ea60df20e7cd37b770c0bd311ac4532015b24059
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
69
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 #endif
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_target_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static int full_match (const char *, const char *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
116
117 static int is_nonfunction (struct block_symbol *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 const struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct block_symbol *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static const char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (const char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct block_symbol *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static const char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb::byte_vector staging;
2572
2573 type = ada_check_typedef (type);
2574
2575 if (obj == NULL)
2576 src = valaddr + offset;
2577 else
2578 src = value_contents (obj) + offset;
2579
2580 if (is_dynamic_type (type))
2581 {
2582 /* The length of TYPE might by dynamic, so we need to resolve
2583 TYPE in order to know its actual size, which we then use
2584 to create the contents buffer of the value we return.
2585 The difficulty is that the data containing our object is
2586 packed, and therefore maybe not at a byte boundary. So, what
2587 we do, is unpack the data into a byte-aligned buffer, and then
2588 use that buffer as our object's value for resolving the type. */
2589 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2590 staging.resize (staging_len);
2591
2592 ada_unpack_from_contents (src, bit_offset, bit_size,
2593 staging.data (), staging.size (),
2594 is_big_endian, has_negatives (type),
2595 is_scalar);
2596 type = resolve_dynamic_type (type, staging.data (), 0);
2597 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2598 {
2599 /* This happens when the length of the object is dynamic,
2600 and is actually smaller than the space reserved for it.
2601 For instance, in an array of variant records, the bit_size
2602 we're given is the array stride, which is constant and
2603 normally equal to the maximum size of its element.
2604 But, in reality, each element only actually spans a portion
2605 of that stride. */
2606 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2607 }
2608 }
2609
2610 if (obj == NULL)
2611 {
2612 v = allocate_value (type);
2613 src = valaddr + offset;
2614 }
2615 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2616 {
2617 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2618 gdb_byte *buf;
2619
2620 v = value_at (type, value_address (obj) + offset);
2621 buf = (gdb_byte *) alloca (src_len);
2622 read_memory (value_address (v), buf, src_len);
2623 src = buf;
2624 }
2625 else
2626 {
2627 v = allocate_value (type);
2628 src = value_contents (obj) + offset;
2629 }
2630
2631 if (obj != NULL)
2632 {
2633 long new_offset = offset;
2634
2635 set_value_component_location (v, obj);
2636 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2637 set_value_bitsize (v, bit_size);
2638 if (value_bitpos (v) >= HOST_CHAR_BIT)
2639 {
2640 ++new_offset;
2641 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2642 }
2643 set_value_offset (v, new_offset);
2644
2645 /* Also set the parent value. This is needed when trying to
2646 assign a new value (in inferior memory). */
2647 set_value_parent (v, obj);
2648 }
2649 else
2650 set_value_bitsize (v, bit_size);
2651 unpacked = value_contents_writeable (v);
2652
2653 if (bit_size == 0)
2654 {
2655 memset (unpacked, 0, TYPE_LENGTH (type));
2656 return v;
2657 }
2658
2659 if (staging.size () == TYPE_LENGTH (type))
2660 {
2661 /* Small short-cut: If we've unpacked the data into a buffer
2662 of the same size as TYPE's length, then we can reuse that,
2663 instead of doing the unpacking again. */
2664 memcpy (unpacked, staging.data (), staging.size ());
2665 }
2666 else
2667 ada_unpack_from_contents (src, bit_offset, bit_size,
2668 unpacked, TYPE_LENGTH (type),
2669 is_big_endian, has_negatives (type), is_scalar);
2670
2671 return v;
2672 }
2673
2674 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2675 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2676 not overlap. */
2677 static void
2678 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2679 int src_offset, int n, int bits_big_endian_p)
2680 {
2681 unsigned int accum, mask;
2682 int accum_bits, chunk_size;
2683
2684 target += targ_offset / HOST_CHAR_BIT;
2685 targ_offset %= HOST_CHAR_BIT;
2686 source += src_offset / HOST_CHAR_BIT;
2687 src_offset %= HOST_CHAR_BIT;
2688 if (bits_big_endian_p)
2689 {
2690 accum = (unsigned char) *source;
2691 source += 1;
2692 accum_bits = HOST_CHAR_BIT - src_offset;
2693
2694 while (n > 0)
2695 {
2696 int unused_right;
2697
2698 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2699 accum_bits += HOST_CHAR_BIT;
2700 source += 1;
2701 chunk_size = HOST_CHAR_BIT - targ_offset;
2702 if (chunk_size > n)
2703 chunk_size = n;
2704 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2705 mask = ((1 << chunk_size) - 1) << unused_right;
2706 *target =
2707 (*target & ~mask)
2708 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2709 n -= chunk_size;
2710 accum_bits -= chunk_size;
2711 target += 1;
2712 targ_offset = 0;
2713 }
2714 }
2715 else
2716 {
2717 accum = (unsigned char) *source >> src_offset;
2718 source += 1;
2719 accum_bits = HOST_CHAR_BIT - src_offset;
2720
2721 while (n > 0)
2722 {
2723 accum = accum + ((unsigned char) *source << accum_bits);
2724 accum_bits += HOST_CHAR_BIT;
2725 source += 1;
2726 chunk_size = HOST_CHAR_BIT - targ_offset;
2727 if (chunk_size > n)
2728 chunk_size = n;
2729 mask = ((1 << chunk_size) - 1) << targ_offset;
2730 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2731 n -= chunk_size;
2732 accum_bits -= chunk_size;
2733 accum >>= chunk_size;
2734 target += 1;
2735 targ_offset = 0;
2736 }
2737 }
2738 }
2739
2740 /* Store the contents of FROMVAL into the location of TOVAL.
2741 Return a new value with the location of TOVAL and contents of
2742 FROMVAL. Handles assignment into packed fields that have
2743 floating-point or non-scalar types. */
2744
2745 static struct value *
2746 ada_value_assign (struct value *toval, struct value *fromval)
2747 {
2748 struct type *type = value_type (toval);
2749 int bits = value_bitsize (toval);
2750
2751 toval = ada_coerce_ref (toval);
2752 fromval = ada_coerce_ref (fromval);
2753
2754 if (ada_is_direct_array_type (value_type (toval)))
2755 toval = ada_coerce_to_simple_array (toval);
2756 if (ada_is_direct_array_type (value_type (fromval)))
2757 fromval = ada_coerce_to_simple_array (fromval);
2758
2759 if (!deprecated_value_modifiable (toval))
2760 error (_("Left operand of assignment is not a modifiable lvalue."));
2761
2762 if (VALUE_LVAL (toval) == lval_memory
2763 && bits > 0
2764 && (TYPE_CODE (type) == TYPE_CODE_FLT
2765 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2766 {
2767 int len = (value_bitpos (toval)
2768 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2769 int from_size;
2770 gdb_byte *buffer = (gdb_byte *) alloca (len);
2771 struct value *val;
2772 CORE_ADDR to_addr = value_address (toval);
2773
2774 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2775 fromval = value_cast (type, fromval);
2776
2777 read_memory (to_addr, buffer, len);
2778 from_size = value_bitsize (fromval);
2779 if (from_size == 0)
2780 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2781 if (gdbarch_bits_big_endian (get_type_arch (type)))
2782 move_bits (buffer, value_bitpos (toval),
2783 value_contents (fromval), from_size - bits, bits, 1);
2784 else
2785 move_bits (buffer, value_bitpos (toval),
2786 value_contents (fromval), 0, bits, 0);
2787 write_memory_with_notification (to_addr, buffer, len);
2788
2789 val = value_copy (toval);
2790 memcpy (value_contents_raw (val), value_contents (fromval),
2791 TYPE_LENGTH (type));
2792 deprecated_set_value_type (val, type);
2793
2794 return val;
2795 }
2796
2797 return value_assign (toval, fromval);
2798 }
2799
2800
2801 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2802 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2803 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2804 COMPONENT, and not the inferior's memory. The current contents
2805 of COMPONENT are ignored.
2806
2807 Although not part of the initial design, this function also works
2808 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2809 had a null address, and COMPONENT had an address which is equal to
2810 its offset inside CONTAINER. */
2811
2812 static void
2813 value_assign_to_component (struct value *container, struct value *component,
2814 struct value *val)
2815 {
2816 LONGEST offset_in_container =
2817 (LONGEST) (value_address (component) - value_address (container));
2818 int bit_offset_in_container =
2819 value_bitpos (component) - value_bitpos (container);
2820 int bits;
2821
2822 val = value_cast (value_type (component), val);
2823
2824 if (value_bitsize (component) == 0)
2825 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2826 else
2827 bits = value_bitsize (component);
2828
2829 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val),
2833 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2834 bits, 1);
2835 else
2836 move_bits (value_contents_writeable (container) + offset_in_container,
2837 value_bitpos (container) + bit_offset_in_container,
2838 value_contents (val), 0, bits, 0);
2839 }
2840
2841 /* The value of the element of array ARR at the ARITY indices given in IND.
2842 ARR may be either a simple array, GNAT array descriptor, or pointer
2843 thereto. */
2844
2845 struct value *
2846 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2847 {
2848 int k;
2849 struct value *elt;
2850 struct type *elt_type;
2851
2852 elt = ada_coerce_to_simple_array (arr);
2853
2854 elt_type = ada_check_typedef (value_type (elt));
2855 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2856 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2857 return value_subscript_packed (elt, arity, ind);
2858
2859 for (k = 0; k < arity; k += 1)
2860 {
2861 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2862 error (_("too many subscripts (%d expected)"), k);
2863 elt = value_subscript (elt, pos_atr (ind[k]));
2864 }
2865 return elt;
2866 }
2867
2868 /* Assuming ARR is a pointer to a GDB array, the value of the element
2869 of *ARR at the ARITY indices given in IND.
2870 Does not read the entire array into memory.
2871
2872 Note: Unlike what one would expect, this function is used instead of
2873 ada_value_subscript for basically all non-packed array types. The reason
2874 for this is that a side effect of doing our own pointer arithmetics instead
2875 of relying on value_subscript is that there is no implicit typedef peeling.
2876 This is important for arrays of array accesses, where it allows us to
2877 preserve the fact that the array's element is an array access, where the
2878 access part os encoded in a typedef layer. */
2879
2880 static struct value *
2881 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2882 {
2883 int k;
2884 struct value *array_ind = ada_value_ind (arr);
2885 struct type *type
2886 = check_typedef (value_enclosing_type (array_ind));
2887
2888 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2889 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2890 return value_subscript_packed (array_ind, arity, ind);
2891
2892 for (k = 0; k < arity; k += 1)
2893 {
2894 LONGEST lwb, upb;
2895 struct value *lwb_value;
2896
2897 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2898 error (_("too many subscripts (%d expected)"), k);
2899 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2900 value_copy (arr));
2901 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2902 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2903 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2904 type = TYPE_TARGET_TYPE (type);
2905 }
2906
2907 return value_ind (arr);
2908 }
2909
2910 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2911 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2912 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2913 this array is LOW, as per Ada rules. */
2914 static struct value *
2915 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2916 int low, int high)
2917 {
2918 struct type *type0 = ada_check_typedef (type);
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2920 struct type *index_type
2921 = create_static_range_type (NULL, base_index_type, low, high);
2922 struct type *slice_type =
2923 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2924 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2925 LONGEST base_low_pos, low_pos;
2926 CORE_ADDR base;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, base_low, &base_low_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 base_low_pos = base_low;
2934 }
2935
2936 base = value_as_address (array_ptr)
2937 + ((low_pos - base_low_pos)
2938 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2939 return value_at_lazy (slice_type, base);
2940 }
2941
2942
2943 static struct value *
2944 ada_value_slice (struct value *array, int low, int high)
2945 {
2946 struct type *type = ada_check_typedef (value_type (array));
2947 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2948 struct type *index_type
2949 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2950 struct type *slice_type =
2951 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2952 LONGEST low_pos, high_pos;
2953
2954 if (!discrete_position (base_index_type, low, &low_pos)
2955 || !discrete_position (base_index_type, high, &high_pos))
2956 {
2957 warning (_("unable to get positions in slice, use bounds instead"));
2958 low_pos = low;
2959 high_pos = high;
2960 }
2961
2962 return value_cast (slice_type,
2963 value_slice (array, low, high_pos - low_pos + 1));
2964 }
2965
2966 /* If type is a record type in the form of a standard GNAT array
2967 descriptor, returns the number of dimensions for type. If arr is a
2968 simple array, returns the number of "array of"s that prefix its
2969 type designation. Otherwise, returns 0. */
2970
2971 int
2972 ada_array_arity (struct type *type)
2973 {
2974 int arity;
2975
2976 if (type == NULL)
2977 return 0;
2978
2979 type = desc_base_type (type);
2980
2981 arity = 0;
2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2983 return desc_arity (desc_bounds_type (type));
2984 else
2985 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2986 {
2987 arity += 1;
2988 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2989 }
2990
2991 return arity;
2992 }
2993
2994 /* If TYPE is a record type in the form of a standard GNAT array
2995 descriptor or a simple array type, returns the element type for
2996 TYPE after indexing by NINDICES indices, or by all indices if
2997 NINDICES is -1. Otherwise, returns NULL. */
2998
2999 struct type *
3000 ada_array_element_type (struct type *type, int nindices)
3001 {
3002 type = desc_base_type (type);
3003
3004 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3005 {
3006 int k;
3007 struct type *p_array_type;
3008
3009 p_array_type = desc_data_target_type (type);
3010
3011 k = ada_array_arity (type);
3012 if (k == 0)
3013 return NULL;
3014
3015 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3016 if (nindices >= 0 && k > nindices)
3017 k = nindices;
3018 while (k > 0 && p_array_type != NULL)
3019 {
3020 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3021 k -= 1;
3022 }
3023 return p_array_type;
3024 }
3025 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 {
3027 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028 {
3029 type = TYPE_TARGET_TYPE (type);
3030 nindices -= 1;
3031 }
3032 return type;
3033 }
3034
3035 return NULL;
3036 }
3037
3038 /* The type of nth index in arrays of given type (n numbering from 1).
3039 Does not examine memory. Throws an error if N is invalid or TYPE
3040 is not an array type. NAME is the name of the Ada attribute being
3041 evaluated ('range, 'first, 'last, or 'length); it is used in building
3042 the error message. */
3043
3044 static struct type *
3045 ada_index_type (struct type *type, int n, const char *name)
3046 {
3047 struct type *result_type;
3048
3049 type = desc_base_type (type);
3050
3051 if (n < 0 || n > ada_array_arity (type))
3052 error (_("invalid dimension number to '%s"), name);
3053
3054 if (ada_is_simple_array_type (type))
3055 {
3056 int i;
3057
3058 for (i = 1; i < n; i += 1)
3059 type = TYPE_TARGET_TYPE (type);
3060 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3061 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3062 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3063 perhaps stabsread.c would make more sense. */
3064 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3065 result_type = NULL;
3066 }
3067 else
3068 {
3069 result_type = desc_index_type (desc_bounds_type (type), n);
3070 if (result_type == NULL)
3071 error (_("attempt to take bound of something that is not an array"));
3072 }
3073
3074 return result_type;
3075 }
3076
3077 /* Given that arr is an array type, returns the lower bound of the
3078 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3079 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3080 array-descriptor type. It works for other arrays with bounds supplied
3081 by run-time quantities other than discriminants. */
3082
3083 static LONGEST
3084 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3085 {
3086 struct type *type, *index_type_desc, *index_type;
3087 int i;
3088
3089 gdb_assert (which == 0 || which == 1);
3090
3091 if (ada_is_constrained_packed_array_type (arr_type))
3092 arr_type = decode_constrained_packed_array_type (arr_type);
3093
3094 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3095 return (LONGEST) - which;
3096
3097 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3098 type = TYPE_TARGET_TYPE (arr_type);
3099 else
3100 type = arr_type;
3101
3102 if (TYPE_FIXED_INSTANCE (type))
3103 {
3104 /* The array has already been fixed, so we do not need to
3105 check the parallel ___XA type again. That encoding has
3106 already been applied, so ignore it now. */
3107 index_type_desc = NULL;
3108 }
3109 else
3110 {
3111 index_type_desc = ada_find_parallel_type (type, "___XA");
3112 ada_fixup_array_indexes_type (index_type_desc);
3113 }
3114
3115 if (index_type_desc != NULL)
3116 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3117 NULL);
3118 else
3119 {
3120 struct type *elt_type = check_typedef (type);
3121
3122 for (i = 1; i < n; i++)
3123 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3124
3125 index_type = TYPE_INDEX_TYPE (elt_type);
3126 }
3127
3128 return
3129 (LONGEST) (which == 0
3130 ? ada_discrete_type_low_bound (index_type)
3131 : ada_discrete_type_high_bound (index_type));
3132 }
3133
3134 /* Given that arr is an array value, returns the lower bound of the
3135 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3136 WHICH is 1. This routine will also work for arrays with bounds
3137 supplied by run-time quantities other than discriminants. */
3138
3139 static LONGEST
3140 ada_array_bound (struct value *arr, int n, int which)
3141 {
3142 struct type *arr_type;
3143
3144 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3145 arr = value_ind (arr);
3146 arr_type = value_enclosing_type (arr);
3147
3148 if (ada_is_constrained_packed_array_type (arr_type))
3149 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3150 else if (ada_is_simple_array_type (arr_type))
3151 return ada_array_bound_from_type (arr_type, n, which);
3152 else
3153 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3154 }
3155
3156 /* Given that arr is an array value, returns the length of the
3157 nth index. This routine will also work for arrays with bounds
3158 supplied by run-time quantities other than discriminants.
