10929 types (for alignment) may be there, so make sure we strip them as
10930 well. */
10931 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10932 }
10933 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10934 && VALUE_LVAL (argvec[0]) == lval_memory)
10935 argvec[0] = value_addr (argvec[0]);
10936
10937 type = ada_check_typedef (value_type (argvec[0]));
10938
10939 /* Ada allows us to implicitly dereference arrays when subscripting
10940 them. So, if this is an array typedef (encoding use for array
10941 access types encoded as fat pointers), strip it now. */
10942 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10943 type = ada_typedef_target_type (type);
10944
10945 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10946 {
10947 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10948 {
10949 case TYPE_CODE_FUNC:
10950 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10951 break;
10952 case TYPE_CODE_ARRAY:
10953 break;
10954 case TYPE_CODE_STRUCT:
10955 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10956 argvec[0] = ada_value_ind (argvec[0]);
10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10958 break;
10959 default:
10960 error (_("cannot subscript or call something of type `%s'"),
10961 ada_type_name (value_type (argvec[0])));
10962 break;
10963 }
10964 }
10965
10966 switch (TYPE_CODE (type))
10967 {
10968 case TYPE_CODE_FUNC:
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 {
10971 if (TYPE_TARGET_TYPE (type) == NULL)
10972 error_call_unknown_return_type (NULL);
10973 return allocate_value (TYPE_TARGET_TYPE (type));
10974 }
10975 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10976 case TYPE_CODE_INTERNAL_FUNCTION:
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 /* We don't know anything about what the internal
10979 function might return, but we have to return
10980 something. */
10981 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10982 not_lval);
10983 else
10984 return call_internal_function (exp->gdbarch, exp->language_defn,
10985 argvec[0], nargs, argvec + 1);
10986
10987 case TYPE_CODE_STRUCT:
10988 {
10989 int arity;
10990
10991 arity = ada_array_arity (type);
10992 type = ada_array_element_type (type, nargs);
10993 if (type == NULL)
10994 error (_("cannot subscript or call a record"));
10995 if (arity != nargs)
10996 error (_("wrong number of subscripts; expecting %d"), arity);
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 return value_zero (ada_aligned_type (type), lval_memory);
10999 return
11000 unwrap_value (ada_value_subscript
11001 (argvec[0], nargs, argvec + 1));
11002 }
11003 case TYPE_CODE_ARRAY:
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 {
11006 type = ada_array_element_type (type, nargs);
11007 if (type == NULL)
11008 error (_("element type of array unknown"));
11009 else
11010 return value_zero (ada_aligned_type (type), lval_memory);
11011 }
11012 return
11013 unwrap_value (ada_value_subscript
11014 (ada_coerce_to_simple_array (argvec[0]),
11015 nargs, argvec + 1));
11016 case TYPE_CODE_PTR: /* Pointer to array */
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
11019 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
11022 error (_("element type of array unknown"));
11023 else
11024 return value_zero (ada_aligned_type (type), lval_memory);
11025 }
11026 return
11027 unwrap_value (ada_value_ptr_subscript (argvec[0],
11028 nargs, argvec + 1));
11029
11030 default:
11031 error (_("Attempt to index or call something other than an "
11032 "array or function"));
11033 }
11034
11035 case TERNOP_SLICE:
11036 {
11037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 struct value *low_bound_val =
11039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11040 struct value *high_bound_val =
11041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11042 LONGEST low_bound;
11043 LONGEST high_bound;
11044
11045 low_bound_val = coerce_ref (low_bound_val);
11046 high_bound_val = coerce_ref (high_bound_val);
11047 low_bound = value_as_long (low_bound_val);
11048 high_bound = value_as_long (high_bound_val);
11049
11050 if (noside == EVAL_SKIP)
11051 goto nosideret;
11052
11053 /* If this is a reference to an aligner type, then remove all
11054 the aligners. */
11055 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11056 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11057 TYPE_TARGET_TYPE (value_type (array)) =
11058 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11059
11060 if (ada_is_constrained_packed_array_type (value_type (array)))
11061 error (_("cannot slice a packed array"));
11062
11063 /* If this is a reference to an array or an array lvalue,
11064 convert to a pointer. */
11065 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11066 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11067 && VALUE_LVAL (array) == lval_memory))
11068 array = value_addr (array);
11069
11070 if (noside == EVAL_AVOID_SIDE_EFFECTS
11071 && ada_is_array_descriptor_type (ada_check_typedef
11072 (value_type (array))))
11073 return empty_array (ada_type_of_array (array, 0), low_bound);
11074
11075 array = ada_coerce_to_simple_array_ptr (array);
11076
11077 /* If we have more than one level of pointer indirection,
11078 dereference the value until we get only one level. */
11079 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11080 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11081 == TYPE_CODE_PTR))
11082 array = value_ind (array);
11083
11084 /* Make sure we really do have an array type before going further,
11085 to avoid a SEGV when trying to get the index type or the target
11086 type later down the road if the debug info generated by
11087 the compiler is incorrect or incomplete. */
11088 if (!ada_is_simple_array_type (value_type (array)))
11089 error (_("cannot take slice of non-array"));
11090
11091 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11092 == TYPE_CODE_PTR)
11093 {
11094 struct type *type0 = ada_check_typedef (value_type (array));
11095
11096 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11097 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11098 else
11099 {
11100 struct type *arr_type0 =
11101 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11102
11103 return ada_value_slice_from_ptr (array, arr_type0,
11104 longest_to_int (low_bound),
11105 longest_to_int (high_bound));
11106 }
11107 }
11108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11109 return array;
11110 else if (high_bound < low_bound)
11111 return empty_array (value_type (array), low_bound);
11112 else
11113 return ada_value_slice (array, longest_to_int (low_bound),
11114 longest_to_int (high_bound));
11115 }
11116
11117 case UNOP_IN_RANGE:
11118 (*pos) += 2;
11119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11120 type = check_typedef (exp->elts[pc + 1].type);
11121
11122 if (noside == EVAL_SKIP)
11123 goto nosideret;
11124
11125 switch (TYPE_CODE (type))
11126 {
11127 default:
11128 lim_warning (_("Membership test incompletely implemented; "
11129 "always returns true"));
11130 type = language_bool_type (exp->language_defn, exp->gdbarch);
11131 return value_from_longest (type, (LONGEST) 1);
11132
11133 case TYPE_CODE_RANGE:
11134 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11135 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return
11140 value_from_longest (type,
11141 (value_less (arg1, arg3)
11142 || value_equal (arg1, arg3))
11143 && (value_less (arg2, arg1)
11144 || value_equal (arg2, arg1)));
11145 }
11146
11147 case BINOP_IN_BOUNDS:
11148 (*pos) += 2;
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154
11155 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11156 {
11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
11158 return value_zero (type, not_lval);
11159 }
11160
11161 tem = longest_to_int (exp->elts[pc + 1].longconst);
11162
11163 type = ada_index_type (value_type (arg2), tem, "range");
11164 if (!type)
11165 type = value_type (arg1);
11166
11167 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11168 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11169
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11172 type = language_bool_type (exp->language_defn, exp->gdbarch);
11173 return
11174 value_from_longest (type,
11175 (value_less (arg1, arg3)
11176 || value_equal (arg1, arg3))
11177 && (value_less (arg2, arg1)
11178 || value_equal (arg2, arg1)));
11179
11180 case TERNOP_IN_RANGE:
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11190 type = language_bool_type (exp->language_defn, exp->gdbarch);
11191 return
11192 value_from_longest (type,
11193 (value_less (arg1, arg3)
11194 || value_equal (arg1, arg3))
11195 && (value_less (arg2, arg1)
11196 || value_equal (arg2, arg1)));
11197
11198 case OP_ATR_FIRST:
11199 case OP_ATR_LAST:
11200 case OP_ATR_LENGTH:
11201 {
11202 struct type *type_arg;
11203
11204 if (exp->elts[*pos].opcode == OP_TYPE)
11205 {
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = NULL;
11208 type_arg = check_typedef (exp->elts[pc + 2].type);
11209 }
11210 else
11211 {
11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 type_arg = NULL;
11214 }
11215
11216 if (exp->elts[*pos].opcode != OP_LONG)
11217 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11218 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11219 *pos += 4;
11220
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223
11224 if (type_arg == NULL)
11225 {
11226 arg1 = ada_coerce_ref (arg1);
11227
11228 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11229 arg1 = ada_coerce_to_simple_array (arg1);
11230
11231 if (op == OP_ATR_LENGTH)
11232 type = builtin_type (exp->gdbarch)->builtin_int;
11233 else
11234 {
11235 type = ada_index_type (value_type (arg1), tem,
11236 ada_attribute_name (op));
11237 if (type == NULL)
11238 type = builtin_type (exp->gdbarch)->builtin_int;
11239 }
11240
11241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11242 return allocate_value (type);
11243
11244 switch (op)
11245 {
11246 default: /* Should never happen. */
11247 error (_("unexpected attribute encountered"));
11248 case OP_ATR_FIRST:
11249 return value_from_longest
11250 (type, ada_array_bound (arg1, tem, 0));
11251 case OP_ATR_LAST:
11252 return value_from_longest
11253 (type, ada_array_bound (arg1, tem, 1));
11254 case OP_ATR_LENGTH:
11255 return value_from_longest
11256 (type, ada_array_length (arg1, tem));
11257 }
11258 }
11259 else if (discrete_type_p (type_arg))
11260 {
11261 struct type *range_type;
11262 const char *name = ada_type_name (type_arg);
11263
11264 range_type = NULL;
11265 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11266 range_type = to_fixed_range_type (type_arg, NULL);
11267 if (range_type == NULL)
11268 range_type = type_arg;
11269 switch (op)
11270 {
11271 default:
11272 error (_("unexpected attribute encountered"));
11273 case OP_ATR_FIRST:
11274 return value_from_longest
11275 (range_type, ada_discrete_type_low_bound (range_type));
11276 case OP_ATR_LAST:
11277 return value_from_longest
11278 (range_type, ada_discrete_type_high_bound (range_type));
11279 case OP_ATR_LENGTH:
11280 error (_("the 'length attribute applies only to array types"));
11281 }
11282 }
11283 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11284 error (_("unimplemented type attribute"));
11285 else
11286 {
11287 LONGEST low, high;
11288
11289 if (ada_is_constrained_packed_array_type (type_arg))
11290 type_arg = decode_constrained_packed_array_type (type_arg);
11291
11292 if (op == OP_ATR_LENGTH)
11293 type = builtin_type (exp->gdbarch)->builtin_int;
11294 else
11295 {
11296 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11297 if (type == NULL)
11298 type = builtin_type (exp->gdbarch)->builtin_int;
11299 }
11300
11301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11302 return allocate_value (type);
11303
11304 switch (op)
11305 {
11306 default:
11307 error (_("unexpected attribute encountered"));
11308 case OP_ATR_FIRST:
11309 low = ada_array_bound_from_type (type_arg, tem, 0);
11310 return value_from_longest (type, low);
11311 case OP_ATR_LAST:
11312 high = ada_array_bound_from_type (type_arg, tem, 1);
11313 return value_from_longest (type, high);
11314 case OP_ATR_LENGTH:
11315 low = ada_array_bound_from_type (type_arg, tem, 0);
11316 high = ada_array_bound_from_type (type_arg, tem, 1);
11317 return value_from_longest (type, high - low + 1);
11318 }
11319 }
11320 }
11321
11322 case OP_ATR_TAG:
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
11325 goto nosideret;
11326
11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11328 return value_zero (ada_tag_type (arg1), not_lval);
11329
11330 return ada_value_tag (arg1);
11331
11332 case OP_ATR_MIN:
11333 case OP_ATR_MAX:
11334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
11338 goto nosideret;
11339 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11340 return value_zero (value_type (arg1), not_lval);
11341 else
11342 {
11343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11344 return value_binop (arg1, arg2,
11345 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11346 }
11347
11348 case OP_ATR_MODULUS:
11349 {
11350 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11351
11352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11353 if (noside == EVAL_SKIP)
11354 goto nosideret;
11355
11356 if (!ada_is_modular_type (type_arg))
11357 error (_("'modulus must be applied to modular type"));
11358
11359 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11360 ada_modulus (type_arg));
11361 }
11362
11363
11364 case OP_ATR_POS:
11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 type = builtin_type (exp->gdbarch)->builtin_int;
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 return value_zero (type, not_lval);
11372 else
11373 return value_pos_atr (type, arg1);
11374
11375 case OP_ATR_SIZE:
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 type = value_type (arg1);
11378
11379 /* If the argument is a reference, then dereference its type, since
11380 the user is really asking for the size of the actual object,
11381 not the size of the pointer. */
11382 if (TYPE_CODE (type) == TYPE_CODE_REF)
11383 type = TYPE_TARGET_TYPE (type);
11384
11385 if (noside == EVAL_SKIP)
11386 goto nosideret;
11387 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11388 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11389 else
11390 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11391 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11392
11393 case OP_ATR_VAL:
11394 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11396 type = exp->elts[pc + 2].type;
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11400 return value_zero (type, not_lval);
11401 else
11402 return value_val_atr (type, arg1);
11403
11404 case BINOP_EXP:
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410 return value_zero (value_type (arg1), not_lval);
11411 else
11412 {
11413 /* For integer exponentiation operations,
11414 only promote the first argument. */
11415 if (is_integral_type (value_type (arg2)))
11416 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11417 else
11418 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11419
11420 return value_binop (arg1, arg2, op);
11421 }
11422
11423 case UNOP_PLUS:
11424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11425 if (noside == EVAL_SKIP)
11426 goto nosideret;
11427 else
11428 return arg1;
11429
11430 case UNOP_ABS:
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
11434 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11435 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11436 return value_neg (arg1);
11437 else
11438 return arg1;
11439
11440 case UNOP_IND:
11441 preeval_pos = *pos;
11442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11444 goto nosideret;
11445 type = ada_check_typedef (value_type (arg1));
11446 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11447 {
11448 if (ada_is_array_descriptor_type (type))
11449 /* GDB allows dereferencing GNAT array descriptors. */
11450 {
11451 struct type *arrType = ada_type_of_array (arg1, 0);
11452
11453 if (arrType == NULL)
11454 error (_("Attempt to dereference null array pointer."));
11455 return value_at_lazy (arrType, 0);
11456 }
11457 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11458 || TYPE_CODE (type) == TYPE_CODE_REF
11459 /* In C you can dereference an array to get the 1st elt. */
11460 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11461 {
11462 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11463 only be determined by inspecting the object's tag.
