Change map_matching_symbols to take a symbol_found_callback_ftype
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static int ada_ignore_descriptive_types_p = 0;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp = obstack_strdup (obstack, decoded);
1399 else
1400 {
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
1408
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
1413 }
1414
1415 return *resultp;
1416 }
1417
1418 static char *
1419 ada_la_decode (const char *encoded, int options)
1420 {
1421 return xstrdup (ada_decode (encoded));
1422 }
1423
1424 /* Implement la_sniff_from_mangled_name for Ada. */
1425
1426 static int
1427 ada_sniff_from_mangled_name (const char *mangled, char **out)
1428 {
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461 }
1462
1463 \f
1464
1465 /* Arrays */
1466
1467 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490 void
1491 ada_fixup_array_indexes_type (struct type *index_desc_type)
1492 {
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520 }
1521
1522 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1523
1524 static const char *bound_name[] = {
1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527 };
1528
1529 /* Maximum number of array dimensions we are prepared to handle. */
1530
1531 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1532
1533
1534 /* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
1536
1537 /* The descriptor or array type, if any, indicated by TYPE; removes
1538 level of indirection, if needed. */
1539
1540 static struct type *
1541 desc_base_type (struct type *type)
1542 {
1543 if (type == NULL)
1544 return NULL;
1545 type = ada_check_typedef (type);
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1553 else
1554 return type;
1555 }
1556
1557 /* True iff TYPE indicates a "thin" array pointer type. */
1558
1559 static int
1560 is_thin_pntr (struct type *type)
1561 {
1562 return
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565 }
1566
1567 /* The descriptor type for thin pointer type TYPE. */
1568
1569 static struct type *
1570 thin_descriptor_type (struct type *type)
1571 {
1572 struct type *base_type = desc_base_type (type);
1573
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
1578 else
1579 {
1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1581
1582 if (alt_type == NULL)
1583 return base_type;
1584 else
1585 return alt_type;
1586 }
1587 }
1588
1589 /* A pointer to the array data for thin-pointer value VAL. */
1590
1591 static struct value *
1592 thin_data_pntr (struct value *val)
1593 {
1594 struct type *type = ada_check_typedef (value_type (val));
1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1596
1597 data_type = lookup_pointer_type (data_type);
1598
1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1600 return value_cast (data_type, value_copy (val));
1601 else
1602 return value_from_longest (data_type, value_address (val));
1603 }
1604
1605 /* True iff TYPE indicates a "thick" array pointer type. */
1606
1607 static int
1608 is_thick_pntr (struct type *type)
1609 {
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
1617
1618 static struct type *
1619 desc_bounds_type (struct type *type)
1620 {
1621 struct type *r;
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
1631 return NULL;
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
1634 return ada_check_typedef (r);
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1641 }
1642 return NULL;
1643 }
1644
1645 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
1648 static struct value *
1649 desc_bounds (struct value *arr)
1650 {
1651 struct type *type = ada_check_typedef (value_type (arr));
1652
1653 if (is_thin_pntr (type))
1654 {
1655 struct type *bounds_type =
1656 desc_bounds_type (thin_descriptor_type (type));
1657 LONGEST addr;
1658
1659 if (bounds_type == NULL)
1660 error (_("Bad GNAT array descriptor"));
1661
1662 /* NOTE: The following calculation is not really kosher, but
1663 since desc_type is an XVE-encoded type (and shouldn't be),
1664 the correct calculation is a real pain. FIXME (and fix GCC). */
1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1666 addr = value_as_long (arr);
1667 else
1668 addr = value_address (arr);
1669
1670 return
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
1673 }
1674
1675 else if (is_thick_pntr (type))
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
1696 else
1697 return NULL;
1698 }
1699
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
1703 static int
1704 fat_pntr_bounds_bitpos (struct type *type)
1705 {
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 size of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitsize (struct type *type)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1721 }
1722
1723 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
1727
1728 static struct type *
1729 desc_data_target_type (struct type *type)
1730 {
1731 type = desc_base_type (type);
1732
1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
1734 if (is_thin_pntr (type))
1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1736 else if (is_thick_pntr (type))
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1743 }
1744
1745 return NULL;
1746 }
1747
1748 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
1750
1751 static struct value *
1752 desc_data (struct value *arr)
1753 {
1754 struct type *type = value_type (arr);
1755
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1760 _("Bad GNAT array descriptor"));
1761 else
1762 return NULL;
1763 }
1764
1765
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 position of the field containing the address of the data. */
1768
1769 static int
1770 fat_pntr_data_bitpos (struct type *type)
1771 {
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773 }
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 size of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitsize (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
1785 else
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static struct value *
1794 desc_one_bound (struct value *bounds, int i, int which)
1795 {
1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1797 _("Bad GNAT array descriptor bounds"));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static int
1805 desc_bound_bitpos (struct type *type, int i, int which)
1806 {
1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1808 }
1809
1810 /* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
1814 static int
1815 desc_bound_bitsize (struct type *type, int i, int which)
1816 {
1817 type = desc_base_type (type);
1818
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1823 }
1824
1825 /* If TYPE is the type of an array-bounds structure, the type of its
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
1828 static struct type *
1829 desc_index_type (struct type *type, int i)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
1836 return NULL;
1837 }
1838
1839 /* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
1842 static int
1843 desc_arity (struct type *type)
1844 {
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850 }
1851
1852 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
1856 static int
1857 ada_is_direct_array_type (struct type *type)
1858 {
1859 if (type == NULL)
1860 return 0;
1861 type = ada_check_typedef (type);
1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1863 || ada_is_array_descriptor_type (type));
1864 }
1865
1866 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1867 * to one. */
1868
1869 static int
1870 ada_is_array_type (struct type *type)
1871 {
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877 }
1878
1879 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1880
1881 int
1882 ada_is_simple_array_type (struct type *type)
1883 {
1884 if (type == NULL)
1885 return 0;
1886 type = ada_check_typedef (type);
1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
1891 }
1892
1893 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
1895 int
1896 ada_is_array_descriptor_type (struct type *type)
1897 {
1898 struct type *data_type = desc_data_target_type (type);
1899
1900 if (type == NULL)
1901 return 0;
1902 type = ada_check_typedef (type);
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
1906 }
1907
1908 /* Non-zero iff type is a partially mal-formed GNAT array
1909 descriptor. FIXME: This is to compensate for some problems with
1910 debugging output from GNAT. Re-examine periodically to see if it
1911 is still needed. */
1912
1913 int
1914 ada_is_bogus_array_descriptor (struct type *type)
1915 {
1916 return
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
1922 }
1923
1924
1925 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1926 (fat pointer) returns the type of the array data described---specifically,
1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1928 in from the descriptor; otherwise, they are left unspecified. If
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
1931 a descriptor. */
1932 struct type *
1933 ada_type_of_array (struct value *arr, int bounds)
1934 {
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
1937
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
1940
1941 if (!bounds)
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
1952 else
1953 {
1954 struct type *elt_type;
1955 int arity;
1956 struct value *descriptor;
1957
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
1960
1961 if (elt_type == NULL || arity == 0)
1962 return ada_check_typedef (value_type (arr));
1963
1964 descriptor = desc_bounds (arr);
1965 if (value_as_long (descriptor) == 0)
1966 return NULL;
1967 while (arity > 0)
1968 {
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
1973
1974 arity -= 1;
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
1978 elt_type = create_array_type (array_type, elt_type, range_type);
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
2000 }
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004 }
2005
2006 /* If ARR does not represent an array, returns ARR unchanged.
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
2011 struct value *
2012 ada_coerce_to_simple_array_ptr (struct value *arr)
2013 {
2014 if (ada_is_array_descriptor_type (value_type (arr)))
2015 {
2016 struct type *arrType = ada_type_of_array (arr, 1);
2017
2018 if (arrType == NULL)
2019 return NULL;
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
2024 else
2025 return arr;
2026 }
2027
2028 /* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
2030 be ARR itself if it already is in the proper form). */
2031
2032 struct value *
2033 ada_coerce_to_simple_array (struct value *arr)
2034 {
2035 if (ada_is_array_descriptor_type (value_type (arr)))
2036 {
2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2038
2039 if (arrVal == NULL)
2040 error (_("Bounds unavailable for null array pointer."));
2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2042 return value_ind (arrVal);
2043 }
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
2046 else
2047 return arr;
2048 }
2049
2050 /* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
2052 packing). For other types, is the identity. */
2053
2054 struct type *
2055 ada_coerce_to_simple_array_type (struct type *type)
2056 {
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
2059
2060 if (ada_is_array_descriptor_type (type))
2061 return ada_check_typedef (desc_data_target_type (type));
2062
2063 return type;
2064 }
2065
2066 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
2068 static int
2069 ada_is_packed_array_type (struct type *type)
2070 {
2071 if (type == NULL)
2072 return 0;
2073 type = desc_base_type (type);
2074 type = ada_check_typedef (type);
2075 return
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078 }
2079
2080 /* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083 int
2084 ada_is_constrained_packed_array_type (struct type *type)
2085 {
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088 }
2089
2090 /* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093 static int
2094 ada_is_unconstrained_packed_array_type (struct type *type)
2095 {
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098 }
2099
2100 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103 static long
2104 decode_packed_array_bitsize (struct type *type)
2105 {
2106 const char *raw_name;
2107 const char *tail;
2108 long bits;
2109
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
2124 gdb_assert (tail != NULL);
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134 }
2135
2136 /* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
2152
2153 static struct type *
2154 constrained_packed_array_type (struct type *type, long *elt_bits)
2155 {
2156 struct type *new_elt_type;
2157 struct type *new_type;
2158 struct type *index_type_desc;
2159 struct type *index_type;
2160 LONGEST low_bound, high_bound;
2161
2162 type = ada_check_typedef (type);
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
2173 new_type = alloc_type_copy (type);
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
2177 create_array_type (new_type, new_elt_type, index_type);
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2187 else
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2192 }
2193
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 return new_type;
2196 }
2197
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2200
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2203 {
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2205 char *name;
2206 const char *tail;
2207 struct type *shadow_type;
2208 long bits;
2209
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2219
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
2226 {
2227 lim_warning (_("could not find bounds information on packed array"));
2228 return NULL;
2229 }
2230 shadow_type = check_typedef (shadow_type);
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2236 return NULL;
2237 }
2238
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2241 }
2242
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2248
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2251 {
2252 struct type *type;
2253
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2264
2265 type = decode_constrained_packed_array_type (value_type (arr));
2266 if (type == NULL)
2267 {
2268 error (_("can't unpack array"));
2269 return NULL;
2270 }
2271
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
2282 mod = ada_modulus (value_type (arr)) - 1;
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
2297 return coerce_unspec_val_to_type (arr, type);
2298 }
2299
2300
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2303
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2306 {
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2311 struct value *v;
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2317 {
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2323 else
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2333 }
2334
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2342 }
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2348 bits, elt_type);
2349 return v;
2350 }
2351
2352 /* Non-zero iff TYPE includes negative integer values. */
2353
2354 static int
2355 has_negatives (struct type *type)
2356 {
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2365 }
2366 }
2367
2368 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2370 the unpacked buffer.
2371
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
2377
2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2379
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382 static void
2383 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387 {
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
2398 unsigned long accum; /* Staging area for bits being transferred */
2399 int accumSize; /* Number of meaningful bits in accum */
2400 unsigned char sign;
2401
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
2404 int delta = is_big_endian ? -1 : 1;
2405
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
2412 srcBitsLeft = bit_size;
2413 src_bytes_left = src_len;
2414 unpacked_bytes_left = unpacked_len;
2415 sign = 0;
2416
2417 if (is_big_endian)
2418 {
2419 src_idx = src_len - 1;
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2422 sign = ~0;
2423
2424 unusedLS =
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
2427
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
2442 }
2443 }
2444 else
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
2448 src_idx = unpacked_idx = 0;
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2453 sign = ~0;
2454 }
2455
2456 accum = 0;
2457 while (src_bytes_left > 0)
2458 {
2459 /* Mask for removing bits of the next source byte that are not
2460 part of the value. */
2461 unsigned int unusedMSMask =
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
2465 unsigned int signMask = sign & ~unusedMSMask;
2466
2467 accum |=
2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2469 accumSize += HOST_CHAR_BIT - unusedLS;
2470 if (accumSize >= HOST_CHAR_BIT)
2471 {
2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
2477 }
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
2480 src_bytes_left -= 1;
2481 src_idx += delta;
2482 }
2483 while (unpacked_bytes_left > 0)
2484 {
2485 accum |= sign << accumSize;
2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2487 accumSize -= HOST_CHAR_BIT;
2488 if (accumSize < 0)
2489 accumSize = 0;
2490 accum >>= HOST_CHAR_BIT;
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
2493 }
2494 }
2495
2496 /* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505 struct value *
2506 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509 {
2510 struct value *v;
2511 const gdb_byte *src; /* First byte containing data to unpack */
2512 gdb_byte *unpacked;
2513 const int is_scalar = is_scalar_type (type);
2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2515 gdb::byte_vector staging;
2516
2517 type = ada_check_typedef (type);
2518
2519 if (obj == NULL)
2520 src = valaddr + offset;
2521 else
2522 src = value_contents (obj) + offset;
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
2537 staging.data (), staging.size (),
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
2540 type = resolve_dynamic_type (type, staging.data (), 0);
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
2552 }
2553
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
2557 src = valaddr + offset;
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2562 gdb_byte *buf;
2563
2564 v = value_at (type, value_address (obj) + offset);
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
2572 src = value_contents (obj) + offset;
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
2595 unpacked = value_contents_writeable (v);
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
2603 if (staging.size () == TYPE_LENGTH (type))
2604 {
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
2608 memcpy (unpacked, staging.data (), staging.size ());
2609 }
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
2614
2615 return v;
2616 }
2617
2618 /* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
2621 floating-point or non-scalar types. */
2622
2623 static struct value *
2624 ada_value_assign (struct value *toval, struct value *fromval)
2625 {
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
2628
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
2637 if (!deprecated_value_modifiable (toval))
2638 error (_("Left operand of assignment is not a modifiable lvalue."));
2639
2640 if (VALUE_LVAL (toval) == lval_memory
2641 && bits > 0
2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2644 {
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2647 int from_size;
2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
2649 struct value *val;
2650 CORE_ADDR to_addr = value_address (toval);
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2653 fromval = value_cast (type, fromval);
2654
2655 read_memory (to_addr, buffer, len);
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
2667 write_memory_with_notification (to_addr, buffer, len);
2668
2669 val = value_copy (toval);
2670 memcpy (value_contents_raw (val), value_contents (fromval),
2671 TYPE_LENGTH (type));
2672 deprecated_set_value_type (val, type);
2673
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678 }
2679
2680
2681 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
2692 static void
2693 value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695 {
2696 LONGEST offset_in_container =
2697 (LONGEST) (value_address (component) - value_address (container));
2698 int bit_offset_in_container =
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
2701
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2721 }
2722 else
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
2726 }
2727
2728 /* Determine if TYPE is an access to an unconstrained array. */
2729
2730 bool
2731 ada_is_access_to_unconstrained_array (struct type *type)
2732 {
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735 }
2736
2737 /* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
2739 thereto. */
2740
2741 struct value *
2742 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2743 {
2744 int k;
2745 struct value *elt;
2746 struct type *elt_type;
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2760 error (_("too many subscripts (%d expected)"), k);
2761
2762 elt = value_subscript (elt, pos_atr (ind[k]));
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
2783 }
2784
2785 return elt;
2786 }
2787
2788 /* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
2799
2800 static struct value *
2801 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2802 {
2803 int k;
2804 struct value *array_ind = ada_value_ind (arr);
2805 struct type *type
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
2815 struct value *lwb_value;
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2818 error (_("too many subscripts (%d expected)"), k);
2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2820 value_copy (arr));
2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828 }
2829
2830 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
2834 static struct value *
2835 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
2837 {
2838 struct type *type0 = ada_check_typedef (type);
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2840 struct type *index_type
2841 = create_static_range_type (NULL, base_index_type, low, high);
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
2857
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2861 return value_at_lazy (slice_type, base);
2862 }
2863
2864
2865 static struct value *
2866 ada_value_slice (struct value *array, int low, int high)
2867 {
2868 struct type *type = ada_check_typedef (value_type (array));
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
2876 LONGEST low_pos, high_pos;
2877
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
2888 }
2889
2890 /* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
2893 type designation. Otherwise, returns 0. */
2894
2895 int
2896 ada_array_arity (struct type *type)
2897 {
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2907 return desc_arity (desc_bounds_type (type));
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2910 {
2911 arity += 1;
2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2913 }
2914
2915 return arity;
2916 }
2917
2918 /* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
2921 NINDICES is -1. Otherwise, returns NULL. */
2922
2923 struct type *
2924 ada_array_element_type (struct type *type, int nindices)
2925 {
2926 type = desc_base_type (type);
2927
2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2929 {
2930 int k;
2931 struct type *p_array_type;
2932
2933 p_array_type = desc_data_target_type (type);
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
2937 return NULL;
2938
2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2940 if (nindices >= 0 && k > nindices)
2941 k = nindices;
2942 while (k > 0 && p_array_type != NULL)
2943 {
2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2945 k -= 1;
2946 }
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
2956 return type;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /* The type of nth index in arrays of given type (n numbering from 1).
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
2967
2968 static struct type *
2969 ada_index_type (struct type *type, int n, const char *name)
2970 {
2971 struct type *result_type;
2972
2973 type = desc_base_type (type);
2974
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
2977
2978 if (ada_is_simple_array_type (type))
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
2983 type = TYPE_TARGET_TYPE (type);
2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2987 perhaps stabsread.c would make more sense. */
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
2990 }
2991 else
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
2999 }
3000
3001 /* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
3006
3007 static LONGEST
3008 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3009 {
3010 struct type *type, *index_type_desc, *index_type;
3011 int i;
3012
3013 gdb_assert (which == 0 || which == 1);
3014
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
3017
3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3019 return (LONGEST) - which;
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
3039 if (index_type_desc != NULL)
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
3042 else
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
3051
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
3056 }
3057
3058 /* Given that arr is an array value, returns the lower bound of the
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
3061 supplied by run-time quantities other than discriminants. */
3062
3063 static LONGEST
3064 ada_array_bound (struct value *arr, int n, int which)
3065 {
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
3071
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3074 else if (ada_is_simple_array_type (arr_type))
3075 return ada_array_bound_from_type (arr_type, n, which);
3076 else
3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3078 }
3079
3080 /* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
3085
3086 static LONGEST
3087 ada_array_length (struct value *arr, int n)
3088 {
3089 struct type *arr_type, *index_type;
3090 int low, high;
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
3098
3099 if (ada_is_simple_array_type (arr_type))
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
3104 else
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
3110 arr_type = check_typedef (arr_type);
3111 index_type = ada_index_type (arr_type, n, "length");
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
3124 }
3125
3126 /* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
3129
3130 static struct value *
3131 empty_array (struct type *arr_type, int low, int high)
3132 {
3133 struct type *arr_type0 = ada_check_typedef (arr_type);
3134 struct type *index_type
3135 = create_static_range_type
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3139
3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
3141 }
3142 \f
3143
3144 /* Name resolution */
3145
3146 /* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
3148
3149 static const char *
3150 ada_decoded_op_name (enum exp_opcode op)
3151 {
3152 int i;
3153
3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3155 {
3156 if (ada_opname_table[i].op == op)
3157 return ada_opname_table[i].decoded;
3158 }
3159 error (_("Could not find operator name for opcode"));
3160 }
3161
3162
3163 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3170 return type is preferred. May change (expand) *EXP. */
3171
3172 static void
3173 resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
3175 {
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3183 }
3184
3185 /* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
3193
3194 static struct value *
3195 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
3198 {
3199 int pc = *pos;
3200 int i;
3201 struct expression *exp; /* Convenience: == *expp. */
3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
3205 int oplen;
3206
3207 argvec = NULL;
3208 nargs = 0;
3209 exp = expp->get ();
3210
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
3213 switch (op)
3214 {
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
3219 else
3220 {
3221 *pos += 3;
3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3225 break;
3226
3227 case UNOP_ADDR:
3228 *pos += 1;
3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3230 break;
3231
3232 case UNOP_QUAL:
3233 *pos += 3;
3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3235 parse_completion, tracker);
3236 break;
3237
3238 case OP_ATR_MODULUS:
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
3263 struct value *arg1;
3264
3265 *pos += 1;
3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3267 if (arg1 == NULL)
3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3269 else
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
3272 break;
3273 }
3274
3275 case UNOP_CAST:
3276 *pos += 3;
3277 nargs = 1;
3278 break;
3279
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
3293
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
3300
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
3304 *pos += 1;
3305 nargs = 2;
3306 break;
3307
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
3316
3317 case OP_LONG:
3318 case OP_FLOAT:
3319 case OP_VAR_VALUE:
3320 case OP_VAR_MSYM_VALUE:
3321 *pos += 4;
3322 break;
3323
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
3330
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
3345 case TERNOP_SLICE:
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
3350 case OP_STRING:
3351 break;
3352
3353 default:
3354 error (_("Unexpected operator during name resolution"));
3355 }
3356
3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
3358 for (i = 0; i < nargs; i += 1)
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
3361 argvec[i] = NULL;
3362 exp = expp->get ();
3363
3364 /* Pass two: perform any resolution on principal operator. */
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
3370 case OP_VAR_VALUE:
3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3372 {
3373 std::vector<struct block_symbol> candidates;
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
3380 &candidates);
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
3389 switch (SYMBOL_CLASS (candidates[j].symbol))
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
3396 case LOC_COMPUTED:
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
3419 error (_("No definition found for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
3424 && !is_nonfunction (candidates.data (), n_candidates))
3425 {
3426 i = ada_resolve_function
3427 (candidates.data (), n_candidates, NULL, 0,
3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3429 context_type, parse_completion);
3430 if (i < 0)
3431 error (_("Could not find a match for %s"),
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
3436 printf_filtered (_("Multiple matches for %s\n"),
3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3438 user_select_syms (candidates.data (), n_candidates, 1);
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
3444 tracker->update (candidates[i]);
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
3451 replace_operator_with_call (expp, pc, 0, 4,
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
3454 exp = expp->get ();
3455 }
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3462 {
3463 std::vector<struct block_symbol> candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
3470 &candidates);
3471
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
3476 i = ada_resolve_function
3477 (candidates.data (), n_candidates,
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
3488 tracker->update (candidates[i]);
3489 }
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
3514 {
3515 std::vector<struct block_symbol> candidates;
3516 int n_candidates;
3517
3518 n_candidates =
3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
3520 NULL, VAR_DOMAIN,
3521 &candidates);
3522
3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
3526 if (i < 0)
3527 break;
3528
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
3532 exp = expp->get ();
3533 }
3534 break;
3535
3536 case OP_TYPE:
3537 case OP_REGISTER:
3538 return NULL;
3539 }
3540
3541 *pos = pc;
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
3548 }
3549
3550 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3552 a non-pointer. */
3553 /* The term "match" here is rather loose. The match is heuristic and
3554 liberal. */
3555
3556 static int
3557 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3558 {
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
3567 switch (TYPE_CODE (ftype))
3568 {
3569 default:
3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
3575 else
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
3590
3591 case TYPE_CODE_ARRAY:
3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3593 || ada_is_array_descriptor_type (atype));
3594
3595 case TYPE_CODE_STRUCT:
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
3599 else
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607 }
3608
3609 /* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
3612 argument function. */
3613
3614 static int
3615 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3616 {
3617 int i;
3618 struct type *func_type = SYMBOL_TYPE (func);
3619
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
3631 if (actuals[i] == NULL)
3632 return 0;
3633 else
3634 {
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3638
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
3642 }
3643 return 1;
3644 }
3645
3646 /* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651 static int
3652 return_match (struct type *func_type, struct type *context_type)
3653 {
3654 struct type *return_type;
3655
3656 if (func_type == NULL)
3657 return 1;
3658
3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3661 else
3662 return_type = get_base_type (func_type);
3663 if (return_type == NULL)
3664 return 1;
3665
3666 context_type = get_base_type (context_type);
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674 }
3675
3676
3677 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3678 function (if any) that matches the types of the NARGS arguments in
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
3688
3689 static int
3690 ada_resolve_function (struct block_symbol syms[],
3691 int nsyms, struct value **args, int nargs,
3692 const char *name, struct type *context_type,
3693 int parse_completion)
3694 {
3695 int fallback;
3696 int k;
3697 int m; /* Number of hits */
3698
3699 m = 0;
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3704 {
3705 for (k = 0; k < nsyms; k += 1)
3706 {
3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3708
3709 if (ada_args_match (syms[k].symbol, args, nargs)
3710 && (fallback || return_match (type, context_type)))
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
3716 }
3717
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
3722 if (m == 0)
3723 return -1;
3724 else if (m > 1 && !parse_completion)
3725 {
3726 printf_filtered (_("Multiple matches for %s\n"), name);
3727 user_select_syms (syms, m, 1);
3728 return 0;
3729 }
3730 return 0;
3731 }
3732
3733 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
3739 static int
3740 encoded_ordered_before (const char *N0, const char *N1)
3741 {
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
3749
3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3751 ;
3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3753 ;
3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
3758
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
3768 return (strcmp (N0, N1) < 0);
3769 }
3770 }
3771
3772 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
3775 static void
3776 sort_choices (struct block_symbol syms[], int nsyms)
3777 {
3778 int i;
3779
3780 for (i = 1; i < nsyms; i += 1)
3781 {
3782 struct block_symbol sym = syms[i];
3783 int j;
3784
3785 for (j = i - 1; j >= 0; j -= 1)
3786 {
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
3792 syms[j + 1] = sym;
3793 }
3794 }
3795
3796 /* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798 static int print_signatures = 1;
3799
3800 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805 static void
3806 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808 {
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837 }
3838
3839 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
3843
3844 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3845 to be re-integrated one of these days. */
3846
3847 int
3848 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3849 {
3850 int i;
3851 int *chosen = XALLOCAVEC (int , nsyms);
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
3854 const char *select_mode = multiple_symbols_select_mode ();
3855
3856 if (max_results < 1)
3857 error (_("Request to select 0 symbols!"));
3858 if (nsyms <= 1)
3859 return nsyms;
3860
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863 canceled because the command is ambiguous\n\
3864 See set/show multiple-symbol."));
3865
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
3872 printf_filtered (_("[0] cancel\n"));
3873 if (max_results > 1)
3874 printf_filtered (_("[1] all\n"));
3875
3876 sort_choices (syms, nsyms);
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
3880 if (syms[i].symbol == NULL)
3881 continue;
3882
3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3884 {
3885 struct symtab_and_line sal =
3886 find_function_start_sal (syms[i].symbol, 1);
3887
3888 printf_filtered ("[%d] ", i + first_choice);
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
3891 if (sal.symtab == NULL)
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
3894 else
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
3898 continue;
3899 }
3900 else
3901 {
3902 int is_enumeral =
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3906 struct symtab *symtab = NULL;
3907
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
3910
3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3912 {
3913 printf_filtered ("[%d] ", i + first_choice);
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
3919 }
3920 else if (is_enumeral
3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3922 {
3923 printf_filtered (("[%d] "), i + first_choice);
3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3925 gdb_stdout, -1, 0, &type_print_raw_options);
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
3928 }
3929 else
3930 {
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
3940 else
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
3944 }
3945 }
3946 }
3947
3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3949 "overload-choice");
3950
3951 for (i = 0; i < n_chosen; i += 1)
3952 syms[i] = syms[chosen[i]];
3953
3954 return n_chosen;
3955 }
3956
3957 /* Read and validate a set of numeric choices from the user in the
3958 range 0 .. N_CHOICES-1. Place the results in increasing
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
3964 + A choice of 0 means to cancel the selection, throwing an error.
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
3968 The user is not allowed to choose more than MAX_RESULTS values.
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
3971 prompts (for use with the -f switch). */
3972
3973 int
3974 get_selections (int *choices, int n_choices, int max_results,
3975 int is_all_choice, const char *annotation_suffix)
3976 {
3977 char *args;
3978 const char *prompt;
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
3981
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
3984 prompt = "> ";
3985
3986 args = command_line_input (prompt, annotation_suffix);
3987
3988 if (args == NULL)
3989 error_no_arg (_("one or more choice numbers"));
3990
3991 n_chosen = 0;
3992
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
3995 while (1)
3996 {
3997 char *args2;
3998 int choice, j;
3999
4000 args = skip_spaces (args);
4001 if (*args == '\0' && n_chosen == 0)
4002 error_no_arg (_("one or more choice numbers"));
4003 else if (*args == '\0')
4004 break;
4005
4006 choice = strtol (args, &args2, 10);
4007 if (args == args2 || choice < 0
4008 || choice > n_choices + first_choice - 1)
4009 error (_("Argument must be choice number"));
4010 args = args2;
4011
4012 if (choice == 0)
4013 error (_("cancelled"));
4014
4015 if (choice < first_choice)
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
4022 choice -= first_choice;
4023
4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4025 {
4026 }
4027
4028 if (j < 0 || choice != choices[j])
4029 {
4030 int k;
4031
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
4037 }
4038
4039 if (n_chosen > max_results)
4040 error (_("Select no more than %d of the above"), max_results);
4041
4042 return n_chosen;
4043 }
4044
4045 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
4048
4049 static void
4050 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4051 int oplen, struct symbol *sym,
4052 const struct block *block)
4053 {
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4055 symbol, -oplen for operator being replaced). */
4056 struct expression *newexp = (struct expression *)
4057 xzalloc (sizeof (struct expression)
4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4059 struct expression *exp = expp->get ();
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
4063 newexp->gdbarch = exp->gdbarch;
4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
4075 expp->reset (newexp);
4076 }
4077
4078 /* Type-class predicates */
4079
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
4082
4083 static int
4084 numeric_type_p (struct type *type)
4085 {
4086 if (type == NULL)
4087 return 0;
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
4101 }
4102 }
4103
4104 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4105
4106 static int
4107 integer_type_p (struct type *type)
4108 {
4109 if (type == NULL)
4110 return 0;
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
4123 }
4124 }
4125
4126 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4127
4128 static int
4129 scalar_type_p (struct type *type)
4130 {
4131 if (type == NULL)
4132 return 0;
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
4145 }
4146 }
4147
4148 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4149
4150 static int
4151 discrete_type_p (struct type *type)
4152 {
4153 if (type == NULL)
4154 return 0;
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
4162 case TYPE_CODE_BOOL:
4163 return 1;
4164 default:
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 /* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
4173
4174 static int
4175 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4176 {
4177 struct type *type0 =
4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4179 struct type *type1 =
4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181
4182 if (type0 == NULL)
4183 return 0;
4184
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4210
4211 case BINOP_CONCAT:
4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4213
4214 case BINOP_EXP:
4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
4222
4223 }
4224 }
4225 \f
4226 /* Renaming */
4227
4228 /* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240 /* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259 enum ada_renaming_category
4260 ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263 {
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
4271 {
4272 default:
4273 return ADA_NOT_RENAMING;
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
4302 }
4303
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315 }
4316
4317 /* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
4320
4321 static struct value *
4322 ada_read_renaming_var_value (struct symbol *renaming_sym,
4323 const struct block *block)
4324 {
4325 const char *sym_name;
4326
4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
4330 }
4331 \f
4332
4333 /* Evaluation: Function Calls */
4334
4335 /* Return an lvalue containing the value VAL. This is the identity on
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
4338
4339 static struct value *
4340 ensure_lval (struct value *val)
4341 {
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
4344 {
4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
4348
4349 VALUE_LVAL (val) = lval_memory;
4350 set_value_address (val, addr);
4351 write_memory (addr, value_contents (val), len);
4352 }
4353
4354 return val;
4355 }
4356
4357 /* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4360 values not residing in memory, updating it as needed. */
4361
4362 struct value *
4363 ada_convert_actual (struct value *actual, struct type *formal_type0)
4364 {
4365 struct type *actual_type = ada_check_typedef (value_type (actual));
4366 struct type *formal_type = ada_check_typedef (formal_type0);
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4373
4374 if (ada_is_array_descriptor_type (formal_target)
4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4376 return make_array_descriptor (formal_type, actual);
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4379 {
4380 struct value *result;
4381
4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4383 && ada_is_array_descriptor_type (actual_target))
4384 result = desc_data (actual);
4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
4390
4391 actual_type = ada_check_typedef (value_type (actual));
4392 val = allocate_value (actual_type);
4393 memcpy ((char *) value_contents_raw (val),
4394 (char *) value_contents (actual),
4395 TYPE_LENGTH (actual_type));
4396 actual = ensure_lval (val);
4397 }
4398 result = value_addr (actual);
4399 }
4400 else
4401 return actual;
4402 return value_cast_pointers (formal_type, result, 0);
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
4416
4417 return actual;
4418 }
4419
4420 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425 static CORE_ADDR
4426 value_pointer (struct value *value, struct type *type)
4427 {
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
4430 gdb_byte *buf = (gdb_byte *) alloca (len);
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437 }
4438
4439
4440 /* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
4445
4446 static struct value *
4447 make_array_descriptor (struct type *type, struct value *arr)
4448 {
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
4453 int i;
4454
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
4457 {
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
4466 }
4467
4468 bounds = ensure_lval (bounds);
4469
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
4483
4484 descriptor = ensure_lval (descriptor);
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490 }
4491 \f
4492 /* Symbol Cache Module */
4493
4494 /* Performance measurements made as of 2010-01-15 indicate that
4495 this cache does bring some noticeable improvements. Depending
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
4504 /* Initialize the contents of SYM_CACHE. */
4505
4506 static void
4507 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511 }
4512
4513 /* Free the memory used by SYM_CACHE. */
4514
4515 static void
4516 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4517 {
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520 }
4521
4522 /* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
4524
4525 static struct ada_symbol_cache *
4526 ada_get_symbol_cache (struct program_space *pspace)
4527 {
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4529
4530 if (pspace_data->sym_cache == NULL)
4531 {
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
4534 }
4535
4536 return pspace_data->sym_cache;
4537 }
4538
4539 /* Clear all entries from the symbol cache. */
4540
4541 static void
4542 ada_clear_symbol_cache (void)
4543 {
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
4549 }
4550
4551 /* Search our cache for an entry matching NAME and DOMAIN.
4552 Return it if found, or NULL otherwise. */
4553
4554 static struct cache_entry **
4555 find_entry (const char *name, domain_enum domain)
4556 {
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4563 {
4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4565 return e;
4566 }
4567 return NULL;
4568 }
4569
4570 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
4575
4576 static int
4577 lookup_cached_symbol (const char *name, domain_enum domain,
4578 struct symbol **sym, const struct block **block)
4579 {
4580 struct cache_entry **e = find_entry (name, domain);
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
4589 }
4590
4591 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4592 in domain DOMAIN, save this result in our symbol cache. */
4593
4594 static void
4595 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4596 const struct block *block)
4597 {
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4615 GLOBAL_BLOCK) != block
4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4617 STATIC_BLOCK) != block)
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4626 strcpy (copy, name);
4627 e->sym = sym;
4628 e->domain = domain;
4629 e->block = block;
4630 }
4631 \f
4632 /* Symbol Lookup */
4633
4634 /* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
4638 for Ada lookups. */
4639
4640 static symbol_name_match_type
4641 name_match_type_from_name (const char *lookup_name)
4642 {
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
4646 }
4647
4648 /* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651 static struct symbol *
4652 standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654 {
4655 /* Initialize it just to avoid a GCC false warning. */
4656 struct block_symbol sym = {};
4657
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4663 }
4664
4665
4666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669 static int
4670 is_nonfunction (struct block_symbol syms[], int n)
4671 {
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4678 return 1;
4679
4680 return 0;
4681 }
4682
4683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4684 struct types. Otherwise, they may not. */
4685
4686 static int
4687 equiv_types (struct type *type0, struct type *type1)
4688 {
4689 if (type0 == type1)
4690 return 1;
4691 if (type0 == NULL || type1 == NULL
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4698 return 1;
4699
4700 return 0;
4701 }
4702
4703 /* True iff SYM0 represents the same entity as SYM1, or one that is
4704 no more defined than that of SYM1. */
4705
4706 static int
4707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4708 {
4709 if (sym0 == sym1)
4710 return 1;
4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
4715 switch (SYMBOL_CLASS (sym0))
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4725 int len0 = strlen (name0);
4726
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4731 && startswith (name1 + len0, "___XV")));
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4847 {
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867 }
4868
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4874
4875 static void
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
4879 {
4880 }
4881
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4884
4885 static int
4886 is_nondebugging_type (struct type *type)
4887 {
4888 const char *name = ada_type_name (type);
4889
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891 }
4892
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900 static int
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902 {
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934 }
4935
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956 static int
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4958 {
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4990 return 0;
4991
4992 return 1;
4993 }
4994
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5001
5002 static int
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5004 {
5005 int i, j;
5006
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5012
5013 i = 0;
5014 while (i < syms->size ())
5015 {
5016 int remove_p = 0;
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5023 {
5024 for (j = 0; j < syms->size (); j++)
5025 {
5026 if (j != i
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5031 remove_p = 1;
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5041 {
5042 for (j = 0; j < syms->size (); j += 1)
5043 {
5044 if (i != j
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5052 remove_p = 1;
5053 }
5054 }
5055
5056 if (remove_p)
5057 syms->erase (syms->begin () + i);
5058
5059 i += 1;
5060 }
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
5076
5077 return syms->size ();
5078 }
5079
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5083 defined. */
5084
5085 static std::string
5086 xget_renaming_scope (struct type *renaming_type)
5087 {
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5092
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
5096
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5099
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
5103
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5106 }
5107
5108 /* Return nonzero if NAME corresponds to a package name. */
5109
5110 static int
5111 is_package_name (const char *name)
5112 {
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5118
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
5123
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5126
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5130 return 0;
5131
5132 std::string fun_name = string_printf ("_ada_%s", name);
5133
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5135 }
5136
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5139
5140 static int
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5142 {
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5147
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
5151
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5154
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
5159 if (startswith (function_name, "_ada_"))
5160 function_name += 5;
5161
5162 return !startswith (function_name, scope.c_str ());
5163 }
5164
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5170
5171 Rationale:
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5184
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5201
5202 static int
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5205 {
5206 struct symbol *current_function;
5207 const char *current_function_name;
5208 int i;
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5216 {
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5231
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5236 name_len) == 0
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5247 {
5248 (*syms)[k] = (*syms)[j];
5249 k += 1;
5250 }
5251 return k;
5252 }
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5256
5257 if (current_block == NULL)
5258 return syms->size ();
5259
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
5273 while (i < syms->size ())
5274 {
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5280 else
5281 i += 1;
5282 }
5283
5284 return syms->size ();
5285 }
5286
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297 static void
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5301 {
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5321 }
5322
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5325
5326 struct match_data
5327 {
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5331 int found_sym;
5332 };
5333
5334 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5342
5343 static bool
5344 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
5346 {
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return true;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return true;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552
5553 if (is_wild_match)
5554 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5555 domain, global, callback,
5556 symbol_name_match_type::WILD,
5557 NULL);
5558 else
5559 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5560 domain, global, callback,
5561 symbol_name_match_type::FULL,
5562 compare_names);
5563
5564 for (compunit_symtab *cu : objfile->compunits ())
5565 {
5566 const struct block *global_block
5567 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5568
5569 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5570 domain))
5571 data.found_sym = 1;
5572 }
5573 }
5574
5575 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5576 {
5577 const char *name = ada_lookup_name (lookup_name);
5578 std::string name1 = std::string ("<_ada_") + name + '>';
5579
5580 for (objfile *objfile : current_program_space->objfiles ())
5581 {
5582 data.objfile = objfile;
5583 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5584 domain, global, callback,
5585 symbol_name_match_type::FULL,
5586 compare_names);
5587 }
5588 }
5589 }
5590
5591 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5592 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5593 returning the number of matches. Add these to OBSTACKP.