3159 Does not work for arrays indexed by enumeration types with representation
3160 clauses at the moment. */
3161
3162 static LONGEST
3163 ada_array_length (struct value *arr, int n)
3164 {
3165 struct type *arr_type, *index_type;
3166 int low, high;
3167
3168 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3169 arr = value_ind (arr);
3170 arr_type = value_enclosing_type (arr);
3171
3172 if (ada_is_constrained_packed_array_type (arr_type))
3173 return ada_array_length (decode_constrained_packed_array (arr), n);
3174
3175 if (ada_is_simple_array_type (arr_type))
3176 {
3177 low = ada_array_bound_from_type (arr_type, n, 0);
3178 high = ada_array_bound_from_type (arr_type, n, 1);
3179 }
3180 else
3181 {
3182 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3183 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3184 }
3185
3186 arr_type = check_typedef (arr_type);
3187 index_type = TYPE_INDEX_TYPE (arr_type);
3188 if (index_type != NULL)
3189 {
3190 struct type *base_type;
3191 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3192 base_type = TYPE_TARGET_TYPE (index_type);
3193 else
3194 base_type = index_type;
3195
3196 low = pos_atr (value_from_longest (base_type, low));
3197 high = pos_atr (value_from_longest (base_type, high));
3198 }
3199 return high - low + 1;
3200 }
3201
3202 /* An empty array whose type is that of ARR_TYPE (an array type),
3203 with bounds LOW to LOW-1. */
3204
3205 static struct value *
3206 empty_array (struct type *arr_type, int low)
3207 {
3208 struct type *arr_type0 = ada_check_typedef (arr_type);
3209 struct type *index_type
3210 = create_static_range_type
3211 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3212 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3213
3214 return allocate_value (create_array_type (NULL, elt_type, index_type));
3215 }
3216 \f
3217
3218 /* Name resolution */
3219
3220 /* The "decoded" name for the user-definable Ada operator corresponding
3221 to OP. */
3222
3223 static const char *
3224 ada_decoded_op_name (enum exp_opcode op)
3225 {
3226 int i;
3227
3228 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3229 {
3230 if (ada_opname_table[i].op == op)
3231 return ada_opname_table[i].decoded;
3232 }
3233 error (_("Could not find operator name for opcode"));
3234 }
3235
3236
3237 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3238 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3239 undefined namespace) and converts operators that are
3240 user-defined into appropriate function calls. If CONTEXT_TYPE is
3241 non-null, it provides a preferred result type [at the moment, only
3242 type void has any effect---causing procedures to be preferred over
3243 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3244 return type is preferred. May change (expand) *EXP. */
3245
3246 static void
3247 resolve (struct expression **expp, int void_context_p)
3248 {
3249 struct type *context_type = NULL;
3250 int pc = 0;
3251
3252 if (void_context_p)
3253 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3254
3255 resolve_subexp (expp, &pc, 1, context_type);
3256 }
3257
3258 /* Resolve the operator of the subexpression beginning at
3259 position *POS of *EXPP. "Resolving" consists of replacing
3260 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3261 with their resolutions, replacing built-in operators with
3262 function calls to user-defined operators, where appropriate, and,
3263 when DEPROCEDURE_P is non-zero, converting function-valued variables
3264 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3265 are as in ada_resolve, above. */
3266
3267 static struct value *
3268 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3269 struct type *context_type)
3270 {
3271 int pc = *pos;
3272 int i;
3273 struct expression *exp; /* Convenience: == *expp. */
3274 enum exp_opcode op = (*expp)->elts[pc].opcode;
3275 struct value **argvec; /* Vector of operand types (alloca'ed). */
3276 int nargs; /* Number of operands. */
3277 int oplen;
3278
3279 argvec = NULL;
3280 nargs = 0;
3281 exp = *expp;
3282
3283 /* Pass one: resolve operands, saving their types and updating *pos,
3284 if needed. */
3285 switch (op)
3286 {
3287 case OP_FUNCALL:
3288 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3289 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3290 *pos += 7;
3291 else
3292 {
3293 *pos += 3;
3294 resolve_subexp (expp, pos, 0, NULL);
3295 }
3296 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3297 break;
3298
3299 case UNOP_ADDR:
3300 *pos += 1;
3301 resolve_subexp (expp, pos, 0, NULL);
3302 break;
3303
3304 case UNOP_QUAL:
3305 *pos += 3;
3306 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3307 break;
3308
3309 case OP_ATR_MODULUS:
3310 case OP_ATR_SIZE:
3311 case OP_ATR_TAG:
3312 case OP_ATR_FIRST:
3313 case OP_ATR_LAST:
3314 case OP_ATR_LENGTH:
3315 case OP_ATR_POS:
3316 case OP_ATR_VAL:
3317 case OP_ATR_MIN:
3318 case OP_ATR_MAX:
3319 case TERNOP_IN_RANGE:
3320 case BINOP_IN_BOUNDS:
3321 case UNOP_IN_RANGE:
3322 case OP_AGGREGATE:
3323 case OP_OTHERS:
3324 case OP_CHOICES:
3325 case OP_POSITIONAL:
3326 case OP_DISCRETE_RANGE:
3327 case OP_NAME:
3328 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329 *pos += oplen;
3330 break;
3331
3332 case BINOP_ASSIGN:
3333 {
3334 struct value *arg1;
3335
3336 *pos += 1;
3337 arg1 = resolve_subexp (expp, pos, 0, NULL);
3338 if (arg1 == NULL)
3339 resolve_subexp (expp, pos, 1, NULL);
3340 else
3341 resolve_subexp (expp, pos, 1, value_type (arg1));
3342 break;
3343 }
3344
3345 case UNOP_CAST:
3346 *pos += 3;
3347 nargs = 1;
3348 break;
3349
3350 case BINOP_ADD:
3351 case BINOP_SUB:
3352 case BINOP_MUL:
3353 case BINOP_DIV:
3354 case BINOP_REM:
3355 case BINOP_MOD:
3356 case BINOP_EXP:
3357 case BINOP_CONCAT:
3358 case BINOP_LOGICAL_AND:
3359 case BINOP_LOGICAL_OR:
3360 case BINOP_BITWISE_AND:
3361 case BINOP_BITWISE_IOR:
3362 case BINOP_BITWISE_XOR:
3363
3364 case BINOP_EQUAL:
3365 case BINOP_NOTEQUAL:
3366 case BINOP_LESS:
3367 case BINOP_GTR:
3368 case BINOP_LEQ:
3369 case BINOP_GEQ:
3370
3371 case BINOP_REPEAT:
3372 case BINOP_SUBSCRIPT:
3373 case BINOP_COMMA:
3374 *pos += 1;
3375 nargs = 2;
3376 break;
3377
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 case UNOP_IND:
3383 *pos += 1;
3384 nargs = 1;
3385 break;
3386
3387 case OP_LONG:
3388 case OP_DOUBLE:
3389 case OP_VAR_VALUE:
3390 *pos += 4;
3391 break;
3392
3393 case OP_TYPE:
3394 case OP_BOOL:
3395 case OP_LAST:
3396 case OP_INTERNALVAR:
3397 *pos += 3;
3398 break;
3399
3400 case UNOP_MEMVAL:
3401 *pos += 3;
3402 nargs = 1;
3403 break;
3404
3405 case OP_REGISTER:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407 break;
3408
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411 nargs = 1;
3412 break;
3413
3414 case TERNOP_SLICE:
3415 *pos += 1;
3416 nargs = 3;
3417 break;
3418
3419 case OP_STRING:
3420 break;
3421
3422 default:
3423 error (_("Unexpected operator during name resolution"));
3424 }
3425
3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 argvec[i] = NULL;
3430 exp = *expp;
3431
3432 /* Pass two: perform any resolution on principal operator. */
3433 switch (op)
3434 {
3435 default:
3436 break;
3437
3438 case OP_VAR_VALUE:
3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3440 {
3441 struct block_symbol *candidates;
3442 int n_candidates;
3443
3444 n_candidates =
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
3448 &candidates);
3449
3450 if (n_candidates > 1)
3451 {
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3454 out all types. */
3455 int j;
3456 for (j = 0; j < n_candidates; j += 1)
3457 switch (SYMBOL_CLASS (candidates[j].symbol))
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
3462 case LOC_REGPARM_ADDR:
3463 case LOC_LOCAL:
3464 case LOC_COMPUTED:
3465 goto FoundNonType;
3466 default:
3467 break;
3468 }
3469 FoundNonType:
3470 if (j < n_candidates)
3471 {
3472 j = 0;
3473 while (j < n_candidates)
3474 {
3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3476 {
3477 candidates[j] = candidates[n_candidates - 1];
3478 n_candidates -= 1;
3479 }
3480 else
3481 j += 1;
3482 }
3483 }
3484 }
3485
3486 if (n_candidates == 0)
3487 error (_("No definition found for %s"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3490 i = 0;
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3493 {
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 context_type);
3498 if (i < 0)
3499 error (_("Could not find a match for %s"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 }
3502 else
3503 {
3504 printf_filtered (_("Multiple matches for %s\n"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3507 i = 0;
3508 }
3509
3510 exp->elts[pc + 1].block = candidates[i].block;
3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3515 }
3516
3517 if (deprocedure_p
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519 == TYPE_CODE_FUNC))
3520 {
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3524 exp = *expp;
3525 }
3526 break;
3527
3528 case OP_FUNCALL:
3529 {
3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3532 {
3533 struct block_symbol *candidates;
3534 int n_candidates;
3535
3536 n_candidates =
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
3540 &candidates);
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
3550 if (i < 0)
3551 error (_("Could not find a match for %s"),
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
3559 innermost_block = candidates[i].block;
3560 }
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
3585 {
3586 struct block_symbol *candidates;
3587 int n_candidates;
3588
3589 n_candidates =
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
3592 &candidates);
3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594 ada_decoded_op_name (op), NULL);
3595 if (i < 0)
3596 break;
3597
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
3601 exp = *expp;
3602 }
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_REGISTER:
3607 return NULL;
3608 }
3609
3610 *pos = pc;
3611 return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 a non-pointer. */
3617 /* The term "match" here is rather loose. The match is heuristic and
3618 liberal. */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
3631 switch (TYPE_CODE (ftype))
3632 {
3633 default:
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3639 else
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
3654
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663 else
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681 int i;
3682 struct type *func_type = SYMBOL_TYPE (func);
3683
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
3695 if (actuals[i] == NULL)
3696 return 0;
3697 else
3698 {
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
3706 }
3707 return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718 struct type *return_type;
3719
3720 if (func_type == NULL)
3721 return 1;
3722
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 else
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3728 return 1;
3729
3730 context_type = get_base_type (context_type);
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3757 {
3758 int fallback;
3759 int k;
3760 int m; /* Number of hits */
3761
3762 m = 0;
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 {
3768 for (k = 0; k < nsyms; k += 1)
3769 {
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
3779 }
3780
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3785 if (m == 0)
3786 return -1;
3787 else if (m > 1 && !parse_completion)
3788 {
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3791 return 0;
3792 }
3793 return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
3812
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 ;
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 ;
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
3821
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
3831 return (strcmp (N0, N1) < 0);
3832 }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841 int i;
3842
3843 for (i = 1; i < nsyms; i += 1)
3844 {
3845 struct block_symbol sym = syms[i];
3846 int j;
3847
3848 for (j = i - 1; j >= 0; j -= 1)
3849 {
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
3855 syms[j + 1] = sym;
3856 }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871 {
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913 int i;
3914 int *chosen = XALLOCAVEC (int , nsyms);
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3918
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3921 if (nsyms <= 1)
3922 return nsyms;
3923
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3938
3939 sort_choices (syms, nsyms);
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
3943 if (syms[i].symbol == NULL)
3944 continue;
3945
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 {
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3950
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3956 sal.line);
3957 else
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
3961 continue;
3962 }
3963 else
3964 {
3965 int is_enumeral =
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3970
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3973
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 {
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3991 }
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4008 }
4009 }
4010
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012 "overload-choice");
4013
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4016
4017 return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031 The user is not allowed to choose more than MAX_RESULTS values.
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4039 {
4040 char *args;
4041 const char *prompt;
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
4044
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
4047 prompt = "> ";
4048
4049 args = command_line_input (prompt, 0, annotation_suffix);
4050
4051 if (args == NULL)
4052 error_no_arg (_("one or more choice numbers"));
4053
4054 n_chosen = 0;
4055
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4058 while (1)
4059 {
4060 char *args2;
4061 int choice, j;
4062
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4067 break;
4068
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4073 args = args2;
4074
4075 if (choice == 0)
4076 error (_("cancelled"));
4077
4078 if (choice < first_choice)
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
4085 choice -= first_choice;
4086
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088 {
4089 }
4090
4091 if (j < 0 || choice != choices[j])
4092 {
4093 int k;
4094
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
4100 }
4101
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4104
4105 return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4116 {
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
4139 xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767 static int
4768 should_use_wild_match (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL);
4771 }
4772
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4775
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4778 domain_enum domain)
4779 {
4780 /* Initialize it just to avoid a GCC false warning. */
4781 struct block_symbol sym = {NULL, NULL};
4782
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 return sym.symbol;
4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4787 return sym.symbol;
4788 }
4789
4790
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4794 static int
4795 is_nonfunction (struct block_symbol syms[], int n)
4796 {
4797 int i;
4798
4799 for (i = 0; i < n; i += 1)
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4803 return 1;
4804
4805 return 0;
4806 }
4807
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809 struct types. Otherwise, they may not. */
4810
4811 static int
4812 equiv_types (struct type *type0, struct type *type1)
4813 {
4814 if (type0 == type1)
4815 return 1;
4816 if (type0 == NULL || type1 == NULL
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 return 0;
4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4823 return 1;
4824
4825 return 0;
4826 }
4827
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829 no more defined than that of SYM1. */
4830
4831 static int
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4833 {
4834 if (sym0 == sym1)
4835 return 1;
4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838 return 0;
4839
4840 switch (SYMBOL_CLASS (sym0))
4841 {
4842 case LOC_UNDEF:
4843 return 1;
4844 case LOC_TYPEDEF:
4845 {
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850 int len0 = strlen (name0);
4851
4852 return
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856 && startswith (name1 + len0, "___XV")));
4857 }
4858 case LOC_CONST:
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4861 default:
4862 return 0;
4863 }
4864 }
4865
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4868
4869 static void
4870 add_defn_to_vec (struct obstack *obstackp,
4871 struct symbol *sym,
4872 const struct block *block)
4873 {
4874 int i;
4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4876
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4885
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 {
4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4889 return;
4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4891 {
4892 prevDefns[i].symbol = sym;
4893 prevDefns[i].block = block;
4894 return;
4895 }
4896 }
4897
4898 {
4899 struct block_symbol info;
4900
4901 info.symbol = sym;
4902 info.block = block;
4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4904 }
4905 }
4906
4907 /* Number of block_symbol structures currently collected in current vector in
4908 OBSTACKP. */
4909
4910 static int
4911 num_defns_collected (struct obstack *obstackp)
4912 {
4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4914 }
4915
4916 /* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4918
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4921 {
4922 if (finish)
4923 return (struct block_symbol *) obstack_finish (obstackp);
4924 else
4925 return (struct block_symbol *) obstack_base (obstackp);
4926 }
4927
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4933
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4936 {
4937 struct bound_minimal_symbol result;
4938 struct objfile *objfile;
4939 struct minimal_symbol *msymbol;
4940 const int wild_match_p = should_use_wild_match (name);
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
4951 if (startswith (name, "standard__"))
4952 name += sizeof ("standard__") - 1;
4953
4954 ALL_MSYMBOLS (objfile, msymbol)
4955 {
4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4958 {
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4961 break;
4962 }
4963 }
4964
4965 return result;
4966 }
4967
4968 /* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4973
4974 static void
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976 const char *name, domain_enum domain,
4977 int wild_match_p)
4978 {
4979 }
4980
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
4983
4984 static int
4985 is_nondebugging_type (struct type *type)
4986 {
4987 const char *name = ada_type_name (type);
4988
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990 }
4991
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4994
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4998
4999 static int
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001 {
5002 int i;
5003
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5008
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5012 return 0;
5013
5014 /* All enumerals should also have the same name (modulo any numerical
5015 suffix). */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 {
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5022
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 if (len_1 != len_2
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5028 len_1) != 0)
5029 return 0;
5030 }
5031
5032 return 1;
5033 }
5034
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5039
5040 For instance, consider the following code:
5041
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5044
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5054
5055 static int
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5057 {
5058 int i;
5059
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5066
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5070 return 0;
5071
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5075 return 0;
5076
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
5089 return 0;
5090
5091 return 1;
5092 }
5093
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
5100
5101 static int
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5103 {
5104 int i, j;
5105
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5109 if (nsyms < 2)
5110 return nsyms;
5111
5112 i = 0;
5113 while (i < nsyms)
5114 {
5115 int remove_p = 0;
5116
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5119
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5122 {
5123 for (j = 0; j < nsyms; j++)
5124 {
5125 if (j != i
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5130 remove_p = 1;
5131 }
5132 }
5133
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5136
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5140 {
5141 for (j = 0; j < nsyms; j += 1)
5142 {
5143 if (i != j
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5151 remove_p = 1;
5152 }
5153 }
5154
5155 if (remove_p)
5156 {
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161
5162 i += 1;
5163 }
5164
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5167
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5178 nsyms = 1;
5179
5180 return nsyms;
5181 }
5182
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
5187
5188 static char *
5189 xget_renaming_scope (struct type *renaming_type)
5190 {
5191 /* The renaming types adhere to the following convention:
5192 <scope>__<rename>___<XR extension>.
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
5195
5196 const char *name = type_name_no_tag (renaming_type);
5197 const char *suffix = strstr (name, "___XR");
5198 const char *last;
5199 int scope_len;
5200 char *scope;
5201
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
5204
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
5208
5209 /* Make a copy of scope and return it. */
5210
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5213
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
5216
5217 return scope;
5218 }
5219
5220 /* Return nonzero if NAME corresponds to a package name. */
5221
5222 static int
5223 is_package_name (const char *name)
5224 {
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
5230
5231 char *fun_name;
5232
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236 return 0;
5237
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
5240
5241 /* Do a quick check that NAME does not contain "__", since library-level
5242 functions names cannot contain "__" in them. */
5243 if (strstr (name, "__") != NULL)
5244 return 0;
5245
5246 fun_name = xstrprintf ("_ada_%s", name);
5247
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249 }
5250
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252 not visible from FUNCTION_NAME. */
5253
5254 static int
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5256 {
5257 char *scope;
5258 struct cleanup *old_chain;
5259
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261 return 0;
5262
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264 old_chain = make_cleanup (xfree, scope);
5265
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
5268 {
5269 do_cleanups (old_chain);
5270 return 0;
5271 }
5272
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
5275
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5279 this prefix. */
5280 if (startswith (function_name, "_ada_"))
5281 function_name += 5;
5282
5283 {
5284 int is_invisible = !startswith (function_name, scope);
5285
5286 do_cleanups (old_chain);
5287 return is_invisible;
5288 }
5289 }
5290
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
5296
5297 Rationale:
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5301 latter.