11464 This means that we need to evaluate completely the
11465 expression in order to get its type. */
11466
11467 if ((TYPE_CODE (type) == TYPE_CODE_REF
11468 || TYPE_CODE (type) == TYPE_CODE_PTR)
11469 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11470 {
11471 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11472 EVAL_NORMAL);
11473 type = value_type (ada_value_ind (arg1));
11474 }
11475 else
11476 {
11477 type = to_static_fixed_type
11478 (ada_aligned_type
11479 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11480 }
11481 ada_ensure_varsize_limit (type);
11482 return value_zero (type, lval_memory);
11483 }
11484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11485 {
11486 /* GDB allows dereferencing an int. */
11487 if (expect_type == NULL)
11488 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11489 lval_memory);
11490 else
11491 {
11492 expect_type =
11493 to_static_fixed_type (ada_aligned_type (expect_type));
11494 return value_zero (expect_type, lval_memory);
11495 }
11496 }
11497 else
11498 error (_("Attempt to take contents of a non-pointer value."));
11499 }
11500 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11501 type = ada_check_typedef (value_type (arg1));
11502
11503 if (TYPE_CODE (type) == TYPE_CODE_INT)
11504 /* GDB allows dereferencing an int. If we were given
11505 the expect_type, then use that as the target type.
11506 Otherwise, assume that the target type is an int. */
11507 {
11508 if (expect_type != NULL)
11509 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11510 arg1));
11511 else
11512 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11513 (CORE_ADDR) value_as_address (arg1));
11514 }
11515
11516 if (ada_is_array_descriptor_type (type))
11517 /* GDB allows dereferencing GNAT array descriptors. */
11518 return ada_coerce_to_simple_array (arg1);
11519 else
11520 return ada_value_ind (arg1);
11521
11522 case STRUCTOP_STRUCT:
11523 tem = longest_to_int (exp->elts[pc + 1].longconst);
11524 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11525 preeval_pos = *pos;
11526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11527 if (noside == EVAL_SKIP)
11528 goto nosideret;
11529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11530 {
11531 struct type *type1 = value_type (arg1);
11532
11533 if (ada_is_tagged_type (type1, 1))
11534 {
11535 type = ada_lookup_struct_elt_type (type1,
11536 &exp->elts[pc + 2].string,
11537 1, 1);
11538
11539 /* If the field is not found, check if it exists in the
11540 extension of this object's type. This means that we
11541 need to evaluate completely the expression. */
11542
11543 if (type == NULL)
11544 {
11545 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11546 EVAL_NORMAL);
11547 arg1 = ada_value_struct_elt (arg1,
11548 &exp->elts[pc + 2].string,
11549 0);
11550 arg1 = unwrap_value (arg1);
11551 type = value_type (ada_to_fixed_value (arg1));
11552 }
11553 }
11554 else
11555 type =
11556 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11557 0);
11558
11559 return value_zero (ada_aligned_type (type), lval_memory);
11560 }
11561 else
11562 {
11563 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11564 arg1 = unwrap_value (arg1);
11565 return ada_to_fixed_value (arg1);
11566 }
11567
11568 case OP_TYPE:
11569 /* The value is not supposed to be used. This is here to make it
11570 easier to accommodate expressions that contain types. */
11571 (*pos) += 2;
11572 if (noside == EVAL_SKIP)
11573 goto nosideret;
11574 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11575 return allocate_value (exp->elts[pc + 1].type);
11576 else
11577 error (_("Attempt to use a type name as an expression"));
11578
11579 case OP_AGGREGATE:
11580 case OP_CHOICES:
11581 case OP_OTHERS:
11582 case OP_DISCRETE_RANGE:
11583 case OP_POSITIONAL:
11584 case OP_NAME:
11585 if (noside == EVAL_NORMAL)
11586 switch (op)
11587 {
11588 case OP_NAME:
11589 error (_("Undefined name, ambiguous name, or renaming used in "
11590 "component association: %s."), &exp->elts[pc+2].string);
11591 case OP_AGGREGATE:
11592 error (_("Aggregates only allowed on the right of an assignment"));
11593 default:
11594 internal_error (__FILE__, __LINE__,
11595 _("aggregate apparently mangled"));
11596 }
11597
11598 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11599 *pos += oplen - 1;
11600 for (tem = 0; tem < nargs; tem += 1)
11601 ada_evaluate_subexp (NULL, exp, pos, noside);
11602 goto nosideret;
11603 }
11604
11605 nosideret:
11606 return eval_skip_value (exp);
11607 }
11608 \f
11609
11610 /* Fixed point */
11611
11612 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11613 type name that encodes the 'small and 'delta information.
11614 Otherwise, return NULL. */
11615
11616 static const char *
11617 fixed_type_info (struct type *type)
11618 {
11619 const char *name = ada_type_name (type);
11620 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11621
11622 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11623 {
11624 const char *tail = strstr (name, "___XF_");
11625
11626 if (tail == NULL)
11627 return NULL;
11628 else
11629 return tail + 5;
11630 }
11631 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11632 return fixed_type_info (TYPE_TARGET_TYPE (type));
11633 else
11634 return NULL;
11635 }
11636
11637 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11638
11639 int
11640 ada_is_fixed_point_type (struct type *type)
11641 {
11642 return fixed_type_info (type) != NULL;
11643 }
11644
11645 /* Return non-zero iff TYPE represents a System.Address type. */
11646
11647 int
11648 ada_is_system_address_type (struct type *type)
11649 {
11650 return (TYPE_NAME (type)
11651 && strcmp (TYPE_NAME (type), "system__address") == 0);
11652 }
11653
11654 /* Assuming that TYPE is the representation of an Ada fixed-point
11655 type, return the target floating-point type to be used to represent
11656 of this type during internal computation. */
11657
11658 static struct type *
11659 ada_scaling_type (struct type *type)
11660 {
11661 return builtin_type (get_type_arch (type))->builtin_long_double;
11662 }
11663
11664 /* Assuming that TYPE is the representation of an Ada fixed-point
11665 type, return its delta, or NULL if the type is malformed and the
11666 delta cannot be determined. */
11667
11668 struct value *
11669 ada_delta (struct type *type)
11670 {
11671 const char *encoding = fixed_type_info (type);
11672 struct type *scale_type = ada_scaling_type (type);
11673
11674 long long num, den;
11675
11676 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11677 return nullptr;
11678 else
11679 return value_binop (value_from_longest (scale_type, num),
11680 value_from_longest (scale_type, den), BINOP_DIV);
11681 }
11682
11683 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11684 factor ('SMALL value) associated with the type. */
11685
11686 struct value *
11687 ada_scaling_factor (struct type *type)
11688 {
11689 const char *encoding = fixed_type_info (type);
11690 struct type *scale_type = ada_scaling_type (type);
11691
11692 long long num0, den0, num1, den1;
11693 int n;
11694
11695 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11696 &num0, &den0, &num1, &den1);
11697
11698 if (n < 2)
11699 return value_from_longest (scale_type, 1);
11700 else if (n == 4)
11701 return value_binop (value_from_longest (scale_type, num1),
11702 value_from_longest (scale_type, den1), BINOP_DIV);
11703 else
11704 return value_binop (value_from_longest (scale_type, num0),
11705 value_from_longest (scale_type, den0), BINOP_DIV);
11706 }
11707
11708 \f
11709
11710 /* Range types */
11711
11712 /* Scan STR beginning at position K for a discriminant name, and
11713 return the value of that discriminant field of DVAL in *PX. If
11714 PNEW_K is not null, put the position of the character beyond the
11715 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11716 not alter *PX and *PNEW_K if unsuccessful. */
11717
11718 static int
11719 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11720 int *pnew_k)
11721 {
11722 static char *bound_buffer = NULL;
11723 static size_t bound_buffer_len = 0;
11724 const char *pstart, *pend, *bound;
11725 struct value *bound_val;
11726
11727 if (dval == NULL || str == NULL || str[k] == '\0')
11728 return 0;
11729
11730 pstart = str + k;
11731 pend = strstr (pstart, "__");
11732 if (pend == NULL)
11733 {
11734 bound = pstart;
11735 k += strlen (bound);
11736 }
11737 else
11738 {
11739 int len = pend - pstart;
11740
11741 /* Strip __ and beyond. */
11742 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11743 strncpy (bound_buffer, pstart, len);
11744 bound_buffer[len] = '\0';
11745
11746 bound = bound_buffer;
11747 k = pend - str;
11748 }
11749
11750 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11751 if (bound_val == NULL)
11752 return 0;
11753
11754 *px = value_as_long (bound_val);
11755 if (pnew_k != NULL)
11756 *pnew_k = k;
11757 return 1;
11758 }
11759
11760 /* Value of variable named NAME in the current environment. If
11761 no such variable found, then if ERR_MSG is null, returns 0, and
11762 otherwise causes an error with message ERR_MSG. */
11763
11764 static struct value *
11765 get_var_value (const char *name, const char *err_msg)
11766 {
11767 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11768
11769 struct block_symbol *syms;
11770 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11771 get_selected_block (0),
11772 VAR_DOMAIN, &syms, 1);
11773 struct cleanup *old_chain = make_cleanup (xfree, syms);
11774
11775 if (nsyms != 1)
11776 {
11777 do_cleanups (old_chain);
11778 if (err_msg == NULL)
11779 return 0;
11780 else
11781 error (("%s"), err_msg);
11782 }
11783
11784 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11785 do_cleanups (old_chain);
11786 return result;
11787 }
11788
11789 /* Value of integer variable named NAME in the current environment.
11790 If no such variable is found, returns false. Otherwise, sets VALUE
11791 to the variable's value and returns true. */
11792
11793 bool
11794 get_int_var_value (const char *name, LONGEST &value)
11795 {
11796 struct value *var_val = get_var_value (name, 0);
11797
11798 if (var_val == 0)
11799 return false;
11800
11801 value = value_as_long (var_val);
11802 return true;
11803 }
11804
11805
11806 /* Return a range type whose base type is that of the range type named
11807 NAME in the current environment, and whose bounds are calculated
11808 from NAME according to the GNAT range encoding conventions.
11809 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11810 corresponding range type from debug information; fall back to using it
11811 if symbol lookup fails. If a new type must be created, allocate it
11812 like ORIG_TYPE was. The bounds information, in general, is encoded
11813 in NAME, the base type given in the named range type. */
11814
11815 static struct type *
11816 to_fixed_range_type (struct type *raw_type, struct value *dval)
11817 {
11818 const char *name;
11819 struct type *base_type;
11820 const char *subtype_info;
11821
11822 gdb_assert (raw_type != NULL);
11823 gdb_assert (TYPE_NAME (raw_type) != NULL);
11824
11825 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11826 base_type = TYPE_TARGET_TYPE (raw_type);
11827 else
11828 base_type = raw_type;
11829
11830 name = TYPE_NAME (raw_type);
11831 subtype_info = strstr (name, "___XD");
11832 if (subtype_info == NULL)
11833 {
11834 LONGEST L = ada_discrete_type_low_bound (raw_type);
11835 LONGEST U = ada_discrete_type_high_bound (raw_type);
11836
11837 if (L < INT_MIN || U > INT_MAX)
11838 return raw_type;
11839 else
11840 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11841 L, U);
11842 }
11843 else
11844 {
11845 static char *name_buf = NULL;
11846 static size_t name_len = 0;
11847 int prefix_len = subtype_info - name;
11848 LONGEST L, U;
11849 struct type *type;
11850 const char *bounds_str;
11851 int n;
11852
11853 GROW_VECT (name_buf, name_len, prefix_len + 5);
11854 strncpy (name_buf, name, prefix_len);
11855 name_buf[prefix_len] = '\0';
11856
11857 subtype_info += 5;
11858 bounds_str = strchr (subtype_info, '_');
11859 n = 1;
11860
11861 if (*subtype_info == 'L')
11862 {
11863 if (!ada_scan_number (bounds_str, n, &L, &n)
11864 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11865 return raw_type;
11866 if (bounds_str[n] == '_')
11867 n += 2;
11868 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11869 n += 1;
11870 subtype_info += 1;
11871 }
11872 else
11873 {
11874 strcpy (name_buf + prefix_len, "___L");
11875 if (!get_int_var_value (name_buf, L))
11876 {
11877 lim_warning (_("Unknown lower bound, using 1."));
11878 L = 1;
11879 }
11880 }
11881
11882 if (*subtype_info == 'U')
11883 {
11884 if (!ada_scan_number (bounds_str, n, &U, &n)
11885 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11886 return raw_type;
11887 }
11888 else
11889 {
11890 strcpy (name_buf + prefix_len, "___U");
11891 if (!get_int_var_value (name_buf, U))
11892 {
11893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11894 U = L;
11895 }
11896 }
11897
11898 type = create_static_range_type (alloc_type_copy (raw_type),
11899 base_type, L, U);
11900 /* create_static_range_type alters the resulting type's length
11901 to match the size of the base_type, which is not what we want.
