d08a2644d86464b743506a7c988d3ceb319fa66e
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
210 static int find_struct_field (const char *, struct type *, int,
211 struct type **, int *, int *, int *, int *);
212
213 static int ada_resolve_function (struct block_symbol *, int,
214 struct value **, int, const char *,
215 struct type *, int);
216
217 static int ada_is_direct_array_type (struct type *);
218
219 static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
221
222 static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225 static struct value *assign_aggregate (struct value *, struct value *,
226 struct expression *,
227 int *, enum noside);
228
229 static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234 static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240 static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251 static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
253
254 static struct type *ada_find_any_type (const char *name);
255
256 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
259 \f
260
261 /* The result of a symbol lookup to be stored in our symbol cache. */
262
263 struct cache_entry
264 {
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
268 domain_enum domain;
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277 };
278
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288 #define HASH_SIZE 1009
289
290 struct ada_symbol_cache
291 {
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297 };
298
299 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
300
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit;
303
304 static const char ada_completer_word_break_characters[] =
305 #ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307 #else
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
309 #endif
310
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
313 = "__gnat_ada_main_program_name";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Maintenance-related settings for this module. */
331
332 static struct cmd_list_element *maint_set_ada_cmdlist;
333 static struct cmd_list_element *maint_show_ada_cmdlist;
334
335 /* Implement the "maintenance set ada" (prefix) command. */
336
337 static void
338 maint_set_ada_cmd (const char *args, int from_tty)
339 {
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
342 }
343
344 /* Implement the "maintenance show ada" (prefix) command. */
345
346 static void
347 maint_show_ada_cmd (const char *args, int from_tty)
348 {
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350 }
351
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
353
354 static bool ada_ignore_descriptive_types_p = false;
355
356 /* Inferior-specific data. */
357
358 /* Per-inferior data for this module. */
359
360 struct ada_inferior_data
361 {
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type *tsd_type = nullptr;
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
371 const struct exception_support_info *exception_info = nullptr;
372 };
373
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
376
377 /* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385 static struct ada_inferior_data *
386 get_ada_inferior_data (struct inferior *inf)
387 {
388 struct ada_inferior_data *data;
389
390 data = ada_inferior_data.get (inf);
391 if (data == NULL)
392 data = ada_inferior_data.emplace (inf);
393
394 return data;
395 }
396
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400 static void
401 ada_inferior_exit (struct inferior *inf)
402 {
403 ada_inferior_data.clear (inf);
404 }
405
406
407 /* program-space-specific data. */
408
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
411 {
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache *sym_cache = nullptr;
420 };
421
422 /* Key to our per-program-space data. */
423 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
424
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430 static struct ada_pspace_data *
431 get_ada_pspace_data (struct program_space *pspace)
432 {
433 struct ada_pspace_data *data;
434
435 data = ada_pspace_data_handle.get (pspace);
436 if (data == NULL)
437 data = ada_pspace_data_handle.emplace (pspace);
438
439 return data;
440 }
441
442 /* Utilities */
443
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471 static struct type *
472 ada_typedef_target_type (struct type *type)
473 {
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477 }
478
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483 static const char *
484 ada_unqualified_name (const char *decoded_name)
485 {
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502 }
503
504 /* Return a string starting with '<', followed by STR, and '>'. */
505
506 static std::string
507 add_angle_brackets (const char *str)
508 {
509 return string_printf ("<%s>", str);
510 }
511
512 static const char *
513 ada_get_gdb_completer_word_break_characters (void)
514 {
515 return ada_completer_word_break_characters;
516 }
517
518 /* Print an array element index using the Ada syntax. */
519
520 static void
521 ada_print_array_index (struct value *index_value, struct ui_file *stream,
522 const struct value_print_options *options)
523 {
524 LA_VALUE_PRINT (index_value, stream, options);
525 fprintf_filtered (stream, " => ");
526 }
527
528 /* la_watch_location_expression for Ada. */
529
530 gdb::unique_xmalloc_ptr<char>
531 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532 {
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537 }
538
539 /* Assuming VECT points to an array of *SIZE objects of size
540 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
541 updating *SIZE as necessary and returning the (new) array. */
542
543 void *
544 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
545 {
546 if (*size < min_size)
547 {
548 *size *= 2;
549 if (*size < min_size)
550 *size = min_size;
551 vect = xrealloc (vect, *size * element_size);
552 }
553 return vect;
554 }
555
556 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
557 suffix of FIELD_NAME beginning "___". */
558
559 static int
560 field_name_match (const char *field_name, const char *target)
561 {
562 int len = strlen (target);
563
564 return
565 (strncmp (field_name, target, len) == 0
566 && (field_name[len] == '\0'
567 || (startswith (field_name + len, "___")
568 && strcmp (field_name + strlen (field_name) - 6,
569 "___XVN") != 0)));
570 }
571
572
573 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
574 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
575 and return its index. This function also handles fields whose name
576 have ___ suffixes because the compiler sometimes alters their name
577 by adding such a suffix to represent fields with certain constraints.
578 If the field could not be found, return a negative number if
579 MAYBE_MISSING is set. Otherwise raise an error. */
580
581 int
582 ada_get_field_index (const struct type *type, const char *field_name,
583 int maybe_missing)
584 {
585 int fieldno;
586 struct type *struct_type = check_typedef ((struct type *) type);
587
588 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
589 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
590 return fieldno;
591
592 if (!maybe_missing)
593 error (_("Unable to find field %s in struct %s. Aborting"),
594 field_name, TYPE_NAME (struct_type));
595
596 return -1;
597 }
598
599 /* The length of the prefix of NAME prior to any "___" suffix. */
600
601 int
602 ada_name_prefix_len (const char *name)
603 {
604 if (name == NULL)
605 return 0;
606 else
607 {
608 const char *p = strstr (name, "___");
609
610 if (p == NULL)
611 return strlen (name);
612 else
613 return p - name;
614 }
615 }
616
617 /* Return non-zero if SUFFIX is a suffix of STR.
618 Return zero if STR is null. */
619
620 static int
621 is_suffix (const char *str, const char *suffix)
622 {
623 int len1, len2;
624
625 if (str == NULL)
626 return 0;
627 len1 = strlen (str);
628 len2 = strlen (suffix);
629 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
630 }
631
632 /* The contents of value VAL, treated as a value of type TYPE. The
633 result is an lval in memory if VAL is. */
634
635 static struct value *
636 coerce_unspec_val_to_type (struct value *val, struct type *type)
637 {
638 type = ada_check_typedef (type);
639 if (value_type (val) == type)
640 return val;
641 else
642 {
643 struct value *result;
644
645 /* Make sure that the object size is not unreasonable before
646 trying to allocate some memory for it. */
647 ada_ensure_varsize_limit (type);
648
649 if (value_lazy (val)
650 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
651 result = allocate_value_lazy (type);
652 else
653 {
654 result = allocate_value (type);
655 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
656 }
657 set_value_component_location (result, val);
658 set_value_bitsize (result, value_bitsize (val));
659 set_value_bitpos (result, value_bitpos (val));
660 if (VALUE_LVAL (result) == lval_memory)
661 set_value_address (result, value_address (val));
662 return result;
663 }
664 }
665
666 static const gdb_byte *
667 cond_offset_host (const gdb_byte *valaddr, long offset)
668 {
669 if (valaddr == NULL)
670 return NULL;
671 else
672 return valaddr + offset;
673 }
674
675 static CORE_ADDR
676 cond_offset_target (CORE_ADDR address, long offset)
677 {
678 if (address == 0)
679 return 0;
680 else
681 return address + offset;
682 }
683
684 /* Issue a warning (as for the definition of warning in utils.c, but
685 with exactly one argument rather than ...), unless the limit on the
686 number of warnings has passed during the evaluation of the current
687 expression. */
688
689 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
690 provided by "complaint". */
691 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
692
693 static void
694 lim_warning (const char *format, ...)
695 {
696 va_list args;
697
698 va_start (args, format);
699 warnings_issued += 1;
700 if (warnings_issued <= warning_limit)
701 vwarning (format, args);
702
703 va_end (args);
704 }
705
706 /* Issue an error if the size of an object of type T is unreasonable,
707 i.e. if it would be a bad idea to allocate a value of this type in
708 GDB. */
709
710 void
711 ada_ensure_varsize_limit (const struct type *type)
712 {
713 if (TYPE_LENGTH (type) > varsize_limit)
714 error (_("object size is larger than varsize-limit"));
715 }
716
717 /* Maximum value of a SIZE-byte signed integer type. */
718 static LONGEST
719 max_of_size (int size)
720 {
721 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
722
723 return top_bit | (top_bit - 1);
724 }
725
726 /* Minimum value of a SIZE-byte signed integer type. */
727 static LONGEST
728 min_of_size (int size)
729 {
730 return -max_of_size (size) - 1;
731 }
732
733 /* Maximum value of a SIZE-byte unsigned integer type. */
734 static ULONGEST
735 umax_of_size (int size)
736 {
737 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
738
739 return top_bit | (top_bit - 1);
740 }
741
742 /* Maximum value of integral type T, as a signed quantity. */
743 static LONGEST
744 max_of_type (struct type *t)
745 {
746 if (TYPE_UNSIGNED (t))
747 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
748 else
749 return max_of_size (TYPE_LENGTH (t));
750 }
751
752 /* Minimum value of integral type T, as a signed quantity. */
753 static LONGEST
754 min_of_type (struct type *t)
755 {
756 if (TYPE_UNSIGNED (t))
757 return 0;
758 else
759 return min_of_size (TYPE_LENGTH (t));
760 }
761
762 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
763 LONGEST
764 ada_discrete_type_high_bound (struct type *type)
765 {
766 type = resolve_dynamic_type (type, NULL, 0);
767 switch (TYPE_CODE (type))
768 {
769 case TYPE_CODE_RANGE:
770 return TYPE_HIGH_BOUND (type);
771 case TYPE_CODE_ENUM:
772 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
773 case TYPE_CODE_BOOL:
774 return 1;
775 case TYPE_CODE_CHAR:
776 case TYPE_CODE_INT:
777 return max_of_type (type);
778 default:
779 error (_("Unexpected type in ada_discrete_type_high_bound."));
780 }
781 }
782
783 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
784 LONGEST
785 ada_discrete_type_low_bound (struct type *type)
786 {
787 type = resolve_dynamic_type (type, NULL, 0);
788 switch (TYPE_CODE (type))
789 {
790 case TYPE_CODE_RANGE:
791 return TYPE_LOW_BOUND (type);
792 case TYPE_CODE_ENUM:
793 return TYPE_FIELD_ENUMVAL (type, 0);
794 case TYPE_CODE_BOOL:
795 return 0;
796 case TYPE_CODE_CHAR:
797 case TYPE_CODE_INT:
798 return min_of_type (type);
799 default:
800 error (_("Unexpected type in ada_discrete_type_low_bound."));
801 }
802 }
803
804 /* The identity on non-range types. For range types, the underlying
805 non-range scalar type. */
806
807 static struct type *
808 get_base_type (struct type *type)
809 {
810 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
811 {
812 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
813 return type;
814 type = TYPE_TARGET_TYPE (type);
815 }
816 return type;
817 }
818
819 /* Return a decoded version of the given VALUE. This means returning
820 a value whose type is obtained by applying all the GNAT-specific
821 encodings, making the resulting type a static but standard description
822 of the initial type. */
823
824 struct value *
825 ada_get_decoded_value (struct value *value)
826 {
827 struct type *type = ada_check_typedef (value_type (value));
828
829 if (ada_is_array_descriptor_type (type)
830 || (ada_is_constrained_packed_array_type (type)
831 && TYPE_CODE (type) != TYPE_CODE_PTR))
832 {
833 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
834 value = ada_coerce_to_simple_array_ptr (value);
835 else
836 value = ada_coerce_to_simple_array (value);
837 }
838 else
839 value = ada_to_fixed_value (value);
840
841 return value;
842 }
843
844 /* Same as ada_get_decoded_value, but with the given TYPE.
845 Because there is no associated actual value for this type,
846 the resulting type might be a best-effort approximation in
847 the case of dynamic types. */
848
849 struct type *
850 ada_get_decoded_type (struct type *type)
851 {
852 type = to_static_fixed_type (type);
853 if (ada_is_constrained_packed_array_type (type))
854 type = ada_coerce_to_simple_array_type (type);
855 return type;
856 }
857
858 \f
859
860 /* Language Selection */
861
862 /* If the main program is in Ada, return language_ada, otherwise return LANG
863 (the main program is in Ada iif the adainit symbol is found). */
864
865 enum language
866 ada_update_initial_language (enum language lang)
867 {
868 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
869 return language_ada;
870
871 return lang;
872 }
873
874 /* If the main procedure is written in Ada, then return its name.
875 The result is good until the next call. Return NULL if the main
876 procedure doesn't appear to be in Ada. */
877
878 char *
879 ada_main_name (void)
880 {
881 struct bound_minimal_symbol msym;
882 static gdb::unique_xmalloc_ptr<char> main_program_name;
883
884 /* For Ada, the name of the main procedure is stored in a specific
885 string constant, generated by the binder. Look for that symbol,
886 extract its address, and then read that string. If we didn't find
887 that string, then most probably the main procedure is not written
888 in Ada. */
889 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
890
891 if (msym.minsym != NULL)
892 {
893 CORE_ADDR main_program_name_addr;
894 int err_code;
895
896 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
897 if (main_program_name_addr == 0)
898 error (_("Invalid address for Ada main program name."));
899
900 target_read_string (main_program_name_addr, &main_program_name,
901 1024, &err_code);
902
903 if (err_code != 0)
904 return NULL;
905 return main_program_name.get ();
906 }
907
908 /* The main procedure doesn't seem to be in Ada. */
909 return NULL;
910 }
911 \f
912 /* Symbols */
913
914 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
915 of NULLs. */
916
917 const struct ada_opname_map ada_opname_table[] = {
918 {"Oadd", "\"+\"", BINOP_ADD},
919 {"Osubtract", "\"-\"", BINOP_SUB},
920 {"Omultiply", "\"*\"", BINOP_MUL},
921 {"Odivide", "\"/\"", BINOP_DIV},
922 {"Omod", "\"mod\"", BINOP_MOD},
923 {"Orem", "\"rem\"", BINOP_REM},
924 {"Oexpon", "\"**\"", BINOP_EXP},
925 {"Olt", "\"<\"", BINOP_LESS},
926 {"Ole", "\"<=\"", BINOP_LEQ},
927 {"Ogt", "\">\"", BINOP_GTR},
928 {"Oge", "\">=\"", BINOP_GEQ},
929 {"Oeq", "\"=\"", BINOP_EQUAL},
930 {"One", "\"/=\"", BINOP_NOTEQUAL},
931 {"Oand", "\"and\"", BINOP_BITWISE_AND},
932 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
933 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
934 {"Oconcat", "\"&\"", BINOP_CONCAT},
935 {"Oabs", "\"abs\"", UNOP_ABS},
936 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
937 {"Oadd", "\"+\"", UNOP_PLUS},
938 {"Osubtract", "\"-\"", UNOP_NEG},
939 {NULL, NULL}
940 };
941
942 /* The "encoded" form of DECODED, according to GNAT conventions. The
943 result is valid until the next call to ada_encode. If
944 THROW_ERRORS, throw an error if invalid operator name is found.
945 Otherwise, return NULL in that case. */
946
947 static char *
948 ada_encode_1 (const char *decoded, bool throw_errors)
949 {
950 static char *encoding_buffer = NULL;
951 static size_t encoding_buffer_size = 0;
952 const char *p;
953 int k;
954
955 if (decoded == NULL)
956 return NULL;
957
958 GROW_VECT (encoding_buffer, encoding_buffer_size,
959 2 * strlen (decoded) + 10);
960
961 k = 0;
962 for (p = decoded; *p != '\0'; p += 1)
963 {
964 if (*p == '.')
965 {
966 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
967 k += 2;
968 }
969 else if (*p == '"')
970 {
971 const struct ada_opname_map *mapping;
972
973 for (mapping = ada_opname_table;
974 mapping->encoded != NULL
975 && !startswith (p, mapping->decoded); mapping += 1)
976 ;
977 if (mapping->encoded == NULL)
978 {
979 if (throw_errors)
980 error (_("invalid Ada operator name: %s"), p);
981 else
982 return NULL;
983 }
984 strcpy (encoding_buffer + k, mapping->encoded);
985 k += strlen (mapping->encoded);
986 break;
987 }
988 else
989 {
990 encoding_buffer[k] = *p;
991 k += 1;
992 }
993 }
994
995 encoding_buffer[k] = '\0';
996 return encoding_buffer;
997 }
998
999 /* The "encoded" form of DECODED, according to GNAT conventions.
1000 The result is valid until the next call to ada_encode. */
1001
1002 char *
1003 ada_encode (const char *decoded)
1004 {
1005 return ada_encode_1 (decoded, true);
1006 }
1007
1008 /* Return NAME folded to lower case, or, if surrounded by single
1009 quotes, unfolded, but with the quotes stripped away. Result good
1010 to next call. */
1011
1012 char *
1013 ada_fold_name (const char *name)
1014 {
1015 static char *fold_buffer = NULL;
1016 static size_t fold_buffer_size = 0;
1017
1018 int len = strlen (name);
1019 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1020
1021 if (name[0] == '\'')
1022 {
1023 strncpy (fold_buffer, name + 1, len - 2);
1024 fold_buffer[len - 2] = '\000';
1025 }
1026 else
1027 {
1028 int i;
1029
1030 for (i = 0; i <= len; i += 1)
1031 fold_buffer[i] = tolower (name[i]);
1032 }
1033
1034 return fold_buffer;
1035 }
1036
1037 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1038
1039 static int
1040 is_lower_alphanum (const char c)
1041 {
1042 return (isdigit (c) || (isalpha (c) && islower (c)));
1043 }
1044
1045 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1046 This function saves in LEN the length of that same symbol name but
1047 without either of these suffixes:
1048 . .{DIGIT}+
1049 . ${DIGIT}+
1050 . ___{DIGIT}+
1051 . __{DIGIT}+.
1052
1053 These are suffixes introduced by the compiler for entities such as
1054 nested subprogram for instance, in order to avoid name clashes.
1055 They do not serve any purpose for the debugger. */
1056
1057 static void
1058 ada_remove_trailing_digits (const char *encoded, int *len)
1059 {
1060 if (*len > 1 && isdigit (encoded[*len - 1]))
1061 {
1062 int i = *len - 2;
1063
1064 while (i > 0 && isdigit (encoded[i]))
1065 i--;
1066 if (i >= 0 && encoded[i] == '.')
1067 *len = i;
1068 else if (i >= 0 && encoded[i] == '$')
1069 *len = i;
1070 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1071 *len = i - 2;
1072 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1073 *len = i - 1;
1074 }
1075 }
1076
1077 /* Remove the suffix introduced by the compiler for protected object
1078 subprograms. */
1079
1080 static void
1081 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1082 {
1083 /* Remove trailing N. */
1084
1085 /* Protected entry subprograms are broken into two
1086 separate subprograms: The first one is unprotected, and has
1087 a 'N' suffix; the second is the protected version, and has
1088 the 'P' suffix. The second calls the first one after handling
1089 the protection. Since the P subprograms are internally generated,
1090 we leave these names undecoded, giving the user a clue that this
1091 entity is internal. */
1092
1093 if (*len > 1
1094 && encoded[*len - 1] == 'N'
1095 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1096 *len = *len - 1;
1097 }
1098
1099 /* If ENCODED follows the GNAT entity encoding conventions, then return
1100 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1101 replaced by ENCODED. */
1102
1103 std::string
1104 ada_decode (const char *encoded)
1105 {
1106 int i, j;
1107 int len0;
1108 const char *p;
1109 int at_start_name;
1110 std::string decoded;
1111
1112 /* With function descriptors on PPC64, the value of a symbol named
1113 ".FN", if it exists, is the entry point of the function "FN". */
1114 if (encoded[0] == '.')
1115 encoded += 1;
1116
1117 /* The name of the Ada main procedure starts with "_ada_".
1118 This prefix is not part of the decoded name, so skip this part
1119 if we see this prefix. */
1120 if (startswith (encoded, "_ada_"))
1121 encoded += 5;
1122
1123 /* If the name starts with '_', then it is not a properly encoded
1124 name, so do not attempt to decode it. Similarly, if the name
1125 starts with '<', the name should not be decoded. */
1126 if (encoded[0] == '_' || encoded[0] == '<')
1127 goto Suppress;
1128
1129 len0 = strlen (encoded);
1130
1131 ada_remove_trailing_digits (encoded, &len0);
1132 ada_remove_po_subprogram_suffix (encoded, &len0);
1133
1134 /* Remove the ___X.* suffix if present. Do not forget to verify that
1135 the suffix is located before the current "end" of ENCODED. We want
1136 to avoid re-matching parts of ENCODED that have previously been
1137 marked as discarded (by decrementing LEN0). */
1138 p = strstr (encoded, "___");
1139 if (p != NULL && p - encoded < len0 - 3)
1140 {
1141 if (p[3] == 'X')
1142 len0 = p - encoded;
1143 else
1144 goto Suppress;
1145 }
1146
1147 /* Remove any trailing TKB suffix. It tells us that this symbol
1148 is for the body of a task, but that information does not actually
1149 appear in the decoded name. */
1150
1151 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1152 len0 -= 3;
1153
1154 /* Remove any trailing TB suffix. The TB suffix is slightly different
1155 from the TKB suffix because it is used for non-anonymous task
1156 bodies. */
1157
1158 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1159 len0 -= 2;
1160
1161 /* Remove trailing "B" suffixes. */
1162 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1163
1164 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1165 len0 -= 1;
1166
1167 /* Make decoded big enough for possible expansion by operator name. */
1168
1169 decoded.resize (2 * len0 + 1, 'X');
1170
1171 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1172
1173 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1174 {
1175 i = len0 - 2;
1176 while ((i >= 0 && isdigit (encoded[i]))
1177 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1178 i -= 1;
1179 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1180 len0 = i - 1;
1181 else if (encoded[i] == '$')
1182 len0 = i;
1183 }
1184
1185 /* The first few characters that are not alphabetic are not part
1186 of any encoding we use, so we can copy them over verbatim. */
1187
1188 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1189 decoded[j] = encoded[i];
1190
1191 at_start_name = 1;
1192 while (i < len0)
1193 {
1194 /* Is this a symbol function? */
1195 if (at_start_name && encoded[i] == 'O')
1196 {
1197 int k;
1198
1199 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1200 {
1201 int op_len = strlen (ada_opname_table[k].encoded);
1202 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1203 op_len - 1) == 0)
1204 && !isalnum (encoded[i + op_len]))
1205 {
1206 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1207 at_start_name = 0;
1208 i += op_len;
1209 j += strlen (ada_opname_table[k].decoded);
1210 break;
1211 }
1212 }
1213 if (ada_opname_table[k].encoded != NULL)
1214 continue;
1215 }
1216 at_start_name = 0;
1217
1218 /* Replace "TK__" with "__", which will eventually be translated
1219 into "." (just below). */
1220
1221 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1222 i += 2;
1223
1224 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1225 be translated into "." (just below). These are internal names
1226 generated for anonymous blocks inside which our symbol is nested. */
1227
1228 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1229 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1230 && isdigit (encoded [i+4]))
1231 {
1232 int k = i + 5;
1233
1234 while (k < len0 && isdigit (encoded[k]))
1235 k++; /* Skip any extra digit. */
1236
1237 /* Double-check that the "__B_{DIGITS}+" sequence we found
1238 is indeed followed by "__". */
1239 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1240 i = k;
1241 }
1242
1243 /* Remove _E{DIGITS}+[sb] */
1244
1245 /* Just as for protected object subprograms, there are 2 categories
1246 of subprograms created by the compiler for each entry. The first
1247 one implements the actual entry code, and has a suffix following
1248 the convention above; the second one implements the barrier and
1249 uses the same convention as above, except that the 'E' is replaced
1250 by a 'B'.
1251
1252 Just as above, we do not decode the name of barrier functions
1253 to give the user a clue that the code he is debugging has been
1254 internally generated. */
1255
1256 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1257 && isdigit (encoded[i+2]))
1258 {
1259 int k = i + 3;
1260
1261 while (k < len0 && isdigit (encoded[k]))
1262 k++;
1263
1264 if (k < len0
1265 && (encoded[k] == 'b' || encoded[k] == 's'))
1266 {
1267 k++;
1268 /* Just as an extra precaution, make sure that if this
1269 suffix is followed by anything else, it is a '_'.
1270 Otherwise, we matched this sequence by accident. */
1271 if (k == len0
1272 || (k < len0 && encoded[k] == '_'))
1273 i = k;
1274 }
1275 }
1276
1277 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1278 the GNAT front-end in protected object subprograms. */
1279
1280 if (i < len0 + 3
1281 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1282 {
1283 /* Backtrack a bit up until we reach either the begining of
1284 the encoded name, or "__". Make sure that we only find
1285 digits or lowercase characters. */
1286 const char *ptr = encoded + i - 1;
1287
1288 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1289 ptr--;
1290 if (ptr < encoded
1291 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1292 i++;
1293 }
1294
1295 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1296 {
1297 /* This is a X[bn]* sequence not separated from the previous
1298 part of the name with a non-alpha-numeric character (in other
1299 words, immediately following an alpha-numeric character), then
1300 verify that it is placed at the end of the encoded name. If
1301 not, then the encoding is not valid and we should abort the
1302 decoding. Otherwise, just skip it, it is used in body-nested
1303 package names. */
1304 do
1305 i += 1;
1306 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1307 if (i < len0)
1308 goto Suppress;
1309 }
1310 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1311 {
1312 /* Replace '__' by '.'. */
1313 decoded[j] = '.';
1314 at_start_name = 1;
1315 i += 2;
1316 j += 1;
1317 }
1318 else
1319 {
1320 /* It's a character part of the decoded name, so just copy it
1321 over. */
1322 decoded[j] = encoded[i];
1323 i += 1;
1324 j += 1;
1325 }
1326 }
1327 decoded.resize (j);
1328
1329 /* Decoded names should never contain any uppercase character.
1330 Double-check this, and abort the decoding if we find one. */
1331
1332 for (i = 0; i < decoded.length(); ++i)
1333 if (isupper (decoded[i]) || decoded[i] == ' ')
1334 goto Suppress;
1335
1336 return decoded;
1337
1338 Suppress:
1339 if (encoded[0] == '<')
1340 decoded = encoded;
1341 else
1342 decoded = '<' + std::string(encoded) + '>';
1343 return decoded;
1344
1345 }
1346
1347 /* Table for keeping permanent unique copies of decoded names. Once
1348 allocated, names in this table are never released. While this is a
1349 storage leak, it should not be significant unless there are massive
1350 changes in the set of decoded names in successive versions of a
1351 symbol table loaded during a single session. */
1352 static struct htab *decoded_names_store;
1353
1354 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1355 in the language-specific part of GSYMBOL, if it has not been
1356 previously computed. Tries to save the decoded name in the same
1357 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1358 in any case, the decoded symbol has a lifetime at least that of
1359 GSYMBOL).
1360 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1361 const, but nevertheless modified to a semantically equivalent form
1362 when a decoded name is cached in it. */
1363
1364 const char *
1365 ada_decode_symbol (const struct general_symbol_info *arg)
1366 {
1367 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1368 const char **resultp =
1369 &gsymbol->language_specific.demangled_name;
1370
1371 if (!gsymbol->ada_mangled)
1372 {
1373 std::string decoded = ada_decode (gsymbol->name);
1374 struct obstack *obstack = gsymbol->language_specific.obstack;
1375
1376 gsymbol->ada_mangled = 1;
1377
1378 if (obstack != NULL)
1379 *resultp = obstack_strdup (obstack, decoded.c_str ());
1380 else
1381 {
1382 /* Sometimes, we can't find a corresponding objfile, in
1383 which case, we put the result on the heap. Since we only
1384 decode when needed, we hope this usually does not cause a
1385 significant memory leak (FIXME). */
1386
1387 char **slot = (char **) htab_find_slot (decoded_names_store,
1388 decoded.c_str (), INSERT);
1389
1390 if (*slot == NULL)
1391 *slot = xstrdup (decoded.c_str ());
1392 *resultp = *slot;
1393 }
1394 }
1395
1396 return *resultp;
1397 }
1398
1399 static char *
1400 ada_la_decode (const char *encoded, int options)
1401 {
1402 return xstrdup (ada_decode (encoded).c_str ());
1403 }
1404
1405 /* Implement la_sniff_from_mangled_name for Ada. */
1406
1407 static int
1408 ada_sniff_from_mangled_name (const char *mangled, char **out)
1409 {
1410 std::string demangled = ada_decode (mangled);
1411
1412 *out = NULL;
1413
1414 if (demangled != mangled && demangled[0] != '<')
1415 {
1416 /* Set the gsymbol language to Ada, but still return 0.
1417 Two reasons for that:
1418
1419 1. For Ada, we prefer computing the symbol's decoded name
1420 on the fly rather than pre-compute it, in order to save
1421 memory (Ada projects are typically very large).
1422
1423 2. There are some areas in the definition of the GNAT
1424 encoding where, with a bit of bad luck, we might be able
1425 to decode a non-Ada symbol, generating an incorrect
1426 demangled name (Eg: names ending with "TB" for instance
1427 are identified as task bodies and so stripped from
1428 the decoded name returned).
1429
1430 Returning 1, here, but not setting *DEMANGLED, helps us get a
1431 little bit of the best of both worlds. Because we're last,
1432 we should not affect any of the other languages that were
1433 able to demangle the symbol before us; we get to correctly
1434 tag Ada symbols as such; and even if we incorrectly tagged a
1435 non-Ada symbol, which should be rare, any routing through the
1436 Ada language should be transparent (Ada tries to behave much
1437 like C/C++ with non-Ada symbols). */
1438 return 1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 \f
1445
1446 /* Arrays */
1447
1448 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1449 generated by the GNAT compiler to describe the index type used
1450 for each dimension of an array, check whether it follows the latest
1451 known encoding. If not, fix it up to conform to the latest encoding.
1452 Otherwise, do nothing. This function also does nothing if
1453 INDEX_DESC_TYPE is NULL.
1454
1455 The GNAT encoding used to describe the array index type evolved a bit.
1456 Initially, the information would be provided through the name of each
1457 field of the structure type only, while the type of these fields was
1458 described as unspecified and irrelevant. The debugger was then expected
1459 to perform a global type lookup using the name of that field in order
1460 to get access to the full index type description. Because these global
1461 lookups can be very expensive, the encoding was later enhanced to make
1462 the global lookup unnecessary by defining the field type as being
1463 the full index type description.
1464
1465 The purpose of this routine is to allow us to support older versions
1466 of the compiler by detecting the use of the older encoding, and by
1467 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1468 we essentially replace each field's meaningless type by the associated
1469 index subtype). */
1470
1471 void
1472 ada_fixup_array_indexes_type (struct type *index_desc_type)
1473 {
1474 int i;
1475
1476 if (index_desc_type == NULL)
1477 return;
1478 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1479
1480 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1481 to check one field only, no need to check them all). If not, return
1482 now.
1483
1484 If our INDEX_DESC_TYPE was generated using the older encoding,
1485 the field type should be a meaningless integer type whose name
1486 is not equal to the field name. */
1487 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1488 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1489 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1490 return;
1491
1492 /* Fixup each field of INDEX_DESC_TYPE. */
1493 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1494 {
1495 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1496 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1497
1498 if (raw_type)
1499 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1500 }
1501 }
1502
1503 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1504
1505 static const char *bound_name[] = {
1506 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1507 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1508 };
1509
1510 /* Maximum number of array dimensions we are prepared to handle. */
1511
1512 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1513
1514
1515 /* The desc_* routines return primitive portions of array descriptors
1516 (fat pointers). */
1517
1518 /* The descriptor or array type, if any, indicated by TYPE; removes
1519 level of indirection, if needed. */
1520
1521 static struct type *
1522 desc_base_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return NULL;
1526 type = ada_check_typedef (type);
1527 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1528 type = ada_typedef_target_type (type);
1529
1530 if (type != NULL
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1534 else
1535 return type;
1536 }
1537
1538 /* True iff TYPE indicates a "thin" array pointer type. */
1539
1540 static int
1541 is_thin_pntr (struct type *type)
1542 {
1543 return
1544 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1545 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1546 }
1547
1548 /* The descriptor type for thin pointer type TYPE. */
1549
1550 static struct type *
1551 thin_descriptor_type (struct type *type)
1552 {
1553 struct type *base_type = desc_base_type (type);
1554
1555 if (base_type == NULL)
1556 return NULL;
1557 if (is_suffix (ada_type_name (base_type), "___XVE"))
1558 return base_type;
1559 else
1560 {
1561 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1562
1563 if (alt_type == NULL)
1564 return base_type;
1565 else
1566 return alt_type;
1567 }
1568 }
1569
1570 /* A pointer to the array data for thin-pointer value VAL. */
1571
1572 static struct value *
1573 thin_data_pntr (struct value *val)
1574 {
1575 struct type *type = ada_check_typedef (value_type (val));
1576 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1577
1578 data_type = lookup_pointer_type (data_type);
1579
1580 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1581 return value_cast (data_type, value_copy (val));
1582 else
1583 return value_from_longest (data_type, value_address (val));
1584 }
1585
1586 /* True iff TYPE indicates a "thick" array pointer type. */
1587
1588 static int
1589 is_thick_pntr (struct type *type)
1590 {
1591 type = desc_base_type (type);
1592 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1593 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1594 }
1595
1596 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1597 pointer to one, the type of its bounds data; otherwise, NULL. */
1598
1599 static struct type *
1600 desc_bounds_type (struct type *type)
1601 {
1602 struct type *r;
1603
1604 type = desc_base_type (type);
1605
1606 if (type == NULL)
1607 return NULL;
1608 else if (is_thin_pntr (type))
1609 {
1610 type = thin_descriptor_type (type);
1611 if (type == NULL)
1612 return NULL;
1613 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1614 if (r != NULL)
1615 return ada_check_typedef (r);
1616 }
1617 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1618 {
1619 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1620 if (r != NULL)
1621 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1622 }
1623 return NULL;
1624 }
1625
1626 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1627 one, a pointer to its bounds data. Otherwise NULL. */
1628
1629 static struct value *
1630 desc_bounds (struct value *arr)
1631 {
1632 struct type *type = ada_check_typedef (value_type (arr));
1633
1634 if (is_thin_pntr (type))
1635 {
1636 struct type *bounds_type =
1637 desc_bounds_type (thin_descriptor_type (type));
1638 LONGEST addr;
1639
1640 if (bounds_type == NULL)
1641 error (_("Bad GNAT array descriptor"));
1642
1643 /* NOTE: The following calculation is not really kosher, but
1644 since desc_type is an XVE-encoded type (and shouldn't be),
1645 the correct calculation is a real pain. FIXME (and fix GCC). */
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 addr = value_as_long (arr);
1648 else
1649 addr = value_address (arr);
1650
1651 return
1652 value_from_longest (lookup_pointer_type (bounds_type),
1653 addr - TYPE_LENGTH (bounds_type));
1654 }
1655
1656 else if (is_thick_pntr (type))
1657 {
1658 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1659 _("Bad GNAT array descriptor"));
1660 struct type *p_bounds_type = value_type (p_bounds);
1661
1662 if (p_bounds_type
1663 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1664 {
1665 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1666
1667 if (TYPE_STUB (target_type))
1668 p_bounds = value_cast (lookup_pointer_type
1669 (ada_check_typedef (target_type)),
1670 p_bounds);
1671 }
1672 else
1673 error (_("Bad GNAT array descriptor"));
1674
1675 return p_bounds;
1676 }
1677 else
1678 return NULL;
1679 }
1680
1681 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1682 position of the field containing the address of the bounds data. */
1683
1684 static int
1685 fat_pntr_bounds_bitpos (struct type *type)
1686 {
1687 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1688 }
1689
1690 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1691 size of the field containing the address of the bounds data. */
1692
1693 static int
1694 fat_pntr_bounds_bitsize (struct type *type)
1695 {
1696 type = desc_base_type (type);
1697
1698 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1699 return TYPE_FIELD_BITSIZE (type, 1);
1700 else
1701 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1702 }
1703
1704 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1705 pointer to one, the type of its array data (a array-with-no-bounds type);
1706 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1707 data. */
1708
1709 static struct type *
1710 desc_data_target_type (struct type *type)
1711 {
1712 type = desc_base_type (type);
1713
1714 /* NOTE: The following is bogus; see comment in desc_bounds. */
1715 if (is_thin_pntr (type))
1716 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1717 else if (is_thick_pntr (type))
1718 {
1719 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1720
1721 if (data_type
1722 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1723 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1724 }
1725
1726 return NULL;
1727 }
1728
1729 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1730 its array data. */
1731
1732 static struct value *
1733 desc_data (struct value *arr)
1734 {
1735 struct type *type = value_type (arr);
1736
1737 if (is_thin_pntr (type))
1738 return thin_data_pntr (arr);
1739 else if (is_thick_pntr (type))
1740 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1741 _("Bad GNAT array descriptor"));
1742 else
1743 return NULL;
1744 }
1745
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the data. */
1749
1750 static int
1751 fat_pntr_data_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the data. */
1758
1759 static int
1760 fat_pntr_data_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 0);
1766 else
1767 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1768 }
1769
1770 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1771 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1772 bound, if WHICH is 1. The first bound is I=1. */
1773
1774 static struct value *
1775 desc_one_bound (struct value *bounds, int i, int which)
1776 {
1777 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1778 _("Bad GNAT array descriptor bounds"));
1779 }
1780
1781 /* If BOUNDS is an array-bounds structure type, return the bit position
1782 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1783 bound, if WHICH is 1. The first bound is I=1. */
1784
1785 static int
1786 desc_bound_bitpos (struct type *type, int i, int which)
1787 {
1788 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1789 }
1790
1791 /* If BOUNDS is an array-bounds structure type, return the bit field size
1792 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1793 bound, if WHICH is 1. The first bound is I=1. */
1794
1795 static int
1796 desc_bound_bitsize (struct type *type, int i, int which)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1802 else
1803 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1804 }
1805
1806 /* If TYPE is the type of an array-bounds structure, the type of its
1807 Ith bound (numbering from 1). Otherwise, NULL. */
1808
1809 static struct type *
1810 desc_index_type (struct type *type, int i)
1811 {
1812 type = desc_base_type (type);
1813
1814 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1815 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1816 else
1817 return NULL;
1818 }
1819
1820 /* The number of index positions in the array-bounds type TYPE.
1821 Return 0 if TYPE is NULL. */
1822
1823 static int
1824 desc_arity (struct type *type)
1825 {
1826 type = desc_base_type (type);
1827
1828 if (type != NULL)
1829 return TYPE_NFIELDS (type) / 2;
1830 return 0;
1831 }
1832
1833 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1834 an array descriptor type (representing an unconstrained array
1835 type). */
1836
1837 static int
1838 ada_is_direct_array_type (struct type *type)
1839 {
1840 if (type == NULL)
1841 return 0;
1842 type = ada_check_typedef (type);
1843 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1844 || ada_is_array_descriptor_type (type));
1845 }
1846
1847 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1848 * to one. */
1849
1850 static int
1851 ada_is_array_type (struct type *type)
1852 {
1853 while (type != NULL
1854 && (TYPE_CODE (type) == TYPE_CODE_PTR
1855 || TYPE_CODE (type) == TYPE_CODE_REF))
1856 type = TYPE_TARGET_TYPE (type);
1857 return ada_is_direct_array_type (type);
1858 }
1859
1860 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1861
1862 int
1863 ada_is_simple_array_type (struct type *type)
1864 {
1865 if (type == NULL)
1866 return 0;
1867 type = ada_check_typedef (type);
1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1869 || (TYPE_CODE (type) == TYPE_CODE_PTR
1870 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1871 == TYPE_CODE_ARRAY));
1872 }
1873
1874 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1875
1876 int
1877 ada_is_array_descriptor_type (struct type *type)
1878 {
1879 struct type *data_type = desc_data_target_type (type);
1880
1881 if (type == NULL)
1882 return 0;
1883 type = ada_check_typedef (type);
1884 return (data_type != NULL
1885 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1886 && desc_arity (desc_bounds_type (type)) > 0);
1887 }
1888
1889 /* Non-zero iff type is a partially mal-formed GNAT array
1890 descriptor. FIXME: This is to compensate for some problems with
1891 debugging output from GNAT. Re-examine periodically to see if it
1892 is still needed. */
1893
1894 int
1895 ada_is_bogus_array_descriptor (struct type *type)
1896 {
1897 return
1898 type != NULL
1899 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1900 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1901 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1902 && !ada_is_array_descriptor_type (type);
1903 }
1904
1905
1906 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1907 (fat pointer) returns the type of the array data described---specifically,
1908 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1909 in from the descriptor; otherwise, they are left unspecified. If
1910 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1911 returns NULL. The result is simply the type of ARR if ARR is not
1912 a descriptor. */
1913 struct type *
1914 ada_type_of_array (struct value *arr, int bounds)
1915 {
1916 if (ada_is_constrained_packed_array_type (value_type (arr)))
1917 return decode_constrained_packed_array_type (value_type (arr));
1918
1919 if (!ada_is_array_descriptor_type (value_type (arr)))
1920 return value_type (arr);
1921
1922 if (!bounds)
1923 {
1924 struct type *array_type =
1925 ada_check_typedef (desc_data_target_type (value_type (arr)));
1926
1927 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1928 TYPE_FIELD_BITSIZE (array_type, 0) =
1929 decode_packed_array_bitsize (value_type (arr));
1930
1931 return array_type;
1932 }
1933 else
1934 {
1935 struct type *elt_type;
1936 int arity;
1937 struct value *descriptor;
1938
1939 elt_type = ada_array_element_type (value_type (arr), -1);
1940 arity = ada_array_arity (value_type (arr));
1941
1942 if (elt_type == NULL || arity == 0)
1943 return ada_check_typedef (value_type (arr));
1944
1945 descriptor = desc_bounds (arr);
1946 if (value_as_long (descriptor) == 0)
1947 return NULL;
1948 while (arity > 0)
1949 {
1950 struct type *range_type = alloc_type_copy (value_type (arr));
1951 struct type *array_type = alloc_type_copy (value_type (arr));
1952 struct value *low = desc_one_bound (descriptor, arity, 0);
1953 struct value *high = desc_one_bound (descriptor, arity, 1);
1954
1955 arity -= 1;
1956 create_static_range_type (range_type, value_type (low),
1957 longest_to_int (value_as_long (low)),
1958 longest_to_int (value_as_long (high)));
1959 elt_type = create_array_type (array_type, elt_type, range_type);
1960
1961 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1962 {
1963 /* We need to store the element packed bitsize, as well as
1964 recompute the array size, because it was previously
1965 computed based on the unpacked element size. */
1966 LONGEST lo = value_as_long (low);
1967 LONGEST hi = value_as_long (high);
1968
1969 TYPE_FIELD_BITSIZE (elt_type, 0) =
1970 decode_packed_array_bitsize (value_type (arr));
1971 /* If the array has no element, then the size is already
1972 zero, and does not need to be recomputed. */
1973 if (lo < hi)
1974 {
1975 int array_bitsize =
1976 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1977
1978 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1979 }
1980 }
1981 }
1982
1983 return lookup_pointer_type (elt_type);
1984 }
1985 }
1986
1987 /* If ARR does not represent an array, returns ARR unchanged.
1988 Otherwise, returns either a standard GDB array with bounds set
1989 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1990 GDB array. Returns NULL if ARR is a null fat pointer. */
1991
1992 struct value *
1993 ada_coerce_to_simple_array_ptr (struct value *arr)
1994 {
1995 if (ada_is_array_descriptor_type (value_type (arr)))
1996 {
1997 struct type *arrType = ada_type_of_array (arr, 1);
1998
1999 if (arrType == NULL)
2000 return NULL;
2001 return value_cast (arrType, value_copy (desc_data (arr)));
2002 }
2003 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2004 return decode_constrained_packed_array (arr);
2005 else
2006 return arr;
2007 }
2008
2009 /* If ARR does not represent an array, returns ARR unchanged.
2010 Otherwise, returns a standard GDB array describing ARR (which may
2011 be ARR itself if it already is in the proper form). */
2012
2013 struct value *
2014 ada_coerce_to_simple_array (struct value *arr)
2015 {
2016 if (ada_is_array_descriptor_type (value_type (arr)))
2017 {
2018 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2019
2020 if (arrVal == NULL)
2021 error (_("Bounds unavailable for null array pointer."));
2022 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2023 return value_ind (arrVal);
2024 }
2025 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2026 return decode_constrained_packed_array (arr);
2027 else
2028 return arr;
2029 }
2030
2031 /* If TYPE represents a GNAT array type, return it translated to an
2032 ordinary GDB array type (possibly with BITSIZE fields indicating
2033 packing). For other types, is the identity. */
2034
2035 struct type *
2036 ada_coerce_to_simple_array_type (struct type *type)
2037 {
2038 if (ada_is_constrained_packed_array_type (type))
2039 return decode_constrained_packed_array_type (type);
2040
2041 if (ada_is_array_descriptor_type (type))
2042 return ada_check_typedef (desc_data_target_type (type));
2043
2044 return type;
2045 }
2046
2047 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2048
2049 static int
2050 ada_is_packed_array_type (struct type *type)
2051 {
2052 if (type == NULL)
2053 return 0;
2054 type = desc_base_type (type);
2055 type = ada_check_typedef (type);
2056 return
2057 ada_type_name (type) != NULL
2058 && strstr (ada_type_name (type), "___XP") != NULL;
2059 }
2060
2061 /* Non-zero iff TYPE represents a standard GNAT constrained
2062 packed-array type. */
2063
2064 int
2065 ada_is_constrained_packed_array_type (struct type *type)
2066 {
2067 return ada_is_packed_array_type (type)
2068 && !ada_is_array_descriptor_type (type);
2069 }
2070
2071 /* Non-zero iff TYPE represents an array descriptor for a
2072 unconstrained packed-array type. */
2073
2074 static int
2075 ada_is_unconstrained_packed_array_type (struct type *type)
2076 {
2077 return ada_is_packed_array_type (type)
2078 && ada_is_array_descriptor_type (type);
2079 }
2080
2081 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2082 return the size of its elements in bits. */
2083
2084 static long
2085 decode_packed_array_bitsize (struct type *type)
2086 {
2087 const char *raw_name;
2088 const char *tail;
2089 long bits;
2090
2091 /* Access to arrays implemented as fat pointers are encoded as a typedef
2092 of the fat pointer type. We need the name of the fat pointer type
2093 to do the decoding, so strip the typedef layer. */
2094 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2095 type = ada_typedef_target_type (type);
2096
2097 raw_name = ada_type_name (ada_check_typedef (type));
2098 if (!raw_name)
2099 raw_name = ada_type_name (desc_base_type (type));
2100
2101 if (!raw_name)
2102 return 0;
2103
2104 tail = strstr (raw_name, "___XP");
2105 gdb_assert (tail != NULL);
2106
2107 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2108 {
2109 lim_warning
2110 (_("could not understand bit size information on packed array"));
2111 return 0;
2112 }
2113
2114 return bits;
2115 }
2116
2117 /* Given that TYPE is a standard GDB array type with all bounds filled
2118 in, and that the element size of its ultimate scalar constituents
2119 (that is, either its elements, or, if it is an array of arrays, its
2120 elements' elements, etc.) is *ELT_BITS, return an identical type,
2121 but with the bit sizes of its elements (and those of any
2122 constituent arrays) recorded in the BITSIZE components of its
2123 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2124 in bits.
2125
2126 Note that, for arrays whose index type has an XA encoding where
2127 a bound references a record discriminant, getting that discriminant,
2128 and therefore the actual value of that bound, is not possible
2129 because none of the given parameters gives us access to the record.