5594
5595 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5596 symbol match within the nest of blocks whose innermost member is BLOCK,
5597 is the one match returned (no other matches in that or
5598 enclosing blocks is returned). If there are any matches in or
5599 surrounding BLOCK, then these alone are returned.
5600
5601 Names prefixed with "standard__" are handled specially:
5602 "standard__" is first stripped off (by the lookup_name
5603 constructor), and only static and global symbols are searched.
5604
5605 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5606 to lookup global symbols. */
5607
5608 static void
5609 ada_add_all_symbols (struct obstack *obstackp,
5610 const struct block *block,
5611 const lookup_name_info &lookup_name,
5612 domain_enum domain,
5613 int full_search,
5614 int *made_global_lookup_p)
5615 {
5616 struct symbol *sym;
5617
5618 if (made_global_lookup_p)
5619 *made_global_lookup_p = 0;
5620
5621 /* Special case: If the user specifies a symbol name inside package
5622 Standard, do a non-wild matching of the symbol name without
5623 the "standard__" prefix. This was primarily introduced in order
5624 to allow the user to specifically access the standard exceptions
5625 using, for instance, Standard.Constraint_Error when Constraint_Error
5626 is ambiguous (due to the user defining its own Constraint_Error
5627 entity inside its program). */
5628 if (lookup_name.ada ().standard_p ())
5629 block = NULL;
5630
5631 /* Check the non-global symbols. If we have ANY match, then we're done. */
5632
5633 if (block != NULL)
5634 {
5635 if (full_search)
5636 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5637 else
5638 {
5639 /* In the !full_search case we're are being called by
5640 ada_iterate_over_symbols, and we don't want to search
5641 superblocks. */
5642 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5643 }
5644 if (num_defns_collected (obstackp) > 0 || !full_search)
5645 return;
5646 }
5647
5648 /* No non-global symbols found. Check our cache to see if we have
5649 already performed this search before. If we have, then return
5650 the same result. */
5651
5652 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5653 domain, &sym, &block))
5654 {
5655 if (sym != NULL)
5656 add_defn_to_vec (obstackp, sym, block);
5657 return;
5658 }
5659
5660 if (made_global_lookup_p)
5661 *made_global_lookup_p = 1;
5662
5663 /* Search symbols from all global blocks. */
5664
5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5666
5667 /* Now add symbols from all per-file blocks if we've gotten no hits
5668 (not strictly correct, but perhaps better than an error). */
5669
5670 if (num_defns_collected (obstackp) == 0)
5671 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5672 }
5673
5674 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5675 is non-zero, enclosing scope and in global scopes, returning the number of
5676 matches.
5677 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5678 found and the blocks and symbol tables (if any) in which they were
5679 found.
5680
5681 When full_search is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
5683 is the one match returned (no other matches in that or
5684 enclosing blocks is returned). If there are any matches in or
5685 surrounding BLOCK, then these alone are returned.
5686
5687 Names prefixed with "standard__" are handled specially: "standard__"
5688 is first stripped off, and only static and global symbols are searched. */
5689
5690 static int
5691 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5692 const struct block *block,
5693 domain_enum domain,
5694 std::vector<struct block_symbol> *results,
5695 int full_search)
5696 {
5697 int syms_from_global_search;
5698 int ndefns;
5699 auto_obstack obstack;
5700
5701 ada_add_all_symbols (&obstack, block, lookup_name,
5702 domain, full_search, &syms_from_global_search);
5703
5704 ndefns = num_defns_collected (&obstack);
5705
5706 struct block_symbol *base = defns_collected (&obstack, 1);
5707 for (int i = 0; i < ndefns; ++i)
5708 results->push_back (base[i]);
5709
5710 ndefns = remove_extra_symbols (results);
5711
5712 if (ndefns == 0 && full_search && syms_from_global_search)
5713 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5714
5715 if (ndefns == 1 && full_search && syms_from_global_search)
5716 cache_symbol (ada_lookup_name (lookup_name), domain,
5717 (*results)[0].symbol, (*results)[0].block);
5718
5719 ndefns = remove_irrelevant_renamings (results, block);
5720
5721 return ndefns;
5722 }
5723
5724 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5725 in global scopes, returning the number of matches, and filling *RESULTS
5726 with (SYM,BLOCK) tuples.
5727
5728 See ada_lookup_symbol_list_worker for further details. */
5729
5730 int
5731 ada_lookup_symbol_list (const char *name, const struct block *block,
5732 domain_enum domain,
5733 std::vector<struct block_symbol> *results)
5734 {
5735 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5736 lookup_name_info lookup_name (name, name_match_type);
5737
5738 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5739 }
5740
5741 /* Implementation of the la_iterate_over_symbols method. */
5742
5743 static void
5744 ada_iterate_over_symbols
5745 (const struct block *block, const lookup_name_info &name,
5746 domain_enum domain,
5747 gdb::function_view<symbol_found_callback_ftype> callback)
5748 {
5749 int ndefs, i;
5750 std::vector<struct block_symbol> results;
5751
5752 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5753
5754 for (i = 0; i < ndefs; ++i)
5755 {
5756 if (!callback (&results[i]))
5757 break;
5758 }
5759 }
5760
5761 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5762 to 1, but choosing the first symbol found if there are multiple
5763 choices.
5764
5765 The result is stored in *INFO, which must be non-NULL.
5766 If no match is found, INFO->SYM is set to NULL. */
5767
5768 void
5769 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5770 domain_enum domain,
5771 struct block_symbol *info)
5772 {
5773 /* Since we already have an encoded name, wrap it in '<>' to force a
5774 verbatim match. Otherwise, if the name happens to not look like
5775 an encoded name (because it doesn't include a "__"),
5776 ada_lookup_name_info would re-encode/fold it again, and that
5777 would e.g., incorrectly lowercase object renaming names like
5778 "R28b" -> "r28b". */
5779 std::string verbatim = std::string ("<") + name + '>';
5780
5781 gdb_assert (info != NULL);
5782 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5783 }
5784
5785 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5786 scope and in global scopes, or NULL if none. NAME is folded and
5787 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5788 choosing the first symbol if there are multiple choices. */
5789
5790 struct block_symbol
5791 ada_lookup_symbol (const char *name, const struct block *block0,
5792 domain_enum domain)
5793 {
5794 std::vector<struct block_symbol> candidates;
5795 int n_candidates;
5796
5797 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5798
5799 if (n_candidates == 0)
5800 return {};
5801
5802 block_symbol info = candidates[0];
5803 info.symbol = fixup_symbol_section (info.symbol, NULL);
5804 return info;
5805 }
5806
5807 static struct block_symbol
5808 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5809 const char *name,
5810 const struct block *block,
5811 const domain_enum domain)
5812 {
5813 struct block_symbol sym;
5814
5815 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5816 if (sym.symbol != NULL)
5817 return sym;
5818
5819 /* If we haven't found a match at this point, try the primitive
5820 types. In other languages, this search is performed before
5821 searching for global symbols in order to short-circuit that
5822 global-symbol search if it happens that the name corresponds
5823 to a primitive type. But we cannot do the same in Ada, because
5824 it is perfectly legitimate for a program to declare a type which
5825 has the same name as a standard type. If looking up a type in
5826 that situation, we have traditionally ignored the primitive type
5827 in favor of user-defined types. This is why, unlike most other
5828 languages, we search the primitive types this late and only after
5829 having searched the global symbols without success. */
5830
5831 if (domain == VAR_DOMAIN)
5832 {
5833 struct gdbarch *gdbarch;
5834
5835 if (block == NULL)
5836 gdbarch = target_gdbarch ();
5837 else
5838 gdbarch = block_gdbarch (block);
5839 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5840 if (sym.symbol != NULL)
5841 return sym;
5842 }
5843
5844 return {};
5845 }
5846
5847
5848 /* True iff STR is a possible encoded suffix of a normal Ada name
5849 that is to be ignored for matching purposes. Suffixes of parallel
5850 names (e.g., XVE) are not included here. Currently, the possible suffixes
5851 are given by any of the regular expressions:
5852
5853 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5854 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5855 TKB [subprogram suffix for task bodies]
5856 _E[0-9]+[bs]$ [protected object entry suffixes]
5857 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5858
5859 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5860 match is performed. This sequence is used to differentiate homonyms,
5861 is an optional part of a valid name suffix. */
5862
5863 static int
5864 is_name_suffix (const char *str)
5865 {
5866 int k;
5867 const char *matching;
5868 const int len = strlen (str);
5869
5870 /* Skip optional leading __[0-9]+. */
5871
5872 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5873 {
5874 str += 3;
5875 while (isdigit (str[0]))
5876 str += 1;
5877 }
5878
5879 /* [.$][0-9]+ */
5880
5881 if (str[0] == '.' || str[0] == '$')
5882 {
5883 matching = str + 1;
5884 while (isdigit (matching[0]))
5885 matching += 1;
5886 if (matching[0] == '\0')
5887 return 1;
5888 }
5889
5890 /* ___[0-9]+ */
5891
5892 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5893 {
5894 matching = str + 3;
5895 while (isdigit (matching[0]))
5896 matching += 1;
5897 if (matching[0] == '\0')
5898 return 1;
5899 }
5900
5901 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5902
5903 if (strcmp (str, "TKB") == 0)
5904 return 1;
5905
5906 #if 0
5907 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5908 with a N at the end. Unfortunately, the compiler uses the same
5909 convention for other internal types it creates. So treating
5910 all entity names that end with an "N" as a name suffix causes
5911 some regressions. For instance, consider the case of an enumerated
5912 type. To support the 'Image attribute, it creates an array whose
5913 name ends with N.
5914 Having a single character like this as a suffix carrying some
5915 information is a bit risky. Perhaps we should change the encoding
5916 to be something like "_N" instead. In the meantime, do not do
5917 the following check. */
5918 /* Protected Object Subprograms */
5919 if (len == 1 && str [0] == 'N')
5920 return 1;
5921 #endif
5922
5923 /* _E[0-9]+[bs]$ */
5924 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5925 {
5926 matching = str + 3;
5927 while (isdigit (matching[0]))
5928 matching += 1;
5929 if ((matching[0] == 'b' || matching[0] == 's')
5930 && matching [1] == '\0')
5931 return 1;
5932 }
5933
5934 /* ??? We should not modify STR directly, as we are doing below. This
5935 is fine in this case, but may become problematic later if we find
5936 that this alternative did not work, and want to try matching
5937 another one from the begining of STR. Since we modified it, we
5938 won't be able to find the begining of the string anymore! */
5939 if (str[0] == 'X')
5940 {
5941 str += 1;
5942 while (str[0] != '_' && str[0] != '\0')
5943 {
5944 if (str[0] != 'n' && str[0] != 'b')
5945 return 0;
5946 str += 1;
5947 }
5948 }
5949
5950 if (str[0] == '\000')
5951 return 1;
5952
5953 if (str[0] == '_')
5954 {
5955 if (str[1] != '_' || str[2] == '\000')
5956 return 0;
5957 if (str[2] == '_')
5958 {
5959 if (strcmp (str + 3, "JM") == 0)
5960 return 1;
5961 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5962 the LJM suffix in favor of the JM one. But we will
5963 still accept LJM as a valid suffix for a reasonable
5964 amount of time, just to allow ourselves to debug programs
5965 compiled using an older version of GNAT. */
5966 if (strcmp (str + 3, "LJM") == 0)
5967 return 1;
5968 if (str[3] != 'X')
5969 return 0;
5970 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5971 || str[4] == 'U' || str[4] == 'P')
5972 return 1;
5973 if (str[4] == 'R' && str[5] != 'T')
5974 return 1;
5975 return 0;
5976 }
5977 if (!isdigit (str[2]))
5978 return 0;
5979 for (k = 3; str[k] != '\0'; k += 1)
5980 if (!isdigit (str[k]) && str[k] != '_')
5981 return 0;
5982 return 1;
5983 }
5984 if (str[0] == '$' && isdigit (str[1]))
5985 {
5986 for (k = 2; str[k] != '\0'; k += 1)
5987 if (!isdigit (str[k]) && str[k] != '_')
5988 return 0;
5989 return 1;
5990 }
5991 return 0;
5992 }
5993
5994 /* Return non-zero if the string starting at NAME and ending before
5995 NAME_END contains no capital letters. */
5996
5997 static int
5998 is_valid_name_for_wild_match (const char *name0)
5999 {
6000 const char *decoded_name = ada_decode (name0);
6001 int i;
6002
6003 /* If the decoded name starts with an angle bracket, it means that
6004 NAME0 does not follow the GNAT encoding format. It should then
6005 not be allowed as a possible wild match. */
6006 if (decoded_name[0] == '<')
6007 return 0;
6008
6009 for (i=0; decoded_name[i] != '\0'; i++)
6010 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6011 return 0;
6012
6013 return 1;
6014 }
6015
6016 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6017 that could start a simple name. Assumes that *NAMEP points into
6018 the string beginning at NAME0. */
6019
6020 static int
6021 advance_wild_match (const char **namep, const char *name0, int target0)
6022 {
6023 const char *name = *namep;
6024
6025 while (1)
6026 {
6027 int t0, t1;
6028
6029 t0 = *name;
6030 if (t0 == '_')
6031 {
6032 t1 = name[1];
6033 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6034 {
6035 name += 1;
6036 if (name == name0 + 5 && startswith (name0, "_ada"))
6037 break;
6038 else
6039 name += 1;
6040 }
6041 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6042 || name[2] == target0))
6043 {
6044 name += 2;
6045 break;
6046 }
6047 else
6048 return 0;
6049 }
6050 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6051 name += 1;
6052 else
6053 return 0;
6054 }
6055
6056 *namep = name;
6057 return 1;
6058 }
6059
6060 /* Return true iff NAME encodes a name of the form prefix.PATN.
6061 Ignores any informational suffixes of NAME (i.e., for which
6062 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6063 simple name. */
6064
6065 static bool
6066 wild_match (const char *name, const char *patn)
6067 {
6068 const char *p;
6069 const char *name0 = name;
6070
6071 while (1)
6072 {
6073 const char *match = name;
6074
6075 if (*name == *patn)
6076 {
6077 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6078 if (*p != *name)
6079 break;
6080 if (*p == '\0' && is_name_suffix (name))
6081 return match == name0 || is_valid_name_for_wild_match (name0);
6082
6083 if (name[-1] == '_')
6084 name -= 1;
6085 }
6086 if (!advance_wild_match (&name, name0, *patn))
6087 return false;
6088 }
6089 }
6090
6091 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6092 any trailing suffixes that encode debugging information or leading
6093 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6094 information that is ignored). */
6095
6096 static bool
6097 full_match (const char *sym_name, const char *search_name)
6098 {
6099 size_t search_name_len = strlen (search_name);
6100
6101 if (strncmp (sym_name, search_name, search_name_len) == 0
6102 && is_name_suffix (sym_name + search_name_len))
6103 return true;
6104
6105 if (startswith (sym_name, "_ada_")
6106 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6107 && is_name_suffix (sym_name + search_name_len + 5))
6108 return true;
6109
6110 return false;
6111 }
6112
6113 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6114 *defn_symbols, updating the list of symbols in OBSTACKP (if
6115 necessary). OBJFILE is the section containing BLOCK. */
6116
6117 static void
6118 ada_add_block_symbols (struct obstack *obstackp,
6119 const struct block *block,
6120 const lookup_name_info &lookup_name,
6121 domain_enum domain, struct objfile *objfile)
6122 {
6123 struct block_iterator iter;
6124 /* A matching argument symbol, if any. */
6125 struct symbol *arg_sym;
6126 /* Set true when we find a matching non-argument symbol. */
6127 int found_sym;
6128 struct symbol *sym;
6129
6130 arg_sym = NULL;
6131 found_sym = 0;
6132 for (sym = block_iter_match_first (block, lookup_name, &iter);
6133 sym != NULL;
6134 sym = block_iter_match_next (lookup_name, &iter))
6135 {
6136 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6137 SYMBOL_DOMAIN (sym), domain))
6138 {
6139 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6140 {
6141 if (SYMBOL_IS_ARGUMENT (sym))
6142 arg_sym = sym;
6143 else
6144 {
6145 found_sym = 1;
6146 add_defn_to_vec (obstackp,
6147 fixup_symbol_section (sym, objfile),
6148 block);
6149 }
6150 }
6151 }
6152 }
6153
6154 /* Handle renamings. */
6155
6156 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6157 found_sym = 1;
6158
6159 if (!found_sym && arg_sym != NULL)
6160 {
6161 add_defn_to_vec (obstackp,
6162 fixup_symbol_section (arg_sym, objfile),
6163 block);
6164 }
6165
6166 if (!lookup_name.ada ().wild_match_p ())
6167 {
6168 arg_sym = NULL;
6169 found_sym = 0;
6170 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6171 const char *name = ada_lookup_name.c_str ();
6172 size_t name_len = ada_lookup_name.size ();
6173
6174 ALL_BLOCK_SYMBOLS (block, iter, sym)
6175 {
6176 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6177 SYMBOL_DOMAIN (sym), domain))
6178 {
6179 int cmp;
6180
6181 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6182 if (cmp == 0)
6183 {
6184 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6185 if (cmp == 0)
6186 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6187 name_len);
6188 }
6189
6190 if (cmp == 0
6191 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6192 {
6193 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6194 {
6195 if (SYMBOL_IS_ARGUMENT (sym))
6196 arg_sym = sym;
6197 else
6198 {
6199 found_sym = 1;
6200 add_defn_to_vec (obstackp,
6201 fixup_symbol_section (sym, objfile),
6202 block);
6203 }
6204 }
6205 }
6206 }
6207 }
6208
6209 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6210 They aren't parameters, right? */
6211 if (!found_sym && arg_sym != NULL)
6212 {
6213 add_defn_to_vec (obstackp,
6214 fixup_symbol_section (arg_sym, objfile),
6215 block);
6216 }
6217 }
6218 }
6219 \f
6220
6221 /* Symbol Completion */
6222
6223 /* See symtab.h. */
6224
6225 bool
6226 ada_lookup_name_info::matches
6227 (const char *sym_name,
6228 symbol_name_match_type match_type,
6229 completion_match_result *comp_match_res) const
6230 {
6231 bool match = false;
6232 const char *text = m_encoded_name.c_str ();
6233 size_t text_len = m_encoded_name.size ();
6234
6235 /* First, test against the fully qualified name of the symbol. */
6236
6237 if (strncmp (sym_name, text, text_len) == 0)
6238 match = true;
6239
6240 if (match && !m_encoded_p)
6241 {
6242 /* One needed check before declaring a positive match is to verify
6243 that iff we are doing a verbatim match, the decoded version
6244 of the symbol name starts with '<'. Otherwise, this symbol name
6245 is not a suitable completion. */
6246 const char *sym_name_copy = sym_name;
6247 bool has_angle_bracket;
6248
6249 sym_name = ada_decode (sym_name);
6250 has_angle_bracket = (sym_name[0] == '<');
6251 match = (has_angle_bracket == m_verbatim_p);
6252 sym_name = sym_name_copy;
6253 }
6254
6255 if (match && !m_verbatim_p)
6256 {
6257 /* When doing non-verbatim match, another check that needs to
6258 be done is to verify that the potentially matching symbol name
6259 does not include capital letters, because the ada-mode would
6260 not be able to understand these symbol names without the
6261 angle bracket notation. */
6262 const char *tmp;
6263
6264 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6265 if (*tmp != '\0')
6266 match = false;
6267 }
6268
6269 /* Second: Try wild matching... */
6270
6271 if (!match && m_wild_match_p)
6272 {
6273 /* Since we are doing wild matching, this means that TEXT
6274 may represent an unqualified symbol name. We therefore must
6275 also compare TEXT against the unqualified name of the symbol. */
6276 sym_name = ada_unqualified_name (ada_decode (sym_name));
6277
6278 if (strncmp (sym_name, text, text_len) == 0)
6279 match = true;
6280 }
6281
6282 /* Finally: If we found a match, prepare the result to return. */
6283
6284 if (!match)
6285 return false;
6286
6287 if (comp_match_res != NULL)
6288 {
6289 std::string &match_str = comp_match_res->match.storage ();
6290
6291 if (!m_encoded_p)
6292 match_str = ada_decode (sym_name);
6293 else
6294 {
6295 if (m_verbatim_p)
6296 match_str = add_angle_brackets (sym_name);
6297 else
6298 match_str = sym_name;
6299
6300 }
6301
6302 comp_match_res->set_match (match_str.c_str ());
6303 }
6304
6305 return true;
6306 }
6307
6308 /* Add the list of possible symbol names completing TEXT to TRACKER.
6309 WORD is the entire command on which completion is made. */
6310
6311 static void
6312 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6313 complete_symbol_mode mode,
6314 symbol_name_match_type name_match_type,
6315 const char *text, const char *word,
6316 enum type_code code)
6317 {
6318 struct symbol *sym;
6319 const struct block *b, *surrounding_static_block = 0;
6320 struct block_iterator iter;
6321
6322 gdb_assert (code == TYPE_CODE_UNDEF);
6323
6324 lookup_name_info lookup_name (text, name_match_type, true);
6325
6326 /* First, look at the partial symtab symbols. */
6327 expand_symtabs_matching (NULL,
6328 lookup_name,
6329 NULL,
6330 NULL,
6331 ALL_DOMAIN);
6332
6333 /* At this point scan through the misc symbol vectors and add each
6334 symbol you find to the list. Eventually we want to ignore
6335 anything that isn't a text symbol (everything else will be
6336 handled by the psymtab code above). */
6337
6338 for (objfile *objfile : current_program_space->objfiles ())
6339 {
6340 for (minimal_symbol *msymbol : objfile->msymbols ())
6341 {
6342 QUIT;
6343
6344 if (completion_skip_symbol (mode, msymbol))
6345 continue;
6346
6347 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6348
6349 /* Ada minimal symbols won't have their language set to Ada. If
6350 we let completion_list_add_name compare using the
6351 default/C-like matcher, then when completing e.g., symbols in a
6352 package named "pck", we'd match internal Ada symbols like
6353 "pckS", which are invalid in an Ada expression, unless you wrap
6354 them in '<' '>' to request a verbatim match.
6355
6356 Unfortunately, some Ada encoded names successfully demangle as
6357 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6358 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6359 with the wrong language set. Paper over that issue here. */
6360 if (symbol_language == language_auto
6361 || symbol_language == language_cplus)
6362 symbol_language = language_ada;
6363
6364 completion_list_add_name (tracker,
6365 symbol_language,
6366 MSYMBOL_LINKAGE_NAME (msymbol),
6367 lookup_name, text, word);
6368 }
6369 }
6370
6371 /* Search upwards from currently selected frame (so that we can
6372 complete on local vars. */
6373
6374 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6375 {
6376 if (!BLOCK_SUPERBLOCK (b))
6377 surrounding_static_block = b; /* For elmin of dups */
6378
6379 ALL_BLOCK_SYMBOLS (b, iter, sym)
6380 {
6381 if (completion_skip_symbol (mode, sym))
6382 continue;
6383
6384 completion_list_add_name (tracker,
6385 SYMBOL_LANGUAGE (sym),
6386 SYMBOL_LINKAGE_NAME (sym),
6387 lookup_name, text, word);
6388 }
6389 }
6390
6391 /* Go through the symtabs and check the externs and statics for
6392 symbols which match. */
6393
6394 for (objfile *objfile : current_program_space->objfiles ())
6395 {
6396 for (compunit_symtab *s : objfile->compunits ())
6397 {
6398 QUIT;
6399 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6400 ALL_BLOCK_SYMBOLS (b, iter, sym)
6401 {
6402 if (completion_skip_symbol (mode, sym))
6403 continue;
6404
6405 completion_list_add_name (tracker,
6406 SYMBOL_LANGUAGE (sym),
6407 SYMBOL_LINKAGE_NAME (sym),
6408 lookup_name, text, word);
6409 }
6410 }
6411 }
6412
6413 for (objfile *objfile : current_program_space->objfiles ())
6414 {
6415 for (compunit_symtab *s : objfile->compunits ())
6416 {
6417 QUIT;
6418 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6419 /* Don't do this block twice. */
6420 if (b == surrounding_static_block)
6421 continue;
6422 ALL_BLOCK_SYMBOLS (b, iter, sym)
6423 {
6424 if (completion_skip_symbol (mode, sym))
6425 continue;
6426
6427 completion_list_add_name (tracker,
6428 SYMBOL_LANGUAGE (sym),
6429 SYMBOL_LINKAGE_NAME (sym),
6430 lookup_name, text, word);
6431 }
6432 }
6433 }
6434 }
6435
6436 /* Field Access */
6437
6438 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6439 for tagged types. */
6440
6441 static int
6442 ada_is_dispatch_table_ptr_type (struct type *type)
6443 {
6444 const char *name;
6445
6446 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6447 return 0;
6448
6449 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6450 if (name == NULL)
6451 return 0;
6452
6453 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6454 }
6455
6456 /* Return non-zero if TYPE is an interface tag. */
6457
6458 static int
6459 ada_is_interface_tag (struct type *type)
6460 {
6461 const char *name = TYPE_NAME (type);
6462
6463 if (name == NULL)
6464 return 0;
6465
6466 return (strcmp (name, "ada__tags__interface_tag") == 0);
6467 }
6468
6469 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6470 to be invisible to users. */
6471
6472 int
6473 ada_is_ignored_field (struct type *type, int field_num)
6474 {
6475 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6476 return 1;
6477
6478 /* Check the name of that field. */
6479 {
6480 const char *name = TYPE_FIELD_NAME (type, field_num);
6481
6482 /* Anonymous field names should not be printed.
6483 brobecker/2007-02-20: I don't think this can actually happen
6484 but we don't want to print the value of annonymous fields anyway. */
6485 if (name == NULL)
6486 return 1;
6487
6488 /* Normally, fields whose name start with an underscore ("_")
6489 are fields that have been internally generated by the compiler,
6490 and thus should not be printed. The "_parent" field is special,
6491 however: This is a field internally generated by the compiler
6492 for tagged types, and it contains the components inherited from
6493 the parent type. This field should not be printed as is, but
6494 should not be ignored either. */
6495 if (name[0] == '_' && !startswith (name, "_parent"))
6496 return 1;
6497 }
6498
6499 /* If this is the dispatch table of a tagged type or an interface tag,
6500 then ignore. */
6501 if (ada_is_tagged_type (type, 1)
6502 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6503 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6504 return 1;
6505
6506 /* Not a special field, so it should not be ignored. */
6507 return 0;
6508 }
6509
6510 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6511 pointer or reference type whose ultimate target has a tag field. */
6512
6513 int
6514 ada_is_tagged_type (struct type *type, int refok)
6515 {
6516 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6517 }
6518
6519 /* True iff TYPE represents the type of X'Tag */
6520
6521 int
6522 ada_is_tag_type (struct type *type)
6523 {
6524 type = ada_check_typedef (type);
6525
6526 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6527 return 0;
6528 else
6529 {
6530 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6531
6532 return (name != NULL
6533 && strcmp (name, "ada__tags__dispatch_table") == 0);
6534 }
6535 }
6536
6537 /* The type of the tag on VAL. */
6538
6539 struct type *
6540 ada_tag_type (struct value *val)
6541 {
6542 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6543 }
6544
6545 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6546 retired at Ada 05). */
6547
6548 static int
6549 is_ada95_tag (struct value *tag)
6550 {
6551 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6552 }
6553
6554 /* The value of the tag on VAL. */
6555
6556 struct value *
6557 ada_value_tag (struct value *val)
6558 {
6559 return ada_value_struct_elt (val, "_tag", 0);
6560 }
6561
6562 /* The value of the tag on the object of type TYPE whose contents are
6563 saved at VALADDR, if it is non-null, or is at memory address
6564 ADDRESS. */
6565
6566 static struct value *
6567 value_tag_from_contents_and_address (struct type *type,
6568 const gdb_byte *valaddr,
6569 CORE_ADDR address)
6570 {
6571 int tag_byte_offset;
6572 struct type *tag_type;
6573
6574 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6575 NULL, NULL, NULL))
6576 {
6577 const gdb_byte *valaddr1 = ((valaddr == NULL)
6578 ? NULL
6579 : valaddr + tag_byte_offset);
6580 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6581
6582 return value_from_contents_and_address (tag_type, valaddr1, address1);
6583 }
6584 return NULL;
6585 }
6586
6587 static struct type *
6588 type_from_tag (struct value *tag)
6589 {
6590 const char *type_name = ada_tag_name (tag);
6591
6592 if (type_name != NULL)
6593 return ada_find_any_type (ada_encode (type_name));
6594 return NULL;
6595 }
6596
6597 /* Given a value OBJ of a tagged type, return a value of this
6598 type at the base address of the object. The base address, as
6599 defined in Ada.Tags, it is the address of the primary tag of
6600 the object, and therefore where the field values of its full
6601 view can be fetched. */
6602
6603 struct value *
6604 ada_tag_value_at_base_address (struct value *obj)
6605 {
6606 struct value *val;
6607 LONGEST offset_to_top = 0;
6608 struct type *ptr_type, *obj_type;
6609 struct value *tag;
6610 CORE_ADDR base_address;
6611
6612 obj_type = value_type (obj);
6613
6614 /* It is the responsability of the caller to deref pointers. */
6615
6616 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6617 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6618 return obj;
6619
6620 tag = ada_value_tag (obj);
6621 if (!tag)
6622 return obj;
6623
6624 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6625
6626 if (is_ada95_tag (tag))
6627 return obj;
6628
6629 ptr_type = language_lookup_primitive_type
6630 (language_def (language_ada), target_gdbarch(), "storage_offset");
6631 ptr_type = lookup_pointer_type (ptr_type);
6632 val = value_cast (ptr_type, tag);
6633 if (!val)
6634 return obj;
6635
6636 /* It is perfectly possible that an exception be raised while
6637 trying to determine the base address, just like for the tag;
6638 see ada_tag_name for more details. We do not print the error
6639 message for the same reason. */
6640
6641 try
6642 {
6643 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6644 }
6645
6646 catch (const gdb_exception_error &e)
6647 {
6648 return obj;
6649 }
6650
6651 /* If offset is null, nothing to do. */
6652
6653 if (offset_to_top == 0)
6654 return obj;
6655
6656 /* -1 is a special case in Ada.Tags; however, what should be done
6657 is not quite clear from the documentation. So do nothing for
6658 now. */
6659
6660 if (offset_to_top == -1)
6661 return obj;
6662
6663 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6664 from the base address. This was however incompatible with
6665 C++ dispatch table: C++ uses a *negative* value to *add*
6666 to the base address. Ada's convention has therefore been
6667 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6668 use the same convention. Here, we support both cases by
6669 checking the sign of OFFSET_TO_TOP. */
6670
6671 if (offset_to_top > 0)
6672 offset_to_top = -offset_to_top;
6673
6674 base_address = value_address (obj) + offset_to_top;
6675 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6676
6677 /* Make sure that we have a proper tag at the new address.
6678 Otherwise, offset_to_top is bogus (which can happen when
6679 the object is not initialized yet). */
6680
6681 if (!tag)
6682 return obj;
6683
6684 obj_type = type_from_tag (tag);
6685
6686 if (!obj_type)
6687 return obj;
6688
6689 return value_from_contents_and_address (obj_type, NULL, base_address);
6690 }
6691
6692 /* Return the "ada__tags__type_specific_data" type. */
6693
6694 static struct type *
6695 ada_get_tsd_type (struct inferior *inf)
6696 {
6697 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6698
6699 if (data->tsd_type == 0)
6700 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6701 return data->tsd_type;
6702 }
6703
6704 /* Return the TSD (type-specific data) associated to the given TAG.
6705 TAG is assumed to be the tag of a tagged-type entity.
6706
6707 May return NULL if we are unable to get the TSD. */
6708
6709 static struct value *
6710 ada_get_tsd_from_tag (struct value *tag)
6711 {
6712 struct value *val;
6713 struct type *type;
6714
6715 /* First option: The TSD is simply stored as a field of our TAG.
6716 Only older versions of GNAT would use this format, but we have
6717 to test it first, because there are no visible markers for
6718 the current approach except the absence of that field. */
6719
6720 val = ada_value_struct_elt (tag, "tsd", 1);
6721 if (val)
6722 return val;
6723
6724 /* Try the second representation for the dispatch table (in which
6725 there is no explicit 'tsd' field in the referent of the tag pointer,
6726 and instead the tsd pointer is stored just before the dispatch
6727 table. */
6728
6729 type = ada_get_tsd_type (current_inferior());
6730 if (type == NULL)
6731 return NULL;
6732 type = lookup_pointer_type (lookup_pointer_type (type));
6733 val = value_cast (type, tag);
6734 if (val == NULL)
6735 return NULL;
6736 return value_ind (value_ptradd (val, -1));
6737 }
6738
6739 /* Given the TSD of a tag (type-specific data), return a string
6740 containing the name of the associated type.
6741
6742 The returned value is good until the next call. May return NULL
6743 if we are unable to determine the tag name. */
6744
6745 static char *
6746 ada_tag_name_from_tsd (struct value *tsd)
6747 {
6748 static char name[1024];
6749 char *p;
6750 struct value *val;
6751
6752 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6753 if (val == NULL)
6754 return NULL;
6755 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6756 for (p = name; *p != '\0'; p += 1)
6757 if (isalpha (*p))
6758 *p = tolower (*p);
6759 return name;
6760 }
6761
6762 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6763 a C string.
6764
6765 Return NULL if the TAG is not an Ada tag, or if we were unable to
6766 determine the name of that tag. The result is good until the next
6767 call. */
6768
6769 const char *
6770 ada_tag_name (struct value *tag)
6771 {
6772 char *name = NULL;
6773
6774 if (!ada_is_tag_type (value_type (tag)))
6775 return NULL;
6776
6777 /* It is perfectly possible that an exception be raised while trying
6778 to determine the TAG's name, even under normal circumstances:
6779 The associated variable may be uninitialized or corrupted, for
6780 instance. We do not let any exception propagate past this point.
6781 instead we return NULL.
6782
6783 We also do not print the error message either (which often is very
6784 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6785 the caller print a more meaningful message if necessary. */
6786 try
6787 {
6788 struct value *tsd = ada_get_tsd_from_tag (tag);
6789
6790 if (tsd != NULL)
6791 name = ada_tag_name_from_tsd (tsd);
6792 }
6793 catch (const gdb_exception_error &e)
6794 {
6795 }
6796
6797 return name;
6798 }
6799
6800 /* The parent type of TYPE, or NULL if none. */
6801
6802 struct type *
6803 ada_parent_type (struct type *type)
6804 {
6805 int i;
6806
6807 type = ada_check_typedef (type);
6808
6809 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6810 return NULL;
6811
6812 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6813 if (ada_is_parent_field (type, i))
6814 {
6815 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6816
6817 /* If the _parent field is a pointer, then dereference it. */
6818 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6819 parent_type = TYPE_TARGET_TYPE (parent_type);
6820 /* If there is a parallel XVS type, get the actual base type. */
6821 parent_type = ada_get_base_type (parent_type);
6822
6823 return ada_check_typedef (parent_type);
6824 }
6825
6826 return NULL;
6827 }
6828
6829 /* True iff field number FIELD_NUM of structure type TYPE contains the
6830 parent-type (inherited) fields of a derived type. Assumes TYPE is
6831 a structure type with at least FIELD_NUM+1 fields. */
6832
6833 int
6834 ada_is_parent_field (struct type *type, int field_num)
6835 {
6836 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6837
6838 return (name != NULL
6839 && (startswith (name, "PARENT")
6840 || startswith (name, "_parent")));
6841 }
6842
6843 /* True iff field number FIELD_NUM of structure type TYPE is a
6844 transparent wrapper field (which should be silently traversed when doing
6845 field selection and flattened when printing). Assumes TYPE is a
6846 structure type with at least FIELD_NUM+1 fields. Such fields are always
6847 structures. */
6848
6849 int
6850 ada_is_wrapper_field (struct type *type, int field_num)
6851 {
6852 const char *name = TYPE_FIELD_NAME (type, field_num);
6853
6854 if (name != NULL && strcmp (name, "RETVAL") == 0)
6855 {
6856 /* This happens in functions with "out" or "in out" parameters
6857 which are passed by copy. For such functions, GNAT describes
6858 the function's return type as being a struct where the return
6859 value is in a field called RETVAL, and where the other "out"
6860 or "in out" parameters are fields of that struct. This is not
6861 a wrapper. */
6862 return 0;
6863 }
6864
6865 return (name != NULL
6866 && (startswith (name, "PARENT")
6867 || strcmp (name, "REP") == 0
6868 || startswith (name, "_parent")
6869 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6870 }
6871
6872 /* True iff field number FIELD_NUM of structure or union type TYPE
6873 is a variant wrapper. Assumes TYPE is a structure type with at least
6874 FIELD_NUM+1 fields. */
6875
6876 int
6877 ada_is_variant_part (struct type *type, int field_num)
6878 {
6879 /* Only Ada types are eligible. */
6880 if (!ADA_TYPE_P (type))
6881 return 0;
6882
6883 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6884
6885 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6886 || (is_dynamic_field (type, field_num)
6887 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6888 == TYPE_CODE_UNION)));
6889 }
6890
6891 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6892 whose discriminants are contained in the record type OUTER_TYPE,
6893 returns the type of the controlling discriminant for the variant.