11902 Set it back to the original range type's length. */
11903 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11904 TYPE_NAME (type) = name;
11905 return type;
11906 }
11907 }
11908
11909 /* True iff NAME is the name of a range type. */
11910
11911 int
11912 ada_is_range_type_name (const char *name)
11913 {
11914 return (name != NULL && strstr (name, "___XD"));
11915 }
11916 \f
11917
11918 /* Modular types */
11919
11920 /* True iff TYPE is an Ada modular type. */
11921
11922 int
11923 ada_is_modular_type (struct type *type)
11924 {
11925 struct type *subranged_type = get_base_type (type);
11926
11927 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11928 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11929 && TYPE_UNSIGNED (subranged_type));
11930 }
11931
11932 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11933
11934 ULONGEST
11935 ada_modulus (struct type *type)
11936 {
11937 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11938 }
11939 \f
11940
11941 /* Ada exception catchpoint support:
11942 ---------------------------------
11943
11944 We support 3 kinds of exception catchpoints:
11945 . catchpoints on Ada exceptions
11946 . catchpoints on unhandled Ada exceptions
11947 . catchpoints on failed assertions
11948
11949 Exceptions raised during failed assertions, or unhandled exceptions
11950 could perfectly be caught with the general catchpoint on Ada exceptions.
11951 However, we can easily differentiate these two special cases, and having
11952 the option to distinguish these two cases from the rest can be useful
11953 to zero-in on certain situations.
11954
11955 Exception catchpoints are a specialized form of breakpoint,
11956 since they rely on inserting breakpoints inside known routines
11957 of the GNAT runtime. The implementation therefore uses a standard
11958 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11959 of breakpoint_ops.
11960
11961 Support in the runtime for exception catchpoints have been changed
11962 a few times already, and these changes affect the implementation
11963 of these catchpoints. In order to be able to support several
11964 variants of the runtime, we use a sniffer that will determine
11965 the runtime variant used by the program being debugged. */
11966
11967 /* Ada's standard exceptions.
11968
11969 The Ada 83 standard also defined Numeric_Error. But there so many
11970 situations where it was unclear from the Ada 83 Reference Manual
11971 (RM) whether Constraint_Error or Numeric_Error should be raised,
11972 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11973 Interpretation saying that anytime the RM says that Numeric_Error
11974 should be raised, the implementation may raise Constraint_Error.
11975 Ada 95 went one step further and pretty much removed Numeric_Error
11976 from the list of standard exceptions (it made it a renaming of
11977 Constraint_Error, to help preserve compatibility when compiling
11978 an Ada83 compiler). As such, we do not include Numeric_Error from
11979 this list of standard exceptions. */
11980
11981 static const char *standard_exc[] = {
11982 "constraint_error",
11983 "program_error",
11984 "storage_error",
11985 "tasking_error"
11986 };
11987
11988 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11989
11990 /* A structure that describes how to support exception catchpoints
11991 for a given executable. */
11992
11993 struct exception_support_info
11994 {
11995 /* The name of the symbol to break on in order to insert
11996 a catchpoint on exceptions. */
11997 const char *catch_exception_sym;
11998
11999 /* The name of the symbol to break on in order to insert
12000 a catchpoint on unhandled exceptions. */
12001 const char *catch_exception_unhandled_sym;
12002
12003 /* The name of the symbol to break on in order to insert
12004 a catchpoint on failed assertions. */
12005 const char *catch_assert_sym;
12006
12007 /* The name of the symbol to break on in order to insert
12008 a catchpoint on exception handling. */
12009 const char *catch_handlers_sym;
12010
12011 /* Assuming that the inferior just triggered an unhandled exception
12012 catchpoint, this function is responsible for returning the address
12013 in inferior memory where the name of that exception is stored.
12014 Return zero if the address could not be computed. */
12015 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12016 };
12017
12018 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12019 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12020
12021 /* The following exception support info structure describes how to
12022 implement exception catchpoints with the latest version of the
12023 Ada runtime (as of 2007-03-06). */
12024
12025 static const struct exception_support_info default_exception_support_info =
12026 {
12027 "__gnat_debug_raise_exception", /* catch_exception_sym */
12028 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12029 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12030 "__gnat_begin_handler", /* catch_handlers_sym */
12031 ada_unhandled_exception_name_addr
12032 };
12033
12034 /* The following exception support info structure describes how to
12035 implement exception catchpoints with a slightly older version
12036 of the Ada runtime. */
12037
12038 static const struct exception_support_info exception_support_info_fallback =
12039 {
12040 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12041 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12042 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12043 "__gnat_begin_handler", /* catch_handlers_sym */
12044 ada_unhandled_exception_name_addr_from_raise
12045 };
12046
12047 /* Return nonzero if we can detect the exception support routines
12048 described in EINFO.
12049
12050 This function errors out if an abnormal situation is detected
12051 (for instance, if we find the exception support routines, but
12052 that support is found to be incomplete). */
12053
12054 static int
12055 ada_has_this_exception_support (const struct exception_support_info *einfo)
12056 {
12057 struct symbol *sym;
12058
12059 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12060 that should be compiled with debugging information. As a result, we
12061 expect to find that symbol in the symtabs. */
12062
12063 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12064 if (sym == NULL)
12065 {
12066 /* Perhaps we did not find our symbol because the Ada runtime was
12067 compiled without debugging info, or simply stripped of it.
12068 It happens on some GNU/Linux distributions for instance, where
12069 users have to install a separate debug package in order to get
12070 the runtime's debugging info. In that situation, let the user
12071 know why we cannot insert an Ada exception catchpoint.
12072
12073 Note: Just for the purpose of inserting our Ada exception
12074 catchpoint, we could rely purely on the associated minimal symbol.
12075 But we would be operating in degraded mode anyway, since we are
12076 still lacking the debugging info needed later on to extract
12077 the name of the exception being raised (this name is printed in
12078 the catchpoint message, and is also used when trying to catch
12079 a specific exception). We do not handle this case for now. */
12080 struct bound_minimal_symbol msym
12081 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12082
12083 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12084 error (_("Your Ada runtime appears to be missing some debugging "
12085 "information.\nCannot insert Ada exception catchpoint "
12086 "in this configuration."));
12087
12088 return 0;
12089 }
12090
12091 /* Make sure that the symbol we found corresponds to a function. */
12092
12093 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12094 error (_("Symbol \"%s\" is not a function (class = %d)"),
12095 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12096
12097 return 1;
12098 }
12099
12100 /* Inspect the Ada runtime and determine which exception info structure
12101 should be used to provide support for exception catchpoints.
12102
12103 This function will always set the per-inferior exception_info,
12104 or raise an error. */
12105
12106 static void
12107 ada_exception_support_info_sniffer (void)
12108 {
12109 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12110
12111 /* If the exception info is already known, then no need to recompute it. */
12112 if (data->exception_info != NULL)
12113 return;
12114
12115 /* Check the latest (default) exception support info. */
12116 if (ada_has_this_exception_support (&default_exception_support_info))
12117 {
12118 data->exception_info = &default_exception_support_info;
12119 return;
12120 }
12121
12122 /* Try our fallback exception suport info. */
12123 if (ada_has_this_exception_support (&exception_support_info_fallback))
12124 {
12125 data->exception_info = &exception_support_info_fallback;
12126 return;
12127 }
12128
12129 /* Sometimes, it is normal for us to not be able to find the routine
12130 we are looking for. This happens when the program is linked with
12131 the shared version of the GNAT runtime, and the program has not been
12132 started yet. Inform the user of these two possible causes if
12133 applicable. */
12134
12135 if (ada_update_initial_language (language_unknown) != language_ada)
12136 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12137
12138 /* If the symbol does not exist, then check that the program is
12139 already started, to make sure that shared libraries have been
12140 loaded. If it is not started, this may mean that the symbol is
12141 in a shared library. */
12142
12143 if (ptid_get_pid (inferior_ptid) == 0)
12144 error (_("Unable to insert catchpoint. Try to start the program first."));
12145
12146 /* At this point, we know that we are debugging an Ada program and
12147 that the inferior has been started, but we still are not able to
12148 find the run-time symbols. That can mean that we are in
12149 configurable run time mode, or that a-except as been optimized
12150 out by the linker... In any case, at this point it is not worth
12151 supporting this feature. */
12152
12153 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12154 }
12155
12156 /* True iff FRAME is very likely to be that of a function that is
12157 part of the runtime system. This is all very heuristic, but is
12158 intended to be used as advice as to what frames are uninteresting
12159 to most users. */
12160
12161 static int
12162 is_known_support_routine (struct frame_info *frame)
12163 {
12164 enum language func_lang;
12165 int i;
12166 const char *fullname;
12167
12168 /* If this code does not have any debugging information (no symtab),
12169 This cannot be any user code. */
12170
12171 symtab_and_line sal = find_frame_sal (frame);
12172 if (sal.symtab == NULL)
12173 return 1;
12174
12175 /* If there is a symtab, but the associated source file cannot be
12176 located, then assume this is not user code: Selecting a frame
12177 for which we cannot display the code would not be very helpful
12178 for the user. This should also take care of case such as VxWorks
12179 where the kernel has some debugging info provided for a few units. */
12180
12181 fullname = symtab_to_fullname (sal.symtab);
12182 if (access (fullname, R_OK) != 0)
12183 return 1;
12184
12185 /* Check the unit filename againt the Ada runtime file naming.
12186 We also check the name of the objfile against the name of some
12187 known system libraries that sometimes come with debugging info
12188 too. */
12189
12190 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12191 {
12192 re_comp (known_runtime_file_name_patterns[i]);
12193 if (re_exec (lbasename (sal.symtab->filename)))
12194 return 1;
12195 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12196 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12197 return 1;
12198 }
12199
12200 /* Check whether the function is a GNAT-generated entity. */
12201
12202 gdb::unique_xmalloc_ptr<char> func_name
12203 = find_frame_funname (frame, &func_lang, NULL);
12204 if (func_name == NULL)
12205 return 1;
12206
12207 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12208 {
12209 re_comp (known_auxiliary_function_name_patterns[i]);
12210 if (re_exec (func_name.get ()))
12211 return 1;
12212 }
12213
12214 return 0;
12215 }
12216
12217 /* Find the first frame that contains debugging information and that is not
12218 part of the Ada run-time, starting from FI and moving upward. */
12219
12220 void
12221 ada_find_printable_frame (struct frame_info *fi)
12222 {
12223 for (; fi != NULL; fi = get_prev_frame (fi))
12224 {
12225 if (!is_known_support_routine (fi))
12226 {
12227 select_frame (fi);
12228 break;
12229 }
12230 }
12231
12232 }
12233
12234 /* Assuming that the inferior just triggered an unhandled exception
12235 catchpoint, return the address in inferior memory where the name
12236 of the exception is stored.
12237
12238 Return zero if the address could not be computed. */
12239
12240 static CORE_ADDR
12241 ada_unhandled_exception_name_addr (void)
12242 {
12243 return parse_and_eval_address ("e.full_name");
12244 }
12245
12246 /* Same as ada_unhandled_exception_name_addr, except that this function
12247 should be used when the inferior uses an older version of the runtime,
12248 where the exception name needs to be extracted from a specific frame
12249 several frames up in the callstack. */
12250
12251 static CORE_ADDR
12252 ada_unhandled_exception_name_addr_from_raise (void)
12253 {
12254 int frame_level;
12255 struct frame_info *fi;
12256 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12257
12258 /* To determine the name of this exception, we need to select
12259 the frame corresponding to RAISE_SYM_NAME. This frame is
12260 at least 3 levels up, so we simply skip the first 3 frames
12261 without checking the name of their associated function. */
12262 fi = get_current_frame ();
12263 for (frame_level = 0; frame_level < 3; frame_level += 1)
12264 if (fi != NULL)
12265 fi = get_prev_frame (fi);
12266
12267 while (fi != NULL)
12268 {
12269 enum language func_lang;
12270
12271 gdb::unique_xmalloc_ptr<char> func_name
12272 = find_frame_funname (fi, &func_lang, NULL);
12273 if (func_name != NULL)
12274 {
12275 if (strcmp (func_name.get (),
12276 data->exception_info->catch_exception_sym) == 0)
12277 break; /* We found the frame we were looking for... */
12278 fi = get_prev_frame (fi);
12279 }
12280 }
12281
12282 if (fi == NULL)
12283 return 0;
12284
12285 select_frame (fi);
12286 return parse_and_eval_address ("id.full_name");
12287 }
12288
12289 /* Assuming the inferior just triggered an Ada exception catchpoint
12290 (of any type), return the address in inferior memory where the name
12291 of the exception is stored, if applicable.
12292
12293 Assumes the selected frame is the current frame.
12294
12295 Return zero if the address could not be computed, or if not relevant. */
12296
12297 static CORE_ADDR
12298 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12299 struct breakpoint *b)
12300 {
12301 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12302
12303 switch (ex)
12304 {
12305 case ada_catch_exception:
12306 return (parse_and_eval_address ("e.full_name"));
12307 break;
12308
12309 case ada_catch_exception_unhandled:
12310 return data->exception_info->unhandled_exception_name_addr ();
12311 break;
12312
12313 case ada_catch_handlers:
12314 return 0; /* The runtimes does not provide access to the exception
12315 name. */
12316 break;
12317
12318 case ada_catch_assert:
12319 return 0; /* Exception name is not relevant in this case. */
12320 break;
12321
12322 default:
12323 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12324 break;
12325 }
12326
12327 return 0; /* Should never be reached. */
12328 }
12329
12330 /* Assuming the inferior is stopped at an exception catchpoint,
12331 return the message which was associated to the exception, if
12332 available. Return NULL if the message could not be retrieved.