2130 This function assumes that it is OK in the context where it is being
2131 used to return an array whose bounds are still dynamic and where
2132 the length is arbitrary. */
2133
2134 static struct type *
2135 constrained_packed_array_type (struct type *type, long *elt_bits)
2136 {
2137 struct type *new_elt_type;
2138 struct type *new_type;
2139 struct type *index_type_desc;
2140 struct type *index_type;
2141 LONGEST low_bound, high_bound;
2142
2143 type = ada_check_typedef (type);
2144 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2145 return type;
2146
2147 index_type_desc = ada_find_parallel_type (type, "___XA");
2148 if (index_type_desc)
2149 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2150 NULL);
2151 else
2152 index_type = TYPE_INDEX_TYPE (type);
2153
2154 new_type = alloc_type_copy (type);
2155 new_elt_type =
2156 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2157 elt_bits);
2158 create_array_type (new_type, new_elt_type, index_type);
2159 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2160 TYPE_NAME (new_type) = ada_type_name (type);
2161
2162 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2163 && is_dynamic_type (check_typedef (index_type)))
2164 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2165 low_bound = high_bound = 0;
2166 if (high_bound < low_bound)
2167 *elt_bits = TYPE_LENGTH (new_type) = 0;
2168 else
2169 {
2170 *elt_bits *= (high_bound - low_bound + 1);
2171 TYPE_LENGTH (new_type) =
2172 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2173 }
2174
2175 TYPE_FIXED_INSTANCE (new_type) = 1;
2176 return new_type;
2177 }
2178
2179 /* The array type encoded by TYPE, where
2180 ada_is_constrained_packed_array_type (TYPE). */
2181
2182 static struct type *
2183 decode_constrained_packed_array_type (struct type *type)
2184 {
2185 const char *raw_name = ada_type_name (ada_check_typedef (type));
2186 char *name;
2187 const char *tail;
2188 struct type *shadow_type;
2189 long bits;
2190
2191 if (!raw_name)
2192 raw_name = ada_type_name (desc_base_type (type));
2193
2194 if (!raw_name)
2195 return NULL;
2196
2197 name = (char *) alloca (strlen (raw_name) + 1);
2198 tail = strstr (raw_name, "___XP");
2199 type = desc_base_type (type);
2200
2201 memcpy (name, raw_name, tail - raw_name);
2202 name[tail - raw_name] = '\000';
2203
2204 shadow_type = ada_find_parallel_type_with_name (type, name);
2205
2206 if (shadow_type == NULL)
2207 {
2208 lim_warning (_("could not find bounds information on packed array"));
2209 return NULL;
2210 }
2211 shadow_type = check_typedef (shadow_type);
2212
2213 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2214 {
2215 lim_warning (_("could not understand bounds "
2216 "information on packed array"));
2217 return NULL;
2218 }
2219
2220 bits = decode_packed_array_bitsize (type);
2221 return constrained_packed_array_type (shadow_type, &bits);
2222 }
2223
2224 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2225 array, returns a simple array that denotes that array. Its type is a
2226 standard GDB array type except that the BITSIZEs of the array
2227 target types are set to the number of bits in each element, and the
2228 type length is set appropriately. */
2229
2230 static struct value *
2231 decode_constrained_packed_array (struct value *arr)
2232 {
2233 struct type *type;
2234
2235 /* If our value is a pointer, then dereference it. Likewise if
2236 the value is a reference. Make sure that this operation does not
2237 cause the target type to be fixed, as this would indirectly cause
2238 this array to be decoded. The rest of the routine assumes that
2239 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2240 and "value_ind" routines to perform the dereferencing, as opposed
2241 to using "ada_coerce_ref" or "ada_value_ind". */
2242 arr = coerce_ref (arr);
2243 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2244 arr = value_ind (arr);
2245
2246 type = decode_constrained_packed_array_type (value_type (arr));
2247 if (type == NULL)
2248 {
2249 error (_("can't unpack array"));
2250 return NULL;
2251 }
2252
2253 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2254 && ada_is_modular_type (value_type (arr)))
2255 {
2256 /* This is a (right-justified) modular type representing a packed
2257 array with no wrapper. In order to interpret the value through
2258 the (left-justified) packed array type we just built, we must
2259 first left-justify it. */
2260 int bit_size, bit_pos;
2261 ULONGEST mod;
2262
2263 mod = ada_modulus (value_type (arr)) - 1;
2264 bit_size = 0;
2265 while (mod > 0)
2266 {
2267 bit_size += 1;
2268 mod >>= 1;
2269 }
2270 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2271 arr = ada_value_primitive_packed_val (arr, NULL,
2272 bit_pos / HOST_CHAR_BIT,
2273 bit_pos % HOST_CHAR_BIT,
2274 bit_size,
2275 type);
2276 }
2277
2278 return coerce_unspec_val_to_type (arr, type);
2279 }
2280
2281
2282 /* The value of the element of packed array ARR at the ARITY indices
2283 given in IND. ARR must be a simple array. */
2284
2285 static struct value *
2286 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2287 {
2288 int i;
2289 int bits, elt_off, bit_off;
2290 long elt_total_bit_offset;
2291 struct type *elt_type;
2292 struct value *v;
2293
2294 bits = 0;
2295 elt_total_bit_offset = 0;
2296 elt_type = ada_check_typedef (value_type (arr));
2297 for (i = 0; i < arity; i += 1)
2298 {
2299 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2300 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2301 error
2302 (_("attempt to do packed indexing of "
2303 "something other than a packed array"));
2304 else
2305 {
2306 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2307 LONGEST lowerbound, upperbound;
2308 LONGEST idx;
2309
2310 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2311 {
2312 lim_warning (_("don't know bounds of array"));
2313 lowerbound = upperbound = 0;
2314 }
2315
2316 idx = pos_atr (ind[i]);
2317 if (idx < lowerbound || idx > upperbound)
2318 lim_warning (_("packed array index %ld out of bounds"),
2319 (long) idx);
2320 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2321 elt_total_bit_offset += (idx - lowerbound) * bits;
2322 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2323 }
2324 }
2325 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2326 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2327
2328 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2329 bits, elt_type);
2330 return v;
2331 }
2332
2333 /* Non-zero iff TYPE includes negative integer values. */
2334
2335 static int
2336 has_negatives (struct type *type)
2337 {
2338 switch (TYPE_CODE (type))
2339 {
2340 default:
2341 return 0;
2342 case TYPE_CODE_INT:
2343 return !TYPE_UNSIGNED (type);
2344 case TYPE_CODE_RANGE:
2345 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2346 }
2347 }
2348
2349 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2350 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2351 the unpacked buffer.
2352
2353 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2354 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2355
2356 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2357 zero otherwise.
2358
2359 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2360
2361 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2362
2363 static void
2364 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2365 gdb_byte *unpacked, int unpacked_len,
2366 int is_big_endian, int is_signed_type,
2367 int is_scalar)
2368 {
2369 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2370 int src_idx; /* Index into the source area */
2371 int src_bytes_left; /* Number of source bytes left to process. */
2372 int srcBitsLeft; /* Number of source bits left to move */
2373 int unusedLS; /* Number of bits in next significant
2374 byte of source that are unused */
2375
2376 int unpacked_idx; /* Index into the unpacked buffer */
2377 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2378
2379 unsigned long accum; /* Staging area for bits being transferred */
2380 int accumSize; /* Number of meaningful bits in accum */
2381 unsigned char sign;
2382
2383 /* Transmit bytes from least to most significant; delta is the direction
2384 the indices move. */
2385 int delta = is_big_endian ? -1 : 1;
2386
2387 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2388 bits from SRC. .*/
2389 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2390 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2391 bit_size, unpacked_len);
2392
2393 srcBitsLeft = bit_size;
2394 src_bytes_left = src_len;
2395 unpacked_bytes_left = unpacked_len;
2396 sign = 0;
2397
2398 if (is_big_endian)
2399 {
2400 src_idx = src_len - 1;
2401 if (is_signed_type
2402 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2403 sign = ~0;
2404
2405 unusedLS =
2406 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2407 % HOST_CHAR_BIT;
2408
2409 if (is_scalar)
2410 {
2411 accumSize = 0;
2412 unpacked_idx = unpacked_len - 1;
2413 }
2414 else
2415 {
2416 /* Non-scalar values must be aligned at a byte boundary... */
2417 accumSize =
2418 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2419 /* ... And are placed at the beginning (most-significant) bytes
2420 of the target. */
2421 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2422 unpacked_bytes_left = unpacked_idx + 1;
2423 }
2424 }
2425 else
2426 {
2427 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2428
2429 src_idx = unpacked_idx = 0;
2430 unusedLS = bit_offset;
2431 accumSize = 0;
2432
2433 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2434 sign = ~0;
2435 }
2436
2437 accum = 0;
2438 while (src_bytes_left > 0)
2439 {
2440 /* Mask for removing bits of the next source byte that are not
2441 part of the value. */
2442 unsigned int unusedMSMask =
2443 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2444 1;
2445 /* Sign-extend bits for this byte. */
2446 unsigned int signMask = sign & ~unusedMSMask;
2447
2448 accum |=
2449 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2450 accumSize += HOST_CHAR_BIT - unusedLS;
2451 if (accumSize >= HOST_CHAR_BIT)
2452 {
2453 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2454 accumSize -= HOST_CHAR_BIT;
2455 accum >>= HOST_CHAR_BIT;
2456 unpacked_bytes_left -= 1;
2457 unpacked_idx += delta;
2458 }
2459 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2460 unusedLS = 0;
2461 src_bytes_left -= 1;
2462 src_idx += delta;
2463 }
2464 while (unpacked_bytes_left > 0)
2465 {
2466 accum |= sign << accumSize;
2467 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2468 accumSize -= HOST_CHAR_BIT;
2469 if (accumSize < 0)
2470 accumSize = 0;
2471 accum >>= HOST_CHAR_BIT;
2472 unpacked_bytes_left -= 1;
2473 unpacked_idx += delta;
2474 }
2475 }
2476
2477 /* Create a new value of type TYPE from the contents of OBJ starting
2478 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2479 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2480 assigning through the result will set the field fetched from.
2481 VALADDR is ignored unless OBJ is NULL, in which case,
2482 VALADDR+OFFSET must address the start of storage containing the
2483 packed value. The value returned in this case is never an lval.
2484 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2485
2486 struct value *
2487 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2488 long offset, int bit_offset, int bit_size,
2489 struct type *type)
2490 {
2491 struct value *v;
2492 const gdb_byte *src; /* First byte containing data to unpack */
2493 gdb_byte *unpacked;
2494 const int is_scalar = is_scalar_type (type);
2495 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2496 gdb::byte_vector staging;
2497
2498 type = ada_check_typedef (type);
2499
2500 if (obj == NULL)
2501 src = valaddr + offset;
2502 else
2503 src = value_contents (obj) + offset;
2504
2505 if (is_dynamic_type (type))
2506 {
2507 /* The length of TYPE might by dynamic, so we need to resolve
2508 TYPE in order to know its actual size, which we then use
2509 to create the contents buffer of the value we return.
2510 The difficulty is that the data containing our object is
2511 packed, and therefore maybe not at a byte boundary. So, what
2512 we do, is unpack the data into a byte-aligned buffer, and then
2513 use that buffer as our object's value for resolving the type. */
2514 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2515 staging.resize (staging_len);
2516
2517 ada_unpack_from_contents (src, bit_offset, bit_size,
2518 staging.data (), staging.size (),
2519 is_big_endian, has_negatives (type),
2520 is_scalar);
2521 type = resolve_dynamic_type (type, staging.data (), 0);
2522 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2523 {
2524 /* This happens when the length of the object is dynamic,
2525 and is actually smaller than the space reserved for it.
2526 For instance, in an array of variant records, the bit_size
2527 we're given is the array stride, which is constant and
2528 normally equal to the maximum size of its element.
2529 But, in reality, each element only actually spans a portion
2530 of that stride. */
2531 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2532 }
2533 }
2534
2535 if (obj == NULL)
2536 {
2537 v = allocate_value (type);
2538 src = valaddr + offset;
2539 }
2540 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2541 {
2542 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2543 gdb_byte *buf;
2544
2545 v = value_at (type, value_address (obj) + offset);
2546 buf = (gdb_byte *) alloca (src_len);
2547 read_memory (value_address (v), buf, src_len);
2548 src = buf;
2549 }
2550 else
2551 {
2552 v = allocate_value (type);
2553 src = value_contents (obj) + offset;
2554 }
2555
2556 if (obj != NULL)
2557 {
2558 long new_offset = offset;
2559
2560 set_value_component_location (v, obj);
2561 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2562 set_value_bitsize (v, bit_size);
2563 if (value_bitpos (v) >= HOST_CHAR_BIT)
2564 {
2565 ++new_offset;
2566 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2567 }
2568 set_value_offset (v, new_offset);
2569
2570 /* Also set the parent value. This is needed when trying to
2571 assign a new value (in inferior memory). */
2572 set_value_parent (v, obj);
2573 }
2574 else
2575 set_value_bitsize (v, bit_size);
2576 unpacked = value_contents_writeable (v);
2577
2578 if (bit_size == 0)
2579 {
2580 memset (unpacked, 0, TYPE_LENGTH (type));
2581 return v;
2582 }
2583
2584 if (staging.size () == TYPE_LENGTH (type))
2585 {
2586 /* Small short-cut: If we've unpacked the data into a buffer
2587 of the same size as TYPE's length, then we can reuse that,
2588 instead of doing the unpacking again. */
2589 memcpy (unpacked, staging.data (), staging.size ());
2590 }
2591 else
2592 ada_unpack_from_contents (src, bit_offset, bit_size,
2593 unpacked, TYPE_LENGTH (type),
2594 is_big_endian, has_negatives (type), is_scalar);
2595
2596 return v;
2597 }
2598
2599 /* Store the contents of FROMVAL into the location of TOVAL.
2600 Return a new value with the location of TOVAL and contents of
2601 FROMVAL. Handles assignment into packed fields that have
2602 floating-point or non-scalar types. */
2603
2604 static struct value *
2605 ada_value_assign (struct value *toval, struct value *fromval)
2606 {
2607 struct type *type = value_type (toval);
2608 int bits = value_bitsize (toval);
2609
2610 toval = ada_coerce_ref (toval);
2611 fromval = ada_coerce_ref (fromval);
2612
2613 if (ada_is_direct_array_type (value_type (toval)))
2614 toval = ada_coerce_to_simple_array (toval);
2615 if (ada_is_direct_array_type (value_type (fromval)))
2616 fromval = ada_coerce_to_simple_array (fromval);
2617
2618 if (!deprecated_value_modifiable (toval))
2619 error (_("Left operand of assignment is not a modifiable lvalue."));
2620
2621 if (VALUE_LVAL (toval) == lval_memory
2622 && bits > 0
2623 && (TYPE_CODE (type) == TYPE_CODE_FLT
2624 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2625 {
2626 int len = (value_bitpos (toval)
2627 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2628 int from_size;
2629 gdb_byte *buffer = (gdb_byte *) alloca (len);
2630 struct value *val;
2631 CORE_ADDR to_addr = value_address (toval);
2632
2633 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2634 fromval = value_cast (type, fromval);
2635
2636 read_memory (to_addr, buffer, len);
2637 from_size = value_bitsize (fromval);
2638 if (from_size == 0)
2639 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2640
2641 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2642 ULONGEST from_offset = 0;
2643 if (is_big_endian && is_scalar_type (value_type (fromval)))
2644 from_offset = from_size - bits;
2645 copy_bitwise (buffer, value_bitpos (toval),
2646 value_contents (fromval), from_offset,
2647 bits, is_big_endian);
2648 write_memory_with_notification (to_addr, buffer, len);
2649
2650 val = value_copy (toval);
2651 memcpy (value_contents_raw (val), value_contents (fromval),
2652 TYPE_LENGTH (type));
2653 deprecated_set_value_type (val, type);
2654
2655 return val;
2656 }
2657
2658 return value_assign (toval, fromval);
2659 }
2660
2661
2662 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2663 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2664 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2665 COMPONENT, and not the inferior's memory. The current contents
2666 of COMPONENT are ignored.
2667
2668 Although not part of the initial design, this function also works
2669 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2670 had a null address, and COMPONENT had an address which is equal to
2671 its offset inside CONTAINER. */
2672
2673 static void
2674 value_assign_to_component (struct value *container, struct value *component,
2675 struct value *val)
2676 {
2677 LONGEST offset_in_container =
2678 (LONGEST) (value_address (component) - value_address (container));
2679 int bit_offset_in_container =
2680 value_bitpos (component) - value_bitpos (container);
2681 int bits;
2682
2683 val = value_cast (value_type (component), val);
2684
2685 if (value_bitsize (component) == 0)
2686 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2687 else
2688 bits = value_bitsize (component);
2689
2690 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2691 {
2692 int src_offset;
2693
2694 if (is_scalar_type (check_typedef (value_type (component))))
2695 src_offset
2696 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2697 else
2698 src_offset = 0;
2699 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2700 value_bitpos (container) + bit_offset_in_container,
2701 value_contents (val), src_offset, bits, 1);
2702 }
2703 else
2704 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2705 value_bitpos (container) + bit_offset_in_container,
2706 value_contents (val), 0, bits, 0);
2707 }
2708
2709 /* Determine if TYPE is an access to an unconstrained array. */
2710
2711 bool
2712 ada_is_access_to_unconstrained_array (struct type *type)
2713 {
2714 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2715 && is_thick_pntr (ada_typedef_target_type (type)));
2716 }
2717
2718 /* The value of the element of array ARR at the ARITY indices given in IND.
2719 ARR may be either a simple array, GNAT array descriptor, or pointer
2720 thereto. */
2721
2722 struct value *
2723 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2724 {
2725 int k;
2726 struct value *elt;
2727 struct type *elt_type;
2728
2729 elt = ada_coerce_to_simple_array (arr);
2730
2731 elt_type = ada_check_typedef (value_type (elt));
2732 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2733 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2734 return value_subscript_packed (elt, arity, ind);
2735
2736 for (k = 0; k < arity; k += 1)
2737 {
2738 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2739
2740 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2741 error (_("too many subscripts (%d expected)"), k);
2742
2743 elt = value_subscript (elt, pos_atr (ind[k]));
2744
2745 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2746 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2747 {
2748 /* The element is a typedef to an unconstrained array,
2749 except that the value_subscript call stripped the
2750 typedef layer. The typedef layer is GNAT's way to
2751 specify that the element is, at the source level, an
2752 access to the unconstrained array, rather than the
2753 unconstrained array. So, we need to restore that
2754 typedef layer, which we can do by forcing the element's
2755 type back to its original type. Otherwise, the returned
2756 value is going to be printed as the array, rather
2757 than as an access. Another symptom of the same issue
2758 would be that an expression trying to dereference the
2759 element would also be improperly rejected. */
2760 deprecated_set_value_type (elt, saved_elt_type);
2761 }
2762
2763 elt_type = ada_check_typedef (value_type (elt));
2764 }
2765
2766 return elt;
2767 }
2768
2769 /* Assuming ARR is a pointer to a GDB array, the value of the element
2770 of *ARR at the ARITY indices given in IND.
2771 Does not read the entire array into memory.
2772
2773 Note: Unlike what one would expect, this function is used instead of
2774 ada_value_subscript for basically all non-packed array types. The reason
2775 for this is that a side effect of doing our own pointer arithmetics instead
2776 of relying on value_subscript is that there is no implicit typedef peeling.
2777 This is important for arrays of array accesses, where it allows us to
2778 preserve the fact that the array's element is an array access, where the
2779 access part os encoded in a typedef layer. */
2780
2781 static struct value *
2782 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2783 {
2784 int k;
2785 struct value *array_ind = ada_value_ind (arr);
2786 struct type *type
2787 = check_typedef (value_enclosing_type (array_ind));
2788
2789 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2790 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2791 return value_subscript_packed (array_ind, arity, ind);
2792
2793 for (k = 0; k < arity; k += 1)
2794 {
2795 LONGEST lwb, upb;
2796 struct value *lwb_value;
2797
2798 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2799 error (_("too many subscripts (%d expected)"), k);
2800 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2801 value_copy (arr));
2802 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2803 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2804 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2805 type = TYPE_TARGET_TYPE (type);
2806 }
2807
2808 return value_ind (arr);
2809 }
2810
2811 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2812 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2813 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2814 this array is LOW, as per Ada rules. */
2815 static struct value *
2816 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2817 int low, int high)
2818 {
2819 struct type *type0 = ada_check_typedef (type);
2820 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2821 struct type *index_type
2822 = create_static_range_type (NULL, base_index_type, low, high);
2823 struct type *slice_type = create_array_type_with_stride
2824 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2825 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2826 TYPE_FIELD_BITSIZE (type0, 0));
2827 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2828 LONGEST base_low_pos, low_pos;
2829 CORE_ADDR base;
2830
2831 if (!discrete_position (base_index_type, low, &low_pos)
2832 || !discrete_position (base_index_type, base_low, &base_low_pos))
2833 {
2834 warning (_("unable to get positions in slice, use bounds instead"));
2835 low_pos = low;
2836 base_low_pos = base_low;
2837 }
2838
2839 base = value_as_address (array_ptr)
2840 + ((low_pos - base_low_pos)
2841 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2842 return value_at_lazy (slice_type, base);
2843 }
2844
2845
2846 static struct value *
2847 ada_value_slice (struct value *array, int low, int high)
2848 {
2849 struct type *type = ada_check_typedef (value_type (array));
2850 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2851 struct type *index_type
2852 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2853 struct type *slice_type = create_array_type_with_stride
2854 (NULL, TYPE_TARGET_TYPE (type), index_type,
2855 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2856 TYPE_FIELD_BITSIZE (type, 0));
2857 LONGEST low_pos, high_pos;
2858
2859 if (!discrete_position (base_index_type, low, &low_pos)
2860 || !discrete_position (base_index_type, high, &high_pos))
2861 {
2862 warning (_("unable to get positions in slice, use bounds instead"));
2863 low_pos = low;
2864 high_pos = high;
2865 }
2866
2867 return value_cast (slice_type,
2868 value_slice (array, low, high_pos - low_pos + 1));
2869 }
2870
2871 /* If type is a record type in the form of a standard GNAT array
2872 descriptor, returns the number of dimensions for type. If arr is a
2873 simple array, returns the number of "array of"s that prefix its
2874 type designation. Otherwise, returns 0. */
2875
2876 int
2877 ada_array_arity (struct type *type)
2878 {
2879 int arity;
2880
2881 if (type == NULL)
2882 return 0;
2883
2884 type = desc_base_type (type);
2885
2886 arity = 0;
2887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2888 return desc_arity (desc_bounds_type (type));
2889 else
2890 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2891 {
2892 arity += 1;
2893 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2894 }
2895
2896 return arity;
2897 }
2898
2899 /* If TYPE is a record type in the form of a standard GNAT array
2900 descriptor or a simple array type, returns the element type for
2901 TYPE after indexing by NINDICES indices, or by all indices if
2902 NINDICES is -1. Otherwise, returns NULL. */
2903
2904 struct type *
2905 ada_array_element_type (struct type *type, int nindices)
2906 {
2907 type = desc_base_type (type);
2908
2909 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2910 {
2911 int k;
2912 struct type *p_array_type;
2913
2914 p_array_type = desc_data_target_type (type);
2915
2916 k = ada_array_arity (type);
2917 if (k == 0)
2918 return NULL;
2919
2920 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2921 if (nindices >= 0 && k > nindices)
2922 k = nindices;
2923 while (k > 0 && p_array_type != NULL)
2924 {
2925 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2926 k -= 1;
2927 }
2928 return p_array_type;
2929 }
2930 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2931 {
2932 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2933 {
2934 type = TYPE_TARGET_TYPE (type);
2935 nindices -= 1;
2936 }
2937 return type;
2938 }
2939
2940 return NULL;
2941 }
2942
2943 /* The type of nth index in arrays of given type (n numbering from 1).
2944 Does not examine memory. Throws an error if N is invalid or TYPE
2945 is not an array type. NAME is the name of the Ada attribute being
2946 evaluated ('range, 'first, 'last, or 'length); it is used in building
2947 the error message. */
2948
2949 static struct type *
2950 ada_index_type (struct type *type, int n, const char *name)
2951 {
2952 struct type *result_type;
2953
2954 type = desc_base_type (type);
2955
2956 if (n < 0 || n > ada_array_arity (type))
2957 error (_("invalid dimension number to '%s"), name);
2958
2959 if (ada_is_simple_array_type (type))
2960 {
2961 int i;
2962
2963 for (i = 1; i < n; i += 1)
2964 type = TYPE_TARGET_TYPE (type);
2965 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2966 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2967 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2968 perhaps stabsread.c would make more sense. */
2969 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2970 result_type = NULL;
2971 }
2972 else
2973 {
2974 result_type = desc_index_type (desc_bounds_type (type), n);
2975 if (result_type == NULL)
2976 error (_("attempt to take bound of something that is not an array"));
2977 }
2978
2979 return result_type;
2980 }
2981
2982 /* Given that arr is an array type, returns the lower bound of the
2983 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2984 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2985 array-descriptor type. It works for other arrays with bounds supplied
2986 by run-time quantities other than discriminants. */
2987
2988 static LONGEST
2989 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2990 {
2991 struct type *type, *index_type_desc, *index_type;
2992 int i;
2993
2994 gdb_assert (which == 0 || which == 1);
2995
2996 if (ada_is_constrained_packed_array_type (arr_type))
2997 arr_type = decode_constrained_packed_array_type (arr_type);
2998
2999 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3000 return (LONGEST) - which;
3001
3002 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3003 type = TYPE_TARGET_TYPE (arr_type);
3004 else
3005 type = arr_type;
3006
3007 if (TYPE_FIXED_INSTANCE (type))
3008 {
3009 /* The array has already been fixed, so we do not need to
3010 check the parallel ___XA type again. That encoding has
3011 already been applied, so ignore it now. */
3012 index_type_desc = NULL;
3013 }
3014 else
3015 {
3016 index_type_desc = ada_find_parallel_type (type, "___XA");
3017 ada_fixup_array_indexes_type (index_type_desc);
3018 }
3019
3020 if (index_type_desc != NULL)
3021 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3022 NULL);
3023 else
3024 {
3025 struct type *elt_type = check_typedef (type);
3026
3027 for (i = 1; i < n; i++)
3028 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3029
3030 index_type = TYPE_INDEX_TYPE (elt_type);
3031 }
3032
3033 return
3034 (LONGEST) (which == 0
3035 ? ada_discrete_type_low_bound (index_type)
3036 : ada_discrete_type_high_bound (index_type));
3037 }
3038
3039 /* Given that arr is an array value, returns the lower bound of the
3040 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3041 WHICH is 1. This routine will also work for arrays with bounds
3042 supplied by run-time quantities other than discriminants. */
3043
3044 static LONGEST
3045 ada_array_bound (struct value *arr, int n, int which)
3046 {
3047 struct type *arr_type;
3048
3049 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3050 arr = value_ind (arr);
3051 arr_type = value_enclosing_type (arr);
3052
3053 if (ada_is_constrained_packed_array_type (arr_type))
3054 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3055 else if (ada_is_simple_array_type (arr_type))
3056 return ada_array_bound_from_type (arr_type, n, which);
3057 else
3058 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3059 }
3060
3061 /* Given that arr is an array value, returns the length of the
3062 nth index. This routine will also work for arrays with bounds
3063 supplied by run-time quantities other than discriminants.
3064 Does not work for arrays indexed by enumeration types with representation
3065 clauses at the moment. */
3066
3067 static LONGEST
3068 ada_array_length (struct value *arr, int n)
3069 {
3070 struct type *arr_type, *index_type;
3071 int low, high;
3072
3073 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3074 arr = value_ind (arr);
3075 arr_type = value_enclosing_type (arr);
3076
3077 if (ada_is_constrained_packed_array_type (arr_type))
3078 return ada_array_length (decode_constrained_packed_array (arr), n);
3079
3080 if (ada_is_simple_array_type (arr_type))
3081 {
3082 low = ada_array_bound_from_type (arr_type, n, 0);
3083 high = ada_array_bound_from_type (arr_type, n, 1);
3084 }
3085 else
3086 {
3087 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3088 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3089 }
3090
3091 arr_type = check_typedef (arr_type);
3092 index_type = ada_index_type (arr_type, n, "length");
3093 if (index_type != NULL)
3094 {
3095 struct type *base_type;
3096 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3097 base_type = TYPE_TARGET_TYPE (index_type);
3098 else
3099 base_type = index_type;
3100
3101 low = pos_atr (value_from_longest (base_type, low));
3102 high = pos_atr (value_from_longest (base_type, high));
3103 }
3104 return high - low + 1;
3105 }
3106
3107 /* An array whose type is that of ARR_TYPE (an array type), with
3108 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3109 less than LOW, then LOW-1 is used. */
3110
3111 static struct value *
3112 empty_array (struct type *arr_type, int low, int high)
3113 {
3114 struct type *arr_type0 = ada_check_typedef (arr_type);
3115 struct type *index_type
3116 = create_static_range_type
3117 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3118 high < low ? low - 1 : high);
3119 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3120
3121 return allocate_value (create_array_type (NULL, elt_type, index_type));
3122 }
3123 \f
3124
3125 /* Name resolution */
3126
3127 /* The "decoded" name for the user-definable Ada operator corresponding
3128 to OP. */
3129
3130 static const char *
3131 ada_decoded_op_name (enum exp_opcode op)
3132 {
3133 int i;
3134
3135 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3136 {
3137 if (ada_opname_table[i].op == op)
3138 return ada_opname_table[i].decoded;
3139 }
3140 error (_("Could not find operator name for opcode"));
3141 }
3142
3143
3144 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3145 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3146 undefined namespace) and converts operators that are
3147 user-defined into appropriate function calls. If CONTEXT_TYPE is
3148 non-null, it provides a preferred result type [at the moment, only
3149 type void has any effect---causing procedures to be preferred over
3150 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3151 return type is preferred. May change (expand) *EXP. */
3152
3153 static void
3154 resolve (expression_up *expp, int void_context_p, int parse_completion,
3155 innermost_block_tracker *tracker)
3156 {
3157 struct type *context_type = NULL;
3158 int pc = 0;
3159
3160 if (void_context_p)
3161 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3162
3163 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3164 }
3165
3166 /* Resolve the operator of the subexpression beginning at
3167 position *POS of *EXPP. "Resolving" consists of replacing
3168 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3169 with their resolutions, replacing built-in operators with
3170 function calls to user-defined operators, where appropriate, and,
3171 when DEPROCEDURE_P is non-zero, converting function-valued variables
3172 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3173 are as in ada_resolve, above. */
3174
3175 static struct value *
3176 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3177 struct type *context_type, int parse_completion,
3178 innermost_block_tracker *tracker)
3179 {
3180 int pc = *pos;
3181 int i;
3182 struct expression *exp; /* Convenience: == *expp. */
3183 enum exp_opcode op = (*expp)->elts[pc].opcode;
3184 struct value **argvec; /* Vector of operand types (alloca'ed). */
3185 int nargs; /* Number of operands. */
3186 int oplen;
3187
3188 argvec = NULL;
3189 nargs = 0;
3190 exp = expp->get ();
3191
3192 /* Pass one: resolve operands, saving their types and updating *pos,
3193 if needed. */
3194 switch (op)
3195 {
3196 case OP_FUNCALL:
3197 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3198 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3199 *pos += 7;
3200 else
3201 {
3202 *pos += 3;
3203 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3204 }
3205 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3206 break;
3207
3208 case UNOP_ADDR:
3209 *pos += 1;
3210 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3211 break;
3212
3213 case UNOP_QUAL:
3214 *pos += 3;
3215 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3216 parse_completion, tracker);
3217 break;
3218
3219 case OP_ATR_MODULUS:
3220 case OP_ATR_SIZE:
3221 case OP_ATR_TAG:
3222 case OP_ATR_FIRST:
3223 case OP_ATR_LAST:
3224 case OP_ATR_LENGTH:
3225 case OP_ATR_POS:
3226 case OP_ATR_VAL:
3227 case OP_ATR_MIN:
3228 case OP_ATR_MAX:
3229 case TERNOP_IN_RANGE:
3230 case BINOP_IN_BOUNDS:
3231 case UNOP_IN_RANGE:
3232 case OP_AGGREGATE:
3233 case OP_OTHERS:
3234 case OP_CHOICES:
3235 case OP_POSITIONAL:
3236 case OP_DISCRETE_RANGE:
3237 case OP_NAME:
3238 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3239 *pos += oplen;
3240 break;
3241
3242 case BINOP_ASSIGN:
3243 {
3244 struct value *arg1;
3245
3246 *pos += 1;
3247 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3248 if (arg1 == NULL)
3249 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3250 else
3251 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3252 tracker);
3253 break;
3254 }
3255
3256 case UNOP_CAST:
3257 *pos += 3;
3258 nargs = 1;
3259 break;
3260
3261 case BINOP_ADD:
3262 case BINOP_SUB:
3263 case BINOP_MUL:
3264 case BINOP_DIV:
3265 case BINOP_REM:
3266 case BINOP_MOD:
3267 case BINOP_EXP:
3268 case BINOP_CONCAT:
3269 case BINOP_LOGICAL_AND:
3270 case BINOP_LOGICAL_OR:
3271 case BINOP_BITWISE_AND:
3272 case BINOP_BITWISE_IOR:
3273 case BINOP_BITWISE_XOR:
3274
3275 case BINOP_EQUAL:
3276 case BINOP_NOTEQUAL:
3277 case BINOP_LESS:
3278 case BINOP_GTR:
3279 case BINOP_LEQ:
3280 case BINOP_GEQ:
3281
3282 case BINOP_REPEAT:
3283 case BINOP_SUBSCRIPT:
3284 case BINOP_COMMA:
3285 *pos += 1;
3286 nargs = 2;
3287 break;
3288
3289 case UNOP_NEG:
3290 case UNOP_PLUS:
3291 case UNOP_LOGICAL_NOT:
3292 case UNOP_ABS:
3293 case UNOP_IND:
3294 *pos += 1;
3295 nargs = 1;
3296 break;
3297
3298 case OP_LONG:
3299 case OP_FLOAT:
3300 case OP_VAR_VALUE:
3301 case OP_VAR_MSYM_VALUE:
3302 *pos += 4;
3303 break;
3304
3305 case OP_TYPE:
3306 case OP_BOOL:
3307 case OP_LAST:
3308 case OP_INTERNALVAR:
3309 *pos += 3;
3310 break;
3311
3312 case UNOP_MEMVAL:
3313 *pos += 3;
3314 nargs = 1;
3315 break;
3316
3317 case OP_REGISTER:
3318 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3319 break;
3320
3321 case STRUCTOP_STRUCT:
3322 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3323 nargs = 1;
3324 break;
3325
3326 case TERNOP_SLICE:
3327 *pos += 1;
3328 nargs = 3;
3329 break;
3330
3331 case OP_STRING:
3332 break;
3333
3334 default:
3335 error (_("Unexpected operator during name resolution"));
3336 }
3337
3338 argvec = XALLOCAVEC (struct value *, nargs + 1);
3339 for (i = 0; i < nargs; i += 1)
3340 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3341 tracker);
3342 argvec[i] = NULL;
3343 exp = expp->get ();
3344
3345 /* Pass two: perform any resolution on principal operator. */
3346 switch (op)
3347 {
3348 default:
3349 break;
3350
3351 case OP_VAR_VALUE:
3352 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3353 {
3354 std::vector<struct block_symbol> candidates;
3355 int n_candidates;
3356
3357 n_candidates =
3358 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3359 (exp->elts[pc + 2].symbol),
3360 exp->elts[pc + 1].block, VAR_DOMAIN,
3361 &candidates);
3362
3363 if (n_candidates > 1)
3364 {
3365 /* Types tend to get re-introduced locally, so if there
3366 are any local symbols that are not types, first filter
3367 out all types. */
3368 int j;
3369 for (j = 0; j < n_candidates; j += 1)
3370 switch (SYMBOL_CLASS (candidates[j].symbol))
3371 {
3372 case LOC_REGISTER:
3373 case LOC_ARG:
3374 case LOC_REF_ARG:
3375 case LOC_REGPARM_ADDR:
3376 case LOC_LOCAL:
3377 case LOC_COMPUTED:
3378 goto FoundNonType;
3379 default:
3380 break;
3381 }
3382 FoundNonType:
3383 if (j < n_candidates)
3384 {
3385 j = 0;
3386 while (j < n_candidates)
3387 {
3388 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3389 {
3390 candidates[j] = candidates[n_candidates - 1];
3391 n_candidates -= 1;
3392 }
3393 else
3394 j += 1;
3395 }
3396 }
3397 }
3398
3399 if (n_candidates == 0)
3400 error (_("No definition found for %s"),
3401 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3402 else if (n_candidates == 1)
3403 i = 0;
3404 else if (deprocedure_p
3405 && !is_nonfunction (candidates.data (), n_candidates))
3406 {
3407 i = ada_resolve_function
3408 (candidates.data (), n_candidates, NULL, 0,
3409 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3410 context_type, parse_completion);
3411 if (i < 0)
3412 error (_("Could not find a match for %s"),
3413 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3414 }
3415 else
3416 {
3417 printf_filtered (_("Multiple matches for %s\n"),
3418 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3419 user_select_syms (candidates.data (), n_candidates, 1);
3420 i = 0;
3421 }
3422
3423 exp->elts[pc + 1].block = candidates[i].block;
3424 exp->elts[pc + 2].symbol = candidates[i].symbol;
3425 tracker->update (candidates[i]);
3426 }
3427
3428 if (deprocedure_p
3429 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3430 == TYPE_CODE_FUNC))
3431 {
3432 replace_operator_with_call (expp, pc, 0, 4,
3433 exp->elts[pc + 2].symbol,
3434 exp->elts[pc + 1].block);
3435 exp = expp->get ();
3436 }
3437 break;
3438
3439 case OP_FUNCALL:
3440 {
3441 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3442 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3443 {
3444 std::vector<struct block_symbol> candidates;
3445 int n_candidates;
3446
3447 n_candidates =
3448 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3449 (exp->elts[pc + 5].symbol),
3450 exp->elts[pc + 4].block, VAR_DOMAIN,
3451 &candidates);
3452
3453 if (n_candidates == 1)
3454 i = 0;
3455 else
3456 {
3457 i = ada_resolve_function
3458 (candidates.data (), n_candidates,
3459 argvec, nargs,
3460 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3461 context_type, parse_completion);
3462 if (i < 0)
3463 error (_("Could not find a match for %s"),
3464 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3465 }
3466
3467 exp->elts[pc + 4].block = candidates[i].block;
3468 exp->elts[pc + 5].symbol = candidates[i].symbol;
3469 tracker->update (candidates[i]);
3470 }
3471 }
3472 break;
3473 case BINOP_ADD:
3474 case BINOP_SUB:
3475 case BINOP_MUL:
3476 case BINOP_DIV:
3477 case BINOP_REM:
3478 case BINOP_MOD:
3479 case BINOP_CONCAT:
3480 case BINOP_BITWISE_AND:
3481 case BINOP_BITWISE_IOR:
3482 case BINOP_BITWISE_XOR:
3483 case BINOP_EQUAL:
3484 case BINOP_NOTEQUAL:
3485 case BINOP_LESS:
3486 case BINOP_GTR:
3487 case BINOP_LEQ:
3488 case BINOP_GEQ:
3489 case BINOP_EXP:
3490 case UNOP_NEG:
3491 case UNOP_PLUS:
3492 case UNOP_LOGICAL_NOT:
3493 case UNOP_ABS:
3494 if (possible_user_operator_p (op, argvec))
3495 {
3496 std::vector<struct block_symbol> candidates;
3497 int n_candidates;
3498
3499 n_candidates =
3500 ada_lookup_symbol_list (ada_decoded_op_name (op),
3501 NULL, VAR_DOMAIN,
3502 &candidates);
3503
3504 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3505 nargs, ada_decoded_op_name (op), NULL,
3506 parse_completion);
3507 if (i < 0)
3508 break;
3509
3510 replace_operator_with_call (expp, pc, nargs, 1,
3511 candidates[i].symbol,
3512 candidates[i].block);
3513 exp = expp->get ();
3514 }
3515 break;
3516
3517 case OP_TYPE:
3518 case OP_REGISTER:
3519 return NULL;
3520 }
3521
3522 *pos = pc;
3523 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3524 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3525 exp->elts[pc + 1].objfile,
3526 exp->elts[pc + 2].msymbol);
3527 else
3528 return evaluate_subexp_type (exp, pos);
3529 }
3530
3531 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3532 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3533 a non-pointer. */
3534 /* The term "match" here is rather loose. The match is heuristic and
3535 liberal. */
3536
3537 static int
3538 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3539 {
3540 ftype = ada_check_typedef (ftype);
3541 atype = ada_check_typedef (atype);
3542
3543 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3544 ftype = TYPE_TARGET_TYPE (ftype);
3545 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3546 atype = TYPE_TARGET_TYPE (atype);
3547
3548 switch (TYPE_CODE (ftype))
3549 {
3550 default:
3551 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3552 case TYPE_CODE_PTR:
3553 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3554 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3555 TYPE_TARGET_TYPE (atype), 0);
3556 else
3557 return (may_deref
3558 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3559 case TYPE_CODE_INT:
3560 case TYPE_CODE_ENUM:
3561 case TYPE_CODE_RANGE:
3562 switch (TYPE_CODE (atype))
3563 {
3564 case TYPE_CODE_INT:
3565 case TYPE_CODE_ENUM:
3566 case TYPE_CODE_RANGE:
3567 return 1;
3568 default:
3569 return 0;
3570 }
3571
3572 case TYPE_CODE_ARRAY:
3573 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3574 || ada_is_array_descriptor_type (atype));
3575
3576 case TYPE_CODE_STRUCT:
3577 if (ada_is_array_descriptor_type (ftype))
3578 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3579 || ada_is_array_descriptor_type (atype));
3580 else
3581 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3582 && !ada_is_array_descriptor_type (atype));
3583
3584 case TYPE_CODE_UNION:
3585 case TYPE_CODE_FLT:
3586 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3587 }
3588 }
3589
3590 /* Return non-zero if the formals of FUNC "sufficiently match" the
3591 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3592 may also be an enumeral, in which case it is treated as a 0-
3593 argument function. */
3594
3595 static int
3596 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3597 {
3598 int i;
3599 struct type *func_type = SYMBOL_TYPE (func);
3600
3601 if (SYMBOL_CLASS (func) == LOC_CONST
3602 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3603 return (n_actuals == 0);
3604 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3605 return 0;
3606
3607 if (TYPE_NFIELDS (func_type) != n_actuals)
3608 return 0;
3609
3610 for (i = 0; i < n_actuals; i += 1)
3611 {
3612 if (actuals[i] == NULL)
3613 return 0;
3614 else
3615 {
3616 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3617 i));
3618 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3619
3620 if (!ada_type_match (ftype, atype, 1))
3621 return 0;
3622 }
3623 }
3624 return 1;
3625 }
3626
3627 /* False iff function type FUNC_TYPE definitely does not produce a value
3628 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3629 FUNC_TYPE is not a valid function type with a non-null return type
3630 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3631
3632 static int
3633 return_match (struct type *func_type, struct type *context_type)
3634 {
3635 struct type *return_type;
3636
3637 if (func_type == NULL)
3638 return 1;
3639
3640 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3641 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3642 else
3643 return_type = get_base_type (func_type);
3644 if (return_type == NULL)
3645 return 1;
3646
3647 context_type = get_base_type (context_type);
3648
3649 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3650 return context_type == NULL || return_type == context_type;
3651 else if (context_type == NULL)
3652 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3653 else
3654 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3655 }
3656
3657
3658 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3659 function (if any) that matches the types of the NARGS arguments in
3660 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3661 that returns that type, then eliminate matches that don't. If
3662 CONTEXT_TYPE is void and there is at least one match that does not
3663 return void, eliminate all matches that do.
3664
3665 Asks the user if there is more than one match remaining. Returns -1
3666 if there is no such symbol or none is selected. NAME is used
3667 solely for messages. May re-arrange and modify SYMS in
3668 the process; the index returned is for the modified vector. */
3669
3670 static int
3671 ada_resolve_function (struct block_symbol syms[],
3672 int nsyms, struct value **args, int nargs,
3673 const char *name, struct type *context_type,
3674 int parse_completion)
3675 {
3676 int fallback;
3677 int k;
3678 int m; /* Number of hits */
3679
3680 m = 0;
3681 /* In the first pass of the loop, we only accept functions matching
3682 context_type. If none are found, we add a second pass of the loop
3683 where every function is accepted. */
3684 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3685 {
3686 for (k = 0; k < nsyms; k += 1)
3687 {
3688 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3689
3690 if (ada_args_match (syms[k].symbol, args, nargs)
3691 && (fallback || return_match (type, context_type)))
3692 {
3693 syms[m] = syms[k];
3694 m += 1;
3695 }
3696 }
3697 }
3698
3699 /* If we got multiple matches, ask the user which one to use. Don't do this
3700 interactive thing during completion, though, as the purpose of the
3701 completion is providing a list of all possible matches. Prompting the
3702 user to filter it down would be completely unexpected in this case. */
3703 if (m == 0)
3704 return -1;
3705 else if (m > 1 && !parse_completion)
3706 {
3707 printf_filtered (_("Multiple matches for %s\n"), name);
3708 user_select_syms (syms, m, 1);
3709 return 0;
3710 }
3711 return 0;
3712 }
3713
3714 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3715 in a listing of choices during disambiguation (see sort_choices, below).
3716 The idea is that overloadings of a subprogram name from the
3717 same package should sort in their source order. We settle for ordering
3718 such symbols by their trailing number (__N or $N). */
3719
3720 static int
3721 encoded_ordered_before (const char *N0, const char *N1)
3722 {
3723 if (N1 == NULL)
3724 return 0;
3725 else if (N0 == NULL)
3726 return 1;
3727 else
3728 {
3729 int k0, k1;
3730
3731 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3732 ;
3733 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3734 ;
3735 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3736 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3737 {
3738 int n0, n1;
3739
3740 n0 = k0;
3741 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3742 n0 -= 1;
3743 n1 = k1;
3744 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3745 n1 -= 1;
3746 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3747 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3748 }
3749 return (strcmp (N0, N1) < 0);
3750 }
3751 }
3752
3753 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3754 encoded names. */
3755
3756 static void
3757 sort_choices (struct block_symbol syms[], int nsyms)
3758 {
3759 int i;
3760
3761 for (i = 1; i < nsyms; i += 1)
3762 {
3763 struct block_symbol sym = syms[i];
3764 int j;
3765
3766 for (j = i - 1; j >= 0; j -= 1)
3767 {
3768 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3769 SYMBOL_LINKAGE_NAME (sym.symbol)))
3770 break;
3771 syms[j + 1] = syms[j];
3772 }
3773 syms[j + 1] = sym;
3774 }
3775 }
3776
3777 /* Whether GDB should display formals and return types for functions in the
3778 overloads selection menu. */
3779 static bool print_signatures = true;
3780
3781 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3782 all but functions, the signature is just the name of the symbol. For
3783 functions, this is the name of the function, the list of types for formals
3784 and the return type (if any). */
3785
3786 static void
3787 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3788 const struct type_print_options *flags)
3789 {
3790 struct type *type = SYMBOL_TYPE (sym);
3791
3792 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3793 if (!print_signatures
3794 || type == NULL
3795 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3796 return;
3797
3798 if (TYPE_NFIELDS (type) > 0)
3799 {
3800 int i;
3801
3802 fprintf_filtered (stream, " (");
3803 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3804 {
3805 if (i > 0)
3806 fprintf_filtered (stream, "; ");
3807 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3808 flags);
3809 }
3810 fprintf_filtered (stream, ")");
3811 }
3812 if (TYPE_TARGET_TYPE (type) != NULL
3813 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3814 {
3815 fprintf_filtered (stream, " return ");
3816 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3817 }
3818 }
3819
3820 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3821 by asking the user (if necessary), returning the number selected,
3822 and setting the first elements of SYMS items. Error if no symbols
3823 selected. */
3824
3825 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3826 to be re-integrated one of these days. */
3827
3828 int
3829 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3830 {
3831 int i;
3832 int *chosen = XALLOCAVEC (int , nsyms);
3833 int n_chosen;
3834 int first_choice = (max_results == 1) ? 1 : 2;
3835 const char *select_mode = multiple_symbols_select_mode ();
3836
3837 if (max_results < 1)
3838 error (_("Request to select 0 symbols!"));
3839 if (nsyms <= 1)
3840 return nsyms;
3841
3842 if (select_mode == multiple_symbols_cancel)
3843 error (_("\
3844 canceled because the command is ambiguous\n\
3845 See set/show multiple-symbol."));
3846
3847 /* If select_mode is "all", then return all possible symbols.
3848 Only do that if more than one symbol can be selected, of course.
3849 Otherwise, display the menu as usual. */
3850 if (select_mode == multiple_symbols_all && max_results > 1)
3851 return nsyms;
3852
3853 printf_filtered (_("[0] cancel\n"));
3854 if (max_results > 1)
3855 printf_filtered (_("[1] all\n"));
3856
3857 sort_choices (syms, nsyms);
3858
3859 for (i = 0; i < nsyms; i += 1)
3860 {
3861 if (syms[i].symbol == NULL)
3862 continue;
3863
3864 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3865 {
3866 struct symtab_and_line sal =
3867 find_function_start_sal (syms[i].symbol, 1);
3868
3869 printf_filtered ("[%d] ", i + first_choice);
3870 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3871 &type_print_raw_options);
3872 if (sal.symtab == NULL)
3873 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3874 metadata_style.style ().ptr (), nullptr, sal.line);
3875 else
3876 printf_filtered
3877 (_(" at %ps:%d\n"),
3878 styled_string (file_name_style.style (),
3879 symtab_to_filename_for_display (sal.symtab)),
3880 sal.line);
3881 continue;
3882 }
3883 else
3884 {
3885 int is_enumeral =
3886 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3887 && SYMBOL_TYPE (syms[i].symbol) != NULL
3888 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3889 struct symtab *symtab = NULL;
3890
3891 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3892 symtab = symbol_symtab (syms[i].symbol);
3893
3894 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3895 {
3896 printf_filtered ("[%d] ", i + first_choice);
3897 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3898 &type_print_raw_options);
3899 printf_filtered (_(" at %s:%d\n"),
3900 symtab_to_filename_for_display (symtab),
3901 SYMBOL_LINE (syms[i].symbol));
3902 }
3903 else if (is_enumeral
3904 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3905 {
3906 printf_filtered (("[%d] "), i + first_choice);
3907 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3908 gdb_stdout, -1, 0, &type_print_raw_options);
3909 printf_filtered (_("'(%s) (enumeral)\n"),
3910 SYMBOL_PRINT_NAME (syms[i].symbol));
3911 }
3912 else
3913 {
3914 printf_filtered ("[%d] ", i + first_choice);
3915 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3916 &type_print_raw_options);
3917
3918 if (symtab != NULL)
3919 printf_filtered (is_enumeral
3920 ? _(" in %s (enumeral)\n")
3921 : _(" at %s:?\n"),
3922 symtab_to_filename_for_display (symtab));
3923 else
3924 printf_filtered (is_enumeral
3925 ? _(" (enumeral)\n")
3926 : _(" at ?\n"));
3927 }
3928 }
3929 }
3930
3931 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3932 "overload-choice");
3933
3934 for (i = 0; i < n_chosen; i += 1)
3935 syms[i] = syms[chosen[i]];
3936
3937 return n_chosen;
3938 }
3939
3940 /* Read and validate a set of numeric choices from the user in the
3941 range 0 .. N_CHOICES-1. Place the results in increasing
3942 order in CHOICES[0 .. N-1], and return N.
3943
3944 The user types choices as a sequence of numbers on one line
3945 separated by blanks, encoding them as follows:
3946
3947 + A choice of 0 means to cancel the selection, throwing an error.