6894 May return NULL if the type could not be found. */
6895
6896 struct type *
6897 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6898 {
6899 const char *name = ada_variant_discrim_name (var_type);
6900
6901 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6902 }
6903
6904 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6905 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6906 represents a 'when others' clause; otherwise 0. */
6907
6908 int
6909 ada_is_others_clause (struct type *type, int field_num)
6910 {
6911 const char *name = TYPE_FIELD_NAME (type, field_num);
6912
6913 return (name != NULL && name[0] == 'O');
6914 }
6915
6916 /* Assuming that TYPE0 is the type of the variant part of a record,
6917 returns the name of the discriminant controlling the variant.
6918 The value is valid until the next call to ada_variant_discrim_name. */
6919
6920 const char *
6921 ada_variant_discrim_name (struct type *type0)
6922 {
6923 static char *result = NULL;
6924 static size_t result_len = 0;
6925 struct type *type;
6926 const char *name;
6927 const char *discrim_end;
6928 const char *discrim_start;
6929
6930 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6931 type = TYPE_TARGET_TYPE (type0);
6932 else
6933 type = type0;
6934
6935 name = ada_type_name (type);
6936
6937 if (name == NULL || name[0] == '\000')
6938 return "";
6939
6940 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6941 discrim_end -= 1)
6942 {
6943 if (startswith (discrim_end, "___XVN"))
6944 break;
6945 }
6946 if (discrim_end == name)
6947 return "";
6948
6949 for (discrim_start = discrim_end; discrim_start != name + 3;
6950 discrim_start -= 1)
6951 {
6952 if (discrim_start == name + 1)
6953 return "";
6954 if ((discrim_start > name + 3
6955 && startswith (discrim_start - 3, "___"))
6956 || discrim_start[-1] == '.')
6957 break;
6958 }
6959
6960 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6961 strncpy (result, discrim_start, discrim_end - discrim_start);
6962 result[discrim_end - discrim_start] = '\0';
6963 return result;
6964 }
6965
6966 /* Scan STR for a subtype-encoded number, beginning at position K.
6967 Put the position of the character just past the number scanned in
6968 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6969 Return 1 if there was a valid number at the given position, and 0
6970 otherwise. A "subtype-encoded" number consists of the absolute value
6971 in decimal, followed by the letter 'm' to indicate a negative number.
6972 Assumes 0m does not occur. */
6973
6974 int
6975 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6976 {
6977 ULONGEST RU;
6978
6979 if (!isdigit (str[k]))
6980 return 0;
6981
6982 /* Do it the hard way so as not to make any assumption about
6983 the relationship of unsigned long (%lu scan format code) and
6984 LONGEST. */
6985 RU = 0;
6986 while (isdigit (str[k]))
6987 {
6988 RU = RU * 10 + (str[k] - '0');
6989 k += 1;
6990 }
6991
6992 if (str[k] == 'm')
6993 {
6994 if (R != NULL)
6995 *R = (-(LONGEST) (RU - 1)) - 1;
6996 k += 1;
6997 }
6998 else if (R != NULL)
6999 *R = (LONGEST) RU;
7000
7001 /* NOTE on the above: Technically, C does not say what the results of
7002 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7003 number representable as a LONGEST (although either would probably work
7004 in most implementations). When RU>0, the locution in the then branch
7005 above is always equivalent to the negative of RU. */
7006
7007 if (new_k != NULL)
7008 *new_k = k;
7009 return 1;
7010 }
7011
7012 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7013 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7014 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7015
7016 int
7017 ada_in_variant (LONGEST val, struct type *type, int field_num)
7018 {
7019 const char *name = TYPE_FIELD_NAME (type, field_num);
7020 int p;
7021
7022 p = 0;
7023 while (1)
7024 {
7025 switch (name[p])
7026 {
7027 case '\0':
7028 return 0;
7029 case 'S':
7030 {
7031 LONGEST W;
7032
7033 if (!ada_scan_number (name, p + 1, &W, &p))
7034 return 0;
7035 if (val == W)
7036 return 1;
7037 break;
7038 }
7039 case 'R':
7040 {
7041 LONGEST L, U;
7042
7043 if (!ada_scan_number (name, p + 1, &L, &p)
7044 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7045 return 0;
7046 if (val >= L && val <= U)
7047 return 1;
7048 break;
7049 }
7050 case 'O':
7051 return 1;
7052 default:
7053 return 0;
7054 }
7055 }
7056 }
7057
7058 /* FIXME: Lots of redundancy below. Try to consolidate. */
7059
7060 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7061 ARG_TYPE, extract and return the value of one of its (non-static)
7062 fields. FIELDNO says which field. Differs from value_primitive_field
7063 only in that it can handle packed values of arbitrary type. */
7064
7065 static struct value *
7066 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7067 struct type *arg_type)
7068 {
7069 struct type *type;
7070
7071 arg_type = ada_check_typedef (arg_type);
7072 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7073
7074 /* Handle packed fields. It might be that the field is not packed
7075 relative to its containing structure, but the structure itself is
7076 packed; in this case we must take the bit-field path. */
7077 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7078 {
7079 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7080 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7081
7082 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7083 offset + bit_pos / 8,
7084 bit_pos % 8, bit_size, type);
7085 }
7086 else
7087 return value_primitive_field (arg1, offset, fieldno, arg_type);
7088 }
7089
7090 /* Find field with name NAME in object of type TYPE. If found,
7091 set the following for each argument that is non-null:
7092 - *FIELD_TYPE_P to the field's type;
7093 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7094 an object of that type;
7095 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7096 - *BIT_SIZE_P to its size in bits if the field is packed, and
7097 0 otherwise;
7098 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7099 fields up to but not including the desired field, or by the total
7100 number of fields if not found. A NULL value of NAME never
7101 matches; the function just counts visible fields in this case.
7102
7103 Notice that we need to handle when a tagged record hierarchy
7104 has some components with the same name, like in this scenario:
7105
7106 type Top_T is tagged record
7107 N : Integer := 1;
7108 U : Integer := 974;
7109 A : Integer := 48;
7110 end record;
7111
7112 type Middle_T is new Top.Top_T with record
7113 N : Character := 'a';
7114 C : Integer := 3;
7115 end record;
7116
7117 type Bottom_T is new Middle.Middle_T with record
7118 N : Float := 4.0;
7119 C : Character := '5';
7120 X : Integer := 6;
7121 A : Character := 'J';
7122 end record;
7123
7124 Let's say we now have a variable declared and initialized as follow:
7125
7126 TC : Top_A := new Bottom_T;
7127
7128 And then we use this variable to call this function
7129
7130 procedure Assign (Obj: in out Top_T; TV : Integer);
7131
7132 as follow:
7133
7134 Assign (Top_T (B), 12);
7135
7136 Now, we're in the debugger, and we're inside that procedure
7137 then and we want to print the value of obj.c:
7138
7139 Usually, the tagged record or one of the parent type owns the
7140 component to print and there's no issue but in this particular
7141 case, what does it mean to ask for Obj.C? Since the actual
7142 type for object is type Bottom_T, it could mean two things: type
7143 component C from the Middle_T view, but also component C from
7144 Bottom_T. So in that "undefined" case, when the component is
7145 not found in the non-resolved type (which includes all the
7146 components of the parent type), then resolve it and see if we
7147 get better luck once expanded.
7148
7149 In the case of homonyms in the derived tagged type, we don't
7150 guaranty anything, and pick the one that's easiest for us
7151 to program.
7152
7153 Returns 1 if found, 0 otherwise. */
7154
7155 static int
7156 find_struct_field (const char *name, struct type *type, int offset,
7157 struct type **field_type_p,
7158 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7159 int *index_p)
7160 {
7161 int i;
7162 int parent_offset = -1;
7163
7164 type = ada_check_typedef (type);
7165
7166 if (field_type_p != NULL)
7167 *field_type_p = NULL;
7168 if (byte_offset_p != NULL)
7169 *byte_offset_p = 0;
7170 if (bit_offset_p != NULL)
7171 *bit_offset_p = 0;
7172 if (bit_size_p != NULL)
7173 *bit_size_p = 0;
7174
7175 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7176 {
7177 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7178 int fld_offset = offset + bit_pos / 8;
7179 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7180
7181 if (t_field_name == NULL)
7182 continue;
7183
7184 else if (ada_is_parent_field (type, i))
7185 {
7186 /* This is a field pointing us to the parent type of a tagged
7187 type. As hinted in this function's documentation, we give
7188 preference to fields in the current record first, so what
7189 we do here is just record the index of this field before
7190 we skip it. If it turns out we couldn't find our field
7191 in the current record, then we'll get back to it and search
7192 inside it whether the field might exist in the parent. */
7193
7194 parent_offset = i;
7195 continue;
7196 }
7197
7198 else if (name != NULL && field_name_match (t_field_name, name))
7199 {
7200 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7201
7202 if (field_type_p != NULL)
7203 *field_type_p = TYPE_FIELD_TYPE (type, i);
7204 if (byte_offset_p != NULL)
7205 *byte_offset_p = fld_offset;
7206 if (bit_offset_p != NULL)
7207 *bit_offset_p = bit_pos % 8;
7208 if (bit_size_p != NULL)
7209 *bit_size_p = bit_size;
7210 return 1;
7211 }
7212 else if (ada_is_wrapper_field (type, i))
7213 {
7214 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7215 field_type_p, byte_offset_p, bit_offset_p,
7216 bit_size_p, index_p))
7217 return 1;
7218 }
7219 else if (ada_is_variant_part (type, i))
7220 {
7221 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7222 fixed type?? */
7223 int j;
7224 struct type *field_type
7225 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7226
7227 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7228 {
7229 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7230 fld_offset
7231 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7232 field_type_p, byte_offset_p,
7233 bit_offset_p, bit_size_p, index_p))
7234 return 1;
7235 }
7236 }
7237 else if (index_p != NULL)
7238 *index_p += 1;
7239 }
7240
7241 /* Field not found so far. If this is a tagged type which
7242 has a parent, try finding that field in the parent now. */
7243
7244 if (parent_offset != -1)
7245 {
7246 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7247 int fld_offset = offset + bit_pos / 8;
7248
7249 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7250 fld_offset, field_type_p, byte_offset_p,
7251 bit_offset_p, bit_size_p, index_p))
7252 return 1;
7253 }
7254
7255 return 0;
7256 }
7257
7258 /* Number of user-visible fields in record type TYPE. */
7259
7260 static int
7261 num_visible_fields (struct type *type)
7262 {
7263 int n;
7264
7265 n = 0;
7266 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7267 return n;
7268 }
7269
7270 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7271 and search in it assuming it has (class) type TYPE.
7272 If found, return value, else return NULL.
7273
7274 Searches recursively through wrapper fields (e.g., '_parent').
7275
7276 In the case of homonyms in the tagged types, please refer to the
7277 long explanation in find_struct_field's function documentation. */
7278
7279 static struct value *
7280 ada_search_struct_field (const char *name, struct value *arg, int offset,
7281 struct type *type)
7282 {
7283 int i;
7284 int parent_offset = -1;
7285
7286 type = ada_check_typedef (type);
7287 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7288 {
7289 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7290
7291 if (t_field_name == NULL)
7292 continue;
7293
7294 else if (ada_is_parent_field (type, i))
7295 {
7296 /* This is a field pointing us to the parent type of a tagged
7297 type. As hinted in this function's documentation, we give
7298 preference to fields in the current record first, so what
7299 we do here is just record the index of this field before
7300 we skip it. If it turns out we couldn't find our field
7301 in the current record, then we'll get back to it and search
7302 inside it whether the field might exist in the parent. */
7303
7304 parent_offset = i;
7305 continue;
7306 }
7307
7308 else if (field_name_match (t_field_name, name))
7309 return ada_value_primitive_field (arg, offset, i, type);
7310
7311 else if (ada_is_wrapper_field (type, i))
7312 {
7313 struct value *v = /* Do not let indent join lines here. */
7314 ada_search_struct_field (name, arg,
7315 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7316 TYPE_FIELD_TYPE (type, i));
7317
7318 if (v != NULL)
7319 return v;
7320 }
7321
7322 else if (ada_is_variant_part (type, i))
7323 {
7324 /* PNH: Do we ever get here? See find_struct_field. */
7325 int j;
7326 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7327 i));
7328 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7329
7330 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7331 {
7332 struct value *v = ada_search_struct_field /* Force line
7333 break. */
7334 (name, arg,
7335 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 TYPE_FIELD_TYPE (field_type, j));
7337
7338 if (v != NULL)
7339 return v;
7340 }
7341 }
7342 }
7343
7344 /* Field not found so far. If this is a tagged type which
7345 has a parent, try finding that field in the parent now. */
7346
7347 if (parent_offset != -1)
7348 {
7349 struct value *v = ada_search_struct_field (
7350 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7351 TYPE_FIELD_TYPE (type, parent_offset));
7352
7353 if (v != NULL)
7354 return v;
7355 }
7356
7357 return NULL;
7358 }
7359
7360 static struct value *ada_index_struct_field_1 (int *, struct value *,
7361 int, struct type *);
7362
7363
7364 /* Return field #INDEX in ARG, where the index is that returned by
7365 * find_struct_field through its INDEX_P argument. Adjust the address
7366 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7367 * If found, return value, else return NULL. */
7368
7369 static struct value *
7370 ada_index_struct_field (int index, struct value *arg, int offset,
7371 struct type *type)
7372 {
7373 return ada_index_struct_field_1 (&index, arg, offset, type);
7374 }
7375
7376
7377 /* Auxiliary function for ada_index_struct_field. Like
7378 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7379 * *INDEX_P. */
7380
7381 static struct value *
7382 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7383 struct type *type)
7384 {
7385 int i;
7386 type = ada_check_typedef (type);
7387
7388 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7389 {
7390 if (TYPE_FIELD_NAME (type, i) == NULL)
7391 continue;
7392 else if (ada_is_wrapper_field (type, i))
7393 {
7394 struct value *v = /* Do not let indent join lines here. */
7395 ada_index_struct_field_1 (index_p, arg,
7396 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7397 TYPE_FIELD_TYPE (type, i));
7398
7399 if (v != NULL)
7400 return v;
7401 }
7402
7403 else if (ada_is_variant_part (type, i))
7404 {
7405 /* PNH: Do we ever get here? See ada_search_struct_field,
7406 find_struct_field. */
7407 error (_("Cannot assign this kind of variant record"));
7408 }
7409 else if (*index_p == 0)
7410 return ada_value_primitive_field (arg, offset, i, type);
7411 else
7412 *index_p -= 1;
7413 }
7414 return NULL;
7415 }
7416
7417 /* Given ARG, a value of type (pointer or reference to a)*
7418 structure/union, extract the component named NAME from the ultimate
7419 target structure/union and return it as a value with its
7420 appropriate type.
7421
7422 The routine searches for NAME among all members of the structure itself
7423 and (recursively) among all members of any wrapper members
7424 (e.g., '_parent').
7425
7426 If NO_ERR, then simply return NULL in case of error, rather than
7427 calling error. */
7428
7429 struct value *
7430 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7431 {
7432 struct type *t, *t1;
7433 struct value *v;
7434 int check_tag;
7435
7436 v = NULL;
7437 t1 = t = ada_check_typedef (value_type (arg));
7438 if (TYPE_CODE (t) == TYPE_CODE_REF)
7439 {
7440 t1 = TYPE_TARGET_TYPE (t);
7441 if (t1 == NULL)
7442 goto BadValue;
7443 t1 = ada_check_typedef (t1);
7444 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7445 {
7446 arg = coerce_ref (arg);
7447 t = t1;
7448 }
7449 }
7450
7451 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7452 {
7453 t1 = TYPE_TARGET_TYPE (t);
7454 if (t1 == NULL)
7455 goto BadValue;
7456 t1 = ada_check_typedef (t1);
7457 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7458 {
7459 arg = value_ind (arg);
7460 t = t1;
7461 }
7462 else
7463 break;
7464 }
7465
7466 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7467 goto BadValue;
7468
7469 if (t1 == t)
7470 v = ada_search_struct_field (name, arg, 0, t);
7471 else
7472 {
7473 int bit_offset, bit_size, byte_offset;
7474 struct type *field_type;
7475 CORE_ADDR address;
7476
7477 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7478 address = value_address (ada_value_ind (arg));
7479 else
7480 address = value_address (ada_coerce_ref (arg));
7481
7482 /* Check to see if this is a tagged type. We also need to handle
7483 the case where the type is a reference to a tagged type, but
7484 we have to be careful to exclude pointers to tagged types.
7485 The latter should be shown as usual (as a pointer), whereas
7486 a reference should mostly be transparent to the user. */
7487
7488 if (ada_is_tagged_type (t1, 0)
7489 || (TYPE_CODE (t1) == TYPE_CODE_REF
7490 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7491 {
7492 /* We first try to find the searched field in the current type.
7493 If not found then let's look in the fixed type. */
7494
7495 if (!find_struct_field (name, t1, 0,
7496 &field_type, &byte_offset, &bit_offset,
7497 &bit_size, NULL))
7498 check_tag = 1;
7499 else
7500 check_tag = 0;
7501 }
7502 else
7503 check_tag = 0;
7504
7505 /* Convert to fixed type in all cases, so that we have proper
7506 offsets to each field in unconstrained record types. */
7507 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7508 address, NULL, check_tag);
7509
7510 if (find_struct_field (name, t1, 0,
7511 &field_type, &byte_offset, &bit_offset,
7512 &bit_size, NULL))
7513 {
7514 if (bit_size != 0)
7515 {
7516 if (TYPE_CODE (t) == TYPE_CODE_REF)
7517 arg = ada_coerce_ref (arg);
7518 else
7519 arg = ada_value_ind (arg);
7520 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7521 bit_offset, bit_size,
7522 field_type);
7523 }
7524 else
7525 v = value_at_lazy (field_type, address + byte_offset);
7526 }
7527 }
7528
7529 if (v != NULL || no_err)
7530 return v;
7531 else
7532 error (_("There is no member named %s."), name);
7533
7534 BadValue:
7535 if (no_err)
7536 return NULL;
7537 else
7538 error (_("Attempt to extract a component of "
7539 "a value that is not a record."));
7540 }
7541
7542 /* Return a string representation of type TYPE. */
7543
7544 static std::string
7545 type_as_string (struct type *type)
7546 {
7547 string_file tmp_stream;
7548
7549 type_print (type, "", &tmp_stream, -1);
7550
7551 return std::move (tmp_stream.string ());
7552 }
7553
7554 /* Given a type TYPE, look up the type of the component of type named NAME.
7555 If DISPP is non-null, add its byte displacement from the beginning of a
7556 structure (pointed to by a value) of type TYPE to *DISPP (does not
7557 work for packed fields).
7558
7559 Matches any field whose name has NAME as a prefix, possibly
7560 followed by "___".
7561
7562 TYPE can be either a struct or union. If REFOK, TYPE may also
7563 be a (pointer or reference)+ to a struct or union, and the
7564 ultimate target type will be searched.
7565
7566 Looks recursively into variant clauses and parent types.
7567
7568 In the case of homonyms in the tagged types, please refer to the
7569 long explanation in find_struct_field's function documentation.
7570
7571 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7572 TYPE is not a type of the right kind. */
7573
7574 static struct type *
7575 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7576 int noerr)
7577 {
7578 int i;
7579 int parent_offset = -1;
7580
7581 if (name == NULL)
7582 goto BadName;
7583
7584 if (refok && type != NULL)
7585 while (1)
7586 {
7587 type = ada_check_typedef (type);
7588 if (TYPE_CODE (type) != TYPE_CODE_PTR
7589 && TYPE_CODE (type) != TYPE_CODE_REF)
7590 break;
7591 type = TYPE_TARGET_TYPE (type);
7592 }
7593
7594 if (type == NULL
7595 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7596 && TYPE_CODE (type) != TYPE_CODE_UNION))
7597 {
7598 if (noerr)
7599 return NULL;
7600
7601 error (_("Type %s is not a structure or union type"),
7602 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7603 }
7604
7605 type = to_static_fixed_type (type);
7606
7607 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7608 {
7609 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7610 struct type *t;
7611
7612 if (t_field_name == NULL)
7613 continue;
7614
7615 else if (ada_is_parent_field (type, i))
7616 {
7617 /* This is a field pointing us to the parent type of a tagged
7618 type. As hinted in this function's documentation, we give
7619 preference to fields in the current record first, so what
7620 we do here is just record the index of this field before
7621 we skip it. If it turns out we couldn't find our field
7622 in the current record, then we'll get back to it and search
7623 inside it whether the field might exist in the parent. */
7624
7625 parent_offset = i;
7626 continue;
7627 }
7628
7629 else if (field_name_match (t_field_name, name))
7630 return TYPE_FIELD_TYPE (type, i);
7631
7632 else if (ada_is_wrapper_field (type, i))
7633 {
7634 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7635 0, 1);
7636 if (t != NULL)
7637 return t;
7638 }
7639
7640 else if (ada_is_variant_part (type, i))
7641 {
7642 int j;
7643 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7644 i));
7645
7646 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7647 {
7648 /* FIXME pnh 2008/01/26: We check for a field that is
7649 NOT wrapped in a struct, since the compiler sometimes
7650 generates these for unchecked variant types. Revisit
7651 if the compiler changes this practice. */
7652 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7653
7654 if (v_field_name != NULL
7655 && field_name_match (v_field_name, name))
7656 t = TYPE_FIELD_TYPE (field_type, j);
7657 else
7658 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7659 j),
7660 name, 0, 1);
7661
7662 if (t != NULL)
7663 return t;
7664 }
7665 }
7666
7667 }
7668
7669 /* Field not found so far. If this is a tagged type which
7670 has a parent, try finding that field in the parent now. */
7671
7672 if (parent_offset != -1)
7673 {
7674 struct type *t;
7675
7676 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7677 name, 0, 1);
7678 if (t != NULL)
7679 return t;
7680 }
7681
7682 BadName:
7683 if (!noerr)
7684 {
7685 const char *name_str = name != NULL ? name : _("<null>");
7686
7687 error (_("Type %s has no component named %s"),
7688 type_as_string (type).c_str (), name_str);
7689 }
7690
7691 return NULL;
7692 }
7693
7694 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7695 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7696 represents an unchecked union (that is, the variant part of a
7697 record that is named in an Unchecked_Union pragma). */
7698
7699 static int
7700 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7701 {
7702 const char *discrim_name = ada_variant_discrim_name (var_type);
7703
7704 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7705 }
7706
7707
7708 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7709 within a value of type OUTER_TYPE that is stored in GDB at
7710 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7711 numbering from 0) is applicable. Returns -1 if none are. */
7712
7713 int
7714 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7715 const gdb_byte *outer_valaddr)
7716 {
7717 int others_clause;
7718 int i;
7719 const char *discrim_name = ada_variant_discrim_name (var_type);
7720 struct value *outer;
7721 struct value *discrim;
7722 LONGEST discrim_val;
7723
7724 /* Using plain value_from_contents_and_address here causes problems
7725 because we will end up trying to resolve a type that is currently
7726 being constructed. */
7727 outer = value_from_contents_and_address_unresolved (outer_type,
7728 outer_valaddr, 0);
7729 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7730 if (discrim == NULL)
7731 return -1;
7732 discrim_val = value_as_long (discrim);
7733
7734 others_clause = -1;
7735 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7736 {
7737 if (ada_is_others_clause (var_type, i))
7738 others_clause = i;
7739 else if (ada_in_variant (discrim_val, var_type, i))
7740 return i;
7741 }
7742
7743 return others_clause;
7744 }
7745 \f
7746
7747
7748 /* Dynamic-Sized Records */
7749
7750 /* Strategy: The type ostensibly attached to a value with dynamic size
7751 (i.e., a size that is not statically recorded in the debugging
7752 data) does not accurately reflect the size or layout of the value.
7753 Our strategy is to convert these values to values with accurate,
7754 conventional types that are constructed on the fly. */
7755
7756 /* There is a subtle and tricky problem here. In general, we cannot
7757 determine the size of dynamic records without its data. However,
7758 the 'struct value' data structure, which GDB uses to represent
7759 quantities in the inferior process (the target), requires the size
7760 of the type at the time of its allocation in order to reserve space
7761 for GDB's internal copy of the data. That's why the
7762 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7763 rather than struct value*s.
7764
7765 However, GDB's internal history variables ($1, $2, etc.) are
7766 struct value*s containing internal copies of the data that are not, in
7767 general, the same as the data at their corresponding addresses in
7768 the target. Fortunately, the types we give to these values are all
7769 conventional, fixed-size types (as per the strategy described
7770 above), so that we don't usually have to perform the
7771 'to_fixed_xxx_type' conversions to look at their values.
7772 Unfortunately, there is one exception: if one of the internal
7773 history variables is an array whose elements are unconstrained
7774 records, then we will need to create distinct fixed types for each
7775 element selected. */
7776
7777 /* The upshot of all of this is that many routines take a (type, host
7778 address, target address) triple as arguments to represent a value.
7779 The host address, if non-null, is supposed to contain an internal
7780 copy of the relevant data; otherwise, the program is to consult the
7781 target at the target address. */
7782
7783 /* Assuming that VAL0 represents a pointer value, the result of
7784 dereferencing it. Differs from value_ind in its treatment of
7785 dynamic-sized types. */
7786
7787 struct value *
7788 ada_value_ind (struct value *val0)
7789 {
7790 struct value *val = value_ind (val0);
7791
7792 if (ada_is_tagged_type (value_type (val), 0))
7793 val = ada_tag_value_at_base_address (val);
7794
7795 return ada_to_fixed_value (val);
7796 }
7797
7798 /* The value resulting from dereferencing any "reference to"
7799 qualifiers on VAL0. */
7800
7801 static struct value *
7802 ada_coerce_ref (struct value *val0)
7803 {
7804 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7805 {
7806 struct value *val = val0;
7807
7808 val = coerce_ref (val);
7809
7810 if (ada_is_tagged_type (value_type (val), 0))
7811 val = ada_tag_value_at_base_address (val);
7812
7813 return ada_to_fixed_value (val);
7814 }
7815 else
7816 return val0;
7817 }
7818
7819 /* Return OFF rounded upward if necessary to a multiple of
7820 ALIGNMENT (a power of 2). */
7821
7822 static unsigned int
7823 align_value (unsigned int off, unsigned int alignment)
7824 {
7825 return (off + alignment - 1) & ~(alignment - 1);
7826 }
7827
7828 /* Return the bit alignment required for field #F of template type TYPE. */
7829
7830 static unsigned int
7831 field_alignment (struct type *type, int f)
7832 {
7833 const char *name = TYPE_FIELD_NAME (type, f);
7834 int len;
7835 int align_offset;
7836
7837 /* The field name should never be null, unless the debugging information
7838 is somehow malformed. In this case, we assume the field does not
7839 require any alignment. */
7840 if (name == NULL)
7841 return 1;
7842
7843 len = strlen (name);
7844
7845 if (!isdigit (name[len - 1]))
7846 return 1;
7847
7848 if (isdigit (name[len - 2]))
7849 align_offset = len - 2;
7850 else
7851 align_offset = len - 1;
7852
7853 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7854 return TARGET_CHAR_BIT;
7855
7856 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7857 }
7858
7859 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7860
7861 static struct symbol *
7862 ada_find_any_type_symbol (const char *name)
7863 {
7864 struct symbol *sym;
7865
7866 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7867 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7868 return sym;
7869
7870 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7871 return sym;
7872 }
7873
7874 /* Find a type named NAME. Ignores ambiguity. This routine will look
7875 solely for types defined by debug info, it will not search the GDB
7876 primitive types. */
7877
7878 static struct type *
7879 ada_find_any_type (const char *name)
7880 {
7881 struct symbol *sym = ada_find_any_type_symbol (name);
7882
7883 if (sym != NULL)
7884 return SYMBOL_TYPE (sym);
7885
7886 return NULL;
7887 }
7888
7889 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7890 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7891 symbol, in which case it is returned. Otherwise, this looks for
7892 symbols whose name is that of NAME_SYM suffixed with "___XR".
7893 Return symbol if found, and NULL otherwise. */
7894
7895 static bool
7896 ada_is_renaming_symbol (struct symbol *name_sym)
7897 {
7898 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7899 return strstr (name, "___XR") != NULL;
7900 }
7901
7902 /* Because of GNAT encoding conventions, several GDB symbols may match a
7903 given type name. If the type denoted by TYPE0 is to be preferred to
7904 that of TYPE1 for purposes of type printing, return non-zero;
7905 otherwise return 0. */
7906
7907 int
7908 ada_prefer_type (struct type *type0, struct type *type1)
7909 {
7910 if (type1 == NULL)
7911 return 1;
7912 else if (type0 == NULL)
7913 return 0;
7914 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7915 return 1;
7916 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7917 return 0;
7918 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7919 return 1;
7920 else if (ada_is_constrained_packed_array_type (type0))
7921 return 1;
7922 else if (ada_is_array_descriptor_type (type0)
7923 && !ada_is_array_descriptor_type (type1))
7924 return 1;
7925 else
7926 {
7927 const char *type0_name = TYPE_NAME (type0);
7928 const char *type1_name = TYPE_NAME (type1);
7929
7930 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7931 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7932 return 1;
7933 }
7934 return 0;
7935 }
7936
7937 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7938 null. */
7939
7940 const char *
7941 ada_type_name (struct type *type)
7942 {
7943 if (type == NULL)
7944 return NULL;
7945 return TYPE_NAME (type);
7946 }
7947
7948 /* Search the list of "descriptive" types associated to TYPE for a type
7949 whose name is NAME. */
7950
7951 static struct type *
7952 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7953 {
7954 struct type *result, *tmp;
7955
7956 if (ada_ignore_descriptive_types_p)
7957 return NULL;
7958
7959 /* If there no descriptive-type info, then there is no parallel type
7960 to be found. */
7961 if (!HAVE_GNAT_AUX_INFO (type))
7962 return NULL;
7963
7964 result = TYPE_DESCRIPTIVE_TYPE (type);
7965 while (result != NULL)
7966 {
7967 const char *result_name = ada_type_name (result);
7968
7969 if (result_name == NULL)
7970 {
7971 warning (_("unexpected null name on descriptive type"));
7972 return NULL;
7973 }
7974
7975 /* If the names match, stop. */
7976 if (strcmp (result_name, name) == 0)
7977 break;
7978
7979 /* Otherwise, look at the next item on the list, if any. */
7980 if (HAVE_GNAT_AUX_INFO (result))
7981 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7982 else
7983 tmp = NULL;
7984
7985 /* If not found either, try after having resolved the typedef. */
7986 if (tmp != NULL)
7987 result = tmp;
7988 else
7989 {
7990 result = check_typedef (result);
7991 if (HAVE_GNAT_AUX_INFO (result))
7992 result = TYPE_DESCRIPTIVE_TYPE (result);
7993 else
7994 result = NULL;
7995 }
7996 }
7997
7998 /* If we didn't find a match, see whether this is a packed array. With
7999 older compilers, the descriptive type information is either absent or
8000 irrelevant when it comes to packed arrays so the above lookup fails.
8001 Fall back to using a parallel lookup by name in this case. */
8002 if (result == NULL && ada_is_constrained_packed_array_type (type))
8003 return ada_find_any_type (name);
8004
8005 return result;
8006 }
8007
8008 /* Find a parallel type to TYPE with the specified NAME, using the
8009 descriptive type taken from the debugging information, if available,
8010 and otherwise using the (slower) name-based method. */
8011
8012 static struct type *
8013 ada_find_parallel_type_with_name (struct type *type, const char *name)
8014 {
8015 struct type *result = NULL;
8016
8017 if (HAVE_GNAT_AUX_INFO (type))
8018 result = find_parallel_type_by_descriptive_type (type, name);
8019 else
8020 result = ada_find_any_type (name);
8021
8022 return result;
8023 }
8024
8025 /* Same as above, but specify the name of the parallel type by appending
8026 SUFFIX to the name of TYPE. */
8027
8028 struct type *
8029 ada_find_parallel_type (struct type *type, const char *suffix)
8030 {
8031 char *name;
8032 const char *type_name = ada_type_name (type);
8033 int len;
8034
8035 if (type_name == NULL)
8036 return NULL;
8037
8038 len = strlen (type_name);
8039
8040 name = (char *) alloca (len + strlen (suffix) + 1);
8041
8042 strcpy (name, type_name);
8043 strcpy (name + len, suffix);
8044
8045 return ada_find_parallel_type_with_name (type, name);
8046 }
8047
8048 /* If TYPE is a variable-size record type, return the corresponding template
8049 type describing its fields. Otherwise, return NULL. */
8050
8051 static struct type *
8052 dynamic_template_type (struct type *type)
8053 {
8054 type = ada_check_typedef (type);
8055
8056 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8057 || ada_type_name (type) == NULL)
8058 return NULL;
8059 else
8060 {
8061 int len = strlen (ada_type_name (type));
8062
8063 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8064 return type;
8065 else
8066 return ada_find_parallel_type (type, "___XVE");
8067 }
8068 }
8069
8070 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8071 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8072
8073 static int
8074 is_dynamic_field (struct type *templ_type, int field_num)
8075 {
8076 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8077
8078 return name != NULL
8079 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8080 && strstr (name, "___XVL") != NULL;
8081 }
8082
8083 /* The index of the variant field of TYPE, or -1 if TYPE does not
8084 represent a variant record type. */
8085
8086 static int
8087 variant_field_index (struct type *type)
8088 {
8089 int f;
8090
8091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8092 return -1;
8093
8094 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8095 {
8096 if (ada_is_variant_part (type, f))
8097 return f;
8098 }
8099 return -1;
8100 }
8101
8102 /* A record type with no fields. */
8103
8104 static struct type *
8105 empty_record (struct type *templ)
8106 {
8107 struct type *type = alloc_type_copy (templ);
8108
8109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8110 TYPE_NFIELDS (type) = 0;
8111 TYPE_FIELDS (type) = NULL;
8112 INIT_NONE_SPECIFIC (type);
8113 TYPE_NAME (type) = "<empty>";
8114 TYPE_LENGTH (type) = 0;
8115 return type;
8116 }
8117
8118 /* An ordinary record type (with fixed-length fields) that describes
8119 the value of type TYPE at VALADDR or ADDRESS (see comments at
8120 the beginning of this section) VAL according to GNAT conventions.
8121 DVAL0 should describe the (portion of a) record that contains any
8122 necessary discriminants. It should be NULL if value_type (VAL) is
8123 an outer-level type (i.e., as opposed to a branch of a variant.) A
8124 variant field (unless unchecked) is replaced by a particular branch
8125 of the variant.
8126
8127 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8128 length are not statically known are discarded. As a consequence,
8129 VALADDR, ADDRESS and DVAL0 are ignored.
8130
8131 NOTE: Limitations: For now, we assume that dynamic fields and
8132 variants occupy whole numbers of bytes. However, they need not be
8133 byte-aligned. */
8134
8135 struct type *
8136 ada_template_to_fixed_record_type_1 (struct type *type,
8137 const gdb_byte *valaddr,
8138 CORE_ADDR address, struct value *dval0,
8139 int keep_dynamic_fields)
8140 {
8141 struct value *mark = value_mark ();
8142 struct value *dval;
8143 struct type *rtype;
8144 int nfields, bit_len;
8145 int variant_field;
8146 long off;
8147 int fld_bit_len;
8148 int f;
8149
8150 /* Compute the number of fields in this record type that are going
8151 to be processed: unless keep_dynamic_fields, this includes only
8152 fields whose position and length are static will be processed. */
8153 if (keep_dynamic_fields)
8154 nfields = TYPE_NFIELDS (type);
8155 else
8156 {
8157 nfields = 0;
8158 while (nfields < TYPE_NFIELDS (type)
8159 && !ada_is_variant_part (type, nfields)
8160 && !is_dynamic_field (type, nfields))
8161 nfields++;
8162 }
8163
8164 rtype = alloc_type_copy (type);
8165 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8166 INIT_NONE_SPECIFIC (rtype);
8167 TYPE_NFIELDS (rtype) = nfields;
8168 TYPE_FIELDS (rtype) = (struct field *)
8169 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8170 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8171 TYPE_NAME (rtype) = ada_type_name (type);
8172 TYPE_FIXED_INSTANCE (rtype) = 1;
8173
8174 off = 0;
8175 bit_len = 0;
8176 variant_field = -1;
8177
8178 for (f = 0; f < nfields; f += 1)
8179 {
8180 off = align_value (off, field_alignment (type, f))
8181 + TYPE_FIELD_BITPOS (type, f);
8182 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8183 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8184
8185 if (ada_is_variant_part (type, f))
8186 {
8187 variant_field = f;
8188 fld_bit_len = 0;
8189 }
8190 else if (is_dynamic_field (type, f))
8191 {
8192 const gdb_byte *field_valaddr = valaddr;
8193 CORE_ADDR field_address = address;
8194 struct type *field_type =
8195 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8196
8197 if (dval0 == NULL)
8198 {
8199 /* rtype's length is computed based on the run-time
8200 value of discriminants. If the discriminants are not
8201 initialized, the type size may be completely bogus and
8202 GDB may fail to allocate a value for it. So check the
8203 size first before creating the value. */
8204 ada_ensure_varsize_limit (rtype);
8205 /* Using plain value_from_contents_and_address here
8206 causes problems because we will end up trying to
8207 resolve a type that is currently being
8208 constructed. */
8209 dval = value_from_contents_and_address_unresolved (rtype,
8210 valaddr,
8211 address);
8212 rtype = value_type (dval);
8213 }
8214 else
8215 dval = dval0;
8216
8217 /* If the type referenced by this field is an aligner type, we need
8218 to unwrap that aligner type, because its size might not be set.