12333
12334 Note: The exception message can be associated to an exception
12335 either through the use of the Raise_Exception function, or
12336 more simply (Ada 2005 and later), via:
12337
12338 raise Exception_Name with "exception message";
12339
12340 */
12341
12342 static gdb::unique_xmalloc_ptr<char>
12343 ada_exception_message_1 (void)
12344 {
12345 struct value *e_msg_val;
12346 int e_msg_len;
12347
12348 /* For runtimes that support this feature, the exception message
12349 is passed as an unbounded string argument called "message". */
12350 e_msg_val = parse_and_eval ("message");
12351 if (e_msg_val == NULL)
12352 return NULL; /* Exception message not supported. */
12353
12354 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12355 gdb_assert (e_msg_val != NULL);
12356 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12357
12358 /* If the message string is empty, then treat it as if there was
12359 no exception message. */
12360 if (e_msg_len <= 0)
12361 return NULL;
12362
12363 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12364 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12365 e_msg.get ()[e_msg_len] = '\0';
12366
12367 return e_msg;
12368 }
12369
12370 /* Same as ada_exception_message_1, except that all exceptions are
12371 contained here (returning NULL instead). */
12372
12373 static gdb::unique_xmalloc_ptr<char>
12374 ada_exception_message (void)
12375 {
12376 gdb::unique_xmalloc_ptr<char> e_msg;
12377
12378 TRY
12379 {
12380 e_msg = ada_exception_message_1 ();
12381 }
12382 CATCH (e, RETURN_MASK_ERROR)
12383 {
12384 e_msg.reset (nullptr);
12385 }
12386 END_CATCH
12387
12388 return e_msg;
12389 }
12390
12391 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12392 any error that ada_exception_name_addr_1 might cause to be thrown.
12393 When an error is intercepted, a warning with the error message is printed,
12394 and zero is returned. */
12395
12396 static CORE_ADDR
12397 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12398 struct breakpoint *b)
12399 {
12400 CORE_ADDR result = 0;
12401
12402 TRY
12403 {
12404 result = ada_exception_name_addr_1 (ex, b);
12405 }
12406
12407 CATCH (e, RETURN_MASK_ERROR)
12408 {
12409 warning (_("failed to get exception name: %s"), e.message);
12410 return 0;
12411 }
12412 END_CATCH
12413
12414 return result;
12415 }
12416
12417 static std::string ada_exception_catchpoint_cond_string
12418 (const char *excep_string,
12419 enum ada_exception_catchpoint_kind ex);
12420
12421 /* Ada catchpoints.
12422
12423 In the case of catchpoints on Ada exceptions, the catchpoint will
12424 stop the target on every exception the program throws. When a user
12425 specifies the name of a specific exception, we translate this
12426 request into a condition expression (in text form), and then parse
12427 it into an expression stored in each of the catchpoint's locations.
12428 We then use this condition to check whether the exception that was
12429 raised is the one the user is interested in. If not, then the
12430 target is resumed again. We store the name of the requested
12431 exception, in order to be able to re-set the condition expression
12432 when symbols change. */
12433
12434 /* An instance of this type is used to represent an Ada catchpoint
12435 breakpoint location. */
12436
12437 class ada_catchpoint_location : public bp_location
12438 {
12439 public:
12440 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12441 : bp_location (ops, owner)
12442 {}
12443
12444 /* The condition that checks whether the exception that was raised
12445 is the specific exception the user specified on catchpoint
12446 creation. */
12447 expression_up excep_cond_expr;
12448 };
12449
12450 /* Implement the DTOR method in the bp_location_ops structure for all
12451 Ada exception catchpoint kinds. */
12452
12453 static void
12454 ada_catchpoint_location_dtor (struct bp_location *bl)
12455 {
12456 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12457
12458 al->excep_cond_expr.reset ();
12459 }
12460
12461 /* The vtable to be used in Ada catchpoint locations. */
12462
12463 static const struct bp_location_ops ada_catchpoint_location_ops =
12464 {
12465 ada_catchpoint_location_dtor
12466 };
12467
12468 /* An instance of this type is used to represent an Ada catchpoint. */
12469
12470 struct ada_catchpoint : public breakpoint
12471 {
12472 /* The name of the specific exception the user specified. */
12473 std::string excep_string;
12474 };
12475
12476 /* Parse the exception condition string in the context of each of the
12477 catchpoint's locations, and store them for later evaluation. */
12478
12479 static void
12480 create_excep_cond_exprs (struct ada_catchpoint *c,
12481 enum ada_exception_catchpoint_kind ex)
12482 {
12483 struct bp_location *bl;
12484
12485 /* Nothing to do if there's no specific exception to catch. */
12486 if (c->excep_string.empty ())
12487 return;
12488
12489 /* Same if there are no locations... */
12490 if (c->loc == NULL)
12491 return;
12492
12493 /* Compute the condition expression in text form, from the specific
12494 expection we want to catch. */
12495 std::string cond_string
12496 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12497
12498 /* Iterate over all the catchpoint's locations, and parse an
12499 expression for each. */
12500 for (bl = c->loc; bl != NULL; bl = bl->next)
12501 {
12502 struct ada_catchpoint_location *ada_loc
12503 = (struct ada_catchpoint_location *) bl;
12504 expression_up exp;
12505
12506 if (!bl->shlib_disabled)
12507 {
12508 const char *s;
12509
12510 s = cond_string.c_str ();
12511 TRY
12512 {
12513 exp = parse_exp_1 (&s, bl->address,
12514 block_for_pc (bl->address),
12515 0);
12516 }
12517 CATCH (e, RETURN_MASK_ERROR)
12518 {
12519 warning (_("failed to reevaluate internal exception condition "
12520 "for catchpoint %d: %s"),
12521 c->number, e.message);
12522 }
12523 END_CATCH
12524 }
12525
12526 ada_loc->excep_cond_expr = std::move (exp);
12527 }
12528 }
12529
12530 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12531 structure for all exception catchpoint kinds. */
12532
12533 static struct bp_location *
12534 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12535 struct breakpoint *self)
12536 {
12537 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12538 }
12539
12540 /* Implement the RE_SET method in the breakpoint_ops structure for all
12541 exception catchpoint kinds. */
12542
12543 static void
12544 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12545 {
12546 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12547
12548 /* Call the base class's method. This updates the catchpoint's
12549 locations. */
12550 bkpt_breakpoint_ops.re_set (b);
12551
12552 /* Reparse the exception conditional expressions. One for each
12553 location. */
12554 create_excep_cond_exprs (c, ex);
12555 }
12556
12557 /* Returns true if we should stop for this breakpoint hit. If the
12558 user specified a specific exception, we only want to cause a stop
12559 if the program thrown that exception. */
12560
12561 static int
12562 should_stop_exception (const struct bp_location *bl)
12563 {
12564 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12565 const struct ada_catchpoint_location *ada_loc
12566 = (const struct ada_catchpoint_location *) bl;
12567 int stop;
12568
12569 /* With no specific exception, should always stop. */
12570 if (c->excep_string.empty ())
12571 return 1;
12572
12573 if (ada_loc->excep_cond_expr == NULL)
12574 {
12575 /* We will have a NULL expression if back when we were creating
12576 the expressions, this location's had failed to parse. */
12577 return 1;
12578 }
12579
12580 stop = 1;
12581 TRY
12582 {
12583 struct value *mark;
12584
12585 mark = value_mark ();
12586 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12587 value_free_to_mark (mark);
12588 }
12589 CATCH (ex, RETURN_MASK_ALL)
12590 {
12591 exception_fprintf (gdb_stderr, ex,
12592 _("Error in testing exception condition:\n"));
12593 }
12594 END_CATCH
12595
12596 return stop;
12597 }
12598
12599 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12600 for all exception catchpoint kinds. */
12601
12602 static void
12603 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12604 {
12605 bs->stop = should_stop_exception (bs->bp_location_at);
12606 }
12607
12608 /* Implement the PRINT_IT method in the breakpoint_ops structure
12609 for all exception catchpoint kinds. */
12610
12611 static enum print_stop_action
12612 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12613 {
12614 struct ui_out *uiout = current_uiout;
12615 struct breakpoint *b = bs->breakpoint_at;
12616
12617 annotate_catchpoint (b->number);
12618
12619 if (uiout->is_mi_like_p ())
12620 {
12621 uiout->field_string ("reason",
12622 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12623 uiout->field_string ("disp", bpdisp_text (b->disposition));
12624 }
12625
12626 uiout->text (b->disposition == disp_del
12627 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12628 uiout->field_int ("bkptno", b->number);
12629 uiout->text (", ");
12630
12631 /* ada_exception_name_addr relies on the selected frame being the
12632 current frame. Need to do this here because this function may be
12633 called more than once when printing a stop, and below, we'll
12634 select the first frame past the Ada run-time (see
12635 ada_find_printable_frame). */
12636 select_frame (get_current_frame ());
12637
12638 switch (ex)
12639 {
12640 case ada_catch_exception:
12641 case ada_catch_exception_unhandled:
12642 case ada_catch_handlers:
12643 {
12644 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12645 char exception_name[256];
12646
12647 if (addr != 0)
12648 {
12649 read_memory (addr, (gdb_byte *) exception_name,
12650 sizeof (exception_name) - 1);
12651 exception_name [sizeof (exception_name) - 1] = '\0';
12652 }
12653 else
12654 {
12655 /* For some reason, we were unable to read the exception
12656 name. This could happen if the Runtime was compiled
12657 without debugging info, for instance. In that case,
12658 just replace the exception name by the generic string
12659 "exception" - it will read as "an exception" in the
12660 notification we are about to print. */
12661 memcpy (exception_name, "exception", sizeof ("exception"));
12662 }
12663 /* In the case of unhandled exception breakpoints, we print
12664 the exception name as "unhandled EXCEPTION_NAME", to make
12665 it clearer to the user which kind of catchpoint just got
12666 hit. We used ui_out_text to make sure that this extra
12667 info does not pollute the exception name in the MI case. */
12668 if (ex == ada_catch_exception_unhandled)
12669 uiout->text ("unhandled ");
12670 uiout->field_string ("exception-name", exception_name);
12671 }
12672 break;
12673 case ada_catch_assert:
12674 /* In this case, the name of the exception is not really
12675 important. Just print "failed assertion" to make it clearer
12676 that his program just hit an assertion-failure catchpoint.