3948 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3949 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3950
3951 The user is not allowed to choose more than MAX_RESULTS values.
3952
3953 ANNOTATION_SUFFIX, if present, is used to annotate the input
3954 prompts (for use with the -f switch). */
3955
3956 int
3957 get_selections (int *choices, int n_choices, int max_results,
3958 int is_all_choice, const char *annotation_suffix)
3959 {
3960 char *args;
3961 const char *prompt;
3962 int n_chosen;
3963 int first_choice = is_all_choice ? 2 : 1;
3964
3965 prompt = getenv ("PS2");
3966 if (prompt == NULL)
3967 prompt = "> ";
3968
3969 args = command_line_input (prompt, annotation_suffix);
3970
3971 if (args == NULL)
3972 error_no_arg (_("one or more choice numbers"));
3973
3974 n_chosen = 0;
3975
3976 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3977 order, as given in args. Choices are validated. */
3978 while (1)
3979 {
3980 char *args2;
3981 int choice, j;
3982
3983 args = skip_spaces (args);
3984 if (*args == '\0' && n_chosen == 0)
3985 error_no_arg (_("one or more choice numbers"));
3986 else if (*args == '\0')
3987 break;
3988
3989 choice = strtol (args, &args2, 10);
3990 if (args == args2 || choice < 0
3991 || choice > n_choices + first_choice - 1)
3992 error (_("Argument must be choice number"));
3993 args = args2;
3994
3995 if (choice == 0)
3996 error (_("cancelled"));
3997
3998 if (choice < first_choice)
3999 {
4000 n_chosen = n_choices;
4001 for (j = 0; j < n_choices; j += 1)
4002 choices[j] = j;
4003 break;
4004 }
4005 choice -= first_choice;
4006
4007 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4008 {
4009 }
4010
4011 if (j < 0 || choice != choices[j])
4012 {
4013 int k;
4014
4015 for (k = n_chosen - 1; k > j; k -= 1)
4016 choices[k + 1] = choices[k];
4017 choices[j + 1] = choice;
4018 n_chosen += 1;
4019 }
4020 }
4021
4022 if (n_chosen > max_results)
4023 error (_("Select no more than %d of the above"), max_results);
4024
4025 return n_chosen;
4026 }
4027
4028 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4029 on the function identified by SYM and BLOCK, and taking NARGS
4030 arguments. Update *EXPP as needed to hold more space. */
4031
4032 static void
4033 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4034 int oplen, struct symbol *sym,
4035 const struct block *block)
4036 {
4037 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4038 symbol, -oplen for operator being replaced). */
4039 struct expression *newexp = (struct expression *)
4040 xzalloc (sizeof (struct expression)
4041 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4042 struct expression *exp = expp->get ();
4043
4044 newexp->nelts = exp->nelts + 7 - oplen;
4045 newexp->language_defn = exp->language_defn;
4046 newexp->gdbarch = exp->gdbarch;
4047 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4048 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4049 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4050
4051 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4052 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4053
4054 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4055 newexp->elts[pc + 4].block = block;
4056 newexp->elts[pc + 5].symbol = sym;
4057
4058 expp->reset (newexp);
4059 }
4060
4061 /* Type-class predicates */
4062
4063 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4064 or FLOAT). */
4065
4066 static int
4067 numeric_type_p (struct type *type)
4068 {
4069 if (type == NULL)
4070 return 0;
4071 else
4072 {
4073 switch (TYPE_CODE (type))
4074 {
4075 case TYPE_CODE_INT:
4076 case TYPE_CODE_FLT:
4077 return 1;
4078 case TYPE_CODE_RANGE:
4079 return (type == TYPE_TARGET_TYPE (type)
4080 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4081 default:
4082 return 0;
4083 }
4084 }
4085 }
4086
4087 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4088
4089 static int
4090 integer_type_p (struct type *type)
4091 {
4092 if (type == NULL)
4093 return 0;
4094 else
4095 {
4096 switch (TYPE_CODE (type))
4097 {
4098 case TYPE_CODE_INT:
4099 return 1;
4100 case TYPE_CODE_RANGE:
4101 return (type == TYPE_TARGET_TYPE (type)
4102 || integer_type_p (TYPE_TARGET_TYPE (type)));
4103 default:
4104 return 0;
4105 }
4106 }
4107 }
4108
4109 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4110
4111 static int
4112 scalar_type_p (struct type *type)
4113 {
4114 if (type == NULL)
4115 return 0;
4116 else
4117 {
4118 switch (TYPE_CODE (type))
4119 {
4120 case TYPE_CODE_INT:
4121 case TYPE_CODE_RANGE:
4122 case TYPE_CODE_ENUM:
4123 case TYPE_CODE_FLT:
4124 return 1;
4125 default:
4126 return 0;
4127 }
4128 }
4129 }
4130
4131 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4132
4133 static int
4134 discrete_type_p (struct type *type)
4135 {
4136 if (type == NULL)
4137 return 0;
4138 else
4139 {
4140 switch (TYPE_CODE (type))
4141 {
4142 case TYPE_CODE_INT:
4143 case TYPE_CODE_RANGE:
4144 case TYPE_CODE_ENUM:
4145 case TYPE_CODE_BOOL:
4146 return 1;
4147 default:
4148 return 0;
4149 }
4150 }
4151 }
4152
4153 /* Returns non-zero if OP with operands in the vector ARGS could be
4154 a user-defined function. Errs on the side of pre-defined operators
4155 (i.e., result 0). */
4156
4157 static int
4158 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4159 {
4160 struct type *type0 =
4161 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4162 struct type *type1 =
4163 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4164
4165 if (type0 == NULL)
4166 return 0;
4167
4168 switch (op)
4169 {
4170 default:
4171 return 0;
4172
4173 case BINOP_ADD:
4174 case BINOP_SUB:
4175 case BINOP_MUL:
4176 case BINOP_DIV:
4177 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4178
4179 case BINOP_REM:
4180 case BINOP_MOD:
4181 case BINOP_BITWISE_AND:
4182 case BINOP_BITWISE_IOR:
4183 case BINOP_BITWISE_XOR:
4184 return (!(integer_type_p (type0) && integer_type_p (type1)));
4185
4186 case BINOP_EQUAL:
4187 case BINOP_NOTEQUAL:
4188 case BINOP_LESS:
4189 case BINOP_GTR:
4190 case BINOP_LEQ:
4191 case BINOP_GEQ:
4192 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4193
4194 case BINOP_CONCAT:
4195 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4196
4197 case BINOP_EXP:
4198 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4199
4200 case UNOP_NEG:
4201 case UNOP_PLUS:
4202 case UNOP_LOGICAL_NOT:
4203 case UNOP_ABS:
4204 return (!numeric_type_p (type0));
4205
4206 }
4207 }
4208 \f
4209 /* Renaming */
4210
4211 /* NOTES:
4212
4213 1. In the following, we assume that a renaming type's name may
4214 have an ___XD suffix. It would be nice if this went away at some
4215 point.
4216 2. We handle both the (old) purely type-based representation of
4217 renamings and the (new) variable-based encoding. At some point,
4218 it is devoutly to be hoped that the former goes away
4219 (FIXME: hilfinger-2007-07-09).
4220 3. Subprogram renamings are not implemented, although the XRS
4221 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4222
4223 /* If SYM encodes a renaming,
4224
4225 <renaming> renames <renamed entity>,
4226
4227 sets *LEN to the length of the renamed entity's name,
4228 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4229 the string describing the subcomponent selected from the renamed
4230 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4231 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4232 are undefined). Otherwise, returns a value indicating the category
4233 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4234 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4235 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4236 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4237 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4238 may be NULL, in which case they are not assigned.
4239
4240 [Currently, however, GCC does not generate subprogram renamings.] */
4241
4242 enum ada_renaming_category
4243 ada_parse_renaming (struct symbol *sym,
4244 const char **renamed_entity, int *len,
4245 const char **renaming_expr)
4246 {
4247 enum ada_renaming_category kind;
4248 const char *info;
4249 const char *suffix;
4250
4251 if (sym == NULL)
4252 return ADA_NOT_RENAMING;
4253 switch (SYMBOL_CLASS (sym))
4254 {
4255 default:
4256 return ADA_NOT_RENAMING;
4257 case LOC_LOCAL:
4258 case LOC_STATIC:
4259 case LOC_COMPUTED:
4260 case LOC_OPTIMIZED_OUT:
4261 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4262 if (info == NULL)
4263 return ADA_NOT_RENAMING;
4264 switch (info[5])
4265 {
4266 case '_':
4267 kind = ADA_OBJECT_RENAMING;
4268 info += 6;
4269 break;
4270 case 'E':
4271 kind = ADA_EXCEPTION_RENAMING;
4272 info += 7;
4273 break;
4274 case 'P':
4275 kind = ADA_PACKAGE_RENAMING;
4276 info += 7;
4277 break;
4278 case 'S':
4279 kind = ADA_SUBPROGRAM_RENAMING;
4280 info += 7;
4281 break;
4282 default:
4283 return ADA_NOT_RENAMING;
4284 }
4285 }
4286
4287 if (renamed_entity != NULL)
4288 *renamed_entity = info;
4289 suffix = strstr (info, "___XE");
4290 if (suffix == NULL || suffix == info)
4291 return ADA_NOT_RENAMING;
4292 if (len != NULL)
4293 *len = strlen (info) - strlen (suffix);
4294 suffix += 5;
4295 if (renaming_expr != NULL)
4296 *renaming_expr = suffix;
4297 return kind;
4298 }
4299
4300 /* Compute the value of the given RENAMING_SYM, which is expected to
4301 be a symbol encoding a renaming expression. BLOCK is the block
4302 used to evaluate the renaming. */
4303
4304 static struct value *
4305 ada_read_renaming_var_value (struct symbol *renaming_sym,
4306 const struct block *block)
4307 {
4308 const char *sym_name;
4309
4310 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4311 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4312 return evaluate_expression (expr.get ());
4313 }
4314 \f
4315
4316 /* Evaluation: Function Calls */
4317
4318 /* Return an lvalue containing the value VAL. This is the identity on
4319 lvalues, and otherwise has the side-effect of allocating memory
4320 in the inferior where a copy of the value contents is copied. */
4321
4322 static struct value *
4323 ensure_lval (struct value *val)
4324 {
4325 if (VALUE_LVAL (val) == not_lval
4326 || VALUE_LVAL (val) == lval_internalvar)
4327 {
4328 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4329 const CORE_ADDR addr =
4330 value_as_long (value_allocate_space_in_inferior (len));
4331
4332 VALUE_LVAL (val) = lval_memory;
4333 set_value_address (val, addr);
4334 write_memory (addr, value_contents (val), len);
4335 }
4336
4337 return val;
4338 }
4339
4340 /* Return the value ACTUAL, converted to be an appropriate value for a
4341 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4342 allocating any necessary descriptors (fat pointers), or copies of
4343 values not residing in memory, updating it as needed. */
4344
4345 struct value *
4346 ada_convert_actual (struct value *actual, struct type *formal_type0)
4347 {
4348 struct type *actual_type = ada_check_typedef (value_type (actual));
4349 struct type *formal_type = ada_check_typedef (formal_type0);
4350 struct type *formal_target =
4351 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4352 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4353 struct type *actual_target =
4354 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4355 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4356
4357 if (ada_is_array_descriptor_type (formal_target)
4358 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4359 return make_array_descriptor (formal_type, actual);
4360 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4361 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4362 {
4363 struct value *result;
4364
4365 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4366 && ada_is_array_descriptor_type (actual_target))
4367 result = desc_data (actual);
4368 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4369 {
4370 if (VALUE_LVAL (actual) != lval_memory)
4371 {
4372 struct value *val;
4373
4374 actual_type = ada_check_typedef (value_type (actual));
4375 val = allocate_value (actual_type);
4376 memcpy ((char *) value_contents_raw (val),
4377 (char *) value_contents (actual),
4378 TYPE_LENGTH (actual_type));
4379 actual = ensure_lval (val);
4380 }
4381 result = value_addr (actual);
4382 }
4383 else
4384 return actual;
4385 return value_cast_pointers (formal_type, result, 0);
4386 }
4387 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4388 return ada_value_ind (actual);
4389 else if (ada_is_aligner_type (formal_type))
4390 {
4391 /* We need to turn this parameter into an aligner type
4392 as well. */
4393 struct value *aligner = allocate_value (formal_type);
4394 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4395
4396 value_assign_to_component (aligner, component, actual);
4397 return aligner;
4398 }
4399
4400 return actual;
4401 }
4402
4403 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4404 type TYPE. This is usually an inefficient no-op except on some targets
4405 (such as AVR) where the representation of a pointer and an address
4406 differs. */
4407
4408 static CORE_ADDR
4409 value_pointer (struct value *value, struct type *type)
4410 {
4411 struct gdbarch *gdbarch = get_type_arch (type);
4412 unsigned len = TYPE_LENGTH (type);
4413 gdb_byte *buf = (gdb_byte *) alloca (len);
4414 CORE_ADDR addr;
4415
4416 addr = value_address (value);
4417 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4418 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4419 return addr;
4420 }
4421
4422
4423 /* Push a descriptor of type TYPE for array value ARR on the stack at
4424 *SP, updating *SP to reflect the new descriptor. Return either
4425 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4426 to-descriptor type rather than a descriptor type), a struct value *
4427 representing a pointer to this descriptor. */
4428
4429 static struct value *
4430 make_array_descriptor (struct type *type, struct value *arr)
4431 {
4432 struct type *bounds_type = desc_bounds_type (type);
4433 struct type *desc_type = desc_base_type (type);
4434 struct value *descriptor = allocate_value (desc_type);
4435 struct value *bounds = allocate_value (bounds_type);
4436 int i;
4437
4438 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4439 i > 0; i -= 1)
4440 {
4441 modify_field (value_type (bounds), value_contents_writeable (bounds),
4442 ada_array_bound (arr, i, 0),
4443 desc_bound_bitpos (bounds_type, i, 0),
4444 desc_bound_bitsize (bounds_type, i, 0));
4445 modify_field (value_type (bounds), value_contents_writeable (bounds),
4446 ada_array_bound (arr, i, 1),
4447 desc_bound_bitpos (bounds_type, i, 1),
4448 desc_bound_bitsize (bounds_type, i, 1));
4449 }
4450
4451 bounds = ensure_lval (bounds);
4452
4453 modify_field (value_type (descriptor),
4454 value_contents_writeable (descriptor),
4455 value_pointer (ensure_lval (arr),
4456 TYPE_FIELD_TYPE (desc_type, 0)),
4457 fat_pntr_data_bitpos (desc_type),
4458 fat_pntr_data_bitsize (desc_type));
4459
4460 modify_field (value_type (descriptor),
4461 value_contents_writeable (descriptor),
4462 value_pointer (bounds,
4463 TYPE_FIELD_TYPE (desc_type, 1)),
4464 fat_pntr_bounds_bitpos (desc_type),
4465 fat_pntr_bounds_bitsize (desc_type));
4466
4467 descriptor = ensure_lval (descriptor);
4468
4469 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4470 return value_addr (descriptor);
4471 else
4472 return descriptor;
4473 }
4474 \f
4475 /* Symbol Cache Module */
4476
4477 /* Performance measurements made as of 2010-01-15 indicate that
4478 this cache does bring some noticeable improvements. Depending
4479 on the type of entity being printed, the cache can make it as much
4480 as an order of magnitude faster than without it.
4481
4482 The descriptive type DWARF extension has significantly reduced
4483 the need for this cache, at least when DWARF is being used. However,
4484 even in this case, some expensive name-based symbol searches are still
4485 sometimes necessary - to find an XVZ variable, mostly. */
4486
4487 /* Initialize the contents of SYM_CACHE. */
4488
4489 static void
4490 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4491 {
4492 obstack_init (&sym_cache->cache_space);
4493 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4494 }
4495
4496 /* Free the memory used by SYM_CACHE. */
4497
4498 static void
4499 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4500 {
4501 obstack_free (&sym_cache->cache_space, NULL);
4502 xfree (sym_cache);
4503 }
4504
4505 /* Return the symbol cache associated to the given program space PSPACE.
4506 If not allocated for this PSPACE yet, allocate and initialize one. */
4507
4508 static struct ada_symbol_cache *
4509 ada_get_symbol_cache (struct program_space *pspace)
4510 {
4511 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4512
4513 if (pspace_data->sym_cache == NULL)
4514 {
4515 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4516 ada_init_symbol_cache (pspace_data->sym_cache);
4517 }
4518
4519 return pspace_data->sym_cache;
4520 }
4521
4522 /* Clear all entries from the symbol cache. */
4523
4524 static void
4525 ada_clear_symbol_cache (void)
4526 {
4527 struct ada_symbol_cache *sym_cache
4528 = ada_get_symbol_cache (current_program_space);
4529
4530 obstack_free (&sym_cache->cache_space, NULL);
4531 ada_init_symbol_cache (sym_cache);
4532 }
4533
4534 /* Search our cache for an entry matching NAME and DOMAIN.
4535 Return it if found, or NULL otherwise. */
4536
4537 static struct cache_entry **
4538 find_entry (const char *name, domain_enum domain)
4539 {
4540 struct ada_symbol_cache *sym_cache
4541 = ada_get_symbol_cache (current_program_space);
4542 int h = msymbol_hash (name) % HASH_SIZE;
4543 struct cache_entry **e;
4544
4545 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4546 {
4547 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4548 return e;
4549 }
4550 return NULL;
4551 }
4552
4553 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4554 Return 1 if found, 0 otherwise.
4555
4556 If an entry was found and SYM is not NULL, set *SYM to the entry's
4557 SYM. Same principle for BLOCK if not NULL. */
4558
4559 static int
4560 lookup_cached_symbol (const char *name, domain_enum domain,
4561 struct symbol **sym, const struct block **block)
4562 {
4563 struct cache_entry **e = find_entry (name, domain);
4564
4565 if (e == NULL)
4566 return 0;
4567 if (sym != NULL)
4568 *sym = (*e)->sym;
4569 if (block != NULL)
4570 *block = (*e)->block;
4571 return 1;
4572 }
4573
4574 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4575 in domain DOMAIN, save this result in our symbol cache. */
4576
4577 static void
4578 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4579 const struct block *block)
4580 {
4581 struct ada_symbol_cache *sym_cache
4582 = ada_get_symbol_cache (current_program_space);
4583 int h;
4584 char *copy;
4585 struct cache_entry *e;
4586
4587 /* Symbols for builtin types don't have a block.
4588 For now don't cache such symbols. */
4589 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4590 return;
4591
4592 /* If the symbol is a local symbol, then do not cache it, as a search
4593 for that symbol depends on the context. To determine whether
4594 the symbol is local or not, we check the block where we found it
4595 against the global and static blocks of its associated symtab. */
4596 if (sym
4597 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4598 GLOBAL_BLOCK) != block
4599 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4600 STATIC_BLOCK) != block)
4601 return;
4602
4603 h = msymbol_hash (name) % HASH_SIZE;
4604 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4605 e->next = sym_cache->root[h];
4606 sym_cache->root[h] = e;
4607 e->name = copy
4608 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4609 strcpy (copy, name);
4610 e->sym = sym;
4611 e->domain = domain;
4612 e->block = block;
4613 }
4614 \f
4615 /* Symbol Lookup */
4616
4617 /* Return the symbol name match type that should be used used when
4618 searching for all symbols matching LOOKUP_NAME.
4619
4620 LOOKUP_NAME is expected to be a symbol name after transformation
4621 for Ada lookups. */
4622
4623 static symbol_name_match_type
4624 name_match_type_from_name (const char *lookup_name)
4625 {
4626 return (strstr (lookup_name, "__") == NULL
4627 ? symbol_name_match_type::WILD
4628 : symbol_name_match_type::FULL);
4629 }
4630
4631 /* Return the result of a standard (literal, C-like) lookup of NAME in
4632 given DOMAIN, visible from lexical block BLOCK. */
4633
4634 static struct symbol *
4635 standard_lookup (const char *name, const struct block *block,
4636 domain_enum domain)
4637 {
4638 /* Initialize it just to avoid a GCC false warning. */
4639 struct block_symbol sym = {};
4640
4641 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4642 return sym.symbol;
4643 ada_lookup_encoded_symbol (name, block, domain, &sym);
4644 cache_symbol (name, domain, sym.symbol, sym.block);
4645 return sym.symbol;
4646 }
4647
4648
4649 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4650 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4651 since they contend in overloading in the same way. */
4652 static int
4653 is_nonfunction (struct block_symbol syms[], int n)
4654 {
4655 int i;
4656
4657 for (i = 0; i < n; i += 1)
4658 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4659 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4660 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4661 return 1;
4662
4663 return 0;
4664 }
4665
4666 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4667 struct types. Otherwise, they may not. */
4668
4669 static int
4670 equiv_types (struct type *type0, struct type *type1)
4671 {
4672 if (type0 == type1)
4673 return 1;
4674 if (type0 == NULL || type1 == NULL
4675 || TYPE_CODE (type0) != TYPE_CODE (type1))
4676 return 0;
4677 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4678 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4679 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4680 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4681 return 1;
4682
4683 return 0;
4684 }
4685
4686 /* True iff SYM0 represents the same entity as SYM1, or one that is
4687 no more defined than that of SYM1. */
4688
4689 static int
4690 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4691 {
4692 if (sym0 == sym1)
4693 return 1;
4694 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4695 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4696 return 0;
4697
4698 switch (SYMBOL_CLASS (sym0))
4699 {
4700 case LOC_UNDEF:
4701 return 1;
4702 case LOC_TYPEDEF:
4703 {
4704 struct type *type0 = SYMBOL_TYPE (sym0);
4705 struct type *type1 = SYMBOL_TYPE (sym1);
4706 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4707 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4708 int len0 = strlen (name0);
4709
4710 return
4711 TYPE_CODE (type0) == TYPE_CODE (type1)
4712 && (equiv_types (type0, type1)
4713 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4714 && startswith (name1 + len0, "___XV")));
4715 }
4716 case LOC_CONST:
4717 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4718 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4719
4720 case LOC_STATIC:
4721 {
4722 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4723 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4724 return (strcmp (name0, name1) == 0
4725 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4726 }
4727
4728 default:
4729 return 0;
4730 }
4731 }
4732
4733 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4734 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4735
4736 static void
4737 add_defn_to_vec (struct obstack *obstackp,
4738 struct symbol *sym,
4739 const struct block *block)
4740 {
4741 int i;
4742 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4743
4744 /* Do not try to complete stub types, as the debugger is probably
4745 already scanning all symbols matching a certain name at the
4746 time when this function is called. Trying to replace the stub
4747 type by its associated full type will cause us to restart a scan
4748 which may lead to an infinite recursion. Instead, the client
4749 collecting the matching symbols will end up collecting several
4750 matches, with at least one of them complete. It can then filter
4751 out the stub ones if needed. */
4752
4753 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4754 {
4755 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4756 return;
4757 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4758 {
4759 prevDefns[i].symbol = sym;
4760 prevDefns[i].block = block;
4761 return;
4762 }
4763 }
4764
4765 {
4766 struct block_symbol info;
4767
4768 info.symbol = sym;
4769 info.block = block;
4770 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4771 }
4772 }
4773
4774 /* Number of block_symbol structures currently collected in current vector in
4775 OBSTACKP. */
4776
4777 static int
4778 num_defns_collected (struct obstack *obstackp)
4779 {
4780 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4781 }
4782
4783 /* Vector of block_symbol structures currently collected in current vector in
4784 OBSTACKP. If FINISH, close off the vector and return its final address. */
4785
4786 static struct block_symbol *
4787 defns_collected (struct obstack *obstackp, int finish)
4788 {
4789 if (finish)
4790 return (struct block_symbol *) obstack_finish (obstackp);
4791 else
4792 return (struct block_symbol *) obstack_base (obstackp);
4793 }
4794
4795 /* Return a bound minimal symbol matching NAME according to Ada
4796 decoding rules. Returns an invalid symbol if there is no such
4797 minimal symbol. Names prefixed with "standard__" are handled
4798 specially: "standard__" is first stripped off, and only static and
4799 global symbols are searched. */
4800
4801 struct bound_minimal_symbol
4802 ada_lookup_simple_minsym (const char *name)
4803 {
4804 struct bound_minimal_symbol result;
4805
4806 memset (&result, 0, sizeof (result));
4807
4808 symbol_name_match_type match_type = name_match_type_from_name (name);
4809 lookup_name_info lookup_name (name, match_type);
4810
4811 symbol_name_matcher_ftype *match_name
4812 = ada_get_symbol_name_matcher (lookup_name);
4813
4814 for (objfile *objfile : current_program_space->objfiles ())
4815 {
4816 for (minimal_symbol *msymbol : objfile->msymbols ())
4817 {
4818 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4819 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4820 {
4821 result.minsym = msymbol;
4822 result.objfile = objfile;
4823 break;
4824 }
4825 }
4826 }
4827
4828 return result;
4829 }
4830
4831 /* For all subprograms that statically enclose the subprogram of the
4832 selected frame, add symbols matching identifier NAME in DOMAIN
4833 and their blocks to the list of data in OBSTACKP, as for
4834 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4835 with a wildcard prefix. */
4836
4837 static void
4838 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4839 const lookup_name_info &lookup_name,
4840 domain_enum domain)
4841 {
4842 }
4843
4844 /* True if TYPE is definitely an artificial type supplied to a symbol
4845 for which no debugging information was given in the symbol file. */
4846
4847 static int
4848 is_nondebugging_type (struct type *type)
4849 {
4850 const char *name = ada_type_name (type);
4851
4852 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4853 }
4854
4855 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4856 that are deemed "identical" for practical purposes.
4857
4858 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4859 types and that their number of enumerals is identical (in other
4860 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4861
4862 static int
4863 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4864 {
4865 int i;
4866
4867 /* The heuristic we use here is fairly conservative. We consider
4868 that 2 enumerate types are identical if they have the same
4869 number of enumerals and that all enumerals have the same
4870 underlying value and name. */
4871
4872 /* All enums in the type should have an identical underlying value. */
4873 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4874 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4875 return 0;
4876
4877 /* All enumerals should also have the same name (modulo any numerical
4878 suffix). */
4879 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4880 {
4881 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4882 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4883 int len_1 = strlen (name_1);
4884 int len_2 = strlen (name_2);
4885
4886 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4887 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4888 if (len_1 != len_2
4889 || strncmp (TYPE_FIELD_NAME (type1, i),
4890 TYPE_FIELD_NAME (type2, i),
4891 len_1) != 0)
4892 return 0;
4893 }
4894
4895 return 1;
4896 }
4897
4898 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4899 that are deemed "identical" for practical purposes. Sometimes,
4900 enumerals are not strictly identical, but their types are so similar
4901 that they can be considered identical.
4902
4903 For instance, consider the following code:
4904
4905 type Color is (Black, Red, Green, Blue, White);
4906 type RGB_Color is new Color range Red .. Blue;
4907
4908 Type RGB_Color is a subrange of an implicit type which is a copy
4909 of type Color. If we call that implicit type RGB_ColorB ("B" is
4910 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4911 As a result, when an expression references any of the enumeral
4912 by name (Eg. "print green"), the expression is technically
4913 ambiguous and the user should be asked to disambiguate. But
4914 doing so would only hinder the user, since it wouldn't matter
4915 what choice he makes, the outcome would always be the same.
4916 So, for practical purposes, we consider them as the same. */
4917
4918 static int
4919 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4920 {
4921 int i;
4922
4923 /* Before performing a thorough comparison check of each type,
4924 we perform a series of inexpensive checks. We expect that these
4925 checks will quickly fail in the vast majority of cases, and thus
4926 help prevent the unnecessary use of a more expensive comparison.
4927 Said comparison also expects us to make some of these checks
4928 (see ada_identical_enum_types_p). */
4929
4930 /* Quick check: All symbols should have an enum type. */
4931 for (i = 0; i < syms.size (); i++)
4932 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4933 return 0;
4934
4935 /* Quick check: They should all have the same value. */
4936 for (i = 1; i < syms.size (); i++)
4937 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4938 return 0;
4939
4940 /* Quick check: They should all have the same number of enumerals. */
4941 for (i = 1; i < syms.size (); i++)
4942 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4943 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4944 return 0;
4945
4946 /* All the sanity checks passed, so we might have a set of
4947 identical enumeration types. Perform a more complete
4948 comparison of the type of each symbol. */
4949 for (i = 1; i < syms.size (); i++)
4950 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4951 SYMBOL_TYPE (syms[0].symbol)))
4952 return 0;
4953
4954 return 1;
4955 }
4956
4957 /* Remove any non-debugging symbols in SYMS that definitely
4958 duplicate other symbols in the list (The only case I know of where
4959 this happens is when object files containing stabs-in-ecoff are
4960 linked with files containing ordinary ecoff debugging symbols (or no
4961 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4962 Returns the number of items in the modified list. */
4963
4964 static int
4965 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4966 {
4967 int i, j;
4968
4969 /* We should never be called with less than 2 symbols, as there
4970 cannot be any extra symbol in that case. But it's easy to
4971 handle, since we have nothing to do in that case. */
4972 if (syms->size () < 2)
4973 return syms->size ();
4974
4975 i = 0;
4976 while (i < syms->size ())
4977 {
4978 int remove_p = 0;
4979
4980 /* If two symbols have the same name and one of them is a stub type,
4981 the get rid of the stub. */
4982
4983 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
4984 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
4985 {
4986 for (j = 0; j < syms->size (); j++)
4987 {
4988 if (j != i
4989 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
4990 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
4991 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
4992 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
4993 remove_p = 1;
4994 }
4995 }
4996
4997 /* Two symbols with the same name, same class and same address
4998 should be identical. */
4999
5000 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5001 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5002 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5003 {
5004 for (j = 0; j < syms->size (); j += 1)
5005 {
5006 if (i != j
5007 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5008 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5009 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5010 && SYMBOL_CLASS ((*syms)[i].symbol)
5011 == SYMBOL_CLASS ((*syms)[j].symbol)
5012 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5013 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5014 remove_p = 1;
5015 }
5016 }
5017
5018 if (remove_p)
5019 syms->erase (syms->begin () + i);
5020
5021 i += 1;
5022 }
5023
5024 /* If all the remaining symbols are identical enumerals, then
5025 just keep the first one and discard the rest.
5026
5027 Unlike what we did previously, we do not discard any entry
5028 unless they are ALL identical. This is because the symbol
5029 comparison is not a strict comparison, but rather a practical
5030 comparison. If all symbols are considered identical, then
5031 we can just go ahead and use the first one and discard the rest.
5032 But if we cannot reduce the list to a single element, we have
5033 to ask the user to disambiguate anyways. And if we have to
5034 present a multiple-choice menu, it's less confusing if the list
5035 isn't missing some choices that were identical and yet distinct. */
5036 if (symbols_are_identical_enums (*syms))
5037 syms->resize (1);
5038
5039 return syms->size ();
5040 }
5041
5042 /* Given a type that corresponds to a renaming entity, use the type name
5043 to extract the scope (package name or function name, fully qualified,
5044 and following the GNAT encoding convention) where this renaming has been
5045 defined. */
5046
5047 static std::string
5048 xget_renaming_scope (struct type *renaming_type)
5049 {
5050 /* The renaming types adhere to the following convention:
5051 <scope>__<rename>___<XR extension>.
5052 So, to extract the scope, we search for the "___XR" extension,
5053 and then backtrack until we find the first "__". */
5054
5055 const char *name = TYPE_NAME (renaming_type);
5056 const char *suffix = strstr (name, "___XR");
5057 const char *last;
5058
5059 /* Now, backtrack a bit until we find the first "__". Start looking
5060 at suffix - 3, as the <rename> part is at least one character long. */
5061
5062 for (last = suffix - 3; last > name; last--)
5063 if (last[0] == '_' && last[1] == '_')
5064 break;
5065
5066 /* Make a copy of scope and return it. */
5067 return std::string (name, last);
5068 }
5069
5070 /* Return nonzero if NAME corresponds to a package name. */
5071
5072 static int
5073 is_package_name (const char *name)
5074 {
5075 /* Here, We take advantage of the fact that no symbols are generated
5076 for packages, while symbols are generated for each function.
5077 So the condition for NAME represent a package becomes equivalent
5078 to NAME not existing in our list of symbols. There is only one
5079 small complication with library-level functions (see below). */
5080
5081 /* If it is a function that has not been defined at library level,
5082 then we should be able to look it up in the symbols. */
5083 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5084 return 0;
5085
5086 /* Library-level function names start with "_ada_". See if function
5087 "_ada_" followed by NAME can be found. */
5088
5089 /* Do a quick check that NAME does not contain "__", since library-level
5090 functions names cannot contain "__" in them. */
5091 if (strstr (name, "__") != NULL)
5092 return 0;
5093
5094 std::string fun_name = string_printf ("_ada_%s", name);
5095
5096 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5097 }
5098
5099 /* Return nonzero if SYM corresponds to a renaming entity that is
5100 not visible from FUNCTION_NAME. */
5101
5102 static int
5103 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5104 {
5105 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5106 return 0;
5107
5108 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5109
5110 /* If the rename has been defined in a package, then it is visible. */
5111 if (is_package_name (scope.c_str ()))
5112 return 0;
5113
5114 /* Check that the rename is in the current function scope by checking
5115 that its name starts with SCOPE. */
5116
5117 /* If the function name starts with "_ada_", it means that it is
5118 a library-level function. Strip this prefix before doing the
5119 comparison, as the encoding for the renaming does not contain
5120 this prefix. */
5121 if (startswith (function_name, "_ada_"))
5122 function_name += 5;
5123
5124 return !startswith (function_name, scope.c_str ());
5125 }
5126
5127 /* Remove entries from SYMS that corresponds to a renaming entity that
5128 is not visible from the function associated with CURRENT_BLOCK or
5129 that is superfluous due to the presence of more specific renaming
5130 information. Places surviving symbols in the initial entries of
5131 SYMS and returns the number of surviving symbols.
5132
5133 Rationale:
5134 First, in cases where an object renaming is implemented as a
5135 reference variable, GNAT may produce both the actual reference
5136 variable and the renaming encoding. In this case, we discard the
5137 latter.
5138
5139 Second, GNAT emits a type following a specified encoding for each renaming
5140 entity. Unfortunately, STABS currently does not support the definition
5141 of types that are local to a given lexical block, so all renamings types
5142 are emitted at library level. As a consequence, if an application
5143 contains two renaming entities using the same name, and a user tries to
5144 print the value of one of these entities, the result of the ada symbol
5145 lookup will also contain the wrong renaming type.
5146
5147 This function partially covers for this limitation by attempting to
5148 remove from the SYMS list renaming symbols that should be visible
5149 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5150 method with the current information available. The implementation
5151 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5152
5153 - When the user tries to print a rename in a function while there
5154 is another rename entity defined in a package: Normally, the
5155 rename in the function has precedence over the rename in the
5156 package, so the latter should be removed from the list. This is
5157 currently not the case.
5158
5159 - This function will incorrectly remove valid renames if
5160 the CURRENT_BLOCK corresponds to a function which symbol name
5161 has been changed by an "Export" pragma. As a consequence,
5162 the user will be unable to print such rename entities. */
5163
5164 static int
5165 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5166 const struct block *current_block)
5167 {
5168 struct symbol *current_function;
5169 const char *current_function_name;
5170 int i;
5171 int is_new_style_renaming;
5172
5173 /* If there is both a renaming foo___XR... encoded as a variable and
5174 a simple variable foo in the same block, discard the latter.
5175 First, zero out such symbols, then compress. */
5176 is_new_style_renaming = 0;
5177 for (i = 0; i < syms->size (); i += 1)
5178 {
5179 struct symbol *sym = (*syms)[i].symbol;
5180 const struct block *block = (*syms)[i].block;
5181 const char *name;
5182 const char *suffix;
5183
5184 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5185 continue;
5186 name = SYMBOL_LINKAGE_NAME (sym);
5187 suffix = strstr (name, "___XR");
5188
5189 if (suffix != NULL)
5190 {
5191 int name_len = suffix - name;
5192 int j;
5193
5194 is_new_style_renaming = 1;
5195 for (j = 0; j < syms->size (); j += 1)
5196 if (i != j && (*syms)[j].symbol != NULL
5197 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5198 name_len) == 0
5199 && block == (*syms)[j].block)
5200 (*syms)[j].symbol = NULL;
5201 }
5202 }
5203 if (is_new_style_renaming)
5204 {
5205 int j, k;
5206
5207 for (j = k = 0; j < syms->size (); j += 1)
5208 if ((*syms)[j].symbol != NULL)
5209 {
5210 (*syms)[k] = (*syms)[j];
5211 k += 1;
5212 }
5213 return k;
5214 }
5215
5216 /* Extract the function name associated to CURRENT_BLOCK.
5217 Abort if unable to do so. */
5218
5219 if (current_block == NULL)
5220 return syms->size ();
5221
5222 current_function = block_linkage_function (current_block);
5223 if (current_function == NULL)
5224 return syms->size ();
5225
5226 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5227 if (current_function_name == NULL)
5228 return syms->size ();
5229
5230 /* Check each of the symbols, and remove it from the list if it is
5231 a type corresponding to a renaming that is out of the scope of
5232 the current block. */
5233
5234 i = 0;
5235 while (i < syms->size ())
5236 {
5237 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5238 == ADA_OBJECT_RENAMING
5239 && old_renaming_is_invisible ((*syms)[i].symbol,
5240 current_function_name))
5241 syms->erase (syms->begin () + i);
5242 else
5243 i += 1;
5244 }
5245
5246 return syms->size ();
5247 }
5248
5249 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5250 whose name and domain match NAME and DOMAIN respectively.
5251 If no match was found, then extend the search to "enclosing"
5252 routines (in other words, if we're inside a nested function,
5253 search the symbols defined inside the enclosing functions).
5254 If WILD_MATCH_P is nonzero, perform the naming matching in
5255 "wild" mode (see function "wild_match" for more info).
5256
5257 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5258
5259 static void
5260 ada_add_local_symbols (struct obstack *obstackp,
5261 const lookup_name_info &lookup_name,
5262 const struct block *block, domain_enum domain)
5263 {
5264 int block_depth = 0;
5265
5266 while (block != NULL)
5267 {
5268 block_depth += 1;
5269 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5270
5271 /* If we found a non-function match, assume that's the one. */
5272 if (is_nonfunction (defns_collected (obstackp, 0),
5273 num_defns_collected (obstackp)))
5274 return;
5275
5276 block = BLOCK_SUPERBLOCK (block);
5277 }
5278
5279 /* If no luck so far, try to find NAME as a local symbol in some lexically
5280 enclosing subprogram. */
5281 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5282 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5283 }
5284
5285 /* An object of this type is used as the user_data argument when
5286 calling the map_matching_symbols method. */
5287
5288 struct match_data
5289 {
5290 struct objfile *objfile;
5291 struct obstack *obstackp;
5292 struct symbol *arg_sym;
5293 int found_sym;
5294 };
5295
5296 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5297 to a list of symbols. DATA is a pointer to a struct match_data *
5298 containing the obstack that collects the symbol list, the file that SYM
5299 must come from, a flag indicating whether a non-argument symbol has
5300 been found in the current block, and the last argument symbol
5301 passed in SYM within the current block (if any). When SYM is null,
5302 marking the end of a block, the argument symbol is added if no
5303 other has been found. */
5304
5305 static bool
5306 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5307 struct match_data *data)
5308 {
5309 const struct block *block = bsym->block;
5310 struct symbol *sym = bsym->symbol;
5311
5312 if (sym == NULL)
5313 {
5314 if (!data->found_sym && data->arg_sym != NULL)
5315 add_defn_to_vec (data->obstackp,
5316 fixup_symbol_section (data->arg_sym, data->objfile),
5317 block);
5318 data->found_sym = 0;
5319 data->arg_sym = NULL;
5320 }
5321 else
5322 {
5323 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5324 return true;
5325 else if (SYMBOL_IS_ARGUMENT (sym))
5326 data->arg_sym = sym;
5327 else
5328 {
5329 data->found_sym = 1;
5330 add_defn_to_vec (data->obstackp,
5331 fixup_symbol_section (sym, data->objfile),
5332 block);
5333 }
5334 }
5335 return true;
5336 }
5337
5338 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5339 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5340 symbols to OBSTACKP. Return whether we found such symbols. */
5341
5342 static int
5343 ada_add_block_renamings (struct obstack *obstackp,
5344 const struct block *block,
5345 const lookup_name_info &lookup_name,
5346 domain_enum domain)
5347 {
5348 struct using_direct *renaming;
5349 int defns_mark = num_defns_collected (obstackp);
5350
5351 symbol_name_matcher_ftype *name_match
5352 = ada_get_symbol_name_matcher (lookup_name);
5353
5354 for (renaming = block_using (block);
5355 renaming != NULL;
5356 renaming = renaming->next)
5357 {
5358 const char *r_name;
5359
5360 /* Avoid infinite recursions: skip this renaming if we are actually
5361 already traversing it.
5362
5363 Currently, symbol lookup in Ada don't use the namespace machinery from
5364 C++/Fortran support: skip namespace imports that use them. */
5365 if (renaming->searched
5366 || (renaming->import_src != NULL
5367 && renaming->import_src[0] != '\0')
5368 || (renaming->import_dest != NULL
5369 && renaming->import_dest[0] != '\0'))
5370 continue;
5371 renaming->searched = 1;
5372
5373 /* TODO: here, we perform another name-based symbol lookup, which can
5374 pull its own multiple overloads. In theory, we should be able to do
5375 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5376 not a simple name. But in order to do this, we would need to enhance
5377 the DWARF reader to associate a symbol to this renaming, instead of a
5378 name. So, for now, we do something simpler: re-use the C++/Fortran
5379 namespace machinery. */
5380 r_name = (renaming->alias != NULL
5381 ? renaming->alias
5382 : renaming->declaration);
5383 if (name_match (r_name, lookup_name, NULL))
5384 {
5385 lookup_name_info decl_lookup_name (renaming->declaration,
5386 lookup_name.match_type ());
5387 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5388 1, NULL);
5389 }
5390 renaming->searched = 0;
5391 }
5392 return num_defns_collected (obstackp) != defns_mark;
5393 }
5394
5395 /* Implements compare_names, but only applying the comparision using
5396 the given CASING. */
5397
5398 static int
5399 compare_names_with_case (const char *string1, const char *string2,
5400 enum case_sensitivity casing)
5401 {
5402 while (*string1 != '\0' && *string2 != '\0')
5403 {
5404 char c1, c2;
5405
5406 if (isspace (*string1) || isspace (*string2))
5407 return strcmp_iw_ordered (string1, string2);
5408
5409 if (casing == case_sensitive_off)
5410 {
5411 c1 = tolower (*string1);
5412 c2 = tolower (*string2);
5413 }
5414 else
5415 {
5416 c1 = *string1;
5417 c2 = *string2;
5418 }
5419 if (c1 != c2)
5420 break;
5421
5422 string1 += 1;
5423 string2 += 1;
5424 }
5425
5426 switch (*string1)
5427 {
5428 case '(':
5429 return strcmp_iw_ordered (string1, string2);
5430 case '_':
5431 if (*string2 == '\0')
5432 {
5433 if (is_name_suffix (string1))
5434 return 0;
5435 else
5436 return 1;
5437 }
5438 /* FALLTHROUGH */
5439 default:
5440 if (*string2 == '(')
5441 return strcmp_iw_ordered (string1, string2);
5442 else
5443 {
5444 if (casing == case_sensitive_off)
5445 return tolower (*string1) - tolower (*string2);
5446 else
5447 return *string1 - *string2;
5448 }
5449 }
5450 }
5451
5452 /* Compare STRING1 to STRING2, with results as for strcmp.
5453 Compatible with strcmp_iw_ordered in that...
5454
5455 strcmp_iw_ordered (STRING1, STRING2) <= 0
5456
5457 ... implies...
5458
5459 compare_names (STRING1, STRING2) <= 0
5460
5461 (they may differ as to what symbols compare equal). */
5462
5463 static int
5464 compare_names (const char *string1, const char *string2)
5465 {
5466 int result;
5467
5468 /* Similar to what strcmp_iw_ordered does, we need to perform
5469 a case-insensitive comparison first, and only resort to
5470 a second, case-sensitive, comparison if the first one was
5471 not sufficient to differentiate the two strings. */
5472
5473 result = compare_names_with_case (string1, string2, case_sensitive_off);
5474 if (result == 0)
5475 result = compare_names_with_case (string1, string2, case_sensitive_on);
5476
5477 return result;
5478 }
5479
5480 /* Convenience function to get at the Ada encoded lookup name for
5481 LOOKUP_NAME, as a C string. */
5482
5483 static const char *
5484 ada_lookup_name (const lookup_name_info &lookup_name)
5485 {
5486 return lookup_name.ada ().lookup_name ().c_str ();
5487 }
5488
5489 /* Add to OBSTACKP all non-local symbols whose name and domain match
5490 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5491 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5492 symbols otherwise. */
5493
5494 static void
5495 add_nonlocal_symbols (struct obstack *obstackp,
5496 const lookup_name_info &lookup_name,
5497 domain_enum domain, int global)
5498 {
5499 struct match_data data;
5500
5501 memset (&data, 0, sizeof data);
5502 data.obstackp = obstackp;
5503
5504 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5505
5506 auto callback = [&] (struct block_symbol *bsym)
5507 {
5508 return aux_add_nonlocal_symbols (bsym, &data);
5509 };
5510
5511 for (objfile *objfile : current_program_space->objfiles ())
5512 {
5513 data.objfile = objfile;
5514
5515 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5516 domain, global, callback,
5517 (is_wild_match
5518 ? NULL : compare_names));
5519
5520 for (compunit_symtab *cu : objfile->compunits ())
5521 {
5522 const struct block *global_block
5523 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5524
5525 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5526 domain))
5527 data.found_sym = 1;
5528 }
5529 }
5530
5531 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5532 {
5533 const char *name = ada_lookup_name (lookup_name);
5534 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5535 symbol_name_match_type::FULL);
5536
5537 for (objfile *objfile : current_program_space->objfiles ())
5538 {
5539 data.objfile = objfile;
5540 objfile->sf->qf->map_matching_symbols (objfile, name1,
5541 domain, global, callback,
5542 compare_names);
5543 }
5544 }
5545 }
5546
5547 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5548 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5549 returning the number of matches. Add these to OBSTACKP.
5550
5551 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5552 symbol match within the nest of blocks whose innermost member is BLOCK,
5553 is the one match returned (no other matches in that or
5554 enclosing blocks is returned). If there are any matches in or
5555 surrounding BLOCK, then these alone are returned.
5556
5557 Names prefixed with "standard__" are handled specially:
5558 "standard__" is first stripped off (by the lookup_name
5559 constructor), and only static and global symbols are searched.
5560
5561 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5562 to lookup global symbols. */
5563
5564 static void
5565 ada_add_all_symbols (struct obstack *obstackp,
5566 const struct block *block,
5567 const lookup_name_info &lookup_name,
5568 domain_enum domain,
5569 int full_search,
5570 int *made_global_lookup_p)
5571 {
5572 struct symbol *sym;
5573
5574 if (made_global_lookup_p)
5575 *made_global_lookup_p = 0;
5576
5577 /* Special case: If the user specifies a symbol name inside package
5578 Standard, do a non-wild matching of the symbol name without
5579 the "standard__" prefix. This was primarily introduced in order
5580 to allow the user to specifically access the standard exceptions
5581 using, for instance, Standard.Constraint_Error when Constraint_Error
5582 is ambiguous (due to the user defining its own Constraint_Error
5583 entity inside its program). */
5584 if (lookup_name.ada ().standard_p ())
5585 block = NULL;
5586
5587 /* Check the non-global symbols. If we have ANY match, then we're done. */
5588
5589 if (block != NULL)
5590 {
5591 if (full_search)
5592 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5593 else
5594 {
5595 /* In the !full_search case we're are being called by
5596 ada_iterate_over_symbols, and we don't want to search
5597 superblocks. */
5598 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5599 }
5600 if (num_defns_collected (obstackp) > 0 || !full_search)
5601 return;
5602 }
5603
5604 /* No non-global symbols found. Check our cache to see if we have
5605 already performed this search before. If we have, then return
5606 the same result. */
5607
5608 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5609 domain, &sym, &block))
5610 {
5611 if (sym != NULL)
5612 add_defn_to_vec (obstackp, sym, block);
5613 return;
5614 }
5615
5616 if (made_global_lookup_p)
5617 *made_global_lookup_p = 1;
5618
5619 /* Search symbols from all global blocks. */
5620
5621 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5622
5623 /* Now add symbols from all per-file blocks if we've gotten no hits
5624 (not strictly correct, but perhaps better than an error). */
5625
5626 if (num_defns_collected (obstackp) == 0)
5627 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5628 }
5629
5630 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5631 is non-zero, enclosing scope and in global scopes, returning the number of
5632 matches.
5633 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5634 found and the blocks and symbol tables (if any) in which they were
5635 found.
5636
5637 When full_search is non-zero, any non-function/non-enumeral
5638 symbol match within the nest of blocks whose innermost member is BLOCK,
5639 is the one match returned (no other matches in that or
5640 enclosing blocks is returned). If there are any matches in or
5641 surrounding BLOCK, then these alone are returned.
5642
5643 Names prefixed with "standard__" are handled specially: "standard__"
5644 is first stripped off, and only static and global symbols are searched. */
5645
5646 static int
5647 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5648 const struct block *block,
5649 domain_enum domain,
5650 std::vector<struct block_symbol> *results,
5651 int full_search)
5652 {
5653 int syms_from_global_search;
5654 int ndefns;
5655 auto_obstack obstack;
5656
5657 ada_add_all_symbols (&obstack, block, lookup_name,
5658 domain, full_search, &syms_from_global_search);
5659
5660 ndefns = num_defns_collected (&obstack);
5661
5662 struct block_symbol *base = defns_collected (&obstack, 1);
5663 for (int i = 0; i < ndefns; ++i)
5664 results->push_back (base[i]);
5665
5666 ndefns = remove_extra_symbols (results);
5667
5668 if (ndefns == 0 && full_search && syms_from_global_search)
5669 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5670
5671 if (ndefns == 1 && full_search && syms_from_global_search)
5672 cache_symbol (ada_lookup_name (lookup_name), domain,
5673 (*results)[0].symbol, (*results)[0].block);
5674
5675 ndefns = remove_irrelevant_renamings (results, block);
5676
5677 return ndefns;
5678 }
5679
5680 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5681 in global scopes, returning the number of matches, and filling *RESULTS
5682 with (SYM,BLOCK) tuples.
5683
5684 See ada_lookup_symbol_list_worker for further details. */
5685
5686 int
5687 ada_lookup_symbol_list (const char *name, const struct block *block,
5688 domain_enum domain,
5689 std::vector<struct block_symbol> *results)
5690 {
5691 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5692 lookup_name_info lookup_name (name, name_match_type);
5693
5694 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5695 }
5696
5697 /* Implementation of the la_iterate_over_symbols method. */
5698
5699 static bool
5700 ada_iterate_over_symbols
5701 (const struct block *block, const lookup_name_info &name,
5702 domain_enum domain,
5703 gdb::function_view<symbol_found_callback_ftype> callback)
5704 {
5705 int ndefs, i;
5706 std::vector<struct block_symbol> results;
5707
5708 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5709
5710 for (i = 0; i < ndefs; ++i)
5711 {
5712 if (!callback (&results[i]))
5713 return false;
5714 }
5715
5716 return true;
5717 }
5718
5719 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5720 to 1, but choosing the first symbol found if there are multiple
5721 choices.