8219 Keeping the aligner type would cause us to compute the wrong
8220 size for this field, impacting the offset of the all the fields
8221 that follow this one. */
8222 if (ada_is_aligner_type (field_type))
8223 {
8224 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8225
8226 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8227 field_address = cond_offset_target (field_address, field_offset);
8228 field_type = ada_aligned_type (field_type);
8229 }
8230
8231 field_valaddr = cond_offset_host (field_valaddr,
8232 off / TARGET_CHAR_BIT);
8233 field_address = cond_offset_target (field_address,
8234 off / TARGET_CHAR_BIT);
8235
8236 /* Get the fixed type of the field. Note that, in this case,
8237 we do not want to get the real type out of the tag: if
8238 the current field is the parent part of a tagged record,
8239 we will get the tag of the object. Clearly wrong: the real
8240 type of the parent is not the real type of the child. We
8241 would end up in an infinite loop. */
8242 field_type = ada_get_base_type (field_type);
8243 field_type = ada_to_fixed_type (field_type, field_valaddr,
8244 field_address, dval, 0);
8245 /* If the field size is already larger than the maximum
8246 object size, then the record itself will necessarily
8247 be larger than the maximum object size. We need to make
8248 this check now, because the size might be so ridiculously
8249 large (due to an uninitialized variable in the inferior)
8250 that it would cause an overflow when adding it to the
8251 record size. */
8252 ada_ensure_varsize_limit (field_type);
8253
8254 TYPE_FIELD_TYPE (rtype, f) = field_type;
8255 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8256 /* The multiplication can potentially overflow. But because
8257 the field length has been size-checked just above, and
8258 assuming that the maximum size is a reasonable value,
8259 an overflow should not happen in practice. So rather than
8260 adding overflow recovery code to this already complex code,
8261 we just assume that it's not going to happen. */
8262 fld_bit_len =
8263 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8264 }
8265 else
8266 {
8267 /* Note: If this field's type is a typedef, it is important
8268 to preserve the typedef layer.
8269
8270 Otherwise, we might be transforming a typedef to a fat
8271 pointer (encoding a pointer to an unconstrained array),
8272 into a basic fat pointer (encoding an unconstrained
8273 array). As both types are implemented using the same
8274 structure, the typedef is the only clue which allows us
8275 to distinguish between the two options. Stripping it
8276 would prevent us from printing this field appropriately. */
8277 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8278 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8279 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8280 fld_bit_len =
8281 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8282 else
8283 {
8284 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8285
8286 /* We need to be careful of typedefs when computing
8287 the length of our field. If this is a typedef,
8288 get the length of the target type, not the length
8289 of the typedef. */
8290 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8291 field_type = ada_typedef_target_type (field_type);
8292
8293 fld_bit_len =
8294 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8295 }
8296 }
8297 if (off + fld_bit_len > bit_len)
8298 bit_len = off + fld_bit_len;
8299 off += fld_bit_len;
8300 TYPE_LENGTH (rtype) =
8301 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8302 }
8303
8304 /* We handle the variant part, if any, at the end because of certain
8305 odd cases in which it is re-ordered so as NOT to be the last field of
8306 the record. This can happen in the presence of representation
8307 clauses. */
8308 if (variant_field >= 0)
8309 {
8310 struct type *branch_type;
8311
8312 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8313
8314 if (dval0 == NULL)
8315 {
8316 /* Using plain value_from_contents_and_address here causes
8317 problems because we will end up trying to resolve a type
8318 that is currently being constructed. */
8319 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8320 address);
8321 rtype = value_type (dval);
8322 }
8323 else
8324 dval = dval0;
8325
8326 branch_type =
8327 to_fixed_variant_branch_type
8328 (TYPE_FIELD_TYPE (type, variant_field),
8329 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8330 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8331 if (branch_type == NULL)
8332 {
8333 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8334 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8335 TYPE_NFIELDS (rtype) -= 1;
8336 }
8337 else
8338 {
8339 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8340 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8341 fld_bit_len =
8342 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8343 TARGET_CHAR_BIT;
8344 if (off + fld_bit_len > bit_len)
8345 bit_len = off + fld_bit_len;
8346 TYPE_LENGTH (rtype) =
8347 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8348 }
8349 }
8350
8351 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8352 should contain the alignment of that record, which should be a strictly
8353 positive value. If null or negative, then something is wrong, most
8354 probably in the debug info. In that case, we don't round up the size
8355 of the resulting type. If this record is not part of another structure,
8356 the current RTYPE length might be good enough for our purposes. */
8357 if (TYPE_LENGTH (type) <= 0)
8358 {
8359 if (TYPE_NAME (rtype))
8360 warning (_("Invalid type size for `%s' detected: %s."),
8361 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8362 else
8363 warning (_("Invalid type size for <unnamed> detected: %s."),
8364 pulongest (TYPE_LENGTH (type)));
8365 }
8366 else
8367 {
8368 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8369 TYPE_LENGTH (type));
8370 }
8371
8372 value_free_to_mark (mark);
8373 if (TYPE_LENGTH (rtype) > varsize_limit)
8374 error (_("record type with dynamic size is larger than varsize-limit"));
8375 return rtype;
8376 }
8377
8378 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8379 of 1. */
8380
8381 static struct type *
8382 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8383 CORE_ADDR address, struct value *dval0)
8384 {
8385 return ada_template_to_fixed_record_type_1 (type, valaddr,
8386 address, dval0, 1);
8387 }
8388
8389 /* An ordinary record type in which ___XVL-convention fields and
8390 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8391 static approximations, containing all possible fields. Uses
8392 no runtime values. Useless for use in values, but that's OK,
8393 since the results are used only for type determinations. Works on both
8394 structs and unions. Representation note: to save space, we memorize
8395 the result of this function in the TYPE_TARGET_TYPE of the
8396 template type. */
8397
8398 static struct type *
8399 template_to_static_fixed_type (struct type *type0)
8400 {
8401 struct type *type;
8402 int nfields;
8403 int f;
8404
8405 /* No need no do anything if the input type is already fixed. */
8406 if (TYPE_FIXED_INSTANCE (type0))
8407 return type0;
8408
8409 /* Likewise if we already have computed the static approximation. */
8410 if (TYPE_TARGET_TYPE (type0) != NULL)
8411 return TYPE_TARGET_TYPE (type0);
8412
8413 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8414 type = type0;
8415 nfields = TYPE_NFIELDS (type0);
8416
8417 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8418 recompute all over next time. */
8419 TYPE_TARGET_TYPE (type0) = type;
8420
8421 for (f = 0; f < nfields; f += 1)
8422 {
8423 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8424 struct type *new_type;
8425
8426 if (is_dynamic_field (type0, f))
8427 {
8428 field_type = ada_check_typedef (field_type);
8429 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8430 }
8431 else
8432 new_type = static_unwrap_type (field_type);
8433
8434 if (new_type != field_type)
8435 {
8436 /* Clone TYPE0 only the first time we get a new field type. */
8437 if (type == type0)
8438 {
8439 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8440 TYPE_CODE (type) = TYPE_CODE (type0);
8441 INIT_NONE_SPECIFIC (type);
8442 TYPE_NFIELDS (type) = nfields;
8443 TYPE_FIELDS (type) = (struct field *)
8444 TYPE_ALLOC (type, nfields * sizeof (struct field));
8445 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8446 sizeof (struct field) * nfields);
8447 TYPE_NAME (type) = ada_type_name (type0);
8448 TYPE_FIXED_INSTANCE (type) = 1;
8449 TYPE_LENGTH (type) = 0;
8450 }
8451 TYPE_FIELD_TYPE (type, f) = new_type;
8452 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8453 }
8454 }
8455
8456 return type;
8457 }
8458
8459 /* Given an object of type TYPE whose contents are at VALADDR and
8460 whose address in memory is ADDRESS, returns a revision of TYPE,
8461 which should be a non-dynamic-sized record, in which the variant
8462 part, if any, is replaced with the appropriate branch. Looks
8463 for discriminant values in DVAL0, which can be NULL if the record
8464 contains the necessary discriminant values. */
8465
8466 static struct type *
8467 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8468 CORE_ADDR address, struct value *dval0)
8469 {
8470 struct value *mark = value_mark ();
8471 struct value *dval;
8472 struct type *rtype;
8473 struct type *branch_type;
8474 int nfields = TYPE_NFIELDS (type);
8475 int variant_field = variant_field_index (type);
8476
8477 if (variant_field == -1)
8478 return type;
8479
8480 if (dval0 == NULL)
8481 {
8482 dval = value_from_contents_and_address (type, valaddr, address);
8483 type = value_type (dval);
8484 }
8485 else
8486 dval = dval0;
8487
8488 rtype = alloc_type_copy (type);
8489 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8490 INIT_NONE_SPECIFIC (rtype);
8491 TYPE_NFIELDS (rtype) = nfields;
8492 TYPE_FIELDS (rtype) =
8493 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8494 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8495 sizeof (struct field) * nfields);
8496 TYPE_NAME (rtype) = ada_type_name (type);
8497 TYPE_FIXED_INSTANCE (rtype) = 1;
8498 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8499
8500 branch_type = to_fixed_variant_branch_type
8501 (TYPE_FIELD_TYPE (type, variant_field),
8502 cond_offset_host (valaddr,
8503 TYPE_FIELD_BITPOS (type, variant_field)
8504 / TARGET_CHAR_BIT),
8505 cond_offset_target (address,
8506 TYPE_FIELD_BITPOS (type, variant_field)
8507 / TARGET_CHAR_BIT), dval);
8508 if (branch_type == NULL)
8509 {
8510 int f;
8511
8512 for (f = variant_field + 1; f < nfields; f += 1)
8513 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8514 TYPE_NFIELDS (rtype) -= 1;
8515 }
8516 else
8517 {
8518 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8519 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8520 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8521 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8522 }
8523 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8524
8525 value_free_to_mark (mark);
8526 return rtype;
8527 }
8528
8529 /* An ordinary record type (with fixed-length fields) that describes
8530 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8531 beginning of this section]. Any necessary discriminants' values
8532 should be in DVAL, a record value; it may be NULL if the object
8533 at ADDR itself contains any necessary discriminant values.
8534 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8535 values from the record are needed. Except in the case that DVAL,
8536 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8537 unchecked) is replaced by a particular branch of the variant.
8538
8539 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8540 is questionable and may be removed. It can arise during the
8541 processing of an unconstrained-array-of-record type where all the
8542 variant branches have exactly the same size. This is because in
8543 such cases, the compiler does not bother to use the XVS convention
8544 when encoding the record. I am currently dubious of this
8545 shortcut and suspect the compiler should be altered. FIXME. */
8546
8547 static struct type *
8548 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8549 CORE_ADDR address, struct value *dval)
8550 {
8551 struct type *templ_type;
8552
8553 if (TYPE_FIXED_INSTANCE (type0))
8554 return type0;
8555
8556 templ_type = dynamic_template_type (type0);
8557
8558 if (templ_type != NULL)
8559 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8560 else if (variant_field_index (type0) >= 0)
8561 {
8562 if (dval == NULL && valaddr == NULL && address == 0)
8563 return type0;
8564 return to_record_with_fixed_variant_part (type0, valaddr, address,
8565 dval);
8566 }
8567 else
8568 {
8569 TYPE_FIXED_INSTANCE (type0) = 1;
8570 return type0;
8571 }
8572
8573 }
8574
8575 /* An ordinary record type (with fixed-length fields) that describes
8576 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8577 union type. Any necessary discriminants' values should be in DVAL,
8578 a record value. That is, this routine selects the appropriate
8579 branch of the union at ADDR according to the discriminant value
8580 indicated in the union's type name. Returns VAR_TYPE0 itself if
8581 it represents a variant subject to a pragma Unchecked_Union. */
8582
8583 static struct type *
8584 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8585 CORE_ADDR address, struct value *dval)
8586 {
8587 int which;
8588 struct type *templ_type;
8589 struct type *var_type;
8590
8591 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8592 var_type = TYPE_TARGET_TYPE (var_type0);
8593 else
8594 var_type = var_type0;
8595
8596 templ_type = ada_find_parallel_type (var_type, "___XVU");
8597
8598 if (templ_type != NULL)
8599 var_type = templ_type;
8600
8601 if (is_unchecked_variant (var_type, value_type (dval)))
8602 return var_type0;
8603 which =
8604 ada_which_variant_applies (var_type,
8605 value_type (dval), value_contents (dval));
8606
8607 if (which < 0)
8608 return empty_record (var_type);
8609 else if (is_dynamic_field (var_type, which))
8610 return to_fixed_record_type
8611 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8612 valaddr, address, dval);
8613 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8614 return
8615 to_fixed_record_type
8616 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8617 else
8618 return TYPE_FIELD_TYPE (var_type, which);
8619 }
8620
8621 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8622 ENCODING_TYPE, a type following the GNAT conventions for discrete
8623 type encodings, only carries redundant information. */
8624
8625 static int
8626 ada_is_redundant_range_encoding (struct type *range_type,
8627 struct type *encoding_type)
8628 {
8629 const char *bounds_str;
8630 int n;
8631 LONGEST lo, hi;
8632
8633 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8634
8635 if (TYPE_CODE (get_base_type (range_type))
8636 != TYPE_CODE (get_base_type (encoding_type)))
8637 {
8638 /* The compiler probably used a simple base type to describe
8639 the range type instead of the range's actual base type,
8640 expecting us to get the real base type from the encoding
8641 anyway. In this situation, the encoding cannot be ignored
8642 as redundant. */
8643 return 0;
8644 }
8645
8646 if (is_dynamic_type (range_type))
8647 return 0;
8648
8649 if (TYPE_NAME (encoding_type) == NULL)
8650 return 0;
8651
8652 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8653 if (bounds_str == NULL)
8654 return 0;
8655
8656 n = 8; /* Skip "___XDLU_". */
8657 if (!ada_scan_number (bounds_str, n, &lo, &n))
8658 return 0;
8659 if (TYPE_LOW_BOUND (range_type) != lo)
8660 return 0;
8661
8662 n += 2; /* Skip the "__" separator between the two bounds. */
8663 if (!ada_scan_number (bounds_str, n, &hi, &n))
8664 return 0;
8665 if (TYPE_HIGH_BOUND (range_type) != hi)
8666 return 0;
8667
8668 return 1;
8669 }
8670
8671 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8672 a type following the GNAT encoding for describing array type
8673 indices, only carries redundant information. */
8674
8675 static int
8676 ada_is_redundant_index_type_desc (struct type *array_type,
8677 struct type *desc_type)
8678 {
8679 struct type *this_layer = check_typedef (array_type);
8680 int i;
8681
8682 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8683 {
8684 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8685 TYPE_FIELD_TYPE (desc_type, i)))
8686 return 0;
8687 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8688 }
8689
8690 return 1;
8691 }
8692
8693 /* Assuming that TYPE0 is an array type describing the type of a value
8694 at ADDR, and that DVAL describes a record containing any
8695 discriminants used in TYPE0, returns a type for the value that
8696 contains no dynamic components (that is, no components whose sizes
8697 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8698 true, gives an error message if the resulting type's size is over
8699 varsize_limit. */
8700
8701 static struct type *
8702 to_fixed_array_type (struct type *type0, struct value *dval,
8703 int ignore_too_big)
8704 {
8705 struct type *index_type_desc;
8706 struct type *result;
8707 int constrained_packed_array_p;
8708 static const char *xa_suffix = "___XA";
8709
8710 type0 = ada_check_typedef (type0);
8711 if (TYPE_FIXED_INSTANCE (type0))
8712 return type0;
8713
8714 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8715 if (constrained_packed_array_p)
8716 type0 = decode_constrained_packed_array_type (type0);
8717
8718 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8719
8720 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8721 encoding suffixed with 'P' may still be generated. If so,
8722 it should be used to find the XA type. */
8723
8724 if (index_type_desc == NULL)
8725 {
8726 const char *type_name = ada_type_name (type0);
8727
8728 if (type_name != NULL)
8729 {
8730 const int len = strlen (type_name);
8731 char *name = (char *) alloca (len + strlen (xa_suffix));
8732
8733 if (type_name[len - 1] == 'P')
8734 {
8735 strcpy (name, type_name);
8736 strcpy (name + len - 1, xa_suffix);
8737 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8738 }
8739 }
8740 }
8741
8742 ada_fixup_array_indexes_type (index_type_desc);
8743 if (index_type_desc != NULL
8744 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8745 {
8746 /* Ignore this ___XA parallel type, as it does not bring any
8747 useful information. This allows us to avoid creating fixed
8748 versions of the array's index types, which would be identical
8749 to the original ones. This, in turn, can also help avoid
8750 the creation of fixed versions of the array itself. */
8751 index_type_desc = NULL;
8752 }
8753
8754 if (index_type_desc == NULL)
8755 {
8756 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8757
8758 /* NOTE: elt_type---the fixed version of elt_type0---should never
8759 depend on the contents of the array in properly constructed
8760 debugging data. */
8761 /* Create a fixed version of the array element type.
8762 We're not providing the address of an element here,
8763 and thus the actual object value cannot be inspected to do
8764 the conversion. This should not be a problem, since arrays of
8765 unconstrained objects are not allowed. In particular, all
8766 the elements of an array of a tagged type should all be of
8767 the same type specified in the debugging info. No need to
8768 consult the object tag. */
8769 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8770
8771 /* Make sure we always create a new array type when dealing with
8772 packed array types, since we're going to fix-up the array
8773 type length and element bitsize a little further down. */
8774 if (elt_type0 == elt_type && !constrained_packed_array_p)
8775 result = type0;
8776 else
8777 result = create_array_type (alloc_type_copy (type0),
8778 elt_type, TYPE_INDEX_TYPE (type0));
8779 }
8780 else
8781 {
8782 int i;
8783 struct type *elt_type0;
8784
8785 elt_type0 = type0;
8786 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8787 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8788
8789 /* NOTE: result---the fixed version of elt_type0---should never
8790 depend on the contents of the array in properly constructed
8791 debugging data. */
8792 /* Create a fixed version of the array element type.
8793 We're not providing the address of an element here,
8794 and thus the actual object value cannot be inspected to do
8795 the conversion. This should not be a problem, since arrays of
8796 unconstrained objects are not allowed. In particular, all
8797 the elements of an array of a tagged type should all be of
8798 the same type specified in the debugging info. No need to
8799 consult the object tag. */
8800 result =
8801 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8802
8803 elt_type0 = type0;
8804 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8805 {
8806 struct type *range_type =
8807 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8808
8809 result = create_array_type (alloc_type_copy (elt_type0),
8810 result, range_type);
8811 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8812 }
8813 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8814 error (_("array type with dynamic size is larger than varsize-limit"));
8815 }
8816
8817 /* We want to preserve the type name. This can be useful when
8818 trying to get the type name of a value that has already been
8819 printed (for instance, if the user did "print VAR; whatis $". */
8820 TYPE_NAME (result) = TYPE_NAME (type0);
8821
8822 if (constrained_packed_array_p)
8823 {
8824 /* So far, the resulting type has been created as if the original
8825 type was a regular (non-packed) array type. As a result, the
8826 bitsize of the array elements needs to be set again, and the array
8827 length needs to be recomputed based on that bitsize. */
8828 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8829 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8830
8831 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8832 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8833 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8834 TYPE_LENGTH (result)++;
8835 }
8836
8837 TYPE_FIXED_INSTANCE (result) = 1;
8838 return result;
8839 }
8840
8841
8842 /* A standard type (containing no dynamically sized components)
8843 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8844 DVAL describes a record containing any discriminants used in TYPE0,
8845 and may be NULL if there are none, or if the object of type TYPE at
8846 ADDRESS or in VALADDR contains these discriminants.
8847
8848 If CHECK_TAG is not null, in the case of tagged types, this function
8849 attempts to locate the object's tag and use it to compute the actual
8850 type. However, when ADDRESS is null, we cannot use it to determine the
8851 location of the tag, and therefore compute the tagged type's actual type.
8852 So we return the tagged type without consulting the tag. */
8853
8854 static struct type *
8855 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8856 CORE_ADDR address, struct value *dval, int check_tag)
8857 {
8858 type = ada_check_typedef (type);
8859
8860 /* Only un-fixed types need to be handled here. */
8861 if (!HAVE_GNAT_AUX_INFO (type))
8862 return type;
8863
8864 switch (TYPE_CODE (type))
8865 {
8866 default:
8867 return type;
8868 case TYPE_CODE_STRUCT:
8869 {
8870 struct type *static_type = to_static_fixed_type (type);
8871 struct type *fixed_record_type =
8872 to_fixed_record_type (type, valaddr, address, NULL);
8873
8874 /* If STATIC_TYPE is a tagged type and we know the object's address,
8875 then we can determine its tag, and compute the object's actual
8876 type from there. Note that we have to use the fixed record
8877 type (the parent part of the record may have dynamic fields
8878 and the way the location of _tag is expressed may depend on
8879 them). */
8880
8881 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8882 {
8883 struct value *tag =
8884 value_tag_from_contents_and_address
8885 (fixed_record_type,
8886 valaddr,
8887 address);
8888 struct type *real_type = type_from_tag (tag);
8889 struct value *obj =
8890 value_from_contents_and_address (fixed_record_type,
8891 valaddr,
8892 address);
8893 fixed_record_type = value_type (obj);
8894 if (real_type != NULL)
8895 return to_fixed_record_type
8896 (real_type, NULL,
8897 value_address (ada_tag_value_at_base_address (obj)), NULL);
8898 }
8899
8900 /* Check to see if there is a parallel ___XVZ variable.
8901 If there is, then it provides the actual size of our type. */
8902 else if (ada_type_name (fixed_record_type) != NULL)
8903 {
8904 const char *name = ada_type_name (fixed_record_type);
8905 char *xvz_name
8906 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8907 bool xvz_found = false;
8908 LONGEST size;
8909
8910 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8911 try
8912 {
8913 xvz_found = get_int_var_value (xvz_name, size);
8914 }
8915 catch (const gdb_exception_error &except)
8916 {
8917 /* We found the variable, but somehow failed to read
8918 its value. Rethrow the same error, but with a little
8919 bit more information, to help the user understand
8920 what went wrong (Eg: the variable might have been
8921 optimized out). */
8922 throw_error (except.error,
8923 _("unable to read value of %s (%s)"),
8924 xvz_name, except.what ());
8925 }
8926
8927 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8928 {
8929 fixed_record_type = copy_type (fixed_record_type);
8930 TYPE_LENGTH (fixed_record_type) = size;
8931
8932 /* The FIXED_RECORD_TYPE may have be a stub. We have
8933 observed this when the debugging info is STABS, and
8934 apparently it is something that is hard to fix.
8935
8936 In practice, we don't need the actual type definition
8937 at all, because the presence of the XVZ variable allows us
8938 to assume that there must be a XVS type as well, which we
8939 should be able to use later, when we need the actual type
8940 definition.
8941
8942 In the meantime, pretend that the "fixed" type we are
8943 returning is NOT a stub, because this can cause trouble
8944 when using this type to create new types targeting it.
8945 Indeed, the associated creation routines often check
8946 whether the target type is a stub and will try to replace
8947 it, thus using a type with the wrong size. This, in turn,
8948 might cause the new type to have the wrong size too.
8949 Consider the case of an array, for instance, where the size
8950 of the array is computed from the number of elements in
8951 our array multiplied by the size of its element. */
8952 TYPE_STUB (fixed_record_type) = 0;
8953 }
8954 }
8955 return fixed_record_type;
8956 }
8957 case TYPE_CODE_ARRAY:
8958 return to_fixed_array_type (type, dval, 1);
8959 case TYPE_CODE_UNION:
8960 if (dval == NULL)
8961 return type;
8962 else
8963 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8964 }
8965 }
8966
8967 /* The same as ada_to_fixed_type_1, except that it preserves the type
8968 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8969
8970 The typedef layer needs be preserved in order to differentiate between
8971 arrays and array pointers when both types are implemented using the same
8972 fat pointer. In the array pointer case, the pointer is encoded as
8973 a typedef of the pointer type. For instance, considering:
8974
8975 type String_Access is access String;
8976 S1 : String_Access := null;
8977
8978 To the debugger, S1 is defined as a typedef of type String. But
8979 to the user, it is a pointer. So if the user tries to print S1,
8980 we should not dereference the array, but print the array address
8981 instead.
8982
8983 If we didn't preserve the typedef layer, we would lose the fact that
8984 the type is to be presented as a pointer (needs de-reference before
8985 being printed). And we would also use the source-level type name. */
8986
8987 struct type *
8988 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8989 CORE_ADDR address, struct value *dval, int check_tag)
8990
8991 {
8992 struct type *fixed_type =
8993 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8994
8995 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8996 then preserve the typedef layer.
8997
8998 Implementation note: We can only check the main-type portion of
8999 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9000 from TYPE now returns a type that has the same instance flags
9001 as TYPE. For instance, if TYPE is a "typedef const", and its
9002 target type is a "struct", then the typedef elimination will return
9003 a "const" version of the target type. See check_typedef for more
9004 details about how the typedef layer elimination is done.
9005
9006 brobecker/2010-11-19: It seems to me that the only case where it is
9007 useful to preserve the typedef layer is when dealing with fat pointers.
9008 Perhaps, we could add a check for that and preserve the typedef layer
9009 only in that situation. But this seems unecessary so far, probably
9010 because we call check_typedef/ada_check_typedef pretty much everywhere.
9011 */
9012 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9013 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9014 == TYPE_MAIN_TYPE (fixed_type)))
9015 return type;
9016
9017 return fixed_type;
9018 }
9019
9020 /* A standard (static-sized) type corresponding as well as possible to
9021 TYPE0, but based on no runtime data. */
9022
9023 static struct type *
9024 to_static_fixed_type (struct type *type0)
9025 {
9026 struct type *type;
9027
9028 if (type0 == NULL)
9029 return NULL;
9030
9031 if (TYPE_FIXED_INSTANCE (type0))
9032 return type0;
9033
9034 type0 = ada_check_typedef (type0);
9035
9036 switch (TYPE_CODE (type0))
9037 {
9038 default:
9039 return type0;
9040 case TYPE_CODE_STRUCT:
9041 type = dynamic_template_type (type0);
9042 if (type != NULL)
9043 return template_to_static_fixed_type (type);
9044 else
9045 return template_to_static_fixed_type (type0);
9046 case TYPE_CODE_UNION:
9047 type = ada_find_parallel_type (type0, "___XVU");
9048 if (type != NULL)
9049 return template_to_static_fixed_type (type);
9050 else
9051 return template_to_static_fixed_type (type0);
9052 }
9053 }
9054
9055 /* A static approximation of TYPE with all type wrappers removed. */
9056
9057 static struct type *
9058 static_unwrap_type (struct type *type)
9059 {
9060 if (ada_is_aligner_type (type))
9061 {
9062 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9063 if (ada_type_name (type1) == NULL)
9064 TYPE_NAME (type1) = ada_type_name (type);
9065
9066 return static_unwrap_type (type1);
9067 }
9068 else
9069 {
9070 struct type *raw_real_type = ada_get_base_type (type);
9071
9072 if (raw_real_type == type)
9073 return type;
9074 else
9075 return to_static_fixed_type (raw_real_type);
9076 }
9077 }
9078
9079 /* In some cases, incomplete and private types require
9080 cross-references that are not resolved as records (for example,
9081 type Foo;
9082 type FooP is access Foo;
9083 V: FooP;
9084 type Foo is array ...;
9085 ). In these cases, since there is no mechanism for producing
9086 cross-references to such types, we instead substitute for FooP a
9087 stub enumeration type that is nowhere resolved, and whose tag is
9088 the name of the actual type. Call these types "non-record stubs". */
9089
9090 /* A type equivalent to TYPE that is not a non-record stub, if one
9091 exists, otherwise TYPE. */
9092
9093 struct type *
9094 ada_check_typedef (struct type *type)
9095 {
9096 if (type == NULL)
9097 return NULL;
9098
9099 /* If our type is an access to an unconstrained array, which is encoded
9100 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9101 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9102 what allows us to distinguish between fat pointers that represent
9103 array types, and fat pointers that represent array access types
9104 (in both cases, the compiler implements them as fat pointers). */
9105 if (ada_is_access_to_unconstrained_array (type))
9106 return type;
9107
9108 type = check_typedef (type);
9109 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9110 || !TYPE_STUB (type)
9111 || TYPE_NAME (type) == NULL)
9112 return type;
9113 else
9114 {
9115 const char *name = TYPE_NAME (type);
9116 struct type *type1 = ada_find_any_type (name);
9117
9118 if (type1 == NULL)
9119 return type;
9120
9121 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9122 stubs pointing to arrays, as we don't create symbols for array
9123 types, only for the typedef-to-array types). If that's the case,
9124 strip the typedef layer. */
9125 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9126 type1 = ada_check_typedef (type1);
9127
9128 return type1;
9129 }
9130 }
9131
9132 /* A value representing the data at VALADDR/ADDRESS as described by
9133 type TYPE0, but with a standard (static-sized) type that correctly
9134 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9135 type, then return VAL0 [this feature is simply to avoid redundant
9136 creation of struct values]. */
9137
9138 static struct value *
9139 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9140 struct value *val0)
9141 {
9142 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9143
9144 if (type == type0 && val0 != NULL)
9145 return val0;
9146
9147 if (VALUE_LVAL (val0) != lval_memory)
9148 {
9149 /* Our value does not live in memory; it could be a convenience
9150 variable, for instance. Create a not_lval value using val0's
9151 contents. */
9152 return value_from_contents (type, value_contents (val0));
9153 }
9154
9155 return value_from_contents_and_address (type, 0, address);
9156 }
9157
9158 /* A value representing VAL, but with a standard (static-sized) type
9159 that correctly describes it. Does not necessarily create a new
9160 value. */
9161
9162 struct value *
9163 ada_to_fixed_value (struct value *val)
9164 {
9165 val = unwrap_value (val);
9166 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9167 return val;
9168 }
9169 \f
9170
9171 /* Attributes */
9172
9173 /* Table mapping attribute numbers to names.
9174 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9175
9176 static const char *attribute_names[] = {
9177 "<?>",
9178
9179 "first",
9180 "last",
9181 "length",
9182 "image",
9183 "max",
9184 "min",
9185 "modulus",
9186 "pos",
9187 "size",
9188 "tag",
9189 "val",
9190 0
9191 };
9192
9193 const char *
9194 ada_attribute_name (enum exp_opcode n)
9195 {
9196 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9197 return attribute_names[n - OP_ATR_FIRST + 1];
9198 else
9199 return attribute_names[0];
9200 }
9201
9202 /* Evaluate the 'POS attribute applied to ARG. */
9203
9204 static LONGEST
9205 pos_atr (struct value *arg)
9206 {
9207 struct value *val = coerce_ref (arg);
9208 struct type *type = value_type (val);
9209 LONGEST result;
9210
9211 if (!discrete_type_p (type))
9212 error (_("'POS only defined on discrete types"));
9213
9214 if (!discrete_position (type, value_as_long (val), &result))
9215 error (_("enumeration value is invalid: can't find 'POS"));
9216
9217 return result;
9218 }
9219
9220 static struct value *
9221 value_pos_atr (struct type *type, struct value *arg)
9222 {
9223 return value_from_longest (type, pos_atr (arg));
9224 }
9225
9226 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9227
9228 static struct value *
9229 value_val_atr (struct type *type, struct value *arg)
9230 {
9231 if (!discrete_type_p (type))
9232 error (_("'VAL only defined on discrete types"));
9233 if (!integer_type_p (value_type (arg)))
9234 error (_("'VAL requires integral argument"));
9235
9236 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9237 {
9238 long pos = value_as_long (arg);
9239
9240 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9241 error (_("argument to 'VAL out of range"));
9242 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9243 }
9244 else
9245 return value_from_longest (type, value_as_long (arg));
9246 }
9247 \f
9248
9249 /* Evaluation */
9250
9251 /* True if TYPE appears to be an Ada character type.
9252 [At the moment, this is true only for Character and Wide_Character;
9253 It is a heuristic test that could stand improvement]. */
9254
9255 bool
9256 ada_is_character_type (struct type *type)
9257 {
9258 const char *name;
9259
9260 /* If the type code says it's a character, then assume it really is,
9261 and don't check any further. */
9262 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9263 return true;
9264
9265 /* Otherwise, assume it's a character type iff it is a discrete type
9266 with a known character type name. */
9267 name = ada_type_name (type);
9268 return (name != NULL
9269 && (TYPE_CODE (type) == TYPE_CODE_INT
9270 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9271 && (strcmp (name, "character") == 0
9272 || strcmp (name, "wide_character") == 0
9273 || strcmp (name, "wide_wide_character") == 0
9274 || strcmp (name, "unsigned char") == 0));
9275 }
9276
9277 /* True if TYPE appears to be an Ada string type. */
9278
9279 bool
9280 ada_is_string_type (struct type *type)
9281 {
9282 type = ada_check_typedef (type);
9283 if (type != NULL
9284 && TYPE_CODE (type) != TYPE_CODE_PTR
9285 && (ada_is_simple_array_type (type)
9286 || ada_is_array_descriptor_type (type))
9287 && ada_array_arity (type) == 1)
9288 {
9289 struct type *elttype = ada_array_element_type (type, 1);
9290
9291 return ada_is_character_type (elttype);
9292 }
9293 else
9294 return false;
9295 }
9296
9297 /* The compiler sometimes provides a parallel XVS type for a given
9298 PAD type. Normally, it is safe to follow the PAD type directly,
9299 but older versions of the compiler have a bug that causes the offset
9300 of its "F" field to be wrong. Following that field in that case
9301 would lead to incorrect results, but this can be worked around
9302 by ignoring the PAD type and using the associated XVS type instead.
9303
9304 Set to True if the debugger should trust the contents of PAD types.
9305 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9306 static int trust_pad_over_xvs = 1;
9307
9308 /* True if TYPE is a struct type introduced by the compiler to force the
9309 alignment of a value. Such types have a single field with a
9310 distinctive name. */
9311
9312 int
9313 ada_is_aligner_type (struct type *type)
9314 {
9315 type = ada_check_typedef (type);
9316
9317 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9318 return 0;
9319
9320 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9321 && TYPE_NFIELDS (type) == 1
9322 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9323 }
9324
9325 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9326 the parallel type. */
9327
9328 struct type *
9329 ada_get_base_type (struct type *raw_type)
9330 {
9331 struct type *real_type_namer;
9332 struct type *raw_real_type;
9333
9334 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9335 return raw_type;
9336
9337 if (ada_is_aligner_type (raw_type))
9338 /* The encoding specifies that we should always use the aligner type.
9339 So, even if this aligner type has an associated XVS type, we should
9340 simply ignore it.
9341
9342 According to the compiler gurus, an XVS type parallel to an aligner
9343 type may exist because of a stabs limitation. In stabs, aligner
9344 types are empty because the field has a variable-sized type, and
9345 thus cannot actually be used as an aligner type. As a result,
9346 we need the associated parallel XVS type to decode the type.
9347 Since the policy in the compiler is to not change the internal
9348 representation based on the debugging info format, we sometimes
9349 end up having a redundant XVS type parallel to the aligner type. */
9350 return raw_type;
9351
9352 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9353 if (real_type_namer == NULL
9354 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9355 || TYPE_NFIELDS (real_type_namer) != 1)
9356 return raw_type;
9357
9358 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9359 {
9360 /* This is an older encoding form where the base type needs to be
9361 looked up by name. We prefer the newer enconding because it is
9362 more efficient. */
9363 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9364 if (raw_real_type == NULL)
9365 return raw_type;
9366 else
9367 return raw_real_type;
9368 }
9369
9370 /* The field in our XVS type is a reference to the base type. */
9371 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9372 }
9373
9374 /* The type of value designated by TYPE, with all aligners removed. */
9375
9376 struct type *
9377 ada_aligned_type (struct type *type)
9378 {
9379 if (ada_is_aligner_type (type))
9380 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9381 else
9382 return ada_get_base_type (type);
9383 }
9384
9385
9386 /* The address of the aligned value in an object at address VALADDR
9387 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9388
9389 const gdb_byte *
9390 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9391 {
9392 if (ada_is_aligner_type (type))
9393 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9394 valaddr +
9395 TYPE_FIELD_BITPOS (type,
9396 0) / TARGET_CHAR_BIT);
9397 else
9398 return valaddr;
9399 }
9400
9401
9402
9403 /* The printed representation of an enumeration literal with encoded
9404 name NAME. The value is good to the next call of ada_enum_name. */
9405 const char *
9406 ada_enum_name (const char *name)
9407 {
9408 static char *result;
9409 static size_t result_len = 0;
9410 const char *tmp;
9411
9412 /* First, unqualify the enumeration name:
9413 1. Search for the last '.' character. If we find one, then skip
9414 all the preceding characters, the unqualified name starts
9415 right after that dot.