12677 We used ui_out_text because this info does not belong in
12678 the MI output. */
12679 uiout->text ("failed assertion");
12680 break;
12681 }
12682
12683 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12684 if (exception_message != NULL)
12685 {
12686 uiout->text (" (");
12687 uiout->field_string ("exception-message", exception_message.get ());
12688 uiout->text (")");
12689 }
12690
12691 uiout->text (" at ");
12692 ada_find_printable_frame (get_current_frame ());
12693
12694 return PRINT_SRC_AND_LOC;
12695 }
12696
12697 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12698 for all exception catchpoint kinds. */
12699
12700 static void
12701 print_one_exception (enum ada_exception_catchpoint_kind ex,
12702 struct breakpoint *b, struct bp_location **last_loc)
12703 {
12704 struct ui_out *uiout = current_uiout;
12705 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12706 struct value_print_options opts;
12707
12708 get_user_print_options (&opts);
12709 if (opts.addressprint)
12710 {
12711 annotate_field (4);
12712 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12713 }
12714
12715 annotate_field (5);
12716 *last_loc = b->loc;
12717 switch (ex)
12718 {
12719 case ada_catch_exception:
12720 if (!c->excep_string.empty ())
12721 {
12722 std::string msg = string_printf (_("`%s' Ada exception"),
12723 c->excep_string.c_str ());
12724
12725 uiout->field_string ("what", msg);
12726 }
12727 else
12728 uiout->field_string ("what", "all Ada exceptions");
12729
12730 break;
12731
12732 case ada_catch_exception_unhandled:
12733 uiout->field_string ("what", "unhandled Ada exceptions");
12734 break;
12735
12736 case ada_catch_handlers:
12737 if (!c->excep_string.empty ())
12738 {
12739 uiout->field_fmt ("what",
12740 _("`%s' Ada exception handlers"),
12741 c->excep_string.c_str ());
12742 }
12743 else
12744 uiout->field_string ("what", "all Ada exceptions handlers");
12745 break;
12746
12747 case ada_catch_assert:
12748 uiout->field_string ("what", "failed Ada assertions");
12749 break;
12750
12751 default:
12752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12753 break;
12754 }
12755 }
12756
12757 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760 static void
12761 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12762 struct breakpoint *b)
12763 {
12764 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12765 struct ui_out *uiout = current_uiout;
12766
12767 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12768 : _("Catchpoint "));
12769 uiout->field_int ("bkptno", b->number);
12770 uiout->text (": ");
12771
12772 switch (ex)
12773 {
12774 case ada_catch_exception:
12775 if (!c->excep_string.empty ())
12776 {
12777 std::string info = string_printf (_("`%s' Ada exception"),
12778 c->excep_string.c_str ());
12779 uiout->text (info.c_str ());
12780 }
12781 else
12782 uiout->text (_("all Ada exceptions"));
12783 break;
12784
12785 case ada_catch_exception_unhandled:
12786 uiout->text (_("unhandled Ada exceptions"));
12787 break;
12788
12789 case ada_catch_handlers:
12790 if (!c->excep_string.empty ())
12791 {
12792 std::string info
12793 = string_printf (_("`%s' Ada exception handlers"),
12794 c->excep_string.c_str ());
12795 uiout->text (info.c_str ());
12796 }
12797 else
12798 uiout->text (_("all Ada exceptions handlers"));
12799 break;
12800
12801 case ada_catch_assert:
12802 uiout->text (_("failed Ada assertions"));
12803 break;
12804
12805 default:
12806 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12807 break;
12808 }
12809 }
12810
12811 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12812 for all exception catchpoint kinds. */
12813
12814 static void
12815 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12816 struct breakpoint *b, struct ui_file *fp)
12817 {
12818 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12819
12820 switch (ex)
12821 {
12822 case ada_catch_exception:
12823 fprintf_filtered (fp, "catch exception");
12824 if (!c->excep_string.empty ())
12825 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12826 break;
12827
12828 case ada_catch_exception_unhandled:
12829 fprintf_filtered (fp, "catch exception unhandled");
12830 break;
12831
12832 case ada_catch_handlers:
12833 fprintf_filtered (fp, "catch handlers");
12834 break;
12835
12836 case ada_catch_assert:
12837 fprintf_filtered (fp, "catch assert");
12838 break;
12839
12840 default:
12841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12842 }
12843 print_recreate_thread (b, fp);
12844 }
12845
12846 /* Virtual table for "catch exception" breakpoints. */
12847
12848 static struct bp_location *
12849 allocate_location_catch_exception (struct breakpoint *self)
12850 {
12851 return allocate_location_exception (ada_catch_exception, self);
12852 }
12853
12854 static void
12855 re_set_catch_exception (struct breakpoint *b)
12856 {
12857 re_set_exception (ada_catch_exception, b);
12858 }
12859
12860 static void
12861 check_status_catch_exception (bpstat bs)
12862 {
12863 check_status_exception (ada_catch_exception, bs);
12864 }
12865
12866 static enum print_stop_action
12867 print_it_catch_exception (bpstat bs)
12868 {
12869 return print_it_exception (ada_catch_exception, bs);
12870 }
12871
12872 static void
12873 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12874 {
12875 print_one_exception (ada_catch_exception, b, last_loc);
12876 }
12877
12878 static void
12879 print_mention_catch_exception (struct breakpoint *b)
12880 {
12881 print_mention_exception (ada_catch_exception, b);
12882 }
12883
12884 static void
12885 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12886 {
12887 print_recreate_exception (ada_catch_exception, b, fp);
12888 }
12889
12890 static struct breakpoint_ops catch_exception_breakpoint_ops;
12891
12892 /* Virtual table for "catch exception unhandled" breakpoints. */
12893
12894 static struct bp_location *
12895 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12896 {
12897 return allocate_location_exception (ada_catch_exception_unhandled, self);
12898 }
12899
12900 static void
12901 re_set_catch_exception_unhandled (struct breakpoint *b)
12902 {
12903 re_set_exception (ada_catch_exception_unhandled, b);
12904 }
12905
12906 static void
12907 check_status_catch_exception_unhandled (bpstat bs)
12908 {
12909 check_status_exception (ada_catch_exception_unhandled, bs);
12910 }
12911
12912 static enum print_stop_action
12913 print_it_catch_exception_unhandled (bpstat bs)
12914 {
12915 return print_it_exception (ada_catch_exception_unhandled, bs);
12916 }
12917
12918 static void
12919 print_one_catch_exception_unhandled (struct breakpoint *b,
12920 struct bp_location **last_loc)
12921 {
12922 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12923 }
12924
12925 static void
12926 print_mention_catch_exception_unhandled (struct breakpoint *b)
12927 {
12928 print_mention_exception (ada_catch_exception_unhandled, b);
12929 }
12930
12931 static void
12932 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12933 struct ui_file *fp)
12934 {
12935 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12936 }
12937
12938 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12939
12940 /* Virtual table for "catch assert" breakpoints. */
12941
12942 static struct bp_location *
12943 allocate_location_catch_assert (struct breakpoint *self)
12944 {
12945 return allocate_location_exception (ada_catch_assert, self);
12946 }
12947
12948 static void
12949 re_set_catch_assert (struct breakpoint *b)
12950 {
12951 re_set_exception (ada_catch_assert, b);
12952 }
12953
12954 static void
12955 check_status_catch_assert (bpstat bs)
12956 {
12957 check_status_exception (ada_catch_assert, bs);
12958 }
12959
12960 static enum print_stop_action
12961 print_it_catch_assert (bpstat bs)
12962 {
12963 return print_it_exception (ada_catch_assert, bs);
12964 }
12965
12966 static void
12967 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12968 {
12969 print_one_exception (ada_catch_assert, b, last_loc);
12970 }
12971
12972 static void
12973 print_mention_catch_assert (struct breakpoint *b)
12974 {
12975 print_mention_exception (ada_catch_assert, b);
12976 }
12977
12978 static void
12979 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12980 {
12981 print_recreate_exception (ada_catch_assert, b, fp);
12982 }
12983
12984 static struct breakpoint_ops catch_assert_breakpoint_ops;
12985
12986 /* Virtual table for "catch handlers" breakpoints. */
12987
12988 static struct bp_location *
12989 allocate_location_catch_handlers (struct breakpoint *self)
12990 {
12991 return allocate_location_exception (ada_catch_handlers, self);
12992 }
12993
12994 static void
12995 re_set_catch_handlers (struct breakpoint *b)
12996 {
12997 re_set_exception (ada_catch_handlers, b);
12998 }
12999
13000 static void
13001 check_status_catch_handlers (bpstat bs)
13002 {
13003 check_status_exception (ada_catch_handlers, bs);
13004 }
13005
13006 static enum print_stop_action
13007 print_it_catch_handlers (bpstat bs)
13008 {
13009 return print_it_exception (ada_catch_handlers, bs);
13010 }
13011
13012 static void
13013 print_one_catch_handlers (struct breakpoint *b,
13014 struct bp_location **last_loc)
13015 {
13016 print_one_exception (ada_catch_handlers, b, last_loc);
13017 }
13018
13019 static void
13020 print_mention_catch_handlers (struct breakpoint *b)
13021 {
13022 print_mention_exception (ada_catch_handlers, b);
13023 }
13024
13025 static void
13026 print_recreate_catch_handlers (struct breakpoint *b,
13027 struct ui_file *fp)
13028 {
13029 print_recreate_exception (ada_catch_handlers, b, fp);
13030 }
13031
13032 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13033
13034 /* Split the arguments specified in a "catch exception" command.
13035 Set EX to the appropriate catchpoint type.
13036 Set EXCEP_STRING to the name of the specific exception if
13037 specified by the user.
13038 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13039 "catch handlers" command. False otherwise.
13040 If a condition is found at the end of the arguments, the condition
13041 expression is stored in COND_STRING (memory must be deallocated
13042 after use). Otherwise COND_STRING is set to NULL. */
13043
13044 static void
13045 catch_ada_exception_command_split (const char *args,
13046 bool is_catch_handlers_cmd,
13047 enum ada_exception_catchpoint_kind *ex,
13048 std::string *excep_string,
13049 std::string *cond_string)
13050 {
13051 std::string exception_name;
13052
13053 exception_name = extract_arg (&args);
13054 if (exception_name == "if")
13055 {
13056 /* This is not an exception name; this is the start of a condition
13057 expression for a catchpoint on all exceptions. So, "un-get"
13058 this token, and set exception_name to NULL. */
13059 exception_name.clear ();
13060 args -= 2;
13061 }
13062
13063 /* Check to see if we have a condition. */
13064
13065 args = skip_spaces (args);
13066 if (startswith (args, "if")
13067 && (isspace (args[2]) || args[2] == '\0'))
13068 {
13069 args += 2;
13070 args = skip_spaces (args);
13071
13072 if (args[0] == '\0')
13073 error (_("Condition missing after `if' keyword"));
13074 *cond_string = args;
13075
13076 args += strlen (args);
13077 }
13078
13079 /* Check that we do not have any more arguments. Anything else
13080 is unexpected. */
13081
13082 if (args[0] != '\0')
13083 error (_("Junk at end of expression"));
13084
13085 if (is_catch_handlers_cmd)
13086 {
13087 /* Catch handling of exceptions. */
13088 *ex = ada_catch_handlers;
13089 *excep_string = exception_name;
13090 }
13091 else if (exception_name.empty ())
13092 {
13093 /* Catch all exceptions. */
13094 *ex = ada_catch_exception;
13095 excep_string->clear ();
13096 }
13097 else if (exception_name == "unhandled")
13098 {
13099 /* Catch unhandled exceptions. */
13100 *ex = ada_catch_exception_unhandled;
13101 excep_string->clear ();
13102 }
13103 else
13104 {
13105 /* Catch a specific exception. */
13106 *ex = ada_catch_exception;
13107 *excep_string = exception_name;
13108 }
13109 }
13110
13111 /* Return the name of the symbol on which we should break in order to
13112 implement a catchpoint of the EX kind. */
13113
13114 static const char *
13115 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13116 {
13117 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13118
13119 gdb_assert (data->exception_info != NULL);
13120
13121 switch (ex)
13122 {
13123 case ada_catch_exception:
13124 return (data->exception_info->catch_exception_sym);
13125 break;
13126 case ada_catch_exception_unhandled:
13127 return (data->exception_info->catch_exception_unhandled_sym);
13128 break;
13129 case ada_catch_assert:
13130 return (data->exception_info->catch_assert_sym);
13131 break;
13132 case ada_catch_handlers:
13133 return (data->exception_info->catch_handlers_sym);
13134 break;
13135 default:
13136 internal_error (__FILE__, __LINE__,
13137 _("unexpected catchpoint kind (%d)"), ex);
13138 }
13139 }
13140
13141 /* Return the breakpoint ops "virtual table" used for catchpoints
13142 of the EX kind. */
13143
13144 static const struct breakpoint_ops *
13145 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13146 {
13147 switch (ex)
13148 {
13149 case ada_catch_exception:
13150 return (&catch_exception_breakpoint_ops);
13151 break;
13152 case ada_catch_exception_unhandled:
13153 return (&catch_exception_unhandled_breakpoint_ops);
13154 break;
13155 case ada_catch_assert:
13156 return (&catch_assert_breakpoint_ops);
13157 break;
13158 case ada_catch_handlers:
13159 return (&catch_handlers_breakpoint_ops);
13160 break;
13161 default:
13162 internal_error (__FILE__, __LINE__,
13163 _("unexpected catchpoint kind (%d)"), ex);
13164 }
13165 }
13166
13167 /* Return the condition that will be used to match the current exception
13168 being raised with the exception that the user wants to catch. This
13169 assumes that this condition is used when the inferior just triggered
13170 an exception catchpoint.
13171 EX: the type of catchpoints used for catching Ada exceptions. */
13172
13173 static std::string
13174 ada_exception_catchpoint_cond_string (const char *excep_string,
13175 enum ada_exception_catchpoint_kind ex)
13176 {
13177 int i;
13178 bool is_standard_exc = false;
13179 std::string result;
13180
13181 if (ex == ada_catch_handlers)
13182 {
13183 /* For exception handlers catchpoints, the condition string does
13184 not use the same parameter as for the other exceptions. */
13185 result = ("long_integer (GNAT_GCC_exception_Access"
13186 "(gcc_exception).all.occurrence.id)");
13187 }
13188 else
13189 result = "long_integer (e)";
13190
13191 /* The standard exceptions are a special case. They are defined in
13192 runtime units that have been compiled without debugging info; if
13193 EXCEP_STRING is the not-fully-qualified name of a standard
13194 exception (e.g. "constraint_error") then, during the evaluation
13195 of the condition expression, the symbol lookup on this name would
13196 *not* return this standard exception. The catchpoint condition
13197 may then be set only on user-defined exceptions which have the
13198 same not-fully-qualified name (e.g. my_package.constraint_error).
13199
13200 To avoid this unexcepted behavior, these standard exceptions are
13201 systematically prefixed by "standard". This means that "catch
13202 exception constraint_error" is rewritten into "catch exception
13203 standard.constraint_error".
13204
13205 If an exception named contraint_error is defined in another package of
13206 the inferior program, then the only way to specify this exception as a
13207 breakpoint condition is to use its fully-qualified named:
13208 e.g. my_package.constraint_error. */
13209
13210 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13211 {
13212 if (strcmp (standard_exc [i], excep_string) == 0)
13213 {
13214 is_standard_exc = true;
13215 break;
13216 }
13217 }
13218
13219 result += " = ";
13220
13221 if (is_standard_exc)
13222 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13223 else
13224 string_appendf (result, "long_integer (&%s)", excep_string);
13225
13226 return result;
13227 }
13228
13229 /* Return the symtab_and_line that should be used to insert an exception
13230 catchpoint of the TYPE kind.
13231
13232 ADDR_STRING returns the name of the function where the real
13233 breakpoint that implements the catchpoints is set, depending on the
13234 type of catchpoint we need to create. */
13235
13236 static struct symtab_and_line
13237 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13238 const char **addr_string, const struct breakpoint_ops **ops)
13239 {
13240 const char *sym_name;
13241 struct symbol *sym;
13242
13243 /* First, find out which exception support info to use. */
13244 ada_exception_support_info_sniffer ();
13245
13246 /* Then lookup the function on which we will break in order to catch
13247 the Ada exceptions requested by the user. */
13248 sym_name = ada_exception_sym_name (ex);
13249 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13250
13251 /* We can assume that SYM is not NULL at this stage. If the symbol
13252 did not exist, ada_exception_support_info_sniffer would have
13253 raised an exception.
13254
13255 Also, ada_exception_support_info_sniffer should have already
13256 verified that SYM is a function symbol. */
13257 gdb_assert (sym != NULL);
13258 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13259
13260 /* Set ADDR_STRING. */
13261 *addr_string = xstrdup (sym_name);
13262
13263 /* Set OPS. */
13264 *ops = ada_exception_breakpoint_ops (ex);
13265
13266 return find_function_start_sal (sym, 1);
13267 }
13268
13269 /* Create an Ada exception catchpoint.