5722
5723 The result is stored in *INFO, which must be non-NULL.
5724 If no match is found, INFO->SYM is set to NULL. */
5725
5726 void
5727 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5728 domain_enum domain,
5729 struct block_symbol *info)
5730 {
5731 /* Since we already have an encoded name, wrap it in '<>' to force a
5732 verbatim match. Otherwise, if the name happens to not look like
5733 an encoded name (because it doesn't include a "__"),
5734 ada_lookup_name_info would re-encode/fold it again, and that
5735 would e.g., incorrectly lowercase object renaming names like
5736 "R28b" -> "r28b". */
5737 std::string verbatim = std::string ("<") + name + '>';
5738
5739 gdb_assert (info != NULL);
5740 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5741 }
5742
5743 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5744 scope and in global scopes, or NULL if none. NAME is folded and
5745 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5746 choosing the first symbol if there are multiple choices. */
5747
5748 struct block_symbol
5749 ada_lookup_symbol (const char *name, const struct block *block0,
5750 domain_enum domain)
5751 {
5752 std::vector<struct block_symbol> candidates;
5753 int n_candidates;
5754
5755 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5756
5757 if (n_candidates == 0)
5758 return {};
5759
5760 block_symbol info = candidates[0];
5761 info.symbol = fixup_symbol_section (info.symbol, NULL);
5762 return info;
5763 }
5764
5765 static struct block_symbol
5766 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5767 const char *name,
5768 const struct block *block,
5769 const domain_enum domain)
5770 {
5771 struct block_symbol sym;
5772
5773 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5774 if (sym.symbol != NULL)
5775 return sym;
5776
5777 /* If we haven't found a match at this point, try the primitive
5778 types. In other languages, this search is performed before
5779 searching for global symbols in order to short-circuit that
5780 global-symbol search if it happens that the name corresponds
5781 to a primitive type. But we cannot do the same in Ada, because
5782 it is perfectly legitimate for a program to declare a type which
5783 has the same name as a standard type. If looking up a type in
5784 that situation, we have traditionally ignored the primitive type
5785 in favor of user-defined types. This is why, unlike most other
5786 languages, we search the primitive types this late and only after
5787 having searched the global symbols without success. */
5788
5789 if (domain == VAR_DOMAIN)
5790 {
5791 struct gdbarch *gdbarch;
5792
5793 if (block == NULL)
5794 gdbarch = target_gdbarch ();
5795 else
5796 gdbarch = block_gdbarch (block);
5797 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5798 if (sym.symbol != NULL)
5799 return sym;
5800 }
5801
5802 return {};
5803 }
5804
5805
5806 /* True iff STR is a possible encoded suffix of a normal Ada name
5807 that is to be ignored for matching purposes. Suffixes of parallel
5808 names (e.g., XVE) are not included here. Currently, the possible suffixes
5809 are given by any of the regular expressions:
5810
5811 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5812 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5813 TKB [subprogram suffix for task bodies]
5814 _E[0-9]+[bs]$ [protected object entry suffixes]
5815 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5816
5817 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5818 match is performed. This sequence is used to differentiate homonyms,
5819 is an optional part of a valid name suffix. */
5820
5821 static int
5822 is_name_suffix (const char *str)
5823 {
5824 int k;
5825 const char *matching;
5826 const int len = strlen (str);
5827
5828 /* Skip optional leading __[0-9]+. */
5829
5830 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5831 {
5832 str += 3;
5833 while (isdigit (str[0]))
5834 str += 1;
5835 }
5836
5837 /* [.$][0-9]+ */
5838
5839 if (str[0] == '.' || str[0] == '$')
5840 {
5841 matching = str + 1;
5842 while (isdigit (matching[0]))
5843 matching += 1;
5844 if (matching[0] == '\0')
5845 return 1;
5846 }
5847
5848 /* ___[0-9]+ */
5849
5850 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5851 {
5852 matching = str + 3;
5853 while (isdigit (matching[0]))
5854 matching += 1;
5855 if (matching[0] == '\0')
5856 return 1;
5857 }
5858
5859 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5860
5861 if (strcmp (str, "TKB") == 0)
5862 return 1;
5863
5864 #if 0
5865 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5866 with a N at the end. Unfortunately, the compiler uses the same
5867 convention for other internal types it creates. So treating
5868 all entity names that end with an "N" as a name suffix causes
5869 some regressions. For instance, consider the case of an enumerated
5870 type. To support the 'Image attribute, it creates an array whose
5871 name ends with N.
5872 Having a single character like this as a suffix carrying some
5873 information is a bit risky. Perhaps we should change the encoding
5874 to be something like "_N" instead. In the meantime, do not do
5875 the following check. */
5876 /* Protected Object Subprograms */
5877 if (len == 1 && str [0] == 'N')
5878 return 1;
5879 #endif
5880
5881 /* _E[0-9]+[bs]$ */
5882 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5883 {
5884 matching = str + 3;
5885 while (isdigit (matching[0]))
5886 matching += 1;
5887 if ((matching[0] == 'b' || matching[0] == 's')
5888 && matching [1] == '\0')
5889 return 1;
5890 }
5891
5892 /* ??? We should not modify STR directly, as we are doing below. This
5893 is fine in this case, but may become problematic later if we find
5894 that this alternative did not work, and want to try matching
5895 another one from the begining of STR. Since we modified it, we
5896 won't be able to find the begining of the string anymore! */
5897 if (str[0] == 'X')
5898 {
5899 str += 1;
5900 while (str[0] != '_' && str[0] != '\0')
5901 {
5902 if (str[0] != 'n' && str[0] != 'b')
5903 return 0;
5904 str += 1;
5905 }
5906 }
5907
5908 if (str[0] == '\000')
5909 return 1;
5910
5911 if (str[0] == '_')
5912 {
5913 if (str[1] != '_' || str[2] == '\000')
5914 return 0;
5915 if (str[2] == '_')
5916 {
5917 if (strcmp (str + 3, "JM") == 0)
5918 return 1;
5919 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5920 the LJM suffix in favor of the JM one. But we will
5921 still accept LJM as a valid suffix for a reasonable
5922 amount of time, just to allow ourselves to debug programs
5923 compiled using an older version of GNAT. */
5924 if (strcmp (str + 3, "LJM") == 0)
5925 return 1;
5926 if (str[3] != 'X')
5927 return 0;
5928 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5929 || str[4] == 'U' || str[4] == 'P')
5930 return 1;
5931 if (str[4] == 'R' && str[5] != 'T')
5932 return 1;
5933 return 0;
5934 }
5935 if (!isdigit (str[2]))
5936 return 0;
5937 for (k = 3; str[k] != '\0'; k += 1)
5938 if (!isdigit (str[k]) && str[k] != '_')
5939 return 0;
5940 return 1;
5941 }
5942 if (str[0] == '$' && isdigit (str[1]))
5943 {
5944 for (k = 2; str[k] != '\0'; k += 1)
5945 if (!isdigit (str[k]) && str[k] != '_')
5946 return 0;
5947 return 1;
5948 }
5949 return 0;
5950 }
5951
5952 /* Return non-zero if the string starting at NAME and ending before
5953 NAME_END contains no capital letters. */
5954
5955 static int
5956 is_valid_name_for_wild_match (const char *name0)
5957 {
5958 std::string decoded_name = ada_decode (name0);
5959 int i;
5960
5961 /* If the decoded name starts with an angle bracket, it means that
5962 NAME0 does not follow the GNAT encoding format. It should then
5963 not be allowed as a possible wild match. */
5964 if (decoded_name[0] == '<')
5965 return 0;
5966
5967 for (i=0; decoded_name[i] != '\0'; i++)
5968 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5969 return 0;
5970
5971 return 1;
5972 }
5973
5974 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5975 that could start a simple name. Assumes that *NAMEP points into
5976 the string beginning at NAME0. */
5977
5978 static int
5979 advance_wild_match (const char **namep, const char *name0, int target0)
5980 {
5981 const char *name = *namep;
5982
5983 while (1)
5984 {
5985 int t0, t1;
5986
5987 t0 = *name;
5988 if (t0 == '_')
5989 {
5990 t1 = name[1];
5991 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5992 {
5993 name += 1;
5994 if (name == name0 + 5 && startswith (name0, "_ada"))
5995 break;
5996 else
5997 name += 1;
5998 }
5999 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6000 || name[2] == target0))
6001 {
6002 name += 2;
6003 break;
6004 }
6005 else
6006 return 0;
6007 }
6008 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6009 name += 1;
6010 else
6011 return 0;
6012 }
6013
6014 *namep = name;
6015 return 1;
6016 }
6017
6018 /* Return true iff NAME encodes a name of the form prefix.PATN.
6019 Ignores any informational suffixes of NAME (i.e., for which
6020 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6021 simple name. */
6022
6023 static bool
6024 wild_match (const char *name, const char *patn)
6025 {
6026 const char *p;
6027 const char *name0 = name;
6028
6029 while (1)
6030 {
6031 const char *match = name;
6032
6033 if (*name == *patn)
6034 {
6035 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6036 if (*p != *name)
6037 break;
6038 if (*p == '\0' && is_name_suffix (name))
6039 return match == name0 || is_valid_name_for_wild_match (name0);
6040
6041 if (name[-1] == '_')
6042 name -= 1;
6043 }
6044 if (!advance_wild_match (&name, name0, *patn))
6045 return false;
6046 }
6047 }
6048
6049 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6050 any trailing suffixes that encode debugging information or leading
6051 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6052 information that is ignored). */
6053
6054 static bool
6055 full_match (const char *sym_name, const char *search_name)
6056 {
6057 size_t search_name_len = strlen (search_name);
6058
6059 if (strncmp (sym_name, search_name, search_name_len) == 0
6060 && is_name_suffix (sym_name + search_name_len))
6061 return true;
6062
6063 if (startswith (sym_name, "_ada_")
6064 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6065 && is_name_suffix (sym_name + search_name_len + 5))
6066 return true;
6067
6068 return false;
6069 }
6070
6071 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6072 *defn_symbols, updating the list of symbols in OBSTACKP (if
6073 necessary). OBJFILE is the section containing BLOCK. */
6074
6075 static void
6076 ada_add_block_symbols (struct obstack *obstackp,
6077 const struct block *block,
6078 const lookup_name_info &lookup_name,
6079 domain_enum domain, struct objfile *objfile)
6080 {
6081 struct block_iterator iter;
6082 /* A matching argument symbol, if any. */
6083 struct symbol *arg_sym;
6084 /* Set true when we find a matching non-argument symbol. */
6085 int found_sym;
6086 struct symbol *sym;
6087
6088 arg_sym = NULL;
6089 found_sym = 0;
6090 for (sym = block_iter_match_first (block, lookup_name, &iter);
6091 sym != NULL;
6092 sym = block_iter_match_next (lookup_name, &iter))
6093 {
6094 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6095 SYMBOL_DOMAIN (sym), domain))
6096 {
6097 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6098 {
6099 if (SYMBOL_IS_ARGUMENT (sym))
6100 arg_sym = sym;
6101 else
6102 {
6103 found_sym = 1;
6104 add_defn_to_vec (obstackp,
6105 fixup_symbol_section (sym, objfile),
6106 block);
6107 }
6108 }
6109 }
6110 }
6111
6112 /* Handle renamings. */
6113
6114 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6115 found_sym = 1;
6116
6117 if (!found_sym && arg_sym != NULL)
6118 {
6119 add_defn_to_vec (obstackp,
6120 fixup_symbol_section (arg_sym, objfile),
6121 block);
6122 }
6123
6124 if (!lookup_name.ada ().wild_match_p ())
6125 {
6126 arg_sym = NULL;
6127 found_sym = 0;
6128 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6129 const char *name = ada_lookup_name.c_str ();
6130 size_t name_len = ada_lookup_name.size ();
6131
6132 ALL_BLOCK_SYMBOLS (block, iter, sym)
6133 {
6134 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6135 SYMBOL_DOMAIN (sym), domain))
6136 {
6137 int cmp;
6138
6139 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6140 if (cmp == 0)
6141 {
6142 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6143 if (cmp == 0)
6144 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6145 name_len);
6146 }
6147
6148 if (cmp == 0
6149 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6150 {
6151 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6152 {
6153 if (SYMBOL_IS_ARGUMENT (sym))
6154 arg_sym = sym;
6155 else
6156 {
6157 found_sym = 1;
6158 add_defn_to_vec (obstackp,
6159 fixup_symbol_section (sym, objfile),
6160 block);
6161 }
6162 }
6163 }
6164 }
6165 }
6166
6167 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6168 They aren't parameters, right? */
6169 if (!found_sym && arg_sym != NULL)
6170 {
6171 add_defn_to_vec (obstackp,
6172 fixup_symbol_section (arg_sym, objfile),
6173 block);
6174 }
6175 }
6176 }
6177 \f
6178
6179 /* Symbol Completion */
6180
6181 /* See symtab.h. */
6182
6183 bool
6184 ada_lookup_name_info::matches
6185 (const char *sym_name,
6186 symbol_name_match_type match_type,
6187 completion_match_result *comp_match_res) const
6188 {
6189 bool match = false;
6190 const char *text = m_encoded_name.c_str ();
6191 size_t text_len = m_encoded_name.size ();
6192
6193 /* First, test against the fully qualified name of the symbol. */
6194
6195 if (strncmp (sym_name, text, text_len) == 0)
6196 match = true;
6197
6198 std::string decoded_name = ada_decode (sym_name);
6199 if (match && !m_encoded_p)
6200 {
6201 /* One needed check before declaring a positive match is to verify
6202 that iff we are doing a verbatim match, the decoded version
6203 of the symbol name starts with '<'. Otherwise, this symbol name
6204 is not a suitable completion. */
6205
6206 bool has_angle_bracket = (decoded_name[0] == '<');
6207 match = (has_angle_bracket == m_verbatim_p);
6208 }
6209
6210 if (match && !m_verbatim_p)
6211 {
6212 /* When doing non-verbatim match, another check that needs to
6213 be done is to verify that the potentially matching symbol name
6214 does not include capital letters, because the ada-mode would
6215 not be able to understand these symbol names without the
6216 angle bracket notation. */
6217 const char *tmp;
6218
6219 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6220 if (*tmp != '\0')
6221 match = false;
6222 }
6223
6224 /* Second: Try wild matching... */
6225
6226 if (!match && m_wild_match_p)
6227 {
6228 /* Since we are doing wild matching, this means that TEXT
6229 may represent an unqualified symbol name. We therefore must
6230 also compare TEXT against the unqualified name of the symbol. */
6231 sym_name = ada_unqualified_name (decoded_name.c_str ());
6232
6233 if (strncmp (sym_name, text, text_len) == 0)
6234 match = true;
6235 }
6236
6237 /* Finally: If we found a match, prepare the result to return. */
6238
6239 if (!match)
6240 return false;
6241
6242 if (comp_match_res != NULL)
6243 {
6244 std::string &match_str = comp_match_res->match.storage ();
6245
6246 if (!m_encoded_p)
6247 match_str = ada_decode (sym_name);
6248 else
6249 {
6250 if (m_verbatim_p)
6251 match_str = add_angle_brackets (sym_name);
6252 else
6253 match_str = sym_name;
6254
6255 }
6256
6257 comp_match_res->set_match (match_str.c_str ());
6258 }
6259
6260 return true;
6261 }
6262
6263 /* Add the list of possible symbol names completing TEXT to TRACKER.
6264 WORD is the entire command on which completion is made. */
6265
6266 static void
6267 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6268 complete_symbol_mode mode,
6269 symbol_name_match_type name_match_type,
6270 const char *text, const char *word,
6271 enum type_code code)
6272 {
6273 struct symbol *sym;
6274 const struct block *b, *surrounding_static_block = 0;
6275 struct block_iterator iter;
6276
6277 gdb_assert (code == TYPE_CODE_UNDEF);
6278
6279 lookup_name_info lookup_name (text, name_match_type, true);
6280
6281 /* First, look at the partial symtab symbols. */
6282 expand_symtabs_matching (NULL,
6283 lookup_name,
6284 NULL,
6285 NULL,
6286 ALL_DOMAIN);
6287
6288 /* At this point scan through the misc symbol vectors and add each
6289 symbol you find to the list. Eventually we want to ignore
6290 anything that isn't a text symbol (everything else will be
6291 handled by the psymtab code above). */
6292
6293 for (objfile *objfile : current_program_space->objfiles ())
6294 {
6295 for (minimal_symbol *msymbol : objfile->msymbols ())
6296 {
6297 QUIT;
6298
6299 if (completion_skip_symbol (mode, msymbol))
6300 continue;
6301
6302 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6303
6304 /* Ada minimal symbols won't have their language set to Ada. If
6305 we let completion_list_add_name compare using the
6306 default/C-like matcher, then when completing e.g., symbols in a
6307 package named "pck", we'd match internal Ada symbols like
6308 "pckS", which are invalid in an Ada expression, unless you wrap
6309 them in '<' '>' to request a verbatim match.
6310
6311 Unfortunately, some Ada encoded names successfully demangle as
6312 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6313 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6314 with the wrong language set. Paper over that issue here. */
6315 if (symbol_language == language_auto
6316 || symbol_language == language_cplus)
6317 symbol_language = language_ada;
6318
6319 completion_list_add_name (tracker,
6320 symbol_language,
6321 MSYMBOL_LINKAGE_NAME (msymbol),
6322 lookup_name, text, word);
6323 }
6324 }
6325
6326 /* Search upwards from currently selected frame (so that we can
6327 complete on local vars. */
6328
6329 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6330 {
6331 if (!BLOCK_SUPERBLOCK (b))
6332 surrounding_static_block = b; /* For elmin of dups */
6333
6334 ALL_BLOCK_SYMBOLS (b, iter, sym)
6335 {
6336 if (completion_skip_symbol (mode, sym))
6337 continue;
6338
6339 completion_list_add_name (tracker,
6340 SYMBOL_LANGUAGE (sym),
6341 SYMBOL_LINKAGE_NAME (sym),
6342 lookup_name, text, word);
6343 }
6344 }
6345
6346 /* Go through the symtabs and check the externs and statics for
6347 symbols which match. */
6348
6349 for (objfile *objfile : current_program_space->objfiles ())
6350 {
6351 for (compunit_symtab *s : objfile->compunits ())
6352 {
6353 QUIT;
6354 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6355 ALL_BLOCK_SYMBOLS (b, iter, sym)
6356 {
6357 if (completion_skip_symbol (mode, sym))
6358 continue;
6359
6360 completion_list_add_name (tracker,
6361 SYMBOL_LANGUAGE (sym),
6362 SYMBOL_LINKAGE_NAME (sym),
6363 lookup_name, text, word);
6364 }
6365 }
6366 }
6367
6368 for (objfile *objfile : current_program_space->objfiles ())
6369 {
6370 for (compunit_symtab *s : objfile->compunits ())
6371 {
6372 QUIT;
6373 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6374 /* Don't do this block twice. */
6375 if (b == surrounding_static_block)
6376 continue;
6377 ALL_BLOCK_SYMBOLS (b, iter, sym)
6378 {
6379 if (completion_skip_symbol (mode, sym))
6380 continue;
6381
6382 completion_list_add_name (tracker,
6383 SYMBOL_LANGUAGE (sym),
6384 SYMBOL_LINKAGE_NAME (sym),
6385 lookup_name, text, word);
6386 }
6387 }
6388 }
6389 }
6390
6391 /* Field Access */
6392
6393 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6394 for tagged types. */
6395
6396 static int
6397 ada_is_dispatch_table_ptr_type (struct type *type)
6398 {
6399 const char *name;
6400
6401 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6402 return 0;
6403
6404 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6405 if (name == NULL)
6406 return 0;
6407
6408 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6409 }
6410
6411 /* Return non-zero if TYPE is an interface tag. */
6412
6413 static int
6414 ada_is_interface_tag (struct type *type)
6415 {
6416 const char *name = TYPE_NAME (type);
6417
6418 if (name == NULL)
6419 return 0;
6420
6421 return (strcmp (name, "ada__tags__interface_tag") == 0);
6422 }
6423
6424 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6425 to be invisible to users. */
6426
6427 int
6428 ada_is_ignored_field (struct type *type, int field_num)
6429 {
6430 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6431 return 1;
6432
6433 /* Check the name of that field. */
6434 {
6435 const char *name = TYPE_FIELD_NAME (type, field_num);
6436
6437 /* Anonymous field names should not be printed.
6438 brobecker/2007-02-20: I don't think this can actually happen
6439 but we don't want to print the value of anonymous fields anyway. */
6440 if (name == NULL)
6441 return 1;
6442
6443 /* Normally, fields whose name start with an underscore ("_")
6444 are fields that have been internally generated by the compiler,
6445 and thus should not be printed. The "_parent" field is special,
6446 however: This is a field internally generated by the compiler
6447 for tagged types, and it contains the components inherited from
6448 the parent type. This field should not be printed as is, but
6449 should not be ignored either. */
6450 if (name[0] == '_' && !startswith (name, "_parent"))
6451 return 1;
6452 }
6453
6454 /* If this is the dispatch table of a tagged type or an interface tag,
6455 then ignore. */
6456 if (ada_is_tagged_type (type, 1)
6457 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6458 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6459 return 1;
6460
6461 /* Not a special field, so it should not be ignored. */
6462 return 0;
6463 }
6464
6465 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6466 pointer or reference type whose ultimate target has a tag field. */
6467
6468 int
6469 ada_is_tagged_type (struct type *type, int refok)
6470 {
6471 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6472 }
6473
6474 /* True iff TYPE represents the type of X'Tag */
6475
6476 int
6477 ada_is_tag_type (struct type *type)
6478 {
6479 type = ada_check_typedef (type);
6480
6481 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6482 return 0;
6483 else
6484 {
6485 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6486
6487 return (name != NULL
6488 && strcmp (name, "ada__tags__dispatch_table") == 0);
6489 }
6490 }
6491
6492 /* The type of the tag on VAL. */
6493
6494 struct type *
6495 ada_tag_type (struct value *val)
6496 {
6497 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6498 }
6499
6500 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6501 retired at Ada 05). */
6502
6503 static int
6504 is_ada95_tag (struct value *tag)
6505 {
6506 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6507 }
6508
6509 /* The value of the tag on VAL. */
6510
6511 struct value *
6512 ada_value_tag (struct value *val)
6513 {
6514 return ada_value_struct_elt (val, "_tag", 0);
6515 }
6516
6517 /* The value of the tag on the object of type TYPE whose contents are
6518 saved at VALADDR, if it is non-null, or is at memory address
6519 ADDRESS. */
6520
6521 static struct value *
6522 value_tag_from_contents_and_address (struct type *type,
6523 const gdb_byte *valaddr,
6524 CORE_ADDR address)
6525 {
6526 int tag_byte_offset;
6527 struct type *tag_type;
6528
6529 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6530 NULL, NULL, NULL))
6531 {
6532 const gdb_byte *valaddr1 = ((valaddr == NULL)
6533 ? NULL
6534 : valaddr + tag_byte_offset);
6535 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6536
6537 return value_from_contents_and_address (tag_type, valaddr1, address1);
6538 }
6539 return NULL;
6540 }
6541
6542 static struct type *
6543 type_from_tag (struct value *tag)
6544 {
6545 const char *type_name = ada_tag_name (tag);
6546
6547 if (type_name != NULL)
6548 return ada_find_any_type (ada_encode (type_name));
6549 return NULL;
6550 }
6551
6552 /* Given a value OBJ of a tagged type, return a value of this
6553 type at the base address of the object. The base address, as
6554 defined in Ada.Tags, it is the address of the primary tag of
6555 the object, and therefore where the field values of its full
6556 view can be fetched. */
6557
6558 struct value *
6559 ada_tag_value_at_base_address (struct value *obj)
6560 {
6561 struct value *val;
6562 LONGEST offset_to_top = 0;
6563 struct type *ptr_type, *obj_type;
6564 struct value *tag;
6565 CORE_ADDR base_address;
6566
6567 obj_type = value_type (obj);
6568
6569 /* It is the responsability of the caller to deref pointers. */
6570
6571 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6572 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6573 return obj;
6574
6575 tag = ada_value_tag (obj);
6576 if (!tag)
6577 return obj;
6578
6579 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6580
6581 if (is_ada95_tag (tag))
6582 return obj;
6583
6584 ptr_type = language_lookup_primitive_type
6585 (language_def (language_ada), target_gdbarch(), "storage_offset");
6586 ptr_type = lookup_pointer_type (ptr_type);
6587 val = value_cast (ptr_type, tag);
6588 if (!val)
6589 return obj;
6590
6591 /* It is perfectly possible that an exception be raised while
6592 trying to determine the base address, just like for the tag;
6593 see ada_tag_name for more details. We do not print the error
6594 message for the same reason. */
6595
6596 try
6597 {
6598 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6599 }
6600
6601 catch (const gdb_exception_error &e)
6602 {
6603 return obj;
6604 }
6605
6606 /* If offset is null, nothing to do. */
6607
6608 if (offset_to_top == 0)
6609 return obj;
6610
6611 /* -1 is a special case in Ada.Tags; however, what should be done
6612 is not quite clear from the documentation. So do nothing for
6613 now. */
6614
6615 if (offset_to_top == -1)
6616 return obj;
6617
6618 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6619 from the base address. This was however incompatible with
6620 C++ dispatch table: C++ uses a *negative* value to *add*
6621 to the base address. Ada's convention has therefore been
6622 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6623 use the same convention. Here, we support both cases by
6624 checking the sign of OFFSET_TO_TOP. */
6625
6626 if (offset_to_top > 0)
6627 offset_to_top = -offset_to_top;
6628
6629 base_address = value_address (obj) + offset_to_top;
6630 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6631
6632 /* Make sure that we have a proper tag at the new address.
6633 Otherwise, offset_to_top is bogus (which can happen when
6634 the object is not initialized yet). */
6635
6636 if (!tag)
6637 return obj;
6638
6639 obj_type = type_from_tag (tag);
6640
6641 if (!obj_type)
6642 return obj;
6643
6644 return value_from_contents_and_address (obj_type, NULL, base_address);
6645 }
6646
6647 /* Return the "ada__tags__type_specific_data" type. */
6648
6649 static struct type *
6650 ada_get_tsd_type (struct inferior *inf)
6651 {
6652 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6653
6654 if (data->tsd_type == 0)
6655 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6656 return data->tsd_type;
6657 }
6658
6659 /* Return the TSD (type-specific data) associated to the given TAG.
6660 TAG is assumed to be the tag of a tagged-type entity.
6661
6662 May return NULL if we are unable to get the TSD. */
6663
6664 static struct value *
6665 ada_get_tsd_from_tag (struct value *tag)
6666 {
6667 struct value *val;
6668 struct type *type;
6669
6670 /* First option: The TSD is simply stored as a field of our TAG.
6671 Only older versions of GNAT would use this format, but we have
6672 to test it first, because there are no visible markers for
6673 the current approach except the absence of that field. */
6674
6675 val = ada_value_struct_elt (tag, "tsd", 1);
6676 if (val)
6677 return val;
6678
6679 /* Try the second representation for the dispatch table (in which
6680 there is no explicit 'tsd' field in the referent of the tag pointer,
6681 and instead the tsd pointer is stored just before the dispatch
6682 table. */
6683
6684 type = ada_get_tsd_type (current_inferior());
6685 if (type == NULL)
6686 return NULL;
6687 type = lookup_pointer_type (lookup_pointer_type (type));
6688 val = value_cast (type, tag);
6689 if (val == NULL)
6690 return NULL;
6691 return value_ind (value_ptradd (val, -1));
6692 }
6693
6694 /* Given the TSD of a tag (type-specific data), return a string
6695 containing the name of the associated type.
6696
6697 The returned value is good until the next call. May return NULL
6698 if we are unable to determine the tag name. */
6699
6700 static char *
6701 ada_tag_name_from_tsd (struct value *tsd)
6702 {
6703 static char name[1024];
6704 char *p;
6705 struct value *val;
6706
6707 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6708 if (val == NULL)
6709 return NULL;
6710 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6711 for (p = name; *p != '\0'; p += 1)
6712 if (isalpha (*p))
6713 *p = tolower (*p);
6714 return name;
6715 }
6716
6717 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6718 a C string.
6719
6720 Return NULL if the TAG is not an Ada tag, or if we were unable to
6721 determine the name of that tag. The result is good until the next
6722 call. */
6723
6724 const char *
6725 ada_tag_name (struct value *tag)
6726 {
6727 char *name = NULL;
6728
6729 if (!ada_is_tag_type (value_type (tag)))
6730 return NULL;
6731
6732 /* It is perfectly possible that an exception be raised while trying
6733 to determine the TAG's name, even under normal circumstances:
6734 The associated variable may be uninitialized or corrupted, for
6735 instance. We do not let any exception propagate past this point.
6736 instead we return NULL.
6737
6738 We also do not print the error message either (which often is very
6739 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6740 the caller print a more meaningful message if necessary. */
6741 try
6742 {
6743 struct value *tsd = ada_get_tsd_from_tag (tag);
6744
6745 if (tsd != NULL)
6746 name = ada_tag_name_from_tsd (tsd);
6747 }
6748 catch (const gdb_exception_error &e)
6749 {
6750 }
6751
6752 return name;
6753 }
6754
6755 /* The parent type of TYPE, or NULL if none. */
6756
6757 struct type *
6758 ada_parent_type (struct type *type)
6759 {
6760 int i;
6761
6762 type = ada_check_typedef (type);
6763
6764 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6765 return NULL;
6766
6767 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6768 if (ada_is_parent_field (type, i))
6769 {
6770 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6771
6772 /* If the _parent field is a pointer, then dereference it. */
6773 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6774 parent_type = TYPE_TARGET_TYPE (parent_type);
6775 /* If there is a parallel XVS type, get the actual base type. */
6776 parent_type = ada_get_base_type (parent_type);
6777
6778 return ada_check_typedef (parent_type);
6779 }
6780
6781 return NULL;
6782 }
6783
6784 /* True iff field number FIELD_NUM of structure type TYPE contains the
6785 parent-type (inherited) fields of a derived type. Assumes TYPE is
6786 a structure type with at least FIELD_NUM+1 fields. */
6787
6788 int
6789 ada_is_parent_field (struct type *type, int field_num)
6790 {
6791 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6792
6793 return (name != NULL
6794 && (startswith (name, "PARENT")
6795 || startswith (name, "_parent")));
6796 }
6797
6798 /* True iff field number FIELD_NUM of structure type TYPE is a
6799 transparent wrapper field (which should be silently traversed when doing
6800 field selection and flattened when printing). Assumes TYPE is a
6801 structure type with at least FIELD_NUM+1 fields. Such fields are always
6802 structures. */
6803
6804 int
6805 ada_is_wrapper_field (struct type *type, int field_num)
6806 {
6807 const char *name = TYPE_FIELD_NAME (type, field_num);
6808
6809 if (name != NULL && strcmp (name, "RETVAL") == 0)
6810 {
6811 /* This happens in functions with "out" or "in out" parameters
6812 which are passed by copy. For such functions, GNAT describes
6813 the function's return type as being a struct where the return
6814 value is in a field called RETVAL, and where the other "out"
6815 or "in out" parameters are fields of that struct. This is not
6816 a wrapper. */
6817 return 0;
6818 }
6819
6820 return (name != NULL
6821 && (startswith (name, "PARENT")
6822 || strcmp (name, "REP") == 0
6823 || startswith (name, "_parent")
6824 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6825 }
6826
6827 /* True iff field number FIELD_NUM of structure or union type TYPE
6828 is a variant wrapper. Assumes TYPE is a structure type with at least
6829 FIELD_NUM+1 fields. */
6830
6831 int
6832 ada_is_variant_part (struct type *type, int field_num)
6833 {
6834 /* Only Ada types are eligible. */
6835 if (!ADA_TYPE_P (type))
6836 return 0;
6837
6838 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6839
6840 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6841 || (is_dynamic_field (type, field_num)
6842 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6843 == TYPE_CODE_UNION)));
6844 }
6845
6846 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6847 whose discriminants are contained in the record type OUTER_TYPE,
6848 returns the type of the controlling discriminant for the variant.
6849 May return NULL if the type could not be found. */
6850
6851 struct type *
6852 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6853 {
6854 const char *name = ada_variant_discrim_name (var_type);
6855
6856 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6857 }
6858
6859 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6860 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6861 represents a 'when others' clause; otherwise 0. */
6862
6863 int
6864 ada_is_others_clause (struct type *type, int field_num)
6865 {
6866 const char *name = TYPE_FIELD_NAME (type, field_num);
6867
6868 return (name != NULL && name[0] == 'O');
6869 }
6870
6871 /* Assuming that TYPE0 is the type of the variant part of a record,
6872 returns the name of the discriminant controlling the variant.
6873 The value is valid until the next call to ada_variant_discrim_name. */
6874
6875 const char *
6876 ada_variant_discrim_name (struct type *type0)
6877 {
6878 static char *result = NULL;
6879 static size_t result_len = 0;
6880 struct type *type;
6881 const char *name;
6882 const char *discrim_end;
6883 const char *discrim_start;
6884
6885 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6886 type = TYPE_TARGET_TYPE (type0);
6887 else
6888 type = type0;
6889
6890 name = ada_type_name (type);
6891
6892 if (name == NULL || name[0] == '\000')
6893 return "";
6894
6895 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6896 discrim_end -= 1)
6897 {
6898 if (startswith (discrim_end, "___XVN"))
6899 break;
6900 }
6901 if (discrim_end == name)
6902 return "";
6903
6904 for (discrim_start = discrim_end; discrim_start != name + 3;
6905 discrim_start -= 1)
6906 {
6907 if (discrim_start == name + 1)
6908 return "";
6909 if ((discrim_start > name + 3
6910 && startswith (discrim_start - 3, "___"))
6911 || discrim_start[-1] == '.')
6912 break;
6913 }
6914
6915 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6916 strncpy (result, discrim_start, discrim_end - discrim_start);
6917 result[discrim_end - discrim_start] = '\0';
6918 return result;
6919 }
6920
6921 /* Scan STR for a subtype-encoded number, beginning at position K.
6922 Put the position of the character just past the number scanned in
6923 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6924 Return 1 if there was a valid number at the given position, and 0
6925 otherwise. A "subtype-encoded" number consists of the absolute value
6926 in decimal, followed by the letter 'm' to indicate a negative number.
6927 Assumes 0m does not occur. */
6928
6929 int
6930 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6931 {
6932 ULONGEST RU;
6933
6934 if (!isdigit (str[k]))
6935 return 0;
6936
6937 /* Do it the hard way so as not to make any assumption about
6938 the relationship of unsigned long (%lu scan format code) and
6939 LONGEST. */
6940 RU = 0;
6941 while (isdigit (str[k]))
6942 {
6943 RU = RU * 10 + (str[k] - '0');
6944 k += 1;
6945 }
6946
6947 if (str[k] == 'm')
6948 {
6949 if (R != NULL)
6950 *R = (-(LONGEST) (RU - 1)) - 1;
6951 k += 1;
6952 }
6953 else if (R != NULL)
6954 *R = (LONGEST) RU;
6955
6956 /* NOTE on the above: Technically, C does not say what the results of
6957 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6958 number representable as a LONGEST (although either would probably work
6959 in most implementations). When RU>0, the locution in the then branch
6960 above is always equivalent to the negative of RU. */
6961
6962 if (new_k != NULL)
6963 *new_k = k;
6964 return 1;
6965 }
6966
6967 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6968 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6969 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6970
6971 int
6972 ada_in_variant (LONGEST val, struct type *type, int field_num)
6973 {
6974 const char *name = TYPE_FIELD_NAME (type, field_num);
6975 int p;
6976
6977 p = 0;
6978 while (1)
6979 {
6980 switch (name[p])
6981 {
6982 case '\0':
6983 return 0;
6984 case 'S':
6985 {
6986 LONGEST W;
6987
6988 if (!ada_scan_number (name, p + 1, &W, &p))
6989 return 0;
6990 if (val == W)
6991 return 1;
6992 break;
6993 }
6994 case 'R':
6995 {
6996 LONGEST L, U;
6997
6998 if (!ada_scan_number (name, p + 1, &L, &p)
6999 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7000 return 0;
7001 if (val >= L && val <= U)
7002 return 1;
7003 break;
7004 }
7005 case 'O':
7006 return 1;
7007 default:
7008 return 0;
7009 }
7010 }
7011 }
7012
7013 /* FIXME: Lots of redundancy below. Try to consolidate. */
7014
7015 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7016 ARG_TYPE, extract and return the value of one of its (non-static)
7017 fields. FIELDNO says which field. Differs from value_primitive_field
7018 only in that it can handle packed values of arbitrary type. */
7019
7020 static struct value *
7021 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7022 struct type *arg_type)
7023 {
7024 struct type *type;
7025
7026 arg_type = ada_check_typedef (arg_type);
7027 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7028
7029 /* Handle packed fields. It might be that the field is not packed
7030 relative to its containing structure, but the structure itself is
7031 packed; in this case we must take the bit-field path. */
7032 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7033 {
7034 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7035 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7036
7037 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7038 offset + bit_pos / 8,
7039 bit_pos % 8, bit_size, type);
7040 }
7041 else
7042 return value_primitive_field (arg1, offset, fieldno, arg_type);
7043 }
7044
7045 /* Find field with name NAME in object of type TYPE. If found,
7046 set the following for each argument that is non-null:
7047 - *FIELD_TYPE_P to the field's type;
7048 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7049 an object of that type;
7050 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7051 - *BIT_SIZE_P to its size in bits if the field is packed, and
7052 0 otherwise;
7053 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7054 fields up to but not including the desired field, or by the total
7055 number of fields if not found. A NULL value of NAME never
7056 matches; the function just counts visible fields in this case.
7057
7058 Notice that we need to handle when a tagged record hierarchy
7059 has some components with the same name, like in this scenario:
7060
7061 type Top_T is tagged record
7062 N : Integer := 1;
7063 U : Integer := 974;
7064 A : Integer := 48;
7065 end record;
7066
7067 type Middle_T is new Top.Top_T with record
7068 N : Character := 'a';
7069 C : Integer := 3;
7070 end record;
7071
7072 type Bottom_T is new Middle.Middle_T with record
7073 N : Float := 4.0;
7074 C : Character := '5';
7075 X : Integer := 6;
7076 A : Character := 'J';
7077 end record;
7078
7079 Let's say we now have a variable declared and initialized as follow:
7080
7081 TC : Top_A := new Bottom_T;
7082
7083 And then we use this variable to call this function
7084
7085 procedure Assign (Obj: in out Top_T; TV : Integer);
7086
7087 as follow:
7088
7089 Assign (Top_T (B), 12);
7090
7091 Now, we're in the debugger, and we're inside that procedure
7092 then and we want to print the value of obj.c:
7093
7094 Usually, the tagged record or one of the parent type owns the
7095 component to print and there's no issue but in this particular
7096 case, what does it mean to ask for Obj.C? Since the actual
7097 type for object is type Bottom_T, it could mean two things: type
7098 component C from the Middle_T view, but also component C from
7099 Bottom_T. So in that "undefined" case, when the component is
7100 not found in the non-resolved type (which includes all the
7101 components of the parent type), then resolve it and see if we
7102 get better luck once expanded.
7103
7104 In the case of homonyms in the derived tagged type, we don't
7105 guaranty anything, and pick the one that's easiest for us
7106 to program.
7107
7108 Returns 1 if found, 0 otherwise. */
7109
7110 static int
7111 find_struct_field (const char *name, struct type *type, int offset,
7112 struct type **field_type_p,
7113 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7114 int *index_p)
7115 {
7116 int i;
7117 int parent_offset = -1;
7118
7119 type = ada_check_typedef (type);
7120
7121 if (field_type_p != NULL)
7122 *field_type_p = NULL;
7123 if (byte_offset_p != NULL)
7124 *byte_offset_p = 0;
7125 if (bit_offset_p != NULL)
7126 *bit_offset_p = 0;
7127 if (bit_size_p != NULL)
7128 *bit_size_p = 0;
7129
7130 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7131 {
7132 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7133 int fld_offset = offset + bit_pos / 8;
7134 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7135
7136 if (t_field_name == NULL)
7137 continue;
7138
7139 else if (ada_is_parent_field (type, i))
7140 {
7141 /* This is a field pointing us to the parent type of a tagged
7142 type. As hinted in this function's documentation, we give
7143 preference to fields in the current record first, so what
7144 we do here is just record the index of this field before
7145 we skip it. If it turns out we couldn't find our field
7146 in the current record, then we'll get back to it and search
7147 inside it whether the field might exist in the parent. */
7148
7149 parent_offset = i;
7150 continue;
7151 }
7152
7153 else if (name != NULL && field_name_match (t_field_name, name))
7154 {
7155 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7156
7157 if (field_type_p != NULL)
7158 *field_type_p = TYPE_FIELD_TYPE (type, i);
7159 if (byte_offset_p != NULL)
7160 *byte_offset_p = fld_offset;
7161 if (bit_offset_p != NULL)
7162 *bit_offset_p = bit_pos % 8;
7163 if (bit_size_p != NULL)
7164 *bit_size_p = bit_size;
7165 return 1;
7166 }
7167 else if (ada_is_wrapper_field (type, i))
7168 {
7169 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7170 field_type_p, byte_offset_p, bit_offset_p,
7171 bit_size_p, index_p))
7172 return 1;
7173 }
7174 else if (ada_is_variant_part (type, i))
7175 {
7176 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7177 fixed type?? */
7178 int j;
7179 struct type *field_type
7180 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7181
7182 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7183 {
7184 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7185 fld_offset
7186 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7187 field_type_p, byte_offset_p,
7188 bit_offset_p, bit_size_p, index_p))
7189 return 1;
7190 }
7191 }
7192 else if (index_p != NULL)
7193 *index_p += 1;
7194 }
7195
7196 /* Field not found so far. If this is a tagged type which
7197 has a parent, try finding that field in the parent now. */
7198
7199 if (parent_offset != -1)
7200 {
7201 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7202 int fld_offset = offset + bit_pos / 8;
7203
7204 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7205 fld_offset, field_type_p, byte_offset_p,
7206 bit_offset_p, bit_size_p, index_p))
7207 return 1;
7208 }
7209
7210 return 0;
7211 }
7212
7213 /* Number of user-visible fields in record type TYPE. */
7214
7215 static int
7216 num_visible_fields (struct type *type)
7217 {
7218 int n;
7219
7220 n = 0;
7221 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7222 return n;
7223 }
7224
7225 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7226 and search in it assuming it has (class) type TYPE.
7227 If found, return value, else return NULL.
7228
7229 Searches recursively through wrapper fields (e.g., '_parent').
7230
7231 In the case of homonyms in the tagged types, please refer to the
7232 long explanation in find_struct_field's function documentation. */
7233
7234 static struct value *
7235 ada_search_struct_field (const char *name, struct value *arg, int offset,
7236 struct type *type)
7237 {
7238 int i;
7239 int parent_offset = -1;
7240
7241 type = ada_check_typedef (type);
7242 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7243 {
7244 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7245
7246 if (t_field_name == NULL)
7247 continue;
7248
7249 else if (ada_is_parent_field (type, i))
7250 {
7251 /* This is a field pointing us to the parent type of a tagged
7252 type. As hinted in this function's documentation, we give
7253 preference to fields in the current record first, so what
7254 we do here is just record the index of this field before
7255 we skip it. If it turns out we couldn't find our field
7256 in the current record, then we'll get back to it and search
7257 inside it whether the field might exist in the parent. */
7258
7259 parent_offset = i;
7260 continue;
7261 }
7262
7263 else if (field_name_match (t_field_name, name))
7264 return ada_value_primitive_field (arg, offset, i, type);
7265
7266 else if (ada_is_wrapper_field (type, i))
7267 {
7268 struct value *v = /* Do not let indent join lines here. */
7269 ada_search_struct_field (name, arg,
7270 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7271 TYPE_FIELD_TYPE (type, i));
7272
7273 if (v != NULL)
7274 return v;
7275 }
7276
7277 else if (ada_is_variant_part (type, i))
7278 {
7279 /* PNH: Do we ever get here? See find_struct_field. */
7280 int j;
7281 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7282 i));
7283 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7284
7285 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7286 {
7287 struct value *v = ada_search_struct_field /* Force line
7288 break. */
7289 (name, arg,
7290 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7291 TYPE_FIELD_TYPE (field_type, j));
7292
7293 if (v != NULL)
7294 return v;
7295 }
7296 }
7297 }
7298
7299 /* Field not found so far. If this is a tagged type which
7300 has a parent, try finding that field in the parent now. */
7301
7302 if (parent_offset != -1)
7303 {
7304 struct value *v = ada_search_struct_field (
7305 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7306 TYPE_FIELD_TYPE (type, parent_offset));
7307
7308 if (v != NULL)
7309 return v;
7310 }
7311
7312 return NULL;
7313 }
7314
7315 static struct value *ada_index_struct_field_1 (int *, struct value *,
7316 int, struct type *);
7317
7318
7319 /* Return field #INDEX in ARG, where the index is that returned by
7320 * find_struct_field through its INDEX_P argument. Adjust the address
7321 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7322 * If found, return value, else return NULL. */
7323
7324 static struct value *
7325 ada_index_struct_field (int index, struct value *arg, int offset,
7326 struct type *type)
7327 {
7328 return ada_index_struct_field_1 (&index, arg, offset, type);
7329 }
7330
7331
7332 /* Auxiliary function for ada_index_struct_field. Like
7333 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7334 * *INDEX_P. */
7335
7336 static struct value *
7337 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7338 struct type *type)
7339 {
7340 int i;
7341 type = ada_check_typedef (type);
7342
7343 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7344 {
7345 if (TYPE_FIELD_NAME (type, i) == NULL)
7346 continue;
7347 else if (ada_is_wrapper_field (type, i))
7348 {
7349 struct value *v = /* Do not let indent join lines here. */
7350 ada_index_struct_field_1 (index_p, arg,
7351 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7352 TYPE_FIELD_TYPE (type, i));
7353
7354 if (v != NULL)
7355 return v;
7356 }
7357
7358 else if (ada_is_variant_part (type, i))
7359 {
7360 /* PNH: Do we ever get here? See ada_search_struct_field,
7361 find_struct_field. */
7362 error (_("Cannot assign this kind of variant record"));
7363 }
7364 else if (*index_p == 0)
7365 return ada_value_primitive_field (arg, offset, i, type);
7366 else
7367 *index_p -= 1;
7368 }
7369 return NULL;
7370 }
7371
7372 /* Given ARG, a value of type (pointer or reference to a)*
7373 structure/union, extract the component named NAME from the ultimate
7374 target structure/union and return it as a value with its
7375 appropriate type.
7376
7377 The routine searches for NAME among all members of the structure itself
7378 and (recursively) among all members of any wrapper members
7379 (e.g., '_parent').
7380
7381 If NO_ERR, then simply return NULL in case of error, rather than
7382 calling error. */
7383
7384 struct value *
7385 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7386 {
7387 struct type *t, *t1;
7388 struct value *v;
7389 int check_tag;
7390
7391 v = NULL;
7392 t1 = t = ada_check_typedef (value_type (arg));
7393 if (TYPE_CODE (t) == TYPE_CODE_REF)
7394 {
7395 t1 = TYPE_TARGET_TYPE (t);
7396 if (t1 == NULL)
7397 goto BadValue;
7398 t1 = ada_check_typedef (t1);
7399 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7400 {
7401 arg = coerce_ref (arg);
7402 t = t1;
7403 }
7404 }
7405
7406 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7407 {
7408 t1 = TYPE_TARGET_TYPE (t);
7409 if (t1 == NULL)
7410 goto BadValue;
7411 t1 = ada_check_typedef (t1);
7412 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7413 {
7414 arg = value_ind (arg);
7415 t = t1;
7416 }
7417 else
7418 break;
7419 }
7420
7421 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7422 goto BadValue;
7423
7424 if (t1 == t)
7425 v = ada_search_struct_field (name, arg, 0, t);
7426 else
7427 {
7428 int bit_offset, bit_size, byte_offset;
7429 struct type *field_type;
7430 CORE_ADDR address;
7431
7432 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7433 address = value_address (ada_value_ind (arg));
7434 else
7435 address = value_address (ada_coerce_ref (arg));
7436
7437 /* Check to see if this is a tagged type. We also need to handle
7438 the case where the type is a reference to a tagged type, but
7439 we have to be careful to exclude pointers to tagged types.
7440 The latter should be shown as usual (as a pointer), whereas
7441 a reference should mostly be transparent to the user. */
7442
7443 if (ada_is_tagged_type (t1, 0)
7444 || (TYPE_CODE (t1) == TYPE_CODE_REF
7445 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7446 {
7447 /* We first try to find the searched field in the current type.
7448 If not found then let's look in the fixed type. */
7449
7450 if (!find_struct_field (name, t1, 0,
7451 &field_type, &byte_offset, &bit_offset,
7452 &bit_size, NULL))
7453 check_tag = 1;
7454 else
7455 check_tag = 0;
7456 }
7457 else
7458 check_tag = 0;
7459
7460 /* Convert to fixed type in all cases, so that we have proper
7461 offsets to each field in unconstrained record types. */
7462 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7463 address, NULL, check_tag);
7464
7465 if (find_struct_field (name, t1, 0,
7466 &field_type, &byte_offset, &bit_offset,
7467 &bit_size, NULL))
7468 {
7469 if (bit_size != 0)
7470 {
7471 if (TYPE_CODE (t) == TYPE_CODE_REF)
7472 arg = ada_coerce_ref (arg);
7473 else
7474 arg = ada_value_ind (arg);
7475 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7476 bit_offset, bit_size,
7477 field_type);
7478 }
7479 else
7480 v = value_at_lazy (field_type, address + byte_offset);
7481 }
7482 }
7483
7484 if (v != NULL || no_err)
7485 return v;
7486 else
7487 error (_("There is no member named %s."), name);
7488
7489 BadValue:
7490 if (no_err)
7491 return NULL;
7492 else
7493 error (_("Attempt to extract a component of "
7494 "a value that is not a record."));
7495 }
7496
7497 /* Return a string representation of type TYPE. */
7498
7499 static std::string
7500 type_as_string (struct type *type)
7501 {
7502 string_file tmp_stream;
7503
7504 type_print (type, "", &tmp_stream, -1);
7505
7506 return std::move (tmp_stream.string ());
7507 }
7508
7509 /* Given a type TYPE, look up the type of the component of type named NAME.
7510 If DISPP is non-null, add its byte displacement from the beginning of a
7511 structure (pointed to by a value) of type TYPE to *DISPP (does not
7512 work for packed fields).
7513
7514 Matches any field whose name has NAME as a prefix, possibly
7515 followed by "___".
7516
7517 TYPE can be either a struct or union. If REFOK, TYPE may also
7518 be a (pointer or reference)+ to a struct or union, and the
7519 ultimate target type will be searched.
7520
7521 Looks recursively into variant clauses and parent types.
7522
7523 In the case of homonyms in the tagged types, please refer to the
7524 long explanation in find_struct_field's function documentation.