5302
5303 Second, GNAT emits a type following a specified encoding for each renaming
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
5310
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5322
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
5327
5328 static int
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330 int nsyms, const struct block *current_block)
5331 {
5332 struct symbol *current_function;
5333 const char *current_function_name;
5334 int i;
5335 int is_new_style_renaming;
5336
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
5339 First, zero out such symbols, then compress. */
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5342 {
5343 struct symbol *sym = syms[i].symbol;
5344 const struct block *block = syms[i].block;
5345 const char *name;
5346 const char *suffix;
5347
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 continue;
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5352
5353 if (suffix != NULL)
5354 {
5355 int name_len = suffix - name;
5356 int j;
5357
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5362 name_len) == 0
5363 && block == syms[j].block)
5364 syms[j].symbol = NULL;
5365 }
5366 }
5367 if (is_new_style_renaming)
5368 {
5369 int j, k;
5370
5371 for (j = k = 0; j < nsyms; j += 1)
5372 if (syms[j].symbol != NULL)
5373 {
5374 syms[k] = syms[j];
5375 k += 1;
5376 }
5377 return k;
5378 }
5379
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
5382
5383 if (current_block == NULL)
5384 return nsyms;
5385
5386 current_function = block_linkage_function (current_block);
5387 if (current_function == NULL)
5388 return nsyms;
5389
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5392 return nsyms;
5393
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5397
5398 i = 0;
5399 while (i < nsyms)
5400 {
5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402 == ADA_OBJECT_RENAMING
5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5404 {
5405 int j;
5406
5407 for (j = i + 1; j < nsyms; j += 1)
5408 syms[j - 1] = syms[j];
5409 nsyms -= 1;
5410 }
5411 else
5412 i += 1;
5413 }
5414
5415 return nsyms;
5416 }
5417
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
5425
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427
5428 static void
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430 const struct block *block, domain_enum domain,
5431 int wild_match_p)
5432 {
5433 int block_depth = 0;
5434
5435 while (block != NULL)
5436 {
5437 block_depth += 1;
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439 wild_match_p);
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5453 }
5454
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5457
5458 struct match_data
5459 {
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5463 int found_sym;
5464 };
5465
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5474
5475 static int
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 {
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504 }
5505
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5510 symbols. */
5511
5512 static int
5513 ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5515 const char *name,
5516 domain_enum domain,
5517 int wild_match_p)
5518 {
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527 int name_match;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 name_match
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 1, NULL);
5557 renaming->searched = 0;
5558 }
5559 return num_defns_collected (obstackp) != defns_mark;
5560 }
5561
5562 /* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5564
5565 static int
5566 compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
5568 {
5569 while (*string1 != '\0' && *string2 != '\0')
5570 {
5571 char c1, c2;
5572
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
5575
5576 if (casing == case_sensitive_off)
5577 {
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5580 }
5581 else
5582 {
5583 c1 = *string1;
5584 c2 = *string2;
5585 }
5586 if (c1 != c2)
5587 break;
5588
5589 string1 += 1;
5590 string2 += 1;
5591 }
5592
5593 switch (*string1)
5594 {
5595 case '(':
5596 return strcmp_iw_ordered (string1, string2);
5597 case '_':
5598 if (*string2 == '\0')
5599 {
5600 if (is_name_suffix (string1))
5601 return 0;
5602 else
5603 return 1;
5604 }
5605 /* FALLTHROUGH */
5606 default:
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5609 else
5610 {
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5613 else
5614 return *string1 - *string2;
5615 }
5616 }
5617 }
5618
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5621
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624 ... implies...
5625
5626 compare_names (STRING1, STRING2) <= 0
5627
5628 (they may differ as to what symbols compare equal). */
5629
5630 static int
5631 compare_names (const char *string1, const char *string2)
5632 {
5633 int result;
5634
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5639
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 if (result == 0)
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644 return result;
5645 }
5646
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5650
5651 static void
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5654 int is_wild_match)
5655 {
5656 struct objfile *objfile;
5657 struct compunit_symtab *cu;
5658 struct match_data data;
5659
5660 memset (&data, 0, sizeof data);
5661 data.obstackp = obstackp;
5662
5663 ALL_OBJFILES (objfile)
5664 {
5665 data.objfile = objfile;
5666
5667 if (is_wild_match)
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5670 wild_match, NULL);
5671 else
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
5675
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682 is_wild_match))
5683 data.found_sym = 1;
5684 }
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 ALL_OBJFILES (objfile)
5690 {
5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 global,
5697 aux_add_nonlocal_symbols,
5698 &data,
5699 full_match, compare_names);
5700 }
5701 }
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705 non-zero, enclosing scope and in global scopes, returning the number of
5706 matches. Add these to OBSTACKP.
5707
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
5710 is the one match returned (no other matches in that or
5711 enclosing blocks is returned). If there are any matches in or
5712 surrounding BLOCK, then these alone are returned.
5713
5714 Names prefixed with "standard__" are handled specially: "standard__"
5715 is first stripped off, and only static and global symbols are searched.
5716
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5719
5720 static void
5721 ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5723 const char *name,
5724 domain_enum domain,
5725 int full_search,
5726 int *made_global_lookup_p)
5727 {
5728 struct symbol *sym;
5729 const int wild_match_p = should_use_wild_match (name);
5730
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
5733
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
5741 if (startswith (name, "standard__"))
5742 {
5743 block = NULL;
5744 name = name + sizeof ("standard__") - 1;
5745 }
5746
5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
5748
5749 if (block != NULL)
5750 {
5751 if (full_search)
5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5753 else
5754 {
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5757 superblocks. */
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759 wild_match_p);
5760 }
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5762 return;
5763 }
5764
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5767 the same result. */
5768
5769 if (lookup_cached_symbol (name, domain, &sym, &block))
5770 {
5771 if (sym != NULL)
5772 add_defn_to_vec (obstackp, sym, block);
5773 return;
5774 }
5775
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
5778
5779 /* Search symbols from all global blocks. */
5780
5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5782
5783 /* Now add symbols from all per-file blocks if we've gotten no hits
5784 (not strictly correct, but perhaps better than an error). */
5785
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788 }
5789
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5792 matches.
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5797
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5803
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5806
5807 static int
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 domain_enum domain,
5810 struct block_symbol **results,
5811 int full_search)
5812 {
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5815 int ndefns;
5816
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
5821
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5824
5825 ndefns = remove_extra_symbols (*results, ndefns);
5826
5827 if (ndefns == 0 && full_search && syms_from_global_search)
5828 cache_symbol (name, domain, NULL, NULL);
5829
5830 if (ndefns == 1 && full_search && syms_from_global_search)
5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5832
5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5834 return ndefns;
5835 }
5836
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5841
5842 int
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844 domain_enum domain, struct block_symbol **results)
5845 {
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847 }
5848
5849 /* Implementation of the la_iterate_over_symbols method. */
5850
5851 static void
5852 ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5861 {
5862 if (!callback (results[i].symbol))
5863 break;
5864 }
5865 }
5866
5867 /* If NAME is the name of an entity, return a string that should
5868 be used to look that entity up in Ada units.
5869
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5873
5874 std::string
5875 ada_name_for_lookup (const char *name)
5876 {
5877 int nlen = strlen (name);
5878
5879 if (name[0] == '<' && name[nlen - 1] == '>')
5880 return std::string (name + 1, nlen - 2);
5881 else
5882 return ada_encode (ada_fold_name (name));
5883 }
5884
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5887 choices.
5888
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
5891
5892 void
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5894 domain_enum domain,
5895 struct block_symbol *info)
5896 {
5897 struct block_symbol *candidates;
5898 int n_candidates;
5899
5900 gdb_assert (info != NULL);
5901 memset (info, 0, sizeof (struct block_symbol));
5902
5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904 if (n_candidates == 0)
5905 return;
5906
5907 *info = candidates[0];
5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
5909 }
5910
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5914 choosing the first symbol if there are multiple choices.
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5916
5917 struct block_symbol
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919 domain_enum domain, int *is_a_field_of_this)
5920 {
5921 struct block_symbol info;
5922
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927 block0, domain, &info);
5928 return info;
5929 }
5930
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
5934 const struct block *block,
5935 const domain_enum domain)
5936 {
5937 struct block_symbol sym;
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5965 return sym;
5966 }
5967
5968 return (struct block_symbol) {NULL, NULL};
5969 }
5970
5971
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5976
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5986
5987 static int
5988 is_name_suffix (const char *str)
5989 {
5990 int k;
5991 const char *matching;
5992 const int len = strlen (str);
5993
5994 /* Skip optional leading __[0-9]+. */
5995
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
6001 }
6002
6003 /* [.$][0-9]+ */
6004
6005 if (str[0] == '.' || str[0] == '$')
6006 {
6007 matching = str + 1;
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
6015
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
6030 #if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045 #endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
6066 while (str[0] != '_' && str[0] != '\0')
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
6072 }
6073
6074 if (str[0] == '\000')
6075 return 1;
6076
6077 if (str[0] == '_')
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
6080 return 0;
6081 if (str[2] == '_')
6082 {
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
6106 return 1;
6107 }
6108 if (str[0] == '$' && isdigit (str[1]))
6109 {
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 return 0;
6116 }
6117
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6120
6121 static int
6122 is_valid_name_for_wild_match (const char *name0)
6123 {
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138 }
6139
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6143
6144 static int
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6146 {
6147 const char *name = *namep;
6148
6149 while (1)
6150 {
6151 int t0, t1;
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6161 break;
6162 else
6163 name += 1;
6164 }
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
6177 return 0;
6178 }
6179
6180 *namep = name;
6181 return 1;
6182 }
6183
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6187
6188 static int
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return 1;
6211 }
6212 }
6213
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6216
6217 static int
6218 full_match (const char *sym_name, const char *search_name)
6219 {
6220 return !match_name (sym_name, search_name, 0);
6221 }
6222
6223
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6227 OBJFILE is the section containing BLOCK. */
6228
6229 static void
6230 ada_add_block_symbols (struct obstack *obstackp,
6231 const struct block *block, const char *name,
6232 domain_enum domain, struct objfile *objfile,
6233 int wild)
6234 {
6235 struct block_iterator iter;
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6240 int found_sym;
6241 struct symbol *sym;
6242
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 if (wild)
6246 {
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6249 {
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6253 {
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 continue;
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6257 arg_sym = sym;
6258 else
6259 {
6260 found_sym = 1;
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
6263 block);
6264 }
6265 }
6266 }
6267 }
6268 else
6269 {
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6272 {
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
6275 {
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
6288 }
6289 }
6290 }
6291
6292 /* Handle renamings. */
6293
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295 found_sym = 1;
6296
6297 if (!found_sym && arg_sym != NULL)
6298 {
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6301 block);
6302 }
6303
6304 if (!wild)
6305 {
6306 arg_sym = NULL;
6307 found_sym = 0;
6308
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
6310 {
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
6313 {
6314 int cmp;
6315
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317 if (cmp == 0)
6318 {
6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6320 if (cmp == 0)
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322 name_len);
6323 }
6324
6325 if (cmp == 0
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 {
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 {
6330 if (SYMBOL_IS_ARGUMENT (sym))
6331 arg_sym = sym;
6332 else
6333 {
6334 found_sym = 1;
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6337 block);
6338 }
6339 }
6340 }
6341 }
6342 }
6343
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6347 {
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (arg_sym, objfile),
6350 block);
6351 }
6352 }
6353 }
6354 \f
6355
6356 /* Symbol Completion */
6357
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6361
6362 TEXT_LEN is equal to the length of TEXT.
6363 Perform a wild match if WILD_MATCH_P is set.
6364 ENCODED_P should be set if TEXT represents the start of a symbol name
6365 in its encoded form. */
6366
6367 static const char *
6368 symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6370 int wild_match_p, int encoded_p)
6371 {
6372 const int verbatim_match = (text[0] == '<');
6373 int match = 0;
6374
6375 if (verbatim_match)
6376 {
6377 /* Strip the leading angle bracket. */
6378 text = text + 1;
6379 text_len--;
6380 }
6381
6382 /* First, test against the fully qualified name of the symbol. */
6383
6384 if (strncmp (sym_name, text, text_len) == 0)
6385 match = 1;
6386
6387 if (match && !encoded_p)
6388 {
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6395
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6400 }
6401
6402 if (match && !verbatim_match)
6403 {
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6409 const char *tmp;
6410
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 if (*tmp != '\0')
6413 match = 0;
6414 }
6415
6416 /* Second: Try wild matching... */
6417
6418 if (!match && wild_match_p)
6419 {
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425 if (strncmp (sym_name, text, text_len) == 0)
6426 match = 1;
6427 }
6428
6429 /* Finally: If we found a mach, prepare the result to return. */
6430
6431 if (!match)
6432 return NULL;
6433
6434 if (verbatim_match)
6435 sym_name = add_angle_brackets (sym_name);
6436
6437 if (!encoded_p)
6438 sym_name = ada_decode (sym_name);
6439
6440 return sym_name;
6441 }
6442
6443 /* A companion function to ada_make_symbol_completion_list().
6444 Check if SYM_NAME represents a symbol which name would be suitable
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6446 it is appended at the end of the given string vector SV.
6447
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6452 completion vector.
6453 if WILD_MATCH_P is set, then wild matching is performed.
6454 ENCODED_P should be set if TEXT represents a symbol name in its
6455 encoded formed (in which case the completion should also be
6456 encoded). */
6457
6458 static void
6459 symbol_completion_add (VEC(char_ptr) **sv,
6460 const char *sym_name,
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
6463 int wild_match_p, int encoded_p)
6464 {
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
6466 wild_match_p, encoded_p);
6467 char *completion;
6468
6469 if (match == NULL)
6470 return;
6471
6472 /* We found a match, so add the appropriate completion to the given
6473 string vector. */
6474
6475 if (word == orig_text)
6476 {
6477 completion = (char *) xmalloc (strlen (match) + 5);
6478 strcpy (completion, match);
6479 }
6480 else if (word > orig_text)
6481 {
6482 /* Return some portion of sym_name. */
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match + (word - orig_text));
6485 }
6486 else
6487 {
6488 /* Return some of ORIG_TEXT plus sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6493 }
6494
6495 VEC_safe_push (char_ptr, *sv, completion);
6496 }
6497
6498 /* Return a list of possible symbol names completing TEXT0. WORD is
6499 the entire command on which completion is made. */
6500
6501 static VEC (char_ptr) *
6502 ada_make_symbol_completion_list (const char *text0, const char *word,
6503 enum type_code code)
6504 {
6505 char *text;
6506 int text_len;
6507 int wild_match_p;
6508 int encoded_p;
6509 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6510 struct symbol *sym;
6511 struct compunit_symtab *s;
6512 struct minimal_symbol *msymbol;
6513 struct objfile *objfile;
6514 const struct block *b, *surrounding_static_block = 0;
6515 int i;
6516 struct block_iterator iter;
6517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6518
6519 gdb_assert (code == TYPE_CODE_UNDEF);
6520
6521 if (text0[0] == '<')
6522 {
6523 text = xstrdup (text0);
6524 make_cleanup (xfree, text);
6525 text_len = strlen (text);
6526 wild_match_p = 0;
6527 encoded_p = 1;
6528 }
6529 else
6530 {
6531 text = xstrdup (ada_encode (text0));
6532 make_cleanup (xfree, text);
6533 text_len = strlen (text);
6534 for (i = 0; i < text_len; i++)
6535 text[i] = tolower (text[i]);
6536
6537 encoded_p = (strstr (text0, "__") != NULL);
6538 /* If the name contains a ".", then the user is entering a fully
6539 qualified entity name, and the match must not be done in wild
6540 mode. Similarly, if the user wants to complete what looks like
6541 an encoded name, the match must not be done in wild mode. */
6542 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6543 }
6544
6545 /* First, look at the partial symtab symbols. */
6546 expand_symtabs_matching (NULL,
6547 [&] (const char *symname)
6548 {
6549 return symbol_completion_match (symname,
6550 text, text_len,
6551 wild_match_p,
6552 encoded_p);
6553 },
6554 NULL,
6555 ALL_DOMAIN);
6556
6557 /* At this point scan through the misc symbol vectors and add each
6558 symbol you find to the list. Eventually we want to ignore
6559 anything that isn't a text symbol (everything else will be
6560 handled by the psymtab code above). */
6561
6562 ALL_MSYMBOLS (objfile, msymbol)
6563 {
6564 QUIT;
6565 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6566 text, text_len, text0, word, wild_match_p,
6567 encoded_p);
6568 }
6569
6570 /* Search upwards from currently selected frame (so that we can
6571 complete on local vars. */
6572
6573 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6574 {
6575 if (!BLOCK_SUPERBLOCK (b))
6576 surrounding_static_block = b; /* For elmin of dups */
6577
6578 ALL_BLOCK_SYMBOLS (b, iter, sym)
6579 {
6580 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6581 text, text_len, text0, word,
6582 wild_match_p, encoded_p);
6583 }
6584 }
6585
6586 /* Go through the symtabs and check the externs and statics for
6587 symbols which match. */
6588
6589 ALL_COMPUNITS (objfile, s)
6590 {
6591 QUIT;
6592 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6593 ALL_BLOCK_SYMBOLS (b, iter, sym)
6594 {
6595 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6596 text, text_len, text0, word,
6597 wild_match_p, encoded_p);
6598 }
6599 }
6600
6601 ALL_COMPUNITS (objfile, s)
6602 {
6603 QUIT;
6604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6605 /* Don't do this block twice. */
6606 if (b == surrounding_static_block)
6607 continue;
6608 ALL_BLOCK_SYMBOLS (b, iter, sym)
6609 {
6610 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6611 text, text_len, text0, word,
6612 wild_match_p, encoded_p);
6613 }
6614 }
6615
6616 do_cleanups (old_chain);
6617 return completions;
6618 }
6619
6620 /* Field Access */
6621
6622 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623 for tagged types. */
6624
6625 static int
6626 ada_is_dispatch_table_ptr_type (struct type *type)
6627 {
6628 const char *name;
6629
6630 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6631 return 0;
6632
6633 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6634 if (name == NULL)
6635 return 0;
6636
6637 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6638 }
6639
6640 /* Return non-zero if TYPE is an interface tag. */
6641
6642 static int
6643 ada_is_interface_tag (struct type *type)
6644 {
6645 const char *name = TYPE_NAME (type);
6646
6647 if (name == NULL)
6648 return 0;
6649
6650 return (strcmp (name, "ada__tags__interface_tag") == 0);
6651 }
6652
6653 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654 to be invisible to users. */
6655
6656 int
6657 ada_is_ignored_field (struct type *type, int field_num)
6658 {
6659 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6660 return 1;
6661
6662 /* Check the name of that field. */
6663 {
6664 const char *name = TYPE_FIELD_NAME (type, field_num);
6665
6666 /* Anonymous field names should not be printed.