13270
13271 EX_KIND is the kind of exception catchpoint to be created.
13272
13273 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13274 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13275 of the exception to which this catchpoint applies.
13276
13277 COND_STRING, if not empty, is the catchpoint condition.
13278
13279 TEMPFLAG, if nonzero, means that the underlying breakpoint
13280 should be temporary.
13281
13282 FROM_TTY is the usual argument passed to all commands implementations. */
13283
13284 void
13285 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13286 enum ada_exception_catchpoint_kind ex_kind,
13287 const std::string &excep_string,
13288 const std::string &cond_string,
13289 int tempflag,
13290 int disabled,
13291 int from_tty)
13292 {
13293 const char *addr_string = NULL;
13294 const struct breakpoint_ops *ops = NULL;
13295 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13296
13297 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13298 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13299 ops, tempflag, disabled, from_tty);
13300 c->excep_string = excep_string;
13301 create_excep_cond_exprs (c.get (), ex_kind);
13302 if (!cond_string.empty ())
13303 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13304 install_breakpoint (0, std::move (c), 1);
13305 }
13306
13307 /* Implement the "catch exception" command. */
13308
13309 static void
13310 catch_ada_exception_command (const char *arg_entry, int from_tty,
13311 struct cmd_list_element *command)
13312 {
13313 const char *arg = arg_entry;
13314 struct gdbarch *gdbarch = get_current_arch ();
13315 int tempflag;
13316 enum ada_exception_catchpoint_kind ex_kind;
13317 std::string excep_string;
13318 std::string cond_string;
13319
13320 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13321
13322 if (!arg)
13323 arg = "";
13324 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13325 &cond_string);
13326 create_ada_exception_catchpoint (gdbarch, ex_kind,
13327 excep_string, cond_string,
13328 tempflag, 1 /* enabled */,
13329 from_tty);
13330 }
13331
13332 /* Implement the "catch handlers" command. */
13333
13334 static void
13335 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13336 struct cmd_list_element *command)
13337 {
13338 const char *arg = arg_entry;
13339 struct gdbarch *gdbarch = get_current_arch ();
13340 int tempflag;
13341 enum ada_exception_catchpoint_kind ex_kind;
13342 std::string excep_string;
13343 std::string cond_string;
13344
13345 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13346
13347 if (!arg)
13348 arg = "";
13349 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13350 &cond_string);
13351 create_ada_exception_catchpoint (gdbarch, ex_kind,
13352 excep_string, cond_string,
13353 tempflag, 1 /* enabled */,
13354 from_tty);
13355 }
13356
13357 /* Split the arguments specified in a "catch assert" command.
13358
13359 ARGS contains the command's arguments (or the empty string if
13360 no arguments were passed).
13361
13362 If ARGS contains a condition, set COND_STRING to that condition
13363 (the memory needs to be deallocated after use). */
13364
13365 static void
13366 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13367 {
13368 args = skip_spaces (args);
13369
13370 /* Check whether a condition was provided. */
13371 if (startswith (args, "if")
13372 && (isspace (args[2]) || args[2] == '\0'))
13373 {
13374 args += 2;
13375 args = skip_spaces (args);
13376 if (args[0] == '\0')
13377 error (_("condition missing after `if' keyword"));
13378 cond_string.assign (args);
13379 }
13380
13381 /* Otherwise, there should be no other argument at the end of
13382 the command. */
13383 else if (args[0] != '\0')
13384 error (_("Junk at end of arguments."));
13385 }
13386
13387 /* Implement the "catch assert" command. */
13388
13389 static void
13390 catch_assert_command (const char *arg_entry, int from_tty,
13391 struct cmd_list_element *command)
13392 {
13393 const char *arg = arg_entry;
13394 struct gdbarch *gdbarch = get_current_arch ();
13395 int tempflag;
13396 std::string cond_string;
13397
13398 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13399
13400 if (!arg)
13401 arg = "";
13402 catch_ada_assert_command_split (arg, cond_string);
13403 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13404 "", cond_string,
13405 tempflag, 1 /* enabled */,
13406 from_tty);
13407 }
13408
13409 /* Return non-zero if the symbol SYM is an Ada exception object. */
13410
13411 static int
13412 ada_is_exception_sym (struct symbol *sym)
13413 {
13414 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13415
13416 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13417 && SYMBOL_CLASS (sym) != LOC_BLOCK
13418 && SYMBOL_CLASS (sym) != LOC_CONST
13419 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13420 && type_name != NULL && strcmp (type_name, "exception") == 0);
13421 }
13422
13423 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13424 Ada exception object. This matches all exceptions except the ones
13425 defined by the Ada language. */
13426
13427 static int
13428 ada_is_non_standard_exception_sym (struct symbol *sym)
13429 {
13430 int i;
13431
13432 if (!ada_is_exception_sym (sym))
13433 return 0;
13434
13435 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13436 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13437 return 0; /* A standard exception. */
13438
13439 /* Numeric_Error is also a standard exception, so exclude it.
13440 See the STANDARD_EXC description for more details as to why
13441 this exception is not listed in that array. */
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13443 return 0;
13444
13445 return 1;
13446 }
13447
13448 /* A helper function for std::sort, comparing two struct ada_exc_info
13449 objects.
13450
13451 The comparison is determined first by exception name, and then
13452 by exception address. */
13453
13454 bool
13455 ada_exc_info::operator< (const ada_exc_info &other) const
13456 {
13457 int result;
13458
13459 result = strcmp (name, other.name);
13460 if (result < 0)
13461 return true;
13462 if (result == 0 && addr < other.addr)
13463 return true;
13464 return false;
13465 }
13466
13467 bool
13468 ada_exc_info::operator== (const ada_exc_info &other) const
13469 {
13470 return addr == other.addr && strcmp (name, other.name) == 0;
13471 }
13472
13473 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13474 routine, but keeping the first SKIP elements untouched.
13475
13476 All duplicates are also removed. */
13477
13478 static void
13479 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13480 int skip)
13481 {
13482 std::sort (exceptions->begin () + skip, exceptions->end ());
13483 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13484 exceptions->end ());
13485 }
13486
13487 /* Add all exceptions defined by the Ada standard whose name match
13488 a regular expression.
13489
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13493
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13495 gets pushed. */
13496
13497 static void
13498 ada_add_standard_exceptions (compiled_regex *preg,
13499 std::vector<ada_exc_info> *exceptions)
13500 {
13501 int i;
13502
13503 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13504 {
13505 if (preg == NULL
13506 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13507 {
13508 struct bound_minimal_symbol msymbol
13509 = ada_lookup_simple_minsym (standard_exc[i]);
13510
13511 if (msymbol.minsym != NULL)
13512 {
13513 struct ada_exc_info info
13514 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13515
13516 exceptions->push_back (info);
13517 }
13518 }
13519 }
13520 }
13521
13522 /* Add all Ada exceptions defined locally and accessible from the given
13523 FRAME.
13524
13525 If PREG is not NULL, then this regexp_t object is used to
13526 perform the symbol name matching. Otherwise, no name-based
13527 filtering is performed.
13528
13529 EXCEPTIONS is a vector of exceptions to which matching exceptions
13530 gets pushed. */
13531
13532 static void
13533 ada_add_exceptions_from_frame (compiled_regex *preg,
13534 struct frame_info *frame,
13535 std::vector<ada_exc_info> *exceptions)
13536 {
13537 const struct block *block = get_frame_block (frame, 0);
13538
13539 while (block != 0)
13540 {
13541 struct block_iterator iter;
13542 struct symbol *sym;
13543
13544 ALL_BLOCK_SYMBOLS (block, iter, sym)
13545 {
13546 switch (SYMBOL_CLASS (sym))
13547 {
13548 case LOC_TYPEDEF:
13549 case LOC_BLOCK:
13550 case LOC_CONST:
13551 break;
13552 default:
13553 if (ada_is_exception_sym (sym))
13554 {
13555 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13556 SYMBOL_VALUE_ADDRESS (sym)};
13557
13558 exceptions->push_back (info);
13559 }
13560 }
13561 }
13562 if (BLOCK_FUNCTION (block) != NULL)
13563 break;
13564 block = BLOCK_SUPERBLOCK (block);
13565 }
13566 }
13567
13568 /* Return true if NAME matches PREG or if PREG is NULL. */
13569
13570 static bool
13571 name_matches_regex (const char *name, compiled_regex *preg)
13572 {
13573 return (preg == NULL
13574 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13575 }
13576
13577 /* Add all exceptions defined globally whose name name match
13578 a regular expression, excluding standard exceptions.
13579
13580 The reason we exclude standard exceptions is that they need
13581 to be handled separately: Standard exceptions are defined inside
13582 a runtime unit which is normally not compiled with debugging info,
13583 and thus usually do not show up in our symbol search. However,
13584 if the unit was in fact built with debugging info, we need to
13585 exclude them because they would duplicate the entry we found
13586 during the special loop that specifically searches for those
13587 standard exceptions.
13588
13589 If PREG is not NULL, then this regexp_t object is used to
13590 perform the symbol name matching. Otherwise, no name-based
13591 filtering is performed.
13592
13593 EXCEPTIONS is a vector of exceptions to which matching exceptions
13594 gets pushed. */
13595
13596 static void
13597 ada_add_global_exceptions (compiled_regex *preg,
13598 std::vector<ada_exc_info> *exceptions)
13599 {
13600 struct objfile *objfile;
13601 struct compunit_symtab *s;
13602
13603 /* In Ada, the symbol "search name" is a linkage name, whereas the
13604 regular expression used to do the matching refers to the natural
13605 name. So match against the decoded name. */
13606 expand_symtabs_matching (NULL,
13607 lookup_name_info::match_any (),
13608 [&] (const char *search_name)
13609 {
13610 const char *decoded = ada_decode (search_name);
13611 return name_matches_regex (decoded, preg);
13612 },
13613 NULL,
13614 VARIABLES_DOMAIN);
13615
13616 ALL_COMPUNITS (objfile, s)
13617 {
13618 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13619 int i;
13620
13621 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13622 {
13623 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13624 struct block_iterator iter;
13625 struct symbol *sym;
13626
13627 ALL_BLOCK_SYMBOLS (b, iter, sym)
13628 if (ada_is_non_standard_exception_sym (sym)
13629 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13630 {
13631 struct ada_exc_info info
13632 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13633
13634 exceptions->push_back (info);
13635 }
13636 }
13637 }
13638 }
13639
13640 /* Implements ada_exceptions_list with the regular expression passed
13641 as a regex_t, rather than a string.
13642
13643 If not NULL, PREG is used to filter out exceptions whose names
13644 do not match. Otherwise, all exceptions are listed. */
13645
13646 static std::vector<ada_exc_info>
13647 ada_exceptions_list_1 (compiled_regex *preg)
13648 {
13649 std::vector<ada_exc_info> result;
13650 int prev_len;
13651
13652 /* First, list the known standard exceptions. These exceptions
13653 need to be handled separately, as they are usually defined in
13654 runtime units that have been compiled without debugging info. */
13655
13656 ada_add_standard_exceptions (preg, &result);
13657
13658 /* Next, find all exceptions whose scope is local and accessible
13659 from the currently selected frame. */
13660
13661 if (has_stack_frames ())
13662 {
13663 prev_len = result.size ();
13664 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13665 &result);
13666 if (result.size () > prev_len)
13667 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13668 }
13669
13670 /* Add all exceptions whose scope is global. */
13671
13672 prev_len = result.size ();
13673 ada_add_global_exceptions (preg, &result);
13674 if (result.size () > prev_len)
13675 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13676
13677 return result;
13678 }
13679
13680 /* Return a vector of ada_exc_info.
13681
13682 If REGEXP is NULL, all exceptions are included in the result.
13683 Otherwise, it should contain a valid regular expression,
13684 and only the exceptions whose names match that regular expression
13685 are included in the result.