7525
7526 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7527 TYPE is not a type of the right kind. */
7528
7529 static struct type *
7530 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7531 int noerr)
7532 {
7533 int i;
7534 int parent_offset = -1;
7535
7536 if (name == NULL)
7537 goto BadName;
7538
7539 if (refok && type != NULL)
7540 while (1)
7541 {
7542 type = ada_check_typedef (type);
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
7547 }
7548
7549 if (type == NULL
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
7552 {
7553 if (noerr)
7554 return NULL;
7555
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7565 struct type *t;
7566
7567 if (t_field_name == NULL)
7568 continue;
7569
7570 else if (ada_is_parent_field (type, i))
7571 {
7572 /* This is a field pointing us to the parent type of a tagged
7573 type. As hinted in this function's documentation, we give
7574 preference to fields in the current record first, so what
7575 we do here is just record the index of this field before
7576 we skip it. If it turns out we couldn't find our field
7577 in the current record, then we'll get back to it and search
7578 inside it whether the field might exist in the parent. */
7579
7580 parent_offset = i;
7581 continue;
7582 }
7583
7584 else if (field_name_match (t_field_name, name))
7585 return TYPE_FIELD_TYPE (type, i);
7586
7587 else if (ada_is_wrapper_field (type, i))
7588 {
7589 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7590 0, 1);
7591 if (t != NULL)
7592 return t;
7593 }
7594
7595 else if (ada_is_variant_part (type, i))
7596 {
7597 int j;
7598 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7599 i));
7600
7601 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7602 {
7603 /* FIXME pnh 2008/01/26: We check for a field that is
7604 NOT wrapped in a struct, since the compiler sometimes
7605 generates these for unchecked variant types. Revisit
7606 if the compiler changes this practice. */
7607 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7608
7609 if (v_field_name != NULL
7610 && field_name_match (v_field_name, name))
7611 t = TYPE_FIELD_TYPE (field_type, j);
7612 else
7613 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7614 j),
7615 name, 0, 1);
7616
7617 if (t != NULL)
7618 return t;
7619 }
7620 }
7621
7622 }
7623
7624 /* Field not found so far. If this is a tagged type which
7625 has a parent, try finding that field in the parent now. */
7626
7627 if (parent_offset != -1)
7628 {
7629 struct type *t;
7630
7631 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7632 name, 0, 1);
7633 if (t != NULL)
7634 return t;
7635 }
7636
7637 BadName:
7638 if (!noerr)
7639 {
7640 const char *name_str = name != NULL ? name : _("<null>");
7641
7642 error (_("Type %s has no component named %s"),
7643 type_as_string (type).c_str (), name_str);
7644 }
7645
7646 return NULL;
7647 }
7648
7649 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7650 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7651 represents an unchecked union (that is, the variant part of a
7652 record that is named in an Unchecked_Union pragma). */
7653
7654 static int
7655 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7656 {
7657 const char *discrim_name = ada_variant_discrim_name (var_type);
7658
7659 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7660 }
7661
7662
7663 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7664 within a value of type OUTER_TYPE that is stored in GDB at
7665 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7666 numbering from 0) is applicable. Returns -1 if none are. */
7667
7668 int
7669 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7670 const gdb_byte *outer_valaddr)
7671 {
7672 int others_clause;
7673 int i;
7674 const char *discrim_name = ada_variant_discrim_name (var_type);
7675 struct value *outer;
7676 struct value *discrim;
7677 LONGEST discrim_val;
7678
7679 /* Using plain value_from_contents_and_address here causes problems
7680 because we will end up trying to resolve a type that is currently
7681 being constructed. */
7682 outer = value_from_contents_and_address_unresolved (outer_type,
7683 outer_valaddr, 0);
7684 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7685 if (discrim == NULL)
7686 return -1;
7687 discrim_val = value_as_long (discrim);
7688
7689 others_clause = -1;
7690 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7691 {
7692 if (ada_is_others_clause (var_type, i))
7693 others_clause = i;
7694 else if (ada_in_variant (discrim_val, var_type, i))
7695 return i;
7696 }
7697
7698 return others_clause;
7699 }
7700 \f
7701
7702
7703 /* Dynamic-Sized Records */
7704
7705 /* Strategy: The type ostensibly attached to a value with dynamic size
7706 (i.e., a size that is not statically recorded in the debugging
7707 data) does not accurately reflect the size or layout of the value.
7708 Our strategy is to convert these values to values with accurate,
7709 conventional types that are constructed on the fly. */
7710
7711 /* There is a subtle and tricky problem here. In general, we cannot
7712 determine the size of dynamic records without its data. However,
7713 the 'struct value' data structure, which GDB uses to represent
7714 quantities in the inferior process (the target), requires the size
7715 of the type at the time of its allocation in order to reserve space
7716 for GDB's internal copy of the data. That's why the
7717 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7718 rather than struct value*s.
7719
7720 However, GDB's internal history variables ($1, $2, etc.) are
7721 struct value*s containing internal copies of the data that are not, in
7722 general, the same as the data at their corresponding addresses in
7723 the target. Fortunately, the types we give to these values are all
7724 conventional, fixed-size types (as per the strategy described
7725 above), so that we don't usually have to perform the
7726 'to_fixed_xxx_type' conversions to look at their values.
7727 Unfortunately, there is one exception: if one of the internal
7728 history variables is an array whose elements are unconstrained
7729 records, then we will need to create distinct fixed types for each
7730 element selected. */
7731
7732 /* The upshot of all of this is that many routines take a (type, host
7733 address, target address) triple as arguments to represent a value.
7734 The host address, if non-null, is supposed to contain an internal
7735 copy of the relevant data; otherwise, the program is to consult the
7736 target at the target address. */
7737
7738 /* Assuming that VAL0 represents a pointer value, the result of
7739 dereferencing it. Differs from value_ind in its treatment of
7740 dynamic-sized types. */
7741
7742 struct value *
7743 ada_value_ind (struct value *val0)
7744 {
7745 struct value *val = value_ind (val0);
7746
7747 if (ada_is_tagged_type (value_type (val), 0))
7748 val = ada_tag_value_at_base_address (val);
7749
7750 return ada_to_fixed_value (val);
7751 }
7752
7753 /* The value resulting from dereferencing any "reference to"
7754 qualifiers on VAL0. */
7755
7756 static struct value *
7757 ada_coerce_ref (struct value *val0)
7758 {
7759 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7760 {
7761 struct value *val = val0;
7762
7763 val = coerce_ref (val);
7764
7765 if (ada_is_tagged_type (value_type (val), 0))
7766 val = ada_tag_value_at_base_address (val);
7767
7768 return ada_to_fixed_value (val);
7769 }
7770 else
7771 return val0;
7772 }
7773
7774 /* Return OFF rounded upward if necessary to a multiple of
7775 ALIGNMENT (a power of 2). */
7776
7777 static unsigned int
7778 align_value (unsigned int off, unsigned int alignment)
7779 {
7780 return (off + alignment - 1) & ~(alignment - 1);
7781 }
7782
7783 /* Return the bit alignment required for field #F of template type TYPE. */
7784
7785 static unsigned int
7786 field_alignment (struct type *type, int f)
7787 {
7788 const char *name = TYPE_FIELD_NAME (type, f);
7789 int len;
7790 int align_offset;
7791
7792 /* The field name should never be null, unless the debugging information
7793 is somehow malformed. In this case, we assume the field does not
7794 require any alignment. */
7795 if (name == NULL)
7796 return 1;
7797
7798 len = strlen (name);
7799
7800 if (!isdigit (name[len - 1]))
7801 return 1;
7802
7803 if (isdigit (name[len - 2]))
7804 align_offset = len - 2;
7805 else
7806 align_offset = len - 1;
7807
7808 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7809 return TARGET_CHAR_BIT;
7810
7811 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7812 }
7813
7814 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7815
7816 static struct symbol *
7817 ada_find_any_type_symbol (const char *name)
7818 {
7819 struct symbol *sym;
7820
7821 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7822 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7823 return sym;
7824
7825 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7826 return sym;
7827 }
7828
7829 /* Find a type named NAME. Ignores ambiguity. This routine will look
7830 solely for types defined by debug info, it will not search the GDB
7831 primitive types. */
7832
7833 static struct type *
7834 ada_find_any_type (const char *name)
7835 {
7836 struct symbol *sym = ada_find_any_type_symbol (name);
7837
7838 if (sym != NULL)
7839 return SYMBOL_TYPE (sym);
7840
7841 return NULL;
7842 }
7843
7844 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7845 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7846 symbol, in which case it is returned. Otherwise, this looks for
7847 symbols whose name is that of NAME_SYM suffixed with "___XR".
7848 Return symbol if found, and NULL otherwise. */
7849
7850 static bool
7851 ada_is_renaming_symbol (struct symbol *name_sym)
7852 {
7853 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7854 return strstr (name, "___XR") != NULL;
7855 }
7856
7857 /* Because of GNAT encoding conventions, several GDB symbols may match a
7858 given type name. If the type denoted by TYPE0 is to be preferred to
7859 that of TYPE1 for purposes of type printing, return non-zero;
7860 otherwise return 0. */
7861
7862 int
7863 ada_prefer_type (struct type *type0, struct type *type1)
7864 {
7865 if (type1 == NULL)
7866 return 1;
7867 else if (type0 == NULL)
7868 return 0;
7869 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7870 return 1;
7871 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7872 return 0;
7873 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7874 return 1;
7875 else if (ada_is_constrained_packed_array_type (type0))
7876 return 1;
7877 else if (ada_is_array_descriptor_type (type0)
7878 && !ada_is_array_descriptor_type (type1))
7879 return 1;
7880 else
7881 {
7882 const char *type0_name = TYPE_NAME (type0);
7883 const char *type1_name = TYPE_NAME (type1);
7884
7885 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7886 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7887 return 1;
7888 }
7889 return 0;
7890 }
7891
7892 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7893 null. */
7894
7895 const char *
7896 ada_type_name (struct type *type)
7897 {
7898 if (type == NULL)
7899 return NULL;
7900 return TYPE_NAME (type);
7901 }
7902
7903 /* Search the list of "descriptive" types associated to TYPE for a type
7904 whose name is NAME. */
7905
7906 static struct type *
7907 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7908 {
7909 struct type *result, *tmp;
7910
7911 if (ada_ignore_descriptive_types_p)
7912 return NULL;
7913
7914 /* If there no descriptive-type info, then there is no parallel type
7915 to be found. */
7916 if (!HAVE_GNAT_AUX_INFO (type))
7917 return NULL;
7918
7919 result = TYPE_DESCRIPTIVE_TYPE (type);
7920 while (result != NULL)
7921 {
7922 const char *result_name = ada_type_name (result);
7923
7924 if (result_name == NULL)
7925 {
7926 warning (_("unexpected null name on descriptive type"));
7927 return NULL;
7928 }
7929
7930 /* If the names match, stop. */
7931 if (strcmp (result_name, name) == 0)
7932 break;
7933
7934 /* Otherwise, look at the next item on the list, if any. */
7935 if (HAVE_GNAT_AUX_INFO (result))
7936 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7937 else
7938 tmp = NULL;
7939
7940 /* If not found either, try after having resolved the typedef. */
7941 if (tmp != NULL)
7942 result = tmp;
7943 else
7944 {
7945 result = check_typedef (result);
7946 if (HAVE_GNAT_AUX_INFO (result))
7947 result = TYPE_DESCRIPTIVE_TYPE (result);
7948 else
7949 result = NULL;
7950 }
7951 }
7952
7953 /* If we didn't find a match, see whether this is a packed array. With
7954 older compilers, the descriptive type information is either absent or
7955 irrelevant when it comes to packed arrays so the above lookup fails.
7956 Fall back to using a parallel lookup by name in this case. */
7957 if (result == NULL && ada_is_constrained_packed_array_type (type))
7958 return ada_find_any_type (name);
7959
7960 return result;
7961 }
7962
7963 /* Find a parallel type to TYPE with the specified NAME, using the
7964 descriptive type taken from the debugging information, if available,
7965 and otherwise using the (slower) name-based method. */
7966
7967 static struct type *
7968 ada_find_parallel_type_with_name (struct type *type, const char *name)
7969 {
7970 struct type *result = NULL;
7971
7972 if (HAVE_GNAT_AUX_INFO (type))
7973 result = find_parallel_type_by_descriptive_type (type, name);
7974 else
7975 result = ada_find_any_type (name);
7976
7977 return result;
7978 }
7979
7980 /* Same as above, but specify the name of the parallel type by appending
7981 SUFFIX to the name of TYPE. */
7982
7983 struct type *
7984 ada_find_parallel_type (struct type *type, const char *suffix)
7985 {
7986 char *name;
7987 const char *type_name = ada_type_name (type);
7988 int len;
7989
7990 if (type_name == NULL)
7991 return NULL;
7992
7993 len = strlen (type_name);
7994
7995 name = (char *) alloca (len + strlen (suffix) + 1);
7996
7997 strcpy (name, type_name);
7998 strcpy (name + len, suffix);
7999
8000 return ada_find_parallel_type_with_name (type, name);
8001 }
8002
8003 /* If TYPE is a variable-size record type, return the corresponding template
8004 type describing its fields. Otherwise, return NULL. */
8005
8006 static struct type *
8007 dynamic_template_type (struct type *type)
8008 {
8009 type = ada_check_typedef (type);
8010
8011 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8012 || ada_type_name (type) == NULL)
8013 return NULL;
8014 else
8015 {
8016 int len = strlen (ada_type_name (type));
8017
8018 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8019 return type;
8020 else
8021 return ada_find_parallel_type (type, "___XVE");
8022 }
8023 }
8024
8025 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8026 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8027
8028 static int
8029 is_dynamic_field (struct type *templ_type, int field_num)
8030 {
8031 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8032
8033 return name != NULL
8034 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8035 && strstr (name, "___XVL") != NULL;
8036 }
8037
8038 /* The index of the variant field of TYPE, or -1 if TYPE does not
8039 represent a variant record type. */
8040
8041 static int
8042 variant_field_index (struct type *type)
8043 {
8044 int f;
8045
8046 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8047 return -1;
8048
8049 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8050 {
8051 if (ada_is_variant_part (type, f))
8052 return f;
8053 }
8054 return -1;
8055 }
8056
8057 /* A record type with no fields. */
8058
8059 static struct type *
8060 empty_record (struct type *templ)
8061 {
8062 struct type *type = alloc_type_copy (templ);
8063
8064 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8065 TYPE_NFIELDS (type) = 0;
8066 TYPE_FIELDS (type) = NULL;
8067 INIT_NONE_SPECIFIC (type);
8068 TYPE_NAME (type) = "<empty>";
8069 TYPE_LENGTH (type) = 0;
8070 return type;
8071 }
8072
8073 /* An ordinary record type (with fixed-length fields) that describes
8074 the value of type TYPE at VALADDR or ADDRESS (see comments at
8075 the beginning of this section) VAL according to GNAT conventions.
8076 DVAL0 should describe the (portion of a) record that contains any
8077 necessary discriminants. It should be NULL if value_type (VAL) is
8078 an outer-level type (i.e., as opposed to a branch of a variant.) A
8079 variant field (unless unchecked) is replaced by a particular branch
8080 of the variant.
8081
8082 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8083 length are not statically known are discarded. As a consequence,
8084 VALADDR, ADDRESS and DVAL0 are ignored.
8085
8086 NOTE: Limitations: For now, we assume that dynamic fields and
8087 variants occupy whole numbers of bytes. However, they need not be
8088 byte-aligned. */
8089
8090 struct type *
8091 ada_template_to_fixed_record_type_1 (struct type *type,
8092 const gdb_byte *valaddr,
8093 CORE_ADDR address, struct value *dval0,
8094 int keep_dynamic_fields)
8095 {
8096 struct value *mark = value_mark ();
8097 struct value *dval;
8098 struct type *rtype;
8099 int nfields, bit_len;
8100 int variant_field;
8101 long off;
8102 int fld_bit_len;
8103 int f;
8104
8105 /* Compute the number of fields in this record type that are going
8106 to be processed: unless keep_dynamic_fields, this includes only
8107 fields whose position and length are static will be processed. */
8108 if (keep_dynamic_fields)
8109 nfields = TYPE_NFIELDS (type);
8110 else
8111 {
8112 nfields = 0;
8113 while (nfields < TYPE_NFIELDS (type)
8114 && !ada_is_variant_part (type, nfields)
8115 && !is_dynamic_field (type, nfields))
8116 nfields++;
8117 }
8118
8119 rtype = alloc_type_copy (type);
8120 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8121 INIT_NONE_SPECIFIC (rtype);
8122 TYPE_NFIELDS (rtype) = nfields;
8123 TYPE_FIELDS (rtype) = (struct field *)
8124 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8125 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8126 TYPE_NAME (rtype) = ada_type_name (type);
8127 TYPE_FIXED_INSTANCE (rtype) = 1;
8128
8129 off = 0;
8130 bit_len = 0;
8131 variant_field = -1;
8132
8133 for (f = 0; f < nfields; f += 1)
8134 {
8135 off = align_value (off, field_alignment (type, f))
8136 + TYPE_FIELD_BITPOS (type, f);
8137 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8138 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8139
8140 if (ada_is_variant_part (type, f))
8141 {
8142 variant_field = f;
8143 fld_bit_len = 0;
8144 }
8145 else if (is_dynamic_field (type, f))
8146 {
8147 const gdb_byte *field_valaddr = valaddr;
8148 CORE_ADDR field_address = address;
8149 struct type *field_type =
8150 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8151
8152 if (dval0 == NULL)
8153 {
8154 /* rtype's length is computed based on the run-time
8155 value of discriminants. If the discriminants are not
8156 initialized, the type size may be completely bogus and
8157 GDB may fail to allocate a value for it. So check the
8158 size first before creating the value. */
8159 ada_ensure_varsize_limit (rtype);
8160 /* Using plain value_from_contents_and_address here
8161 causes problems because we will end up trying to
8162 resolve a type that is currently being
8163 constructed. */
8164 dval = value_from_contents_and_address_unresolved (rtype,
8165 valaddr,
8166 address);
8167 rtype = value_type (dval);
8168 }
8169 else
8170 dval = dval0;
8171
8172 /* If the type referenced by this field is an aligner type, we need
8173 to unwrap that aligner type, because its size might not be set.
8174 Keeping the aligner type would cause us to compute the wrong
8175 size for this field, impacting the offset of the all the fields
8176 that follow this one. */
8177 if (ada_is_aligner_type (field_type))
8178 {
8179 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8180
8181 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8182 field_address = cond_offset_target (field_address, field_offset);
8183 field_type = ada_aligned_type (field_type);
8184 }
8185
8186 field_valaddr = cond_offset_host (field_valaddr,
8187 off / TARGET_CHAR_BIT);
8188 field_address = cond_offset_target (field_address,
8189 off / TARGET_CHAR_BIT);
8190
8191 /* Get the fixed type of the field. Note that, in this case,
8192 we do not want to get the real type out of the tag: if
8193 the current field is the parent part of a tagged record,
8194 we will get the tag of the object. Clearly wrong: the real
8195 type of the parent is not the real type of the child. We
8196 would end up in an infinite loop. */
8197 field_type = ada_get_base_type (field_type);
8198 field_type = ada_to_fixed_type (field_type, field_valaddr,
8199 field_address, dval, 0);
8200 /* If the field size is already larger than the maximum
8201 object size, then the record itself will necessarily
8202 be larger than the maximum object size. We need to make
8203 this check now, because the size might be so ridiculously
8204 large (due to an uninitialized variable in the inferior)
8205 that it would cause an overflow when adding it to the
8206 record size. */
8207 ada_ensure_varsize_limit (field_type);
8208
8209 TYPE_FIELD_TYPE (rtype, f) = field_type;
8210 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8211 /* The multiplication can potentially overflow. But because
8212 the field length has been size-checked just above, and
8213 assuming that the maximum size is a reasonable value,
8214 an overflow should not happen in practice. So rather than
8215 adding overflow recovery code to this already complex code,
8216 we just assume that it's not going to happen. */
8217 fld_bit_len =
8218 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8219 }
8220 else
8221 {
8222 /* Note: If this field's type is a typedef, it is important
8223 to preserve the typedef layer.
8224
8225 Otherwise, we might be transforming a typedef to a fat
8226 pointer (encoding a pointer to an unconstrained array),
8227 into a basic fat pointer (encoding an unconstrained
8228 array). As both types are implemented using the same
8229 structure, the typedef is the only clue which allows us
8230 to distinguish between the two options. Stripping it
8231 would prevent us from printing this field appropriately. */
8232 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8233 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8234 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8235 fld_bit_len =
8236 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8237 else
8238 {
8239 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8240
8241 /* We need to be careful of typedefs when computing
8242 the length of our field. If this is a typedef,
8243 get the length of the target type, not the length
8244 of the typedef. */
8245 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8246 field_type = ada_typedef_target_type (field_type);
8247
8248 fld_bit_len =
8249 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8250 }
8251 }
8252 if (off + fld_bit_len > bit_len)
8253 bit_len = off + fld_bit_len;
8254 off += fld_bit_len;
8255 TYPE_LENGTH (rtype) =
8256 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8257 }
8258
8259 /* We handle the variant part, if any, at the end because of certain
8260 odd cases in which it is re-ordered so as NOT to be the last field of
8261 the record. This can happen in the presence of representation
8262 clauses. */
8263 if (variant_field >= 0)
8264 {
8265 struct type *branch_type;
8266
8267 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8268
8269 if (dval0 == NULL)
8270 {
8271 /* Using plain value_from_contents_and_address here causes
8272 problems because we will end up trying to resolve a type
8273 that is currently being constructed. */
8274 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8275 address);
8276 rtype = value_type (dval);
8277 }
8278 else
8279 dval = dval0;
8280
8281 branch_type =
8282 to_fixed_variant_branch_type
8283 (TYPE_FIELD_TYPE (type, variant_field),
8284 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8285 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8286 if (branch_type == NULL)
8287 {
8288 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8289 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8290 TYPE_NFIELDS (rtype) -= 1;
8291 }
8292 else
8293 {
8294 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8295 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8296 fld_bit_len =
8297 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8298 TARGET_CHAR_BIT;
8299 if (off + fld_bit_len > bit_len)
8300 bit_len = off + fld_bit_len;
8301 TYPE_LENGTH (rtype) =
8302 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8303 }
8304 }
8305
8306 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8307 should contain the alignment of that record, which should be a strictly
8308 positive value. If null or negative, then something is wrong, most
8309 probably in the debug info. In that case, we don't round up the size
8310 of the resulting type. If this record is not part of another structure,
8311 the current RTYPE length might be good enough for our purposes. */
8312 if (TYPE_LENGTH (type) <= 0)
8313 {
8314 if (TYPE_NAME (rtype))
8315 warning (_("Invalid type size for `%s' detected: %s."),
8316 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8317 else
8318 warning (_("Invalid type size for <unnamed> detected: %s."),
8319 pulongest (TYPE_LENGTH (type)));
8320 }
8321 else
8322 {
8323 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8324 TYPE_LENGTH (type));
8325 }
8326
8327 value_free_to_mark (mark);
8328 if (TYPE_LENGTH (rtype) > varsize_limit)
8329 error (_("record type with dynamic size is larger than varsize-limit"));
8330 return rtype;
8331 }
8332
8333 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8334 of 1. */
8335
8336 static struct type *
8337 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8338 CORE_ADDR address, struct value *dval0)
8339 {
8340 return ada_template_to_fixed_record_type_1 (type, valaddr,
8341 address, dval0, 1);
8342 }
8343
8344 /* An ordinary record type in which ___XVL-convention fields and
8345 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8346 static approximations, containing all possible fields. Uses
8347 no runtime values. Useless for use in values, but that's OK,
8348 since the results are used only for type determinations. Works on both
8349 structs and unions. Representation note: to save space, we memorize
8350 the result of this function in the TYPE_TARGET_TYPE of the
8351 template type. */
8352
8353 static struct type *
8354 template_to_static_fixed_type (struct type *type0)
8355 {
8356 struct type *type;
8357 int nfields;
8358 int f;
8359
8360 /* No need no do anything if the input type is already fixed. */
8361 if (TYPE_FIXED_INSTANCE (type0))
8362 return type0;
8363
8364 /* Likewise if we already have computed the static approximation. */
8365 if (TYPE_TARGET_TYPE (type0) != NULL)
8366 return TYPE_TARGET_TYPE (type0);
8367
8368 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8369 type = type0;
8370 nfields = TYPE_NFIELDS (type0);
8371
8372 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8373 recompute all over next time. */
8374 TYPE_TARGET_TYPE (type0) = type;
8375
8376 for (f = 0; f < nfields; f += 1)
8377 {
8378 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8379 struct type *new_type;
8380
8381 if (is_dynamic_field (type0, f))
8382 {
8383 field_type = ada_check_typedef (field_type);
8384 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8385 }
8386 else
8387 new_type = static_unwrap_type (field_type);
8388
8389 if (new_type != field_type)
8390 {
8391 /* Clone TYPE0 only the first time we get a new field type. */
8392 if (type == type0)
8393 {
8394 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8395 TYPE_CODE (type) = TYPE_CODE (type0);
8396 INIT_NONE_SPECIFIC (type);
8397 TYPE_NFIELDS (type) = nfields;
8398 TYPE_FIELDS (type) = (struct field *)
8399 TYPE_ALLOC (type, nfields * sizeof (struct field));
8400 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8401 sizeof (struct field) * nfields);
8402 TYPE_NAME (type) = ada_type_name (type0);
8403 TYPE_FIXED_INSTANCE (type) = 1;
8404 TYPE_LENGTH (type) = 0;
8405 }
8406 TYPE_FIELD_TYPE (type, f) = new_type;
8407 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8408 }
8409 }
8410
8411 return type;
8412 }
8413
8414 /* Given an object of type TYPE whose contents are at VALADDR and
8415 whose address in memory is ADDRESS, returns a revision of TYPE,
8416 which should be a non-dynamic-sized record, in which the variant
8417 part, if any, is replaced with the appropriate branch. Looks
8418 for discriminant values in DVAL0, which can be NULL if the record
8419 contains the necessary discriminant values. */
8420
8421 static struct type *
8422 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8423 CORE_ADDR address, struct value *dval0)
8424 {
8425 struct value *mark = value_mark ();
8426 struct value *dval;
8427 struct type *rtype;
8428 struct type *branch_type;
8429 int nfields = TYPE_NFIELDS (type);
8430 int variant_field = variant_field_index (type);
8431
8432 if (variant_field == -1)
8433 return type;
8434
8435 if (dval0 == NULL)
8436 {
8437 dval = value_from_contents_and_address (type, valaddr, address);
8438 type = value_type (dval);
8439 }
8440 else
8441 dval = dval0;
8442
8443 rtype = alloc_type_copy (type);
8444 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8445 INIT_NONE_SPECIFIC (rtype);
8446 TYPE_NFIELDS (rtype) = nfields;
8447 TYPE_FIELDS (rtype) =
8448 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8449 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8450 sizeof (struct field) * nfields);
8451 TYPE_NAME (rtype) = ada_type_name (type);
8452 TYPE_FIXED_INSTANCE (rtype) = 1;
8453 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8454
8455 branch_type = to_fixed_variant_branch_type
8456 (TYPE_FIELD_TYPE (type, variant_field),
8457 cond_offset_host (valaddr,
8458 TYPE_FIELD_BITPOS (type, variant_field)
8459 / TARGET_CHAR_BIT),
8460 cond_offset_target (address,
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT), dval);
8463 if (branch_type == NULL)
8464 {
8465 int f;
8466
8467 for (f = variant_field + 1; f < nfields; f += 1)
8468 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8469 TYPE_NFIELDS (rtype) -= 1;
8470 }
8471 else
8472 {
8473 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8474 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8475 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8476 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8477 }
8478 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8479
8480 value_free_to_mark (mark);
8481 return rtype;
8482 }
8483
8484 /* An ordinary record type (with fixed-length fields) that describes
8485 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8486 beginning of this section]. Any necessary discriminants' values
8487 should be in DVAL, a record value; it may be NULL if the object
8488 at ADDR itself contains any necessary discriminant values.
8489 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8490 values from the record are needed. Except in the case that DVAL,
8491 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8492 unchecked) is replaced by a particular branch of the variant.
8493
8494 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8495 is questionable and may be removed. It can arise during the
8496 processing of an unconstrained-array-of-record type where all the
8497 variant branches have exactly the same size. This is because in
8498 such cases, the compiler does not bother to use the XVS convention
8499 when encoding the record. I am currently dubious of this
8500 shortcut and suspect the compiler should be altered. FIXME. */
8501
8502 static struct type *
8503 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8504 CORE_ADDR address, struct value *dval)
8505 {
8506 struct type *templ_type;
8507
8508 if (TYPE_FIXED_INSTANCE (type0))
8509 return type0;
8510
8511 templ_type = dynamic_template_type (type0);
8512
8513 if (templ_type != NULL)
8514 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8515 else if (variant_field_index (type0) >= 0)
8516 {
8517 if (dval == NULL && valaddr == NULL && address == 0)
8518 return type0;
8519 return to_record_with_fixed_variant_part (type0, valaddr, address,
8520 dval);
8521 }
8522 else
8523 {
8524 TYPE_FIXED_INSTANCE (type0) = 1;
8525 return type0;
8526 }
8527
8528 }
8529
8530 /* An ordinary record type (with fixed-length fields) that describes
8531 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8532 union type. Any necessary discriminants' values should be in DVAL,
8533 a record value. That is, this routine selects the appropriate
8534 branch of the union at ADDR according to the discriminant value
8535 indicated in the union's type name. Returns VAR_TYPE0 itself if
8536 it represents a variant subject to a pragma Unchecked_Union. */
8537
8538 static struct type *
8539 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval)
8541 {
8542 int which;
8543 struct type *templ_type;
8544 struct type *var_type;
8545
8546 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8547 var_type = TYPE_TARGET_TYPE (var_type0);
8548 else
8549 var_type = var_type0;
8550
8551 templ_type = ada_find_parallel_type (var_type, "___XVU");
8552
8553 if (templ_type != NULL)
8554 var_type = templ_type;
8555
8556 if (is_unchecked_variant (var_type, value_type (dval)))
8557 return var_type0;
8558 which =
8559 ada_which_variant_applies (var_type,
8560 value_type (dval), value_contents (dval));
8561
8562 if (which < 0)
8563 return empty_record (var_type);
8564 else if (is_dynamic_field (var_type, which))
8565 return to_fixed_record_type
8566 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8567 valaddr, address, dval);
8568 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8569 return
8570 to_fixed_record_type
8571 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8572 else
8573 return TYPE_FIELD_TYPE (var_type, which);
8574 }
8575
8576 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8577 ENCODING_TYPE, a type following the GNAT conventions for discrete
8578 type encodings, only carries redundant information. */
8579
8580 static int
8581 ada_is_redundant_range_encoding (struct type *range_type,
8582 struct type *encoding_type)
8583 {
8584 const char *bounds_str;
8585 int n;
8586 LONGEST lo, hi;
8587
8588 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8589
8590 if (TYPE_CODE (get_base_type (range_type))
8591 != TYPE_CODE (get_base_type (encoding_type)))
8592 {
8593 /* The compiler probably used a simple base type to describe
8594 the range type instead of the range's actual base type,
8595 expecting us to get the real base type from the encoding
8596 anyway. In this situation, the encoding cannot be ignored
8597 as redundant. */
8598 return 0;
8599 }
8600
8601 if (is_dynamic_type (range_type))
8602 return 0;
8603
8604 if (TYPE_NAME (encoding_type) == NULL)
8605 return 0;
8606
8607 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8608 if (bounds_str == NULL)
8609 return 0;
8610
8611 n = 8; /* Skip "___XDLU_". */
8612 if (!ada_scan_number (bounds_str, n, &lo, &n))
8613 return 0;
8614 if (TYPE_LOW_BOUND (range_type) != lo)
8615 return 0;
8616
8617 n += 2; /* Skip the "__" separator between the two bounds. */
8618 if (!ada_scan_number (bounds_str, n, &hi, &n))
8619 return 0;
8620 if (TYPE_HIGH_BOUND (range_type) != hi)
8621 return 0;
8622
8623 return 1;
8624 }
8625
8626 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8627 a type following the GNAT encoding for describing array type
8628 indices, only carries redundant information. */
8629
8630 static int
8631 ada_is_redundant_index_type_desc (struct type *array_type,
8632 struct type *desc_type)
8633 {
8634 struct type *this_layer = check_typedef (array_type);
8635 int i;
8636
8637 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8638 {
8639 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8640 TYPE_FIELD_TYPE (desc_type, i)))
8641 return 0;
8642 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8643 }
8644
8645 return 1;
8646 }
8647
8648 /* Assuming that TYPE0 is an array type describing the type of a value
8649 at ADDR, and that DVAL describes a record containing any
8650 discriminants used in TYPE0, returns a type for the value that
8651 contains no dynamic components (that is, no components whose sizes
8652 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8653 true, gives an error message if the resulting type's size is over
8654 varsize_limit. */
8655
8656 static struct type *
8657 to_fixed_array_type (struct type *type0, struct value *dval,
8658 int ignore_too_big)
8659 {
8660 struct type *index_type_desc;
8661 struct type *result;
8662 int constrained_packed_array_p;
8663 static const char *xa_suffix = "___XA";
8664
8665 type0 = ada_check_typedef (type0);
8666 if (TYPE_FIXED_INSTANCE (type0))
8667 return type0;
8668
8669 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8670 if (constrained_packed_array_p)
8671 type0 = decode_constrained_packed_array_type (type0);
8672
8673 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8674
8675 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8676 encoding suffixed with 'P' may still be generated. If so,
8677 it should be used to find the XA type. */
8678
8679 if (index_type_desc == NULL)
8680 {
8681 const char *type_name = ada_type_name (type0);
8682
8683 if (type_name != NULL)
8684 {
8685 const int len = strlen (type_name);
8686 char *name = (char *) alloca (len + strlen (xa_suffix));
8687
8688 if (type_name[len - 1] == 'P')
8689 {
8690 strcpy (name, type_name);
8691 strcpy (name + len - 1, xa_suffix);
8692 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8693 }
8694 }
8695 }
8696
8697 ada_fixup_array_indexes_type (index_type_desc);
8698 if (index_type_desc != NULL
8699 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8700 {
8701 /* Ignore this ___XA parallel type, as it does not bring any
8702 useful information. This allows us to avoid creating fixed
8703 versions of the array's index types, which would be identical
8704 to the original ones. This, in turn, can also help avoid
8705 the creation of fixed versions of the array itself. */
8706 index_type_desc = NULL;
8707 }
8708
8709 if (index_type_desc == NULL)
8710 {
8711 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8712
8713 /* NOTE: elt_type---the fixed version of elt_type0---should never
8714 depend on the contents of the array in properly constructed
8715 debugging data. */
8716 /* Create a fixed version of the array element type.
8717 We're not providing the address of an element here,
8718 and thus the actual object value cannot be inspected to do
8719 the conversion. This should not be a problem, since arrays of
8720 unconstrained objects are not allowed. In particular, all
8721 the elements of an array of a tagged type should all be of
8722 the same type specified in the debugging info. No need to
8723 consult the object tag. */
8724 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8725
8726 /* Make sure we always create a new array type when dealing with
8727 packed array types, since we're going to fix-up the array
8728 type length and element bitsize a little further down. */
8729 if (elt_type0 == elt_type && !constrained_packed_array_p)
8730 result = type0;
8731 else
8732 result = create_array_type (alloc_type_copy (type0),
8733 elt_type, TYPE_INDEX_TYPE (type0));
8734 }
8735 else
8736 {
8737 int i;
8738 struct type *elt_type0;
8739
8740 elt_type0 = type0;
8741 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8742 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8743
8744 /* NOTE: result---the fixed version of elt_type0---should never
8745 depend on the contents of the array in properly constructed
8746 debugging data. */
8747 /* Create a fixed version of the array element type.
8748 We're not providing the address of an element here,
8749 and thus the actual object value cannot be inspected to do
8750 the conversion. This should not be a problem, since arrays of
8751 unconstrained objects are not allowed. In particular, all
8752 the elements of an array of a tagged type should all be of
8753 the same type specified in the debugging info. No need to
8754 consult the object tag. */
8755 result =
8756 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8757
8758 elt_type0 = type0;
8759 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8760 {
8761 struct type *range_type =
8762 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8763
8764 result = create_array_type (alloc_type_copy (elt_type0),
8765 result, range_type);
8766 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8767 }
8768 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8769 error (_("array type with dynamic size is larger than varsize-limit"));
8770 }
8771
8772 /* We want to preserve the type name. This can be useful when
8773 trying to get the type name of a value that has already been
8774 printed (for instance, if the user did "print VAR; whatis $". */
8775 TYPE_NAME (result) = TYPE_NAME (type0);
8776
8777 if (constrained_packed_array_p)
8778 {
8779 /* So far, the resulting type has been created as if the original
8780 type was a regular (non-packed) array type. As a result, the
8781 bitsize of the array elements needs to be set again, and the array
8782 length needs to be recomputed based on that bitsize. */
8783 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8784 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8785
8786 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8787 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8788 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8789 TYPE_LENGTH (result)++;
8790 }
8791
8792 TYPE_FIXED_INSTANCE (result) = 1;
8793 return result;
8794 }
8795
8796
8797 /* A standard type (containing no dynamically sized components)
8798 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8799 DVAL describes a record containing any discriminants used in TYPE0,
8800 and may be NULL if there are none, or if the object of type TYPE at
8801 ADDRESS or in VALADDR contains these discriminants.
8802
8803 If CHECK_TAG is not null, in the case of tagged types, this function
8804 attempts to locate the object's tag and use it to compute the actual
8805 type. However, when ADDRESS is null, we cannot use it to determine the
8806 location of the tag, and therefore compute the tagged type's actual type.
8807 So we return the tagged type without consulting the tag. */
8808
8809 static struct type *
8810 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8811 CORE_ADDR address, struct value *dval, int check_tag)
8812 {
8813 type = ada_check_typedef (type);
8814
8815 /* Only un-fixed types need to be handled here. */
8816 if (!HAVE_GNAT_AUX_INFO (type))
8817 return type;
8818
8819 switch (TYPE_CODE (type))
8820 {
8821 default:
8822 return type;
8823 case TYPE_CODE_STRUCT:
8824 {
8825 struct type *static_type = to_static_fixed_type (type);
8826 struct type *fixed_record_type =
8827 to_fixed_record_type (type, valaddr, address, NULL);
8828
8829 /* If STATIC_TYPE is a tagged type and we know the object's address,
8830 then we can determine its tag, and compute the object's actual
8831 type from there. Note that we have to use the fixed record
8832 type (the parent part of the record may have dynamic fields
8833 and the way the location of _tag is expressed may depend on
8834 them). */
8835
8836 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8837 {
8838 struct value *tag =
8839 value_tag_from_contents_and_address
8840 (fixed_record_type,
8841 valaddr,
8842 address);
8843 struct type *real_type = type_from_tag (tag);
8844 struct value *obj =
8845 value_from_contents_and_address (fixed_record_type,
8846 valaddr,
8847 address);
8848 fixed_record_type = value_type (obj);
8849 if (real_type != NULL)
8850 return to_fixed_record_type
8851 (real_type, NULL,
8852 value_address (ada_tag_value_at_base_address (obj)), NULL);
8853 }
8854
8855 /* Check to see if there is a parallel ___XVZ variable.
8856 If there is, then it provides the actual size of our type. */
8857 else if (ada_type_name (fixed_record_type) != NULL)
8858 {
8859 const char *name = ada_type_name (fixed_record_type);
8860 char *xvz_name
8861 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8862 bool xvz_found = false;
8863 LONGEST size;
8864
8865 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8866 try
8867 {
8868 xvz_found = get_int_var_value (xvz_name, size);
8869 }
8870 catch (const gdb_exception_error &except)
8871 {
8872 /* We found the variable, but somehow failed to read
8873 its value. Rethrow the same error, but with a little
8874 bit more information, to help the user understand
8875 what went wrong (Eg: the variable might have been
8876 optimized out). */
8877 throw_error (except.error,
8878 _("unable to read value of %s (%s)"),
8879 xvz_name, except.what ());
8880 }
8881
8882 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8883 {
8884 fixed_record_type = copy_type (fixed_record_type);
8885 TYPE_LENGTH (fixed_record_type) = size;
8886
8887 /* The FIXED_RECORD_TYPE may have be a stub. We have
8888 observed this when the debugging info is STABS, and
8889 apparently it is something that is hard to fix.
8890
8891 In practice, we don't need the actual type definition
8892 at all, because the presence of the XVZ variable allows us
8893 to assume that there must be a XVS type as well, which we
8894 should be able to use later, when we need the actual type
8895 definition.
8896
8897 In the meantime, pretend that the "fixed" type we are
8898 returning is NOT a stub, because this can cause trouble
8899 when using this type to create new types targeting it.
8900 Indeed, the associated creation routines often check
8901 whether the target type is a stub and will try to replace
8902 it, thus using a type with the wrong size. This, in turn,
8903 might cause the new type to have the wrong size too.
8904 Consider the case of an array, for instance, where the size
8905 of the array is computed from the number of elements in
8906 our array multiplied by the size of its element. */
8907 TYPE_STUB (fixed_record_type) = 0;
8908 }
8909 }
8910 return fixed_record_type;
8911 }
8912 case TYPE_CODE_ARRAY:
8913 return to_fixed_array_type (type, dval, 1);
8914 case TYPE_CODE_UNION:
8915 if (dval == NULL)
8916 return type;
8917 else
8918 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8919 }
8920 }
8921
8922 /* The same as ada_to_fixed_type_1, except that it preserves the type
8923 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8924
8925 The typedef layer needs be preserved in order to differentiate between
8926 arrays and array pointers when both types are implemented using the same
8927 fat pointer. In the array pointer case, the pointer is encoded as
8928 a typedef of the pointer type. For instance, considering:
8929
8930 type String_Access is access String;
8931 S1 : String_Access := null;
8932
8933 To the debugger, S1 is defined as a typedef of type String. But
8934 to the user, it is a pointer. So if the user tries to print S1,
8935 we should not dereference the array, but print the array address
8936 instead.
8937
8938 If we didn't preserve the typedef layer, we would lose the fact that
8939 the type is to be presented as a pointer (needs de-reference before
8940 being printed). And we would also use the source-level type name. */
8941
8942 struct type *
8943 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8944 CORE_ADDR address, struct value *dval, int check_tag)
8945
8946 {
8947 struct type *fixed_type =
8948 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8949
8950 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8951 then preserve the typedef layer.
8952
8953 Implementation note: We can only check the main-type portion of
8954 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8955 from TYPE now returns a type that has the same instance flags
8956 as TYPE. For instance, if TYPE is a "typedef const", and its
8957 target type is a "struct", then the typedef elimination will return
8958 a "const" version of the target type. See check_typedef for more
8959 details about how the typedef layer elimination is done.
8960
8961 brobecker/2010-11-19: It seems to me that the only case where it is
8962 useful to preserve the typedef layer is when dealing with fat pointers.
8963 Perhaps, we could add a check for that and preserve the typedef layer
8964 only in that situation. But this seems unnecessary so far, probably
8965 because we call check_typedef/ada_check_typedef pretty much everywhere.
8966 */
8967 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8968 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8969 == TYPE_MAIN_TYPE (fixed_type)))
8970 return type;
8971
8972 return fixed_type;
8973 }
8974
8975 /* A standard (static-sized) type corresponding as well as possible to
8976 TYPE0, but based on no runtime data. */
8977
8978 static struct type *
8979 to_static_fixed_type (struct type *type0)
8980 {
8981 struct type *type;
8982
8983 if (type0 == NULL)
8984 return NULL;
8985
8986 if (TYPE_FIXED_INSTANCE (type0))
8987 return type0;
8988
8989 type0 = ada_check_typedef (type0);
8990
8991 switch (TYPE_CODE (type0))
8992 {
8993 default:
8994 return type0;
8995 case TYPE_CODE_STRUCT:
8996 type = dynamic_template_type (type0);
8997 if (type != NULL)
8998 return template_to_static_fixed_type (type);
8999 else
9000 return template_to_static_fixed_type (type0);
9001 case TYPE_CODE_UNION:
9002 type = ada_find_parallel_type (type0, "___XVU");
9003 if (type != NULL)
9004 return template_to_static_fixed_type (type);
9005 else
9006 return template_to_static_fixed_type (type0);
9007 }
9008 }
9009
9010 /* A static approximation of TYPE with all type wrappers removed. */
9011
9012 static struct type *
9013 static_unwrap_type (struct type *type)
9014 {
9015 if (ada_is_aligner_type (type))
9016 {
9017 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9018 if (ada_type_name (type1) == NULL)
9019 TYPE_NAME (type1) = ada_type_name (type);
9020
9021 return static_unwrap_type (type1);
9022 }
9023 else
9024 {
9025 struct type *raw_real_type = ada_get_base_type (type);
9026
9027 if (raw_real_type == type)
9028 return type;
9029 else
9030 return to_static_fixed_type (raw_real_type);
9031 }
9032 }
9033
9034 /* In some cases, incomplete and private types require
9035 cross-references that are not resolved as records (for example,
9036 type Foo;
9037 type FooP is access Foo;
9038 V: FooP;
9039 type Foo is array ...;
9040 ). In these cases, since there is no mechanism for producing
9041 cross-references to such types, we instead substitute for FooP a
9042 stub enumeration type that is nowhere resolved, and whose tag is
9043 the name of the actual type. Call these types "non-record stubs". */
9044
9045 /* A type equivalent to TYPE that is not a non-record stub, if one
9046 exists, otherwise TYPE. */
9047
9048 struct type *
9049 ada_check_typedef (struct type *type)
9050 {
9051 if (type == NULL)
9052 return NULL;
9053
9054 /* If our type is an access to an unconstrained array, which is encoded
9055 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9056 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9057 what allows us to distinguish between fat pointers that represent
9058 array types, and fat pointers that represent array access types
9059 (in both cases, the compiler implements them as fat pointers). */
9060 if (ada_is_access_to_unconstrained_array (type))
9061 return type;
9062
9063 type = check_typedef (type);
9064 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9065 || !TYPE_STUB (type)
9066 || TYPE_NAME (type) == NULL)
9067 return type;
9068 else
9069 {
9070 const char *name = TYPE_NAME (type);
9071 struct type *type1 = ada_find_any_type (name);
9072
9073 if (type1 == NULL)
9074 return type;
9075
9076 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9077 stubs pointing to arrays, as we don't create symbols for array
9078 types, only for the typedef-to-array types). If that's the case,
9079 strip the typedef layer. */
9080 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9081 type1 = ada_check_typedef (type1);
9082
9083 return type1;
9084 }
9085 }
9086
9087 /* A value representing the data at VALADDR/ADDRESS as described by
9088 type TYPE0, but with a standard (static-sized) type that correctly
9089 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9090 type, then return VAL0 [this feature is simply to avoid redundant
9091 creation of struct values]. */
9092
9093 static struct value *
9094 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9095 struct value *val0)
9096 {
9097 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9098
9099 if (type == type0 && val0 != NULL)
9100 return val0;
9101
9102 if (VALUE_LVAL (val0) != lval_memory)
9103 {
9104 /* Our value does not live in memory; it could be a convenience
9105 variable, for instance. Create a not_lval value using val0's
9106 contents. */
9107 return value_from_contents (type, value_contents (val0));
9108 }
9109
9110 return value_from_contents_and_address (type, 0, address);
9111 }
9112
9113 /* A value representing VAL, but with a standard (static-sized) type
9114 that correctly describes it. Does not necessarily create a new
9115 value. */
9116
9117 struct value *
9118 ada_to_fixed_value (struct value *val)
9119 {
9120 val = unwrap_value (val);
9121 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9122 return val;
9123 }
9124 \f
9125
9126 /* Attributes */
9127
9128 /* Table mapping attribute numbers to names.
9129 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9130
9131 static const char *attribute_names[] = {
9132 "<?>",
9133
9134 "first",
9135 "last",
9136 "length",
9137 "image",
9138 "max",
9139 "min",
9140 "modulus",
9141 "pos",
9142 "size",
9143 "tag",
9144 "val",
9145 0
9146 };
9147
9148 const char *
9149 ada_attribute_name (enum exp_opcode n)
9150 {
9151 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9152 return attribute_names[n - OP_ATR_FIRST + 1];
9153 else
9154 return attribute_names[0];
9155 }
9156
9157 /* Evaluate the 'POS attribute applied to ARG. */
9158
9159 static LONGEST
9160 pos_atr (struct value *arg)
9161 {
9162 struct value *val = coerce_ref (arg);
9163 struct type *type = value_type (val);
9164 LONGEST result;
9165
9166 if (!discrete_type_p (type))
9167 error (_("'POS only defined on discrete types"));
9168
9169 if (!discrete_position (type, value_as_long (val), &result))
9170 error (_("enumeration value is invalid: can't find 'POS"));
9171
9172 return result;
9173 }
9174
9175 static struct value *
9176 value_pos_atr (struct type *type, struct value *arg)
9177 {
9178 return value_from_longest (type, pos_atr (arg));
9179 }
9180
9181 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9182
9183 static struct value *
9184 value_val_atr (struct type *type, struct value *arg)
9185 {
9186 if (!discrete_type_p (type))
9187 error (_("'VAL only defined on discrete types"));
9188 if (!integer_type_p (value_type (arg)))
9189 error (_("'VAL requires integral argument"));
9190
9191 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9192 {
9193 long pos = value_as_long (arg);
9194
9195 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9196 error (_("argument to 'VAL out of range"));
9197 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9198 }
9199 else
9200 return value_from_longest (type, value_as_long (arg));
9201 }
9202 \f
9203
9204 /* Evaluation */
9205
9206 /* True if TYPE appears to be an Ada character type.
9207 [At the moment, this is true only for Character and Wide_Character;
9208 It is a heuristic test that could stand improvement]. */
9209
9210 bool
9211 ada_is_character_type (struct type *type)
9212 {
9213 const char *name;
9214
9215 /* If the type code says it's a character, then assume it really is,
9216 and don't check any further. */
9217 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9218 return true;
9219
9220 /* Otherwise, assume it's a character type iff it is a discrete type
9221 with a known character type name. */
9222 name = ada_type_name (type);
9223 return (name != NULL
9224 && (TYPE_CODE (type) == TYPE_CODE_INT
9225 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9226 && (strcmp (name, "character") == 0
9227 || strcmp (name, "wide_character") == 0
9228 || strcmp (name, "wide_wide_character") == 0
9229 || strcmp (name, "unsigned char") == 0));
9230 }
9231
9232 /* True if TYPE appears to be an Ada string type. */
9233
9234 bool
9235 ada_is_string_type (struct type *type)
9236 {
9237 type = ada_check_typedef (type);
9238 if (type != NULL
9239 && TYPE_CODE (type) != TYPE_CODE_PTR
9240 && (ada_is_simple_array_type (type)
9241 || ada_is_array_descriptor_type (type))
9242 && ada_array_arity (type) == 1)
9243 {
9244 struct type *elttype = ada_array_element_type (type, 1);
9245
9246 return ada_is_character_type (elttype);
9247 }
9248 else
9249 return false;
9250 }
9251
9252 /* The compiler sometimes provides a parallel XVS type for a given
9253 PAD type. Normally, it is safe to follow the PAD type directly,
9254 but older versions of the compiler have a bug that causes the offset
9255 of its "F" field to be wrong. Following that field in that case
9256 would lead to incorrect results, but this can be worked around
9257 by ignoring the PAD type and using the associated XVS type instead.