9416 2. Otherwise, we may be debugging on a target where the compiler
9417 translates dots into "__". Search forward for double underscores,
9418 but stop searching when we hit an overloading suffix, which is
9419 of the form "__" followed by digits. */
9420
9421 tmp = strrchr (name, '.');
9422 if (tmp != NULL)
9423 name = tmp + 1;
9424 else
9425 {
9426 while ((tmp = strstr (name, "__")) != NULL)
9427 {
9428 if (isdigit (tmp[2]))
9429 break;
9430 else
9431 name = tmp + 2;
9432 }
9433 }
9434
9435 if (name[0] == 'Q')
9436 {
9437 int v;
9438
9439 if (name[1] == 'U' || name[1] == 'W')
9440 {
9441 if (sscanf (name + 2, "%x", &v) != 1)
9442 return name;
9443 }
9444 else if (((name[1] >= '0' && name[1] <= '9')
9445 || (name[1] >= 'a' && name[1] <= 'z'))
9446 && name[2] == '\0')
9447 {
9448 GROW_VECT (result, result_len, 4);
9449 xsnprintf (result, result_len, "'%c'", name[1]);
9450 return result;
9451 }
9452 else
9453 return name;
9454
9455 GROW_VECT (result, result_len, 16);
9456 if (isascii (v) && isprint (v))
9457 xsnprintf (result, result_len, "'%c'", v);
9458 else if (name[1] == 'U')
9459 xsnprintf (result, result_len, "[\"%02x\"]", v);
9460 else
9461 xsnprintf (result, result_len, "[\"%04x\"]", v);
9462
9463 return result;
9464 }
9465 else
9466 {
9467 tmp = strstr (name, "__");
9468 if (tmp == NULL)
9469 tmp = strstr (name, "$");
9470 if (tmp != NULL)
9471 {
9472 GROW_VECT (result, result_len, tmp - name + 1);
9473 strncpy (result, name, tmp - name);
9474 result[tmp - name] = '\0';
9475 return result;
9476 }
9477
9478 return name;
9479 }
9480 }
9481
9482 /* Evaluate the subexpression of EXP starting at *POS as for
9483 evaluate_type, updating *POS to point just past the evaluated
9484 expression. */
9485
9486 static struct value *
9487 evaluate_subexp_type (struct expression *exp, int *pos)
9488 {
9489 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9490 }
9491
9492 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9493 value it wraps. */
9494
9495 static struct value *
9496 unwrap_value (struct value *val)
9497 {
9498 struct type *type = ada_check_typedef (value_type (val));
9499
9500 if (ada_is_aligner_type (type))
9501 {
9502 struct value *v = ada_value_struct_elt (val, "F", 0);
9503 struct type *val_type = ada_check_typedef (value_type (v));
9504
9505 if (ada_type_name (val_type) == NULL)
9506 TYPE_NAME (val_type) = ada_type_name (type);
9507
9508 return unwrap_value (v);
9509 }
9510 else
9511 {
9512 struct type *raw_real_type =
9513 ada_check_typedef (ada_get_base_type (type));
9514
9515 /* If there is no parallel XVS or XVE type, then the value is
9516 already unwrapped. Return it without further modification. */
9517 if ((type == raw_real_type)
9518 && ada_find_parallel_type (type, "___XVE") == NULL)
9519 return val;
9520
9521 return
9522 coerce_unspec_val_to_type
9523 (val, ada_to_fixed_type (raw_real_type, 0,
9524 value_address (val),
9525 NULL, 1));
9526 }
9527 }
9528
9529 static struct value *
9530 cast_from_fixed (struct type *type, struct value *arg)
9531 {
9532 struct value *scale = ada_scaling_factor (value_type (arg));
9533 arg = value_cast (value_type (scale), arg);
9534
9535 arg = value_binop (arg, scale, BINOP_MUL);
9536 return value_cast (type, arg);
9537 }
9538
9539 static struct value *
9540 cast_to_fixed (struct type *type, struct value *arg)
9541 {
9542 if (type == value_type (arg))
9543 return arg;
9544
9545 struct value *scale = ada_scaling_factor (type);
9546 if (ada_is_fixed_point_type (value_type (arg)))
9547 arg = cast_from_fixed (value_type (scale), arg);
9548 else
9549 arg = value_cast (value_type (scale), arg);
9550
9551 arg = value_binop (arg, scale, BINOP_DIV);
9552 return value_cast (type, arg);
9553 }
9554
9555 /* Given two array types T1 and T2, return nonzero iff both arrays
9556 contain the same number of elements. */
9557
9558 static int
9559 ada_same_array_size_p (struct type *t1, struct type *t2)
9560 {
9561 LONGEST lo1, hi1, lo2, hi2;
9562
9563 /* Get the array bounds in order to verify that the size of
9564 the two arrays match. */
9565 if (!get_array_bounds (t1, &lo1, &hi1)
9566 || !get_array_bounds (t2, &lo2, &hi2))
9567 error (_("unable to determine array bounds"));
9568
9569 /* To make things easier for size comparison, normalize a bit
9570 the case of empty arrays by making sure that the difference
9571 between upper bound and lower bound is always -1. */
9572 if (lo1 > hi1)
9573 hi1 = lo1 - 1;
9574 if (lo2 > hi2)
9575 hi2 = lo2 - 1;
9576
9577 return (hi1 - lo1 == hi2 - lo2);
9578 }
9579
9580 /* Assuming that VAL is an array of integrals, and TYPE represents
9581 an array with the same number of elements, but with wider integral
9582 elements, return an array "casted" to TYPE. In practice, this
9583 means that the returned array is built by casting each element
9584 of the original array into TYPE's (wider) element type. */
9585
9586 static struct value *
9587 ada_promote_array_of_integrals (struct type *type, struct value *val)
9588 {
9589 struct type *elt_type = TYPE_TARGET_TYPE (type);
9590 LONGEST lo, hi;
9591 struct value *res;
9592 LONGEST i;
9593
9594 /* Verify that both val and type are arrays of scalars, and
9595 that the size of val's elements is smaller than the size
9596 of type's element. */
9597 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9598 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9599 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9600 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9601 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9602 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9603
9604 if (!get_array_bounds (type, &lo, &hi))
9605 error (_("unable to determine array bounds"));
9606
9607 res = allocate_value (type);
9608
9609 /* Promote each array element. */
9610 for (i = 0; i < hi - lo + 1; i++)
9611 {
9612 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9613
9614 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9615 value_contents_all (elt), TYPE_LENGTH (elt_type));
9616 }
9617
9618 return res;
9619 }
9620
9621 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9622 return the converted value. */
9623
9624 static struct value *
9625 coerce_for_assign (struct type *type, struct value *val)
9626 {
9627 struct type *type2 = value_type (val);
9628
9629 if (type == type2)
9630 return val;
9631
9632 type2 = ada_check_typedef (type2);
9633 type = ada_check_typedef (type);
9634
9635 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9636 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9637 {
9638 val = ada_value_ind (val);
9639 type2 = value_type (val);
9640 }
9641
9642 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9643 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9644 {
9645 if (!ada_same_array_size_p (type, type2))
9646 error (_("cannot assign arrays of different length"));
9647
9648 if (is_integral_type (TYPE_TARGET_TYPE (type))
9649 && is_integral_type (TYPE_TARGET_TYPE (type2))
9650 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9651 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9652 {
9653 /* Allow implicit promotion of the array elements to
9654 a wider type. */
9655 return ada_promote_array_of_integrals (type, val);
9656 }
9657
9658 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9659 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9660 error (_("Incompatible types in assignment"));
9661 deprecated_set_value_type (val, type);
9662 }
9663 return val;
9664 }
9665
9666 static struct value *
9667 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9668 {
9669 struct value *val;
9670 struct type *type1, *type2;
9671 LONGEST v, v1, v2;
9672
9673 arg1 = coerce_ref (arg1);
9674 arg2 = coerce_ref (arg2);
9675 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9676 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9677
9678 if (TYPE_CODE (type1) != TYPE_CODE_INT
9679 || TYPE_CODE (type2) != TYPE_CODE_INT)
9680 return value_binop (arg1, arg2, op);
9681
9682 switch (op)
9683 {
9684 case BINOP_MOD:
9685 case BINOP_DIV:
9686 case BINOP_REM:
9687 break;
9688 default:
9689 return value_binop (arg1, arg2, op);
9690 }
9691
9692 v2 = value_as_long (arg2);
9693 if (v2 == 0)
9694 error (_("second operand of %s must not be zero."), op_string (op));
9695
9696 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9697 return value_binop (arg1, arg2, op);
9698
9699 v1 = value_as_long (arg1);
9700 switch (op)
9701 {
9702 case BINOP_DIV:
9703 v = v1 / v2;
9704 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9705 v += v > 0 ? -1 : 1;
9706 break;
9707 case BINOP_REM:
9708 v = v1 % v2;
9709 if (v * v1 < 0)
9710 v -= v2;
9711 break;
9712 default:
9713 /* Should not reach this point. */
9714 v = 0;
9715 }
9716
9717 val = allocate_value (type1);
9718 store_unsigned_integer (value_contents_raw (val),
9719 TYPE_LENGTH (value_type (val)),
9720 gdbarch_byte_order (get_type_arch (type1)), v);
9721 return val;
9722 }
9723
9724 static int
9725 ada_value_equal (struct value *arg1, struct value *arg2)
9726 {
9727 if (ada_is_direct_array_type (value_type (arg1))
9728 || ada_is_direct_array_type (value_type (arg2)))
9729 {
9730 struct type *arg1_type, *arg2_type;
9731
9732 /* Automatically dereference any array reference before
9733 we attempt to perform the comparison. */
9734 arg1 = ada_coerce_ref (arg1);
9735 arg2 = ada_coerce_ref (arg2);
9736
9737 arg1 = ada_coerce_to_simple_array (arg1);
9738 arg2 = ada_coerce_to_simple_array (arg2);
9739
9740 arg1_type = ada_check_typedef (value_type (arg1));
9741 arg2_type = ada_check_typedef (value_type (arg2));
9742
9743 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9744 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9745 error (_("Attempt to compare array with non-array"));
9746 /* FIXME: The following works only for types whose
9747 representations use all bits (no padding or undefined bits)
9748 and do not have user-defined equality. */
9749 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9750 && memcmp (value_contents (arg1), value_contents (arg2),
9751 TYPE_LENGTH (arg1_type)) == 0);
9752 }
9753 return value_equal (arg1, arg2);
9754 }
9755
9756 /* Total number of component associations in the aggregate starting at
9757 index PC in EXP. Assumes that index PC is the start of an
9758 OP_AGGREGATE. */
9759
9760 static int
9761 num_component_specs (struct expression *exp, int pc)
9762 {
9763 int n, m, i;
9764
9765 m = exp->elts[pc + 1].longconst;
9766 pc += 3;
9767 n = 0;
9768 for (i = 0; i < m; i += 1)
9769 {
9770 switch (exp->elts[pc].opcode)
9771 {
9772 default:
9773 n += 1;
9774 break;
9775 case OP_CHOICES:
9776 n += exp->elts[pc + 1].longconst;
9777 break;
9778 }
9779 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9780 }
9781 return n;
9782 }
9783
9784 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9785 component of LHS (a simple array or a record), updating *POS past
9786 the expression, assuming that LHS is contained in CONTAINER. Does
9787 not modify the inferior's memory, nor does it modify LHS (unless
9788 LHS == CONTAINER). */
9789
9790 static void
9791 assign_component (struct value *container, struct value *lhs, LONGEST index,
9792 struct expression *exp, int *pos)
9793 {
9794 struct value *mark = value_mark ();
9795 struct value *elt;
9796 struct type *lhs_type = check_typedef (value_type (lhs));
9797
9798 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9799 {
9800 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9801 struct value *index_val = value_from_longest (index_type, index);
9802
9803 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9804 }
9805 else
9806 {
9807 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9808 elt = ada_to_fixed_value (elt);
9809 }
9810
9811 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9812 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9813 else
9814 value_assign_to_component (container, elt,
9815 ada_evaluate_subexp (NULL, exp, pos,
9816 EVAL_NORMAL));
9817
9818 value_free_to_mark (mark);
9819 }
9820
9821 /* Assuming that LHS represents an lvalue having a record or array
9822 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9823 of that aggregate's value to LHS, advancing *POS past the
9824 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9825 lvalue containing LHS (possibly LHS itself). Does not modify
9826 the inferior's memory, nor does it modify the contents of
9827 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9828
9829 static struct value *
9830 assign_aggregate (struct value *container,
9831 struct value *lhs, struct expression *exp,
9832 int *pos, enum noside noside)
9833 {
9834 struct type *lhs_type;
9835 int n = exp->elts[*pos+1].longconst;
9836 LONGEST low_index, high_index;
9837 int num_specs;
9838 LONGEST *indices;
9839 int max_indices, num_indices;
9840 int i;
9841
9842 *pos += 3;
9843 if (noside != EVAL_NORMAL)
9844 {
9845 for (i = 0; i < n; i += 1)
9846 ada_evaluate_subexp (NULL, exp, pos, noside);
9847 return container;
9848 }
9849
9850 container = ada_coerce_ref (container);
9851 if (ada_is_direct_array_type (value_type (container)))
9852 container = ada_coerce_to_simple_array (container);
9853 lhs = ada_coerce_ref (lhs);
9854 if (!deprecated_value_modifiable (lhs))
9855 error (_("Left operand of assignment is not a modifiable lvalue."));
9856
9857 lhs_type = check_typedef (value_type (lhs));
9858 if (ada_is_direct_array_type (lhs_type))
9859 {
9860 lhs = ada_coerce_to_simple_array (lhs);
9861 lhs_type = check_typedef (value_type (lhs));
9862 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9863 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9864 }
9865 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9866 {
9867 low_index = 0;
9868 high_index = num_visible_fields (lhs_type) - 1;
9869 }
9870 else
9871 error (_("Left-hand side must be array or record."));
9872
9873 num_specs = num_component_specs (exp, *pos - 3);
9874 max_indices = 4 * num_specs + 4;
9875 indices = XALLOCAVEC (LONGEST, max_indices);
9876 indices[0] = indices[1] = low_index - 1;
9877 indices[2] = indices[3] = high_index + 1;
9878 num_indices = 4;
9879
9880 for (i = 0; i < n; i += 1)
9881 {
9882 switch (exp->elts[*pos].opcode)
9883 {
9884 case OP_CHOICES:
9885 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9886 &num_indices, max_indices,
9887 low_index, high_index);
9888 break;
9889 case OP_POSITIONAL:
9890 aggregate_assign_positional (container, lhs, exp, pos, indices,
9891 &num_indices, max_indices,
9892 low_index, high_index);
9893 break;
9894 case OP_OTHERS:
9895 if (i != n-1)
9896 error (_("Misplaced 'others' clause"));
9897 aggregate_assign_others (container, lhs, exp, pos, indices,
9898 num_indices, low_index, high_index);
9899 break;
9900 default:
9901 error (_("Internal error: bad aggregate clause"));
9902 }
9903 }
9904
9905 return container;
9906 }
9907
9908 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9909 construct at *POS, updating *POS past the construct, given that
9910 the positions are relative to lower bound LOW, where HIGH is the
9911 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9912 updating *NUM_INDICES as needed. CONTAINER is as for
9913 assign_aggregate. */
9914 static void
9915 aggregate_assign_positional (struct value *container,
9916 struct value *lhs, struct expression *exp,
9917 int *pos, LONGEST *indices, int *num_indices,
9918 int max_indices, LONGEST low, LONGEST high)
9919 {
9920 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9921
9922 if (ind - 1 == high)
9923 warning (_("Extra components in aggregate ignored."));
9924 if (ind <= high)
9925 {
9926 add_component_interval (ind, ind, indices, num_indices, max_indices);
9927 *pos += 3;
9928 assign_component (container, lhs, ind, exp, pos);
9929 }
9930 else
9931 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9932 }
9933
9934 /* Assign into the components of LHS indexed by the OP_CHOICES
9935 construct at *POS, updating *POS past the construct, given that
9936 the allowable indices are LOW..HIGH. Record the indices assigned
9937 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9938 needed. CONTAINER is as for assign_aggregate. */
9939 static void
9940 aggregate_assign_from_choices (struct value *container,
9941 struct value *lhs, struct expression *exp,
9942 int *pos, LONGEST *indices, int *num_indices,
9943 int max_indices, LONGEST low, LONGEST high)
9944 {
9945 int j;
9946 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9947 int choice_pos, expr_pc;
9948 int is_array = ada_is_direct_array_type (value_type (lhs));
9949
9950 choice_pos = *pos += 3;
9951
9952 for (j = 0; j < n_choices; j += 1)
9953 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9954 expr_pc = *pos;
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956
9957 for (j = 0; j < n_choices; j += 1)
9958 {
9959 LONGEST lower, upper;
9960 enum exp_opcode op = exp->elts[choice_pos].opcode;
9961
9962 if (op == OP_DISCRETE_RANGE)
9963 {
9964 choice_pos += 1;
9965 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9966 EVAL_NORMAL));
9967 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 EVAL_NORMAL));
9969 }
9970 else if (is_array)
9971 {
9972 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9973 EVAL_NORMAL));
9974 upper = lower;
9975 }
9976 else
9977 {
9978 int ind;
9979 const char *name;
9980
9981 switch (op)
9982 {
9983 case OP_NAME:
9984 name = &exp->elts[choice_pos + 2].string;
9985 break;
9986 case OP_VAR_VALUE:
9987 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9988 break;
9989 default:
9990 error (_("Invalid record component association."));
9991 }
9992 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9993 ind = 0;
9994 if (! find_struct_field (name, value_type (lhs), 0,
9995 NULL, NULL, NULL, NULL, &ind))
9996 error (_("Unknown component name: %s."), name);
9997 lower = upper = ind;
9998 }
9999
10000 if (lower <= upper && (lower < low || upper > high))
10001 error (_("Index in component association out of bounds."));
10002
10003 add_component_interval (lower, upper, indices, num_indices,
10004 max_indices);
10005 while (lower <= upper)
10006 {
10007 int pos1;
10008
10009 pos1 = expr_pc;
10010 assign_component (container, lhs, lower, exp, &pos1);
10011 lower += 1;
10012 }
10013 }
10014 }
10015
10016 /* Assign the value of the expression in the OP_OTHERS construct in
10017 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10018 have not been previously assigned. The index intervals already assigned
10019 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10020 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10021 static void
10022 aggregate_assign_others (struct value *container,
10023 struct value *lhs, struct expression *exp,
10024 int *pos, LONGEST *indices, int num_indices,
10025 LONGEST low, LONGEST high)
10026 {
10027 int i;
10028 int expr_pc = *pos + 1;
10029
10030 for (i = 0; i < num_indices - 2; i += 2)
10031 {
10032 LONGEST ind;
10033
10034 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10035 {
10036 int localpos;
10037
10038 localpos = expr_pc;
10039 assign_component (container, lhs, ind, exp, &localpos);
10040 }
10041 }
10042 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043 }
10044
10045 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10046 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10047 modifying *SIZE as needed. It is an error if *SIZE exceeds
10048 MAX_SIZE. The resulting intervals do not overlap. */
10049 static void
10050 add_component_interval (LONGEST low, LONGEST high,
10051 LONGEST* indices, int *size, int max_size)
10052 {
10053 int i, j;
10054
10055 for (i = 0; i < *size; i += 2) {
10056 if (high >= indices[i] && low <= indices[i + 1])
10057 {
10058 int kh;
10059
10060 for (kh = i + 2; kh < *size; kh += 2)
10061 if (high < indices[kh])
10062 break;
10063 if (low < indices[i])
10064 indices[i] = low;
10065 indices[i + 1] = indices[kh - 1];
10066 if (high > indices[i + 1])
10067 indices[i + 1] = high;
10068 memcpy (indices + i + 2, indices + kh, *size - kh);
10069 *size -= kh - i - 2;
10070 return;
10071 }
10072 else if (high < indices[i])
10073 break;
10074 }
10075
10076 if (*size == max_size)
10077 error (_("Internal error: miscounted aggregate components."));
10078 *size += 2;
10079 for (j = *size-1; j >= i+2; j -= 1)
10080 indices[j] = indices[j - 2];
10081 indices[i] = low;
10082 indices[i + 1] = high;
10083 }
10084
10085 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10086 is different. */
10087
10088 static struct value *
10089 ada_value_cast (struct type *type, struct value *arg2)
10090 {
10091 if (type == ada_check_typedef (value_type (arg2)))
10092 return arg2;
10093
10094 if (ada_is_fixed_point_type (type))
10095 return cast_to_fixed (type, arg2);
10096
10097 if (ada_is_fixed_point_type (value_type (arg2)))
10098 return cast_from_fixed (type, arg2);
10099
10100 return value_cast (type, arg2);
10101 }
10102
10103 /* Evaluating Ada expressions, and printing their result.
10104 ------------------------------------------------------
10105
10106 1. Introduction:
10107 ----------------
10108
10109 We usually evaluate an Ada expression in order to print its value.
10110 We also evaluate an expression in order to print its type, which
10111 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10112 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10113 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10114 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10115 similar.
10116
10117 Evaluating expressions is a little more complicated for Ada entities
10118 than it is for entities in languages such as C. The main reason for
10119 this is that Ada provides types whose definition might be dynamic.
10120 One example of such types is variant records. Or another example
10121 would be an array whose bounds can only be known at run time.
10122
10123 The following description is a general guide as to what should be
10124 done (and what should NOT be done) in order to evaluate an expression
10125 involving such types, and when. This does not cover how the semantic
10126 information is encoded by GNAT as this is covered separatly. For the
10127 document used as the reference for the GNAT encoding, see exp_dbug.ads
10128 in the GNAT sources.
10129
10130 Ideally, we should embed each part of this description next to its
10131 associated code. Unfortunately, the amount of code is so vast right
10132 now that it's hard to see whether the code handling a particular
10133 situation might be duplicated or not. One day, when the code is
10134 cleaned up, this guide might become redundant with the comments
10135 inserted in the code, and we might want to remove it.
10136
10137 2. ``Fixing'' an Entity, the Simple Case:
10138 -----------------------------------------
10139
10140 When evaluating Ada expressions, the tricky issue is that they may
10141 reference entities whose type contents and size are not statically
10142 known. Consider for instance a variant record:
10143
10144 type Rec (Empty : Boolean := True) is record
10145 case Empty is
10146 when True => null;
10147 when False => Value : Integer;
10148 end case;
10149 end record;
10150 Yes : Rec := (Empty => False, Value => 1);
10151 No : Rec := (empty => True);
10152
10153 The size and contents of that record depends on the value of the
10154 descriminant (Rec.Empty). At this point, neither the debugging
10155 information nor the associated type structure in GDB are able to
10156 express such dynamic types. So what the debugger does is to create
10157 "fixed" versions of the type that applies to the specific object.
10158 We also informally refer to this opperation as "fixing" an object,
10159 which means creating its associated fixed type.
10160
10161 Example: when printing the value of variable "Yes" above, its fixed
10162 type would look like this:
10163
10164 type Rec is record
10165 Empty : Boolean;
10166 Value : Integer;
10167 end record;
10168
10169 On the other hand, if we printed the value of "No", its fixed type
10170 would become:
10171
10172 type Rec is record
10173 Empty : Boolean;
10174 end record;
10175
10176 Things become a little more complicated when trying to fix an entity
10177 with a dynamic type that directly contains another dynamic type,
10178 such as an array of variant records, for instance. There are
10179 two possible cases: Arrays, and records.
10180
10181 3. ``Fixing'' Arrays:
10182 ---------------------
10183
10184 The type structure in GDB describes an array in terms of its bounds,
10185 and the type of its elements. By design, all elements in the array
10186 have the same type and we cannot represent an array of variant elements
10187 using the current type structure in GDB. When fixing an array,
10188 we cannot fix the array element, as we would potentially need one
10189 fixed type per element of the array. As a result, the best we can do
10190 when fixing an array is to produce an array whose bounds and size
10191 are correct (allowing us to read it from memory), but without having
10192 touched its element type. Fixing each element will be done later,
10193 when (if) necessary.
10194
10195 Arrays are a little simpler to handle than records, because the same
10196 amount of memory is allocated for each element of the array, even if
10197 the amount of space actually used by each element differs from element
10198 to element. Consider for instance the following array of type Rec:
10199
10200 type Rec_Array is array (1 .. 2) of Rec;
10201
10202 The actual amount of memory occupied by each element might be different
10203 from element to element, depending on the value of their discriminant.
10204 But the amount of space reserved for each element in the array remains
10205 fixed regardless. So we simply need to compute that size using
10206 the debugging information available, from which we can then determine
10207 the array size (we multiply the number of elements of the array by
10208 the size of each element).
10209
10210 The simplest case is when we have an array of a constrained element
10211 type. For instance, consider the following type declarations:
10212
10213 type Bounded_String (Max_Size : Integer) is
10214 Length : Integer;
10215 Buffer : String (1 .. Max_Size);
10216 end record;
10217 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10218
10219 In this case, the compiler describes the array as an array of
10220 variable-size elements (identified by its XVS suffix) for which
10221 the size can be read in the parallel XVZ variable.
10222
10223 In the case of an array of an unconstrained element type, the compiler
10224 wraps the array element inside a private PAD type. This type should not
10225 be shown to the user, and must be "unwrap"'ed before printing. Note
10226 that we also use the adjective "aligner" in our code to designate
10227 these wrapper types.
10228
10229 In some cases, the size allocated for each element is statically
10230 known. In that case, the PAD type already has the correct size,
10231 and the array element should remain unfixed.
10232
10233 But there are cases when this size is not statically known.
10234 For instance, assuming that "Five" is an integer variable:
10235
10236 type Dynamic is array (1 .. Five) of Integer;
10237 type Wrapper (Has_Length : Boolean := False) is record
10238 Data : Dynamic;
10239 case Has_Length is
10240 when True => Length : Integer;
10241 when False => null;
10242 end case;
10243 end record;
10244 type Wrapper_Array is array (1 .. 2) of Wrapper;
10245
10246 Hello : Wrapper_Array := (others => (Has_Length => True,
10247 Data => (others => 17),
10248 Length => 1));
10249
10250
10251 The debugging info would describe variable Hello as being an
10252 array of a PAD type. The size of that PAD type is not statically
10253 known, but can be determined using a parallel XVZ variable.
10254 In that case, a copy of the PAD type with the correct size should
10255 be used for the fixed array.
10256
10257 3. ``Fixing'' record type objects:
10258 ----------------------------------
10259
10260 Things are slightly different from arrays in the case of dynamic
10261 record types. In this case, in order to compute the associated
10262 fixed type, we need to determine the size and offset of each of
10263 its components. This, in turn, requires us to compute the fixed
10264 type of each of these components.
10265
10266 Consider for instance the example:
10267
10268 type Bounded_String (Max_Size : Natural) is record
10269 Str : String (1 .. Max_Size);
10270 Length : Natural;
10271 end record;
10272 My_String : Bounded_String (Max_Size => 10);
10273
10274 In that case, the position of field "Length" depends on the size
10275 of field Str, which itself depends on the value of the Max_Size
10276 discriminant. In order to fix the type of variable My_String,
10277 we need to fix the type of field Str. Therefore, fixing a variant
10278 record requires us to fix each of its components.
10279
10280 However, if a component does not have a dynamic size, the component
10281 should not be fixed. In particular, fields that use a PAD type
10282 should not fixed. Here is an example where this might happen
10283 (assuming type Rec above):
10284
10285 type Container (Big : Boolean) is record
10286 First : Rec;
10287 After : Integer;
10288 case Big is
10289 when True => Another : Integer;
10290 when False => null;
10291 end case;
10292 end record;
10293 My_Container : Container := (Big => False,
10294 First => (Empty => True),
10295 After => 42);
10296
10297 In that example, the compiler creates a PAD type for component First,
10298 whose size is constant, and then positions the component After just
10299 right after it. The offset of component After is therefore constant
10300 in this case.
10301
10302 The debugger computes the position of each field based on an algorithm
10303 that uses, among other things, the actual position and size of the field
10304 preceding it. Let's now imagine that the user is trying to print
10305 the value of My_Container. If the type fixing was recursive, we would
10306 end up computing the offset of field After based on the size of the
10307 fixed version of field First. And since in our example First has
10308 only one actual field, the size of the fixed type is actually smaller
10309 than the amount of space allocated to that field, and thus we would
10310 compute the wrong offset of field After.
10311
10312 To make things more complicated, we need to watch out for dynamic
10313 components of variant records (identified by the ___XVL suffix in
10314 the component name). Even if the target type is a PAD type, the size
10315 of that type might not be statically known. So the PAD type needs
10316 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10317 we might end up with the wrong size for our component. This can be
10318 observed with the following type declarations:
10319
10320 type Octal is new Integer range 0 .. 7;
10321 type Octal_Array is array (Positive range <>) of Octal;
10322 pragma Pack (Octal_Array);
10323
10324 type Octal_Buffer (Size : Positive) is record
10325 Buffer : Octal_Array (1 .. Size);
10326 Length : Integer;
10327 end record;
10328
10329 In that case, Buffer is a PAD type whose size is unset and needs
10330 to be computed by fixing the unwrapped type.
10331
10332 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10333 ----------------------------------------------------------
10334
10335 Lastly, when should the sub-elements of an entity that remained unfixed
10336 thus far, be actually fixed?
10337
10338 The answer is: Only when referencing that element. For instance
10339 when selecting one component of a record, this specific component
10340 should be fixed at that point in time. Or when printing the value
10341 of a record, each component should be fixed before its value gets
10342 printed. Similarly for arrays, the element of the array should be
10343 fixed when printing each element of the array, or when extracting
10344 one element out of that array. On the other hand, fixing should
10345 not be performed on the elements when taking a slice of an array!
10346
10347 Note that one of the side effects of miscomputing the offset and
10348 size of each field is that we end up also miscomputing the size
10349 of the containing type. This can have adverse results when computing
10350 the value of an entity. GDB fetches the value of an entity based
10351 on the size of its type, and thus a wrong size causes GDB to fetch
10352 the wrong amount of memory. In the case where the computed size is
10353 too small, GDB fetches too little data to print the value of our
10354 entity. Results in this case are unpredictable, as we usually read
10355 past the buffer containing the data =:-o. */
10356
10357 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10358 for that subexpression cast to TO_TYPE. Advance *POS over the
10359 subexpression. */
10360
10361 static value *
10362 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10363 enum noside noside, struct type *to_type)
10364 {
10365 int pc = *pos;
10366
10367 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10368 || exp->elts[pc].opcode == OP_VAR_VALUE)
10369 {
10370 (*pos) += 4;
10371
10372 value *val;
10373 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10374 {
10375 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10376 return value_zero (to_type, not_lval);
10377
10378 val = evaluate_var_msym_value (noside,
10379 exp->elts[pc + 1].objfile,
10380 exp->elts[pc + 2].msymbol);
10381 }
10382 else
10383 val = evaluate_var_value (noside,
10384 exp->elts[pc + 1].block,
10385 exp->elts[pc + 2].symbol);
10386
10387 if (noside == EVAL_SKIP)
10388 return eval_skip_value (exp);
10389
10390 val = ada_value_cast (to_type, val);
10391
10392 /* Follow the Ada language semantics that do not allow taking
10393 an address of the result of a cast (view conversion in Ada). */
10394 if (VALUE_LVAL (val) == lval_memory)
10395 {
10396 if (value_lazy (val))
10397 value_fetch_lazy (val);
10398 VALUE_LVAL (val) = not_lval;
10399 }
10400 return val;
10401 }
10402
10403 value *val = evaluate_subexp (to_type, exp, pos, noside);
10404 if (noside == EVAL_SKIP)
10405 return eval_skip_value (exp);
10406 return ada_value_cast (to_type, val);
10407 }
10408
10409 /* Implement the evaluate_exp routine in the exp_descriptor structure
10410 for the Ada language. */
10411
10412 static struct value *
10413 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10414 int *pos, enum noside noside)
10415 {
10416 enum exp_opcode op;
10417 int tem;
10418 int pc;
10419 int preeval_pos;
10420 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10421 struct type *type;
10422 int nargs, oplen;
10423 struct value **argvec;
10424
10425 pc = *pos;
10426 *pos += 1;
10427 op = exp->elts[pc].opcode;
10428
10429 switch (op)
10430 {
10431 default:
10432 *pos -= 1;
10433 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10434
10435 if (noside == EVAL_NORMAL)
10436 arg1 = unwrap_value (arg1);
10437
10438 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10439 then we need to perform the conversion manually, because
10440 evaluate_subexp_standard doesn't do it. This conversion is
10441 necessary in Ada because the different kinds of float/fixed
10442 types in Ada have different representations.
10443
10444 Similarly, we need to perform the conversion from OP_LONG
10445 ourselves. */
10446 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10447 arg1 = ada_value_cast (expect_type, arg1);
10448
10449 return arg1;
10450
10451 case OP_STRING:
10452 {
10453 struct value *result;
10454
10455 *pos -= 1;
10456 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10457 /* The result type will have code OP_STRING, bashed there from
10458 OP_ARRAY. Bash it back. */
10459 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10460 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10461 return result;
10462 }
10463
10464 case UNOP_CAST:
10465 (*pos) += 2;
10466 type = exp->elts[pc + 1].type;
10467 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10468
10469 case UNOP_QUAL:
10470 (*pos) += 2;
10471 type = exp->elts[pc + 1].type;
10472 return ada_evaluate_subexp (type, exp, pos, noside);
10473
10474 case BINOP_ASSIGN:
10475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10476 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10477 {
10478 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10479 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10480 return arg1;
10481 return ada_value_assign (arg1, arg1);
10482 }
10483 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10484 except if the lhs of our assignment is a convenience variable.
10485 In the case of assigning to a convenience variable, the lhs
10486 should be exactly the result of the evaluation of the rhs. */
10487 type = value_type (arg1);
10488 if (VALUE_LVAL (arg1) == lval_internalvar)
10489 type = NULL;
10490 arg2 = evaluate_subexp (type, exp, pos, noside);
10491 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10492 return arg1;
10493 if (VALUE_LVAL (arg1) == lval_internalvar)
10494 {
10495 /* Nothing. */
10496 }
10497 else if (ada_is_fixed_point_type (value_type (arg1)))
10498 arg2 = cast_to_fixed (value_type (arg1), arg2);
10499 else if (ada_is_fixed_point_type (value_type (arg2)))
10500 error
10501 (_("Fixed-point values must be assigned to fixed-point variables"));
10502 else
10503 arg2 = coerce_for_assign (value_type (arg1), arg2);
10504 return ada_value_assign (arg1, arg2);
10505
10506 case BINOP_ADD:
10507 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10508 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10509 if (noside == EVAL_SKIP)
10510 goto nosideret;
10511 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10512 return (value_from_longest
10513 (value_type (arg1),
10514 value_as_long (arg1) + value_as_long (arg2)));
10515 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10516 return (value_from_longest
10517 (value_type (arg2),
10518 value_as_long (arg1) + value_as_long (arg2)));
10519 if ((ada_is_fixed_point_type (value_type (arg1))
10520 || ada_is_fixed_point_type (value_type (arg2)))
10521 && value_type (arg1) != value_type (arg2))
10522 error (_("Operands of fixed-point addition must have the same type"));
10523 /* Do the addition, and cast the result to the type of the first
10524 argument. We cannot cast the result to a reference type, so if
10525 ARG1 is a reference type, find its underlying type. */
10526 type = value_type (arg1);
10527 while (TYPE_CODE (type) == TYPE_CODE_REF)
10528 type = TYPE_TARGET_TYPE (type);
10529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10530 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10531
10532 case BINOP_SUB:
10533 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10534 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
10537 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10538 return (value_from_longest
10539 (value_type (arg1),
10540 value_as_long (arg1) - value_as_long (arg2)));
10541 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10542 return (value_from_longest
10543 (value_type (arg2),
10544 value_as_long (arg1) - value_as_long (arg2)));
10545 if ((ada_is_fixed_point_type (value_type (arg1))
10546 || ada_is_fixed_point_type (value_type (arg2)))
10547 && value_type (arg1) != value_type (arg2))
10548 error (_("Operands of fixed-point subtraction "
10549 "must have the same type"));
10550 /* Do the substraction, and cast the result to the type of the first
10551 argument. We cannot cast the result to a reference type, so if
10552 ARG1 is a reference type, find its underlying type. */
10553 type = value_type (arg1);
10554 while (TYPE_CODE (type) == TYPE_CODE_REF)
10555 type = TYPE_TARGET_TYPE (type);
10556 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10557 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10558
10559 case BINOP_MUL:
10560 case BINOP_DIV:
10561 case BINOP_REM:
10562 case BINOP_MOD:
10563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10564 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10565 if (noside == EVAL_SKIP)
10566 goto nosideret;
10567 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10568 {
10569 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10570 return value_zero (value_type (arg1), not_lval);
10571 }
10572 else
10573 {
10574 type = builtin_type (exp->gdbarch)->builtin_double;
10575 if (ada_is_fixed_point_type (value_type (arg1)))
10576 arg1 = cast_from_fixed (type, arg1);
10577 if (ada_is_fixed_point_type (value_type (arg2)))
10578 arg2 = cast_from_fixed (type, arg2);
10579 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10580 return ada_value_binop (arg1, arg2, op);
10581 }
10582
10583 case BINOP_EQUAL:
10584 case BINOP_NOTEQUAL:
10585 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10586 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10587 if (noside == EVAL_SKIP)
10588 goto nosideret;
10589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10590 tem = 0;
10591 else
10592 {
10593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10594 tem = ada_value_equal (arg1, arg2);
10595 }
10596 if (op == BINOP_NOTEQUAL)
10597 tem = !tem;
10598 type = language_bool_type (exp->language_defn, exp->gdbarch);
10599 return value_from_longest (type, (LONGEST) tem);
10600
10601 case UNOP_NEG:
10602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10603 if (noside == EVAL_SKIP)
10604 goto nosideret;
10605 else if (ada_is_fixed_point_type (value_type (arg1)))
10606 return value_cast (value_type (arg1), value_neg (arg1));
10607 else
10608 {
10609 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10610 return value_neg (arg1);
10611 }
10612
10613 case BINOP_LOGICAL_AND:
10614 case BINOP_LOGICAL_OR:
10615 case UNOP_LOGICAL_NOT:
10616 {
10617 struct value *val;
10618
10619 *pos -= 1;
10620 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10621 type = language_bool_type (exp->language_defn, exp->gdbarch);
10622 return value_cast (type, val);
10623 }
10624
10625 case BINOP_BITWISE_AND:
10626 case BINOP_BITWISE_IOR:
10627 case BINOP_BITWISE_XOR:
10628 {
10629 struct value *val;
10630
10631 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10632 *pos = pc;
10633 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10634
10635 return value_cast (value_type (arg1), val);
10636 }
10637
10638 case OP_VAR_VALUE:
10639 *pos -= 1;
10640
10641 if (noside == EVAL_SKIP)
10642 {
10643 *pos += 4;
10644 goto nosideret;
10645 }
10646
10647 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10648 /* Only encountered when an unresolved symbol occurs in a
10649 context other than a function call, in which case, it is
10650 invalid. */
10651 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10652 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10653
10654 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10655 {
10656 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10657 /* Check to see if this is a tagged type. We also need to handle
10658 the case where the type is a reference to a tagged type, but
10659 we have to be careful to exclude pointers to tagged types.
10660 The latter should be shown as usual (as a pointer), whereas
10661 a reference should mostly be transparent to the user. */
10662 if (ada_is_tagged_type (type, 0)
10663 || (TYPE_CODE (type) == TYPE_CODE_REF
10664 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10665 {
10666 /* Tagged types are a little special in the fact that the real
10667 type is dynamic and can only be determined by inspecting the
10668 object's tag. This means that we need to get the object's
10669 value first (EVAL_NORMAL) and then extract the actual object
10670 type from its tag.
10671
10672 Note that we cannot skip the final step where we extract
10673 the object type from its tag, because the EVAL_NORMAL phase
10674 results in dynamic components being resolved into fixed ones.
10675 This can cause problems when trying to print the type
10676 description of tagged types whose parent has a dynamic size:
10677 We use the type name of the "_parent" component in order
10678 to print the name of the ancestor type in the type description.