13686
13687 The exceptions are sorted in the following order:
13688 - Standard exceptions (defined by the Ada language), in
13689 alphabetical order;
13690 - Exceptions only visible from the current frame, in
13691 alphabetical order;
13692 - Exceptions whose scope is global, in alphabetical order. */
13693
13694 std::vector<ada_exc_info>
13695 ada_exceptions_list (const char *regexp)
13696 {
13697 if (regexp == NULL)
13698 return ada_exceptions_list_1 (NULL);
13699
13700 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13701 return ada_exceptions_list_1 (&reg);
13702 }
13703
13704 /* Implement the "info exceptions" command. */
13705
13706 static void
13707 info_exceptions_command (const char *regexp, int from_tty)
13708 {
13709 struct gdbarch *gdbarch = get_current_arch ();
13710
13711 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13712
13713 if (regexp != NULL)
13714 printf_filtered
13715 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13716 else
13717 printf_filtered (_("All defined Ada exceptions:\n"));
13718
13719 for (const ada_exc_info &info : exceptions)
13720 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13721 }
13722
13723 /* Operators */
13724 /* Information about operators given special treatment in functions
13725 below. */
13726 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13727
13728 #define ADA_OPERATORS \
13729 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13730 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13731 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13732 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13733 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13734 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13735 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13736 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13737 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13739 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13741 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13742 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13743 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13744 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13745 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13746 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13747 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13748
13749 static void
13750 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13751 int *argsp)
13752 {
13753 switch (exp->elts[pc - 1].opcode)
13754 {
13755 default:
13756 operator_length_standard (exp, pc, oplenp, argsp);
13757 break;
13758
13759 #define OP_DEFN(op, len, args, binop) \
13760 case op: *oplenp = len; *argsp = args; break;
13761 ADA_OPERATORS;
13762 #undef OP_DEFN
13763
13764 case OP_AGGREGATE:
13765 *oplenp = 3;
13766 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13767 break;
13768
13769 case OP_CHOICES:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13772 break;
13773 }
13774 }
13775
13776 /* Implementation of the exp_descriptor method operator_check. */
13777
13778 static int
13779 ada_operator_check (struct expression *exp, int pos,
13780 int (*objfile_func) (struct objfile *objfile, void *data),
13781 void *data)
13782 {
13783 const union exp_element *const elts = exp->elts;
13784 struct type *type = NULL;
13785
13786 switch (elts[pos].opcode)
13787 {
13788 case UNOP_IN_RANGE:
13789 case UNOP_QUAL:
13790 type = elts[pos + 1].type;
13791 break;
13792
13793 default:
13794 return operator_check_standard (exp, pos, objfile_func, data);
13795 }
13796
13797 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13798
13799 if (type && TYPE_OBJFILE (type)
13800 && (*objfile_func) (TYPE_OBJFILE (type), data))
13801 return 1;
13802
13803 return 0;
13804 }
13805
13806 static const char *
13807 ada_op_name (enum exp_opcode opcode)
13808 {
13809 switch (opcode)
13810 {
13811 default:
13812 return op_name_standard (opcode);
13813
13814 #define OP_DEFN(op, len, args, binop) case op: return #op;
13815 ADA_OPERATORS;
13816 #undef OP_DEFN
13817
13818 case OP_AGGREGATE:
13819 return "OP_AGGREGATE";
13820 case OP_CHOICES:
13821 return "OP_CHOICES";
13822 case OP_NAME:
13823 return "OP_NAME";
13824 }
13825 }
13826
13827 /* As for operator_length, but assumes PC is pointing at the first
13828 element of the operator, and gives meaningful results only for the
13829 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13830
13831 static void
13832 ada_forward_operator_length (struct expression *exp, int pc,
13833 int *oplenp, int *argsp)
13834 {
13835 switch (exp->elts[pc].opcode)
13836 {
13837 default:
13838 *oplenp = *argsp = 0;
13839 break;
13840
13841 #define OP_DEFN(op, len, args, binop) \
13842 case op: *oplenp = len; *argsp = args; break;
13843 ADA_OPERATORS;
13844 #undef OP_DEFN
13845
13846 case OP_AGGREGATE:
13847 *oplenp = 3;
13848 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13849 break;
13850
13851 case OP_CHOICES:
13852 *oplenp = 3;
13853 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13854 break;
13855
13856 case OP_STRING:
13857 case OP_NAME:
13858 {
13859 int len = longest_to_int (exp->elts[pc + 1].longconst);
13860
13861 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13862 *argsp = 0;
13863 break;
13864 }
13865 }
13866 }
13867
13868 static int
13869 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13870 {
13871 enum exp_opcode op = exp->elts[elt].opcode;
13872 int oplen, nargs;
13873 int pc = elt;
13874 int i;
13875
13876 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13877
13878 switch (op)
13879 {
13880 /* Ada attributes ('Foo). */
13881 case OP_ATR_FIRST:
13882 case OP_ATR_LAST:
13883 case OP_ATR_LENGTH:
13884 case OP_ATR_IMAGE:
13885 case OP_ATR_MAX:
13886 case OP_ATR_MIN:
13887 case OP_ATR_MODULUS:
13888 case OP_ATR_POS:
13889 case OP_ATR_SIZE:
13890 case OP_ATR_TAG:
13891 case OP_ATR_VAL:
13892 break;
13893
13894 case UNOP_IN_RANGE:
13895 case UNOP_QUAL:
13896 /* XXX: gdb_sprint_host_address, type_sprint */
13897 fprintf_filtered (stream, _("Type @"));
13898 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13899 fprintf_filtered (stream, " (");
13900 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13901 fprintf_filtered (stream, ")");
13902 break;
13903 case BINOP_IN_BOUNDS:
13904 fprintf_filtered (stream, " (%d)",
13905 longest_to_int (exp->elts[pc + 2].longconst));
13906 break;
13907 case TERNOP_IN_RANGE:
13908 break;
13909
13910 case OP_AGGREGATE:
13911 case OP_OTHERS:
13912 case OP_DISCRETE_RANGE:
13913 case OP_POSITIONAL:
13914 case OP_CHOICES:
13915 break;
13916
13917 case OP_NAME:
13918 case OP_STRING:
13919 {
13920 char *name = &exp->elts[elt + 2].string;
13921 int len = longest_to_int (exp->elts[elt + 1].longconst);
13922
13923 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13924 break;
13925 }
13926
13927 default:
13928 return dump_subexp_body_standard (exp, stream, elt);
13929 }
13930
13931 elt += oplen;
13932 for (i = 0; i < nargs; i += 1)
13933 elt = dump_subexp (exp, stream, elt);
13934
13935 return elt;
13936 }
13937
13938 /* The Ada extension of print_subexp (q.v.). */
13939
13940 static void
13941 ada_print_subexp (struct expression *exp, int *pos,
13942 struct ui_file *stream, enum precedence prec)
13943 {
13944 int oplen, nargs, i;
13945 int pc = *pos;
13946 enum exp_opcode op = exp->elts[pc].opcode;
13947
13948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13949
13950 *pos += oplen;
13951 switch (op)
13952 {
13953 default:
13954 *pos -= oplen;
13955 print_subexp_standard (exp, pos, stream, prec);
13956 return;
13957
13958 case OP_VAR_VALUE:
13959 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13960 return;
13961
13962 case BINOP_IN_BOUNDS:
13963 /* XXX: sprint_subexp */
13964 print_subexp (exp, pos, stream, PREC_SUFFIX);
13965 fputs_filtered (" in ", stream);
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 fputs_filtered ("'range", stream);
13968 if (exp->elts[pc + 1].longconst > 1)
13969 fprintf_filtered (stream, "(%ld)",
13970 (long) exp->elts[pc + 1].longconst);
13971 return;
13972
13973 case TERNOP_IN_RANGE:
13974 if (prec >= PREC_EQUAL)
13975 fputs_filtered ("(", stream);
13976 /* XXX: sprint_subexp */
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 fputs_filtered (" in ", stream);
13979 print_subexp (exp, pos, stream, PREC_EQUAL);
13980 fputs_filtered (" .. ", stream);
13981 print_subexp (exp, pos, stream, PREC_EQUAL);
13982 if (prec >= PREC_EQUAL)
13983 fputs_filtered (")", stream);
13984 return;
13985
13986 case OP_ATR_FIRST:
13987 case OP_ATR_LAST:
13988 case OP_ATR_LENGTH:
13989 case OP_ATR_IMAGE:
13990 case OP_ATR_MAX:
13991 case OP_ATR_MIN:
13992 case OP_ATR_MODULUS:
13993 case OP_ATR_POS:
13994 case OP_ATR_SIZE:
13995 case OP_ATR_TAG:
13996 case OP_ATR_VAL:
13997 if (exp->elts[*pos].opcode == OP_TYPE)
13998 {
13999 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14000 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14001 &type_print_raw_options);
14002 *pos += 3;
14003 }
14004 else
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14007 if (nargs > 1)
14008 {
14009 int tem;
14010
14011 for (tem = 1; tem < nargs; tem += 1)
14012 {
14013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14015 }
14016 fputs_filtered (")", stream);
14017 }
14018 return;
14019
14020 case UNOP_QUAL:
14021 type_print (exp->elts[pc + 1].type, "", stream, 0);
14022 fputs_filtered ("'(", stream);
14023 print_subexp (exp, pos, stream, PREC_PREFIX);
14024 fputs_filtered (")", stream);
14025 return;
14026
14027 case UNOP_IN_RANGE:
14028 /* XXX: sprint_subexp */
14029 print_subexp (exp, pos, stream, PREC_SUFFIX);
14030 fputs_filtered (" in ", stream);
14031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14032 &type_print_raw_options);
14033 return;
14034
14035 case OP_DISCRETE_RANGE:
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered ("..", stream);
14038 print_subexp (exp, pos, stream, PREC_SUFFIX);
14039 return;
14040
14041 case OP_OTHERS:
14042 fputs_filtered ("others => ", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 return;
14045
14046 case OP_CHOICES:
14047 for (i = 0; i < nargs-1; i += 1)
14048 {
14049 if (i > 0)
14050 fputs_filtered ("|", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14052 }
14053 fputs_filtered (" => ", stream);
14054 print_subexp (exp, pos, stream, PREC_SUFFIX);
14055 return;
14056
14057 case OP_POSITIONAL:
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 return;
14060
14061 case OP_AGGREGATE:
14062 fputs_filtered ("(", stream);
14063 for (i = 0; i < nargs; i += 1)
14064 {
14065 if (i > 0)
14066 fputs_filtered (", ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14068 }
14069 fputs_filtered (")", stream);
14070 return;
14071 }
14072 }
14073
14074 /* Table mapping opcodes into strings for printing operators
14075 and precedences of the operators. */
14076
14077 static const struct op_print ada_op_print_tab[] = {
14078 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14079 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14080 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14081 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14082 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14083 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14084 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14085 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14086 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14087 {">=", BINOP_GEQ, PREC_ORDER, 0},
14088 {">", BINOP_GTR, PREC_ORDER, 0},
14089 {"<", BINOP_LESS, PREC_ORDER, 0},
14090 {">>", BINOP_RSH, PREC_SHIFT, 0},
14091 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14092 {"+", BINOP_ADD, PREC_ADD, 0},
14093 {"-", BINOP_SUB, PREC_ADD, 0},
14094 {"&", BINOP_CONCAT, PREC_ADD, 0},
14095 {"*", BINOP_MUL, PREC_MUL, 0},
14096 {"/", BINOP_DIV, PREC_MUL, 0},
14097 {"rem", BINOP_REM, PREC_MUL, 0},
14098 {"mod", BINOP_MOD, PREC_MUL, 0},
14099 {"**", BINOP_EXP, PREC_REPEAT, 0},
14100 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14101 {"-", UNOP_NEG, PREC_PREFIX, 0},
14102 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14103 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14104 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14105 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14106 {".all", UNOP_IND, PREC_SUFFIX, 1},
14107 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14108 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14109 {NULL, OP_NULL, PREC_SUFFIX, 0}
14110 };
14111 \f
14112 enum ada_primitive_types {
14113 ada_primitive_type_int,
14114 ada_primitive_type_long,
14115 ada_primitive_type_short,
14116 ada_primitive_type_char,
14117 ada_primitive_type_float,
14118 ada_primitive_type_double,
14119 ada_primitive_type_void,
14120 ada_primitive_type_long_long,
14121 ada_primitive_type_long_double,
14122 ada_primitive_type_natural,
14123 ada_primitive_type_positive,
14124 ada_primitive_type_system_address,
14125 ada_primitive_type_storage_offset,
14126 nr_ada_primitive_types
14127 };
14128
14129 static void
14130 ada_language_arch_info (struct gdbarch *gdbarch,
14131 struct language_arch_info *lai)
14132 {
14133 const struct builtin_type *builtin = builtin_type (gdbarch);
14134
14135 lai->primitive_type_vector
14136 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14137 struct type *);
14138
14139 lai->primitive_type_vector [ada_primitive_type_int]
14140 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14141 0, "integer");
14142 lai->primitive_type_vector [ada_primitive_type_long]
14143 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14144 0, "long_integer");
14145 lai->primitive_type_vector [ada_primitive_type_short]
14146 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14147 0, "short_integer");
14148 lai->string_char_type
14149 = lai->primitive_type_vector [ada_primitive_type_char]
14150 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14151 lai->primitive_type_vector [ada_primitive_type_float]
14152 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14153 "float", gdbarch_float_format (gdbarch));
14154 lai->primitive_type_vector [ada_primitive_type_double]
14155 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14156 "long_float", gdbarch_double_format (gdbarch));
14157 lai->primitive_type_vector [ada_primitive_type_long_long]
14158 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14159 0, "long_long_integer");
14160 lai->primitive_type_vector [ada_primitive_type_long_double]
14161 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14162 "long_long_float", gdbarch_long_double_format (gdbarch));
14163 lai->primitive_type_vector [ada_primitive_type_natural]
14164 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14165 0, "natural");
14166 lai->primitive_type_vector [ada_primitive_type_positive]
14167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14168 0, "positive");
14169 lai->primitive_type_vector [ada_primitive_type_void]
14170 = builtin->builtin_void;
14171
14172 lai->primitive_type_vector [ada_primitive_type_system_address]
14173 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14174 "void"));
14175 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14176 = "system__address";
14177
14178 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14179 type. This is a signed integral type whose size is the same as
14180 the size of addresses. */
14181 {
14182 unsigned int addr_length = TYPE_LENGTH
14183 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14184