9258
9259 Set to True if the debugger should trust the contents of PAD types.
9260 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9261 static bool trust_pad_over_xvs = true;
9262
9263 /* True if TYPE is a struct type introduced by the compiler to force the
9264 alignment of a value. Such types have a single field with a
9265 distinctive name. */
9266
9267 int
9268 ada_is_aligner_type (struct type *type)
9269 {
9270 type = ada_check_typedef (type);
9271
9272 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9273 return 0;
9274
9275 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9276 && TYPE_NFIELDS (type) == 1
9277 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9278 }
9279
9280 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9281 the parallel type. */
9282
9283 struct type *
9284 ada_get_base_type (struct type *raw_type)
9285 {
9286 struct type *real_type_namer;
9287 struct type *raw_real_type;
9288
9289 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9290 return raw_type;
9291
9292 if (ada_is_aligner_type (raw_type))
9293 /* The encoding specifies that we should always use the aligner type.
9294 So, even if this aligner type has an associated XVS type, we should
9295 simply ignore it.
9296
9297 According to the compiler gurus, an XVS type parallel to an aligner
9298 type may exist because of a stabs limitation. In stabs, aligner
9299 types are empty because the field has a variable-sized type, and
9300 thus cannot actually be used as an aligner type. As a result,
9301 we need the associated parallel XVS type to decode the type.
9302 Since the policy in the compiler is to not change the internal
9303 representation based on the debugging info format, we sometimes
9304 end up having a redundant XVS type parallel to the aligner type. */
9305 return raw_type;
9306
9307 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9308 if (real_type_namer == NULL
9309 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9310 || TYPE_NFIELDS (real_type_namer) != 1)
9311 return raw_type;
9312
9313 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9314 {
9315 /* This is an older encoding form where the base type needs to be
9316 looked up by name. We prefer the newer encoding because it is
9317 more efficient. */
9318 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9319 if (raw_real_type == NULL)
9320 return raw_type;
9321 else
9322 return raw_real_type;
9323 }
9324
9325 /* The field in our XVS type is a reference to the base type. */
9326 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9327 }
9328
9329 /* The type of value designated by TYPE, with all aligners removed. */
9330
9331 struct type *
9332 ada_aligned_type (struct type *type)
9333 {
9334 if (ada_is_aligner_type (type))
9335 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9336 else
9337 return ada_get_base_type (type);
9338 }
9339
9340
9341 /* The address of the aligned value in an object at address VALADDR
9342 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9343
9344 const gdb_byte *
9345 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9346 {
9347 if (ada_is_aligner_type (type))
9348 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9349 valaddr +
9350 TYPE_FIELD_BITPOS (type,
9351 0) / TARGET_CHAR_BIT);
9352 else
9353 return valaddr;
9354 }
9355
9356
9357
9358 /* The printed representation of an enumeration literal with encoded
9359 name NAME. The value is good to the next call of ada_enum_name. */
9360 const char *
9361 ada_enum_name (const char *name)
9362 {
9363 static char *result;
9364 static size_t result_len = 0;
9365 const char *tmp;
9366
9367 /* First, unqualify the enumeration name:
9368 1. Search for the last '.' character. If we find one, then skip
9369 all the preceding characters, the unqualified name starts
9370 right after that dot.
9371 2. Otherwise, we may be debugging on a target where the compiler
9372 translates dots into "__". Search forward for double underscores,
9373 but stop searching when we hit an overloading suffix, which is
9374 of the form "__" followed by digits. */
9375
9376 tmp = strrchr (name, '.');
9377 if (tmp != NULL)
9378 name = tmp + 1;
9379 else
9380 {
9381 while ((tmp = strstr (name, "__")) != NULL)
9382 {
9383 if (isdigit (tmp[2]))
9384 break;
9385 else
9386 name = tmp + 2;
9387 }
9388 }
9389
9390 if (name[0] == 'Q')
9391 {
9392 int v;
9393
9394 if (name[1] == 'U' || name[1] == 'W')
9395 {
9396 if (sscanf (name + 2, "%x", &v) != 1)
9397 return name;
9398 }
9399 else if (((name[1] >= '0' && name[1] <= '9')
9400 || (name[1] >= 'a' && name[1] <= 'z'))
9401 && name[2] == '\0')
9402 {
9403 GROW_VECT (result, result_len, 4);
9404 xsnprintf (result, result_len, "'%c'", name[1]);
9405 return result;
9406 }
9407 else
9408 return name;
9409
9410 GROW_VECT (result, result_len, 16);
9411 if (isascii (v) && isprint (v))
9412 xsnprintf (result, result_len, "'%c'", v);
9413 else if (name[1] == 'U')
9414 xsnprintf (result, result_len, "[\"%02x\"]", v);
9415 else
9416 xsnprintf (result, result_len, "[\"%04x\"]", v);
9417
9418 return result;
9419 }
9420 else
9421 {
9422 tmp = strstr (name, "__");
9423 if (tmp == NULL)
9424 tmp = strstr (name, "$");
9425 if (tmp != NULL)
9426 {
9427 GROW_VECT (result, result_len, tmp - name + 1);
9428 strncpy (result, name, tmp - name);
9429 result[tmp - name] = '\0';
9430 return result;
9431 }
9432
9433 return name;
9434 }
9435 }
9436
9437 /* Evaluate the subexpression of EXP starting at *POS as for
9438 evaluate_type, updating *POS to point just past the evaluated
9439 expression. */
9440
9441 static struct value *
9442 evaluate_subexp_type (struct expression *exp, int *pos)
9443 {
9444 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9445 }
9446
9447 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9448 value it wraps. */
9449
9450 static struct value *
9451 unwrap_value (struct value *val)
9452 {
9453 struct type *type = ada_check_typedef (value_type (val));
9454
9455 if (ada_is_aligner_type (type))
9456 {
9457 struct value *v = ada_value_struct_elt (val, "F", 0);
9458 struct type *val_type = ada_check_typedef (value_type (v));
9459
9460 if (ada_type_name (val_type) == NULL)
9461 TYPE_NAME (val_type) = ada_type_name (type);
9462
9463 return unwrap_value (v);
9464 }
9465 else
9466 {
9467 struct type *raw_real_type =
9468 ada_check_typedef (ada_get_base_type (type));
9469
9470 /* If there is no parallel XVS or XVE type, then the value is
9471 already unwrapped. Return it without further modification. */
9472 if ((type == raw_real_type)
9473 && ada_find_parallel_type (type, "___XVE") == NULL)
9474 return val;
9475
9476 return
9477 coerce_unspec_val_to_type
9478 (val, ada_to_fixed_type (raw_real_type, 0,
9479 value_address (val),
9480 NULL, 1));
9481 }
9482 }
9483
9484 static struct value *
9485 cast_from_fixed (struct type *type, struct value *arg)
9486 {
9487 struct value *scale = ada_scaling_factor (value_type (arg));
9488 arg = value_cast (value_type (scale), arg);
9489
9490 arg = value_binop (arg, scale, BINOP_MUL);
9491 return value_cast (type, arg);
9492 }
9493
9494 static struct value *
9495 cast_to_fixed (struct type *type, struct value *arg)
9496 {
9497 if (type == value_type (arg))
9498 return arg;
9499
9500 struct value *scale = ada_scaling_factor (type);
9501 if (ada_is_fixed_point_type (value_type (arg)))
9502 arg = cast_from_fixed (value_type (scale), arg);
9503 else
9504 arg = value_cast (value_type (scale), arg);
9505
9506 arg = value_binop (arg, scale, BINOP_DIV);
9507 return value_cast (type, arg);
9508 }
9509
9510 /* Given two array types T1 and T2, return nonzero iff both arrays
9511 contain the same number of elements. */
9512
9513 static int
9514 ada_same_array_size_p (struct type *t1, struct type *t2)
9515 {
9516 LONGEST lo1, hi1, lo2, hi2;
9517
9518 /* Get the array bounds in order to verify that the size of
9519 the two arrays match. */
9520 if (!get_array_bounds (t1, &lo1, &hi1)
9521 || !get_array_bounds (t2, &lo2, &hi2))
9522 error (_("unable to determine array bounds"));
9523
9524 /* To make things easier for size comparison, normalize a bit
9525 the case of empty arrays by making sure that the difference
9526 between upper bound and lower bound is always -1. */
9527 if (lo1 > hi1)
9528 hi1 = lo1 - 1;
9529 if (lo2 > hi2)
9530 hi2 = lo2 - 1;
9531
9532 return (hi1 - lo1 == hi2 - lo2);
9533 }
9534
9535 /* Assuming that VAL is an array of integrals, and TYPE represents
9536 an array with the same number of elements, but with wider integral
9537 elements, return an array "casted" to TYPE. In practice, this
9538 means that the returned array is built by casting each element
9539 of the original array into TYPE's (wider) element type. */
9540
9541 static struct value *
9542 ada_promote_array_of_integrals (struct type *type, struct value *val)
9543 {
9544 struct type *elt_type = TYPE_TARGET_TYPE (type);
9545 LONGEST lo, hi;
9546 struct value *res;
9547 LONGEST i;
9548
9549 /* Verify that both val and type are arrays of scalars, and
9550 that the size of val's elements is smaller than the size
9551 of type's element. */
9552 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9553 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9554 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9555 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9556 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9557 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9558
9559 if (!get_array_bounds (type, &lo, &hi))
9560 error (_("unable to determine array bounds"));
9561
9562 res = allocate_value (type);
9563
9564 /* Promote each array element. */
9565 for (i = 0; i < hi - lo + 1; i++)
9566 {
9567 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9568
9569 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9570 value_contents_all (elt), TYPE_LENGTH (elt_type));
9571 }
9572
9573 return res;
9574 }
9575
9576 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9577 return the converted value. */
9578
9579 static struct value *
9580 coerce_for_assign (struct type *type, struct value *val)
9581 {
9582 struct type *type2 = value_type (val);
9583
9584 if (type == type2)
9585 return val;
9586
9587 type2 = ada_check_typedef (type2);
9588 type = ada_check_typedef (type);
9589
9590 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9591 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9592 {
9593 val = ada_value_ind (val);
9594 type2 = value_type (val);
9595 }
9596
9597 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9598 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9599 {
9600 if (!ada_same_array_size_p (type, type2))
9601 error (_("cannot assign arrays of different length"));
9602
9603 if (is_integral_type (TYPE_TARGET_TYPE (type))
9604 && is_integral_type (TYPE_TARGET_TYPE (type2))
9605 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9606 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9607 {
9608 /* Allow implicit promotion of the array elements to
9609 a wider type. */
9610 return ada_promote_array_of_integrals (type, val);
9611 }
9612
9613 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9614 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9615 error (_("Incompatible types in assignment"));
9616 deprecated_set_value_type (val, type);
9617 }
9618 return val;
9619 }
9620
9621 static struct value *
9622 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9623 {
9624 struct value *val;
9625 struct type *type1, *type2;
9626 LONGEST v, v1, v2;
9627
9628 arg1 = coerce_ref (arg1);
9629 arg2 = coerce_ref (arg2);
9630 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9631 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9632
9633 if (TYPE_CODE (type1) != TYPE_CODE_INT
9634 || TYPE_CODE (type2) != TYPE_CODE_INT)
9635 return value_binop (arg1, arg2, op);
9636
9637 switch (op)
9638 {
9639 case BINOP_MOD:
9640 case BINOP_DIV:
9641 case BINOP_REM:
9642 break;
9643 default:
9644 return value_binop (arg1, arg2, op);
9645 }
9646
9647 v2 = value_as_long (arg2);
9648 if (v2 == 0)
9649 error (_("second operand of %s must not be zero."), op_string (op));
9650
9651 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9652 return value_binop (arg1, arg2, op);
9653
9654 v1 = value_as_long (arg1);
9655 switch (op)
9656 {
9657 case BINOP_DIV:
9658 v = v1 / v2;
9659 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9660 v += v > 0 ? -1 : 1;
9661 break;
9662 case BINOP_REM:
9663 v = v1 % v2;
9664 if (v * v1 < 0)
9665 v -= v2;
9666 break;
9667 default:
9668 /* Should not reach this point. */
9669 v = 0;
9670 }
9671
9672 val = allocate_value (type1);
9673 store_unsigned_integer (value_contents_raw (val),
9674 TYPE_LENGTH (value_type (val)),
9675 gdbarch_byte_order (get_type_arch (type1)), v);
9676 return val;
9677 }
9678
9679 static int
9680 ada_value_equal (struct value *arg1, struct value *arg2)
9681 {
9682 if (ada_is_direct_array_type (value_type (arg1))
9683 || ada_is_direct_array_type (value_type (arg2)))
9684 {
9685 struct type *arg1_type, *arg2_type;
9686
9687 /* Automatically dereference any array reference before
9688 we attempt to perform the comparison. */
9689 arg1 = ada_coerce_ref (arg1);
9690 arg2 = ada_coerce_ref (arg2);
9691
9692 arg1 = ada_coerce_to_simple_array (arg1);
9693 arg2 = ada_coerce_to_simple_array (arg2);
9694
9695 arg1_type = ada_check_typedef (value_type (arg1));
9696 arg2_type = ada_check_typedef (value_type (arg2));
9697
9698 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9699 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9700 error (_("Attempt to compare array with non-array"));
9701 /* FIXME: The following works only for types whose
9702 representations use all bits (no padding or undefined bits)
9703 and do not have user-defined equality. */
9704 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9705 && memcmp (value_contents (arg1), value_contents (arg2),
9706 TYPE_LENGTH (arg1_type)) == 0);
9707 }
9708 return value_equal (arg1, arg2);
9709 }
9710
9711 /* Total number of component associations in the aggregate starting at
9712 index PC in EXP. Assumes that index PC is the start of an
9713 OP_AGGREGATE. */
9714
9715 static int
9716 num_component_specs (struct expression *exp, int pc)
9717 {
9718 int n, m, i;
9719
9720 m = exp->elts[pc + 1].longconst;
9721 pc += 3;
9722 n = 0;
9723 for (i = 0; i < m; i += 1)
9724 {
9725 switch (exp->elts[pc].opcode)
9726 {
9727 default:
9728 n += 1;
9729 break;
9730 case OP_CHOICES:
9731 n += exp->elts[pc + 1].longconst;
9732 break;
9733 }
9734 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9735 }
9736 return n;
9737 }
9738
9739 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9740 component of LHS (a simple array or a record), updating *POS past
9741 the expression, assuming that LHS is contained in CONTAINER. Does
9742 not modify the inferior's memory, nor does it modify LHS (unless
9743 LHS == CONTAINER). */
9744
9745 static void
9746 assign_component (struct value *container, struct value *lhs, LONGEST index,
9747 struct expression *exp, int *pos)
9748 {
9749 struct value *mark = value_mark ();
9750 struct value *elt;
9751 struct type *lhs_type = check_typedef (value_type (lhs));
9752
9753 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9754 {
9755 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9756 struct value *index_val = value_from_longest (index_type, index);
9757
9758 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9759 }
9760 else
9761 {
9762 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9763 elt = ada_to_fixed_value (elt);
9764 }
9765
9766 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9767 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9768 else
9769 value_assign_to_component (container, elt,
9770 ada_evaluate_subexp (NULL, exp, pos,
9771 EVAL_NORMAL));
9772
9773 value_free_to_mark (mark);
9774 }
9775
9776 /* Assuming that LHS represents an lvalue having a record or array
9777 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9778 of that aggregate's value to LHS, advancing *POS past the
9779 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9780 lvalue containing LHS (possibly LHS itself). Does not modify
9781 the inferior's memory, nor does it modify the contents of
9782 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9783
9784 static struct value *
9785 assign_aggregate (struct value *container,
9786 struct value *lhs, struct expression *exp,
9787 int *pos, enum noside noside)
9788 {
9789 struct type *lhs_type;
9790 int n = exp->elts[*pos+1].longconst;
9791 LONGEST low_index, high_index;
9792 int num_specs;
9793 LONGEST *indices;
9794 int max_indices, num_indices;
9795 int i;
9796
9797 *pos += 3;
9798 if (noside != EVAL_NORMAL)
9799 {
9800 for (i = 0; i < n; i += 1)
9801 ada_evaluate_subexp (NULL, exp, pos, noside);
9802 return container;
9803 }
9804
9805 container = ada_coerce_ref (container);
9806 if (ada_is_direct_array_type (value_type (container)))
9807 container = ada_coerce_to_simple_array (container);
9808 lhs = ada_coerce_ref (lhs);
9809 if (!deprecated_value_modifiable (lhs))
9810 error (_("Left operand of assignment is not a modifiable lvalue."));
9811
9812 lhs_type = check_typedef (value_type (lhs));
9813 if (ada_is_direct_array_type (lhs_type))
9814 {
9815 lhs = ada_coerce_to_simple_array (lhs);
9816 lhs_type = check_typedef (value_type (lhs));
9817 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9818 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9819 }
9820 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9821 {
9822 low_index = 0;
9823 high_index = num_visible_fields (lhs_type) - 1;
9824 }
9825 else
9826 error (_("Left-hand side must be array or record."));
9827
9828 num_specs = num_component_specs (exp, *pos - 3);
9829 max_indices = 4 * num_specs + 4;
9830 indices = XALLOCAVEC (LONGEST, max_indices);
9831 indices[0] = indices[1] = low_index - 1;
9832 indices[2] = indices[3] = high_index + 1;
9833 num_indices = 4;
9834
9835 for (i = 0; i < n; i += 1)
9836 {
9837 switch (exp->elts[*pos].opcode)
9838 {
9839 case OP_CHOICES:
9840 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9841 &num_indices, max_indices,
9842 low_index, high_index);
9843 break;
9844 case OP_POSITIONAL:
9845 aggregate_assign_positional (container, lhs, exp, pos, indices,
9846 &num_indices, max_indices,
9847 low_index, high_index);
9848 break;
9849 case OP_OTHERS:
9850 if (i != n-1)
9851 error (_("Misplaced 'others' clause"));
9852 aggregate_assign_others (container, lhs, exp, pos, indices,
9853 num_indices, low_index, high_index);
9854 break;
9855 default:
9856 error (_("Internal error: bad aggregate clause"));
9857 }
9858 }
9859
9860 return container;
9861 }
9862
9863 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9864 construct at *POS, updating *POS past the construct, given that
9865 the positions are relative to lower bound LOW, where HIGH is the
9866 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9867 updating *NUM_INDICES as needed. CONTAINER is as for
9868 assign_aggregate. */
9869 static void
9870 aggregate_assign_positional (struct value *container,
9871 struct value *lhs, struct expression *exp,
9872 int *pos, LONGEST *indices, int *num_indices,
9873 int max_indices, LONGEST low, LONGEST high)
9874 {
9875 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9876
9877 if (ind - 1 == high)
9878 warning (_("Extra components in aggregate ignored."));
9879 if (ind <= high)
9880 {
9881 add_component_interval (ind, ind, indices, num_indices, max_indices);
9882 *pos += 3;
9883 assign_component (container, lhs, ind, exp, pos);
9884 }
9885 else
9886 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9887 }
9888
9889 /* Assign into the components of LHS indexed by the OP_CHOICES
9890 construct at *POS, updating *POS past the construct, given that
9891 the allowable indices are LOW..HIGH. Record the indices assigned
9892 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9893 needed. CONTAINER is as for assign_aggregate. */
9894 static void
9895 aggregate_assign_from_choices (struct value *container,
9896 struct value *lhs, struct expression *exp,
9897 int *pos, LONGEST *indices, int *num_indices,
9898 int max_indices, LONGEST low, LONGEST high)
9899 {
9900 int j;
9901 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9902 int choice_pos, expr_pc;
9903 int is_array = ada_is_direct_array_type (value_type (lhs));
9904
9905 choice_pos = *pos += 3;
9906
9907 for (j = 0; j < n_choices; j += 1)
9908 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9909 expr_pc = *pos;
9910 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9911
9912 for (j = 0; j < n_choices; j += 1)
9913 {
9914 LONGEST lower, upper;
9915 enum exp_opcode op = exp->elts[choice_pos].opcode;
9916
9917 if (op == OP_DISCRETE_RANGE)
9918 {
9919 choice_pos += 1;
9920 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9921 EVAL_NORMAL));
9922 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9923 EVAL_NORMAL));
9924 }
9925 else if (is_array)
9926 {
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9928 EVAL_NORMAL));
9929 upper = lower;
9930 }
9931 else
9932 {
9933 int ind;
9934 const char *name;
9935
9936 switch (op)
9937 {
9938 case OP_NAME:
9939 name = &exp->elts[choice_pos + 2].string;
9940 break;
9941 case OP_VAR_VALUE:
9942 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9943 break;
9944 default:
9945 error (_("Invalid record component association."));
9946 }
9947 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9948 ind = 0;
9949 if (! find_struct_field (name, value_type (lhs), 0,
9950 NULL, NULL, NULL, NULL, &ind))
9951 error (_("Unknown component name: %s."), name);
9952 lower = upper = ind;
9953 }
9954
9955 if (lower <= upper && (lower < low || upper > high))
9956 error (_("Index in component association out of bounds."));
9957
9958 add_component_interval (lower, upper, indices, num_indices,
9959 max_indices);
9960 while (lower <= upper)
9961 {
9962 int pos1;
9963
9964 pos1 = expr_pc;
9965 assign_component (container, lhs, lower, exp, &pos1);
9966 lower += 1;
9967 }
9968 }
9969 }
9970
9971 /* Assign the value of the expression in the OP_OTHERS construct in
9972 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9973 have not been previously assigned. The index intervals already assigned
9974 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9975 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9976 static void
9977 aggregate_assign_others (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int num_indices,
9980 LONGEST low, LONGEST high)
9981 {
9982 int i;
9983 int expr_pc = *pos + 1;
9984
9985 for (i = 0; i < num_indices - 2; i += 2)
9986 {
9987 LONGEST ind;
9988
9989 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9990 {
9991 int localpos;
9992
9993 localpos = expr_pc;
9994 assign_component (container, lhs, ind, exp, &localpos);
9995 }
9996 }
9997 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9998 }
9999
10000 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10001 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10002 modifying *SIZE as needed. It is an error if *SIZE exceeds
10003 MAX_SIZE. The resulting intervals do not overlap. */
10004 static void
10005 add_component_interval (LONGEST low, LONGEST high,
10006 LONGEST* indices, int *size, int max_size)
10007 {
10008 int i, j;
10009
10010 for (i = 0; i < *size; i += 2) {
10011 if (high >= indices[i] && low <= indices[i + 1])
10012 {
10013 int kh;
10014
10015 for (kh = i + 2; kh < *size; kh += 2)
10016 if (high < indices[kh])
10017 break;
10018 if (low < indices[i])
10019 indices[i] = low;
10020 indices[i + 1] = indices[kh - 1];
10021 if (high > indices[i + 1])
10022 indices[i + 1] = high;
10023 memcpy (indices + i + 2, indices + kh, *size - kh);
10024 *size -= kh - i - 2;
10025 return;
10026 }
10027 else if (high < indices[i])
10028 break;
10029 }
10030
10031 if (*size == max_size)
10032 error (_("Internal error: miscounted aggregate components."));
10033 *size += 2;
10034 for (j = *size-1; j >= i+2; j -= 1)
10035 indices[j] = indices[j - 2];
10036 indices[i] = low;
10037 indices[i + 1] = high;
10038 }
10039
10040 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10041 is different. */
10042
10043 static struct value *
10044 ada_value_cast (struct type *type, struct value *arg2)
10045 {
10046 if (type == ada_check_typedef (value_type (arg2)))
10047 return arg2;
10048
10049 if (ada_is_fixed_point_type (type))
10050 return cast_to_fixed (type, arg2);
10051
10052 if (ada_is_fixed_point_type (value_type (arg2)))
10053 return cast_from_fixed (type, arg2);
10054
10055 return value_cast (type, arg2);
10056 }
10057
10058 /* Evaluating Ada expressions, and printing their result.
10059 ------------------------------------------------------
10060
10061 1. Introduction:
10062 ----------------
10063
10064 We usually evaluate an Ada expression in order to print its value.
10065 We also evaluate an expression in order to print its type, which
10066 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10067 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10068 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10069 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10070 similar.
10071
10072 Evaluating expressions is a little more complicated for Ada entities
10073 than it is for entities in languages such as C. The main reason for
10074 this is that Ada provides types whose definition might be dynamic.
10075 One example of such types is variant records. Or another example
10076 would be an array whose bounds can only be known at run time.
10077
10078 The following description is a general guide as to what should be
10079 done (and what should NOT be done) in order to evaluate an expression
10080 involving such types, and when. This does not cover how the semantic
10081 information is encoded by GNAT as this is covered separatly. For the
10082 document used as the reference for the GNAT encoding, see exp_dbug.ads
10083 in the GNAT sources.
10084
10085 Ideally, we should embed each part of this description next to its
10086 associated code. Unfortunately, the amount of code is so vast right
10087 now that it's hard to see whether the code handling a particular
10088 situation might be duplicated or not. One day, when the code is
10089 cleaned up, this guide might become redundant with the comments
10090 inserted in the code, and we might want to remove it.
10091
10092 2. ``Fixing'' an Entity, the Simple Case:
10093 -----------------------------------------
10094
10095 When evaluating Ada expressions, the tricky issue is that they may
10096 reference entities whose type contents and size are not statically
10097 known. Consider for instance a variant record:
10098
10099 type Rec (Empty : Boolean := True) is record
10100 case Empty is
10101 when True => null;
10102 when False => Value : Integer;
10103 end case;
10104 end record;
10105 Yes : Rec := (Empty => False, Value => 1);
10106 No : Rec := (empty => True);
10107
10108 The size and contents of that record depends on the value of the
10109 descriminant (Rec.Empty). At this point, neither the debugging
10110 information nor the associated type structure in GDB are able to
10111 express such dynamic types. So what the debugger does is to create
10112 "fixed" versions of the type that applies to the specific object.
10113 We also informally refer to this operation as "fixing" an object,
10114 which means creating its associated fixed type.
10115
10116 Example: when printing the value of variable "Yes" above, its fixed
10117 type would look like this:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 Value : Integer;
10122 end record;
10123
10124 On the other hand, if we printed the value of "No", its fixed type
10125 would become:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 end record;
10130
10131 Things become a little more complicated when trying to fix an entity
10132 with a dynamic type that directly contains another dynamic type,
10133 such as an array of variant records, for instance. There are
10134 two possible cases: Arrays, and records.
10135
10136 3. ``Fixing'' Arrays:
10137 ---------------------
10138
10139 The type structure in GDB describes an array in terms of its bounds,
10140 and the type of its elements. By design, all elements in the array
10141 have the same type and we cannot represent an array of variant elements
10142 using the current type structure in GDB. When fixing an array,
10143 we cannot fix the array element, as we would potentially need one
10144 fixed type per element of the array. As a result, the best we can do
10145 when fixing an array is to produce an array whose bounds and size
10146 are correct (allowing us to read it from memory), but without having
10147 touched its element type. Fixing each element will be done later,
10148 when (if) necessary.
10149
10150 Arrays are a little simpler to handle than records, because the same
10151 amount of memory is allocated for each element of the array, even if
10152 the amount of space actually used by each element differs from element
10153 to element. Consider for instance the following array of type Rec:
10154
10155 type Rec_Array is array (1 .. 2) of Rec;
10156
10157 The actual amount of memory occupied by each element might be different
10158 from element to element, depending on the value of their discriminant.
10159 But the amount of space reserved for each element in the array remains
10160 fixed regardless. So we simply need to compute that size using
10161 the debugging information available, from which we can then determine
10162 the array size (we multiply the number of elements of the array by
10163 the size of each element).
10164
10165 The simplest case is when we have an array of a constrained element
10166 type. For instance, consider the following type declarations:
10167
10168 type Bounded_String (Max_Size : Integer) is
10169 Length : Integer;
10170 Buffer : String (1 .. Max_Size);
10171 end record;
10172 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10173
10174 In this case, the compiler describes the array as an array of
10175 variable-size elements (identified by its XVS suffix) for which
10176 the size can be read in the parallel XVZ variable.
10177
10178 In the case of an array of an unconstrained element type, the compiler
10179 wraps the array element inside a private PAD type. This type should not
10180 be shown to the user, and must be "unwrap"'ed before printing. Note
10181 that we also use the adjective "aligner" in our code to designate
10182 these wrapper types.
10183
10184 In some cases, the size allocated for each element is statically
10185 known. In that case, the PAD type already has the correct size,
10186 and the array element should remain unfixed.
10187
10188 But there are cases when this size is not statically known.
10189 For instance, assuming that "Five" is an integer variable:
10190
10191 type Dynamic is array (1 .. Five) of Integer;
10192 type Wrapper (Has_Length : Boolean := False) is record
10193 Data : Dynamic;
10194 case Has_Length is
10195 when True => Length : Integer;
10196 when False => null;
10197 end case;
10198 end record;
10199 type Wrapper_Array is array (1 .. 2) of Wrapper;
10200
10201 Hello : Wrapper_Array := (others => (Has_Length => True,
10202 Data => (others => 17),
10203 Length => 1));
10204
10205
10206 The debugging info would describe variable Hello as being an
10207 array of a PAD type. The size of that PAD type is not statically
10208 known, but can be determined using a parallel XVZ variable.
10209 In that case, a copy of the PAD type with the correct size should
10210 be used for the fixed array.
10211
10212 3. ``Fixing'' record type objects:
10213 ----------------------------------
10214
10215 Things are slightly different from arrays in the case of dynamic
10216 record types. In this case, in order to compute the associated
10217 fixed type, we need to determine the size and offset of each of
10218 its components. This, in turn, requires us to compute the fixed
10219 type of each of these components.
10220
10221 Consider for instance the example:
10222
10223 type Bounded_String (Max_Size : Natural) is record
10224 Str : String (1 .. Max_Size);
10225 Length : Natural;
10226 end record;
10227 My_String : Bounded_String (Max_Size => 10);
10228
10229 In that case, the position of field "Length" depends on the size
10230 of field Str, which itself depends on the value of the Max_Size
10231 discriminant. In order to fix the type of variable My_String,
10232 we need to fix the type of field Str. Therefore, fixing a variant
10233 record requires us to fix each of its components.
10234
10235 However, if a component does not have a dynamic size, the component
10236 should not be fixed. In particular, fields that use a PAD type
10237 should not fixed. Here is an example where this might happen
10238 (assuming type Rec above):
10239
10240 type Container (Big : Boolean) is record
10241 First : Rec;
10242 After : Integer;
10243 case Big is
10244 when True => Another : Integer;
10245 when False => null;
10246 end case;
10247 end record;
10248 My_Container : Container := (Big => False,
10249 First => (Empty => True),
10250 After => 42);
10251
10252 In that example, the compiler creates a PAD type for component First,
10253 whose size is constant, and then positions the component After just
10254 right after it. The offset of component After is therefore constant
10255 in this case.
10256
10257 The debugger computes the position of each field based on an algorithm
10258 that uses, among other things, the actual position and size of the field
10259 preceding it. Let's now imagine that the user is trying to print
10260 the value of My_Container. If the type fixing was recursive, we would
10261 end up computing the offset of field After based on the size of the
10262 fixed version of field First. And since in our example First has
10263 only one actual field, the size of the fixed type is actually smaller
10264 than the amount of space allocated to that field, and thus we would
10265 compute the wrong offset of field After.
10266
10267 To make things more complicated, we need to watch out for dynamic
10268 components of variant records (identified by the ___XVL suffix in
10269 the component name). Even if the target type is a PAD type, the size
10270 of that type might not be statically known. So the PAD type needs
10271 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10272 we might end up with the wrong size for our component. This can be
10273 observed with the following type declarations:
10274
10275 type Octal is new Integer range 0 .. 7;
10276 type Octal_Array is array (Positive range <>) of Octal;
10277 pragma Pack (Octal_Array);
10278
10279 type Octal_Buffer (Size : Positive) is record
10280 Buffer : Octal_Array (1 .. Size);
10281 Length : Integer;
10282 end record;
10283
10284 In that case, Buffer is a PAD type whose size is unset and needs
10285 to be computed by fixing the unwrapped type.
10286
10287 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10288 ----------------------------------------------------------
10289
10290 Lastly, when should the sub-elements of an entity that remained unfixed
10291 thus far, be actually fixed?
10292
10293 The answer is: Only when referencing that element. For instance
10294 when selecting one component of a record, this specific component
10295 should be fixed at that point in time. Or when printing the value
10296 of a record, each component should be fixed before its value gets
10297 printed. Similarly for arrays, the element of the array should be
10298 fixed when printing each element of the array, or when extracting
10299 one element out of that array. On the other hand, fixing should
10300 not be performed on the elements when taking a slice of an array!
10301
10302 Note that one of the side effects of miscomputing the offset and
10303 size of each field is that we end up also miscomputing the size
10304 of the containing type. This can have adverse results when computing
10305 the value of an entity. GDB fetches the value of an entity based
10306 on the size of its type, and thus a wrong size causes GDB to fetch
10307 the wrong amount of memory. In the case where the computed size is
10308 too small, GDB fetches too little data to print the value of our
10309 entity. Results in this case are unpredictable, as we usually read
10310 past the buffer containing the data =:-o. */
10311
10312 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10313 for that subexpression cast to TO_TYPE. Advance *POS over the
10314 subexpression. */
10315
10316 static value *
10317 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10318 enum noside noside, struct type *to_type)
10319 {
10320 int pc = *pos;
10321
10322 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10323 || exp->elts[pc].opcode == OP_VAR_VALUE)
10324 {
10325 (*pos) += 4;
10326
10327 value *val;
10328 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10329 {
10330 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10331 return value_zero (to_type, not_lval);
10332
10333 val = evaluate_var_msym_value (noside,
10334 exp->elts[pc + 1].objfile,
10335 exp->elts[pc + 2].msymbol);
10336 }
10337 else
10338 val = evaluate_var_value (noside,
10339 exp->elts[pc + 1].block,
10340 exp->elts[pc + 2].symbol);
10341
10342 if (noside == EVAL_SKIP)
10343 return eval_skip_value (exp);
10344
10345 val = ada_value_cast (to_type, val);
10346
10347 /* Follow the Ada language semantics that do not allow taking
10348 an address of the result of a cast (view conversion in Ada). */
10349 if (VALUE_LVAL (val) == lval_memory)
10350 {
10351 if (value_lazy (val))
10352 value_fetch_lazy (val);
10353 VALUE_LVAL (val) = not_lval;
10354 }
10355 return val;
10356 }
10357
10358 value *val = evaluate_subexp (to_type, exp, pos, noside);
10359 if (noside == EVAL_SKIP)
10360 return eval_skip_value (exp);
10361 return ada_value_cast (to_type, val);
10362 }
10363
10364 /* Implement the evaluate_exp routine in the exp_descriptor structure
10365 for the Ada language. */
10366
10367 static struct value *
10368 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10369 int *pos, enum noside noside)
10370 {
10371 enum exp_opcode op;
10372 int tem;
10373 int pc;
10374 int preeval_pos;
10375 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10376 struct type *type;
10377 int nargs, oplen;
10378 struct value **argvec;
10379
10380 pc = *pos;
10381 *pos += 1;
10382 op = exp->elts[pc].opcode;
10383
10384 switch (op)
10385 {
10386 default:
10387 *pos -= 1;
10388 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10389
10390 if (noside == EVAL_NORMAL)
10391 arg1 = unwrap_value (arg1);
10392
10393 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10394 then we need to perform the conversion manually, because
10395 evaluate_subexp_standard doesn't do it. This conversion is
10396 necessary in Ada because the different kinds of float/fixed
10397 types in Ada have different representations.
10398
10399 Similarly, we need to perform the conversion from OP_LONG
10400 ourselves. */
10401 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10402 arg1 = ada_value_cast (expect_type, arg1);
10403
10404 return arg1;
10405
10406 case OP_STRING:
10407 {
10408 struct value *result;
10409
10410 *pos -= 1;
10411 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10412 /* The result type will have code OP_STRING, bashed there from
10413 OP_ARRAY. Bash it back. */
10414 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10415 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10416 return result;
10417 }
10418
10419 case UNOP_CAST:
10420 (*pos) += 2;
10421 type = exp->elts[pc + 1].type;
10422 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10423
10424 case UNOP_QUAL:
10425 (*pos) += 2;
10426 type = exp->elts[pc + 1].type;
10427 return ada_evaluate_subexp (type, exp, pos, noside);
10428
10429 case BINOP_ASSIGN:
10430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10432 {
10433 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10434 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10435 return arg1;
10436 return ada_value_assign (arg1, arg1);
10437 }
10438 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10439 except if the lhs of our assignment is a convenience variable.
10440 In the case of assigning to a convenience variable, the lhs
10441 should be exactly the result of the evaluation of the rhs. */
10442 type = value_type (arg1);
10443 if (VALUE_LVAL (arg1) == lval_internalvar)
10444 type = NULL;
10445 arg2 = evaluate_subexp (type, exp, pos, noside);
10446 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10447 return arg1;
10448 if (VALUE_LVAL (arg1) == lval_internalvar)
10449 {
10450 /* Nothing. */
10451 }
10452 else if (ada_is_fixed_point_type (value_type (arg1)))
10453 arg2 = cast_to_fixed (value_type (arg1), arg2);
10454 else if (ada_is_fixed_point_type (value_type (arg2)))
10455 error
10456 (_("Fixed-point values must be assigned to fixed-point variables"));
10457 else
10458 arg2 = coerce_for_assign (value_type (arg1), arg2);
10459 return ada_value_assign (arg1, arg2);
10460
10461 case BINOP_ADD:
10462 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10463 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10464 if (noside == EVAL_SKIP)
10465 goto nosideret;
10466 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10467 return (value_from_longest
10468 (value_type (arg1),
10469 value_as_long (arg1) + value_as_long (arg2)));
10470 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg2),
10473 value_as_long (arg1) + value_as_long (arg2)));
10474 if ((ada_is_fixed_point_type (value_type (arg1))
10475 || ada_is_fixed_point_type (value_type (arg2)))
10476 && value_type (arg1) != value_type (arg2))
10477 error (_("Operands of fixed-point addition must have the same type"));
10478 /* Do the addition, and cast the result to the type of the first
10479 argument. We cannot cast the result to a reference type, so if
10480 ARG1 is a reference type, find its underlying type. */
10481 type = value_type (arg1);
10482 while (TYPE_CODE (type) == TYPE_CODE_REF)
10483 type = TYPE_TARGET_TYPE (type);
10484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10485 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10486
10487 case BINOP_SUB:
10488 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10493 return (value_from_longest
10494 (value_type (arg1),
10495 value_as_long (arg1) - value_as_long (arg2)));
10496 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg2),
10499 value_as_long (arg1) - value_as_long (arg2)));
10500 if ((ada_is_fixed_point_type (value_type (arg1))
10501 || ada_is_fixed_point_type (value_type (arg2)))
10502 && value_type (arg1) != value_type (arg2))
10503 error (_("Operands of fixed-point subtraction "
10504 "must have the same type"));
10505 /* Do the substraction, and cast the result to the type of the first
10506 argument. We cannot cast the result to a reference type, so if
10507 ARG1 is a reference type, find its underlying type. */
10508 type = value_type (arg1);
10509 while (TYPE_CODE (type) == TYPE_CODE_REF)
10510 type = TYPE_TARGET_TYPE (type);
10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10512 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10513
10514 case BINOP_MUL:
10515 case BINOP_DIV:
10516 case BINOP_REM:
10517 case BINOP_MOD:
10518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10521 goto nosideret;
10522 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10523 {
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525 return value_zero (value_type (arg1), not_lval);
10526 }
10527 else
10528 {
10529 type = builtin_type (exp->gdbarch)->builtin_double;
10530 if (ada_is_fixed_point_type (value_type (arg1)))
10531 arg1 = cast_from_fixed (type, arg1);
10532 if (ada_is_fixed_point_type (value_type (arg2)))
10533 arg2 = cast_from_fixed (type, arg2);
10534 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10535 return ada_value_binop (arg1, arg2, op);
10536 }
10537
10538 case BINOP_EQUAL:
10539 case BINOP_NOTEQUAL:
10540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10541 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10542 if (noside == EVAL_SKIP)
10543 goto nosideret;
10544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10545 tem = 0;
10546 else
10547 {
10548 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10549 tem = ada_value_equal (arg1, arg2);
10550 }
10551 if (op == BINOP_NOTEQUAL)
10552 tem = !tem;
10553 type = language_bool_type (exp->language_defn, exp->gdbarch);
10554 return value_from_longest (type, (LONGEST) tem);
10555
10556 case UNOP_NEG:
10557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
10559 goto nosideret;
10560 else if (ada_is_fixed_point_type (value_type (arg1)))
10561 return value_cast (value_type (arg1), value_neg (arg1));
10562 else
10563 {
10564 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10565 return value_neg (arg1);
10566 }
10567
10568 case BINOP_LOGICAL_AND:
10569 case BINOP_LOGICAL_OR:
10570 case UNOP_LOGICAL_NOT:
10571 {
10572 struct value *val;
10573
10574 *pos -= 1;
10575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10576 type = language_bool_type (exp->language_defn, exp->gdbarch);
10577 return value_cast (type, val);
10578 }
10579
10580 case BINOP_BITWISE_AND:
10581 case BINOP_BITWISE_IOR:
10582 case BINOP_BITWISE_XOR:
10583 {
10584 struct value *val;
10585
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10587 *pos = pc;
10588 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10589
10590 return value_cast (value_type (arg1), val);
10591 }
10592
10593 case OP_VAR_VALUE:
10594 *pos -= 1;
10595
10596 if (noside == EVAL_SKIP)
10597 {
10598 *pos += 4;
10599 goto nosideret;
10600 }
10601
10602 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10603 /* Only encountered when an unresolved symbol occurs in a
10604 context other than a function call, in which case, it is
10605 invalid. */
10606 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10607 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10608
10609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10610 {
10611 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10612 /* Check to see if this is a tagged type. We also need to handle
10613 the case where the type is a reference to a tagged type, but
10614 we have to be careful to exclude pointers to tagged types.
10615 The latter should be shown as usual (as a pointer), whereas
10616 a reference should mostly be transparent to the user. */
10617 if (ada_is_tagged_type (type, 0)
10618 || (TYPE_CODE (type) == TYPE_CODE_REF
10619 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10620 {
10621 /* Tagged types are a little special in the fact that the real
10622 type is dynamic and can only be determined by inspecting the
10623 object's tag. This means that we need to get the object's
10624 value first (EVAL_NORMAL) and then extract the actual object
10625 type from its tag.
10626
10627 Note that we cannot skip the final step where we extract
10628 the object type from its tag, because the EVAL_NORMAL phase
10629 results in dynamic components being resolved into fixed ones.
10630 This can cause problems when trying to print the type
10631 description of tagged types whose parent has a dynamic size:
10632 We use the type name of the "_parent" component in order
10633 to print the name of the ancestor type in the type description.
10634 If that component had a dynamic size, the resolution into
10635 a fixed type would result in the loss of that type name,
10636 thus preventing us from printing the name of the ancestor
10637 type in the type description. */
10638 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10639
10640 if (TYPE_CODE (type) != TYPE_CODE_REF)
10641 {
10642 struct type *actual_type;
10643
10644 actual_type = type_from_tag (ada_value_tag (arg1));
10645 if (actual_type == NULL)
10646 /* If, for some reason, we were unable to determine
10647 the actual type from the tag, then use the static
10648 approximation that we just computed as a fallback.
10649 This can happen if the debugging information is
10650 incomplete, for instance. */
10651 actual_type = type;
10652 return value_zero (actual_type, not_lval);
10653 }
10654 else
10655 {
10656 /* In the case of a ref, ada_coerce_ref takes care
10657 of determining the actual type. But the evaluation
10658 should return a ref as it should be valid to ask
10659 for its address; so rebuild a ref after coerce. */
10660 arg1 = ada_coerce_ref (arg1);
10661 return value_ref (arg1, TYPE_CODE_REF);
10662 }
10663 }
10664
10665 /* Records and unions for which GNAT encodings have been
10666 generated need to be statically fixed as well.
10667 Otherwise, non-static fixing produces a type where
10668 all dynamic properties are removed, which prevents "ptype"
10669 from being able to completely describe the type.