10679 If that component had a dynamic size, the resolution into
10680 a fixed type would result in the loss of that type name,
10681 thus preventing us from printing the name of the ancestor
10682 type in the type description. */
10683 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10684
10685 if (TYPE_CODE (type) != TYPE_CODE_REF)
10686 {
10687 struct type *actual_type;
10688
10689 actual_type = type_from_tag (ada_value_tag (arg1));
10690 if (actual_type == NULL)
10691 /* If, for some reason, we were unable to determine
10692 the actual type from the tag, then use the static
10693 approximation that we just computed as a fallback.
10694 This can happen if the debugging information is
10695 incomplete, for instance. */
10696 actual_type = type;
10697 return value_zero (actual_type, not_lval);
10698 }
10699 else
10700 {
10701 /* In the case of a ref, ada_coerce_ref takes care
10702 of determining the actual type. But the evaluation
10703 should return a ref as it should be valid to ask
10704 for its address; so rebuild a ref after coerce. */
10705 arg1 = ada_coerce_ref (arg1);
10706 return value_ref (arg1, TYPE_CODE_REF);
10707 }
10708 }
10709
10710 /* Records and unions for which GNAT encodings have been
10711 generated need to be statically fixed as well.
10712 Otherwise, non-static fixing produces a type where
10713 all dynamic properties are removed, which prevents "ptype"
10714 from being able to completely describe the type.
10715 For instance, a case statement in a variant record would be
10716 replaced by the relevant components based on the actual
10717 value of the discriminants. */
10718 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10719 && dynamic_template_type (type) != NULL)
10720 || (TYPE_CODE (type) == TYPE_CODE_UNION
10721 && ada_find_parallel_type (type, "___XVU") != NULL))
10722 {
10723 *pos += 4;
10724 return value_zero (to_static_fixed_type (type), not_lval);
10725 }
10726 }
10727
10728 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10729 return ada_to_fixed_value (arg1);
10730
10731 case OP_FUNCALL:
10732 (*pos) += 2;
10733
10734 /* Allocate arg vector, including space for the function to be
10735 called in argvec[0] and a terminating NULL. */
10736 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10737 argvec = XALLOCAVEC (struct value *, nargs + 2);
10738
10739 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10740 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10741 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10742 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10743 else
10744 {
10745 for (tem = 0; tem <= nargs; tem += 1)
10746 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10747 argvec[tem] = 0;
10748
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
10751 }
10752
10753 if (ada_is_constrained_packed_array_type
10754 (desc_base_type (value_type (argvec[0]))))
10755 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10756 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10757 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10758 /* This is a packed array that has already been fixed, and
10759 therefore already coerced to a simple array. Nothing further
10760 to do. */
10761 ;
10762 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10763 {
10764 /* Make sure we dereference references so that all the code below
10765 feels like it's really handling the referenced value. Wrapping
10766 types (for alignment) may be there, so make sure we strip them as
10767 well. */
10768 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10769 }
10770 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10771 && VALUE_LVAL (argvec[0]) == lval_memory)
10772 argvec[0] = value_addr (argvec[0]);
10773
10774 type = ada_check_typedef (value_type (argvec[0]));
10775
10776 /* Ada allows us to implicitly dereference arrays when subscripting
10777 them. So, if this is an array typedef (encoding use for array
10778 access types encoded as fat pointers), strip it now. */
10779 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10780 type = ada_typedef_target_type (type);
10781
10782 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10783 {
10784 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10785 {
10786 case TYPE_CODE_FUNC:
10787 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10788 break;
10789 case TYPE_CODE_ARRAY:
10790 break;
10791 case TYPE_CODE_STRUCT:
10792 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10793 argvec[0] = ada_value_ind (argvec[0]);
10794 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10795 break;
10796 default:
10797 error (_("cannot subscript or call something of type `%s'"),
10798 ada_type_name (value_type (argvec[0])));
10799 break;
10800 }
10801 }
10802
10803 switch (TYPE_CODE (type))
10804 {
10805 case TYPE_CODE_FUNC:
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
10808 if (TYPE_TARGET_TYPE (type) == NULL)
10809 error_call_unknown_return_type (NULL);
10810 return allocate_value (TYPE_TARGET_TYPE (type));
10811 }
10812 return call_function_by_hand (argvec[0], NULL,
10813 gdb::make_array_view (argvec + 1,
10814 nargs));
10815 case TYPE_CODE_INTERNAL_FUNCTION:
10816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10817 /* We don't know anything about what the internal
10818 function might return, but we have to return
10819 something. */
10820 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10821 not_lval);
10822 else
10823 return call_internal_function (exp->gdbarch, exp->language_defn,
10824 argvec[0], nargs, argvec + 1);
10825
10826 case TYPE_CODE_STRUCT:
10827 {
10828 int arity;
10829
10830 arity = ada_array_arity (type);
10831 type = ada_array_element_type (type, nargs);
10832 if (type == NULL)
10833 error (_("cannot subscript or call a record"));
10834 if (arity != nargs)
10835 error (_("wrong number of subscripts; expecting %d"), arity);
10836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10837 return value_zero (ada_aligned_type (type), lval_memory);
10838 return
10839 unwrap_value (ada_value_subscript
10840 (argvec[0], nargs, argvec + 1));
10841 }
10842 case TYPE_CODE_ARRAY:
10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10844 {
10845 type = ada_array_element_type (type, nargs);
10846 if (type == NULL)
10847 error (_("element type of array unknown"));
10848 else
10849 return value_zero (ada_aligned_type (type), lval_memory);
10850 }
10851 return
10852 unwrap_value (ada_value_subscript
10853 (ada_coerce_to_simple_array (argvec[0]),
10854 nargs, argvec + 1));
10855 case TYPE_CODE_PTR: /* Pointer to array */
10856 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10857 {
10858 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10859 type = ada_array_element_type (type, nargs);
10860 if (type == NULL)
10861 error (_("element type of array unknown"));
10862 else
10863 return value_zero (ada_aligned_type (type), lval_memory);
10864 }
10865 return
10866 unwrap_value (ada_value_ptr_subscript (argvec[0],
10867 nargs, argvec + 1));
10868
10869 default:
10870 error (_("Attempt to index or call something other than an "
10871 "array or function"));
10872 }
10873
10874 case TERNOP_SLICE:
10875 {
10876 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 struct value *low_bound_val =
10878 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 struct value *high_bound_val =
10880 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 LONGEST low_bound;
10882 LONGEST high_bound;
10883
10884 low_bound_val = coerce_ref (low_bound_val);
10885 high_bound_val = coerce_ref (high_bound_val);
10886 low_bound = value_as_long (low_bound_val);
10887 high_bound = value_as_long (high_bound_val);
10888
10889 if (noside == EVAL_SKIP)
10890 goto nosideret;
10891
10892 /* If this is a reference to an aligner type, then remove all
10893 the aligners. */
10894 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10895 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10896 TYPE_TARGET_TYPE (value_type (array)) =
10897 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10898
10899 if (ada_is_constrained_packed_array_type (value_type (array)))
10900 error (_("cannot slice a packed array"));
10901
10902 /* If this is a reference to an array or an array lvalue,
10903 convert to a pointer. */
10904 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10905 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10906 && VALUE_LVAL (array) == lval_memory))
10907 array = value_addr (array);
10908
10909 if (noside == EVAL_AVOID_SIDE_EFFECTS
10910 && ada_is_array_descriptor_type (ada_check_typedef
10911 (value_type (array))))
10912 return empty_array (ada_type_of_array (array, 0), low_bound,
10913 high_bound);
10914
10915 array = ada_coerce_to_simple_array_ptr (array);
10916
10917 /* If we have more than one level of pointer indirection,
10918 dereference the value until we get only one level. */
10919 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10920 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10921 == TYPE_CODE_PTR))
10922 array = value_ind (array);
10923
10924 /* Make sure we really do have an array type before going further,
10925 to avoid a SEGV when trying to get the index type or the target
10926 type later down the road if the debug info generated by
10927 the compiler is incorrect or incomplete. */
10928 if (!ada_is_simple_array_type (value_type (array)))
10929 error (_("cannot take slice of non-array"));
10930
10931 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10932 == TYPE_CODE_PTR)
10933 {
10934 struct type *type0 = ada_check_typedef (value_type (array));
10935
10936 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10937 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10938 else
10939 {
10940 struct type *arr_type0 =
10941 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10942
10943 return ada_value_slice_from_ptr (array, arr_type0,
10944 longest_to_int (low_bound),
10945 longest_to_int (high_bound));
10946 }
10947 }
10948 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 return array;
10950 else if (high_bound < low_bound)
10951 return empty_array (value_type (array), low_bound, high_bound);
10952 else
10953 return ada_value_slice (array, longest_to_int (low_bound),
10954 longest_to_int (high_bound));
10955 }
10956
10957 case UNOP_IN_RANGE:
10958 (*pos) += 2;
10959 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10960 type = check_typedef (exp->elts[pc + 1].type);
10961
10962 if (noside == EVAL_SKIP)
10963 goto nosideret;
10964
10965 switch (TYPE_CODE (type))
10966 {
10967 default:
10968 lim_warning (_("Membership test incompletely implemented; "
10969 "always returns true"));
10970 type = language_bool_type (exp->language_defn, exp->gdbarch);
10971 return value_from_longest (type, (LONGEST) 1);
10972
10973 case TYPE_CODE_RANGE:
10974 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10975 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10976 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
10979 return
10980 value_from_longest (type,
10981 (value_less (arg1, arg3)
10982 || value_equal (arg1, arg3))
10983 && (value_less (arg2, arg1)
10984 || value_equal (arg2, arg1)));
10985 }
10986
10987 case BINOP_IN_BOUNDS:
10988 (*pos) += 2;
10989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10990 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991
10992 if (noside == EVAL_SKIP)
10993 goto nosideret;
10994
10995 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10996 {
10997 type = language_bool_type (exp->language_defn, exp->gdbarch);
10998 return value_zero (type, not_lval);
10999 }
11000
11001 tem = longest_to_int (exp->elts[pc + 1].longconst);
11002
11003 type = ada_index_type (value_type (arg2), tem, "range");
11004 if (!type)
11005 type = value_type (arg1);
11006
11007 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11008 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11009
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019
11020 case TERNOP_IN_RANGE:
11021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024
11025 if (noside == EVAL_SKIP)
11026 goto nosideret;
11027
11028 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11030 type = language_bool_type (exp->language_defn, exp->gdbarch);
11031 return
11032 value_from_longest (type,
11033 (value_less (arg1, arg3)
11034 || value_equal (arg1, arg3))
11035 && (value_less (arg2, arg1)
11036 || value_equal (arg2, arg1)));
11037
11038 case OP_ATR_FIRST:
11039 case OP_ATR_LAST:
11040 case OP_ATR_LENGTH:
11041 {
11042 struct type *type_arg;
11043
11044 if (exp->elts[*pos].opcode == OP_TYPE)
11045 {
11046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11047 arg1 = NULL;
11048 type_arg = check_typedef (exp->elts[pc + 2].type);
11049 }
11050 else
11051 {
11052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 type_arg = NULL;
11054 }
11055
11056 if (exp->elts[*pos].opcode != OP_LONG)
11057 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11058 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11059 *pos += 4;
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11064 {
11065 if (type_arg == NULL)
11066 type_arg = value_type (arg1);
11067
11068 if (ada_is_constrained_packed_array_type (type_arg))
11069 type_arg = decode_constrained_packed_array_type (type_arg);
11070
11071 if (!discrete_type_p (type_arg))
11072 {
11073 switch (op)
11074 {
11075 default: /* Should never happen. */
11076 error (_("unexpected attribute encountered"));
11077 case OP_ATR_FIRST:
11078 case OP_ATR_LAST:
11079 type_arg = ada_index_type (type_arg, tem,
11080 ada_attribute_name (op));
11081 break;
11082 case OP_ATR_LENGTH:
11083 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11084 break;
11085 }
11086 }
11087
11088 return value_zero (type_arg, not_lval);
11089 }
11090 else if (type_arg == NULL)
11091 {
11092 arg1 = ada_coerce_ref (arg1);
11093
11094 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11095 arg1 = ada_coerce_to_simple_array (arg1);
11096
11097 if (op == OP_ATR_LENGTH)
11098 type = builtin_type (exp->gdbarch)->builtin_int;
11099 else
11100 {
11101 type = ada_index_type (value_type (arg1), tem,
11102 ada_attribute_name (op));
11103 if (type == NULL)
11104 type = builtin_type (exp->gdbarch)->builtin_int;
11105 }
11106
11107 switch (op)
11108 {
11109 default: /* Should never happen. */
11110 error (_("unexpected attribute encountered"));
11111 case OP_ATR_FIRST:
11112 return value_from_longest
11113 (type, ada_array_bound (arg1, tem, 0));
11114 case OP_ATR_LAST:
11115 return value_from_longest
11116 (type, ada_array_bound (arg1, tem, 1));
11117 case OP_ATR_LENGTH:
11118 return value_from_longest
11119 (type, ada_array_length (arg1, tem));
11120 }
11121 }
11122 else if (discrete_type_p (type_arg))
11123 {
11124 struct type *range_type;
11125 const char *name = ada_type_name (type_arg);
11126
11127 range_type = NULL;
11128 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11129 range_type = to_fixed_range_type (type_arg, NULL);
11130 if (range_type == NULL)
11131 range_type = type_arg;
11132 switch (op)
11133 {
11134 default:
11135 error (_("unexpected attribute encountered"));
11136 case OP_ATR_FIRST:
11137 return value_from_longest
11138 (range_type, ada_discrete_type_low_bound (range_type));
11139 case OP_ATR_LAST:
11140 return value_from_longest
11141 (range_type, ada_discrete_type_high_bound (range_type));
11142 case OP_ATR_LENGTH:
11143 error (_("the 'length attribute applies only to array types"));
11144 }
11145 }
11146 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11147 error (_("unimplemented type attribute"));
11148 else
11149 {
11150 LONGEST low, high;
11151
11152 if (ada_is_constrained_packed_array_type (type_arg))
11153 type_arg = decode_constrained_packed_array_type (type_arg);
11154
11155 if (op == OP_ATR_LENGTH)
11156 type = builtin_type (exp->gdbarch)->builtin_int;
11157 else
11158 {
11159 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11160 if (type == NULL)
11161 type = builtin_type (exp->gdbarch)->builtin_int;
11162 }
11163
11164 switch (op)
11165 {
11166 default:
11167 error (_("unexpected attribute encountered"));
11168 case OP_ATR_FIRST:
11169 low = ada_array_bound_from_type (type_arg, tem, 0);
11170 return value_from_longest (type, low);
11171 case OP_ATR_LAST:
11172 high = ada_array_bound_from_type (type_arg, tem, 1);
11173 return value_from_longest (type, high);
11174 case OP_ATR_LENGTH:
11175 low = ada_array_bound_from_type (type_arg, tem, 0);
11176 high = ada_array_bound_from_type (type_arg, tem, 1);
11177 return value_from_longest (type, high - low + 1);
11178 }
11179 }
11180 }
11181
11182 case OP_ATR_TAG:
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186
11187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (ada_tag_type (arg1), not_lval);
11189
11190 return ada_value_tag (arg1);
11191
11192 case OP_ATR_MIN:
11193 case OP_ATR_MAX:
11194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
11199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11200 return value_zero (value_type (arg1), not_lval);
11201 else
11202 {
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11204 return value_binop (arg1, arg2,
11205 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11206 }
11207
11208 case OP_ATR_MODULUS:
11209 {
11210 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11211
11212 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11213 if (noside == EVAL_SKIP)
11214 goto nosideret;
11215
11216 if (!ada_is_modular_type (type_arg))
11217 error (_("'modulus must be applied to modular type"));
11218
11219 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11220 ada_modulus (type_arg));
11221 }
11222
11223
11224 case OP_ATR_POS:
11225 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
11229 type = builtin_type (exp->gdbarch)->builtin_int;
11230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11231 return value_zero (type, not_lval);
11232 else
11233 return value_pos_atr (type, arg1);
11234
11235 case OP_ATR_SIZE:
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 type = value_type (arg1);
11238
11239 /* If the argument is a reference, then dereference its type, since
11240 the user is really asking for the size of the actual object,
11241 not the size of the pointer. */
11242 if (TYPE_CODE (type) == TYPE_CODE_REF)
11243 type = TYPE_TARGET_TYPE (type);
11244
11245 if (noside == EVAL_SKIP)
11246 goto nosideret;
11247 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11248 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11249 else
11250 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11251 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11252
11253 case OP_ATR_VAL:
11254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11256 type = exp->elts[pc + 2].type;
11257 if (noside == EVAL_SKIP)
11258 goto nosideret;
11259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11260 return value_zero (type, not_lval);
11261 else
11262 return value_val_atr (type, arg1);
11263
11264 case BINOP_EXP:
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11267 if (noside == EVAL_SKIP)
11268 goto nosideret;
11269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 return value_zero (value_type (arg1), not_lval);
11271 else
11272 {
11273 /* For integer exponentiation operations,
11274 only promote the first argument. */
11275 if (is_integral_type (value_type (arg2)))
11276 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11277 else
11278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11279
11280 return value_binop (arg1, arg2, op);
11281 }
11282
11283 case UNOP_PLUS:
11284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11285 if (noside == EVAL_SKIP)
11286 goto nosideret;
11287 else
11288 return arg1;
11289
11290 case UNOP_ABS:
11291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11292 if (noside == EVAL_SKIP)
11293 goto nosideret;
11294 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11295 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11296 return value_neg (arg1);
11297 else
11298 return arg1;
11299
11300 case UNOP_IND:
11301 preeval_pos = *pos;
11302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 if (noside == EVAL_SKIP)
11304 goto nosideret;
11305 type = ada_check_typedef (value_type (arg1));
11306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11307 {
11308 if (ada_is_array_descriptor_type (type))
11309 /* GDB allows dereferencing GNAT array descriptors. */
11310 {
11311 struct type *arrType = ada_type_of_array (arg1, 0);
11312
11313 if (arrType == NULL)
11314 error (_("Attempt to dereference null array pointer."));
11315 return value_at_lazy (arrType, 0);
11316 }
11317 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11318 || TYPE_CODE (type) == TYPE_CODE_REF
11319 /* In C you can dereference an array to get the 1st elt. */
11320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11321 {
11322 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11323 only be determined by inspecting the object's tag.
11324 This means that we need to evaluate completely the
11325 expression in order to get its type. */
11326
11327 if ((TYPE_CODE (type) == TYPE_CODE_REF
11328 || TYPE_CODE (type) == TYPE_CODE_PTR)
11329 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11330 {
11331 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11332 EVAL_NORMAL);
11333 type = value_type (ada_value_ind (arg1));
11334 }
11335 else
11336 {
11337 type = to_static_fixed_type
11338 (ada_aligned_type
11339 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11340 }
11341 ada_ensure_varsize_limit (type);
11342 return value_zero (type, lval_memory);
11343 }
11344 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11345 {
11346 /* GDB allows dereferencing an int. */
11347 if (expect_type == NULL)
11348 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11349 lval_memory);
11350 else
11351 {
11352 expect_type =
11353 to_static_fixed_type (ada_aligned_type (expect_type));
11354 return value_zero (expect_type, lval_memory);
11355 }
11356 }
11357 else
11358 error (_("Attempt to take contents of a non-pointer value."));
11359 }
11360 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11361 type = ada_check_typedef (value_type (arg1));
11362
11363 if (TYPE_CODE (type) == TYPE_CODE_INT)
11364 /* GDB allows dereferencing an int. If we were given
11365 the expect_type, then use that as the target type.
11366 Otherwise, assume that the target type is an int. */
11367 {
11368 if (expect_type != NULL)
11369 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11370 arg1));
11371 else
11372 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11373 (CORE_ADDR) value_as_address (arg1));
11374 }
11375
11376 if (ada_is_array_descriptor_type (type))
11377 /* GDB allows dereferencing GNAT array descriptors. */
11378 return ada_coerce_to_simple_array (arg1);
11379 else
11380 return ada_value_ind (arg1);
11381
11382 case STRUCTOP_STRUCT:
11383 tem = longest_to_int (exp->elts[pc + 1].longconst);
11384 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11385 preeval_pos = *pos;
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 if (noside == EVAL_SKIP)
11388 goto nosideret;
11389 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11390 {
11391 struct type *type1 = value_type (arg1);
11392
11393 if (ada_is_tagged_type (type1, 1))
11394 {
11395 type = ada_lookup_struct_elt_type (type1,
11396 &exp->elts[pc + 2].string,
11397 1, 1);
11398
11399 /* If the field is not found, check if it exists in the
11400 extension of this object's type. This means that we
11401 need to evaluate completely the expression. */
11402
11403 if (type == NULL)
11404 {
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11406 EVAL_NORMAL);
11407 arg1 = ada_value_struct_elt (arg1,
11408 &exp->elts[pc + 2].string,
11409 0);
11410 arg1 = unwrap_value (arg1);
11411 type = value_type (ada_to_fixed_value (arg1));
11412 }
11413 }
11414 else
11415 type =
11416 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11417 0);
11418
11419 return value_zero (ada_aligned_type (type), lval_memory);
11420 }
11421 else
11422 {
11423 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11424 arg1 = unwrap_value (arg1);
11425 return ada_to_fixed_value (arg1);
11426 }
11427
11428 case OP_TYPE:
11429 /* The value is not supposed to be used. This is here to make it
11430 easier to accommodate expressions that contain types. */
11431 (*pos) += 2;
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
11434 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11435 return allocate_value (exp->elts[pc + 1].type);
11436 else
11437 error (_("Attempt to use a type name as an expression"));
11438
11439 case OP_AGGREGATE:
11440 case OP_CHOICES:
11441 case OP_OTHERS:
11442 case OP_DISCRETE_RANGE:
11443 case OP_POSITIONAL:
11444 case OP_NAME:
11445 if (noside == EVAL_NORMAL)
11446 switch (op)
11447 {
11448 case OP_NAME:
11449 error (_("Undefined name, ambiguous name, or renaming used in "
11450 "component association: %s."), &exp->elts[pc+2].string);
11451 case OP_AGGREGATE:
11452 error (_("Aggregates only allowed on the right of an assignment"));
11453 default:
11454 internal_error (__FILE__, __LINE__,
11455 _("aggregate apparently mangled"));
11456 }
11457
11458 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11459 *pos += oplen - 1;
11460 for (tem = 0; tem < nargs; tem += 1)
11461 ada_evaluate_subexp (NULL, exp, pos, noside);
11462 goto nosideret;
11463 }
11464
11465 nosideret:
11466 return eval_skip_value (exp);
11467 }
11468 \f
11469
11470 /* Fixed point */
11471
11472 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11473 type name that encodes the 'small and 'delta information.
11474 Otherwise, return NULL. */
11475
11476 static const char *
11477 fixed_type_info (struct type *type)
11478 {
11479 const char *name = ada_type_name (type);
11480 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11481
11482 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11483 {
11484 const char *tail = strstr (name, "___XF_");
11485
11486 if (tail == NULL)
11487 return NULL;
11488 else
11489 return tail + 5;
11490 }
11491 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11492 return fixed_type_info (TYPE_TARGET_TYPE (type));
11493 else
11494 return NULL;
11495 }
11496
11497 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11498
11499 int
11500 ada_is_fixed_point_type (struct type *type)
11501 {
11502 return fixed_type_info (type) != NULL;
11503 }
11504
11505 /* Return non-zero iff TYPE represents a System.Address type. */
11506
11507 int
11508 ada_is_system_address_type (struct type *type)
11509 {
11510 return (TYPE_NAME (type)
11511 && strcmp (TYPE_NAME (type), "system__address") == 0);
11512 }
11513
11514 /* Assuming that TYPE is the representation of an Ada fixed-point
11515 type, return the target floating-point type to be used to represent
11516 of this type during internal computation. */
11517
11518 static struct type *
11519 ada_scaling_type (struct type *type)
11520 {
11521 return builtin_type (get_type_arch (type))->builtin_long_double;
11522 }
11523
11524 /* Assuming that TYPE is the representation of an Ada fixed-point
11525 type, return its delta, or NULL if the type is malformed and the
11526 delta cannot be determined. */
11527
11528 struct value *
11529 ada_delta (struct type *type)
11530 {
11531 const char *encoding = fixed_type_info (type);
11532 struct type *scale_type = ada_scaling_type (type);
11533
11534 long long num, den;
11535
11536 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11537 return nullptr;
11538 else
11539 return value_binop (value_from_longest (scale_type, num),
11540 value_from_longest (scale_type, den), BINOP_DIV);
11541 }
11542
11543 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11544 factor ('SMALL value) associated with the type. */
11545
11546 struct value *
11547 ada_scaling_factor (struct type *type)
11548 {
11549 const char *encoding = fixed_type_info (type);
11550 struct type *scale_type = ada_scaling_type (type);
11551
11552 long long num0, den0, num1, den1;
11553 int n;
11554
11555 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11556 &num0, &den0, &num1, &den1);
11557
11558 if (n < 2)
11559 return value_from_longest (scale_type, 1);
11560 else if (n == 4)
11561 return value_binop (value_from_longest (scale_type, num1),
11562 value_from_longest (scale_type, den1), BINOP_DIV);
11563 else
11564 return value_binop (value_from_longest (scale_type, num0),
11565 value_from_longest (scale_type, den0), BINOP_DIV);
11566 }
11567
11568 \f
11569
11570 /* Range types */
11571
11572 /* Scan STR beginning at position K for a discriminant name, and
11573 return the value of that discriminant field of DVAL in *PX. If
11574 PNEW_K is not null, put the position of the character beyond the
11575 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11576 not alter *PX and *PNEW_K if unsuccessful. */
11577
11578 static int
11579 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11580 int *pnew_k)
11581 {
11582 static char *bound_buffer = NULL;
11583 static size_t bound_buffer_len = 0;
11584 const char *pstart, *pend, *bound;
11585 struct value *bound_val;
11586
11587 if (dval == NULL || str == NULL || str[k] == '\0')
11588 return 0;
11589
11590 pstart = str + k;
11591 pend = strstr (pstart, "__");
11592 if (pend == NULL)
11593 {
11594 bound = pstart;
11595 k += strlen (bound);
11596 }
11597 else
11598 {
11599 int len = pend - pstart;
11600
11601 /* Strip __ and beyond. */
11602 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11603 strncpy (bound_buffer, pstart, len);
11604 bound_buffer[len] = '\0';
11605
11606 bound = bound_buffer;
11607 k = pend - str;
11608 }
11609
11610 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11611 if (bound_val == NULL)
11612 return 0;
11613
11614 *px = value_as_long (bound_val);
11615 if (pnew_k != NULL)
11616 *pnew_k = k;
11617 return 1;
11618 }
11619
11620 /* Value of variable named NAME in the current environment. If
11621 no such variable found, then if ERR_MSG is null, returns 0, and
11622 otherwise causes an error with message ERR_MSG. */
11623
11624 static struct value *
11625 get_var_value (const char *name, const char *err_msg)
11626 {
11627 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11628
11629 std::vector<struct block_symbol> syms;
11630 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11631 get_selected_block (0),
11632 VAR_DOMAIN, &syms, 1);
11633
11634 if (nsyms != 1)
11635 {
11636 if (err_msg == NULL)
11637 return 0;
11638 else
11639 error (("%s"), err_msg);
11640 }
11641
11642 return value_of_variable (syms[0].symbol, syms[0].block);
11643 }
11644
11645 /* Value of integer variable named NAME in the current environment.
11646 If no such variable is found, returns false. Otherwise, sets VALUE
11647 to the variable's value and returns true. */
11648
11649 bool
11650 get_int_var_value (const char *name, LONGEST &value)
11651 {
11652 struct value *var_val = get_var_value (name, 0);
11653
11654 if (var_val == 0)
11655 return false;
11656
11657 value = value_as_long (var_val);
11658 return true;
11659 }
11660
11661
11662 /* Return a range type whose base type is that of the range type named
11663 NAME in the current environment, and whose bounds are calculated
11664 from NAME according to the GNAT range encoding conventions.
11665 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11666 corresponding range type from debug information; fall back to using it
11667 if symbol lookup fails. If a new type must be created, allocate it
11668 like ORIG_TYPE was. The bounds information, in general, is encoded
11669 in NAME, the base type given in the named range type. */
11670
11671 static struct type *
11672 to_fixed_range_type (struct type *raw_type, struct value *dval)
11673 {
11674 const char *name;
11675 struct type *base_type;
11676 const char *subtype_info;
11677
11678 gdb_assert (raw_type != NULL);
11679 gdb_assert (TYPE_NAME (raw_type) != NULL);
11680
11681 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11682 base_type = TYPE_TARGET_TYPE (raw_type);
11683 else
11684 base_type = raw_type;
11685
11686 name = TYPE_NAME (raw_type);
11687 subtype_info = strstr (name, "___XD");
11688 if (subtype_info == NULL)
11689 {
11690 LONGEST L = ada_discrete_type_low_bound (raw_type);
11691 LONGEST U = ada_discrete_type_high_bound (raw_type);
11692
11693 if (L < INT_MIN || U > INT_MAX)
11694 return raw_type;
11695 else
11696 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11697 L, U);
11698 }
11699 else
11700 {
11701 static char *name_buf = NULL;
11702 static size_t name_len = 0;
11703 int prefix_len = subtype_info - name;
11704 LONGEST L, U;
11705 struct type *type;
11706 const char *bounds_str;
11707 int n;
11708
11709 GROW_VECT (name_buf, name_len, prefix_len + 5);
11710 strncpy (name_buf, name, prefix_len);
11711 name_buf[prefix_len] = '\0';
11712
11713 subtype_info += 5;
11714 bounds_str = strchr (subtype_info, '_');
11715 n = 1;
11716
11717 if (*subtype_info == 'L')
11718 {
11719 if (!ada_scan_number (bounds_str, n, &L, &n)
11720 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11721 return raw_type;
11722 if (bounds_str[n] == '_')
11723 n += 2;
11724 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11725 n += 1;
11726 subtype_info += 1;
11727 }
11728 else
11729 {
11730 strcpy (name_buf + prefix_len, "___L");
11731 if (!get_int_var_value (name_buf, L))
11732 {
11733 lim_warning (_("Unknown lower bound, using 1."));
11734 L = 1;
11735 }
11736 }
11737
11738 if (*subtype_info == 'U')
11739 {
11740 if (!ada_scan_number (bounds_str, n, &U, &n)
11741 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11742 return raw_type;
11743 }
11744 else
11745 {
11746 strcpy (name_buf + prefix_len, "___U");
11747 if (!get_int_var_value (name_buf, U))
11748 {
11749 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11750 U = L;
11751 }
11752 }
11753
11754 type = create_static_range_type (alloc_type_copy (raw_type),
11755 base_type, L, U);
11756 /* create_static_range_type alters the resulting type's length
11757 to match the size of the base_type, which is not what we want.
11758 Set it back to the original range type's length. */
11759 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11760 TYPE_NAME (type) = name;
11761 return type;
11762 }
11763 }
11764
11765 /* True iff NAME is the name of a range type. */
11766
11767 int
11768 ada_is_range_type_name (const char *name)
11769 {
11770 return (name != NULL && strstr (name, "___XD"));
11771 }
11772 \f
11773
11774 /* Modular types */
11775
11776 /* True iff TYPE is an Ada modular type. */
11777
11778 int
11779 ada_is_modular_type (struct type *type)
11780 {
11781 struct type *subranged_type = get_base_type (type);
11782
11783 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11784 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11785 && TYPE_UNSIGNED (subranged_type));
11786 }
11787
11788 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11789
11790 ULONGEST
11791 ada_modulus (struct type *type)
11792 {
11793 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11794 }
11795 \f
11796
11797 /* Ada exception catchpoint support:
11798 ---------------------------------
11799
11800 We support 3 kinds of exception catchpoints:
11801 . catchpoints on Ada exceptions
11802 . catchpoints on unhandled Ada exceptions
11803 . catchpoints on failed assertions
11804
11805 Exceptions raised during failed assertions, or unhandled exceptions
11806 could perfectly be caught with the general catchpoint on Ada exceptions.
11807 However, we can easily differentiate these two special cases, and having
11808 the option to distinguish these two cases from the rest can be useful
11809 to zero-in on certain situations.
11810
11811 Exception catchpoints are a specialized form of breakpoint,
11812 since they rely on inserting breakpoints inside known routines
11813 of the GNAT runtime. The implementation therefore uses a standard
11814 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11815 of breakpoint_ops.
11816
11817 Support in the runtime for exception catchpoints have been changed
11818 a few times already, and these changes affect the implementation
11819 of these catchpoints. In order to be able to support several
11820 variants of the runtime, we use a sniffer that will determine
11821 the runtime variant used by the program being debugged. */
11822
11823 /* Ada's standard exceptions.
11824
11825 The Ada 83 standard also defined Numeric_Error. But there so many
11826 situations where it was unclear from the Ada 83 Reference Manual
11827 (RM) whether Constraint_Error or Numeric_Error should be raised,
11828 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11829 Interpretation saying that anytime the RM says that Numeric_Error
11830 should be raised, the implementation may raise Constraint_Error.
11831 Ada 95 went one step further and pretty much removed Numeric_Error
11832 from the list of standard exceptions (it made it a renaming of
11833 Constraint_Error, to help preserve compatibility when compiling
11834 an Ada83 compiler). As such, we do not include Numeric_Error from
11835 this list of standard exceptions. */
11836
11837 static const char *standard_exc[] = {
11838 "constraint_error",
11839 "program_error",
11840 "storage_error",
11841 "tasking_error"
11842 };
11843
11844 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11845
11846 /* A structure that describes how to support exception catchpoints
11847 for a given executable. */
11848
11849 struct exception_support_info
11850 {
11851 /* The name of the symbol to break on in order to insert
11852 a catchpoint on exceptions. */
11853 const char *catch_exception_sym;
11854
11855 /* The name of the symbol to break on in order to insert
11856 a catchpoint on unhandled exceptions. */
11857 const char *catch_exception_unhandled_sym;
11858
11859 /* The name of the symbol to break on in order to insert
11860 a catchpoint on failed assertions. */
11861 const char *catch_assert_sym;
11862
11863 /* The name of the symbol to break on in order to insert
11864 a catchpoint on exception handling. */
11865 const char *catch_handlers_sym;
11866
11867 /* Assuming that the inferior just triggered an unhandled exception
11868 catchpoint, this function is responsible for returning the address
11869 in inferior memory where the name of that exception is stored.
11870 Return zero if the address could not be computed. */
11871 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11872 };
11873
11874 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11875 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11876
11877 /* The following exception support info structure describes how to
11878 implement exception catchpoints with the latest version of the
11879 Ada runtime (as of 2019-08-??). */
11880
11881 static const struct exception_support_info default_exception_support_info =
11882 {
11883 "__gnat_debug_raise_exception", /* catch_exception_sym */
11884 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11885 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11886 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11887 ada_unhandled_exception_name_addr
11888 };
11889
11890 /* The following exception support info structure describes how to
11891 implement exception catchpoints with an earlier version of the
11892 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11893
11894 static const struct exception_support_info exception_support_info_v0 =
11895 {
11896 "__gnat_debug_raise_exception", /* catch_exception_sym */
11897 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11898 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11899 "__gnat_begin_handler", /* catch_handlers_sym */
11900 ada_unhandled_exception_name_addr
11901 };
11902
11903 /* The following exception support info structure describes how to
11904 implement exception catchpoints with a slightly older version
11905 of the Ada runtime. */
11906
11907 static const struct exception_support_info exception_support_info_fallback =
11908 {
11909 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11910 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11911 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11912 "__gnat_begin_handler", /* catch_handlers_sym */
11913 ada_unhandled_exception_name_addr_from_raise
11914 };
11915
11916 /* Return nonzero if we can detect the exception support routines
11917 described in EINFO.
11918
11919 This function errors out if an abnormal situation is detected
11920 (for instance, if we find the exception support routines, but
11921 that support is found to be incomplete). */
11922
11923 static int
11924 ada_has_this_exception_support (const struct exception_support_info *einfo)
11925 {
11926 struct symbol *sym;
11927
11928 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11929 that should be compiled with debugging information. As a result, we
11930 expect to find that symbol in the symtabs. */
11931
11932 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11933 if (sym == NULL)
11934 {
11935 /* Perhaps we did not find our symbol because the Ada runtime was
11936 compiled without debugging info, or simply stripped of it.
11937 It happens on some GNU/Linux distributions for instance, where
11938 users have to install a separate debug package in order to get
11939 the runtime's debugging info. In that situation, let the user
11940 know why we cannot insert an Ada exception catchpoint.
11941
11942 Note: Just for the purpose of inserting our Ada exception
11943 catchpoint, we could rely purely on the associated minimal symbol.
11944 But we would be operating in degraded mode anyway, since we are
11945 still lacking the debugging info needed later on to extract
11946 the name of the exception being raised (this name is printed in
11947 the catchpoint message, and is also used when trying to catch
11948 a specific exception). We do not handle this case for now. */
11949 struct bound_minimal_symbol msym
11950 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11951
11952 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11953 error (_("Your Ada runtime appears to be missing some debugging "
11954 "information.\nCannot insert Ada exception catchpoint "
11955 "in this configuration."));
11956
11957 return 0;
11958 }
11959
11960 /* Make sure that the symbol we found corresponds to a function. */
11961
11962 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11963 {
11964 error (_("Symbol \"%s\" is not a function (class = %d)"),
11965 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11966 return 0;
11967 }
11968
11969 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11970 if (sym == NULL)
11971 {
11972 struct bound_minimal_symbol msym
11973 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11974
11975 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11976 error (_("Your Ada runtime appears to be missing some debugging "
11977 "information.\nCannot insert Ada exception catchpoint "
11978 "in this configuration."));
11979
11980 return 0;
11981 }
11982
11983 /* Make sure that the symbol we found corresponds to a function. */
11984
11985 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11986 {
11987 error (_("Symbol \"%s\" is not a function (class = %d)"),
11988 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11989 return 0;
11990 }
11991
11992 return 1;
11993 }
11994
11995 /* Inspect the Ada runtime and determine which exception info structure
11996 should be used to provide support for exception catchpoints.