6667 brobecker/2007-02-20: I don't think this can actually happen
6668 but we don't want to print the value of annonymous fields anyway. */
6669 if (name == NULL)
6670 return 1;
6671
6672 /* Normally, fields whose name start with an underscore ("_")
6673 are fields that have been internally generated by the compiler,
6674 and thus should not be printed. The "_parent" field is special,
6675 however: This is a field internally generated by the compiler
6676 for tagged types, and it contains the components inherited from
6677 the parent type. This field should not be printed as is, but
6678 should not be ignored either. */
6679 if (name[0] == '_' && !startswith (name, "_parent"))
6680 return 1;
6681 }
6682
6683 /* If this is the dispatch table of a tagged type or an interface tag,
6684 then ignore. */
6685 if (ada_is_tagged_type (type, 1)
6686 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6688 return 1;
6689
6690 /* Not a special field, so it should not be ignored. */
6691 return 0;
6692 }
6693
6694 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6695 pointer or reference type whose ultimate target has a tag field. */
6696
6697 int
6698 ada_is_tagged_type (struct type *type, int refok)
6699 {
6700 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6701 }
6702
6703 /* True iff TYPE represents the type of X'Tag */
6704
6705 int
6706 ada_is_tag_type (struct type *type)
6707 {
6708 type = ada_check_typedef (type);
6709
6710 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6711 return 0;
6712 else
6713 {
6714 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6715
6716 return (name != NULL
6717 && strcmp (name, "ada__tags__dispatch_table") == 0);
6718 }
6719 }
6720
6721 /* The type of the tag on VAL. */
6722
6723 struct type *
6724 ada_tag_type (struct value *val)
6725 {
6726 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6727 }
6728
6729 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730 retired at Ada 05). */
6731
6732 static int
6733 is_ada95_tag (struct value *tag)
6734 {
6735 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6736 }
6737
6738 /* The value of the tag on VAL. */
6739
6740 struct value *
6741 ada_value_tag (struct value *val)
6742 {
6743 return ada_value_struct_elt (val, "_tag", 0);
6744 }
6745
6746 /* The value of the tag on the object of type TYPE whose contents are
6747 saved at VALADDR, if it is non-null, or is at memory address
6748 ADDRESS. */
6749
6750 static struct value *
6751 value_tag_from_contents_and_address (struct type *type,
6752 const gdb_byte *valaddr,
6753 CORE_ADDR address)
6754 {
6755 int tag_byte_offset;
6756 struct type *tag_type;
6757
6758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6759 NULL, NULL, NULL))
6760 {
6761 const gdb_byte *valaddr1 = ((valaddr == NULL)
6762 ? NULL
6763 : valaddr + tag_byte_offset);
6764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6765
6766 return value_from_contents_and_address (tag_type, valaddr1, address1);
6767 }
6768 return NULL;
6769 }
6770
6771 static struct type *
6772 type_from_tag (struct value *tag)
6773 {
6774 const char *type_name = ada_tag_name (tag);
6775
6776 if (type_name != NULL)
6777 return ada_find_any_type (ada_encode (type_name));
6778 return NULL;
6779 }
6780
6781 /* Given a value OBJ of a tagged type, return a value of this
6782 type at the base address of the object. The base address, as
6783 defined in Ada.Tags, it is the address of the primary tag of
6784 the object, and therefore where the field values of its full
6785 view can be fetched. */
6786
6787 struct value *
6788 ada_tag_value_at_base_address (struct value *obj)
6789 {
6790 struct value *val;
6791 LONGEST offset_to_top = 0;
6792 struct type *ptr_type, *obj_type;
6793 struct value *tag;
6794 CORE_ADDR base_address;
6795
6796 obj_type = value_type (obj);
6797
6798 /* It is the responsability of the caller to deref pointers. */
6799
6800 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6802 return obj;
6803
6804 tag = ada_value_tag (obj);
6805 if (!tag)
6806 return obj;
6807
6808 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6809
6810 if (is_ada95_tag (tag))
6811 return obj;
6812
6813 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814 ptr_type = lookup_pointer_type (ptr_type);
6815 val = value_cast (ptr_type, tag);
6816 if (!val)
6817 return obj;
6818
6819 /* It is perfectly possible that an exception be raised while
6820 trying to determine the base address, just like for the tag;
6821 see ada_tag_name for more details. We do not print the error
6822 message for the same reason. */
6823
6824 TRY
6825 {
6826 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6827 }
6828
6829 CATCH (e, RETURN_MASK_ERROR)
6830 {
6831 return obj;
6832 }
6833 END_CATCH
6834
6835 /* If offset is null, nothing to do. */
6836
6837 if (offset_to_top == 0)
6838 return obj;
6839
6840 /* -1 is a special case in Ada.Tags; however, what should be done
6841 is not quite clear from the documentation. So do nothing for
6842 now. */
6843
6844 if (offset_to_top == -1)
6845 return obj;
6846
6847 base_address = value_address (obj) - offset_to_top;
6848 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6849
6850 /* Make sure that we have a proper tag at the new address.
6851 Otherwise, offset_to_top is bogus (which can happen when
6852 the object is not initialized yet). */
6853
6854 if (!tag)
6855 return obj;
6856
6857 obj_type = type_from_tag (tag);
6858
6859 if (!obj_type)
6860 return obj;
6861
6862 return value_from_contents_and_address (obj_type, NULL, base_address);
6863 }
6864
6865 /* Return the "ada__tags__type_specific_data" type. */
6866
6867 static struct type *
6868 ada_get_tsd_type (struct inferior *inf)
6869 {
6870 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6871
6872 if (data->tsd_type == 0)
6873 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874 return data->tsd_type;
6875 }
6876
6877 /* Return the TSD (type-specific data) associated to the given TAG.
6878 TAG is assumed to be the tag of a tagged-type entity.
6879
6880 May return NULL if we are unable to get the TSD. */
6881
6882 static struct value *
6883 ada_get_tsd_from_tag (struct value *tag)
6884 {
6885 struct value *val;
6886 struct type *type;
6887
6888 /* First option: The TSD is simply stored as a field of our TAG.
6889 Only older versions of GNAT would use this format, but we have
6890 to test it first, because there are no visible markers for
6891 the current approach except the absence of that field. */
6892
6893 val = ada_value_struct_elt (tag, "tsd", 1);
6894 if (val)
6895 return val;
6896
6897 /* Try the second representation for the dispatch table (in which
6898 there is no explicit 'tsd' field in the referent of the tag pointer,
6899 and instead the tsd pointer is stored just before the dispatch
6900 table. */
6901
6902 type = ada_get_tsd_type (current_inferior());
6903 if (type == NULL)
6904 return NULL;
6905 type = lookup_pointer_type (lookup_pointer_type (type));
6906 val = value_cast (type, tag);
6907 if (val == NULL)
6908 return NULL;
6909 return value_ind (value_ptradd (val, -1));
6910 }
6911
6912 /* Given the TSD of a tag (type-specific data), return a string
6913 containing the name of the associated type.
6914
6915 The returned value is good until the next call. May return NULL
6916 if we are unable to determine the tag name. */
6917
6918 static char *
6919 ada_tag_name_from_tsd (struct value *tsd)
6920 {
6921 static char name[1024];
6922 char *p;
6923 struct value *val;
6924
6925 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6926 if (val == NULL)
6927 return NULL;
6928 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929 for (p = name; *p != '\0'; p += 1)
6930 if (isalpha (*p))
6931 *p = tolower (*p);
6932 return name;
6933 }
6934
6935 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6936 a C string.
6937
6938 Return NULL if the TAG is not an Ada tag, or if we were unable to
6939 determine the name of that tag. The result is good until the next
6940 call. */
6941
6942 const char *
6943 ada_tag_name (struct value *tag)
6944 {
6945 char *name = NULL;
6946
6947 if (!ada_is_tag_type (value_type (tag)))
6948 return NULL;
6949
6950 /* It is perfectly possible that an exception be raised while trying
6951 to determine the TAG's name, even under normal circumstances:
6952 The associated variable may be uninitialized or corrupted, for
6953 instance. We do not let any exception propagate past this point.
6954 instead we return NULL.
6955
6956 We also do not print the error message either (which often is very
6957 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958 the caller print a more meaningful message if necessary. */
6959 TRY
6960 {
6961 struct value *tsd = ada_get_tsd_from_tag (tag);
6962
6963 if (tsd != NULL)
6964 name = ada_tag_name_from_tsd (tsd);
6965 }
6966 CATCH (e, RETURN_MASK_ERROR)
6967 {
6968 }
6969 END_CATCH
6970
6971 return name;
6972 }
6973
6974 /* The parent type of TYPE, or NULL if none. */
6975
6976 struct type *
6977 ada_parent_type (struct type *type)
6978 {
6979 int i;
6980
6981 type = ada_check_typedef (type);
6982
6983 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6984 return NULL;
6985
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 if (ada_is_parent_field (type, i))
6988 {
6989 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6990
6991 /* If the _parent field is a pointer, then dereference it. */
6992 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993 parent_type = TYPE_TARGET_TYPE (parent_type);
6994 /* If there is a parallel XVS type, get the actual base type. */
6995 parent_type = ada_get_base_type (parent_type);
6996
6997 return ada_check_typedef (parent_type);
6998 }
6999
7000 return NULL;
7001 }
7002
7003 /* True iff field number FIELD_NUM of structure type TYPE contains the
7004 parent-type (inherited) fields of a derived type. Assumes TYPE is
7005 a structure type with at least FIELD_NUM+1 fields. */
7006
7007 int
7008 ada_is_parent_field (struct type *type, int field_num)
7009 {
7010 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7011
7012 return (name != NULL
7013 && (startswith (name, "PARENT")
7014 || startswith (name, "_parent")));
7015 }
7016
7017 /* True iff field number FIELD_NUM of structure type TYPE is a
7018 transparent wrapper field (which should be silently traversed when doing
7019 field selection and flattened when printing). Assumes TYPE is a
7020 structure type with at least FIELD_NUM+1 fields. Such fields are always
7021 structures. */
7022
7023 int
7024 ada_is_wrapper_field (struct type *type, int field_num)
7025 {
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7027
7028 if (name != NULL && strcmp (name, "RETVAL") == 0)
7029 {
7030 /* This happens in functions with "out" or "in out" parameters
7031 which are passed by copy. For such functions, GNAT describes
7032 the function's return type as being a struct where the return
7033 value is in a field called RETVAL, and where the other "out"
7034 or "in out" parameters are fields of that struct. This is not
7035 a wrapper. */
7036 return 0;
7037 }
7038
7039 return (name != NULL
7040 && (startswith (name, "PARENT")
7041 || strcmp (name, "REP") == 0
7042 || startswith (name, "_parent")
7043 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7044 }
7045
7046 /* True iff field number FIELD_NUM of structure or union type TYPE
7047 is a variant wrapper. Assumes TYPE is a structure type with at least
7048 FIELD_NUM+1 fields. */
7049
7050 int
7051 ada_is_variant_part (struct type *type, int field_num)
7052 {
7053 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7054
7055 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7056 || (is_dynamic_field (type, field_num)
7057 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7058 == TYPE_CODE_UNION)));
7059 }
7060
7061 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7062 whose discriminants are contained in the record type OUTER_TYPE,
7063 returns the type of the controlling discriminant for the variant.
7064 May return NULL if the type could not be found. */
7065
7066 struct type *
7067 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7068 {
7069 const char *name = ada_variant_discrim_name (var_type);
7070
7071 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7072 }
7073
7074 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7075 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7076 represents a 'when others' clause; otherwise 0. */
7077
7078 int
7079 ada_is_others_clause (struct type *type, int field_num)
7080 {
7081 const char *name = TYPE_FIELD_NAME (type, field_num);
7082
7083 return (name != NULL && name[0] == 'O');
7084 }
7085
7086 /* Assuming that TYPE0 is the type of the variant part of a record,
7087 returns the name of the discriminant controlling the variant.
7088 The value is valid until the next call to ada_variant_discrim_name. */
7089
7090 const char *
7091 ada_variant_discrim_name (struct type *type0)
7092 {
7093 static char *result = NULL;
7094 static size_t result_len = 0;
7095 struct type *type;
7096 const char *name;
7097 const char *discrim_end;
7098 const char *discrim_start;
7099
7100 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101 type = TYPE_TARGET_TYPE (type0);
7102 else
7103 type = type0;
7104
7105 name = ada_type_name (type);
7106
7107 if (name == NULL || name[0] == '\000')
7108 return "";
7109
7110 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7111 discrim_end -= 1)
7112 {
7113 if (startswith (discrim_end, "___XVN"))
7114 break;
7115 }
7116 if (discrim_end == name)
7117 return "";
7118
7119 for (discrim_start = discrim_end; discrim_start != name + 3;
7120 discrim_start -= 1)
7121 {
7122 if (discrim_start == name + 1)
7123 return "";
7124 if ((discrim_start > name + 3
7125 && startswith (discrim_start - 3, "___"))
7126 || discrim_start[-1] == '.')
7127 break;
7128 }
7129
7130 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131 strncpy (result, discrim_start, discrim_end - discrim_start);
7132 result[discrim_end - discrim_start] = '\0';
7133 return result;
7134 }
7135
7136 /* Scan STR for a subtype-encoded number, beginning at position K.
7137 Put the position of the character just past the number scanned in
7138 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7139 Return 1 if there was a valid number at the given position, and 0
7140 otherwise. A "subtype-encoded" number consists of the absolute value
7141 in decimal, followed by the letter 'm' to indicate a negative number.
7142 Assumes 0m does not occur. */
7143
7144 int
7145 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7146 {
7147 ULONGEST RU;
7148
7149 if (!isdigit (str[k]))
7150 return 0;
7151
7152 /* Do it the hard way so as not to make any assumption about
7153 the relationship of unsigned long (%lu scan format code) and
7154 LONGEST. */
7155 RU = 0;
7156 while (isdigit (str[k]))
7157 {
7158 RU = RU * 10 + (str[k] - '0');
7159 k += 1;
7160 }
7161
7162 if (str[k] == 'm')
7163 {
7164 if (R != NULL)
7165 *R = (-(LONGEST) (RU - 1)) - 1;
7166 k += 1;
7167 }
7168 else if (R != NULL)
7169 *R = (LONGEST) RU;
7170
7171 /* NOTE on the above: Technically, C does not say what the results of
7172 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173 number representable as a LONGEST (although either would probably work
7174 in most implementations). When RU>0, the locution in the then branch
7175 above is always equivalent to the negative of RU. */
7176
7177 if (new_k != NULL)
7178 *new_k = k;
7179 return 1;
7180 }
7181
7182 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7185
7186 int
7187 ada_in_variant (LONGEST val, struct type *type, int field_num)
7188 {
7189 const char *name = TYPE_FIELD_NAME (type, field_num);
7190 int p;
7191
7192 p = 0;
7193 while (1)
7194 {
7195 switch (name[p])
7196 {
7197 case '\0':
7198 return 0;
7199 case 'S':
7200 {
7201 LONGEST W;
7202
7203 if (!ada_scan_number (name, p + 1, &W, &p))
7204 return 0;
7205 if (val == W)
7206 return 1;
7207 break;
7208 }
7209 case 'R':
7210 {
7211 LONGEST L, U;
7212
7213 if (!ada_scan_number (name, p + 1, &L, &p)
7214 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7215 return 0;
7216 if (val >= L && val <= U)
7217 return 1;
7218 break;
7219 }
7220 case 'O':
7221 return 1;
7222 default:
7223 return 0;
7224 }
7225 }
7226 }
7227
7228 /* FIXME: Lots of redundancy below. Try to consolidate. */
7229
7230 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231 ARG_TYPE, extract and return the value of one of its (non-static)
7232 fields. FIELDNO says which field. Differs from value_primitive_field
7233 only in that it can handle packed values of arbitrary type. */
7234
7235 static struct value *
7236 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7237 struct type *arg_type)
7238 {
7239 struct type *type;
7240
7241 arg_type = ada_check_typedef (arg_type);
7242 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7243
7244 /* Handle packed fields. */
7245
7246 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7247 {
7248 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7250
7251 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7252 offset + bit_pos / 8,
7253 bit_pos % 8, bit_size, type);
7254 }
7255 else
7256 return value_primitive_field (arg1, offset, fieldno, arg_type);
7257 }
7258
7259 /* Find field with name NAME in object of type TYPE. If found,
7260 set the following for each argument that is non-null:
7261 - *FIELD_TYPE_P to the field's type;
7262 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7263 an object of that type;
7264 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7265 - *BIT_SIZE_P to its size in bits if the field is packed, and
7266 0 otherwise;
7267 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268 fields up to but not including the desired field, or by the total
7269 number of fields if not found. A NULL value of NAME never
7270 matches; the function just counts visible fields in this case.
7271
7272 Returns 1 if found, 0 otherwise. */
7273
7274 static int
7275 find_struct_field (const char *name, struct type *type, int offset,
7276 struct type **field_type_p,
7277 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7278 int *index_p)
7279 {
7280 int i;
7281
7282 type = ada_check_typedef (type);
7283
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7287 *byte_offset_p = 0;
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298
7299 if (t_field_name == NULL)
7300 continue;
7301
7302 else if (name != NULL && field_name_match (t_field_name, name))
7303 {
7304 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7305
7306 if (field_type_p != NULL)
7307 *field_type_p = TYPE_FIELD_TYPE (type, i);
7308 if (byte_offset_p != NULL)
7309 *byte_offset_p = fld_offset;
7310 if (bit_offset_p != NULL)
7311 *bit_offset_p = bit_pos % 8;
7312 if (bit_size_p != NULL)
7313 *bit_size_p = bit_size;
7314 return 1;
7315 }
7316 else if (ada_is_wrapper_field (type, i))
7317 {
7318 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319 field_type_p, byte_offset_p, bit_offset_p,
7320 bit_size_p, index_p))
7321 return 1;
7322 }
7323 else if (ada_is_variant_part (type, i))
7324 {
7325 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7326 fixed type?? */
7327 int j;
7328 struct type *field_type
7329 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7330
7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7332 {
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7334 fld_offset
7335 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7338 return 1;
7339 }
7340 }
7341 else if (index_p != NULL)
7342 *index_p += 1;
7343 }
7344 return 0;
7345 }
7346
7347 /* Number of user-visible fields in record type TYPE. */
7348
7349 static int
7350 num_visible_fields (struct type *type)
7351 {
7352 int n;
7353
7354 n = 0;
7355 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7356 return n;
7357 }
7358
7359 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7360 and search in it assuming it has (class) type TYPE.
7361 If found, return value, else return NULL.
7362
7363 Searches recursively through wrapper fields (e.g., '_parent'). */
7364
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 int i;
7370
7371 type = ada_check_typedef (type);
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 {
7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7375
7376 if (t_field_name == NULL)
7377 continue;
7378
7379 else if (field_name_match (t_field_name, name))
7380 return ada_value_primitive_field (arg, offset, i, type);
7381
7382 else if (ada_is_wrapper_field (type, i))
7383 {
7384 struct value *v = /* Do not let indent join lines here. */
7385 ada_search_struct_field (name, arg,
7386 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387 TYPE_FIELD_TYPE (type, i));
7388
7389 if (v != NULL)
7390 return v;
7391 }
7392
7393 else if (ada_is_variant_part (type, i))
7394 {
7395 /* PNH: Do we ever get here? See find_struct_field. */
7396 int j;
7397 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398 i));
7399 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400
7401 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7402 {
7403 struct value *v = ada_search_struct_field /* Force line
7404 break. */
7405 (name, arg,
7406 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407 TYPE_FIELD_TYPE (field_type, j));
7408
7409 if (v != NULL)
7410 return v;
7411 }
7412 }
7413 }
7414 return NULL;
7415 }
7416
7417 static struct value *ada_index_struct_field_1 (int *, struct value *,
7418 int, struct type *);
7419
7420
7421 /* Return field #INDEX in ARG, where the index is that returned by
7422 * find_struct_field through its INDEX_P argument. Adjust the address
7423 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7424 * If found, return value, else return NULL. */
7425
7426 static struct value *
7427 ada_index_struct_field (int index, struct value *arg, int offset,
7428 struct type *type)
7429 {
7430 return ada_index_struct_field_1 (&index, arg, offset, type);
7431 }
7432
7433
7434 /* Auxiliary function for ada_index_struct_field. Like
7435 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7436 * *INDEX_P. */
7437
7438 static struct value *
7439 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7440 struct type *type)
7441 {
7442 int i;
7443 type = ada_check_typedef (type);
7444
7445 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7446 {
7447 if (TYPE_FIELD_NAME (type, i) == NULL)
7448 continue;
7449 else if (ada_is_wrapper_field (type, i))
7450 {
7451 struct value *v = /* Do not let indent join lines here. */
7452 ada_index_struct_field_1 (index_p, arg,
7453 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454 TYPE_FIELD_TYPE (type, i));
7455
7456 if (v != NULL)
7457 return v;
7458 }
7459
7460 else if (ada_is_variant_part (type, i))
7461 {
7462 /* PNH: Do we ever get here? See ada_search_struct_field,
7463 find_struct_field. */
7464 error (_("Cannot assign this kind of variant record"));
7465 }
7466 else if (*index_p == 0)
7467 return ada_value_primitive_field (arg, offset, i, type);
7468 else
7469 *index_p -= 1;
7470 }
7471 return NULL;
7472 }
7473
7474 /* Given ARG, a value of type (pointer or reference to a)*
7475 structure/union, extract the component named NAME from the ultimate
7476 target structure/union and return it as a value with its
7477 appropriate type.