10670 For instance, a case statement in a variant record would be
10671 replaced by the relevant components based on the actual
10672 value of the discriminants. */
10673 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10674 && dynamic_template_type (type) != NULL)
10675 || (TYPE_CODE (type) == TYPE_CODE_UNION
10676 && ada_find_parallel_type (type, "___XVU") != NULL))
10677 {
10678 *pos += 4;
10679 return value_zero (to_static_fixed_type (type), not_lval);
10680 }
10681 }
10682
10683 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10684 return ada_to_fixed_value (arg1);
10685
10686 case OP_FUNCALL:
10687 (*pos) += 2;
10688
10689 /* Allocate arg vector, including space for the function to be
10690 called in argvec[0] and a terminating NULL. */
10691 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10692 argvec = XALLOCAVEC (struct value *, nargs + 2);
10693
10694 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10695 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10696 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10697 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10698 else
10699 {
10700 for (tem = 0; tem <= nargs; tem += 1)
10701 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10702 argvec[tem] = 0;
10703
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 }
10707
10708 if (ada_is_constrained_packed_array_type
10709 (desc_base_type (value_type (argvec[0]))))
10710 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10711 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10712 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10713 /* This is a packed array that has already been fixed, and
10714 therefore already coerced to a simple array. Nothing further
10715 to do. */
10716 ;
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10718 {
10719 /* Make sure we dereference references so that all the code below
10720 feels like it's really handling the referenced value. Wrapping
10721 types (for alignment) may be there, so make sure we strip them as
10722 well. */
10723 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10724 }
10725 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10726 && VALUE_LVAL (argvec[0]) == lval_memory)
10727 argvec[0] = value_addr (argvec[0]);
10728
10729 type = ada_check_typedef (value_type (argvec[0]));
10730
10731 /* Ada allows us to implicitly dereference arrays when subscripting
10732 them. So, if this is an array typedef (encoding use for array
10733 access types encoded as fat pointers), strip it now. */
10734 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10735 type = ada_typedef_target_type (type);
10736
10737 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10738 {
10739 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10740 {
10741 case TYPE_CODE_FUNC:
10742 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10743 break;
10744 case TYPE_CODE_ARRAY:
10745 break;
10746 case TYPE_CODE_STRUCT:
10747 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10748 argvec[0] = ada_value_ind (argvec[0]);
10749 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10750 break;
10751 default:
10752 error (_("cannot subscript or call something of type `%s'"),
10753 ada_type_name (value_type (argvec[0])));
10754 break;
10755 }
10756 }
10757
10758 switch (TYPE_CODE (type))
10759 {
10760 case TYPE_CODE_FUNC:
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 {
10763 if (TYPE_TARGET_TYPE (type) == NULL)
10764 error_call_unknown_return_type (NULL);
10765 return allocate_value (TYPE_TARGET_TYPE (type));
10766 }
10767 return call_function_by_hand (argvec[0], NULL,
10768 gdb::make_array_view (argvec + 1,
10769 nargs));
10770 case TYPE_CODE_INTERNAL_FUNCTION:
10771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10772 /* We don't know anything about what the internal
10773 function might return, but we have to return
10774 something. */
10775 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10776 not_lval);
10777 else
10778 return call_internal_function (exp->gdbarch, exp->language_defn,
10779 argvec[0], nargs, argvec + 1);
10780
10781 case TYPE_CODE_STRUCT:
10782 {
10783 int arity;
10784
10785 arity = ada_array_arity (type);
10786 type = ada_array_element_type (type, nargs);
10787 if (type == NULL)
10788 error (_("cannot subscript or call a record"));
10789 if (arity != nargs)
10790 error (_("wrong number of subscripts; expecting %d"), arity);
10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 return value_zero (ada_aligned_type (type), lval_memory);
10793 return
10794 unwrap_value (ada_value_subscript
10795 (argvec[0], nargs, argvec + 1));
10796 }
10797 case TYPE_CODE_ARRAY:
10798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10799 {
10800 type = ada_array_element_type (type, nargs);
10801 if (type == NULL)
10802 error (_("element type of array unknown"));
10803 else
10804 return value_zero (ada_aligned_type (type), lval_memory);
10805 }
10806 return
10807 unwrap_value (ada_value_subscript
10808 (ada_coerce_to_simple_array (argvec[0]),
10809 nargs, argvec + 1));
10810 case TYPE_CODE_PTR: /* Pointer to array */
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 {
10813 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10814 type = ada_array_element_type (type, nargs);
10815 if (type == NULL)
10816 error (_("element type of array unknown"));
10817 else
10818 return value_zero (ada_aligned_type (type), lval_memory);
10819 }
10820 return
10821 unwrap_value (ada_value_ptr_subscript (argvec[0],
10822 nargs, argvec + 1));
10823
10824 default:
10825 error (_("Attempt to index or call something other than an "
10826 "array or function"));
10827 }
10828
10829 case TERNOP_SLICE:
10830 {
10831 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10832 struct value *low_bound_val =
10833 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10834 struct value *high_bound_val =
10835 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 LONGEST low_bound;
10837 LONGEST high_bound;
10838
10839 low_bound_val = coerce_ref (low_bound_val);
10840 high_bound_val = coerce_ref (high_bound_val);
10841 low_bound = value_as_long (low_bound_val);
10842 high_bound = value_as_long (high_bound_val);
10843
10844 if (noside == EVAL_SKIP)
10845 goto nosideret;
10846
10847 /* If this is a reference to an aligner type, then remove all
10848 the aligners. */
10849 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10850 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10851 TYPE_TARGET_TYPE (value_type (array)) =
10852 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10853
10854 if (ada_is_constrained_packed_array_type (value_type (array)))
10855 error (_("cannot slice a packed array"));
10856
10857 /* If this is a reference to an array or an array lvalue,
10858 convert to a pointer. */
10859 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10860 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10861 && VALUE_LVAL (array) == lval_memory))
10862 array = value_addr (array);
10863
10864 if (noside == EVAL_AVOID_SIDE_EFFECTS
10865 && ada_is_array_descriptor_type (ada_check_typedef
10866 (value_type (array))))
10867 return empty_array (ada_type_of_array (array, 0), low_bound,
10868 high_bound);
10869
10870 array = ada_coerce_to_simple_array_ptr (array);
10871
10872 /* If we have more than one level of pointer indirection,
10873 dereference the value until we get only one level. */
10874 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10875 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10876 == TYPE_CODE_PTR))
10877 array = value_ind (array);
10878
10879 /* Make sure we really do have an array type before going further,
10880 to avoid a SEGV when trying to get the index type or the target
10881 type later down the road if the debug info generated by
10882 the compiler is incorrect or incomplete. */
10883 if (!ada_is_simple_array_type (value_type (array)))
10884 error (_("cannot take slice of non-array"));
10885
10886 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10887 == TYPE_CODE_PTR)
10888 {
10889 struct type *type0 = ada_check_typedef (value_type (array));
10890
10891 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10892 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10893 else
10894 {
10895 struct type *arr_type0 =
10896 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10897
10898 return ada_value_slice_from_ptr (array, arr_type0,
10899 longest_to_int (low_bound),
10900 longest_to_int (high_bound));
10901 }
10902 }
10903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return array;
10905 else if (high_bound < low_bound)
10906 return empty_array (value_type (array), low_bound, high_bound);
10907 else
10908 return ada_value_slice (array, longest_to_int (low_bound),
10909 longest_to_int (high_bound));
10910 }
10911
10912 case UNOP_IN_RANGE:
10913 (*pos) += 2;
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 type = check_typedef (exp->elts[pc + 1].type);
10916
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919
10920 switch (TYPE_CODE (type))
10921 {
10922 default:
10923 lim_warning (_("Membership test incompletely implemented; "
10924 "always returns true"));
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_from_longest (type, (LONGEST) 1);
10927
10928 case TYPE_CODE_RANGE:
10929 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10930 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10931 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return
10935 value_from_longest (type,
10936 (value_less (arg1, arg3)
10937 || value_equal (arg1, arg3))
10938 && (value_less (arg2, arg1)
10939 || value_equal (arg2, arg1)));
10940 }
10941
10942 case BINOP_IN_BOUNDS:
10943 (*pos) += 2;
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949
10950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 {
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_zero (type, not_lval);
10954 }
10955
10956 tem = longest_to_int (exp->elts[pc + 1].longconst);
10957
10958 type = ada_index_type (value_type (arg2), tem, "range");
10959 if (!type)
10960 type = value_type (arg1);
10961
10962 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10963 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10964
10965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10967 type = language_bool_type (exp->language_defn, exp->gdbarch);
10968 return
10969 value_from_longest (type,
10970 (value_less (arg1, arg3)
10971 || value_equal (arg1, arg3))
10972 && (value_less (arg2, arg1)
10973 || value_equal (arg2, arg1)));
10974
10975 case TERNOP_IN_RANGE:
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10977 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10978 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982
10983 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10985 type = language_bool_type (exp->language_defn, exp->gdbarch);
10986 return
10987 value_from_longest (type,
10988 (value_less (arg1, arg3)
10989 || value_equal (arg1, arg3))
10990 && (value_less (arg2, arg1)
10991 || value_equal (arg2, arg1)));
10992
10993 case OP_ATR_FIRST:
10994 case OP_ATR_LAST:
10995 case OP_ATR_LENGTH:
10996 {
10997 struct type *type_arg;
10998
10999 if (exp->elts[*pos].opcode == OP_TYPE)
11000 {
11001 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11002 arg1 = NULL;
11003 type_arg = check_typedef (exp->elts[pc + 2].type);
11004 }
11005 else
11006 {
11007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 type_arg = NULL;
11009 }
11010
11011 if (exp->elts[*pos].opcode != OP_LONG)
11012 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11013 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11014 *pos += 4;
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11019 {
11020 if (type_arg == NULL)
11021 type_arg = value_type (arg1);
11022
11023 if (ada_is_constrained_packed_array_type (type_arg))
11024 type_arg = decode_constrained_packed_array_type (type_arg);
11025
11026 if (!discrete_type_p (type_arg))
11027 {
11028 switch (op)
11029 {
11030 default: /* Should never happen. */
11031 error (_("unexpected attribute encountered"));
11032 case OP_ATR_FIRST:
11033 case OP_ATR_LAST:
11034 type_arg = ada_index_type (type_arg, tem,
11035 ada_attribute_name (op));
11036 break;
11037 case OP_ATR_LENGTH:
11038 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11039 break;
11040 }
11041 }
11042
11043 return value_zero (type_arg, not_lval);
11044 }
11045 else if (type_arg == NULL)
11046 {
11047 arg1 = ada_coerce_ref (arg1);
11048
11049 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11050 arg1 = ada_coerce_to_simple_array (arg1);
11051
11052 if (op == OP_ATR_LENGTH)
11053 type = builtin_type (exp->gdbarch)->builtin_int;
11054 else
11055 {
11056 type = ada_index_type (value_type (arg1), tem,
11057 ada_attribute_name (op));
11058 if (type == NULL)
11059 type = builtin_type (exp->gdbarch)->builtin_int;
11060 }
11061
11062 switch (op)
11063 {
11064 default: /* Should never happen. */
11065 error (_("unexpected attribute encountered"));
11066 case OP_ATR_FIRST:
11067 return value_from_longest
11068 (type, ada_array_bound (arg1, tem, 0));
11069 case OP_ATR_LAST:
11070 return value_from_longest
11071 (type, ada_array_bound (arg1, tem, 1));
11072 case OP_ATR_LENGTH:
11073 return value_from_longest
11074 (type, ada_array_length (arg1, tem));
11075 }
11076 }
11077 else if (discrete_type_p (type_arg))
11078 {
11079 struct type *range_type;
11080 const char *name = ada_type_name (type_arg);
11081
11082 range_type = NULL;
11083 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11084 range_type = to_fixed_range_type (type_arg, NULL);
11085 if (range_type == NULL)
11086 range_type = type_arg;
11087 switch (op)
11088 {
11089 default:
11090 error (_("unexpected attribute encountered"));
11091 case OP_ATR_FIRST:
11092 return value_from_longest
11093 (range_type, ada_discrete_type_low_bound (range_type));
11094 case OP_ATR_LAST:
11095 return value_from_longest
11096 (range_type, ada_discrete_type_high_bound (range_type));
11097 case OP_ATR_LENGTH:
11098 error (_("the 'length attribute applies only to array types"));
11099 }
11100 }
11101 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11102 error (_("unimplemented type attribute"));
11103 else
11104 {
11105 LONGEST low, high;
11106
11107 if (ada_is_constrained_packed_array_type (type_arg))
11108 type_arg = decode_constrained_packed_array_type (type_arg);
11109
11110 if (op == OP_ATR_LENGTH)
11111 type = builtin_type (exp->gdbarch)->builtin_int;
11112 else
11113 {
11114 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11115 if (type == NULL)
11116 type = builtin_type (exp->gdbarch)->builtin_int;
11117 }
11118
11119 switch (op)
11120 {
11121 default:
11122 error (_("unexpected attribute encountered"));
11123 case OP_ATR_FIRST:
11124 low = ada_array_bound_from_type (type_arg, tem, 0);
11125 return value_from_longest (type, low);
11126 case OP_ATR_LAST:
11127 high = ada_array_bound_from_type (type_arg, tem, 1);
11128 return value_from_longest (type, high);
11129 case OP_ATR_LENGTH:
11130 low = ada_array_bound_from_type (type_arg, tem, 0);
11131 high = ada_array_bound_from_type (type_arg, tem, 1);
11132 return value_from_longest (type, high - low + 1);
11133 }
11134 }
11135 }
11136
11137 case OP_ATR_TAG:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141
11142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11143 return value_zero (ada_tag_type (arg1), not_lval);
11144
11145 return ada_value_tag (arg1);
11146
11147 case OP_ATR_MIN:
11148 case OP_ATR_MAX:
11149 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11155 return value_zero (value_type (arg1), not_lval);
11156 else
11157 {
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11159 return value_binop (arg1, arg2,
11160 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11161 }
11162
11163 case OP_ATR_MODULUS:
11164 {
11165 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11166
11167 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
11170
11171 if (!ada_is_modular_type (type_arg))
11172 error (_("'modulus must be applied to modular type"));
11173
11174 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11175 ada_modulus (type_arg));
11176 }
11177
11178
11179 case OP_ATR_POS:
11180 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 if (noside == EVAL_SKIP)
11183 goto nosideret;
11184 type = builtin_type (exp->gdbarch)->builtin_int;
11185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11186 return value_zero (type, not_lval);
11187 else
11188 return value_pos_atr (type, arg1);
11189
11190 case OP_ATR_SIZE:
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 type = value_type (arg1);
11193
11194 /* If the argument is a reference, then dereference its type, since
11195 the user is really asking for the size of the actual object,
11196 not the size of the pointer. */
11197 if (TYPE_CODE (type) == TYPE_CODE_REF)
11198 type = TYPE_TARGET_TYPE (type);
11199
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11203 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11204 else
11205 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11206 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11207
11208 case OP_ATR_VAL:
11209 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 type = exp->elts[pc + 2].type;
11212 if (noside == EVAL_SKIP)
11213 goto nosideret;
11214 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 return value_zero (type, not_lval);
11216 else
11217 return value_val_atr (type, arg1);
11218
11219 case BINOP_EXP:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11225 return value_zero (value_type (arg1), not_lval);
11226 else
11227 {
11228 /* For integer exponentiation operations,
11229 only promote the first argument. */
11230 if (is_integral_type (value_type (arg2)))
11231 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11232 else
11233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11234
11235 return value_binop (arg1, arg2, op);
11236 }
11237
11238 case UNOP_PLUS:
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 else
11243 return arg1;
11244
11245 case UNOP_ABS:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11250 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11251 return value_neg (arg1);
11252 else
11253 return arg1;
11254
11255 case UNOP_IND:
11256 preeval_pos = *pos;
11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11258 if (noside == EVAL_SKIP)
11259 goto nosideret;
11260 type = ada_check_typedef (value_type (arg1));
11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 {
11263 if (ada_is_array_descriptor_type (type))
11264 /* GDB allows dereferencing GNAT array descriptors. */
11265 {
11266 struct type *arrType = ada_type_of_array (arg1, 0);
11267
11268 if (arrType == NULL)
11269 error (_("Attempt to dereference null array pointer."));
11270 return value_at_lazy (arrType, 0);
11271 }
11272 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11273 || TYPE_CODE (type) == TYPE_CODE_REF
11274 /* In C you can dereference an array to get the 1st elt. */
11275 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11276 {
11277 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11278 only be determined by inspecting the object's tag.
11279 This means that we need to evaluate completely the
11280 expression in order to get its type. */
11281
11282 if ((TYPE_CODE (type) == TYPE_CODE_REF
11283 || TYPE_CODE (type) == TYPE_CODE_PTR)
11284 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11285 {
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11287 EVAL_NORMAL);
11288 type = value_type (ada_value_ind (arg1));
11289 }
11290 else
11291 {
11292 type = to_static_fixed_type
11293 (ada_aligned_type
11294 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11295 }
11296 ada_ensure_varsize_limit (type);
11297 return value_zero (type, lval_memory);
11298 }
11299 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11300 {
11301 /* GDB allows dereferencing an int. */
11302 if (expect_type == NULL)
11303 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11304 lval_memory);
11305 else
11306 {
11307 expect_type =
11308 to_static_fixed_type (ada_aligned_type (expect_type));
11309 return value_zero (expect_type, lval_memory);
11310 }
11311 }
11312 else
11313 error (_("Attempt to take contents of a non-pointer value."));
11314 }
11315 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11316 type = ada_check_typedef (value_type (arg1));
11317
11318 if (TYPE_CODE (type) == TYPE_CODE_INT)
11319 /* GDB allows dereferencing an int. If we were given
11320 the expect_type, then use that as the target type.
11321 Otherwise, assume that the target type is an int. */
11322 {
11323 if (expect_type != NULL)
11324 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11325 arg1));
11326 else
11327 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11328 (CORE_ADDR) value_as_address (arg1));
11329 }
11330
11331 if (ada_is_array_descriptor_type (type))
11332 /* GDB allows dereferencing GNAT array descriptors. */
11333 return ada_coerce_to_simple_array (arg1);
11334 else
11335 return ada_value_ind (arg1);
11336
11337 case STRUCTOP_STRUCT:
11338 tem = longest_to_int (exp->elts[pc + 1].longconst);
11339 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11340 preeval_pos = *pos;
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11342 if (noside == EVAL_SKIP)
11343 goto nosideret;
11344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11345 {
11346 struct type *type1 = value_type (arg1);
11347
11348 if (ada_is_tagged_type (type1, 1))
11349 {
11350 type = ada_lookup_struct_elt_type (type1,
11351 &exp->elts[pc + 2].string,
11352 1, 1);
11353
11354 /* If the field is not found, check if it exists in the
11355 extension of this object's type. This means that we
11356 need to evaluate completely the expression. */
11357
11358 if (type == NULL)
11359 {
11360 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11361 EVAL_NORMAL);
11362 arg1 = ada_value_struct_elt (arg1,
11363 &exp->elts[pc + 2].string,
11364 0);
11365 arg1 = unwrap_value (arg1);
11366 type = value_type (ada_to_fixed_value (arg1));
11367 }
11368 }
11369 else
11370 type =
11371 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11372 0);
11373
11374 return value_zero (ada_aligned_type (type), lval_memory);
11375 }
11376 else
11377 {
11378 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11379 arg1 = unwrap_value (arg1);
11380 return ada_to_fixed_value (arg1);
11381 }
11382
11383 case OP_TYPE:
11384 /* The value is not supposed to be used. This is here to make it
11385 easier to accommodate expressions that contain types. */
11386 (*pos) += 2;
11387 if (noside == EVAL_SKIP)
11388 goto nosideret;
11389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11390 return allocate_value (exp->elts[pc + 1].type);
11391 else
11392 error (_("Attempt to use a type name as an expression"));
11393
11394 case OP_AGGREGATE:
11395 case OP_CHOICES:
11396 case OP_OTHERS:
11397 case OP_DISCRETE_RANGE:
11398 case OP_POSITIONAL:
11399 case OP_NAME:
11400 if (noside == EVAL_NORMAL)
11401 switch (op)
11402 {
11403 case OP_NAME:
11404 error (_("Undefined name, ambiguous name, or renaming used in "
11405 "component association: %s."), &exp->elts[pc+2].string);
11406 case OP_AGGREGATE:
11407 error (_("Aggregates only allowed on the right of an assignment"));
11408 default:
11409 internal_error (__FILE__, __LINE__,
11410 _("aggregate apparently mangled"));
11411 }
11412
11413 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11414 *pos += oplen - 1;
11415 for (tem = 0; tem < nargs; tem += 1)
11416 ada_evaluate_subexp (NULL, exp, pos, noside);
11417 goto nosideret;
11418 }
11419
11420 nosideret:
11421 return eval_skip_value (exp);
11422 }
11423 \f
11424
11425 /* Fixed point */
11426
11427 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11428 type name that encodes the 'small and 'delta information.
11429 Otherwise, return NULL. */
11430
11431 static const char *
11432 fixed_type_info (struct type *type)
11433 {
11434 const char *name = ada_type_name (type);
11435 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11436
11437 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11438 {
11439 const char *tail = strstr (name, "___XF_");
11440
11441 if (tail == NULL)
11442 return NULL;
11443 else
11444 return tail + 5;
11445 }
11446 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11447 return fixed_type_info (TYPE_TARGET_TYPE (type));
11448 else
11449 return NULL;
11450 }
11451
11452 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11453
11454 int
11455 ada_is_fixed_point_type (struct type *type)
11456 {
11457 return fixed_type_info (type) != NULL;
11458 }
11459
11460 /* Return non-zero iff TYPE represents a System.Address type. */
11461
11462 int
11463 ada_is_system_address_type (struct type *type)
11464 {
11465 return (TYPE_NAME (type)
11466 && strcmp (TYPE_NAME (type), "system__address") == 0);
11467 }
11468
11469 /* Assuming that TYPE is the representation of an Ada fixed-point
11470 type, return the target floating-point type to be used to represent
11471 of this type during internal computation. */
11472
11473 static struct type *
11474 ada_scaling_type (struct type *type)
11475 {
11476 return builtin_type (get_type_arch (type))->builtin_long_double;
11477 }
11478
11479 /* Assuming that TYPE is the representation of an Ada fixed-point
11480 type, return its delta, or NULL if the type is malformed and the
11481 delta cannot be determined. */
11482
11483 struct value *
11484 ada_delta (struct type *type)
11485 {
11486 const char *encoding = fixed_type_info (type);
11487 struct type *scale_type = ada_scaling_type (type);
11488
11489 long long num, den;
11490
11491 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11492 return nullptr;
11493 else
11494 return value_binop (value_from_longest (scale_type, num),
11495 value_from_longest (scale_type, den), BINOP_DIV);
11496 }
11497
11498 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11499 factor ('SMALL value) associated with the type. */
11500
11501 struct value *
11502 ada_scaling_factor (struct type *type)
11503 {
11504 const char *encoding = fixed_type_info (type);
11505 struct type *scale_type = ada_scaling_type (type);
11506
11507 long long num0, den0, num1, den1;
11508 int n;
11509
11510 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11511 &num0, &den0, &num1, &den1);
11512
11513 if (n < 2)
11514 return value_from_longest (scale_type, 1);
11515 else if (n == 4)
11516 return value_binop (value_from_longest (scale_type, num1),
11517 value_from_longest (scale_type, den1), BINOP_DIV);
11518 else
11519 return value_binop (value_from_longest (scale_type, num0),
11520 value_from_longest (scale_type, den0), BINOP_DIV);
11521 }
11522
11523 \f
11524
11525 /* Range types */
11526
11527 /* Scan STR beginning at position K for a discriminant name, and
11528 return the value of that discriminant field of DVAL in *PX. If
11529 PNEW_K is not null, put the position of the character beyond the
11530 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11531 not alter *PX and *PNEW_K if unsuccessful. */
11532
11533 static int
11534 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11535 int *pnew_k)
11536 {
11537 static char *bound_buffer = NULL;
11538 static size_t bound_buffer_len = 0;
11539 const char *pstart, *pend, *bound;
11540 struct value *bound_val;
11541
11542 if (dval == NULL || str == NULL || str[k] == '\0')
11543 return 0;
11544
11545 pstart = str + k;
11546 pend = strstr (pstart, "__");
11547 if (pend == NULL)
11548 {
11549 bound = pstart;
11550 k += strlen (bound);
11551 }
11552 else
11553 {
11554 int len = pend - pstart;
11555
11556 /* Strip __ and beyond. */
11557 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11558 strncpy (bound_buffer, pstart, len);
11559 bound_buffer[len] = '\0';
11560
11561 bound = bound_buffer;
11562 k = pend - str;
11563 }
11564
11565 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11566 if (bound_val == NULL)
11567 return 0;
11568
11569 *px = value_as_long (bound_val);
11570 if (pnew_k != NULL)
11571 *pnew_k = k;
11572 return 1;
11573 }
11574
11575 /* Value of variable named NAME in the current environment. If
11576 no such variable found, then if ERR_MSG is null, returns 0, and
11577 otherwise causes an error with message ERR_MSG. */
11578
11579 static struct value *
11580 get_var_value (const char *name, const char *err_msg)
11581 {
11582 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11583
11584 std::vector<struct block_symbol> syms;
11585 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11586 get_selected_block (0),
11587 VAR_DOMAIN, &syms, 1);
11588
11589 if (nsyms != 1)
11590 {
11591 if (err_msg == NULL)
11592 return 0;
11593 else
11594 error (("%s"), err_msg);
11595 }
11596
11597 return value_of_variable (syms[0].symbol, syms[0].block);
11598 }
11599
11600 /* Value of integer variable named NAME in the current environment.
11601 If no such variable is found, returns false. Otherwise, sets VALUE
11602 to the variable's value and returns true. */
11603
11604 bool
11605 get_int_var_value (const char *name, LONGEST &value)
11606 {
11607 struct value *var_val = get_var_value (name, 0);
11608
11609 if (var_val == 0)
11610 return false;
11611
11612 value = value_as_long (var_val);
11613 return true;
11614 }
11615
11616
11617 /* Return a range type whose base type is that of the range type named
11618 NAME in the current environment, and whose bounds are calculated
11619 from NAME according to the GNAT range encoding conventions.
11620 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11621 corresponding range type from debug information; fall back to using it
11622 if symbol lookup fails. If a new type must be created, allocate it
11623 like ORIG_TYPE was. The bounds information, in general, is encoded
11624 in NAME, the base type given in the named range type. */
11625
11626 static struct type *
11627 to_fixed_range_type (struct type *raw_type, struct value *dval)
11628 {
11629 const char *name;
11630 struct type *base_type;
11631 const char *subtype_info;
11632
11633 gdb_assert (raw_type != NULL);
11634 gdb_assert (TYPE_NAME (raw_type) != NULL);
11635
11636 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11637 base_type = TYPE_TARGET_TYPE (raw_type);
11638 else
11639 base_type = raw_type;
11640
11641 name = TYPE_NAME (raw_type);
11642 subtype_info = strstr (name, "___XD");
11643 if (subtype_info == NULL)
11644 {
11645 LONGEST L = ada_discrete_type_low_bound (raw_type);
11646 LONGEST U = ada_discrete_type_high_bound (raw_type);
11647
11648 if (L < INT_MIN || U > INT_MAX)
11649 return raw_type;
11650 else
11651 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11652 L, U);
11653 }
11654 else
11655 {
11656 static char *name_buf = NULL;
11657 static size_t name_len = 0;
11658 int prefix_len = subtype_info - name;
11659 LONGEST L, U;
11660 struct type *type;
11661 const char *bounds_str;
11662 int n;
11663
11664 GROW_VECT (name_buf, name_len, prefix_len + 5);
11665 strncpy (name_buf, name, prefix_len);
11666 name_buf[prefix_len] = '\0';
11667
11668 subtype_info += 5;
11669 bounds_str = strchr (subtype_info, '_');
11670 n = 1;
11671
11672 if (*subtype_info == 'L')
11673 {
11674 if (!ada_scan_number (bounds_str, n, &L, &n)
11675 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11676 return raw_type;
11677 if (bounds_str[n] == '_')
11678 n += 2;
11679 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11680 n += 1;
11681 subtype_info += 1;
11682 }
11683 else
11684 {
11685 strcpy (name_buf + prefix_len, "___L");
11686 if (!get_int_var_value (name_buf, L))
11687 {
11688 lim_warning (_("Unknown lower bound, using 1."));
11689 L = 1;
11690 }
11691 }
11692
11693 if (*subtype_info == 'U')
11694 {
11695 if (!ada_scan_number (bounds_str, n, &U, &n)
11696 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11697 return raw_type;
11698 }
11699 else
11700 {
11701 strcpy (name_buf + prefix_len, "___U");
11702 if (!get_int_var_value (name_buf, U))
11703 {
11704 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11705 U = L;
11706 }
11707 }
11708
11709 type = create_static_range_type (alloc_type_copy (raw_type),
11710 base_type, L, U);
11711 /* create_static_range_type alters the resulting type's length
11712 to match the size of the base_type, which is not what we want.
11713 Set it back to the original range type's length. */
11714 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11715 TYPE_NAME (type) = name;
11716 return type;
11717 }
11718 }
11719
11720 /* True iff NAME is the name of a range type. */
11721
11722 int
11723 ada_is_range_type_name (const char *name)
11724 {
11725 return (name != NULL && strstr (name, "___XD"));
11726 }
11727 \f
11728
11729 /* Modular types */
11730
11731 /* True iff TYPE is an Ada modular type. */
11732
11733 int
11734 ada_is_modular_type (struct type *type)
11735 {
11736 struct type *subranged_type = get_base_type (type);
11737
11738 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11739 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11740 && TYPE_UNSIGNED (subranged_type));
11741 }
11742
11743 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11744
11745 ULONGEST
11746 ada_modulus (struct type *type)
11747 {
11748 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11749 }
11750 \f
11751
11752 /* Ada exception catchpoint support:
11753 ---------------------------------
11754
11755 We support 3 kinds of exception catchpoints:
11756 . catchpoints on Ada exceptions
11757 . catchpoints on unhandled Ada exceptions
11758 . catchpoints on failed assertions
11759
11760 Exceptions raised during failed assertions, or unhandled exceptions
11761 could perfectly be caught with the general catchpoint on Ada exceptions.
11762 However, we can easily differentiate these two special cases, and having
11763 the option to distinguish these two cases from the rest can be useful
11764 to zero-in on certain situations.
11765
11766 Exception catchpoints are a specialized form of breakpoint,
11767 since they rely on inserting breakpoints inside known routines
11768 of the GNAT runtime. The implementation therefore uses a standard
11769 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11770 of breakpoint_ops.
11771
11772 Support in the runtime for exception catchpoints have been changed
11773 a few times already, and these changes affect the implementation
11774 of these catchpoints. In order to be able to support several
11775 variants of the runtime, we use a sniffer that will determine
11776 the runtime variant used by the program being debugged. */
11777
11778 /* Ada's standard exceptions.
11779
11780 The Ada 83 standard also defined Numeric_Error. But there so many
11781 situations where it was unclear from the Ada 83 Reference Manual
11782 (RM) whether Constraint_Error or Numeric_Error should be raised,
11783 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11784 Interpretation saying that anytime the RM says that Numeric_Error
11785 should be raised, the implementation may raise Constraint_Error.
11786 Ada 95 went one step further and pretty much removed Numeric_Error
11787 from the list of standard exceptions (it made it a renaming of
11788 Constraint_Error, to help preserve compatibility when compiling
11789 an Ada83 compiler). As such, we do not include Numeric_Error from
11790 this list of standard exceptions. */
11791
11792 static const char *standard_exc[] = {
11793 "constraint_error",
11794 "program_error",
11795 "storage_error",
11796 "tasking_error"
11797 };
11798
11799 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11800
11801 /* A structure that describes how to support exception catchpoints
11802 for a given executable. */
11803
11804 struct exception_support_info
11805 {
11806 /* The name of the symbol to break on in order to insert
11807 a catchpoint on exceptions. */
11808 const char *catch_exception_sym;
11809
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on unhandled exceptions. */
11812 const char *catch_exception_unhandled_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on failed assertions. */
11816 const char *catch_assert_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on exception handling. */
11820 const char *catch_handlers_sym;
11821
11822 /* Assuming that the inferior just triggered an unhandled exception
11823 catchpoint, this function is responsible for returning the address
11824 in inferior memory where the name of that exception is stored.
11825 Return zero if the address could not be computed. */
11826 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11827 };
11828
11829 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11830 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11831
11832 /* The following exception support info structure describes how to
11833 implement exception catchpoints with the latest version of the
11834 Ada runtime (as of 2019-08-??). */
11835
11836 static const struct exception_support_info default_exception_support_info =
11837 {
11838 "__gnat_debug_raise_exception", /* catch_exception_sym */
11839 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11840 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11841 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11842 ada_unhandled_exception_name_addr
11843 };
11844
11845 /* The following exception support info structure describes how to
11846 implement exception catchpoints with an earlier version of the
11847 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11848
11849 static const struct exception_support_info exception_support_info_v0 =
11850 {
11851 "__gnat_debug_raise_exception", /* catch_exception_sym */
11852 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11853 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11854 "__gnat_begin_handler", /* catch_handlers_sym */
11855 ada_unhandled_exception_name_addr
11856 };
11857
11858 /* The following exception support info structure describes how to
11859 implement exception catchpoints with a slightly older version
11860 of the Ada runtime. */
11861
11862 static const struct exception_support_info exception_support_info_fallback =
11863 {
11864 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11865 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11866 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11867 "__gnat_begin_handler", /* catch_handlers_sym */
11868 ada_unhandled_exception_name_addr_from_raise
11869 };
11870
11871 /* Return nonzero if we can detect the exception support routines
11872 described in EINFO.
11873
11874 This function errors out if an abnormal situation is detected
11875 (for instance, if we find the exception support routines, but
11876 that support is found to be incomplete). */
11877
11878 static int
11879 ada_has_this_exception_support (const struct exception_support_info *einfo)
11880 {
11881 struct symbol *sym;
11882
11883 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11884 that should be compiled with debugging information. As a result, we
11885 expect to find that symbol in the symtabs. */
11886
11887 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11888 if (sym == NULL)
11889 {
11890 /* Perhaps we did not find our symbol because the Ada runtime was
11891 compiled without debugging info, or simply stripped of it.
11892 It happens on some GNU/Linux distributions for instance, where
11893 users have to install a separate debug package in order to get
11894 the runtime's debugging info. In that situation, let the user
11895 know why we cannot insert an Ada exception catchpoint.
11896
11897 Note: Just for the purpose of inserting our Ada exception
11898 catchpoint, we could rely purely on the associated minimal symbol.
11899 But we would be operating in degraded mode anyway, since we are
11900 still lacking the debugging info needed later on to extract
11901 the name of the exception being raised (this name is printed in
11902 the catchpoint message, and is also used when trying to catch
11903 a specific exception). We do not handle this case for now. */
11904 struct bound_minimal_symbol msym
11905 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11906
11907 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11908 error (_("Your Ada runtime appears to be missing some debugging "
11909 "information.\nCannot insert Ada exception catchpoint "
11910 "in this configuration."));
11911
11912 return 0;
11913 }
11914
11915 /* Make sure that the symbol we found corresponds to a function. */
11916
11917 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11918 {
11919 error (_("Symbol \"%s\" is not a function (class = %d)"),
11920 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11921 return 0;
11922 }
11923
11924 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11925 if (sym == NULL)
11926 {
11927 struct bound_minimal_symbol msym
11928 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11929
11930 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11931 error (_("Your Ada runtime appears to be missing some debugging "
11932 "information.\nCannot insert Ada exception catchpoint "
11933 "in this configuration."));
11934
11935 return 0;
11936 }
11937
11938 /* Make sure that the symbol we found corresponds to a function. */
11939
11940 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11941 {
11942 error (_("Symbol \"%s\" is not a function (class = %d)"),
11943 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11944 return 0;
11945 }
11946
11947 return 1;
11948 }
11949
11950 /* Inspect the Ada runtime and determine which exception info structure
11951 should be used to provide support for exception catchpoints.
11952
11953 This function will always set the per-inferior exception_info,
11954 or raise an error. */
11955
11956 static void
11957 ada_exception_support_info_sniffer (void)
11958 {
11959 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11960
11961 /* If the exception info is already known, then no need to recompute it. */
11962 if (data->exception_info != NULL)
11963 return;
11964
11965 /* Check the latest (default) exception support info. */
11966 if (ada_has_this_exception_support (&default_exception_support_info))
11967 {
11968 data->exception_info = &default_exception_support_info;
11969 return;
11970 }
11971
11972 /* Try the v0 exception suport info. */
11973 if (ada_has_this_exception_support (&exception_support_info_v0))
11974 {
11975 data->exception_info = &exception_support_info_v0;
11976 return;
11977 }
11978
11979 /* Try our fallback exception suport info. */
11980 if (ada_has_this_exception_support (&exception_support_info_fallback))
11981 {
11982 data->exception_info = &exception_support_info_fallback;
11983 return;
11984 }
11985
11986 /* Sometimes, it is normal for us to not be able to find the routine
11987 we are looking for. This happens when the program is linked with
11988 the shared version of the GNAT runtime, and the program has not been
11989 started yet. Inform the user of these two possible causes if
11990 applicable. */
11991
11992 if (ada_update_initial_language (language_unknown) != language_ada)
11993 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11994
11995 /* If the symbol does not exist, then check that the program is
11996 already started, to make sure that shared libraries have been
11997 loaded. If it is not started, this may mean that the symbol is
11998 in a shared library. */
11999
12000 if (inferior_ptid.pid () == 0)
12001 error (_("Unable to insert catchpoint. Try to start the program first."));
12002
12003 /* At this point, we know that we are debugging an Ada program and
12004 that the inferior has been started, but we still are not able to
12005 find the run-time symbols. That can mean that we are in
12006 configurable run time mode, or that a-except as been optimized
12007 out by the linker... In any case, at this point it is not worth
12008 supporting this feature. */
12009
12010 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12011 }
12012
12013 /* True iff FRAME is very likely to be that of a function that is
12014 part of the runtime system. This is all very heuristic, but is
12015 intended to be used as advice as to what frames are uninteresting
12016 to most users. */
12017
12018 static int
12019 is_known_support_routine (struct frame_info *frame)
12020 {
12021 enum language func_lang;
12022 int i;
12023 const char *fullname;
12024
12025 /* If this code does not have any debugging information (no symtab),
12026 This cannot be any user code. */
12027
12028 symtab_and_line sal = find_frame_sal (frame);
12029 if (sal.symtab == NULL)
12030 return 1;
12031
12032 /* If there is a symtab, but the associated source file cannot be
12033 located, then assume this is not user code: Selecting a frame
12034 for which we cannot display the code would not be very helpful
12035 for the user. This should also take care of case such as VxWorks
12036 where the kernel has some debugging info provided for a few units. */
12037
12038 fullname = symtab_to_fullname (sal.symtab);
12039 if (access (fullname, R_OK) != 0)
12040 return 1;
12041
12042 /* Check the unit filename against the Ada runtime file naming.
12043 We also check the name of the objfile against the name of some
12044 known system libraries that sometimes come with debugging info
12045 too. */
12046
12047 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12048 {
12049 re_comp (known_runtime_file_name_patterns[i]);
12050 if (re_exec (lbasename (sal.symtab->filename)))
12051 return 1;
12052 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12053 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12054 return 1;
12055 }
12056
12057 /* Check whether the function is a GNAT-generated entity. */
12058
12059 gdb::unique_xmalloc_ptr<char> func_name
12060 = find_frame_funname (frame, &func_lang, NULL);
12061 if (func_name == NULL)
12062 return 1;
12063
12064 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12065 {
12066 re_comp (known_auxiliary_function_name_patterns[i]);
12067 if (re_exec (func_name.get ()))
12068 return 1;
12069 }
12070
12071 return 0;
12072 }
12073
12074 /* Find the first frame that contains debugging information and that is not
12075 part of the Ada run-time, starting from FI and moving upward. */
12076
12077 void
12078 ada_find_printable_frame (struct frame_info *fi)
12079 {
12080 for (; fi != NULL; fi = get_prev_frame (fi))
12081 {
12082 if (!is_known_support_routine (fi))
12083 {
12084 select_frame (fi);
12085 break;
12086 }
12087 }
12088
12089 }
12090
12091 /* Assuming that the inferior just triggered an unhandled exception
12092 catchpoint, return the address in inferior memory where the name
12093 of the exception is stored.
12094
12095 Return zero if the address could not be computed. */
12096
12097 static CORE_ADDR
12098 ada_unhandled_exception_name_addr (void)
12099 {
12100 return parse_and_eval_address ("e.full_name");
12101 }
12102
12103 /* Same as ada_unhandled_exception_name_addr, except that this function
12104 should be used when the inferior uses an older version of the runtime,
12105 where the exception name needs to be extracted from a specific frame
12106 several frames up in the callstack. */
12107
12108 static CORE_ADDR
12109 ada_unhandled_exception_name_addr_from_raise (void)
12110 {
12111 int frame_level;
12112 struct frame_info *fi;
12113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12114
12115 /* To determine the name of this exception, we need to select
12116 the frame corresponding to RAISE_SYM_NAME. This frame is
12117 at least 3 levels up, so we simply skip the first 3 frames
12118 without checking the name of their associated function. */
12119 fi = get_current_frame ();
12120 for (frame_level = 0; frame_level < 3; frame_level += 1)
12121 if (fi != NULL)
12122 fi = get_prev_frame (fi);
12123
12124 while (fi != NULL)
12125 {
12126 enum language func_lang;
12127
12128 gdb::unique_xmalloc_ptr<char> func_name
12129 = find_frame_funname (fi, &func_lang, NULL);
12130 if (func_name != NULL)
12131 {
12132 if (strcmp (func_name.get (),
12133 data->exception_info->catch_exception_sym) == 0)
12134 break; /* We found the frame we were looking for... */
12135 }
12136 fi = get_prev_frame (fi);
12137 }
12138
12139 if (fi == NULL)
12140 return 0;
12141
12142 select_frame (fi);
12143 return parse_and_eval_address ("id.full_name");
12144 }
12145
12146 /* Assuming the inferior just triggered an Ada exception catchpoint
12147 (of any type), return the address in inferior memory where the name
12148 of the exception is stored, if applicable.
12149
12150 Assumes the selected frame is the current frame.
12151
12152 Return zero if the address could not be computed, or if not relevant. */
12153
12154 static CORE_ADDR
12155 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12156 struct breakpoint *b)
12157 {
12158 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12159
12160 switch (ex)
12161 {
12162 case ada_catch_exception:
12163 return (parse_and_eval_address ("e.full_name"));
12164 break;
12165
12166 case ada_catch_exception_unhandled:
12167 return data->exception_info->unhandled_exception_name_addr ();
12168 break;
12169
12170 case ada_catch_handlers:
12171 return 0; /* The runtimes does not provide access to the exception
12172 name. */
12173 break;
12174
12175 case ada_catch_assert:
12176 return 0; /* Exception name is not relevant in this case. */
12177 break;
12178
12179 default:
12180 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12181 break;
12182 }
12183
12184 return 0; /* Should never be reached. */
12185 }
12186
12187 /* Assuming the inferior is stopped at an exception catchpoint,
12188 return the message which was associated to the exception, if
12189 available. Return NULL if the message could not be retrieved.
12190
12191 Note: The exception message can be associated to an exception
12192 either through the use of the Raise_Exception function, or
12193 more simply (Ada 2005 and later), via:
12194
12195 raise Exception_Name with "exception message";
12196
12197 */
12198
12199 static gdb::unique_xmalloc_ptr<char>
12200 ada_exception_message_1 (void)
12201 {
12202 struct value *e_msg_val;
12203 int e_msg_len;
12204
12205 /* For runtimes that support this feature, the exception message
12206 is passed as an unbounded string argument called "message". */
12207 e_msg_val = parse_and_eval ("message");
12208 if (e_msg_val == NULL)
12209 return NULL; /* Exception message not supported. */
12210
12211 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12212 gdb_assert (e_msg_val != NULL);
12213 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12214
12215 /* If the message string is empty, then treat it as if there was
12216 no exception message. */
12217 if (e_msg_len <= 0)
12218 return NULL;
12219
12220 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12221 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12222 e_msg.get ()[e_msg_len] = '\0';
12223
12224 return e_msg;
12225 }
12226
12227 /* Same as ada_exception_message_1, except that all exceptions are
12228 contained here (returning NULL instead). */
12229
12230 static gdb::unique_xmalloc_ptr<char>
12231 ada_exception_message (void)
12232 {
12233 gdb::unique_xmalloc_ptr<char> e_msg;
12234
12235 try
12236 {
12237 e_msg = ada_exception_message_1 ();
12238 }
12239 catch (const gdb_exception_error &e)
12240 {
12241 e_msg.reset (nullptr);
12242 }
12243
12244 return e_msg;
12245 }
12246
12247 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12248 any error that ada_exception_name_addr_1 might cause to be thrown.
12249 When an error is intercepted, a warning with the error message is printed,
12250 and zero is returned. */
12251
12252 static CORE_ADDR
12253 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12254 struct breakpoint *b)
12255 {
12256 CORE_ADDR result = 0;
12257
12258 try
12259 {
12260 result = ada_exception_name_addr_1 (ex, b);
12261 }
12262
12263 catch (const gdb_exception_error &e)
12264 {
12265 warning (_("failed to get exception name: %s"), e.what ());
12266 return 0;
12267 }
12268
12269 return result;
12270 }
12271
12272 static std::string ada_exception_catchpoint_cond_string
12273 (const char *excep_string,
12274 enum ada_exception_catchpoint_kind ex);
12275
12276 /* Ada catchpoints.
12277
12278 In the case of catchpoints on Ada exceptions, the catchpoint will
12279 stop the target on every exception the program throws. When a user
12280 specifies the name of a specific exception, we translate this
12281 request into a condition expression (in text form), and then parse
12282 it into an expression stored in each of the catchpoint's locations.
12283 We then use this condition to check whether the exception that was
12284 raised is the one the user is interested in. If not, then the
12285 target is resumed again. We store the name of the requested
12286 exception, in order to be able to re-set the condition expression
12287 when symbols change. */
12288
12289 /* An instance of this type is used to represent an Ada catchpoint
12290 breakpoint location. */
12291
12292 class ada_catchpoint_location : public bp_location
12293 {
12294 public:
12295 ada_catchpoint_location (breakpoint *owner)
12296 : bp_location (owner, bp_loc_software_breakpoint)
12297 {}
12298
12299 /* The condition that checks whether the exception that was raised
12300 is the specific exception the user specified on catchpoint
12301 creation. */
12302 expression_up excep_cond_expr;
12303 };
12304
12305 /* An instance of this type is used to represent an Ada catchpoint. */
12306
12307 struct ada_catchpoint : public breakpoint
12308 {
12309 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12310 : m_kind (kind)
12311 {
12312 }
12313
12314 /* The name of the specific exception the user specified. */
12315 std::string excep_string;
12316
12317 /* What kind of catchpoint this is. */
12318 enum ada_exception_catchpoint_kind m_kind;
12319 };
12320
12321 /* Parse the exception condition string in the context of each of the
12322 catchpoint's locations, and store them for later evaluation. */
12323
12324 static void
12325 create_excep_cond_exprs (struct ada_catchpoint *c,
12326 enum ada_exception_catchpoint_kind ex)
12327 {
12328 struct bp_location *bl;
12329
12330 /* Nothing to do if there's no specific exception to catch. */
12331 if (c->excep_string.empty ())
12332 return;
12333
12334 /* Same if there are no locations... */
12335 if (c->loc == NULL)
12336 return;
12337
12338 /* Compute the condition expression in text form, from the specific
12339 expection we want to catch. */
12340 std::string cond_string
12341 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12342
12343 /* Iterate over all the catchpoint's locations, and parse an
12344 expression for each. */
12345 for (bl = c->loc; bl != NULL; bl = bl->next)
12346 {
12347 struct ada_catchpoint_location *ada_loc
12348 = (struct ada_catchpoint_location *) bl;
12349 expression_up exp;
12350
12351 if (!bl->shlib_disabled)
12352 {
12353 const char *s;
12354
12355 s = cond_string.c_str ();
12356 try
12357 {
12358 exp = parse_exp_1 (&s, bl->address,
12359 block_for_pc (bl->address),
12360 0);
12361 }
12362 catch (const gdb_exception_error &e)
12363 {
12364 warning (_("failed to reevaluate internal exception condition "
12365 "for catchpoint %d: %s"),
12366 c->number, e.what ());
12367 }
12368 }
12369
12370 ada_loc->excep_cond_expr = std::move (exp);
12371 }
12372 }
12373
12374 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12375 structure for all exception catchpoint kinds. */
12376
12377 static struct bp_location *
12378 allocate_location_exception (struct breakpoint *self)
12379 {
12380 return new ada_catchpoint_location (self);
12381 }
12382
12383 /* Implement the RE_SET method in the breakpoint_ops structure for all
12384 exception catchpoint kinds. */
12385
12386 static void
12387 re_set_exception (struct breakpoint *b)
12388 {
12389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12390
12391 /* Call the base class's method. This updates the catchpoint's
12392 locations. */
12393 bkpt_breakpoint_ops.re_set (b);
12394
12395 /* Reparse the exception conditional expressions. One for each
12396 location. */
12397 create_excep_cond_exprs (c, c->m_kind);
12398 }
12399
12400 /* Returns true if we should stop for this breakpoint hit. If the
12401 user specified a specific exception, we only want to cause a stop
12402 if the program thrown that exception. */
12403
12404 static int
12405 should_stop_exception (const struct bp_location *bl)
12406 {
12407 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12408 const struct ada_catchpoint_location *ada_loc
12409 = (const struct ada_catchpoint_location *) bl;
12410 int stop;
12411
12412 struct internalvar *var = lookup_internalvar ("_ada_exception");
12413 if (c->m_kind == ada_catch_assert)
12414 clear_internalvar (var);
12415 else
12416 {
12417 try
12418 {
12419 const char *expr;
12420
12421 if (c->m_kind == ada_catch_handlers)
12422 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12423 ".all.occurrence.id");
12424 else
12425 expr = "e";
12426
12427 struct value *exc = parse_and_eval (expr);
12428 set_internalvar (var, exc);
12429 }
12430 catch (const gdb_exception_error &ex)
12431 {
12432 clear_internalvar (var);
12433 }
12434 }
12435
12436 /* With no specific exception, should always stop. */
12437 if (c->excep_string.empty ())
12438 return 1;
12439
12440 if (ada_loc->excep_cond_expr == NULL)
12441 {
12442 /* We will have a NULL expression if back when we were creating
12443 the expressions, this location's had failed to parse. */
12444 return 1;
12445 }
12446
12447 stop = 1;
12448 try
12449 {
12450 struct value *mark;
12451
12452 mark = value_mark ();
12453 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12454 value_free_to_mark (mark);
12455 }
12456 catch (const gdb_exception &ex)
12457 {
12458 exception_fprintf (gdb_stderr, ex,
12459 _("Error in testing exception condition:\n"));
12460 }
12461
12462 return stop;
12463 }
12464
12465 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12466 for all exception catchpoint kinds. */
12467
12468 static void
12469 check_status_exception (bpstat bs)
12470 {
12471 bs->stop = should_stop_exception (bs->bp_location_at);
12472 }
12473
12474 /* Implement the PRINT_IT method in the breakpoint_ops structure
12475 for all exception catchpoint kinds. */
12476
12477 static enum print_stop_action
12478 print_it_exception (bpstat bs)
12479 {
12480 struct ui_out *uiout = current_uiout;
12481 struct breakpoint *b = bs->breakpoint_at;
12482
12483 annotate_catchpoint (b->number);
12484
12485 if (uiout->is_mi_like_p ())
12486 {
12487 uiout->field_string ("reason",
12488 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12489 uiout->field_string ("disp", bpdisp_text (b->disposition));
12490 }
12491
12492 uiout->text (b->disposition == disp_del
12493 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12494 uiout->field_signed ("bkptno", b->number);
12495 uiout->text (", ");
12496
12497 /* ada_exception_name_addr relies on the selected frame being the
12498 current frame. Need to do this here because this function may be
12499 called more than once when printing a stop, and below, we'll
12500 select the first frame past the Ada run-time (see
12501 ada_find_printable_frame). */
12502 select_frame (get_current_frame ());
12503
12504 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12505 switch (c->m_kind)
12506 {
12507 case ada_catch_exception:
12508 case ada_catch_exception_unhandled:
12509 case ada_catch_handlers:
12510 {
12511 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12512 char exception_name[256];
12513
12514 if (addr != 0)
12515 {
12516 read_memory (addr, (gdb_byte *) exception_name,
12517 sizeof (exception_name) - 1);
12518 exception_name [sizeof (exception_name) - 1] = '\0';
12519 }
12520 else
12521 {
12522 /* For some reason, we were unable to read the exception
12523 name. This could happen if the Runtime was compiled
12524 without debugging info, for instance. In that case,
12525 just replace the exception name by the generic string
12526 "exception" - it will read as "an exception" in the
12527 notification we are about to print. */
12528 memcpy (exception_name, "exception", sizeof ("exception"));
12529 }
12530 /* In the case of unhandled exception breakpoints, we print
12531 the exception name as "unhandled EXCEPTION_NAME", to make
12532 it clearer to the user which kind of catchpoint just got
12533 hit. We used ui_out_text to make sure that this extra
12534 info does not pollute the exception name in the MI case. */
12535 if (c->m_kind == ada_catch_exception_unhandled)
12536 uiout->text ("unhandled ");
12537 uiout->field_string ("exception-name", exception_name);
12538 }
12539 break;
12540 case ada_catch_assert:
12541 /* In this case, the name of the exception is not really
12542 important. Just print "failed assertion" to make it clearer
12543 that his program just hit an assertion-failure catchpoint.
12544 We used ui_out_text because this info does not belong in
12545 the MI output. */
12546 uiout->text ("failed assertion");
12547 break;
12548 }
12549
12550 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12551 if (exception_message != NULL)
12552 {
12553 uiout->text (" (");
12554 uiout->field_string ("exception-message", exception_message.get ());
12555 uiout->text (")");
12556 }
12557
12558 uiout->text (" at ");
12559 ada_find_printable_frame (get_current_frame ());
12560
12561 return PRINT_SRC_AND_LOC;
12562 }
12563
12564 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static void
12568 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12569 {
12570 struct ui_out *uiout = current_uiout;
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12572 struct value_print_options opts;
12573
12574 get_user_print_options (&opts);
12575
12576 if (opts.addressprint)
12577 uiout->field_skip ("addr");
12578
12579 annotate_field (5);
12580 switch (c->m_kind)
12581 {
12582 case ada_catch_exception:
12583 if (!c->excep_string.empty ())
12584 {
12585 std::string msg = string_printf (_("`%s' Ada exception"),
12586 c->excep_string.c_str ());
12587
12588 uiout->field_string ("what", msg);
12589 }
12590 else
12591 uiout->field_string ("what", "all Ada exceptions");
12592
12593 break;
12594
12595 case ada_catch_exception_unhandled:
12596 uiout->field_string ("what", "unhandled Ada exceptions");
12597 break;
12598
12599 case ada_catch_handlers:
12600 if (!c->excep_string.empty ())
12601 {
12602 uiout->field_fmt ("what",
12603 _("`%s' Ada exception handlers"),
12604 c->excep_string.c_str ());
12605 }
12606 else
12607 uiout->field_string ("what", "all Ada exceptions handlers");
12608 break;
12609
12610 case ada_catch_assert:
12611 uiout->field_string ("what", "failed Ada assertions");
12612 break;
12613
12614 default:
12615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12616 break;
12617 }
12618 }
12619
12620 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623 static void
12624 print_mention_exception (struct breakpoint *b)
12625 {
12626 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12627 struct ui_out *uiout = current_uiout;
12628
12629 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12630 : _("Catchpoint "));
12631 uiout->field_signed ("bkptno", b->number);
12632 uiout->text (": ");
12633
12634 switch (c->m_kind)
12635 {
12636 case ada_catch_exception:
12637 if (!c->excep_string.empty ())
12638 {
12639 std::string info = string_printf (_("`%s' Ada exception"),
12640 c->excep_string.c_str ());
12641 uiout->text (info.c_str ());
12642 }
12643 else
12644 uiout->text (_("all Ada exceptions"));
12645 break;
12646
12647 case ada_catch_exception_unhandled:
12648 uiout->text (_("unhandled Ada exceptions"));
12649 break;
12650
12651 case ada_catch_handlers:
12652 if (!c->excep_string.empty ())
12653 {
12654 std::string info
12655 = string_printf (_("`%s' Ada exception handlers"),
12656 c->excep_string.c_str ());
12657 uiout->text (info.c_str ());
12658 }
12659 else
12660 uiout->text (_("all Ada exceptions handlers"));
12661 break;
12662
12663 case ada_catch_assert:
12664 uiout->text (_("failed Ada assertions"));
12665 break;
12666
12667 default:
12668 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12669 break;
12670 }
12671 }
12672
12673 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12674 for all exception catchpoint kinds. */
12675
12676 static void
12677 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12678 {
12679 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12680
12681 switch (c->m_kind)
12682 {
12683 case ada_catch_exception:
12684 fprintf_filtered (fp, "catch exception");
12685 if (!c->excep_string.empty ())
12686 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12687 break;
12688
12689 case ada_catch_exception_unhandled:
12690 fprintf_filtered (fp, "catch exception unhandled");
12691 break;
12692
12693 case ada_catch_handlers:
12694 fprintf_filtered (fp, "catch handlers");
12695 break;
12696
12697 case ada_catch_assert:
12698 fprintf_filtered (fp, "catch assert");
12699 break;
12700
12701 default:
12702 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12703 }
12704 print_recreate_thread (b, fp);
12705 }
12706
12707 /* Virtual tables for various breakpoint types. */
12708 static struct breakpoint_ops catch_exception_breakpoint_ops;
12709 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12710 static struct breakpoint_ops catch_assert_breakpoint_ops;
12711 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12712
12713 /* See ada-lang.h. */
12714
12715 bool
12716 is_ada_exception_catchpoint (breakpoint *bp)
12717 {
12718 return (bp->ops == &catch_exception_breakpoint_ops
12719 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12720 || bp->ops == &catch_assert_breakpoint_ops
12721 || bp->ops == &catch_handlers_breakpoint_ops);
12722 }
12723
12724 /* Split the arguments specified in a "catch exception" command.