14185 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14186 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14187 "storage_offset");
14188 }
14189
14190 lai->bool_type_symbol = NULL;
14191 lai->bool_type_default = builtin->builtin_bool;
14192 }
14193 \f
14194 /* Language vector */
14195
14196 /* Not really used, but needed in the ada_language_defn. */
14197
14198 static void
14199 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14200 {
14201 ada_emit_char (c, type, stream, quoter, 1);
14202 }
14203
14204 static int
14205 parse (struct parser_state *ps)
14206 {
14207 warnings_issued = 0;
14208 return ada_parse (ps);
14209 }
14210
14211 static const struct exp_descriptor ada_exp_descriptor = {
14212 ada_print_subexp,
14213 ada_operator_length,
14214 ada_operator_check,
14215 ada_op_name,
14216 ada_dump_subexp_body,
14217 ada_evaluate_subexp
14218 };
14219
14220 /* symbol_name_matcher_ftype adapter for wild_match. */
14221
14222 static bool
14223 do_wild_match (const char *symbol_search_name,
14224 const lookup_name_info &lookup_name,
14225 completion_match_result *comp_match_res)
14226 {
14227 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14228 }
14229
14230 /* symbol_name_matcher_ftype adapter for full_match. */
14231
14232 static bool
14233 do_full_match (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
14235 completion_match_result *comp_match_res)
14236 {
14237 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14238 }
14239
14240 /* Build the Ada lookup name for LOOKUP_NAME. */
14241
14242 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14243 {
14244 const std::string &user_name = lookup_name.name ();
14245
14246 if (user_name[0] == '<')
14247 {
14248 if (user_name.back () == '>')
14249 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14250 else
14251 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14252 m_encoded_p = true;
14253 m_verbatim_p = true;
14254 m_wild_match_p = false;
14255 m_standard_p = false;
14256 }
14257 else
14258 {
14259 m_verbatim_p = false;
14260
14261 m_encoded_p = user_name.find ("__") != std::string::npos;
14262
14263 if (!m_encoded_p)
14264 {
14265 const char *folded = ada_fold_name (user_name.c_str ());
14266 const char *encoded = ada_encode_1 (folded, false);
14267 if (encoded != NULL)
14268 m_encoded_name = encoded;
14269 else
14270 m_encoded_name = user_name;
14271 }
14272 else
14273 m_encoded_name = user_name;
14274
14275 /* Handle the 'package Standard' special case. See description
14276 of m_standard_p. */
14277 if (startswith (m_encoded_name.c_str (), "standard__"))
14278 {
14279 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14280 m_standard_p = true;
14281 }
14282 else
14283 m_standard_p = false;
14284
14285 /* If the name contains a ".", then the user is entering a fully
14286 qualified entity name, and the match must not be done in wild
14287 mode. Similarly, if the user wants to complete what looks
14288 like an encoded name, the match must not be done in wild
14289 mode. Also, in the standard__ special case always do
14290 non-wild matching. */
14291 m_wild_match_p
14292 = (lookup_name.match_type () != symbol_name_match_type::FULL
14293 && !m_encoded_p
14294 && !m_standard_p
14295 && user_name.find ('.') == std::string::npos);
14296 }
14297 }
14298
14299 /* symbol_name_matcher_ftype method for Ada. This only handles
14300 completion mode. */
14301
14302 static bool
14303 ada_symbol_name_matches (const char *symbol_search_name,
14304 const lookup_name_info &lookup_name,
14305 completion_match_result *comp_match_res)
14306 {
14307 return lookup_name.ada ().matches (symbol_search_name,
14308 lookup_name.match_type (),
14309 comp_match_res);
14310 }
14311
14312 /* A name matcher that matches the symbol name exactly, with
14313 strcmp. */
14314
14315 static bool
14316 literal_symbol_name_matcher (const char *symbol_search_name,
14317 const lookup_name_info &lookup_name,
14318 completion_match_result *comp_match_res)
14319 {
14320 const std::string &name = lookup_name.name ();
14321
14322 int cmp = (lookup_name.completion_mode ()
14323 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14324 : strcmp (symbol_search_name, name.c_str ()));
14325 if (cmp == 0)
14326 {
14327 if (comp_match_res != NULL)
14328 comp_match_res->set_match (symbol_search_name);
14329 return true;
14330 }
14331 else
14332 return false;
14333 }
14334
14335 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14336 Ada. */
14337
14338 static symbol_name_matcher_ftype *
14339 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14340 {
14341 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14342 return literal_symbol_name_matcher;
14343
14344 if (lookup_name.completion_mode ())
14345 return ada_symbol_name_matches;
14346 else
14347 {
14348 if (lookup_name.ada ().wild_match_p ())
14349 return do_wild_match;
14350 else
14351 return do_full_match;
14352 }
14353 }
14354
14355 /* Implement the "la_read_var_value" language_defn method for Ada. */
14356
14357 static struct value *
14358 ada_read_var_value (struct symbol *var, const struct block *var_block,
14359 struct frame_info *frame)
14360 {
14361 const struct block *frame_block = NULL;
14362 struct symbol *renaming_sym = NULL;
14363
14364 /* The only case where default_read_var_value is not sufficient
14365 is when VAR is a renaming... */
14366 if (frame)
14367 frame_block = get_frame_block (frame, NULL);
14368 if (frame_block)
14369 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14370 if (renaming_sym != NULL)
14371 return ada_read_renaming_var_value (renaming_sym, frame_block);
14372
14373 /* This is a typical case where we expect the default_read_var_value
14374 function to work. */
14375 return default_read_var_value (var, var_block, frame);
14376 }
14377
14378 static const char *ada_extensions[] =
14379 {
14380 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14381 };
14382
14383 extern const struct language_defn ada_language_defn = {
14384 "ada", /* Language name */
14385 "Ada",
14386 language_ada,
14387 range_check_off,
14388 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14389 that's not quite what this means. */
14390 array_row_major,
14391 macro_expansion_no,
14392 ada_extensions,
14393 &ada_exp_descriptor,
14394 parse,
14395 ada_yyerror,
14396 resolve,
14397 ada_printchar, /* Print a character constant */
14398 ada_printstr, /* Function to print string constant */
14399 emit_char, /* Function to print single char (not used) */
14400 ada_print_type, /* Print a type using appropriate syntax */
14401 ada_print_typedef, /* Print a typedef using appropriate syntax */
14402 ada_val_print, /* Print a value using appropriate syntax */
14403 ada_value_print, /* Print a top-level value */
14404 ada_read_var_value, /* la_read_var_value */
14405 NULL, /* Language specific skip_trampoline */
14406 NULL, /* name_of_this */
14407 true, /* la_store_sym_names_in_linkage_form_p */
14408 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14409 basic_lookup_transparent_type, /* lookup_transparent_type */
14410 ada_la_decode, /* Language specific symbol demangler */
14411 ada_sniff_from_mangled_name,
14412 NULL, /* Language specific
14413 class_name_from_physname */
14414 ada_op_print_tab, /* expression operators for printing */
14415 0, /* c-style arrays */
14416 1, /* String lower bound */
14417 ada_get_gdb_completer_word_break_characters,
14418 ada_collect_symbol_completion_matches,
14419 ada_language_arch_info,
14420 ada_print_array_index,
14421 default_pass_by_reference,
14422 c_get_string,
14423 c_watch_location_expression,
14424 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14425 ada_iterate_over_symbols,
14426 default_search_name_hash,
14427 &ada_varobj_ops,
14428 NULL,
14429 NULL,
14430 LANG_MAGIC
14431 };
14432
14433 /* Command-list for the "set/show ada" prefix command. */
14434 static struct cmd_list_element *set_ada_list;
14435 static struct cmd_list_element *show_ada_list;
14436
14437 /* Implement the "set ada" prefix command. */
14438
14439 static void
14440 set_ada_command (const char *arg, int from_tty)
14441 {
14442 printf_unfiltered (_(\
14443 "\"set ada\" must be followed by the name of a setting.\n"));
14444 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14445 }
14446
14447 /* Implement the "show ada" prefix command. */
14448
14449 static void
14450 show_ada_command (const char *args, int from_tty)
14451 {
14452 cmd_show_list (show_ada_list, from_tty, "");
14453 }
14454
14455 static void
14456 initialize_ada_catchpoint_ops (void)
14457 {
14458 struct breakpoint_ops *ops;
14459
14460 initialize_breakpoint_ops ();
14461
14462 ops = &catch_exception_breakpoint_ops;
14463 *ops = bkpt_breakpoint_ops;
14464 ops->allocate_location = allocate_location_catch_exception;
14465 ops->re_set = re_set_catch_exception;
14466 ops->check_status = check_status_catch_exception;
14467 ops->print_it = print_it_catch_exception;
14468 ops->print_one = print_one_catch_exception;
14469 ops->print_mention = print_mention_catch_exception;
14470 ops->print_recreate = print_recreate_catch_exception;
14471
14472 ops = &catch_exception_unhandled_breakpoint_ops;
14473 *ops = bkpt_breakpoint_ops;
14474 ops->allocate_location = allocate_location_catch_exception_unhandled;
14475 ops->re_set = re_set_catch_exception_unhandled;
14476 ops->check_status = check_status_catch_exception_unhandled;
14477 ops->print_it = print_it_catch_exception_unhandled;
14478 ops->print_one = print_one_catch_exception_unhandled;
14479 ops->print_mention = print_mention_catch_exception_unhandled;
14480 ops->print_recreate = print_recreate_catch_exception_unhandled;
14481
14482 ops = &catch_assert_breakpoint_ops;
14483 *ops = bkpt_breakpoint_ops;
14484 ops->allocate_location = allocate_location_catch_assert;
14485 ops->re_set = re_set_catch_assert;
14486 ops->check_status = check_status_catch_assert;
14487 ops->print_it = print_it_catch_assert;
14488 ops->print_one = print_one_catch_assert;
14489 ops->print_mention = print_mention_catch_assert;
14490 ops->print_recreate = print_recreate_catch_assert;
14491
14492 ops = &catch_handlers_breakpoint_ops;
14493 *ops = bkpt_breakpoint_ops;
14494 ops->allocate_location = allocate_location_catch_handlers;
14495 ops->re_set = re_set_catch_handlers;
14496 ops->check_status = check_status_catch_handlers;
14497 ops->print_it = print_it_catch_handlers;
14498 ops->print_one = print_one_catch_handlers;
14499 ops->print_mention = print_mention_catch_handlers;
14500 ops->print_recreate = print_recreate_catch_handlers;
14501 }
14502
14503 /* This module's 'new_objfile' observer. */
14504
14505 static void
14506 ada_new_objfile_observer (struct objfile *objfile)
14507 {
14508 ada_clear_symbol_cache ();
14509 }
14510
14511 /* This module's 'free_objfile' observer. */
14512
14513 static void
14514 ada_free_objfile_observer (struct objfile *objfile)
14515 {
14516 ada_clear_symbol_cache ();
14517 }
14518
14519 void
14520 _initialize_ada_language (void)
14521 {
14522 initialize_ada_catchpoint_ops ();
14523
14524 add_prefix_cmd ("ada", no_class, set_ada_command,
14525 _("Prefix command for changing Ada-specfic settings"),
14526 &set_ada_list, "set ada ", 0, &setlist);
14527
14528 add_prefix_cmd ("ada", no_class, show_ada_command,
14529 _("Generic command for showing Ada-specific settings."),
14530 &show_ada_list, "show ada ", 0, &showlist);
14531
14532 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14533 &trust_pad_over_xvs, _("\
14534 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14535 Show whether an optimization trusting PAD types over XVS types is activated"),
14536 _("\
14537 This is related to the encoding used by the GNAT compiler. The debugger\n\
14538 should normally trust the contents of PAD types, but certain older versions\n\
14539 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14540 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14541 work around this bug. It is always safe to turn this option \"off\", but\n\
14542 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14543 this option to \"off\" unless necessary."),
14544 NULL, NULL, &set_ada_list, &show_ada_list);
14545
14546 add_setshow_boolean_cmd ("print-signatures", class_vars,
14547 &print_signatures, _("\
14548 Enable or disable the output of formal and return types for functions in the \
14549 overloads selection menu"), _("\
14550 Show whether the output of formal and return types for functions in the \
14551 overloads selection menu is activated"),
14552 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14553
14554 add_catch_command ("exception", _("\
14555 Catch Ada exceptions, when raised.\n\
14556 With an argument, catch only exceptions with the given name."),
14557 catch_ada_exception_command,
14558 NULL,
14559 CATCH_PERMANENT,
14560 CATCH_TEMPORARY);
14561
14562 add_catch_command ("handlers", _("\
14563 Catch Ada exceptions, when handled.\n\
14564 With an argument, catch only exceptions with the given name."),
14565 catch_ada_handlers_command,
14566 NULL,
14567 CATCH_PERMANENT,
14568 CATCH_TEMPORARY);
14569 add_catch_command ("assert", _("\
14570 Catch failed Ada assertions, when raised.\n\
14571 With an argument, catch only exceptions with the given name."),
14572 catch_assert_command,
14573 NULL,
14574 CATCH_PERMANENT,
14575 CATCH_TEMPORARY);
14576
14577 varsize_limit = 65536;
14578 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14579 &varsize_limit, _("\
14580 Set the maximum number of bytes allowed in a variable-size object."), _("\
14581 Show the maximum number of bytes allowed in a variable-size object."), _("\
14582 Attempts to access an object whose size is not a compile-time constant\n\
14583 and exceeds this limit will cause an error."),
14584 NULL, NULL, &setlist, &showlist);
14585
14586 add_info ("exceptions", info_exceptions_command,
14587 _("\
14588 List all Ada exception names.\n\
14589 If a regular expression is passed as an argument, only those matching\n\
14590 the regular expression are listed."));
14591
14592 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14593 _("Set Ada maintenance-related variables."),
14594 &maint_set_ada_cmdlist, "maintenance set ada ",
14595 0/*allow-unknown*/, &maintenance_set_cmdlist);
14596
14597 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14598 _("Show Ada maintenance-related variables"),
14599 &maint_show_ada_cmdlist, "maintenance show ada ",
14600 0/*allow-unknown*/, &maintenance_show_cmdlist);
14601
14602 add_setshow_boolean_cmd
14603 ("ignore-descriptive-types", class_maintenance,
14604 &ada_ignore_descriptive_types_p,
14605 _("Set whether descriptive types generated by GNAT should be ignored."),
14606 _("Show whether descriptive types generated by GNAT should be ignored."),
14607 _("\
14608 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14609 DWARF attribute."),
14610 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14611
14612 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14613 NULL, xcalloc, xfree);
14614
14615 /* The ada-lang observers. */
14616 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14617 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14618 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14619
14620 /* Setup various context-specific data. */
14621 ada_inferior_data
14622 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14623 ada_pspace_data_handle
14624 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14625 }
This page took 0.387544 seconds and 4 git commands to generate.