7478
7479 The routine searches for NAME among all members of the structure itself
7480 and (recursively) among all members of any wrapper members
7481 (e.g., '_parent').
7482
7483 If NO_ERR, then simply return NULL in case of error, rather than
7484 calling error. */
7485
7486 struct value *
7487 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7488 {
7489 struct type *t, *t1;
7490 struct value *v;
7491
7492 v = NULL;
7493 t1 = t = ada_check_typedef (value_type (arg));
7494 if (TYPE_CODE (t) == TYPE_CODE_REF)
7495 {
7496 t1 = TYPE_TARGET_TYPE (t);
7497 if (t1 == NULL)
7498 goto BadValue;
7499 t1 = ada_check_typedef (t1);
7500 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7501 {
7502 arg = coerce_ref (arg);
7503 t = t1;
7504 }
7505 }
7506
7507 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7508 {
7509 t1 = TYPE_TARGET_TYPE (t);
7510 if (t1 == NULL)
7511 goto BadValue;
7512 t1 = ada_check_typedef (t1);
7513 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7514 {
7515 arg = value_ind (arg);
7516 t = t1;
7517 }
7518 else
7519 break;
7520 }
7521
7522 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7523 goto BadValue;
7524
7525 if (t1 == t)
7526 v = ada_search_struct_field (name, arg, 0, t);
7527 else
7528 {
7529 int bit_offset, bit_size, byte_offset;
7530 struct type *field_type;
7531 CORE_ADDR address;
7532
7533 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 address = value_address (ada_value_ind (arg));
7535 else
7536 address = value_address (ada_coerce_ref (arg));
7537
7538 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7539 if (find_struct_field (name, t1, 0,
7540 &field_type, &byte_offset, &bit_offset,
7541 &bit_size, NULL))
7542 {
7543 if (bit_size != 0)
7544 {
7545 if (TYPE_CODE (t) == TYPE_CODE_REF)
7546 arg = ada_coerce_ref (arg);
7547 else
7548 arg = ada_value_ind (arg);
7549 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550 bit_offset, bit_size,
7551 field_type);
7552 }
7553 else
7554 v = value_at_lazy (field_type, address + byte_offset);
7555 }
7556 }
7557
7558 if (v != NULL || no_err)
7559 return v;
7560 else
7561 error (_("There is no member named %s."), name);
7562
7563 BadValue:
7564 if (no_err)
7565 return NULL;
7566 else
7567 error (_("Attempt to extract a component of "
7568 "a value that is not a record."));
7569 }
7570
7571 /* Return a string representation of type TYPE. */
7572
7573 static std::string
7574 type_as_string (struct type *type)
7575 {
7576 string_file tmp_stream;
7577
7578 type_print (type, "", &tmp_stream, -1);
7579
7580 return std::move (tmp_stream.string ());
7581 }
7582
7583 /* Given a type TYPE, look up the type of the component of type named NAME.
7584 If DISPP is non-null, add its byte displacement from the beginning of a
7585 structure (pointed to by a value) of type TYPE to *DISPP (does not
7586 work for packed fields).
7587
7588 Matches any field whose name has NAME as a prefix, possibly
7589 followed by "___".
7590
7591 TYPE can be either a struct or union. If REFOK, TYPE may also
7592 be a (pointer or reference)+ to a struct or union, and the
7593 ultimate target type will be searched.
7594
7595 Looks recursively into variant clauses and parent types.
7596
7597 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598 TYPE is not a type of the right kind. */
7599
7600 static struct type *
7601 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7602 int noerr, int *dispp)
7603 {
7604 int i;
7605
7606 if (name == NULL)
7607 goto BadName;
7608
7609 if (refok && type != NULL)
7610 while (1)
7611 {
7612 type = ada_check_typedef (type);
7613 if (TYPE_CODE (type) != TYPE_CODE_PTR
7614 && TYPE_CODE (type) != TYPE_CODE_REF)
7615 break;
7616 type = TYPE_TARGET_TYPE (type);
7617 }
7618
7619 if (type == NULL
7620 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621 && TYPE_CODE (type) != TYPE_CODE_UNION))
7622 {
7623 if (noerr)
7624 return NULL;
7625
7626 error (_("Type %s is not a structure or union type"),
7627 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7628 }
7629
7630 type = to_static_fixed_type (type);
7631
7632 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7633 {
7634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7635 struct type *t;
7636 int disp;
7637
7638 if (t_field_name == NULL)
7639 continue;
7640
7641 else if (field_name_match (t_field_name, name))
7642 {
7643 if (dispp != NULL)
7644 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7645 return TYPE_FIELD_TYPE (type, i);
7646 }
7647
7648 else if (ada_is_wrapper_field (type, i))
7649 {
7650 disp = 0;
7651 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7652 0, 1, &disp);
7653 if (t != NULL)
7654 {
7655 if (dispp != NULL)
7656 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7657 return t;
7658 }
7659 }
7660
7661 else if (ada_is_variant_part (type, i))
7662 {
7663 int j;
7664 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7665 i));
7666
7667 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7668 {
7669 /* FIXME pnh 2008/01/26: We check for a field that is
7670 NOT wrapped in a struct, since the compiler sometimes
7671 generates these for unchecked variant types. Revisit
7672 if the compiler changes this practice. */
7673 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7674 disp = 0;
7675 if (v_field_name != NULL
7676 && field_name_match (v_field_name, name))
7677 t = TYPE_FIELD_TYPE (field_type, j);
7678 else
7679 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7680 j),
7681 name, 0, 1, &disp);
7682
7683 if (t != NULL)
7684 {
7685 if (dispp != NULL)
7686 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7687 return t;
7688 }
7689 }
7690 }
7691
7692 }
7693
7694 BadName:
7695 if (!noerr)
7696 {
7697 const char *name_str = name != NULL ? name : _("<null>");
7698
7699 error (_("Type %s has no component named %s"),
7700 type_as_string (type).c_str (), name_str);
7701 }
7702
7703 return NULL;
7704 }
7705
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7708 represents an unchecked union (that is, the variant part of a
7709 record that is named in an Unchecked_Union pragma). */
7710
7711 static int
7712 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7713 {
7714 const char *discrim_name = ada_variant_discrim_name (var_type);
7715
7716 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7717 == NULL);
7718 }
7719
7720
7721 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7722 within a value of type OUTER_TYPE that is stored in GDB at
7723 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7724 numbering from 0) is applicable. Returns -1 if none are. */
7725
7726 int
7727 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7728 const gdb_byte *outer_valaddr)
7729 {
7730 int others_clause;
7731 int i;
7732 const char *discrim_name = ada_variant_discrim_name (var_type);
7733 struct value *outer;
7734 struct value *discrim;
7735 LONGEST discrim_val;
7736
7737 /* Using plain value_from_contents_and_address here causes problems
7738 because we will end up trying to resolve a type that is currently
7739 being constructed. */
7740 outer = value_from_contents_and_address_unresolved (outer_type,
7741 outer_valaddr, 0);
7742 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7743 if (discrim == NULL)
7744 return -1;
7745 discrim_val = value_as_long (discrim);
7746
7747 others_clause = -1;
7748 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7749 {
7750 if (ada_is_others_clause (var_type, i))
7751 others_clause = i;
7752 else if (ada_in_variant (discrim_val, var_type, i))
7753 return i;
7754 }
7755
7756 return others_clause;
7757 }
7758 \f
7759
7760
7761 /* Dynamic-Sized Records */
7762
7763 /* Strategy: The type ostensibly attached to a value with dynamic size
7764 (i.e., a size that is not statically recorded in the debugging
7765 data) does not accurately reflect the size or layout of the value.
7766 Our strategy is to convert these values to values with accurate,
7767 conventional types that are constructed on the fly. */
7768
7769 /* There is a subtle and tricky problem here. In general, we cannot
7770 determine the size of dynamic records without its data. However,
7771 the 'struct value' data structure, which GDB uses to represent
7772 quantities in the inferior process (the target), requires the size
7773 of the type at the time of its allocation in order to reserve space
7774 for GDB's internal copy of the data. That's why the
7775 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7776 rather than struct value*s.
7777
7778 However, GDB's internal history variables ($1, $2, etc.) are
7779 struct value*s containing internal copies of the data that are not, in
7780 general, the same as the data at their corresponding addresses in
7781 the target. Fortunately, the types we give to these values are all
7782 conventional, fixed-size types (as per the strategy described
7783 above), so that we don't usually have to perform the
7784 'to_fixed_xxx_type' conversions to look at their values.
7785 Unfortunately, there is one exception: if one of the internal
7786 history variables is an array whose elements are unconstrained
7787 records, then we will need to create distinct fixed types for each
7788 element selected. */
7789
7790 /* The upshot of all of this is that many routines take a (type, host
7791 address, target address) triple as arguments to represent a value.
7792 The host address, if non-null, is supposed to contain an internal
7793 copy of the relevant data; otherwise, the program is to consult the
7794 target at the target address. */
7795
7796 /* Assuming that VAL0 represents a pointer value, the result of
7797 dereferencing it. Differs from value_ind in its treatment of
7798 dynamic-sized types. */
7799
7800 struct value *
7801 ada_value_ind (struct value *val0)
7802 {
7803 struct value *val = value_ind (val0);
7804
7805 if (ada_is_tagged_type (value_type (val), 0))
7806 val = ada_tag_value_at_base_address (val);
7807
7808 return ada_to_fixed_value (val);
7809 }
7810
7811 /* The value resulting from dereferencing any "reference to"
7812 qualifiers on VAL0. */
7813
7814 static struct value *
7815 ada_coerce_ref (struct value *val0)
7816 {
7817 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7818 {
7819 struct value *val = val0;
7820
7821 val = coerce_ref (val);
7822
7823 if (ada_is_tagged_type (value_type (val), 0))
7824 val = ada_tag_value_at_base_address (val);
7825
7826 return ada_to_fixed_value (val);
7827 }
7828 else
7829 return val0;
7830 }
7831
7832 /* Return OFF rounded upward if necessary to a multiple of
7833 ALIGNMENT (a power of 2). */
7834
7835 static unsigned int
7836 align_value (unsigned int off, unsigned int alignment)
7837 {
7838 return (off + alignment - 1) & ~(alignment - 1);
7839 }
7840
7841 /* Return the bit alignment required for field #F of template type TYPE. */
7842
7843 static unsigned int
7844 field_alignment (struct type *type, int f)
7845 {
7846 const char *name = TYPE_FIELD_NAME (type, f);
7847 int len;
7848 int align_offset;
7849
7850 /* The field name should never be null, unless the debugging information
7851 is somehow malformed. In this case, we assume the field does not
7852 require any alignment. */
7853 if (name == NULL)
7854 return 1;
7855
7856 len = strlen (name);
7857
7858 if (!isdigit (name[len - 1]))
7859 return 1;
7860
7861 if (isdigit (name[len - 2]))
7862 align_offset = len - 2;
7863 else
7864 align_offset = len - 1;
7865
7866 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7867 return TARGET_CHAR_BIT;
7868
7869 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7870 }
7871
7872 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7873
7874 static struct symbol *
7875 ada_find_any_type_symbol (const char *name)
7876 {
7877 struct symbol *sym;
7878
7879 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7880 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7881 return sym;
7882
7883 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7884 return sym;
7885 }
7886
7887 /* Find a type named NAME. Ignores ambiguity. This routine will look
7888 solely for types defined by debug info, it will not search the GDB
7889 primitive types. */
7890
7891 static struct type *
7892 ada_find_any_type (const char *name)
7893 {
7894 struct symbol *sym = ada_find_any_type_symbol (name);
7895
7896 if (sym != NULL)
7897 return SYMBOL_TYPE (sym);
7898
7899 return NULL;
7900 }
7901
7902 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7903 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7904 symbol, in which case it is returned. Otherwise, this looks for
7905 symbols whose name is that of NAME_SYM suffixed with "___XR".
7906 Return symbol if found, and NULL otherwise. */
7907
7908 struct symbol *
7909 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7910 {
7911 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7912 struct symbol *sym;
7913
7914 if (strstr (name, "___XR") != NULL)
7915 return name_sym;
7916
7917 sym = find_old_style_renaming_symbol (name, block);
7918
7919 if (sym != NULL)
7920 return sym;
7921
7922 /* Not right yet. FIXME pnh 7/20/2007. */
7923 sym = ada_find_any_type_symbol (name);
7924 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7925 return sym;
7926 else
7927 return NULL;
7928 }
7929
7930 static struct symbol *
7931 find_old_style_renaming_symbol (const char *name, const struct block *block)
7932 {
7933 const struct symbol *function_sym = block_linkage_function (block);
7934 char *rename;
7935
7936 if (function_sym != NULL)
7937 {
7938 /* If the symbol is defined inside a function, NAME is not fully
7939 qualified. This means we need to prepend the function name
7940 as well as adding the ``___XR'' suffix to build the name of
7941 the associated renaming symbol. */
7942 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7943 /* Function names sometimes contain suffixes used
7944 for instance to qualify nested subprograms. When building
7945 the XR type name, we need to make sure that this suffix is
7946 not included. So do not include any suffix in the function
7947 name length below. */
7948 int function_name_len = ada_name_prefix_len (function_name);
7949 const int rename_len = function_name_len + 2 /* "__" */
7950 + strlen (name) + 6 /* "___XR\0" */ ;
7951
7952 /* Strip the suffix if necessary. */
7953 ada_remove_trailing_digits (function_name, &function_name_len);
7954 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7955 ada_remove_Xbn_suffix (function_name, &function_name_len);
7956
7957 /* Library-level functions are a special case, as GNAT adds
7958 a ``_ada_'' prefix to the function name to avoid namespace
7959 pollution. However, the renaming symbols themselves do not
7960 have this prefix, so we need to skip this prefix if present. */
7961 if (function_name_len > 5 /* "_ada_" */
7962 && strstr (function_name, "_ada_") == function_name)
7963 {
7964 function_name += 5;
7965 function_name_len -= 5;
7966 }
7967
7968 rename = (char *) alloca (rename_len * sizeof (char));
7969 strncpy (rename, function_name, function_name_len);
7970 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7971 "__%s___XR", name);
7972 }
7973 else
7974 {
7975 const int rename_len = strlen (name) + 6;
7976
7977 rename = (char *) alloca (rename_len * sizeof (char));
7978 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7979 }
7980
7981 return ada_find_any_type_symbol (rename);
7982 }
7983
7984 /* Because of GNAT encoding conventions, several GDB symbols may match a
7985 given type name. If the type denoted by TYPE0 is to be preferred to
7986 that of TYPE1 for purposes of type printing, return non-zero;
7987 otherwise return 0. */
7988
7989 int
7990 ada_prefer_type (struct type *type0, struct type *type1)
7991 {
7992 if (type1 == NULL)
7993 return 1;
7994 else if (type0 == NULL)
7995 return 0;
7996 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7997 return 1;
7998 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7999 return 0;
8000 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8001 return 1;
8002 else if (ada_is_constrained_packed_array_type (type0))
8003 return 1;
8004 else if (ada_is_array_descriptor_type (type0)
8005 && !ada_is_array_descriptor_type (type1))
8006 return 1;
8007 else
8008 {
8009 const char *type0_name = type_name_no_tag (type0);
8010 const char *type1_name = type_name_no_tag (type1);
8011
8012 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8013 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8014 return 1;
8015 }
8016 return 0;
8017 }
8018
8019 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8020 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8021
8022 const char *
8023 ada_type_name (struct type *type)
8024 {
8025 if (type == NULL)
8026 return NULL;
8027 else if (TYPE_NAME (type) != NULL)
8028 return TYPE_NAME (type);
8029 else
8030 return TYPE_TAG_NAME (type);
8031 }
8032
8033 /* Search the list of "descriptive" types associated to TYPE for a type
8034 whose name is NAME. */
8035
8036 static struct type *
8037 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8038 {
8039 struct type *result, *tmp;
8040
8041 if (ada_ignore_descriptive_types_p)
8042 return NULL;
8043
8044 /* If there no descriptive-type info, then there is no parallel type
8045 to be found. */
8046 if (!HAVE_GNAT_AUX_INFO (type))
8047 return NULL;
8048
8049 result = TYPE_DESCRIPTIVE_TYPE (type);
8050 while (result != NULL)
8051 {
8052 const char *result_name = ada_type_name (result);
8053
8054 if (result_name == NULL)
8055 {
8056 warning (_("unexpected null name on descriptive type"));
8057 return NULL;
8058 }
8059
8060 /* If the names match, stop. */
8061 if (strcmp (result_name, name) == 0)
8062 break;
8063
8064 /* Otherwise, look at the next item on the list, if any. */
8065 if (HAVE_GNAT_AUX_INFO (result))
8066 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8067 else
8068 tmp = NULL;
8069
8070 /* If not found either, try after having resolved the typedef. */
8071 if (tmp != NULL)
8072 result = tmp;
8073 else
8074 {
8075 result = check_typedef (result);
8076 if (HAVE_GNAT_AUX_INFO (result))
8077 result = TYPE_DESCRIPTIVE_TYPE (result);
8078 else
8079 result = NULL;
8080 }
8081 }
8082
8083 /* If we didn't find a match, see whether this is a packed array. With
8084 older compilers, the descriptive type information is either absent or
8085 irrelevant when it comes to packed arrays so the above lookup fails.