12725 Set EX to the appropriate catchpoint type.
12726 Set EXCEP_STRING to the name of the specific exception if
12727 specified by the user.
12728 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12729 "catch handlers" command. False otherwise.
12730 If a condition is found at the end of the arguments, the condition
12731 expression is stored in COND_STRING (memory must be deallocated
12732 after use). Otherwise COND_STRING is set to NULL. */
12733
12734 static void
12735 catch_ada_exception_command_split (const char *args,
12736 bool is_catch_handlers_cmd,
12737 enum ada_exception_catchpoint_kind *ex,
12738 std::string *excep_string,
12739 std::string *cond_string)
12740 {
12741 std::string exception_name;
12742
12743 exception_name = extract_arg (&args);
12744 if (exception_name == "if")
12745 {
12746 /* This is not an exception name; this is the start of a condition
12747 expression for a catchpoint on all exceptions. So, "un-get"
12748 this token, and set exception_name to NULL. */
12749 exception_name.clear ();
12750 args -= 2;
12751 }
12752
12753 /* Check to see if we have a condition. */
12754
12755 args = skip_spaces (args);
12756 if (startswith (args, "if")
12757 && (isspace (args[2]) || args[2] == '\0'))
12758 {
12759 args += 2;
12760 args = skip_spaces (args);
12761
12762 if (args[0] == '\0')
12763 error (_("Condition missing after `if' keyword"));
12764 *cond_string = args;
12765
12766 args += strlen (args);
12767 }
12768
12769 /* Check that we do not have any more arguments. Anything else
12770 is unexpected. */
12771
12772 if (args[0] != '\0')
12773 error (_("Junk at end of expression"));
12774
12775 if (is_catch_handlers_cmd)
12776 {
12777 /* Catch handling of exceptions. */
12778 *ex = ada_catch_handlers;
12779 *excep_string = exception_name;
12780 }
12781 else if (exception_name.empty ())
12782 {
12783 /* Catch all exceptions. */
12784 *ex = ada_catch_exception;
12785 excep_string->clear ();
12786 }
12787 else if (exception_name == "unhandled")
12788 {
12789 /* Catch unhandled exceptions. */
12790 *ex = ada_catch_exception_unhandled;
12791 excep_string->clear ();
12792 }
12793 else
12794 {
12795 /* Catch a specific exception. */
12796 *ex = ada_catch_exception;
12797 *excep_string = exception_name;
12798 }
12799 }
12800
12801 /* Return the name of the symbol on which we should break in order to
12802 implement a catchpoint of the EX kind. */
12803
12804 static const char *
12805 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12806 {
12807 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12808
12809 gdb_assert (data->exception_info != NULL);
12810
12811 switch (ex)
12812 {
12813 case ada_catch_exception:
12814 return (data->exception_info->catch_exception_sym);
12815 break;
12816 case ada_catch_exception_unhandled:
12817 return (data->exception_info->catch_exception_unhandled_sym);
12818 break;
12819 case ada_catch_assert:
12820 return (data->exception_info->catch_assert_sym);
12821 break;
12822 case ada_catch_handlers:
12823 return (data->exception_info->catch_handlers_sym);
12824 break;
12825 default:
12826 internal_error (__FILE__, __LINE__,
12827 _("unexpected catchpoint kind (%d)"), ex);
12828 }
12829 }
12830
12831 /* Return the breakpoint ops "virtual table" used for catchpoints
12832 of the EX kind. */
12833
12834 static const struct breakpoint_ops *
12835 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12836 {
12837 switch (ex)
12838 {
12839 case ada_catch_exception:
12840 return (&catch_exception_breakpoint_ops);
12841 break;
12842 case ada_catch_exception_unhandled:
12843 return (&catch_exception_unhandled_breakpoint_ops);
12844 break;
12845 case ada_catch_assert:
12846 return (&catch_assert_breakpoint_ops);
12847 break;
12848 case ada_catch_handlers:
12849 return (&catch_handlers_breakpoint_ops);
12850 break;
12851 default:
12852 internal_error (__FILE__, __LINE__,
12853 _("unexpected catchpoint kind (%d)"), ex);
12854 }
12855 }
12856
12857 /* Return the condition that will be used to match the current exception
12858 being raised with the exception that the user wants to catch. This
12859 assumes that this condition is used when the inferior just triggered
12860 an exception catchpoint.
12861 EX: the type of catchpoints used for catching Ada exceptions. */
12862
12863 static std::string
12864 ada_exception_catchpoint_cond_string (const char *excep_string,
12865 enum ada_exception_catchpoint_kind ex)
12866 {
12867 int i;
12868 bool is_standard_exc = false;
12869 std::string result;
12870
12871 if (ex == ada_catch_handlers)
12872 {
12873 /* For exception handlers catchpoints, the condition string does
12874 not use the same parameter as for the other exceptions. */
12875 result = ("long_integer (GNAT_GCC_exception_Access"
12876 "(gcc_exception).all.occurrence.id)");
12877 }
12878 else
12879 result = "long_integer (e)";
12880
12881 /* The standard exceptions are a special case. They are defined in
12882 runtime units that have been compiled without debugging info; if
12883 EXCEP_STRING is the not-fully-qualified name of a standard
12884 exception (e.g. "constraint_error") then, during the evaluation
12885 of the condition expression, the symbol lookup on this name would
12886 *not* return this standard exception. The catchpoint condition
12887 may then be set only on user-defined exceptions which have the
12888 same not-fully-qualified name (e.g. my_package.constraint_error).
12889
12890 To avoid this unexcepted behavior, these standard exceptions are
12891 systematically prefixed by "standard". This means that "catch
12892 exception constraint_error" is rewritten into "catch exception
12893 standard.constraint_error".
12894
12895 If an exception named constraint_error is defined in another package of
12896 the inferior program, then the only way to specify this exception as a
12897 breakpoint condition is to use its fully-qualified named:
12898 e.g. my_package.constraint_error. */
12899
12900 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12901 {
12902 if (strcmp (standard_exc [i], excep_string) == 0)
12903 {
12904 is_standard_exc = true;
12905 break;
12906 }
12907 }
12908
12909 result += " = ";
12910
12911 if (is_standard_exc)
12912 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12913 else
12914 string_appendf (result, "long_integer (&%s)", excep_string);
12915
12916 return result;
12917 }
12918
12919 /* Return the symtab_and_line that should be used to insert an exception
12920 catchpoint of the TYPE kind.
12921
12922 ADDR_STRING returns the name of the function where the real
12923 breakpoint that implements the catchpoints is set, depending on the
12924 type of catchpoint we need to create. */
12925
12926 static struct symtab_and_line
12927 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12928 std::string *addr_string, const struct breakpoint_ops **ops)
12929 {
12930 const char *sym_name;
12931 struct symbol *sym;
12932
12933 /* First, find out which exception support info to use. */
12934 ada_exception_support_info_sniffer ();
12935
12936 /* Then lookup the function on which we will break in order to catch
12937 the Ada exceptions requested by the user. */
12938 sym_name = ada_exception_sym_name (ex);
12939 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12940
12941 if (sym == NULL)
12942 error (_("Catchpoint symbol not found: %s"), sym_name);
12943
12944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12945 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12946
12947 /* Set ADDR_STRING. */
12948 *addr_string = sym_name;
12949
12950 /* Set OPS. */
12951 *ops = ada_exception_breakpoint_ops (ex);
12952
12953 return find_function_start_sal (sym, 1);
12954 }
12955
12956 /* Create an Ada exception catchpoint.
12957
12958 EX_KIND is the kind of exception catchpoint to be created.
12959
12960 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12961 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12962 of the exception to which this catchpoint applies.
12963
12964 COND_STRING, if not empty, is the catchpoint condition.
12965
12966 TEMPFLAG, if nonzero, means that the underlying breakpoint
12967 should be temporary.
12968
12969 FROM_TTY is the usual argument passed to all commands implementations. */
12970
12971 void
12972 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12973 enum ada_exception_catchpoint_kind ex_kind,
12974 const std::string &excep_string,
12975 const std::string &cond_string,
12976 int tempflag,
12977 int disabled,
12978 int from_tty)
12979 {
12980 std::string addr_string;
12981 const struct breakpoint_ops *ops = NULL;
12982 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12983
12984 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12985 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12986 ops, tempflag, disabled, from_tty);
12987 c->excep_string = excep_string;
12988 create_excep_cond_exprs (c.get (), ex_kind);
12989 if (!cond_string.empty ())
12990 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12991 install_breakpoint (0, std::move (c), 1);
12992 }
12993
12994 /* Implement the "catch exception" command. */
12995
12996 static void
12997 catch_ada_exception_command (const char *arg_entry, int from_tty,
12998 struct cmd_list_element *command)
12999 {
13000 const char *arg = arg_entry;
13001 struct gdbarch *gdbarch = get_current_arch ();
13002 int tempflag;
13003 enum ada_exception_catchpoint_kind ex_kind;
13004 std::string excep_string;
13005 std::string cond_string;
13006
13007 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13008
13009 if (!arg)
13010 arg = "";
13011 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13012 &cond_string);
13013 create_ada_exception_catchpoint (gdbarch, ex_kind,
13014 excep_string, cond_string,
13015 tempflag, 1 /* enabled */,
13016 from_tty);
13017 }
13018
13019 /* Implement the "catch handlers" command. */
13020
13021 static void
13022 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13023 struct cmd_list_element *command)
13024 {
13025 const char *arg = arg_entry;
13026 struct gdbarch *gdbarch = get_current_arch ();
13027 int tempflag;
13028 enum ada_exception_catchpoint_kind ex_kind;
13029 std::string excep_string;
13030 std::string cond_string;
13031
13032 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13033
13034 if (!arg)
13035 arg = "";
13036 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13037 &cond_string);
13038 create_ada_exception_catchpoint (gdbarch, ex_kind,
13039 excep_string, cond_string,
13040 tempflag, 1 /* enabled */,
13041 from_tty);
13042 }
13043
13044 /* Completion function for the Ada "catch" commands. */
13045
13046 static void
13047 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13048 const char *text, const char *word)
13049 {
13050 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13051
13052 for (const ada_exc_info &info : exceptions)
13053 {
13054 if (startswith (info.name, word))
13055 tracker.add_completion (make_unique_xstrdup (info.name));
13056 }
13057 }
13058
13059 /* Split the arguments specified in a "catch assert" command.
13060
13061 ARGS contains the command's arguments (or the empty string if
13062 no arguments were passed).
13063
13064 If ARGS contains a condition, set COND_STRING to that condition
13065 (the memory needs to be deallocated after use). */
13066
13067 static void
13068 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13069 {
13070 args = skip_spaces (args);
13071
13072 /* Check whether a condition was provided. */
13073 if (startswith (args, "if")
13074 && (isspace (args[2]) || args[2] == '\0'))
13075 {
13076 args += 2;
13077 args = skip_spaces (args);
13078 if (args[0] == '\0')
13079 error (_("condition missing after `if' keyword"));
13080 cond_string.assign (args);
13081 }
13082
13083 /* Otherwise, there should be no other argument at the end of
13084 the command. */
13085 else if (args[0] != '\0')
13086 error (_("Junk at end of arguments."));
13087 }
13088
13089 /* Implement the "catch assert" command. */
13090
13091 static void
13092 catch_assert_command (const char *arg_entry, int from_tty,
13093 struct cmd_list_element *command)
13094 {
13095 const char *arg = arg_entry;
13096 struct gdbarch *gdbarch = get_current_arch ();
13097 int tempflag;
13098 std::string cond_string;
13099
13100 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13101
13102 if (!arg)
13103 arg = "";
13104 catch_ada_assert_command_split (arg, cond_string);
13105 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13106 "", cond_string,
13107 tempflag, 1 /* enabled */,
13108 from_tty);
13109 }
13110
13111 /* Return non-zero if the symbol SYM is an Ada exception object. */
13112
13113 static int
13114 ada_is_exception_sym (struct symbol *sym)
13115 {
13116 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13117
13118 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13119 && SYMBOL_CLASS (sym) != LOC_BLOCK
13120 && SYMBOL_CLASS (sym) != LOC_CONST
13121 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13122 && type_name != NULL && strcmp (type_name, "exception") == 0);
13123 }
13124
13125 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13126 Ada exception object. This matches all exceptions except the ones
13127 defined by the Ada language. */
13128
13129 static int
13130 ada_is_non_standard_exception_sym (struct symbol *sym)
13131 {
13132 int i;
13133
13134 if (!ada_is_exception_sym (sym))
13135 return 0;
13136
13137 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13138 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13139 return 0; /* A standard exception. */
13140
13141 /* Numeric_Error is also a standard exception, so exclude it.
13142 See the STANDARD_EXC description for more details as to why
13143 this exception is not listed in that array. */
13144 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13145 return 0;
13146
13147 return 1;
13148 }
13149
13150 /* A helper function for std::sort, comparing two struct ada_exc_info
13151 objects.
13152
13153 The comparison is determined first by exception name, and then
13154 by exception address. */
13155
13156 bool
13157 ada_exc_info::operator< (const ada_exc_info &other) const
13158 {
13159 int result;
13160
13161 result = strcmp (name, other.name);
13162 if (result < 0)
13163 return true;
13164 if (result == 0 && addr < other.addr)
13165 return true;
13166 return false;
13167 }
13168
13169 bool
13170 ada_exc_info::operator== (const ada_exc_info &other) const
13171 {
13172 return addr == other.addr && strcmp (name, other.name) == 0;
13173 }
13174
13175 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13176 routine, but keeping the first SKIP elements untouched.
13177
13178 All duplicates are also removed. */
13179
13180 static void
13181 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13182 int skip)
13183 {
13184 std::sort (exceptions->begin () + skip, exceptions->end ());
13185 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13186 exceptions->end ());
13187 }
13188
13189 /* Add all exceptions defined by the Ada standard whose name match
13190 a regular expression.
13191
13192 If PREG is not NULL, then this regexp_t object is used to
13193 perform the symbol name matching. Otherwise, no name-based
13194 filtering is performed.
13195
13196 EXCEPTIONS is a vector of exceptions to which matching exceptions
13197 gets pushed. */
13198
13199 static void
13200 ada_add_standard_exceptions (compiled_regex *preg,
13201 std::vector<ada_exc_info> *exceptions)
13202 {
13203 int i;
13204
13205 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13206 {
13207 if (preg == NULL
13208 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13209 {
13210 struct bound_minimal_symbol msymbol
13211 = ada_lookup_simple_minsym (standard_exc[i]);
13212
13213 if (msymbol.minsym != NULL)
13214 {
13215 struct ada_exc_info info
13216 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13217
13218 exceptions->push_back (info);
13219 }
13220 }
13221 }
13222 }
13223
13224 /* Add all Ada exceptions defined locally and accessible from the given
13225 FRAME.
13226
13227 If PREG is not NULL, then this regexp_t object is used to
13228 perform the symbol name matching. Otherwise, no name-based
13229 filtering is performed.
13230
13231 EXCEPTIONS is a vector of exceptions to which matching exceptions
13232 gets pushed. */
13233
13234 static void
13235 ada_add_exceptions_from_frame (compiled_regex *preg,
13236 struct frame_info *frame,
13237 std::vector<ada_exc_info> *exceptions)
13238 {
13239 const struct block *block = get_frame_block (frame, 0);
13240
13241 while (block != 0)
13242 {
13243 struct block_iterator iter;
13244 struct symbol *sym;
13245
13246 ALL_BLOCK_SYMBOLS (block, iter, sym)
13247 {
13248 switch (SYMBOL_CLASS (sym))
13249 {
13250 case LOC_TYPEDEF:
13251 case LOC_BLOCK:
13252 case LOC_CONST:
13253 break;
13254 default:
13255 if (ada_is_exception_sym (sym))
13256 {
13257 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13258 SYMBOL_VALUE_ADDRESS (sym)};
13259
13260 exceptions->push_back (info);
13261 }
13262 }
13263 }
13264 if (BLOCK_FUNCTION (block) != NULL)
13265 break;
13266 block = BLOCK_SUPERBLOCK (block);
13267 }
13268 }
13269
13270 /* Return true if NAME matches PREG or if PREG is NULL. */
13271
13272 static bool
13273 name_matches_regex (const char *name, compiled_regex *preg)
13274 {
13275 return (preg == NULL
13276 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13277 }
13278
13279 /* Add all exceptions defined globally whose name name match
13280 a regular expression, excluding standard exceptions.
13281
13282 The reason we exclude standard exceptions is that they need
13283 to be handled separately: Standard exceptions are defined inside
13284 a runtime unit which is normally not compiled with debugging info,
13285 and thus usually do not show up in our symbol search. However,
13286 if the unit was in fact built with debugging info, we need to
13287 exclude them because they would duplicate the entry we found
13288 during the special loop that specifically searches for those
13289 standard exceptions.
13290
13291 If PREG is not NULL, then this regexp_t object is used to
13292 perform the symbol name matching. Otherwise, no name-based
13293 filtering is performed.
13294
13295 EXCEPTIONS is a vector of exceptions to which matching exceptions
13296 gets pushed. */
13297
13298 static void
13299 ada_add_global_exceptions (compiled_regex *preg,
13300 std::vector<ada_exc_info> *exceptions)
13301 {
13302 /* In Ada, the symbol "search name" is a linkage name, whereas the
13303 regular expression used to do the matching refers to the natural
13304 name. So match against the decoded name. */
13305 expand_symtabs_matching (NULL,
13306 lookup_name_info::match_any (),
13307 [&] (const char *search_name)
13308 {
13309 std::string decoded = ada_decode (search_name);
13310 return name_matches_regex (decoded.c_str (), preg);
13311 },
13312 NULL,
13313 VARIABLES_DOMAIN);
13314
13315 for (objfile *objfile : current_program_space->objfiles ())
13316 {
13317 for (compunit_symtab *s : objfile->compunits ())
13318 {
13319 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13320 int i;
13321
13322 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13323 {
13324 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13325 struct block_iterator iter;
13326 struct symbol *sym;
13327
13328 ALL_BLOCK_SYMBOLS (b, iter, sym)
13329 if (ada_is_non_standard_exception_sym (sym)
13330 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13331 {
13332 struct ada_exc_info info
13333 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13334
13335 exceptions->push_back (info);
13336 }
13337 }
13338 }
13339 }
13340 }
13341
13342 /* Implements ada_exceptions_list with the regular expression passed
13343 as a regex_t, rather than a string.
13344
13345 If not NULL, PREG is used to filter out exceptions whose names
13346 do not match. Otherwise, all exceptions are listed. */
13347
13348 static std::vector<ada_exc_info>
13349 ada_exceptions_list_1 (compiled_regex *preg)
13350 {
13351 std::vector<ada_exc_info> result;
13352 int prev_len;
13353
13354 /* First, list the known standard exceptions. These exceptions
13355 need to be handled separately, as they are usually defined in
13356 runtime units that have been compiled without debugging info. */
13357
13358 ada_add_standard_exceptions (preg, &result);
13359
13360 /* Next, find all exceptions whose scope is local and accessible
13361 from the currently selected frame. */
13362
13363 if (has_stack_frames ())
13364 {
13365 prev_len = result.size ();
13366 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13367 &result);
13368 if (result.size () > prev_len)
13369 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13370 }
13371
13372 /* Add all exceptions whose scope is global. */
13373
13374 prev_len = result.size ();
13375 ada_add_global_exceptions (preg, &result);
13376 if (result.size () > prev_len)
13377 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13378
13379 return result;
13380 }
13381
13382 /* Return a vector of ada_exc_info.
13383
13384 If REGEXP is NULL, all exceptions are included in the result.
13385 Otherwise, it should contain a valid regular expression,
13386 and only the exceptions whose names match that regular expression
13387 are included in the result.
13388
13389 The exceptions are sorted in the following order:
13390 - Standard exceptions (defined by the Ada language), in
13391 alphabetical order;
13392 - Exceptions only visible from the current frame, in
13393 alphabetical order;
13394 - Exceptions whose scope is global, in alphabetical order. */
13395
13396 std::vector<ada_exc_info>
13397 ada_exceptions_list (const char *regexp)
13398 {
13399 if (regexp == NULL)
13400 return ada_exceptions_list_1 (NULL);
13401
13402 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13403 return ada_exceptions_list_1 (&reg);
13404 }
13405
13406 /* Implement the "info exceptions" command. */
13407
13408 static void
13409 info_exceptions_command (const char *regexp, int from_tty)
13410 {
13411 struct gdbarch *gdbarch = get_current_arch ();
13412
13413 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13414
13415 if (regexp != NULL)
13416 printf_filtered
13417 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13418 else
13419 printf_filtered (_("All defined Ada exceptions:\n"));
13420
13421 for (const ada_exc_info &info : exceptions)
13422 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13423 }
13424
13425 /* Operators */
13426 /* Information about operators given special treatment in functions
13427 below. */
13428 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13429
13430 #define ADA_OPERATORS \
13431 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13432 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13433 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13434 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13435 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13436 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13437 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13438 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13439 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13440 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13441 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13443 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13444 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13445 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13446 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13447 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13448 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13449 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13450
13451 static void
13452 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13453 int *argsp)
13454 {
13455 switch (exp->elts[pc - 1].opcode)
13456 {
13457 default:
13458 operator_length_standard (exp, pc, oplenp, argsp);
13459 break;
13460
13461 #define OP_DEFN(op, len, args, binop) \
13462 case op: *oplenp = len; *argsp = args; break;
13463 ADA_OPERATORS;
13464 #undef OP_DEFN
13465
13466 case OP_AGGREGATE:
13467 *oplenp = 3;
13468 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13469 break;
13470
13471 case OP_CHOICES:
13472 *oplenp = 3;
13473 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13474 break;
13475 }
13476 }
13477
13478 /* Implementation of the exp_descriptor method operator_check. */
13479
13480 static int
13481 ada_operator_check (struct expression *exp, int pos,
13482 int (*objfile_func) (struct objfile *objfile, void *data),
13483 void *data)
13484 {
13485 const union exp_element *const elts = exp->elts;
13486 struct type *type = NULL;
13487
13488 switch (elts[pos].opcode)
13489 {
13490 case UNOP_IN_RANGE:
13491 case UNOP_QUAL:
13492 type = elts[pos + 1].type;
13493 break;
13494
13495 default:
13496 return operator_check_standard (exp, pos, objfile_func, data);
13497 }
13498
13499 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13500
13501 if (type && TYPE_OBJFILE (type)
13502 && (*objfile_func) (TYPE_OBJFILE (type), data))
13503 return 1;
13504
13505 return 0;
13506 }
13507
13508 static const char *
13509 ada_op_name (enum exp_opcode opcode)
13510 {
13511 switch (opcode)
13512 {
13513 default:
13514 return op_name_standard (opcode);
13515
13516 #define OP_DEFN(op, len, args, binop) case op: return #op;
13517 ADA_OPERATORS;
13518 #undef OP_DEFN
13519
13520 case OP_AGGREGATE:
13521 return "OP_AGGREGATE";
13522 case OP_CHOICES:
13523 return "OP_CHOICES";
13524 case OP_NAME:
13525 return "OP_NAME";
13526 }
13527 }
13528
13529 /* As for operator_length, but assumes PC is pointing at the first
13530 element of the operator, and gives meaningful results only for the
13531 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13532
13533 static void
13534 ada_forward_operator_length (struct expression *exp, int pc,
13535 int *oplenp, int *argsp)
13536 {
13537 switch (exp->elts[pc].opcode)
13538 {
13539 default:
13540 *oplenp = *argsp = 0;
13541 break;
13542
13543 #define OP_DEFN(op, len, args, binop) \
13544 case op: *oplenp = len; *argsp = args; break;
13545 ADA_OPERATORS;
13546 #undef OP_DEFN
13547
13548 case OP_AGGREGATE:
13549 *oplenp = 3;
13550 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13551 break;
13552
13553 case OP_CHOICES:
13554 *oplenp = 3;
13555 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13556 break;
13557
13558 case OP_STRING:
13559 case OP_NAME:
13560 {
13561 int len = longest_to_int (exp->elts[pc + 1].longconst);
13562
13563 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13564 *argsp = 0;
13565 break;
13566 }
13567 }
13568 }
13569
13570 static int
13571 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13572 {
13573 enum exp_opcode op = exp->elts[elt].opcode;
13574 int oplen, nargs;
13575 int pc = elt;
13576 int i;
13577
13578 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13579
13580 switch (op)
13581 {
13582 /* Ada attributes ('Foo). */
13583 case OP_ATR_FIRST:
13584 case OP_ATR_LAST:
13585 case OP_ATR_LENGTH:
13586 case OP_ATR_IMAGE:
13587 case OP_ATR_MAX:
13588 case OP_ATR_MIN:
13589 case OP_ATR_MODULUS:
13590 case OP_ATR_POS:
13591 case OP_ATR_SIZE:
13592 case OP_ATR_TAG:
13593 case OP_ATR_VAL:
13594 break;
13595
13596 case UNOP_IN_RANGE:
13597 case UNOP_QUAL:
13598 /* XXX: gdb_sprint_host_address, type_sprint */
13599 fprintf_filtered (stream, _("Type @"));
13600 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13601 fprintf_filtered (stream, " (");
13602 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13603 fprintf_filtered (stream, ")");
13604 break;
13605 case BINOP_IN_BOUNDS:
13606 fprintf_filtered (stream, " (%d)",
13607 longest_to_int (exp->elts[pc + 2].longconst));
13608 break;
13609 case TERNOP_IN_RANGE:
13610 break;
13611
13612 case OP_AGGREGATE:
13613 case OP_OTHERS:
13614 case OP_DISCRETE_RANGE:
13615 case OP_POSITIONAL:
13616 case OP_CHOICES:
13617 break;
13618
13619 case OP_NAME:
13620 case OP_STRING:
13621 {
13622 char *name = &exp->elts[elt + 2].string;
13623 int len = longest_to_int (exp->elts[elt + 1].longconst);
13624
13625 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13626 break;
13627 }
13628
13629 default:
13630 return dump_subexp_body_standard (exp, stream, elt);
13631 }
13632
13633 elt += oplen;
13634 for (i = 0; i < nargs; i += 1)
13635 elt = dump_subexp (exp, stream, elt);
13636
13637 return elt;
13638 }
13639
13640 /* The Ada extension of print_subexp (q.v.). */
13641
13642 static void
13643 ada_print_subexp (struct expression *exp, int *pos,
13644 struct ui_file *stream, enum precedence prec)
13645 {
13646 int oplen, nargs, i;
13647 int pc = *pos;
13648 enum exp_opcode op = exp->elts[pc].opcode;
13649
13650 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13651
13652 *pos += oplen;
13653 switch (op)
13654 {
13655 default:
13656 *pos -= oplen;
13657 print_subexp_standard (exp, pos, stream, prec);
13658 return;
13659
13660 case OP_VAR_VALUE:
13661 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13662 return;
13663
13664 case BINOP_IN_BOUNDS:
13665 /* XXX: sprint_subexp */
13666 print_subexp (exp, pos, stream, PREC_SUFFIX);
13667 fputs_filtered (" in ", stream);
13668 print_subexp (exp, pos, stream, PREC_SUFFIX);
13669 fputs_filtered ("'range", stream);
13670 if (exp->elts[pc + 1].longconst > 1)
13671 fprintf_filtered (stream, "(%ld)",
13672 (long) exp->elts[pc + 1].longconst);
13673 return;
13674
13675 case TERNOP_IN_RANGE:
13676 if (prec >= PREC_EQUAL)
13677 fputs_filtered ("(", stream);
13678 /* XXX: sprint_subexp */
13679 print_subexp (exp, pos, stream, PREC_SUFFIX);
13680 fputs_filtered (" in ", stream);
13681 print_subexp (exp, pos, stream, PREC_EQUAL);
13682 fputs_filtered (" .. ", stream);
13683 print_subexp (exp, pos, stream, PREC_EQUAL);
13684 if (prec >= PREC_EQUAL)
13685 fputs_filtered (")", stream);
13686 return;
13687
13688 case OP_ATR_FIRST:
13689 case OP_ATR_LAST:
13690 case OP_ATR_LENGTH:
13691 case OP_ATR_IMAGE:
13692 case OP_ATR_MAX:
13693 case OP_ATR_MIN:
13694 case OP_ATR_MODULUS:
13695 case OP_ATR_POS:
13696 case OP_ATR_SIZE:
13697 case OP_ATR_TAG:
13698 case OP_ATR_VAL:
13699 if (exp->elts[*pos].opcode == OP_TYPE)
13700 {
13701 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13702 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13703 &type_print_raw_options);
13704 *pos += 3;
13705 }
13706 else
13707 print_subexp (exp, pos, stream, PREC_SUFFIX);
13708 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13709 if (nargs > 1)
13710 {
13711 int tem;
13712
13713 for (tem = 1; tem < nargs; tem += 1)
13714 {
13715 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13716 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13717 }
13718 fputs_filtered (")", stream);
13719 }
13720 return;
13721
13722 case UNOP_QUAL:
13723 type_print (exp->elts[pc + 1].type, "", stream, 0);
13724 fputs_filtered ("'(", stream);
13725 print_subexp (exp, pos, stream, PREC_PREFIX);
13726 fputs_filtered (")", stream);
13727 return;
13728
13729 case UNOP_IN_RANGE:
13730 /* XXX: sprint_subexp */
13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 fputs_filtered (" in ", stream);
13733 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13734 &type_print_raw_options);
13735 return;
13736
13737 case OP_DISCRETE_RANGE:
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fputs_filtered ("..", stream);
13740 print_subexp (exp, pos, stream, PREC_SUFFIX);
13741 return;
13742
13743 case OP_OTHERS:
13744 fputs_filtered ("others => ", stream);
13745 print_subexp (exp, pos, stream, PREC_SUFFIX);
13746 return;
13747
13748 case OP_CHOICES:
13749 for (i = 0; i < nargs-1; i += 1)
13750 {
13751 if (i > 0)
13752 fputs_filtered ("|", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 }
13755 fputs_filtered (" => ", stream);
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 return;
13758
13759 case OP_POSITIONAL:
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 return;
13762
13763 case OP_AGGREGATE:
13764 fputs_filtered ("(", stream);
13765 for (i = 0; i < nargs; i += 1)
13766 {
13767 if (i > 0)
13768 fputs_filtered (", ", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 }
13771 fputs_filtered (")", stream);
13772 return;
13773 }
13774 }
13775
13776 /* Table mapping opcodes into strings for printing operators
13777 and precedences of the operators. */
13778
13779 static const struct op_print ada_op_print_tab[] = {
13780 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13781 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13782 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13783 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13784 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13785 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13786 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13787 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13788 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13789 {">=", BINOP_GEQ, PREC_ORDER, 0},
13790 {">", BINOP_GTR, PREC_ORDER, 0},
13791 {"<", BINOP_LESS, PREC_ORDER, 0},
13792 {">>", BINOP_RSH, PREC_SHIFT, 0},
13793 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13794 {"+", BINOP_ADD, PREC_ADD, 0},
13795 {"-", BINOP_SUB, PREC_ADD, 0},
13796 {"&", BINOP_CONCAT, PREC_ADD, 0},
13797 {"*", BINOP_MUL, PREC_MUL, 0},
13798 {"/", BINOP_DIV, PREC_MUL, 0},
13799 {"rem", BINOP_REM, PREC_MUL, 0},
13800 {"mod", BINOP_MOD, PREC_MUL, 0},
13801 {"**", BINOP_EXP, PREC_REPEAT, 0},
13802 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13803 {"-", UNOP_NEG, PREC_PREFIX, 0},
13804 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13805 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13806 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13807 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13808 {".all", UNOP_IND, PREC_SUFFIX, 1},
13809 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13810 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13811 {NULL, OP_NULL, PREC_SUFFIX, 0}
13812 };
13813 \f
13814 enum ada_primitive_types {
13815 ada_primitive_type_int,
13816 ada_primitive_type_long,
13817 ada_primitive_type_short,
13818 ada_primitive_type_char,
13819 ada_primitive_type_float,
13820 ada_primitive_type_double,
13821 ada_primitive_type_void,
13822 ada_primitive_type_long_long,
13823 ada_primitive_type_long_double,
13824 ada_primitive_type_natural,
13825 ada_primitive_type_positive,
13826 ada_primitive_type_system_address,
13827 ada_primitive_type_storage_offset,
13828 nr_ada_primitive_types
13829 };
13830
13831 static void
13832 ada_language_arch_info (struct gdbarch *gdbarch,
13833 struct language_arch_info *lai)
13834 {
13835 const struct builtin_type *builtin = builtin_type (gdbarch);
13836
13837 lai->primitive_type_vector
13838 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13839 struct type *);
13840
13841 lai->primitive_type_vector [ada_primitive_type_int]
13842 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13843 0, "integer");
13844 lai->primitive_type_vector [ada_primitive_type_long]
13845 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13846 0, "long_integer");
13847 lai->primitive_type_vector [ada_primitive_type_short]
13848 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13849 0, "short_integer");
13850 lai->string_char_type
13851 = lai->primitive_type_vector [ada_primitive_type_char]
13852 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13853 lai->primitive_type_vector [ada_primitive_type_float]
13854 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13855 "float", gdbarch_float_format (gdbarch));
13856 lai->primitive_type_vector [ada_primitive_type_double]
13857 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13858 "long_float", gdbarch_double_format (gdbarch));
13859 lai->primitive_type_vector [ada_primitive_type_long_long]
13860 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13861 0, "long_long_integer");
13862 lai->primitive_type_vector [ada_primitive_type_long_double]
13863 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13864 "long_long_float", gdbarch_long_double_format (gdbarch));
13865 lai->primitive_type_vector [ada_primitive_type_natural]
13866 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13867 0, "natural");
13868 lai->primitive_type_vector [ada_primitive_type_positive]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "positive");
13871 lai->primitive_type_vector [ada_primitive_type_void]
13872 = builtin->builtin_void;
13873
13874 lai->primitive_type_vector [ada_primitive_type_system_address]
13875 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13876 "void"));
13877 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13878 = "system__address";
13879
13880 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13881 type. This is a signed integral type whose size is the same as
13882 the size of addresses. */
13883 {
13884 unsigned int addr_length = TYPE_LENGTH
13885 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13886
13887 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13888 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13889 "storage_offset");
13890 }
13891
13892 lai->bool_type_symbol = NULL;
13893 lai->bool_type_default = builtin->builtin_bool;
13894 }
13895 \f
13896 /* Language vector */
13897
13898 /* Not really used, but needed in the ada_language_defn. */
13899
13900 static void
13901 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13902 {
13903 ada_emit_char (c, type, stream, quoter, 1);
13904 }
13905
13906 static int
13907 parse (struct parser_state *ps)
13908 {
13909 warnings_issued = 0;
13910 return ada_parse (ps);
13911 }
13912
13913 static const struct exp_descriptor ada_exp_descriptor = {
13914 ada_print_subexp,
13915 ada_operator_length,
13916 ada_operator_check,
13917 ada_op_name,
13918 ada_dump_subexp_body,
13919 ada_evaluate_subexp
13920 };
13921
13922 /* symbol_name_matcher_ftype adapter for wild_match. */
13923
13924 static bool
13925 do_wild_match (const char *symbol_search_name,
13926 const lookup_name_info &lookup_name,
13927 completion_match_result *comp_match_res)
13928 {
13929 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13930 }
13931
13932 /* symbol_name_matcher_ftype adapter for full_match. */
13933
13934 static bool
13935 do_full_match (const char *symbol_search_name,
13936 const lookup_name_info &lookup_name,
13937 completion_match_result *comp_match_res)
13938 {
13939 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13940 }
13941
13942 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13943
13944 static bool
13945 do_exact_match (const char *symbol_search_name,
13946 const lookup_name_info &lookup_name,
13947 completion_match_result *comp_match_res)
13948 {
13949 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13950 }
13951
13952 /* Build the Ada lookup name for LOOKUP_NAME. */
13953
13954 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13955 {
13956 const std::string &user_name = lookup_name.name ();
13957
13958 if (user_name[0] == '<')
13959 {
13960 if (user_name.back () == '>')
13961 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13962 else
13963 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13964 m_encoded_p = true;
13965 m_verbatim_p = true;
13966 m_wild_match_p = false;
13967 m_standard_p = false;
13968 }
13969 else
13970 {
13971 m_verbatim_p = false;
13972
13973 m_encoded_p = user_name.find ("__") != std::string::npos;
13974
13975 if (!m_encoded_p)
13976 {
13977 const char *folded = ada_fold_name (user_name.c_str ());
13978 const char *encoded = ada_encode_1 (folded, false);
13979 if (encoded != NULL)
13980 m_encoded_name = encoded;
13981 else
13982 m_encoded_name = user_name;
13983 }
13984 else
13985 m_encoded_name = user_name;
13986
13987 /* Handle the 'package Standard' special case. See description
13988 of m_standard_p. */
13989 if (startswith (m_encoded_name.c_str (), "standard__"))
13990 {
13991 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13992 m_standard_p = true;
13993 }
13994 else
13995 m_standard_p = false;
13996
13997 /* If the name contains a ".", then the user is entering a fully
13998 qualified entity name, and the match must not be done in wild
13999 mode. Similarly, if the user wants to complete what looks
14000 like an encoded name, the match must not be done in wild
14001 mode. Also, in the standard__ special case always do
14002 non-wild matching. */
14003 m_wild_match_p
14004 = (lookup_name.match_type () != symbol_name_match_type::FULL
14005 && !m_encoded_p
14006 && !m_standard_p
14007 && user_name.find ('.') == std::string::npos);
14008 }
14009 }
14010
14011 /* symbol_name_matcher_ftype method for Ada. This only handles
14012 completion mode. */
14013
14014 static bool
14015 ada_symbol_name_matches (const char *symbol_search_name,
14016 const lookup_name_info &lookup_name,
14017 completion_match_result *comp_match_res)
14018 {
14019 return lookup_name.ada ().matches (symbol_search_name,
14020 lookup_name.match_type (),
14021 comp_match_res);
14022 }
14023
14024 /* A name matcher that matches the symbol name exactly, with
14025 strcmp. */
14026
14027 static bool
14028 literal_symbol_name_matcher (const char *symbol_search_name,
14029 const lookup_name_info &lookup_name,
14030 completion_match_result *comp_match_res)
14031 {
14032 const std::string &name = lookup_name.name ();
14033
14034 int cmp = (lookup_name.completion_mode ()
14035 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14036 : strcmp (symbol_search_name, name.c_str ()));
14037 if (cmp == 0)
14038 {
14039 if (comp_match_res != NULL)
14040 comp_match_res->set_match (symbol_search_name);
14041 return true;
14042 }
14043 else
14044 return false;
14045 }
14046
14047 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14048 Ada. */
14049
14050 static symbol_name_matcher_ftype *
14051 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14052 {
14053 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14054 return literal_symbol_name_matcher;
14055
14056 if (lookup_name.completion_mode ())
14057 return ada_symbol_name_matches;
14058 else
14059 {
14060 if (lookup_name.ada ().wild_match_p ())
14061 return do_wild_match;
14062 else if (lookup_name.ada ().verbatim_p ())
14063 return do_exact_match;
14064 else
14065 return do_full_match;
14066 }
14067 }
14068
14069 /* Implement the "la_read_var_value" language_defn method for Ada. */
14070
14071 static struct value *
14072 ada_read_var_value (struct symbol *var, const struct block *var_block,
14073 struct frame_info *frame)
14074 {
14075 /* The only case where default_read_var_value is not sufficient
14076 is when VAR is a renaming... */
14077 if (frame != nullptr)
14078 {
14079 const struct block *frame_block = get_frame_block (frame, NULL);
14080 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14081 return ada_read_renaming_var_value (var, frame_block);
14082 }
14083
14084 /* This is a typical case where we expect the default_read_var_value
14085 function to work. */
14086 return default_read_var_value (var, var_block, frame);
14087 }
14088
14089 static const char *ada_extensions[] =
14090 {
14091 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14092 };
14093
14094 extern const struct language_defn ada_language_defn = {
14095 "ada", /* Language name */
14096 "Ada",
14097 language_ada,
14098 range_check_off,
14099 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14100 that's not quite what this means. */
14101 array_row_major,
14102 macro_expansion_no,
14103 ada_extensions,
14104 &ada_exp_descriptor,
14105 parse,
14106 resolve,
14107 ada_printchar, /* Print a character constant */
14108 ada_printstr, /* Function to print string constant */
14109 emit_char, /* Function to print single char (not used) */
14110 ada_print_type, /* Print a type using appropriate syntax */
14111 ada_print_typedef, /* Print a typedef using appropriate syntax */
14112 ada_val_print, /* Print a value using appropriate syntax */
14113 ada_value_print, /* Print a top-level value */
14114 ada_read_var_value, /* la_read_var_value */
14115 NULL, /* Language specific skip_trampoline */
14116 NULL, /* name_of_this */
14117 true, /* la_store_sym_names_in_linkage_form_p */
14118 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14119 basic_lookup_transparent_type, /* lookup_transparent_type */
14120 ada_la_decode, /* Language specific symbol demangler */
14121 ada_sniff_from_mangled_name,
14122 NULL, /* Language specific
14123 class_name_from_physname */
14124 ada_op_print_tab, /* expression operators for printing */
14125 0, /* c-style arrays */
14126 1, /* String lower bound */
14127 ada_get_gdb_completer_word_break_characters,
14128 ada_collect_symbol_completion_matches,
14129 ada_language_arch_info,
14130 ada_print_array_index,
14131 default_pass_by_reference,
14132 c_get_string,
14133 ada_watch_location_expression,
14134 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14135 ada_iterate_over_symbols,
14136 default_search_name_hash,
14137 &ada_varobj_ops,
14138 NULL,
14139 NULL,
14140 ada_is_string_type,
14141 "(...)" /* la_struct_too_deep_ellipsis */
14142 };
14143
14144 /* Command-list for the "set/show ada" prefix command. */
14145 static struct cmd_list_element *set_ada_list;
14146 static struct cmd_list_element *show_ada_list;
14147
14148 /* Implement the "set ada" prefix command. */
14149
14150 static void
14151 set_ada_command (const char *arg, int from_tty)
14152 {
14153 printf_unfiltered (_(\
14154 "\"set ada\" must be followed by the name of a setting.\n"));
14155 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14156 }
14157
14158 /* Implement the "show ada" prefix command. */
14159
14160 static void
14161 show_ada_command (const char *args, int from_tty)
14162 {
14163 cmd_show_list (show_ada_list, from_tty, "");
14164 }
14165
14166 static void
14167 initialize_ada_catchpoint_ops (void)
14168 {
14169 struct breakpoint_ops *ops;
14170
14171 initialize_breakpoint_ops ();
14172
14173 ops = &catch_exception_breakpoint_ops;
14174 *ops = bkpt_breakpoint_ops;
14175 ops->allocate_location = allocate_location_exception;
14176 ops->re_set = re_set_exception;
14177 ops->check_status = check_status_exception;
14178 ops->print_it = print_it_exception;
14179 ops->print_one = print_one_exception;
14180 ops->print_mention = print_mention_exception;
14181 ops->print_recreate = print_recreate_exception;
14182
14183 ops = &catch_exception_unhandled_breakpoint_ops;
14184 *ops = bkpt_breakpoint_ops;
14185 ops->allocate_location = allocate_location_exception;
14186 ops->re_set = re_set_exception;
14187 ops->check_status = check_status_exception;
14188 ops->print_it = print_it_exception;
14189 ops->print_one = print_one_exception;
14190 ops->print_mention = print_mention_exception;
14191 ops->print_recreate = print_recreate_exception;
14192
14193 ops = &catch_assert_breakpoint_ops;
14194 *ops = bkpt_breakpoint_ops;
14195 ops->allocate_location = allocate_location_exception;
14196 ops->re_set = re_set_exception;
14197 ops->check_status = check_status_exception;
14198 ops->print_it = print_it_exception;
14199 ops->print_one = print_one_exception;
14200 ops->print_mention = print_mention_exception;
14201 ops->print_recreate = print_recreate_exception;
14202
14203 ops = &catch_handlers_breakpoint_ops;
14204 *ops = bkpt_breakpoint_ops;
14205 ops->allocate_location = allocate_location_exception;
14206 ops->re_set = re_set_exception;
14207 ops->check_status = check_status_exception;
14208 ops->print_it = print_it_exception;
14209 ops->print_one = print_one_exception;
14210 ops->print_mention = print_mention_exception;
14211 ops->print_recreate = print_recreate_exception;
14212 }
14213
14214 /* This module's 'new_objfile' observer. */
14215
14216 static void
14217 ada_new_objfile_observer (struct objfile *objfile)
14218 {
14219 ada_clear_symbol_cache ();
14220 }
14221
14222 /* This module's 'free_objfile' observer. */
14223
14224 static void
14225 ada_free_objfile_observer (struct objfile *objfile)
14226 {
14227 ada_clear_symbol_cache ();
14228 }
14229
14230 void
14231 _initialize_ada_language (void)
14232 {
14233 initialize_ada_catchpoint_ops ();
14234
14235 add_prefix_cmd ("ada", no_class, set_ada_command,
14236 _("Prefix command for changing Ada-specific settings."),
14237 &set_ada_list, "set ada ", 0, &setlist);
14238
14239 add_prefix_cmd ("ada", no_class, show_ada_command,
14240 _("Generic command for showing Ada-specific settings."),
14241 &show_ada_list, "show ada ", 0, &showlist);
14242
14243 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14244 &trust_pad_over_xvs, _("\
14245 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14246 Show whether an optimization trusting PAD types over XVS types is activated."),
14247 _("\
14248 This is related to the encoding used by the GNAT compiler. The debugger\n\
14249 should normally trust the contents of PAD types, but certain older versions\n\
14250 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14251 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14252 work around this bug. It is always safe to turn this option \"off\", but\n\
14253 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14254 this option to \"off\" unless necessary."),
14255 NULL, NULL, &set_ada_list, &show_ada_list);
14256
14257 add_setshow_boolean_cmd ("print-signatures", class_vars,
14258 &print_signatures, _("\
14259 Enable or disable the output of formal and return types for functions in the \
14260 overloads selection menu."), _("\
14261 Show whether the output of formal and return types for functions in the \
14262 overloads selection menu is activated."),
14263 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14264
14265 add_catch_command ("exception", _("\
14266 Catch Ada exceptions, when raised.\n\
14267 Usage: catch exception [ARG] [if CONDITION]\n\
14268 Without any argument, stop when any Ada exception is raised.\n\
14269 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14270 being raised does not have a handler (and will therefore lead to the task's\n\
14271 termination).\n\
14272 Otherwise, the catchpoint only stops when the name of the exception being\n\
14273 raised is the same as ARG.\n\
14274 CONDITION is a boolean expression that is evaluated to see whether the\n\
14275 exception should cause a stop."),
14276 catch_ada_exception_command,
14277 catch_ada_completer,
14278 CATCH_PERMANENT,
14279 CATCH_TEMPORARY);
14280
14281 add_catch_command ("handlers", _("\
14282 Catch Ada exceptions, when handled.\n\
14283 Usage: catch handlers [ARG] [if CONDITION]\n\
14284 Without any argument, stop when any Ada exception is handled.\n\
14285 With an argument, catch only exceptions with the given name.\n\
14286 CONDITION is a boolean expression that is evaluated to see whether the\n\
14287 exception should cause a stop."),
14288 catch_ada_handlers_command,
14289 catch_ada_completer,
14290 CATCH_PERMANENT,
14291 CATCH_TEMPORARY);
14292 add_catch_command ("assert", _("\
14293 Catch failed Ada assertions, when raised.\n\
14294 Usage: catch assert [if CONDITION]\n\
14295 CONDITION is a boolean expression that is evaluated to see whether the\n\
14296 exception should cause a stop."),
14297 catch_assert_command,
14298 NULL,
14299 CATCH_PERMANENT,
14300 CATCH_TEMPORARY);
14301
14302 varsize_limit = 65536;
14303 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14304 &varsize_limit, _("\
14305 Set the maximum number of bytes allowed in a variable-size object."), _("\
14306 Show the maximum number of bytes allowed in a variable-size object."), _("\
14307 Attempts to access an object whose size is not a compile-time constant\n\
14308 and exceeds this limit will cause an error."),
14309 NULL, NULL, &setlist, &showlist);
14310
14311 add_info ("exceptions", info_exceptions_command,
14312 _("\
14313 List all Ada exception names.\n\
14314 Usage: info exceptions [REGEXP]\n\
14315 If a regular expression is passed as an argument, only those matching\n\
14316 the regular expression are listed."));
14317
14318 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14319 _("Set Ada maintenance-related variables."),
14320 &maint_set_ada_cmdlist, "maintenance set ada ",
14321 0/*allow-unknown*/, &maintenance_set_cmdlist);
14322
14323 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14324 _("Show Ada maintenance-related variables."),
14325 &maint_show_ada_cmdlist, "maintenance show ada ",
14326 0/*allow-unknown*/, &maintenance_show_cmdlist);
14327
14328 add_setshow_boolean_cmd
14329 ("ignore-descriptive-types", class_maintenance,
14330 &ada_ignore_descriptive_types_p,
14331 _("Set whether descriptive types generated by GNAT should be ignored."),
14332 _("Show whether descriptive types generated by GNAT should be ignored."),
14333 _("\
14334 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14335 DWARF attribute."),
14336 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14337
14338 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14339 NULL, xcalloc, xfree);
14340
14341 /* The ada-lang observers. */
14342 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14343 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14344 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14345 }
This page took 0.422681 seconds and 3 git commands to generate.