11997
11998 This function will always set the per-inferior exception_info,
11999 or raise an error. */
12000
12001 static void
12002 ada_exception_support_info_sniffer (void)
12003 {
12004 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12005
12006 /* If the exception info is already known, then no need to recompute it. */
12007 if (data->exception_info != NULL)
12008 return;
12009
12010 /* Check the latest (default) exception support info. */
12011 if (ada_has_this_exception_support (&default_exception_support_info))
12012 {
12013 data->exception_info = &default_exception_support_info;
12014 return;
12015 }
12016
12017 /* Try the v0 exception suport info. */
12018 if (ada_has_this_exception_support (&exception_support_info_v0))
12019 {
12020 data->exception_info = &exception_support_info_v0;
12021 return;
12022 }
12023
12024 /* Try our fallback exception suport info. */
12025 if (ada_has_this_exception_support (&exception_support_info_fallback))
12026 {
12027 data->exception_info = &exception_support_info_fallback;
12028 return;
12029 }
12030
12031 /* Sometimes, it is normal for us to not be able to find the routine
12032 we are looking for. This happens when the program is linked with
12033 the shared version of the GNAT runtime, and the program has not been
12034 started yet. Inform the user of these two possible causes if
12035 applicable. */
12036
12037 if (ada_update_initial_language (language_unknown) != language_ada)
12038 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12039
12040 /* If the symbol does not exist, then check that the program is
12041 already started, to make sure that shared libraries have been
12042 loaded. If it is not started, this may mean that the symbol is
12043 in a shared library. */
12044
12045 if (inferior_ptid.pid () == 0)
12046 error (_("Unable to insert catchpoint. Try to start the program first."));
12047
12048 /* At this point, we know that we are debugging an Ada program and
12049 that the inferior has been started, but we still are not able to
12050 find the run-time symbols. That can mean that we are in
12051 configurable run time mode, or that a-except as been optimized
12052 out by the linker... In any case, at this point it is not worth
12053 supporting this feature. */
12054
12055 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12056 }
12057
12058 /* True iff FRAME is very likely to be that of a function that is
12059 part of the runtime system. This is all very heuristic, but is
12060 intended to be used as advice as to what frames are uninteresting
12061 to most users. */
12062
12063 static int
12064 is_known_support_routine (struct frame_info *frame)
12065 {
12066 enum language func_lang;
12067 int i;
12068 const char *fullname;
12069
12070 /* If this code does not have any debugging information (no symtab),
12071 This cannot be any user code. */
12072
12073 symtab_and_line sal = find_frame_sal (frame);
12074 if (sal.symtab == NULL)
12075 return 1;
12076
12077 /* If there is a symtab, but the associated source file cannot be
12078 located, then assume this is not user code: Selecting a frame
12079 for which we cannot display the code would not be very helpful
12080 for the user. This should also take care of case such as VxWorks
12081 where the kernel has some debugging info provided for a few units. */
12082
12083 fullname = symtab_to_fullname (sal.symtab);
12084 if (access (fullname, R_OK) != 0)
12085 return 1;
12086
12087 /* Check the unit filename againt the Ada runtime file naming.
12088 We also check the name of the objfile against the name of some
12089 known system libraries that sometimes come with debugging info
12090 too. */
12091
12092 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12093 {
12094 re_comp (known_runtime_file_name_patterns[i]);
12095 if (re_exec (lbasename (sal.symtab->filename)))
12096 return 1;
12097 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12098 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12099 return 1;
12100 }
12101
12102 /* Check whether the function is a GNAT-generated entity. */
12103
12104 gdb::unique_xmalloc_ptr<char> func_name
12105 = find_frame_funname (frame, &func_lang, NULL);
12106 if (func_name == NULL)
12107 return 1;
12108
12109 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12110 {
12111 re_comp (known_auxiliary_function_name_patterns[i]);
12112 if (re_exec (func_name.get ()))
12113 return 1;
12114 }
12115
12116 return 0;
12117 }
12118
12119 /* Find the first frame that contains debugging information and that is not
12120 part of the Ada run-time, starting from FI and moving upward. */
12121
12122 void
12123 ada_find_printable_frame (struct frame_info *fi)
12124 {
12125 for (; fi != NULL; fi = get_prev_frame (fi))
12126 {
12127 if (!is_known_support_routine (fi))
12128 {
12129 select_frame (fi);
12130 break;
12131 }
12132 }
12133
12134 }
12135
12136 /* Assuming that the inferior just triggered an unhandled exception
12137 catchpoint, return the address in inferior memory where the name
12138 of the exception is stored.
12139
12140 Return zero if the address could not be computed. */
12141
12142 static CORE_ADDR
12143 ada_unhandled_exception_name_addr (void)
12144 {
12145 return parse_and_eval_address ("e.full_name");
12146 }
12147
12148 /* Same as ada_unhandled_exception_name_addr, except that this function
12149 should be used when the inferior uses an older version of the runtime,
12150 where the exception name needs to be extracted from a specific frame
12151 several frames up in the callstack. */
12152
12153 static CORE_ADDR
12154 ada_unhandled_exception_name_addr_from_raise (void)
12155 {
12156 int frame_level;
12157 struct frame_info *fi;
12158 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12159
12160 /* To determine the name of this exception, we need to select
12161 the frame corresponding to RAISE_SYM_NAME. This frame is
12162 at least 3 levels up, so we simply skip the first 3 frames
12163 without checking the name of their associated function. */
12164 fi = get_current_frame ();
12165 for (frame_level = 0; frame_level < 3; frame_level += 1)
12166 if (fi != NULL)
12167 fi = get_prev_frame (fi);
12168
12169 while (fi != NULL)
12170 {
12171 enum language func_lang;
12172
12173 gdb::unique_xmalloc_ptr<char> func_name
12174 = find_frame_funname (fi, &func_lang, NULL);
12175 if (func_name != NULL)
12176 {
12177 if (strcmp (func_name.get (),
12178 data->exception_info->catch_exception_sym) == 0)
12179 break; /* We found the frame we were looking for... */
12180 }
12181 fi = get_prev_frame (fi);
12182 }
12183
12184 if (fi == NULL)
12185 return 0;
12186
12187 select_frame (fi);
12188 return parse_and_eval_address ("id.full_name");
12189 }
12190
12191 /* Assuming the inferior just triggered an Ada exception catchpoint
12192 (of any type), return the address in inferior memory where the name
12193 of the exception is stored, if applicable.
12194
12195 Assumes the selected frame is the current frame.
12196
12197 Return zero if the address could not be computed, or if not relevant. */
12198
12199 static CORE_ADDR
12200 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12201 struct breakpoint *b)
12202 {
12203 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12204
12205 switch (ex)
12206 {
12207 case ada_catch_exception:
12208 return (parse_and_eval_address ("e.full_name"));
12209 break;
12210
12211 case ada_catch_exception_unhandled:
12212 return data->exception_info->unhandled_exception_name_addr ();
12213 break;
12214
12215 case ada_catch_handlers:
12216 return 0; /* The runtimes does not provide access to the exception
12217 name. */
12218 break;
12219
12220 case ada_catch_assert:
12221 return 0; /* Exception name is not relevant in this case. */
12222 break;
12223
12224 default:
12225 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12226 break;
12227 }
12228
12229 return 0; /* Should never be reached. */
12230 }
12231
12232 /* Assuming the inferior is stopped at an exception catchpoint,
12233 return the message which was associated to the exception, if
12234 available. Return NULL if the message could not be retrieved.
12235
12236 Note: The exception message can be associated to an exception
12237 either through the use of the Raise_Exception function, or
12238 more simply (Ada 2005 and later), via:
12239
12240 raise Exception_Name with "exception message";
12241
12242 */
12243
12244 static gdb::unique_xmalloc_ptr<char>
12245 ada_exception_message_1 (void)
12246 {
12247 struct value *e_msg_val;
12248 int e_msg_len;
12249
12250 /* For runtimes that support this feature, the exception message
12251 is passed as an unbounded string argument called "message". */
12252 e_msg_val = parse_and_eval ("message");
12253 if (e_msg_val == NULL)
12254 return NULL; /* Exception message not supported. */
12255
12256 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12257 gdb_assert (e_msg_val != NULL);
12258 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12259
12260 /* If the message string is empty, then treat it as if there was
12261 no exception message. */
12262 if (e_msg_len <= 0)
12263 return NULL;
12264
12265 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12266 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12267 e_msg.get ()[e_msg_len] = '\0';
12268
12269 return e_msg;
12270 }
12271
12272 /* Same as ada_exception_message_1, except that all exceptions are
12273 contained here (returning NULL instead). */
12274
12275 static gdb::unique_xmalloc_ptr<char>
12276 ada_exception_message (void)
12277 {
12278 gdb::unique_xmalloc_ptr<char> e_msg;
12279
12280 try
12281 {
12282 e_msg = ada_exception_message_1 ();
12283 }
12284 catch (const gdb_exception_error &e)
12285 {
12286 e_msg.reset (nullptr);
12287 }
12288
12289 return e_msg;
12290 }
12291
12292 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12293 any error that ada_exception_name_addr_1 might cause to be thrown.
12294 When an error is intercepted, a warning with the error message is printed,
12295 and zero is returned. */
12296
12297 static CORE_ADDR
12298 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12299 struct breakpoint *b)
12300 {
12301 CORE_ADDR result = 0;
12302
12303 try
12304 {
12305 result = ada_exception_name_addr_1 (ex, b);
12306 }
12307
12308 catch (const gdb_exception_error &e)
12309 {
12310 warning (_("failed to get exception name: %s"), e.what ());
12311 return 0;
12312 }
12313
12314 return result;
12315 }
12316
12317 static std::string ada_exception_catchpoint_cond_string
12318 (const char *excep_string,
12319 enum ada_exception_catchpoint_kind ex);
12320
12321 /* Ada catchpoints.
12322
12323 In the case of catchpoints on Ada exceptions, the catchpoint will
12324 stop the target on every exception the program throws. When a user
12325 specifies the name of a specific exception, we translate this
12326 request into a condition expression (in text form), and then parse
12327 it into an expression stored in each of the catchpoint's locations.
12328 We then use this condition to check whether the exception that was
12329 raised is the one the user is interested in. If not, then the
12330 target is resumed again. We store the name of the requested
12331 exception, in order to be able to re-set the condition expression
12332 when symbols change. */
12333
12334 /* An instance of this type is used to represent an Ada catchpoint
12335 breakpoint location. */
12336
12337 class ada_catchpoint_location : public bp_location
12338 {
12339 public:
12340 ada_catchpoint_location (breakpoint *owner)
12341 : bp_location (owner, bp_loc_software_breakpoint)
12342 {}
12343
12344 /* The condition that checks whether the exception that was raised
12345 is the specific exception the user specified on catchpoint
12346 creation. */
12347 expression_up excep_cond_expr;
12348 };
12349
12350 /* An instance of this type is used to represent an Ada catchpoint. */
12351
12352 struct ada_catchpoint : public breakpoint
12353 {
12354 /* The name of the specific exception the user specified. */
12355 std::string excep_string;
12356 };
12357
12358 /* Parse the exception condition string in the context of each of the
12359 catchpoint's locations, and store them for later evaluation. */
12360
12361 static void
12362 create_excep_cond_exprs (struct ada_catchpoint *c,
12363 enum ada_exception_catchpoint_kind ex)
12364 {
12365 /* Nothing to do if there's no specific exception to catch. */
12366 if (c->excep_string.empty ())
12367 return;
12368
12369 /* Same if there are no locations... */
12370 if (c->loc == NULL)
12371 return;
12372
12373 /* We have to compute the expression once for each program space,
12374 because the expression may hold the addresses of multiple symbols
12375 in some cases. */
12376 std::multimap<program_space *, struct bp_location *> loc_map;
12377 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12378 loc_map.emplace (bl->pspace, bl);
12379
12380 scoped_restore_current_program_space save_pspace;
12381
12382 std::string cond_string;
12383 program_space *last_ps = nullptr;
12384 for (auto iter : loc_map)
12385 {
12386 struct ada_catchpoint_location *ada_loc
12387 = (struct ada_catchpoint_location *) iter.second;
12388
12389 if (ada_loc->pspace != last_ps)
12390 {
12391 last_ps = ada_loc->pspace;
12392 set_current_program_space (last_ps);
12393
12394 /* Compute the condition expression in text form, from the
12395 specific expection we want to catch. */
12396 cond_string
12397 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12398 ex);
12399 }
12400
12401 expression_up exp;
12402
12403 if (!ada_loc->shlib_disabled)
12404 {
12405 const char *s;
12406
12407 s = cond_string.c_str ();
12408 try
12409 {
12410 exp = parse_exp_1 (&s, ada_loc->address,
12411 block_for_pc (ada_loc->address),
12412 0);
12413 }
12414 catch (const gdb_exception_error &e)
12415 {
12416 warning (_("failed to reevaluate internal exception condition "
12417 "for catchpoint %d: %s"),
12418 c->number, e.what ());
12419 }
12420 }
12421
12422 ada_loc->excep_cond_expr = std::move (exp);
12423 }
12424 }
12425
12426 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12427 structure for all exception catchpoint kinds. */
12428
12429 static struct bp_location *
12430 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12431 struct breakpoint *self)
12432 {
12433 return new ada_catchpoint_location (self);
12434 }
12435
12436 /* Implement the RE_SET method in the breakpoint_ops structure for all
12437 exception catchpoint kinds. */
12438
12439 static void
12440 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12441 {
12442 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12443
12444 /* Call the base class's method. This updates the catchpoint's
12445 locations. */
12446 bkpt_breakpoint_ops.re_set (b);
12447
12448 /* Reparse the exception conditional expressions. One for each
12449 location. */
12450 create_excep_cond_exprs (c, ex);
12451 }
12452
12453 /* Returns true if we should stop for this breakpoint hit. If the
12454 user specified a specific exception, we only want to cause a stop
12455 if the program thrown that exception. */
12456
12457 static int
12458 should_stop_exception (const struct bp_location *bl)
12459 {
12460 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12461 const struct ada_catchpoint_location *ada_loc
12462 = (const struct ada_catchpoint_location *) bl;
12463 int stop;
12464
12465 /* With no specific exception, should always stop. */
12466 if (c->excep_string.empty ())
12467 return 1;
12468
12469 if (ada_loc->excep_cond_expr == NULL)
12470 {
12471 /* We will have a NULL expression if back when we were creating
12472 the expressions, this location's had failed to parse. */
12473 return 1;
12474 }
12475
12476 stop = 1;
12477 try
12478 {
12479 struct value *mark;
12480
12481 mark = value_mark ();
12482 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12483 value_free_to_mark (mark);
12484 }
12485 catch (const gdb_exception &ex)
12486 {
12487 exception_fprintf (gdb_stderr, ex,
12488 _("Error in testing exception condition:\n"));
12489 }
12490
12491 return stop;
12492 }
12493
12494 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12495 for all exception catchpoint kinds. */
12496
12497 static void
12498 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12499 {
12500 bs->stop = should_stop_exception (bs->bp_location_at);
12501 }
12502
12503 /* Implement the PRINT_IT method in the breakpoint_ops structure
12504 for all exception catchpoint kinds. */
12505
12506 static enum print_stop_action
12507 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12508 {
12509 struct ui_out *uiout = current_uiout;
12510 struct breakpoint *b = bs->breakpoint_at;
12511
12512 annotate_catchpoint (b->number);
12513
12514 if (uiout->is_mi_like_p ())
12515 {
12516 uiout->field_string ("reason",
12517 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12518 uiout->field_string ("disp", bpdisp_text (b->disposition));
12519 }
12520
12521 uiout->text (b->disposition == disp_del
12522 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12523 uiout->field_signed ("bkptno", b->number);
12524 uiout->text (", ");
12525
12526 /* ada_exception_name_addr relies on the selected frame being the
12527 current frame. Need to do this here because this function may be
12528 called more than once when printing a stop, and below, we'll
12529 select the first frame past the Ada run-time (see
12530 ada_find_printable_frame). */
12531 select_frame (get_current_frame ());
12532
12533 switch (ex)
12534 {
12535 case ada_catch_exception:
12536 case ada_catch_exception_unhandled:
12537 case ada_catch_handlers:
12538 {
12539 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12540 char exception_name[256];
12541
12542 if (addr != 0)
12543 {
12544 read_memory (addr, (gdb_byte *) exception_name,
12545 sizeof (exception_name) - 1);
12546 exception_name [sizeof (exception_name) - 1] = '\0';
12547 }
12548 else
12549 {
12550 /* For some reason, we were unable to read the exception
12551 name. This could happen if the Runtime was compiled
12552 without debugging info, for instance. In that case,
12553 just replace the exception name by the generic string
12554 "exception" - it will read as "an exception" in the
12555 notification we are about to print. */
12556 memcpy (exception_name, "exception", sizeof ("exception"));
12557 }
12558 /* In the case of unhandled exception breakpoints, we print
12559 the exception name as "unhandled EXCEPTION_NAME", to make
12560 it clearer to the user which kind of catchpoint just got
12561 hit. We used ui_out_text to make sure that this extra
12562 info does not pollute the exception name in the MI case. */
12563 if (ex == ada_catch_exception_unhandled)
12564 uiout->text ("unhandled ");
12565 uiout->field_string ("exception-name", exception_name);
12566 }
12567 break;
12568 case ada_catch_assert:
12569 /* In this case, the name of the exception is not really
12570 important. Just print "failed assertion" to make it clearer
12571 that his program just hit an assertion-failure catchpoint.
12572 We used ui_out_text because this info does not belong in
12573 the MI output. */
12574 uiout->text ("failed assertion");
12575 break;
12576 }
12577
12578 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12579 if (exception_message != NULL)
12580 {
12581 uiout->text (" (");
12582 uiout->field_string ("exception-message", exception_message.get ());
12583 uiout->text (")");
12584 }
12585
12586 uiout->text (" at ");
12587 ada_find_printable_frame (get_current_frame ());
12588
12589 return PRINT_SRC_AND_LOC;
12590 }
12591
12592 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12593 for all exception catchpoint kinds. */
12594
12595 static void
12596 print_one_exception (enum ada_exception_catchpoint_kind ex,
12597 struct breakpoint *b, struct bp_location **last_loc)
12598 {
12599 struct ui_out *uiout = current_uiout;
12600 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12601 struct value_print_options opts;
12602
12603 get_user_print_options (&opts);
12604
12605 if (opts.addressprint)
12606 uiout->field_skip ("addr");
12607
12608 annotate_field (5);
12609 switch (ex)
12610 {
12611 case ada_catch_exception:
12612 if (!c->excep_string.empty ())
12613 {
12614 std::string msg = string_printf (_("`%s' Ada exception"),
12615 c->excep_string.c_str ());
12616
12617 uiout->field_string ("what", msg);
12618 }
12619 else
12620 uiout->field_string ("what", "all Ada exceptions");
12621
12622 break;
12623
12624 case ada_catch_exception_unhandled:
12625 uiout->field_string ("what", "unhandled Ada exceptions");
12626 break;
12627
12628 case ada_catch_handlers:
12629 if (!c->excep_string.empty ())
12630 {
12631 uiout->field_fmt ("what",
12632 _("`%s' Ada exception handlers"),
12633 c->excep_string.c_str ());
12634 }
12635 else
12636 uiout->field_string ("what", "all Ada exceptions handlers");
12637 break;
12638
12639 case ada_catch_assert:
12640 uiout->field_string ("what", "failed Ada assertions");
12641 break;
12642
12643 default:
12644 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12645 break;
12646 }
12647 }
12648
12649 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12650 for all exception catchpoint kinds. */
12651
12652 static void
12653 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12654 struct breakpoint *b)
12655 {
12656 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12657 struct ui_out *uiout = current_uiout;
12658
12659 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12660 : _("Catchpoint "));
12661 uiout->field_signed ("bkptno", b->number);
12662 uiout->text (": ");
12663
12664 switch (ex)
12665 {
12666 case ada_catch_exception:
12667 if (!c->excep_string.empty ())
12668 {
12669 std::string info = string_printf (_("`%s' Ada exception"),
12670 c->excep_string.c_str ());
12671 uiout->text (info.c_str ());
12672 }
12673 else
12674 uiout->text (_("all Ada exceptions"));
12675 break;
12676
12677 case ada_catch_exception_unhandled:
12678 uiout->text (_("unhandled Ada exceptions"));
12679 break;
12680
12681 case ada_catch_handlers:
12682 if (!c->excep_string.empty ())
12683 {
12684 std::string info
12685 = string_printf (_("`%s' Ada exception handlers"),
12686 c->excep_string.c_str ());
12687 uiout->text (info.c_str ());
12688 }
12689 else
12690 uiout->text (_("all Ada exceptions handlers"));
12691 break;
12692
12693 case ada_catch_assert:
12694 uiout->text (_("failed Ada assertions"));
12695 break;
12696
12697 default:
12698 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12699 break;
12700 }
12701 }
12702
12703 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12704 for all exception catchpoint kinds. */
12705
12706 static void
12707 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12708 struct breakpoint *b, struct ui_file *fp)
12709 {
12710 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12711
12712 switch (ex)
12713 {
12714 case ada_catch_exception:
12715 fprintf_filtered (fp, "catch exception");
12716 if (!c->excep_string.empty ())
12717 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12718 break;
12719
12720 case ada_catch_exception_unhandled:
12721 fprintf_filtered (fp, "catch exception unhandled");
12722 break;
12723
12724 case ada_catch_handlers:
12725 fprintf_filtered (fp, "catch handlers");
12726 break;
12727
12728 case ada_catch_assert:
12729 fprintf_filtered (fp, "catch assert");
12730 break;
12731
12732 default:
12733 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12734 }
12735 print_recreate_thread (b, fp);
12736 }
12737
12738 /* Virtual table for "catch exception" breakpoints. */
12739
12740 static struct bp_location *
12741 allocate_location_catch_exception (struct breakpoint *self)
12742 {
12743 return allocate_location_exception (ada_catch_exception, self);
12744 }
12745
12746 static void
12747 re_set_catch_exception (struct breakpoint *b)
12748 {
12749 re_set_exception (ada_catch_exception, b);
12750 }
12751
12752 static void
12753 check_status_catch_exception (bpstat bs)
12754 {
12755 check_status_exception (ada_catch_exception, bs);
12756 }
12757
12758 static enum print_stop_action
12759 print_it_catch_exception (bpstat bs)
12760 {
12761 return print_it_exception (ada_catch_exception, bs);
12762 }
12763
12764 static void
12765 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12766 {
12767 print_one_exception (ada_catch_exception, b, last_loc);
12768 }
12769
12770 static void
12771 print_mention_catch_exception (struct breakpoint *b)
12772 {
12773 print_mention_exception (ada_catch_exception, b);
12774 }
12775
12776 static void
12777 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12778 {
12779 print_recreate_exception (ada_catch_exception, b, fp);
12780 }
12781
12782 static struct breakpoint_ops catch_exception_breakpoint_ops;
12783
12784 /* Virtual table for "catch exception unhandled" breakpoints. */
12785
12786 static struct bp_location *
12787 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12788 {
12789 return allocate_location_exception (ada_catch_exception_unhandled, self);
12790 }
12791
12792 static void
12793 re_set_catch_exception_unhandled (struct breakpoint *b)
12794 {
12795 re_set_exception (ada_catch_exception_unhandled, b);
12796 }
12797
12798 static void
12799 check_status_catch_exception_unhandled (bpstat bs)
12800 {
12801 check_status_exception (ada_catch_exception_unhandled, bs);
12802 }
12803
12804 static enum print_stop_action
12805 print_it_catch_exception_unhandled (bpstat bs)
12806 {
12807 return print_it_exception (ada_catch_exception_unhandled, bs);
12808 }
12809
12810 static void
12811 print_one_catch_exception_unhandled (struct breakpoint *b,
12812 struct bp_location **last_loc)
12813 {
12814 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12815 }
12816
12817 static void
12818 print_mention_catch_exception_unhandled (struct breakpoint *b)
12819 {
12820 print_mention_exception (ada_catch_exception_unhandled, b);
12821 }
12822
12823 static void
12824 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12825 struct ui_file *fp)
12826 {
12827 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12828 }
12829
12830 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12831
12832 /* Virtual table for "catch assert" breakpoints. */
12833
12834 static struct bp_location *
12835 allocate_location_catch_assert (struct breakpoint *self)
12836 {
12837 return allocate_location_exception (ada_catch_assert, self);
12838 }
12839
12840 static void
12841 re_set_catch_assert (struct breakpoint *b)
12842 {
12843 re_set_exception (ada_catch_assert, b);
12844 }
12845
12846 static void
12847 check_status_catch_assert (bpstat bs)
12848 {
12849 check_status_exception (ada_catch_assert, bs);
12850 }
12851
12852 static enum print_stop_action
12853 print_it_catch_assert (bpstat bs)
12854 {
12855 return print_it_exception (ada_catch_assert, bs);
12856 }
12857
12858 static void
12859 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12860 {
12861 print_one_exception (ada_catch_assert, b, last_loc);
12862 }
12863
12864 static void
12865 print_mention_catch_assert (struct breakpoint *b)
12866 {
12867 print_mention_exception (ada_catch_assert, b);
12868 }
12869
12870 static void
12871 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12872 {
12873 print_recreate_exception (ada_catch_assert, b, fp);
12874 }
12875
12876 static struct breakpoint_ops catch_assert_breakpoint_ops;
12877
12878 /* Virtual table for "catch handlers" breakpoints. */
12879
12880 static struct bp_location *
12881 allocate_location_catch_handlers (struct breakpoint *self)
12882 {
12883 return allocate_location_exception (ada_catch_handlers, self);
12884 }
12885
12886 static void
12887 re_set_catch_handlers (struct breakpoint *b)
12888 {
12889 re_set_exception (ada_catch_handlers, b);
12890 }
12891
12892 static void
12893 check_status_catch_handlers (bpstat bs)
12894 {
12895 check_status_exception (ada_catch_handlers, bs);
12896 }
12897
12898 static enum print_stop_action
12899 print_it_catch_handlers (bpstat bs)
12900 {
12901 return print_it_exception (ada_catch_handlers, bs);
12902 }
12903
12904 static void
12905 print_one_catch_handlers (struct breakpoint *b,
12906 struct bp_location **last_loc)
12907 {
12908 print_one_exception (ada_catch_handlers, b, last_loc);
12909 }
12910
12911 static void
12912 print_mention_catch_handlers (struct breakpoint *b)
12913 {
12914 print_mention_exception (ada_catch_handlers, b);
12915 }
12916
12917 static void
12918 print_recreate_catch_handlers (struct breakpoint *b,
12919 struct ui_file *fp)
12920 {
12921 print_recreate_exception (ada_catch_handlers, b, fp);
12922 }
12923
12924 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12925
12926 /* See ada-lang.h. */
12927
12928 bool
12929 is_ada_exception_catchpoint (breakpoint *bp)
12930 {
12931 return (bp->ops == &catch_exception_breakpoint_ops
12932 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12933 || bp->ops == &catch_assert_breakpoint_ops
12934 || bp->ops == &catch_handlers_breakpoint_ops);
12935 }
12936
12937 /* Split the arguments specified in a "catch exception" command.
12938 Set EX to the appropriate catchpoint type.
12939 Set EXCEP_STRING to the name of the specific exception if
12940 specified by the user.
12941 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12942 "catch handlers" command. False otherwise.
12943 If a condition is found at the end of the arguments, the condition
12944 expression is stored in COND_STRING (memory must be deallocated
12945 after use). Otherwise COND_STRING is set to NULL. */
12946
12947 static void
12948 catch_ada_exception_command_split (const char *args,
12949 bool is_catch_handlers_cmd,
12950 enum ada_exception_catchpoint_kind *ex,
12951 std::string *excep_string,
12952 std::string *cond_string)
12953 {
12954 std::string exception_name;
12955
12956 exception_name = extract_arg (&args);
12957 if (exception_name == "if")
12958 {
12959 /* This is not an exception name; this is the start of a condition
12960 expression for a catchpoint on all exceptions. So, "un-get"
12961 this token, and set exception_name to NULL. */
12962 exception_name.clear ();
12963 args -= 2;
12964 }
12965
12966 /* Check to see if we have a condition. */
12967
12968 args = skip_spaces (args);
12969 if (startswith (args, "if")
12970 && (isspace (args[2]) || args[2] == '\0'))
12971 {
12972 args += 2;
12973 args = skip_spaces (args);
12974
12975 if (args[0] == '\0')
12976 error (_("Condition missing after `if' keyword"));
12977 *cond_string = args;
12978
12979 args += strlen (args);
12980 }
12981
12982 /* Check that we do not have any more arguments. Anything else
12983 is unexpected. */
12984
12985 if (args[0] != '\0')
12986 error (_("Junk at end of expression"));
12987
12988 if (is_catch_handlers_cmd)
12989 {
12990 /* Catch handling of exceptions. */
12991 *ex = ada_catch_handlers;
12992 *excep_string = exception_name;
12993 }
12994 else if (exception_name.empty ())
12995 {
12996 /* Catch all exceptions. */
12997 *ex = ada_catch_exception;
12998 excep_string->clear ();
12999 }
13000 else if (exception_name == "unhandled")
13001 {
13002 /* Catch unhandled exceptions. */
13003 *ex = ada_catch_exception_unhandled;
13004 excep_string->clear ();
13005 }
13006 else
13007 {
13008 /* Catch a specific exception. */
13009 *ex = ada_catch_exception;
13010 *excep_string = exception_name;
13011 }
13012 }
13013
13014 /* Return the name of the symbol on which we should break in order to
13015 implement a catchpoint of the EX kind. */
13016
13017 static const char *
13018 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13019 {
13020 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13021
13022 gdb_assert (data->exception_info != NULL);
13023
13024 switch (ex)
13025 {
13026 case ada_catch_exception:
13027 return (data->exception_info->catch_exception_sym);
13028 break;
13029 case ada_catch_exception_unhandled:
13030 return (data->exception_info->catch_exception_unhandled_sym);
13031 break;
13032 case ada_catch_assert:
13033 return (data->exception_info->catch_assert_sym);
13034 break;
13035 case ada_catch_handlers:
13036 return (data->exception_info->catch_handlers_sym);
13037 break;
13038 default:
13039 internal_error (__FILE__, __LINE__,
13040 _("unexpected catchpoint kind (%d)"), ex);
13041 }
13042 }
13043
13044 /* Return the breakpoint ops "virtual table" used for catchpoints
13045 of the EX kind. */
13046
13047 static const struct breakpoint_ops *
13048 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13049 {
13050 switch (ex)
13051 {
13052 case ada_catch_exception:
13053 return (&catch_exception_breakpoint_ops);
13054 break;
13055 case ada_catch_exception_unhandled:
13056 return (&catch_exception_unhandled_breakpoint_ops);
13057 break;
13058 case ada_catch_assert:
13059 return (&catch_assert_breakpoint_ops);
13060 break;
13061 case ada_catch_handlers:
13062 return (&catch_handlers_breakpoint_ops);
13063 break;
13064 default:
13065 internal_error (__FILE__, __LINE__,
13066 _("unexpected catchpoint kind (%d)"), ex);
13067 }
13068 }
13069
13070 /* Return the condition that will be used to match the current exception
13071 being raised with the exception that the user wants to catch. This
13072 assumes that this condition is used when the inferior just triggered
13073 an exception catchpoint.
13074 EX: the type of catchpoints used for catching Ada exceptions. */
13075
13076 static std::string
13077 ada_exception_catchpoint_cond_string (const char *excep_string,
13078 enum ada_exception_catchpoint_kind ex)
13079 {
13080 int i;
13081 std::string result;
13082 const char *name;
13083
13084 if (ex == ada_catch_handlers)
13085 {
13086 /* For exception handlers catchpoints, the condition string does
13087 not use the same parameter as for the other exceptions. */
13088 name = ("long_integer (GNAT_GCC_exception_Access"
13089 "(gcc_exception).all.occurrence.id)");
13090 }
13091 else
13092 name = "long_integer (e)";
13093
13094 /* The standard exceptions are a special case. They are defined in
13095 runtime units that have been compiled without debugging info; if
13096 EXCEP_STRING is the not-fully-qualified name of a standard
13097 exception (e.g. "constraint_error") then, during the evaluation
13098 of the condition expression, the symbol lookup on this name would
13099 *not* return this standard exception. The catchpoint condition
13100 may then be set only on user-defined exceptions which have the
13101 same not-fully-qualified name (e.g. my_package.constraint_error).
13102
13103 To avoid this unexcepted behavior, these standard exceptions are
13104 systematically prefixed by "standard". This means that "catch
13105 exception constraint_error" is rewritten into "catch exception
13106 standard.constraint_error".
13107
13108 If an exception named contraint_error is defined in another package of
13109 the inferior program, then the only way to specify this exception as a
13110 breakpoint condition is to use its fully-qualified named:
13111 e.g. my_package.constraint_error.
13112
13113 Furthermore, in some situations a standard exception's symbol may
13114 be present in more than one objfile, because the compiler may
13115 choose to emit copy relocations for them. So, we have to compare
13116 against all the possible addresses. */
13117
13118 /* Storage for a rewritten symbol name. */
13119 std::string std_name;
13120 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13121 {
13122 if (strcmp (standard_exc [i], excep_string) == 0)
13123 {
13124 std_name = std::string ("standard.") + excep_string;
13125 excep_string = std_name.c_str ();
13126 break;
13127 }
13128 }
13129
13130 excep_string = ada_encode (excep_string);
13131 std::vector<struct bound_minimal_symbol> symbols
13132 = ada_lookup_simple_minsyms (excep_string);
13133 for (const bound_minimal_symbol &msym : symbols)
13134 {
13135 if (!result.empty ())
13136 result += " or ";
13137 string_appendf (result, "%s = %s", name,
13138 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13139 }
13140
13141 return result;
13142 }
13143
13144 /* Return the symtab_and_line that should be used to insert an exception
13145 catchpoint of the TYPE kind.
13146
13147 ADDR_STRING returns the name of the function where the real
13148 breakpoint that implements the catchpoints is set, depending on the
13149 type of catchpoint we need to create. */
13150
13151 static struct symtab_and_line
13152 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13153 std::string *addr_string, const struct breakpoint_ops **ops)
13154 {
13155 const char *sym_name;
13156 struct symbol *sym;
13157
13158 /* First, find out which exception support info to use. */
13159 ada_exception_support_info_sniffer ();
13160
13161 /* Then lookup the function on which we will break in order to catch
13162 the Ada exceptions requested by the user. */
13163 sym_name = ada_exception_sym_name (ex);
13164 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13165
13166 if (sym == NULL)
13167 error (_("Catchpoint symbol not found: %s"), sym_name);
13168
13169 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13170 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13171
13172 /* Set ADDR_STRING. */
13173 *addr_string = sym_name;
13174
13175 /* Set OPS. */
13176 *ops = ada_exception_breakpoint_ops (ex);
13177
13178 return find_function_start_sal (sym, 1);
13179 }
13180
13181 /* Create an Ada exception catchpoint.
13182
13183 EX_KIND is the kind of exception catchpoint to be created.
13184
13185 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13186 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13187 of the exception to which this catchpoint applies.
13188
13189 COND_STRING, if not empty, is the catchpoint condition.
13190
13191 TEMPFLAG, if nonzero, means that the underlying breakpoint
13192 should be temporary.
13193
13194 FROM_TTY is the usual argument passed to all commands implementations. */
13195
13196 void
13197 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13198 enum ada_exception_catchpoint_kind ex_kind,
13199 const std::string &excep_string,
13200 const std::string &cond_string,
13201 int tempflag,
13202 int disabled,
13203 int from_tty)
13204 {
13205 std::string addr_string;
13206 const struct breakpoint_ops *ops = NULL;
13207 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13208
13209 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13210 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13211 ops, tempflag, disabled, from_tty);
13212 c->excep_string = excep_string;
13213 create_excep_cond_exprs (c.get (), ex_kind);
13214 if (!cond_string.empty ())
13215 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13216 install_breakpoint (0, std::move (c), 1);
13217 }
13218
13219 /* Implement the "catch exception" command. */
13220
13221 static void
13222 catch_ada_exception_command (const char *arg_entry, int from_tty,
13223 struct cmd_list_element *command)
13224 {
13225 const char *arg = arg_entry;
13226 struct gdbarch *gdbarch = get_current_arch ();
13227 int tempflag;
13228 enum ada_exception_catchpoint_kind ex_kind;
13229 std::string excep_string;
13230 std::string cond_string;
13231
13232 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13233
13234 if (!arg)
13235 arg = "";
13236 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13237 &cond_string);
13238 create_ada_exception_catchpoint (gdbarch, ex_kind,
13239 excep_string, cond_string,
13240 tempflag, 1 /* enabled */,
13241 from_tty);
13242 }
13243
13244 /* Implement the "catch handlers" command. */
13245
13246 static void
13247 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13248 struct cmd_list_element *command)
13249 {
13250 const char *arg = arg_entry;
13251 struct gdbarch *gdbarch = get_current_arch ();
13252 int tempflag;
13253 enum ada_exception_catchpoint_kind ex_kind;
13254 std::string excep_string;
13255 std::string cond_string;
13256
13257 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13258
13259 if (!arg)
13260 arg = "";
13261 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13262 &cond_string);
13263 create_ada_exception_catchpoint (gdbarch, ex_kind,
13264 excep_string, cond_string,
13265 tempflag, 1 /* enabled */,
13266 from_tty);
13267 }
13268
13269 /* Completion function for the Ada "catch" commands. */
13270
13271 static void
13272 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13273 const char *text, const char *word)
13274 {
13275 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13276
13277 for (const ada_exc_info &info : exceptions)
13278 {
13279 if (startswith (info.name, word))
13280 tracker.add_completion (make_unique_xstrdup (info.name));
13281 }
13282 }
13283
13284 /* Split the arguments specified in a "catch assert" command.
13285
13286 ARGS contains the command's arguments (or the empty string if
13287 no arguments were passed).