8086 Fall back to using a parallel lookup by name in this case. */
8087 if (result == NULL && ada_is_constrained_packed_array_type (type))
8088 return ada_find_any_type (name);
8089
8090 return result;
8091 }
8092
8093 /* Find a parallel type to TYPE with the specified NAME, using the
8094 descriptive type taken from the debugging information, if available,
8095 and otherwise using the (slower) name-based method. */
8096
8097 static struct type *
8098 ada_find_parallel_type_with_name (struct type *type, const char *name)
8099 {
8100 struct type *result = NULL;
8101
8102 if (HAVE_GNAT_AUX_INFO (type))
8103 result = find_parallel_type_by_descriptive_type (type, name);
8104 else
8105 result = ada_find_any_type (name);
8106
8107 return result;
8108 }
8109
8110 /* Same as above, but specify the name of the parallel type by appending
8111 SUFFIX to the name of TYPE. */
8112
8113 struct type *
8114 ada_find_parallel_type (struct type *type, const char *suffix)
8115 {
8116 char *name;
8117 const char *type_name = ada_type_name (type);
8118 int len;
8119
8120 if (type_name == NULL)
8121 return NULL;
8122
8123 len = strlen (type_name);
8124
8125 name = (char *) alloca (len + strlen (suffix) + 1);
8126
8127 strcpy (name, type_name);
8128 strcpy (name + len, suffix);
8129
8130 return ada_find_parallel_type_with_name (type, name);
8131 }
8132
8133 /* If TYPE is a variable-size record type, return the corresponding template
8134 type describing its fields. Otherwise, return NULL. */
8135
8136 static struct type *
8137 dynamic_template_type (struct type *type)
8138 {
8139 type = ada_check_typedef (type);
8140
8141 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8142 || ada_type_name (type) == NULL)
8143 return NULL;
8144 else
8145 {
8146 int len = strlen (ada_type_name (type));
8147
8148 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8149 return type;
8150 else
8151 return ada_find_parallel_type (type, "___XVE");
8152 }
8153 }
8154
8155 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8156 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8157
8158 static int
8159 is_dynamic_field (struct type *templ_type, int field_num)
8160 {
8161 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8162
8163 return name != NULL
8164 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8165 && strstr (name, "___XVL") != NULL;
8166 }
8167
8168 /* The index of the variant field of TYPE, or -1 if TYPE does not
8169 represent a variant record type. */
8170
8171 static int
8172 variant_field_index (struct type *type)
8173 {
8174 int f;
8175
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8177 return -1;
8178
8179 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8180 {
8181 if (ada_is_variant_part (type, f))
8182 return f;
8183 }
8184 return -1;
8185 }
8186
8187 /* A record type with no fields. */
8188
8189 static struct type *
8190 empty_record (struct type *templ)
8191 {
8192 struct type *type = alloc_type_copy (templ);
8193
8194 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8195 TYPE_NFIELDS (type) = 0;
8196 TYPE_FIELDS (type) = NULL;
8197 INIT_CPLUS_SPECIFIC (type);
8198 TYPE_NAME (type) = "<empty>";
8199 TYPE_TAG_NAME (type) = NULL;
8200 TYPE_LENGTH (type) = 0;
8201 return type;
8202 }
8203
8204 /* An ordinary record type (with fixed-length fields) that describes
8205 the value of type TYPE at VALADDR or ADDRESS (see comments at
8206 the beginning of this section) VAL according to GNAT conventions.
8207 DVAL0 should describe the (portion of a) record that contains any
8208 necessary discriminants. It should be NULL if value_type (VAL) is
8209 an outer-level type (i.e., as opposed to a branch of a variant.) A
8210 variant field (unless unchecked) is replaced by a particular branch
8211 of the variant.
8212
8213 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8214 length are not statically known are discarded. As a consequence,
8215 VALADDR, ADDRESS and DVAL0 are ignored.
8216
8217 NOTE: Limitations: For now, we assume that dynamic fields and
8218 variants occupy whole numbers of bytes. However, they need not be
8219 byte-aligned. */
8220
8221 struct type *
8222 ada_template_to_fixed_record_type_1 (struct type *type,
8223 const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval0,
8225 int keep_dynamic_fields)
8226 {
8227 struct value *mark = value_mark ();
8228 struct value *dval;
8229 struct type *rtype;
8230 int nfields, bit_len;
8231 int variant_field;
8232 long off;
8233 int fld_bit_len;
8234 int f;
8235
8236 /* Compute the number of fields in this record type that are going
8237 to be processed: unless keep_dynamic_fields, this includes only
8238 fields whose position and length are static will be processed. */
8239 if (keep_dynamic_fields)
8240 nfields = TYPE_NFIELDS (type);
8241 else
8242 {
8243 nfields = 0;
8244 while (nfields < TYPE_NFIELDS (type)
8245 && !ada_is_variant_part (type, nfields)
8246 && !is_dynamic_field (type, nfields))
8247 nfields++;
8248 }
8249
8250 rtype = alloc_type_copy (type);
8251 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8252 INIT_CPLUS_SPECIFIC (rtype);
8253 TYPE_NFIELDS (rtype) = nfields;
8254 TYPE_FIELDS (rtype) = (struct field *)
8255 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8256 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8257 TYPE_NAME (rtype) = ada_type_name (type);
8258 TYPE_TAG_NAME (rtype) = NULL;
8259 TYPE_FIXED_INSTANCE (rtype) = 1;
8260
8261 off = 0;
8262 bit_len = 0;
8263 variant_field = -1;
8264
8265 for (f = 0; f < nfields; f += 1)
8266 {
8267 off = align_value (off, field_alignment (type, f))
8268 + TYPE_FIELD_BITPOS (type, f);
8269 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8270 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8271
8272 if (ada_is_variant_part (type, f))
8273 {
8274 variant_field = f;
8275 fld_bit_len = 0;
8276 }
8277 else if (is_dynamic_field (type, f))
8278 {
8279 const gdb_byte *field_valaddr = valaddr;
8280 CORE_ADDR field_address = address;
8281 struct type *field_type =
8282 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8283
8284 if (dval0 == NULL)
8285 {
8286 /* rtype's length is computed based on the run-time
8287 value of discriminants. If the discriminants are not
8288 initialized, the type size may be completely bogus and
8289 GDB may fail to allocate a value for it. So check the
8290 size first before creating the value. */
8291 ada_ensure_varsize_limit (rtype);
8292 /* Using plain value_from_contents_and_address here
8293 causes problems because we will end up trying to
8294 resolve a type that is currently being
8295 constructed. */
8296 dval = value_from_contents_and_address_unresolved (rtype,
8297 valaddr,
8298 address);
8299 rtype = value_type (dval);
8300 }
8301 else
8302 dval = dval0;
8303
8304 /* If the type referenced by this field is an aligner type, we need
8305 to unwrap that aligner type, because its size might not be set.
8306 Keeping the aligner type would cause us to compute the wrong
8307 size for this field, impacting the offset of the all the fields
8308 that follow this one. */
8309 if (ada_is_aligner_type (field_type))
8310 {
8311 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8312
8313 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8314 field_address = cond_offset_target (field_address, field_offset);
8315 field_type = ada_aligned_type (field_type);
8316 }
8317
8318 field_valaddr = cond_offset_host (field_valaddr,
8319 off / TARGET_CHAR_BIT);
8320 field_address = cond_offset_target (field_address,
8321 off / TARGET_CHAR_BIT);
8322
8323 /* Get the fixed type of the field. Note that, in this case,
8324 we do not want to get the real type out of the tag: if
8325 the current field is the parent part of a tagged record,
8326 we will get the tag of the object. Clearly wrong: the real
8327 type of the parent is not the real type of the child. We
8328 would end up in an infinite loop. */
8329 field_type = ada_get_base_type (field_type);
8330 field_type = ada_to_fixed_type (field_type, field_valaddr,
8331 field_address, dval, 0);
8332 /* If the field size is already larger than the maximum
8333 object size, then the record itself will necessarily
8334 be larger than the maximum object size. We need to make
8335 this check now, because the size might be so ridiculously
8336 large (due to an uninitialized variable in the inferior)
8337 that it would cause an overflow when adding it to the
8338 record size. */
8339 ada_ensure_varsize_limit (field_type);
8340
8341 TYPE_FIELD_TYPE (rtype, f) = field_type;
8342 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8343 /* The multiplication can potentially overflow. But because
8344 the field length has been size-checked just above, and
8345 assuming that the maximum size is a reasonable value,
8346 an overflow should not happen in practice. So rather than
8347 adding overflow recovery code to this already complex code,
8348 we just assume that it's not going to happen. */
8349 fld_bit_len =
8350 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8351 }
8352 else
8353 {
8354 /* Note: If this field's type is a typedef, it is important
8355 to preserve the typedef layer.
8356
8357 Otherwise, we might be transforming a typedef to a fat
8358 pointer (encoding a pointer to an unconstrained array),
8359 into a basic fat pointer (encoding an unconstrained
8360 array). As both types are implemented using the same
8361 structure, the typedef is the only clue which allows us
8362 to distinguish between the two options. Stripping it
8363 would prevent us from printing this field appropriately. */
8364 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8365 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8366 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8367 fld_bit_len =
8368 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8369 else
8370 {
8371 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8372
8373 /* We need to be careful of typedefs when computing
8374 the length of our field. If this is a typedef,
8375 get the length of the target type, not the length
8376 of the typedef. */
8377 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8378 field_type = ada_typedef_target_type (field_type);
8379
8380 fld_bit_len =
8381 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8382 }
8383 }
8384 if (off + fld_bit_len > bit_len)
8385 bit_len = off + fld_bit_len;
8386 off += fld_bit_len;
8387 TYPE_LENGTH (rtype) =
8388 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8389 }
8390
8391 /* We handle the variant part, if any, at the end because of certain
8392 odd cases in which it is re-ordered so as NOT to be the last field of
8393 the record. This can happen in the presence of representation
8394 clauses. */
8395 if (variant_field >= 0)
8396 {
8397 struct type *branch_type;
8398
8399 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8400
8401 if (dval0 == NULL)
8402 {
8403 /* Using plain value_from_contents_and_address here causes
8404 problems because we will end up trying to resolve a type
8405 that is currently being constructed. */
8406 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8407 address);
8408 rtype = value_type (dval);
8409 }
8410 else
8411 dval = dval0;
8412
8413 branch_type =
8414 to_fixed_variant_branch_type
8415 (TYPE_FIELD_TYPE (type, variant_field),
8416 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8417 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8418 if (branch_type == NULL)
8419 {
8420 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8421 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8422 TYPE_NFIELDS (rtype) -= 1;
8423 }
8424 else
8425 {
8426 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8427 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8428 fld_bit_len =
8429 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8430 TARGET_CHAR_BIT;
8431 if (off + fld_bit_len > bit_len)
8432 bit_len = off + fld_bit_len;
8433 TYPE_LENGTH (rtype) =
8434 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8435 }
8436 }
8437
8438 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8439 should contain the alignment of that record, which should be a strictly
8440 positive value. If null or negative, then something is wrong, most
8441 probably in the debug info. In that case, we don't round up the size
8442 of the resulting type. If this record is not part of another structure,
8443 the current RTYPE length might be good enough for our purposes. */
8444 if (TYPE_LENGTH (type) <= 0)
8445 {
8446 if (TYPE_NAME (rtype))
8447 warning (_("Invalid type size for `%s' detected: %d."),
8448 TYPE_NAME (rtype), TYPE_LENGTH (type));
8449 else
8450 warning (_("Invalid type size for <unnamed> detected: %d."),
8451 TYPE_LENGTH (type));
8452 }
8453 else
8454 {
8455 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8456 TYPE_LENGTH (type));
8457 }
8458
8459 value_free_to_mark (mark);
8460 if (TYPE_LENGTH (rtype) > varsize_limit)
8461 error (_("record type with dynamic size is larger than varsize-limit"));
8462 return rtype;
8463 }
8464
8465 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8466 of 1. */
8467
8468 static struct type *
8469 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8470 CORE_ADDR address, struct value *dval0)
8471 {
8472 return ada_template_to_fixed_record_type_1 (type, valaddr,
8473 address, dval0, 1);
8474 }
8475
8476 /* An ordinary record type in which ___XVL-convention fields and
8477 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8478 static approximations, containing all possible fields. Uses
8479 no runtime values. Useless for use in values, but that's OK,
8480 since the results are used only for type determinations. Works on both
8481 structs and unions. Representation note: to save space, we memorize
8482 the result of this function in the TYPE_TARGET_TYPE of the
8483 template type. */
8484
8485 static struct type *
8486 template_to_static_fixed_type (struct type *type0)
8487 {
8488 struct type *type;
8489 int nfields;
8490 int f;
8491
8492 /* No need no do anything if the input type is already fixed. */
8493 if (TYPE_FIXED_INSTANCE (type0))
8494 return type0;
8495
8496 /* Likewise if we already have computed the static approximation. */
8497 if (TYPE_TARGET_TYPE (type0) != NULL)
8498 return TYPE_TARGET_TYPE (type0);
8499
8500 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8501 type = type0;
8502 nfields = TYPE_NFIELDS (type0);
8503
8504 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8505 recompute all over next time. */
8506 TYPE_TARGET_TYPE (type0) = type;
8507
8508 for (f = 0; f < nfields; f += 1)
8509 {
8510 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8511 struct type *new_type;
8512
8513 if (is_dynamic_field (type0, f))
8514 {
8515 field_type = ada_check_typedef (field_type);
8516 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8517 }
8518 else
8519 new_type = static_unwrap_type (field_type);
8520
8521 if (new_type != field_type)
8522 {
8523 /* Clone TYPE0 only the first time we get a new field type. */
8524 if (type == type0)
8525 {
8526 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8527 TYPE_CODE (type) = TYPE_CODE (type0);
8528 INIT_CPLUS_SPECIFIC (type);
8529 TYPE_NFIELDS (type) = nfields;
8530 TYPE_FIELDS (type) = (struct field *)
8531 TYPE_ALLOC (type, nfields * sizeof (struct field));
8532 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8533 sizeof (struct field) * nfields);
8534 TYPE_NAME (type) = ada_type_name (type0);
8535 TYPE_TAG_NAME (type) = NULL;
8536 TYPE_FIXED_INSTANCE (type) = 1;
8537 TYPE_LENGTH (type) = 0;
8538 }
8539 TYPE_FIELD_TYPE (type, f) = new_type;
8540 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8541 }
8542 }
8543
8544 return type;
8545 }
8546
8547 /* Given an object of type TYPE whose contents are at VALADDR and
8548 whose address in memory is ADDRESS, returns a revision of TYPE,
8549 which should be a non-dynamic-sized record, in which the variant
8550 part, if any, is replaced with the appropriate branch. Looks
8551 for discriminant values in DVAL0, which can be NULL if the record
8552 contains the necessary discriminant values. */
8553
8554 static struct type *
8555 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8556 CORE_ADDR address, struct value *dval0)
8557 {
8558 struct value *mark = value_mark ();
8559 struct value *dval;
8560 struct type *rtype;
8561 struct type *branch_type;
8562 int nfields = TYPE_NFIELDS (type);
8563 int variant_field = variant_field_index (type);
8564
8565 if (variant_field == -1)
8566 return type;
8567
8568 if (dval0 == NULL)
8569 {
8570 dval = value_from_contents_and_address (type, valaddr, address);
8571 type = value_type (dval);
8572 }
8573 else
8574 dval = dval0;
8575
8576 rtype = alloc_type_copy (type);
8577 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8578 INIT_CPLUS_SPECIFIC (rtype);
8579 TYPE_NFIELDS (rtype) = nfields;
8580 TYPE_FIELDS (rtype) =
8581 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8582 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8583 sizeof (struct field) * nfields);
8584 TYPE_NAME (rtype) = ada_type_name (type);
8585 TYPE_TAG_NAME (rtype) = NULL;
8586 TYPE_FIXED_INSTANCE (rtype) = 1;
8587 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8588
8589 branch_type = to_fixed_variant_branch_type
8590 (TYPE_FIELD_TYPE (type, variant_field),
8591 cond_offset_host (valaddr,
8592 TYPE_FIELD_BITPOS (type, variant_field)
8593 / TARGET_CHAR_BIT),
8594 cond_offset_target (address,
8595 TYPE_FIELD_BITPOS (type, variant_field)
8596 / TARGET_CHAR_BIT), dval);
8597 if (branch_type == NULL)
8598 {
8599 int f;
8600
8601 for (f = variant_field + 1; f < nfields; f += 1)
8602 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8603 TYPE_NFIELDS (rtype) -= 1;
8604 }
8605 else
8606 {
8607 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8608 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8609 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8610 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8611 }
8612 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8613
8614 value_free_to_mark (mark);
8615 return rtype;
8616 }
8617
8618 /* An ordinary record type (with fixed-length fields) that describes
8619 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8620 beginning of this section]. Any necessary discriminants' values
8621 should be in DVAL, a record value; it may be NULL if the object
8622 at ADDR itself contains any necessary discriminant values.
8623 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8624 values from the record are needed. Except in the case that DVAL,
8625 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8626 unchecked) is replaced by a particular branch of the variant.