13288
13289 If ARGS contains a condition, set COND_STRING to that condition
13290 (the memory needs to be deallocated after use). */
13291
13292 static void
13293 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13294 {
13295 args = skip_spaces (args);
13296
13297 /* Check whether a condition was provided. */
13298 if (startswith (args, "if")
13299 && (isspace (args[2]) || args[2] == '\0'))
13300 {
13301 args += 2;
13302 args = skip_spaces (args);
13303 if (args[0] == '\0')
13304 error (_("condition missing after `if' keyword"));
13305 cond_string.assign (args);
13306 }
13307
13308 /* Otherwise, there should be no other argument at the end of
13309 the command. */
13310 else if (args[0] != '\0')
13311 error (_("Junk at end of arguments."));
13312 }
13313
13314 /* Implement the "catch assert" command. */
13315
13316 static void
13317 catch_assert_command (const char *arg_entry, int from_tty,
13318 struct cmd_list_element *command)
13319 {
13320 const char *arg = arg_entry;
13321 struct gdbarch *gdbarch = get_current_arch ();
13322 int tempflag;
13323 std::string cond_string;
13324
13325 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13326
13327 if (!arg)
13328 arg = "";
13329 catch_ada_assert_command_split (arg, cond_string);
13330 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13331 "", cond_string,
13332 tempflag, 1 /* enabled */,
13333 from_tty);
13334 }
13335
13336 /* Return non-zero if the symbol SYM is an Ada exception object. */
13337
13338 static int
13339 ada_is_exception_sym (struct symbol *sym)
13340 {
13341 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13342
13343 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13344 && SYMBOL_CLASS (sym) != LOC_BLOCK
13345 && SYMBOL_CLASS (sym) != LOC_CONST
13346 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13347 && type_name != NULL && strcmp (type_name, "exception") == 0);
13348 }
13349
13350 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13351 Ada exception object. This matches all exceptions except the ones
13352 defined by the Ada language. */
13353
13354 static int
13355 ada_is_non_standard_exception_sym (struct symbol *sym)
13356 {
13357 int i;
13358
13359 if (!ada_is_exception_sym (sym))
13360 return 0;
13361
13362 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13363 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13364 return 0; /* A standard exception. */
13365
13366 /* Numeric_Error is also a standard exception, so exclude it.
13367 See the STANDARD_EXC description for more details as to why
13368 this exception is not listed in that array. */
13369 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13370 return 0;
13371
13372 return 1;
13373 }
13374
13375 /* A helper function for std::sort, comparing two struct ada_exc_info
13376 objects.
13377
13378 The comparison is determined first by exception name, and then
13379 by exception address. */
13380
13381 bool
13382 ada_exc_info::operator< (const ada_exc_info &other) const
13383 {
13384 int result;
13385
13386 result = strcmp (name, other.name);
13387 if (result < 0)
13388 return true;
13389 if (result == 0 && addr < other.addr)
13390 return true;
13391 return false;
13392 }
13393
13394 bool
13395 ada_exc_info::operator== (const ada_exc_info &other) const
13396 {
13397 return addr == other.addr && strcmp (name, other.name) == 0;
13398 }
13399
13400 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13401 routine, but keeping the first SKIP elements untouched.
13402
13403 All duplicates are also removed. */
13404
13405 static void
13406 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13407 int skip)
13408 {
13409 std::sort (exceptions->begin () + skip, exceptions->end ());
13410 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13411 exceptions->end ());
13412 }
13413
13414 /* Add all exceptions defined by the Ada standard whose name match
13415 a regular expression.
13416
13417 If PREG is not NULL, then this regexp_t object is used to
13418 perform the symbol name matching. Otherwise, no name-based
13419 filtering is performed.
13420
13421 EXCEPTIONS is a vector of exceptions to which matching exceptions
13422 gets pushed. */
13423
13424 static void
13425 ada_add_standard_exceptions (compiled_regex *preg,
13426 std::vector<ada_exc_info> *exceptions)
13427 {
13428 int i;
13429
13430 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13431 {
13432 if (preg == NULL
13433 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13434 {
13435 struct bound_minimal_symbol msymbol
13436 = ada_lookup_simple_minsym (standard_exc[i]);
13437
13438 if (msymbol.minsym != NULL)
13439 {
13440 struct ada_exc_info info
13441 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13442
13443 exceptions->push_back (info);
13444 }
13445 }
13446 }
13447 }
13448
13449 /* Add all Ada exceptions defined locally and accessible from the given
13450 FRAME.
13451
13452 If PREG is not NULL, then this regexp_t object is used to
13453 perform the symbol name matching. Otherwise, no name-based
13454 filtering is performed.
13455
13456 EXCEPTIONS is a vector of exceptions to which matching exceptions
13457 gets pushed. */
13458
13459 static void
13460 ada_add_exceptions_from_frame (compiled_regex *preg,
13461 struct frame_info *frame,
13462 std::vector<ada_exc_info> *exceptions)
13463 {
13464 const struct block *block = get_frame_block (frame, 0);
13465
13466 while (block != 0)
13467 {
13468 struct block_iterator iter;
13469 struct symbol *sym;
13470
13471 ALL_BLOCK_SYMBOLS (block, iter, sym)
13472 {
13473 switch (SYMBOL_CLASS (sym))
13474 {
13475 case LOC_TYPEDEF:
13476 case LOC_BLOCK:
13477 case LOC_CONST:
13478 break;
13479 default:
13480 if (ada_is_exception_sym (sym))
13481 {
13482 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13483 SYMBOL_VALUE_ADDRESS (sym)};
13484
13485 exceptions->push_back (info);
13486 }
13487 }
13488 }
13489 if (BLOCK_FUNCTION (block) != NULL)
13490 break;
13491 block = BLOCK_SUPERBLOCK (block);
13492 }
13493 }
13494
13495 /* Return true if NAME matches PREG or if PREG is NULL. */
13496
13497 static bool
13498 name_matches_regex (const char *name, compiled_regex *preg)
13499 {
13500 return (preg == NULL
13501 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13502 }
13503
13504 /* Add all exceptions defined globally whose name name match
13505 a regular expression, excluding standard exceptions.
13506
13507 The reason we exclude standard exceptions is that they need
13508 to be handled separately: Standard exceptions are defined inside
13509 a runtime unit which is normally not compiled with debugging info,
13510 and thus usually do not show up in our symbol search. However,
13511 if the unit was in fact built with debugging info, we need to
13512 exclude them because they would duplicate the entry we found
13513 during the special loop that specifically searches for those
13514 standard exceptions.
13515
13516 If PREG is not NULL, then this regexp_t object is used to
13517 perform the symbol name matching. Otherwise, no name-based
13518 filtering is performed.
13519
13520 EXCEPTIONS is a vector of exceptions to which matching exceptions
13521 gets pushed. */
13522
13523 static void
13524 ada_add_global_exceptions (compiled_regex *preg,
13525 std::vector<ada_exc_info> *exceptions)
13526 {
13527 /* In Ada, the symbol "search name" is a linkage name, whereas the
13528 regular expression used to do the matching refers to the natural
13529 name. So match against the decoded name. */
13530 expand_symtabs_matching (NULL,
13531 lookup_name_info::match_any (),
13532 [&] (const char *search_name)
13533 {
13534 const char *decoded = ada_decode (search_name);
13535 return name_matches_regex (decoded, preg);
13536 },
13537 NULL,
13538 VARIABLES_DOMAIN);
13539
13540 for (objfile *objfile : current_program_space->objfiles ())
13541 {
13542 for (compunit_symtab *s : objfile->compunits ())
13543 {
13544 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13545 int i;
13546
13547 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13548 {
13549 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13550 struct block_iterator iter;
13551 struct symbol *sym;
13552
13553 ALL_BLOCK_SYMBOLS (b, iter, sym)
13554 if (ada_is_non_standard_exception_sym (sym)
13555 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13556 {
13557 struct ada_exc_info info
13558 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13559
13560 exceptions->push_back (info);
13561 }
13562 }
13563 }
13564 }
13565 }
13566
13567 /* Implements ada_exceptions_list with the regular expression passed
13568 as a regex_t, rather than a string.
13569
13570 If not NULL, PREG is used to filter out exceptions whose names
13571 do not match. Otherwise, all exceptions are listed. */
13572
13573 static std::vector<ada_exc_info>
13574 ada_exceptions_list_1 (compiled_regex *preg)
13575 {
13576 std::vector<ada_exc_info> result;
13577 int prev_len;
13578
13579 /* First, list the known standard exceptions. These exceptions
13580 need to be handled separately, as they are usually defined in
13581 runtime units that have been compiled without debugging info. */
13582
13583 ada_add_standard_exceptions (preg, &result);
13584
13585 /* Next, find all exceptions whose scope is local and accessible
13586 from the currently selected frame. */
13587
13588 if (has_stack_frames ())
13589 {
13590 prev_len = result.size ();
13591 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13592 &result);
13593 if (result.size () > prev_len)
13594 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13595 }
13596
13597 /* Add all exceptions whose scope is global. */
13598
13599 prev_len = result.size ();
13600 ada_add_global_exceptions (preg, &result);
13601 if (result.size () > prev_len)
13602 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13603
13604 return result;
13605 }
13606
13607 /* Return a vector of ada_exc_info.
13608
13609 If REGEXP is NULL, all exceptions are included in the result.
13610 Otherwise, it should contain a valid regular expression,
13611 and only the exceptions whose names match that regular expression
13612 are included in the result.
13613
13614 The exceptions are sorted in the following order:
13615 - Standard exceptions (defined by the Ada language), in
13616 alphabetical order;
13617 - Exceptions only visible from the current frame, in
13618 alphabetical order;
13619 - Exceptions whose scope is global, in alphabetical order. */
13620
13621 std::vector<ada_exc_info>
13622 ada_exceptions_list (const char *regexp)
13623 {
13624 if (regexp == NULL)
13625 return ada_exceptions_list_1 (NULL);
13626
13627 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13628 return ada_exceptions_list_1 (&reg);
13629 }
13630
13631 /* Implement the "info exceptions" command. */
13632
13633 static void
13634 info_exceptions_command (const char *regexp, int from_tty)
13635 {
13636 struct gdbarch *gdbarch = get_current_arch ();
13637
13638 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13639
13640 if (regexp != NULL)
13641 printf_filtered
13642 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13643 else
13644 printf_filtered (_("All defined Ada exceptions:\n"));
13645
13646 for (const ada_exc_info &info : exceptions)
13647 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13648 }
13649
13650 /* Operators */
13651 /* Information about operators given special treatment in functions
13652 below. */
13653 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13654
13655 #define ADA_OPERATORS \
13656 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13657 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13658 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13659 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13661 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13662 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13664 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13665 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13666 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13667 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13668 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13669 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13670 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13671 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13672 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13673 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13674 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13675
13676 static void
13677 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13678 int *argsp)
13679 {
13680 switch (exp->elts[pc - 1].opcode)
13681 {
13682 default:
13683 operator_length_standard (exp, pc, oplenp, argsp);
13684 break;
13685
13686 #define OP_DEFN(op, len, args, binop) \
13687 case op: *oplenp = len; *argsp = args; break;
13688 ADA_OPERATORS;
13689 #undef OP_DEFN
13690
13691 case OP_AGGREGATE:
13692 *oplenp = 3;
13693 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13694 break;
13695
13696 case OP_CHOICES:
13697 *oplenp = 3;
13698 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13699 break;
13700 }
13701 }
13702
13703 /* Implementation of the exp_descriptor method operator_check. */
13704
13705 static int
13706 ada_operator_check (struct expression *exp, int pos,
13707 int (*objfile_func) (struct objfile *objfile, void *data),
13708 void *data)
13709 {
13710 const union exp_element *const elts = exp->elts;
13711 struct type *type = NULL;
13712
13713 switch (elts[pos].opcode)
13714 {
13715 case UNOP_IN_RANGE:
13716 case UNOP_QUAL:
13717 type = elts[pos + 1].type;
13718 break;
13719
13720 default:
13721 return operator_check_standard (exp, pos, objfile_func, data);
13722 }
13723
13724 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13725
13726 if (type && TYPE_OBJFILE (type)
13727 && (*objfile_func) (TYPE_OBJFILE (type), data))
13728 return 1;
13729
13730 return 0;
13731 }
13732
13733 static const char *
13734 ada_op_name (enum exp_opcode opcode)
13735 {
13736 switch (opcode)
13737 {
13738 default:
13739 return op_name_standard (opcode);
13740
13741 #define OP_DEFN(op, len, args, binop) case op: return #op;
13742 ADA_OPERATORS;
13743 #undef OP_DEFN
13744
13745 case OP_AGGREGATE:
13746 return "OP_AGGREGATE";
13747 case OP_CHOICES:
13748 return "OP_CHOICES";
13749 case OP_NAME:
13750 return "OP_NAME";
13751 }
13752 }
13753
13754 /* As for operator_length, but assumes PC is pointing at the first
13755 element of the operator, and gives meaningful results only for the
13756 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13757
13758 static void
13759 ada_forward_operator_length (struct expression *exp, int pc,
13760 int *oplenp, int *argsp)
13761 {
13762 switch (exp->elts[pc].opcode)
13763 {
13764 default:
13765 *oplenp = *argsp = 0;
13766 break;
13767
13768 #define OP_DEFN(op, len, args, binop) \
13769 case op: *oplenp = len; *argsp = args; break;
13770 ADA_OPERATORS;
13771 #undef OP_DEFN
13772
13773 case OP_AGGREGATE:
13774 *oplenp = 3;
13775 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13776 break;
13777
13778 case OP_CHOICES:
13779 *oplenp = 3;
13780 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13781 break;
13782
13783 case OP_STRING:
13784 case OP_NAME:
13785 {
13786 int len = longest_to_int (exp->elts[pc + 1].longconst);
13787
13788 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13789 *argsp = 0;
13790 break;
13791 }
13792 }
13793 }
13794
13795 static int
13796 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13797 {
13798 enum exp_opcode op = exp->elts[elt].opcode;
13799 int oplen, nargs;
13800 int pc = elt;
13801 int i;
13802
13803 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13804
13805 switch (op)
13806 {
13807 /* Ada attributes ('Foo). */
13808 case OP_ATR_FIRST:
13809 case OP_ATR_LAST:
13810 case OP_ATR_LENGTH:
13811 case OP_ATR_IMAGE:
13812 case OP_ATR_MAX:
13813 case OP_ATR_MIN:
13814 case OP_ATR_MODULUS:
13815 case OP_ATR_POS:
13816 case OP_ATR_SIZE:
13817 case OP_ATR_TAG:
13818 case OP_ATR_VAL:
13819 break;
13820
13821 case UNOP_IN_RANGE:
13822 case UNOP_QUAL:
13823 /* XXX: gdb_sprint_host_address, type_sprint */
13824 fprintf_filtered (stream, _("Type @"));
13825 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13826 fprintf_filtered (stream, " (");
13827 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13828 fprintf_filtered (stream, ")");
13829 break;
13830 case BINOP_IN_BOUNDS:
13831 fprintf_filtered (stream, " (%d)",
13832 longest_to_int (exp->elts[pc + 2].longconst));
13833 break;
13834 case TERNOP_IN_RANGE:
13835 break;
13836
13837 case OP_AGGREGATE:
13838 case OP_OTHERS:
13839 case OP_DISCRETE_RANGE:
13840 case OP_POSITIONAL:
13841 case OP_CHOICES:
13842 break;
13843
13844 case OP_NAME:
13845 case OP_STRING:
13846 {
13847 char *name = &exp->elts[elt + 2].string;
13848 int len = longest_to_int (exp->elts[elt + 1].longconst);
13849
13850 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13851 break;
13852 }
13853
13854 default:
13855 return dump_subexp_body_standard (exp, stream, elt);
13856 }
13857
13858 elt += oplen;
13859 for (i = 0; i < nargs; i += 1)
13860 elt = dump_subexp (exp, stream, elt);
13861
13862 return elt;
13863 }
13864
13865 /* The Ada extension of print_subexp (q.v.). */
13866
13867 static void
13868 ada_print_subexp (struct expression *exp, int *pos,
13869 struct ui_file *stream, enum precedence prec)
13870 {
13871 int oplen, nargs, i;
13872 int pc = *pos;
13873 enum exp_opcode op = exp->elts[pc].opcode;
13874
13875 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13876
13877 *pos += oplen;
13878 switch (op)
13879 {
13880 default:
13881 *pos -= oplen;
13882 print_subexp_standard (exp, pos, stream, prec);
13883 return;
13884
13885 case OP_VAR_VALUE:
13886 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13887 return;
13888
13889 case BINOP_IN_BOUNDS:
13890 /* XXX: sprint_subexp */
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 fputs_filtered (" in ", stream);
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 fputs_filtered ("'range", stream);
13895 if (exp->elts[pc + 1].longconst > 1)
13896 fprintf_filtered (stream, "(%ld)",
13897 (long) exp->elts[pc + 1].longconst);
13898 return;
13899
13900 case TERNOP_IN_RANGE:
13901 if (prec >= PREC_EQUAL)
13902 fputs_filtered ("(", stream);
13903 /* XXX: sprint_subexp */
13904 print_subexp (exp, pos, stream, PREC_SUFFIX);
13905 fputs_filtered (" in ", stream);
13906 print_subexp (exp, pos, stream, PREC_EQUAL);
13907 fputs_filtered (" .. ", stream);
13908 print_subexp (exp, pos, stream, PREC_EQUAL);
13909 if (prec >= PREC_EQUAL)
13910 fputs_filtered (")", stream);
13911 return;
13912
13913 case OP_ATR_FIRST:
13914 case OP_ATR_LAST:
13915 case OP_ATR_LENGTH:
13916 case OP_ATR_IMAGE:
13917 case OP_ATR_MAX:
13918 case OP_ATR_MIN:
13919 case OP_ATR_MODULUS:
13920 case OP_ATR_POS:
13921 case OP_ATR_SIZE:
13922 case OP_ATR_TAG:
13923 case OP_ATR_VAL:
13924 if (exp->elts[*pos].opcode == OP_TYPE)
13925 {
13926 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13927 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13928 &type_print_raw_options);
13929 *pos += 3;
13930 }
13931 else
13932 print_subexp (exp, pos, stream, PREC_SUFFIX);
13933 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13934 if (nargs > 1)
13935 {
13936 int tem;
13937
13938 for (tem = 1; tem < nargs; tem += 1)
13939 {
13940 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13941 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13942 }
13943 fputs_filtered (")", stream);
13944 }
13945 return;
13946
13947 case UNOP_QUAL:
13948 type_print (exp->elts[pc + 1].type, "", stream, 0);
13949 fputs_filtered ("'(", stream);
13950 print_subexp (exp, pos, stream, PREC_PREFIX);
13951 fputs_filtered (")", stream);
13952 return;
13953
13954 case UNOP_IN_RANGE:
13955 /* XXX: sprint_subexp */
13956 print_subexp (exp, pos, stream, PREC_SUFFIX);
13957 fputs_filtered (" in ", stream);
13958 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13959 &type_print_raw_options);
13960 return;
13961
13962 case OP_DISCRETE_RANGE:
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 fputs_filtered ("..", stream);
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 return;
13967
13968 case OP_OTHERS:
13969 fputs_filtered ("others => ", stream);
13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
13971 return;
13972
13973 case OP_CHOICES:
13974 for (i = 0; i < nargs-1; i += 1)
13975 {
13976 if (i > 0)
13977 fputs_filtered ("|", stream);
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 }
13980 fputs_filtered (" => ", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_POSITIONAL:
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13986 return;
13987
13988 case OP_AGGREGATE:
13989 fputs_filtered ("(", stream);
13990 for (i = 0; i < nargs; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered (", ", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (")", stream);
13997 return;
13998 }
13999 }
14000
14001 /* Table mapping opcodes into strings for printing operators
14002 and precedences of the operators. */
14003
14004 static const struct op_print ada_op_print_tab[] = {
14005 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14006 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14007 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14008 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14009 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14010 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14011 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14012 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14013 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14014 {">=", BINOP_GEQ, PREC_ORDER, 0},
14015 {">", BINOP_GTR, PREC_ORDER, 0},
14016 {"<", BINOP_LESS, PREC_ORDER, 0},
14017 {">>", BINOP_RSH, PREC_SHIFT, 0},
14018 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14019 {"+", BINOP_ADD, PREC_ADD, 0},
14020 {"-", BINOP_SUB, PREC_ADD, 0},
14021 {"&", BINOP_CONCAT, PREC_ADD, 0},
14022 {"*", BINOP_MUL, PREC_MUL, 0},
14023 {"/", BINOP_DIV, PREC_MUL, 0},
14024 {"rem", BINOP_REM, PREC_MUL, 0},
14025 {"mod", BINOP_MOD, PREC_MUL, 0},
14026 {"**", BINOP_EXP, PREC_REPEAT, 0},
14027 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14028 {"-", UNOP_NEG, PREC_PREFIX, 0},
14029 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14030 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14031 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14032 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14033 {".all", UNOP_IND, PREC_SUFFIX, 1},
14034 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14035 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14036 {NULL, OP_NULL, PREC_SUFFIX, 0}
14037 };
14038 \f
14039 enum ada_primitive_types {
14040 ada_primitive_type_int,
14041 ada_primitive_type_long,
14042 ada_primitive_type_short,
14043 ada_primitive_type_char,
14044 ada_primitive_type_float,
14045 ada_primitive_type_double,
14046 ada_primitive_type_void,
14047 ada_primitive_type_long_long,
14048 ada_primitive_type_long_double,
14049 ada_primitive_type_natural,
14050 ada_primitive_type_positive,
14051 ada_primitive_type_system_address,
14052 ada_primitive_type_storage_offset,
14053 nr_ada_primitive_types
14054 };
14055
14056 static void
14057 ada_language_arch_info (struct gdbarch *gdbarch,
14058 struct language_arch_info *lai)
14059 {
14060 const struct builtin_type *builtin = builtin_type (gdbarch);
14061
14062 lai->primitive_type_vector
14063 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14064 struct type *);
14065
14066 lai->primitive_type_vector [ada_primitive_type_int]
14067 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14068 0, "integer");
14069 lai->primitive_type_vector [ada_primitive_type_long]
14070 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14071 0, "long_integer");
14072 lai->primitive_type_vector [ada_primitive_type_short]
14073 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14074 0, "short_integer");
14075 lai->string_char_type
14076 = lai->primitive_type_vector [ada_primitive_type_char]
14077 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14078 lai->primitive_type_vector [ada_primitive_type_float]
14079 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14080 "float", gdbarch_float_format (gdbarch));
14081 lai->primitive_type_vector [ada_primitive_type_double]
14082 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14083 "long_float", gdbarch_double_format (gdbarch));
14084 lai->primitive_type_vector [ada_primitive_type_long_long]
14085 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14086 0, "long_long_integer");
14087 lai->primitive_type_vector [ada_primitive_type_long_double]
14088 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14089 "long_long_float", gdbarch_long_double_format (gdbarch));
14090 lai->primitive_type_vector [ada_primitive_type_natural]
14091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14092 0, "natural");
14093 lai->primitive_type_vector [ada_primitive_type_positive]
14094 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14095 0, "positive");
14096 lai->primitive_type_vector [ada_primitive_type_void]
14097 = builtin->builtin_void;
14098
14099 lai->primitive_type_vector [ada_primitive_type_system_address]
14100 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14101 "void"));
14102 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14103 = "system__address";
14104
14105 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14106 type. This is a signed integral type whose size is the same as
14107 the size of addresses. */
14108 {
14109 unsigned int addr_length = TYPE_LENGTH
14110 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14111
14112 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14113 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14114 "storage_offset");
14115 }
14116
14117 lai->bool_type_symbol = NULL;
14118 lai->bool_type_default = builtin->builtin_bool;
14119 }
14120 \f
14121 /* Language vector */
14122
14123 /* Not really used, but needed in the ada_language_defn. */
14124
14125 static void
14126 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14127 {
14128 ada_emit_char (c, type, stream, quoter, 1);
14129 }
14130
14131 static int
14132 parse (struct parser_state *ps)
14133 {
14134 warnings_issued = 0;
14135 return ada_parse (ps);
14136 }
14137
14138 static const struct exp_descriptor ada_exp_descriptor = {
14139 ada_print_subexp,
14140 ada_operator_length,
14141 ada_operator_check,
14142 ada_op_name,
14143 ada_dump_subexp_body,
14144 ada_evaluate_subexp
14145 };
14146
14147 /* symbol_name_matcher_ftype adapter for wild_match. */
14148
14149 static bool
14150 do_wild_match (const char *symbol_search_name,
14151 const lookup_name_info &lookup_name,
14152 completion_match_result *comp_match_res)
14153 {
14154 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14155 }
14156
14157 /* symbol_name_matcher_ftype adapter for full_match. */
14158
14159 static bool
14160 do_full_match (const char *symbol_search_name,
14161 const lookup_name_info &lookup_name,
14162 completion_match_result *comp_match_res)
14163 {
14164 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14165 }
14166
14167 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14168
14169 static bool
14170 do_exact_match (const char *symbol_search_name,
14171 const lookup_name_info &lookup_name,
14172 completion_match_result *comp_match_res)
14173 {
14174 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14175 }
14176
14177 /* Build the Ada lookup name for LOOKUP_NAME. */
14178
14179 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14180 {
14181 const std::string &user_name = lookup_name.name ();
14182
14183 if (user_name[0] == '<')
14184 {
14185 if (user_name.back () == '>')
14186 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14187 else
14188 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14189 m_encoded_p = true;
14190 m_verbatim_p = true;
14191 m_wild_match_p = false;
14192 m_standard_p = false;
14193 }
14194 else
14195 {
14196 m_verbatim_p = false;
14197
14198 m_encoded_p = user_name.find ("__") != std::string::npos;
14199
14200 if (!m_encoded_p)
14201 {
14202 const char *folded = ada_fold_name (user_name.c_str ());
14203 const char *encoded = ada_encode_1 (folded, false);
14204 if (encoded != NULL)
14205 m_encoded_name = encoded;
14206 else
14207 m_encoded_name = user_name;
14208 }
14209 else
14210 m_encoded_name = user_name;
14211
14212 /* Handle the 'package Standard' special case. See description
14213 of m_standard_p. */
14214 if (startswith (m_encoded_name.c_str (), "standard__"))
14215 {
14216 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14217 m_standard_p = true;
14218 }
14219 else
14220 m_standard_p = false;
14221
14222 /* If the name contains a ".", then the user is entering a fully
14223 qualified entity name, and the match must not be done in wild
14224 mode. Similarly, if the user wants to complete what looks
14225 like an encoded name, the match must not be done in wild
14226 mode. Also, in the standard__ special case always do
14227 non-wild matching. */
14228 m_wild_match_p
14229 = (lookup_name.match_type () != symbol_name_match_type::FULL
14230 && !m_encoded_p
14231 && !m_standard_p
14232 && user_name.find ('.') == std::string::npos);
14233 }
14234 }
14235
14236 /* symbol_name_matcher_ftype method for Ada. This only handles
14237 completion mode. */
14238
14239 static bool
14240 ada_symbol_name_matches (const char *symbol_search_name,
14241 const lookup_name_info &lookup_name,
14242 completion_match_result *comp_match_res)
14243 {
14244 return lookup_name.ada ().matches (symbol_search_name,
14245 lookup_name.match_type (),
14246 comp_match_res);
14247 }
14248
14249 /* A name matcher that matches the symbol name exactly, with
14250 strcmp. */
14251
14252 static bool
14253 literal_symbol_name_matcher (const char *symbol_search_name,
14254 const lookup_name_info &lookup_name,
14255 completion_match_result *comp_match_res)
14256 {
14257 const std::string &name = lookup_name.name ();
14258
14259 int cmp = (lookup_name.completion_mode ()
14260 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14261 : strcmp (symbol_search_name, name.c_str ()));
14262 if (cmp == 0)
14263 {
14264 if (comp_match_res != NULL)
14265 comp_match_res->set_match (symbol_search_name);
14266 return true;
14267 }
14268 else
14269 return false;
14270 }
14271
14272 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14273 Ada. */
14274
14275 static symbol_name_matcher_ftype *
14276 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14277 {
14278 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14279 return literal_symbol_name_matcher;
14280
14281 if (lookup_name.completion_mode ())
14282 return ada_symbol_name_matches;
14283 else
14284 {
14285 if (lookup_name.ada ().wild_match_p ())
14286 return do_wild_match;
14287 else if (lookup_name.ada ().verbatim_p ())
14288 return do_exact_match;
14289 else
14290 return do_full_match;
14291 }
14292 }
14293
14294 /* Implement the "la_read_var_value" language_defn method for Ada. */
14295
14296 static struct value *
14297 ada_read_var_value (struct symbol *var, const struct block *var_block,
14298 struct frame_info *frame)
14299 {
14300 /* The only case where default_read_var_value is not sufficient
14301 is when VAR is a renaming... */
14302 if (frame != nullptr)
14303 {
14304 const struct block *frame_block = get_frame_block (frame, NULL);
14305 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14306 return ada_read_renaming_var_value (var, frame_block);
14307 }
14308
14309 /* This is a typical case where we expect the default_read_var_value
14310 function to work. */
14311 return default_read_var_value (var, var_block, frame);
14312 }
14313
14314 static const char *ada_extensions[] =
14315 {
14316 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14317 };
14318
14319 extern const struct language_defn ada_language_defn = {
14320 "ada", /* Language name */
14321 "Ada",
14322 language_ada,
14323 range_check_off,
14324 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14325 that's not quite what this means. */
14326 array_row_major,
14327 macro_expansion_no,
14328 ada_extensions,
14329 &ada_exp_descriptor,
14330 parse,
14331 resolve,
14332 ada_printchar, /* Print a character constant */
14333 ada_printstr, /* Function to print string constant */
14334 emit_char, /* Function to print single char (not used) */
14335 ada_print_type, /* Print a type using appropriate syntax */
14336 ada_print_typedef, /* Print a typedef using appropriate syntax */
14337 ada_val_print, /* Print a value using appropriate syntax */
14338 ada_value_print, /* Print a top-level value */
14339 ada_read_var_value, /* la_read_var_value */
14340 NULL, /* Language specific skip_trampoline */
14341 NULL, /* name_of_this */
14342 true, /* la_store_sym_names_in_linkage_form_p */
14343 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14344 basic_lookup_transparent_type, /* lookup_transparent_type */
14345 ada_la_decode, /* Language specific symbol demangler */
14346 ada_sniff_from_mangled_name,
14347 NULL, /* Language specific
14348 class_name_from_physname */
14349 ada_op_print_tab, /* expression operators for printing */
14350 0, /* c-style arrays */
14351 1, /* String lower bound */
14352 ada_get_gdb_completer_word_break_characters,
14353 ada_collect_symbol_completion_matches,
14354 ada_language_arch_info,
14355 ada_print_array_index,
14356 default_pass_by_reference,
14357 c_get_string,
14358 ada_watch_location_expression,
14359 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14360 ada_iterate_over_symbols,
14361 default_search_name_hash,
14362 &ada_varobj_ops,
14363 NULL,
14364 NULL,
14365 ada_is_string_type,
14366 "(...)" /* la_struct_too_deep_ellipsis */
14367 };
14368
14369 /* Command-list for the "set/show ada" prefix command. */
14370 static struct cmd_list_element *set_ada_list;
14371 static struct cmd_list_element *show_ada_list;
14372
14373 /* Implement the "set ada" prefix command. */
14374
14375 static void
14376 set_ada_command (const char *arg, int from_tty)
14377 {
14378 printf_unfiltered (_(\
14379 "\"set ada\" must be followed by the name of a setting.\n"));
14380 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14381 }
14382
14383 /* Implement the "show ada" prefix command. */
14384
14385 static void
14386 show_ada_command (const char *args, int from_tty)
14387 {
14388 cmd_show_list (show_ada_list, from_tty, "");
14389 }
14390
14391 static void
14392 initialize_ada_catchpoint_ops (void)
14393 {
14394 struct breakpoint_ops *ops;
14395
14396 initialize_breakpoint_ops ();
14397
14398 ops = &catch_exception_breakpoint_ops;
14399 *ops = bkpt_breakpoint_ops;
14400 ops->allocate_location = allocate_location_catch_exception;
14401 ops->re_set = re_set_catch_exception;
14402 ops->check_status = check_status_catch_exception;
14403 ops->print_it = print_it_catch_exception;
14404 ops->print_one = print_one_catch_exception;
14405 ops->print_mention = print_mention_catch_exception;
14406 ops->print_recreate = print_recreate_catch_exception;
14407
14408 ops = &catch_exception_unhandled_breakpoint_ops;
14409 *ops = bkpt_breakpoint_ops;
14410 ops->allocate_location = allocate_location_catch_exception_unhandled;
14411 ops->re_set = re_set_catch_exception_unhandled;
14412 ops->check_status = check_status_catch_exception_unhandled;
14413 ops->print_it = print_it_catch_exception_unhandled;
14414 ops->print_one = print_one_catch_exception_unhandled;
14415 ops->print_mention = print_mention_catch_exception_unhandled;
14416 ops->print_recreate = print_recreate_catch_exception_unhandled;
14417
14418 ops = &catch_assert_breakpoint_ops;
14419 *ops = bkpt_breakpoint_ops;
14420 ops->allocate_location = allocate_location_catch_assert;
14421 ops->re_set = re_set_catch_assert;
14422 ops->check_status = check_status_catch_assert;
14423 ops->print_it = print_it_catch_assert;
14424 ops->print_one = print_one_catch_assert;
14425 ops->print_mention = print_mention_catch_assert;
14426 ops->print_recreate = print_recreate_catch_assert;
14427
14428 ops = &catch_handlers_breakpoint_ops;
14429 *ops = bkpt_breakpoint_ops;
14430 ops->allocate_location = allocate_location_catch_handlers;
14431 ops->re_set = re_set_catch_handlers;
14432 ops->check_status = check_status_catch_handlers;
14433 ops->print_it = print_it_catch_handlers;
14434 ops->print_one = print_one_catch_handlers;
14435 ops->print_mention = print_mention_catch_handlers;
14436 ops->print_recreate = print_recreate_catch_handlers;
14437 }
14438
14439 /* This module's 'new_objfile' observer. */
14440
14441 static void
14442 ada_new_objfile_observer (struct objfile *objfile)
14443 {
14444 ada_clear_symbol_cache ();
14445 }
14446
14447 /* This module's 'free_objfile' observer. */
14448
14449 static void
14450 ada_free_objfile_observer (struct objfile *objfile)
14451 {
14452 ada_clear_symbol_cache ();
14453 }
14454
14455 void
14456 _initialize_ada_language (void)
14457 {
14458 initialize_ada_catchpoint_ops ();
14459
14460 add_prefix_cmd ("ada", no_class, set_ada_command,
14461 _("Prefix command for changing Ada-specific settings."),
14462 &set_ada_list, "set ada ", 0, &setlist);
14463
14464 add_prefix_cmd ("ada", no_class, show_ada_command,
14465 _("Generic command for showing Ada-specific settings."),
14466 &show_ada_list, "show ada ", 0, &showlist);
14467
14468 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14469 &trust_pad_over_xvs, _("\
14470 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14471 Show whether an optimization trusting PAD types over XVS types is activated."),
14472 _("\
14473 This is related to the encoding used by the GNAT compiler. The debugger\n\
14474 should normally trust the contents of PAD types, but certain older versions\n\
14475 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14476 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14477 work around this bug. It is always safe to turn this option \"off\", but\n\
14478 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14479 this option to \"off\" unless necessary."),
14480 NULL, NULL, &set_ada_list, &show_ada_list);
14481
14482 add_setshow_boolean_cmd ("print-signatures", class_vars,
14483 &print_signatures, _("\
14484 Enable or disable the output of formal and return types for functions in the \
14485 overloads selection menu."), _("\
14486 Show whether the output of formal and return types for functions in the \
14487 overloads selection menu is activated."),
14488 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14489
14490 add_catch_command ("exception", _("\
14491 Catch Ada exceptions, when raised.\n\
14492 Usage: catch exception [ARG] [if CONDITION]\n\
14493 Without any argument, stop when any Ada exception is raised.\n\
14494 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14495 being raised does not have a handler (and will therefore lead to the task's\n\
14496 termination).\n\
14497 Otherwise, the catchpoint only stops when the name of the exception being\n\
14498 raised is the same as ARG.\n\
14499 CONDITION is a boolean expression that is evaluated to see whether the\n\
14500 exception should cause a stop."),
14501 catch_ada_exception_command,
14502 catch_ada_completer,
14503 CATCH_PERMANENT,
14504 CATCH_TEMPORARY);
14505
14506 add_catch_command ("handlers", _("\
14507 Catch Ada exceptions, when handled.\n\
14508 Usage: catch handlers [ARG] [if CONDITION]\n\
14509 Without any argument, stop when any Ada exception is handled.\n\
14510 With an argument, catch only exceptions with the given name.\n\
14511 CONDITION is a boolean expression that is evaluated to see whether the\n\
14512 exception should cause a stop."),
14513 catch_ada_handlers_command,
14514 catch_ada_completer,
14515 CATCH_PERMANENT,
14516 CATCH_TEMPORARY);
14517 add_catch_command ("assert", _("\
14518 Catch failed Ada assertions, when raised.\n\
14519 Usage: catch assert [if CONDITION]\n\
14520 CONDITION is a boolean expression that is evaluated to see whether the\n\
14521 exception should cause a stop."),
14522 catch_assert_command,
14523 NULL,
14524 CATCH_PERMANENT,
14525 CATCH_TEMPORARY);
14526
14527 varsize_limit = 65536;
14528 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14529 &varsize_limit, _("\
14530 Set the maximum number of bytes allowed in a variable-size object."), _("\
14531 Show the maximum number of bytes allowed in a variable-size object."), _("\
14532 Attempts to access an object whose size is not a compile-time constant\n\
14533 and exceeds this limit will cause an error."),
14534 NULL, NULL, &setlist, &showlist);
14535
14536 add_info ("exceptions", info_exceptions_command,
14537 _("\
14538 List all Ada exception names.\n\
14539 Usage: info exceptions [REGEXP]\n\
14540 If a regular expression is passed as an argument, only those matching\n\
14541 the regular expression are listed."));
14542
14543 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14544 _("Set Ada maintenance-related variables."),
14545 &maint_set_ada_cmdlist, "maintenance set ada ",
14546 0/*allow-unknown*/, &maintenance_set_cmdlist);
14547
14548 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14549 _("Show Ada maintenance-related variables."),
14550 &maint_show_ada_cmdlist, "maintenance show ada ",
14551 0/*allow-unknown*/, &maintenance_show_cmdlist);
14552
14553 add_setshow_boolean_cmd
14554 ("ignore-descriptive-types", class_maintenance,
14555 &ada_ignore_descriptive_types_p,
14556 _("Set whether descriptive types generated by GNAT should be ignored."),
14557 _("Show whether descriptive types generated by GNAT should be ignored."),
14558 _("\
14559 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14560 DWARF attribute."),
14561 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14562
14563 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14564 NULL, xcalloc, xfree);
14565
14566 /* The ada-lang observers. */
14567 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14568 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14569 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14570 }
This page took 0.475002 seconds and 4 git commands to generate.