8627
8628 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8629 is questionable and may be removed. It can arise during the
8630 processing of an unconstrained-array-of-record type where all the
8631 variant branches have exactly the same size. This is because in
8632 such cases, the compiler does not bother to use the XVS convention
8633 when encoding the record. I am currently dubious of this
8634 shortcut and suspect the compiler should be altered. FIXME. */
8635
8636 static struct type *
8637 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8638 CORE_ADDR address, struct value *dval)
8639 {
8640 struct type *templ_type;
8641
8642 if (TYPE_FIXED_INSTANCE (type0))
8643 return type0;
8644
8645 templ_type = dynamic_template_type (type0);
8646
8647 if (templ_type != NULL)
8648 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8649 else if (variant_field_index (type0) >= 0)
8650 {
8651 if (dval == NULL && valaddr == NULL && address == 0)
8652 return type0;
8653 return to_record_with_fixed_variant_part (type0, valaddr, address,
8654 dval);
8655 }
8656 else
8657 {
8658 TYPE_FIXED_INSTANCE (type0) = 1;
8659 return type0;
8660 }
8661
8662 }
8663
8664 /* An ordinary record type (with fixed-length fields) that describes
8665 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8666 union type. Any necessary discriminants' values should be in DVAL,
8667 a record value. That is, this routine selects the appropriate
8668 branch of the union at ADDR according to the discriminant value
8669 indicated in the union's type name. Returns VAR_TYPE0 itself if
8670 it represents a variant subject to a pragma Unchecked_Union. */
8671
8672 static struct type *
8673 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8674 CORE_ADDR address, struct value *dval)
8675 {
8676 int which;
8677 struct type *templ_type;
8678 struct type *var_type;
8679
8680 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8681 var_type = TYPE_TARGET_TYPE (var_type0);
8682 else
8683 var_type = var_type0;
8684
8685 templ_type = ada_find_parallel_type (var_type, "___XVU");
8686
8687 if (templ_type != NULL)
8688 var_type = templ_type;
8689
8690 if (is_unchecked_variant (var_type, value_type (dval)))
8691 return var_type0;
8692 which =
8693 ada_which_variant_applies (var_type,
8694 value_type (dval), value_contents (dval));
8695
8696 if (which < 0)
8697 return empty_record (var_type);
8698 else if (is_dynamic_field (var_type, which))
8699 return to_fixed_record_type
8700 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8701 valaddr, address, dval);
8702 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8703 return
8704 to_fixed_record_type
8705 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8706 else
8707 return TYPE_FIELD_TYPE (var_type, which);
8708 }
8709
8710 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8711 ENCODING_TYPE, a type following the GNAT conventions for discrete
8712 type encodings, only carries redundant information. */
8713
8714 static int
8715 ada_is_redundant_range_encoding (struct type *range_type,
8716 struct type *encoding_type)
8717 {
8718 struct type *fixed_range_type;
8719 const char *bounds_str;
8720 int n;
8721 LONGEST lo, hi;
8722
8723 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8724
8725 if (TYPE_CODE (get_base_type (range_type))
8726 != TYPE_CODE (get_base_type (encoding_type)))
8727 {
8728 /* The compiler probably used a simple base type to describe
8729 the range type instead of the range's actual base type,
8730 expecting us to get the real base type from the encoding
8731 anyway. In this situation, the encoding cannot be ignored
8732 as redundant. */
8733 return 0;
8734 }
8735
8736 if (is_dynamic_type (range_type))
8737 return 0;
8738
8739 if (TYPE_NAME (encoding_type) == NULL)
8740 return 0;
8741
8742 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8743 if (bounds_str == NULL)
8744 return 0;
8745
8746 n = 8; /* Skip "___XDLU_". */
8747 if (!ada_scan_number (bounds_str, n, &lo, &n))
8748 return 0;
8749 if (TYPE_LOW_BOUND (range_type) != lo)
8750 return 0;
8751
8752 n += 2; /* Skip the "__" separator between the two bounds. */
8753 if (!ada_scan_number (bounds_str, n, &hi, &n))
8754 return 0;
8755 if (TYPE_HIGH_BOUND (range_type) != hi)
8756 return 0;
8757
8758 return 1;
8759 }
8760
8761 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8762 a type following the GNAT encoding for describing array type
8763 indices, only carries redundant information. */
8764
8765 static int
8766 ada_is_redundant_index_type_desc (struct type *array_type,
8767 struct type *desc_type)
8768 {
8769 struct type *this_layer = check_typedef (array_type);
8770 int i;
8771
8772 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8773 {
8774 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8775 TYPE_FIELD_TYPE (desc_type, i)))
8776 return 0;
8777 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8778 }
8779
8780 return 1;
8781 }
8782
8783 /* Assuming that TYPE0 is an array type describing the type of a value
8784 at ADDR, and that DVAL describes a record containing any
8785 discriminants used in TYPE0, returns a type for the value that
8786 contains no dynamic components (that is, no components whose sizes
8787 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8788 true, gives an error message if the resulting type's size is over
8789 varsize_limit. */
8790
8791 static struct type *
8792 to_fixed_array_type (struct type *type0, struct value *dval,
8793 int ignore_too_big)
8794 {
8795 struct type *index_type_desc;
8796 struct type *result;
8797 int constrained_packed_array_p;
8798 static const char *xa_suffix = "___XA";
8799
8800 type0 = ada_check_typedef (type0);
8801 if (TYPE_FIXED_INSTANCE (type0))
8802 return type0;
8803
8804 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8805 if (constrained_packed_array_p)
8806 type0 = decode_constrained_packed_array_type (type0);
8807
8808 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8809
8810 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8811 encoding suffixed with 'P' may still be generated. If so,
8812 it should be used to find the XA type. */
8813
8814 if (index_type_desc == NULL)
8815 {
8816 const char *type_name = ada_type_name (type0);
8817
8818 if (type_name != NULL)
8819 {
8820 const int len = strlen (type_name);
8821 char *name = (char *) alloca (len + strlen (xa_suffix));
8822
8823 if (type_name[len - 1] == 'P')
8824 {
8825 strcpy (name, type_name);
8826 strcpy (name + len - 1, xa_suffix);
8827 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8828 }
8829 }
8830 }
8831
8832 ada_fixup_array_indexes_type (index_type_desc);
8833 if (index_type_desc != NULL
8834 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8835 {
8836 /* Ignore this ___XA parallel type, as it does not bring any
8837 useful information. This allows us to avoid creating fixed
8838 versions of the array's index types, which would be identical
8839 to the original ones. This, in turn, can also help avoid
8840 the creation of fixed versions of the array itself. */
8841 index_type_desc = NULL;
8842 }
8843
8844 if (index_type_desc == NULL)
8845 {
8846 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8847
8848 /* NOTE: elt_type---the fixed version of elt_type0---should never
8849 depend on the contents of the array in properly constructed
8850 debugging data. */
8851 /* Create a fixed version of the array element type.
8852 We're not providing the address of an element here,
8853 and thus the actual object value cannot be inspected to do
8854 the conversion. This should not be a problem, since arrays of
8855 unconstrained objects are not allowed. In particular, all
8856 the elements of an array of a tagged type should all be of
8857 the same type specified in the debugging info. No need to
8858 consult the object tag. */
8859 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8860
8861 /* Make sure we always create a new array type when dealing with
8862 packed array types, since we're going to fix-up the array
8863 type length and element bitsize a little further down. */
8864 if (elt_type0 == elt_type && !constrained_packed_array_p)
8865 result = type0;
8866 else
8867 result = create_array_type (alloc_type_copy (type0),
8868 elt_type, TYPE_INDEX_TYPE (type0));
8869 }
8870 else
8871 {
8872 int i;
8873 struct type *elt_type0;
8874
8875 elt_type0 = type0;
8876 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8877 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8878
8879 /* NOTE: result---the fixed version of elt_type0---should never
8880 depend on the contents of the array in properly constructed
8881 debugging data. */
8882 /* Create a fixed version of the array element type.
8883 We're not providing the address of an element here,
8884 and thus the actual object value cannot be inspected to do
8885 the conversion. This should not be a problem, since arrays of
8886 unconstrained objects are not allowed. In particular, all
8887 the elements of an array of a tagged type should all be of
8888 the same type specified in the debugging info. No need to
8889 consult the object tag. */
8890 result =
8891 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8892
8893 elt_type0 = type0;
8894 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8895 {
8896 struct type *range_type =
8897 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8898
8899 result = create_array_type (alloc_type_copy (elt_type0),
8900 result, range_type);
8901 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8902 }
8903 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8904 error (_("array type with dynamic size is larger than varsize-limit"));
8905 }
8906
8907 /* We want to preserve the type name. This can be useful when
8908 trying to get the type name of a value that has already been
8909 printed (for instance, if the user did "print VAR; whatis $". */
8910 TYPE_NAME (result) = TYPE_NAME (type0);
8911
8912 if (constrained_packed_array_p)
8913 {
8914 /* So far, the resulting type has been created as if the original
8915 type was a regular (non-packed) array type. As a result, the
8916 bitsize of the array elements needs to be set again, and the array
8917 length needs to be recomputed based on that bitsize. */
8918 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8919 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8920
8921 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8922 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8923 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8924 TYPE_LENGTH (result)++;
8925 }
8926
8927 TYPE_FIXED_INSTANCE (result) = 1;
8928 return result;
8929 }
8930
8931
8932 /* A standard type (containing no dynamically sized components)
8933 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8934 DVAL describes a record containing any discriminants used in TYPE0,
8935 and may be NULL if there are none, or if the object of type TYPE at
8936 ADDRESS or in VALADDR contains these discriminants.
8937
8938 If CHECK_TAG is not null, in the case of tagged types, this function
8939 attempts to locate the object's tag and use it to compute the actual
8940 type. However, when ADDRESS is null, we cannot use it to determine the
8941 location of the tag, and therefore compute the tagged type's actual type.
8942 So we return the tagged type without consulting the tag. */
8943
8944 static struct type *
8945 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8946 CORE_ADDR address, struct value *dval, int check_tag)
8947 {
8948 type = ada_check_typedef (type);
8949 switch (TYPE_CODE (type))
8950 {
8951 default:
8952 return type;
8953 case TYPE_CODE_STRUCT:
8954 {
8955 struct type *static_type = to_static_fixed_type (type);
8956 struct type *fixed_record_type =
8957 to_fixed_record_type (type, valaddr, address, NULL);
8958
8959 /* If STATIC_TYPE is a tagged type and we know the object's address,
8960 then we can determine its tag, and compute the object's actual
8961 type from there. Note that we have to use the fixed record
8962 type (the parent part of the record may have dynamic fields
8963 and the way the location of _tag is expressed may depend on
8964 them). */
8965
8966 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8967 {
8968 struct value *tag =
8969 value_tag_from_contents_and_address
8970 (fixed_record_type,
8971 valaddr,
8972 address);
8973 struct type *real_type = type_from_tag (tag);
8974 struct value *obj =
8975 value_from_contents_and_address (fixed_record_type,
8976 valaddr,
8977 address);
8978 fixed_record_type = value_type (obj);
8979 if (real_type != NULL)
8980 return to_fixed_record_type
8981 (real_type, NULL,
8982 value_address (ada_tag_value_at_base_address (obj)), NULL);
8983 }
8984
8985 /* Check to see if there is a parallel ___XVZ variable.
8986 If there is, then it provides the actual size of our type. */
8987 else if (ada_type_name (fixed_record_type) != NULL)
8988 {
8989 const char *name = ada_type_name (fixed_record_type);
8990 char *xvz_name
8991 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8992 int xvz_found = 0;
8993 LONGEST size;
8994
8995 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8996 size = get_int_var_value (xvz_name, &xvz_found);
8997 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8998 {
8999 fixed_record_type = copy_type (fixed_record_type);
9000 TYPE_LENGTH (fixed_record_type) = size;
9001
9002 /* The FIXED_RECORD_TYPE may have be a stub. We have
9003 observed this when the debugging info is STABS, and
9004 apparently it is something that is hard to fix.
9005
9006 In practice, we don't need the actual type definition
9007 at all, because the presence of the XVZ variable allows us
9008 to assume that there must be a XVS type as well, which we
9009 should be able to use later, when we need the actual type
9010 definition.
9011
9012 In the meantime, pretend that the "fixed" type we are
9013 returning is NOT a stub, because this can cause trouble
9014 when using this type to create new types targeting it.
9015 Indeed, the associated creation routines often check
9016 whether the target type is a stub and will try to replace
9017 it, thus using a type with the wrong size. This, in turn,
9018 might cause the new type to have the wrong size too.
9019 Consider the case of an array, for instance, where the size
9020 of the array is computed from the number of elements in
9021 our array multiplied by the size of its element. */
9022 TYPE_STUB (fixed_record_type) = 0;
9023 }
9024 }
9025 return fixed_record_type;
9026 }
9027 case TYPE_CODE_ARRAY:
9028 return to_fixed_array_type (type, dval, 1);
9029 case TYPE_CODE_UNION:
9030 if (dval == NULL)
9031 return type;
9032 else
9033 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9034 }
9035 }
9036
9037 /* The same as ada_to_fixed_type_1, except that it preserves the type
9038 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9039
9040 The typedef layer needs be preserved in order to differentiate between
9041 arrays and array pointers when both types are implemented using the same
9042 fat pointer. In the array pointer case, the pointer is encoded as
9043 a typedef of the pointer type. For instance, considering:
9044
9045 type String_Access is access String;
9046 S1 : String_Access := null;
9047
9048 To the debugger, S1 is defined as a typedef of type String. But
9049 to the user, it is a pointer. So if the user tries to print S1,
9050 we should not dereference the array, but print the array address
9051 instead.
9052
9053 If we didn't preserve the typedef layer, we would lose the fact that
9054 the type is to be presented as a pointer (needs de-reference before
9055 being printed). And we would also use the source-level type name. */
9056
9057 struct type *
9058 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9059 CORE_ADDR address, struct value *dval, int check_tag)
9060
9061 {
9062 struct type *fixed_type =
9063 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9064
9065 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9066 then preserve the typedef layer.
9067
9068 Implementation note: We can only check the main-type portion of
9069 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9070 from TYPE now returns a type that has the same instance flags
9071 as TYPE. For instance, if TYPE is a "typedef const", and its
9072 target type is a "struct", then the typedef elimination will return
9073 a "const" version of the target type. See check_typedef for more
9074 details about how the typedef layer elimination is done.
9075
9076 brobecker/2010-11-19: It seems to me that the only case where it is
9077 useful to preserve the typedef layer is when dealing with fat pointers.
9078 Perhaps, we could add a check for that and preserve the typedef layer
9079 only in that situation. But this seems unecessary so far, probably
9080 because we call check_typedef/ada_check_typedef pretty much everywhere.
9081 */
9082 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9083 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9084 == TYPE_MAIN_TYPE (fixed_type)))
9085 return type;
9086
9087 return fixed_type;
9088 }
9089
9090 /* A standard (static-sized) type corresponding as well as possible to
9091 TYPE0, but based on no runtime data. */
9092
9093 static struct type *
9094 to_static_fixed_type (struct type *type0)
9095 {
9096 struct type *type;
9097
9098 if (type0 == NULL)
9099 return NULL;
9100
9101 if (TYPE_FIXED_INSTANCE (type0))
9102 return type0;
9103
9104 type0 = ada_check_typedef (type0);
9105
9106 switch (TYPE_CODE (type0))
9107 {
9108 default:
9109 return type0;
9110 case TYPE_CODE_STRUCT:
9111 type = dynamic_template_type (type0);
9112 if (type != NULL)
9113 return template_to_static_fixed_type (type);
9114 else
9115 return template_to_static_fixed_type (type0);
9116 case TYPE_CODE_UNION:
9117 type = ada_find_parallel_type (type0, "___XVU");
9118 if (type != NULL)
9119 return template_to_static_fixed_type (type);
9120 else
9121 return template_to_static_fixed_type (type0);
9122 }
9123 }
9124
9125 /* A static approximation of TYPE with all type wrappers removed. */
9126
9127 static struct type *
9128 static_unwrap_type (struct type *type)
9129 {
9130 if (ada_is_aligner_type (type))
9131 {
9132 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9133 if (ada_type_name (type1) == NULL)
9134 TYPE_NAME (type1) = ada_type_name (type);
9135
9136 return static_unwrap_type (type1);
9137 }
9138 else
9139 {
9140 struct type *raw_real_type = ada_get_base_type (type);
9141
9142 if (raw_real_type == type)
9143 return type;
9144 else
9145 return to_static_fixed_type (raw_real_type);
9146 }
9147 }
9148
9149 /* In some cases, incomplete and private types require
9150 cross-references that are not resolved as records (for example,
9151 type Foo;
9152 type FooP is access Foo;
9153 V: FooP;
9154 type Foo is array ...;
9155 ). In these cases, since there is no mechanism for producing
9156 cross-references to such types, we instead substitute for FooP a
9157 stub enumeration type that is nowhere resolved, and whose tag is
9158 the name of the actual type. Call these types "non-record stubs". */
9159
9160 /* A type equivalent to TYPE that is not a non-record stub, if one
9161 exists, otherwise TYPE. */
9162
9163 struct type *
9164 ada_check_typedef (struct type *type)
9165 {
9166 if (type == NULL)
9167 return NULL;
9168
9169 /* If our type is a typedef type of a fat pointer, then we're done.
9170 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9171 what allows us to distinguish between fat pointers that represent
9172 array types, and fat pointers that represent array access types
9173 (in both cases, the compiler implements them as fat pointers). */
9174 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9175 && is_thick_pntr (ada_typedef_target_type (type)))
9176 return type;
9177
9178 type = check_typedef (type);
9179 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9180 || !TYPE_STUB (type)
9181 || TYPE_TAG_NAME (type) == NULL)
9182 return type;
9183 else
9184 {
9185 const char *name = TYPE_TAG_NAME (type);
9186 struct type *type1 = ada_find_any_type (name);
9187
9188 if (type1 == NULL)
9189 return type;
9190
9191 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9192 stubs pointing to arrays, as we don't create symbols for array
9193 types, only for the typedef-to-array types). If that's the case,
9194 strip the typedef layer. */
9195 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9196 type1 = ada_check_typedef (type1);
9197
9198 return type1;
9199 }
9200 }
9201
9202 /* A value representing the data at VALADDR/ADDRESS as described by
9203 type TYPE0, but with a standard (static-sized) type that correctly
9204 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9205 type, then return VAL0 [this feature is simply to avoid redundant
9206 creation of struct values]. */
9207
9208 static struct value *
9209 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9210 struct value *val0)
9211 {
9212 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9213
9214 if (type == type0 && val0 != NULL)
9215 return val0;
9216 else
9217 return value_from_contents_and_address (type, 0, address);
9218 }
9219
9220 /* A value representing VAL, but with a standard (static-sized) type
9221 that correctly describes it. Does not necessarily create a new
9222 value. */
9223
9224 struct value *
9225 ada_to_fixed_value (struct value *val)
9226 {
9227 val = unwrap_value (val);
9228 val = ada_to_fixed_value_create (value_type (val),
9229 value_address (val),
9230 val);
9231 return val;
9232 }
9233 \f
9234
9235 /* Attributes */
9236
9237 /* Table mapping attribute numbers to names.
9238 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9239
9240 static const char *attribute_names[] = {
9241 "<?>",
9242
9243 "first",
9244 "last",
9245 "length",
9246 "image",
9247 "max",
9248 "min",
9249 "modulus",
9250 "pos",
9251 "size",
9252 "tag",
9253 "val",
9254 0
9255 };
9256
9257 const char *
9258 ada_attribute_name (enum exp_opcode n)
9259 {
9260 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9261 return attribute_names[n - OP_ATR_FIRST + 1];
9262 else
9263 return attribute_names[0];
9264 }
9265
9266 /* Evaluate the 'POS attribute applied to ARG. */
9267
9268 static LONGEST
9269 pos_atr (struct value *arg)
9270 {
9271 struct value *val = coerce_ref (arg);
9272 struct type *type = value_type (val);
9273 LONGEST result;
9274
9275 if (!discrete_type_p (type))
9276 error (_("'POS only defined on discrete types"));
9277
9278 if (!discrete_position (type, value_as_long (val), &result))
9279 error (_("enumeration value is invalid: can't find 'POS"));
9280
9281 return result;
9282 }
9283
9284 static struct value *
9285 value_pos_atr (struct type *type, struct value *arg)
9286 {
9287 return value_from_longest (type, pos_atr (arg));
9288 }
9289
9290 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9291
9292 static struct value *
9293 value_val_atr (struct type *type, struct value *arg)
9294 {
9295 if (!discrete_type_p (type))
9296 error (_("'VAL only defined on discrete types"));
9297 if (!integer_type_p (value_type (arg)))
9298 error (_("'VAL requires integral argument"));
9299
9300 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9301 {
9302 long pos = value_as_long (arg);
9303
9304 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9305 error (_("argument to 'VAL out of range"));
9306 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9307 }
9308 else
9309 return value_from_longest (type, value_as_long (arg));
9310 }
9311 \f
9312
9313 /* Evaluation */
9314
9315 /* True if TYPE appears to be an Ada character type.
9316 [At the moment, this is true only for Character and Wide_Character;
9317 It is a heuristic test that could stand improvement]. */
9318
9319 int
9320 ada_is_character_type (struct type *type)
9321 {
9322 const char *name;
9323
9324 /* If the type code says it's a character, then assume it really is,
9325 and don't check any further. */
9326 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9327 return 1;
9328
9329 /* Otherwise, assume it's a character type iff it is a discrete type
9330 with a known character type name. */
9331 name = ada_type_name (type);
9332 return (name != NULL
9333 && (TYPE_CODE (type) == TYPE_CODE_INT
9334 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9335 && (strcmp (name, "character") == 0
9336 || strcmp (name, "wide_character") == 0
9337 || strcmp (name, "wide_wide_character") == 0
9338 || strcmp (name, "unsigned char") == 0));
9339 }
9340
9341 /* True if TYPE appears to be an Ada string type. */
9342
9343 int
9344 ada_is_string_type (struct type *type)
9345 {
9346 type = ada_check_typedef (type);
9347 if (type != NULL
9348 && TYPE_CODE (type) != TYPE_CODE_PTR
9349 && (ada_is_simple_array_type (type)
9350 || ada_is_array_descriptor_type (type))
9351 && ada_array_arity (type) == 1)
9352 {
9353 struct type *elttype = ada_array_element_type (type, 1);
9354
9355 return ada_is_character_type (elttype);
9356 }
9357 else
9358 return 0;
9359 }
9360
9361 /* The compiler sometimes provides a parallel XVS type for a given
9362 PAD type. Normally, it is safe to follow the PAD type directly,
9363 but older versions of the compiler have a bug that causes the offset
9364 of its "F" field to be wrong. Following that field in that case
9365 would lead to incorrect results, but this can be worked around
9366 by ignoring the PAD type and using the associated XVS type instead.
9367
9368 Set to True if the debugger should trust the contents of PAD types.
9369 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9370 static int trust_pad_over_xvs = 1;
9371
9372 /* True if TYPE is a struct type introduced by the compiler to force the
9373 alignment of a value. Such types have a single field with a
9374 distinctive name. */
9375
9376 int
9377 ada_is_aligner_type (struct type *type)
9378 {
9379 type = ada_check_typedef (type);
9380
9381 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9382 return 0;
9383
9384 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9385 && TYPE_NFIELDS (type) == 1
9386 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9387 }
9388
9389 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9390 the parallel type. */
9391
9392 struct type *
9393 ada_get_base_type (struct type *raw_type)
9394 {
9395 struct type *real_type_namer;
9396 struct type *raw_real_type;
9397
9398 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9399 return raw_type;
9400
9401 if (ada_is_aligner_type (raw_type))
9402 /* The encoding specifies that we should always use the aligner type.
9403 So, even if this aligner type has an associated XVS type, we should
9404 simply ignore it.
9405
9406 According to the compiler gurus, an XVS type parallel to an aligner
9407 type may exist because of a stabs limitation. In stabs, aligner
9408 types are empty because the field has a variable-sized type, and
9409 thus cannot actually be used as an aligner type. As a result,
9410 we need the associated parallel XVS type to decode the type.
9411 Since the policy in the compiler is to not change the internal
9412 representation based on the debugging info format, we sometimes
9413 end up having a redundant XVS type parallel to the aligner type. */
9414 return raw_type;
9415
9416 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9417 if (real_type_namer == NULL
9418 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9419 || TYPE_NFIELDS (real_type_namer) != 1)
9420 return raw_type;
9421
9422 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9423 {
9424 /* This is an older encoding form where the base type needs to be
9425 looked up by name. We prefer the newer enconding because it is
9426 more efficient. */
9427 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9428 if (raw_real_type == NULL)
9429 return raw_type;
9430 else
9431 return raw_real_type;
9432 }
9433
9434 /* The field in our XVS type is a reference to the base type. */
9435 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9436 }
9437
9438 /* The type of value designated by TYPE, with all aligners removed. */
9439
9440 struct type *
9441 ada_aligned_type (struct type *type)
9442 {
9443 if (ada_is_aligner_type (type))
9444 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9445 else
9446 return ada_get_base_type (type);
9447 }
9448
9449
9450 /* The address of the aligned value in an object at address VALADDR
9451 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9452
9453 const gdb_byte *
9454 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9455 {
9456 if (ada_is_aligner_type (type))
9457 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9458 valaddr +
9459 TYPE_FIELD_BITPOS (type,
9460 0) / TARGET_CHAR_BIT);
9461 else
9462 return valaddr;
9463 }
9464
9465
9466
9467 /* The printed representation of an enumeration literal with encoded
9468 name NAME. The value is good to the next call of ada_enum_name. */
9469 const char *
9470 ada_enum_name (const char *name)
9471 {
9472 static char *result;
9473 static size_t result_len = 0;
9474 const char *tmp;
9475
9476 /* First, unqualify the enumeration name:
9477 1. Search for the last '.' character. If we find one, then skip
9478 all the preceding characters, the unqualified name starts
9479 right after that dot.
9480 2. Otherwise, we may be debugging on a target where the compiler
9481 translates dots into "__". Search forward for double underscores,
9482 but stop searching when we hit an overloading suffix, which is
9483 of the form "__" followed by digits. */
9484
9485 tmp = strrchr (name, '.');
9486 if (tmp != NULL)
9487 name = tmp + 1;
9488 else
9489 {
9490 while ((tmp = strstr (name, "__")) != NULL)
9491 {
9492 if (isdigit (tmp[2]))
9493 break;
9494 else
9495 name = tmp + 2;
9496 }
9497 }
9498
9499 if (name[0] == 'Q')
9500 {
9501 int v;
9502
9503 if (name[1] == 'U' || name[1] == 'W')
9504 {
9505 if (sscanf (name + 2, "%x", &v) != 1)
9506 return name;
9507 }
9508 else
9509 return name;
9510
9511 GROW_VECT (result, result_len, 16);
9512 if (isascii (v) && isprint (v))
9513 xsnprintf (result, result_len, "'%c'", v);
9514 else if (name[1] == 'U')
9515 xsnprintf (result, result_len, "[\"%02x\"]", v);
9516 else
9517 xsnprintf (result, result_len, "[\"%04x\"]", v);
9518
9519 return result;
9520 }
9521 else
9522 {
9523 tmp = strstr (name, "__");
9524 if (tmp == NULL)
9525 tmp = strstr (name, "$");
9526 if (tmp != NULL)
9527 {
9528 GROW_VECT (result, result_len, tmp - name + 1);
9529 strncpy (result, name, tmp - name);
9530 result[tmp - name] = '\0';
9531 return result;
9532 }
9533
9534 return name;
9535 }
9536 }
9537
9538 /* Evaluate the subexpression of EXP starting at *POS as for
9539 evaluate_type, updating *POS to point just past the evaluated
9540 expression. */
9541
9542 static struct value *
9543 evaluate_subexp_type (struct expression *exp, int *pos)
9544 {
9545 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9546 }
9547
9548 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9549 value it wraps. */
9550
9551 static struct value *
9552 unwrap_value (struct value *val)
9553 {
9554 struct type *type = ada_check_typedef (value_type (val));
9555
9556 if (ada_is_aligner_type (type))
9557 {
9558 struct value *v = ada_value_struct_elt (val, "F", 0);
9559 struct type *val_type = ada_check_typedef (value_type (v));
9560
9561 if (ada_type_name (val_type) == NULL)
9562 TYPE_NAME (val_type) = ada_type_name (type);
9563
9564 return unwrap_value (v);
9565 }
9566 else
9567 {
9568 struct type *raw_real_type =
9569 ada_check_typedef (ada_get_base_type (type));
9570
9571 /* If there is no parallel XVS or XVE type, then the value is
9572 already unwrapped. Return it without further modification. */
9573 if ((type == raw_real_type)
9574 && ada_find_parallel_type (type, "___XVE") == NULL)
9575 return val;
9576
9577 return
9578 coerce_unspec_val_to_type
9579 (val, ada_to_fixed_type (raw_real_type, 0,
9580 value_address (val),
9581 NULL, 1));
9582 }
9583 }
9584
9585 static struct value *
9586 cast_to_fixed (struct type *type, struct value *arg)
9587 {
9588 LONGEST val;
9589
9590 if (type == value_type (arg))
9591 return arg;
9592 else if (ada_is_fixed_point_type (value_type (arg)))
9593 val = ada_float_to_fixed (type,
9594 ada_fixed_to_float (value_type (arg),
9595 value_as_long (arg)));
9596 else
9597 {
9598 DOUBLEST argd = value_as_double (arg);
9599
9600 val = ada_float_to_fixed (type, argd);
9601 }
9602
9603 return value_from_longest (type, val);
9604 }
9605
9606 static struct value *
9607 cast_from_fixed (struct type *type, struct value *arg)
9608 {
9609 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9610 value_as_long (arg));
9611
9612 return value_from_double (type, val);
9613 }
9614
9615 /* Given two array types T1 and T2, return nonzero iff both arrays
9616 contain the same number of elements. */
9617
9618 static int
9619 ada_same_array_size_p (struct type *t1, struct type *t2)
9620 {
9621 LONGEST lo1, hi1, lo2, hi2;
9622
9623 /* Get the array bounds in order to verify that the size of
9624 the two arrays match. */
9625 if (!get_array_bounds (t1, &lo1, &hi1)
9626 || !get_array_bounds (t2, &lo2, &hi2))
9627 error (_("unable to determine array bounds"));
9628
9629 /* To make things easier for size comparison, normalize a bit
9630 the case of empty arrays by making sure that the difference
9631 between upper bound and lower bound is always -1. */
9632 if (lo1 > hi1)
9633 hi1 = lo1 - 1;
9634 if (lo2 > hi2)
9635 hi2 = lo2 - 1;
9636
9637 return (hi1 - lo1 == hi2 - lo2);
9638 }
9639
9640 /* Assuming that VAL is an array of integrals, and TYPE represents
9641 an array with the same number of elements, but with wider integral
9642 elements, return an array "casted" to TYPE. In practice, this
9643 means that the returned array is built by casting each element
9644 of the original array into TYPE's (wider) element type. */
9645
9646 static struct value *
9647 ada_promote_array_of_integrals (struct type *type, struct value *val)
9648 {
9649 struct type *elt_type = TYPE_TARGET_TYPE (type);
9650 LONGEST lo, hi;
9651 struct value *res;
9652 LONGEST i;
9653
9654 /* Verify that both val and type are arrays of scalars, and
9655 that the size of val's elements is smaller than the size
9656 of type's element. */
9657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9658 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9659 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9660 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9661 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9662 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9663
9664 if (!get_array_bounds (type, &lo, &hi))
9665 error (_("unable to determine array bounds"));
9666
9667 res = allocate_value (type);
9668
9669 /* Promote each array element. */
9670 for (i = 0; i < hi - lo + 1; i++)
9671 {
9672 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9673
9674 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9675 value_contents_all (elt), TYPE_LENGTH (elt_type));
9676 }
9677
9678 return res;
9679 }
9680
9681 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9682 return the converted value. */
9683
9684 static struct value *
9685 coerce_for_assign (struct type *type, struct value *val)
9686 {
9687 struct type *type2 = value_type (val);
9688
9689 if (type == type2)
9690 return val;
9691
9692 type2 = ada_check_typedef (type2);
9693 type = ada_check_typedef (type);
9694
9695 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9696 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9697 {
9698 val = ada_value_ind (val);
9699 type2 = value_type (val);
9700 }
9701
9702 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9703 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9704 {
9705 if (!ada_same_array_size_p (type, type2))
9706 error (_("cannot assign arrays of different length"));
9707
9708 if (is_integral_type (TYPE_TARGET_TYPE (type))
9709 && is_integral_type (TYPE_TARGET_TYPE (type2))
9710 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9711 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9712 {
9713 /* Allow implicit promotion of the array elements to
9714 a wider type. */
9715 return ada_promote_array_of_integrals (type, val);
9716 }
9717
9718 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9719 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9720 error (_("Incompatible types in assignment"));
9721 deprecated_set_value_type (val, type);
9722 }
9723 return val;
9724 }
9725
9726 static struct value *
9727 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9728 {
9729 struct value *val;
9730 struct type *type1, *type2;
9731 LONGEST v, v1, v2;
9732
9733 arg1 = coerce_ref (arg1);
9734 arg2 = coerce_ref (arg2);
9735 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9736 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9737
9738 if (TYPE_CODE (type1) != TYPE_CODE_INT
9739 || TYPE_CODE (type2) != TYPE_CODE_INT)
9740 return value_binop (arg1, arg2, op);
9741
9742 switch (op)
9743 {
9744 case BINOP_MOD:
9745 case BINOP_DIV:
9746 case BINOP_REM:
9747 break;
9748 default:
9749 return value_binop (arg1, arg2, op);
9750 }
9751
9752 v2 = value_as_long (arg2);
9753 if (v2 == 0)
9754 error (_("second operand of %s must not be zero."), op_string (op));
9755
9756 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9757 return value_binop (arg1, arg2, op);
9758
9759 v1 = value_as_long (arg1);
9760 switch (op)
9761 {
9762 case BINOP_DIV:
9763 v = v1 / v2;
9764 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9765 v += v > 0 ? -1 : 1;
9766 break;
9767 case BINOP_REM:
9768 v = v1 % v2;
9769 if (v * v1 < 0)
9770 v -= v2;
9771 break;
9772 default:
9773 /* Should not reach this point. */
9774 v = 0;
9775 }
9776
9777 val = allocate_value (type1);
9778 store_unsigned_integer (value_contents_raw (val),
9779 TYPE_LENGTH (value_type (val)),
9780 gdbarch_byte_order (get_type_arch (type1)), v);
9781 return val;
9782 }
9783
9784 static int
9785 ada_value_equal (struct value *arg1, struct value *arg2)
9786 {
9787 if (ada_is_direct_array_type (value_type (arg1))
9788 || ada_is_direct_array_type (value_type (arg2)))
9789 {
9790 /* Automatically dereference any array reference before
9791 we attempt to perform the comparison. */
9792 arg1 = ada_coerce_ref (arg1);
9793 arg2 = ada_coerce_ref (arg2);
9794
9795 arg1 = ada_coerce_to_simple_array (arg1);
9796 arg2 = ada_coerce_to_simple_array (arg2);
9797 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9798 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9799 error (_("Attempt to compare array with non-array"));
9800 /* FIXME: The following works only for types whose
9801 representations use all bits (no padding or undefined bits)
9802 and do not have user-defined equality. */
9803 return
9804 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9805 && memcmp (value_contents (arg1), value_contents (arg2),
9806 TYPE_LENGTH (value_type (arg1))) == 0;
9807 }
9808 return value_equal (arg1, arg2);
9809 }
9810
9811 /* Total number of component associations in the aggregate starting at
9812 index PC in EXP. Assumes that index PC is the start of an
9813 OP_AGGREGATE. */
9814
9815 static int
9816 num_component_specs (struct expression *exp, int pc)
9817 {
9818 int n, m, i;
9819
9820 m = exp->elts[pc + 1].longconst;
9821 pc += 3;
9822 n = 0;
9823 for (i = 0; i < m; i += 1)
9824 {
9825 switch (exp->elts[pc].opcode)
9826 {
9827 default:
9828 n += 1;
9829 break;
9830 case OP_CHOICES:
9831 n += exp->elts[pc + 1].longconst;
9832 break;
9833 }
9834 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9835 }
9836 return n;
9837 }
9838
9839 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9840 component of LHS (a simple array or a record), updating *POS past
9841 the expression, assuming that LHS is contained in CONTAINER. Does
9842 not modify the inferior's memory, nor does it modify LHS (unless
9843 LHS == CONTAINER). */
9844
9845 static void
9846 assign_component (struct value *container, struct value *lhs, LONGEST index,
9847 struct expression *exp, int *pos)
9848 {
9849 struct value *mark = value_mark ();
9850 struct value *elt;
9851
9852 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9853 {
9854 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9855 struct value *index_val = value_from_longest (index_type, index);
9856
9857 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9858 }
9859 else
9860 {
9861 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9862 elt = ada_to_fixed_value (elt);
9863 }
9864
9865 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9866 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9867 else
9868 value_assign_to_component (container, elt,
9869 ada_evaluate_subexp (NULL, exp, pos,
9870 EVAL_NORMAL));
9871
9872 value_free_to_mark (mark);
9873 }
9874
9875 /* Assuming that LHS represents an lvalue having a record or array
9876 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9877 of that aggregate's value to LHS, advancing *POS past the
9878 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9879 lvalue containing LHS (possibly LHS itself). Does not modify
9880 the inferior's memory, nor does it modify the contents of
9881 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9882
9883 static struct value *
9884 assign_aggregate (struct value *container,
9885 struct value *lhs, struct expression *exp,
9886 int *pos, enum noside noside)
9887 {
9888 struct type *lhs_type;
9889 int n = exp->elts[*pos+1].longconst;
9890 LONGEST low_index, high_index;
9891 int num_specs;
9892 LONGEST *indices;
9893 int max_indices, num_indices;
9894 int i;
9895
9896 *pos += 3;
9897 if (noside != EVAL_NORMAL)
9898 {
9899 for (i = 0; i < n; i += 1)
9900 ada_evaluate_subexp (NULL, exp, pos, noside);
9901 return container;
9902 }
9903
9904 container = ada_coerce_ref (container);
9905 if (ada_is_direct_array_type (value_type (container)))
9906 container = ada_coerce_to_simple_array (container);
9907 lhs = ada_coerce_ref (lhs);
9908 if (!deprecated_value_modifiable (lhs))
9909 error (_("Left operand of assignment is not a modifiable lvalue."));
9910
9911 lhs_type = value_type (lhs);
9912 if (ada_is_direct_array_type (lhs_type))
9913 {
9914 lhs = ada_coerce_to_simple_array (lhs);
9915 lhs_type = value_type (lhs);
9916 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9917 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9918 }
9919 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9920 {
9921 low_index = 0;
9922 high_index = num_visible_fields (lhs_type) - 1;
9923 }
9924 else
9925 error (_("Left-hand side must be array or record."));
9926
9927 num_specs = num_component_specs (exp, *pos - 3);
9928 max_indices = 4 * num_specs + 4;
9929 indices = XALLOCAVEC (LONGEST, max_indices);
9930 indices[0] = indices[1] = low_index - 1;
9931 indices[2] = indices[3] = high_index + 1;
9932 num_indices = 4;
9933
9934 for (i = 0; i < n; i += 1)
9935 {
9936 switch (exp->elts[*pos].opcode)
9937 {
9938 case OP_CHOICES:
9939 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9940 &num_indices, max_indices,
9941 low_index, high_index);
9942 break;
9943 case OP_POSITIONAL:
9944 aggregate_assign_positional (container, lhs, exp, pos, indices,
9945 &num_indices, max_indices,
9946 low_index, high_index);
9947 break;
9948 case OP_OTHERS:
9949 if (i != n-1)
9950 error (_("Misplaced 'others' clause"));
9951 aggregate_assign_others (container, lhs, exp, pos, indices,
9952 num_indices, low_index, high_index);
9953 break;
9954 default:
9955 error (_("Internal error: bad aggregate clause"));
9956 }
9957 }
9958
9959 return container;
9960 }
9961
9962 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9963 construct at *POS, updating *POS past the construct, given that
9964 the positions are relative to lower bound LOW, where HIGH is the
9965 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9966 updating *NUM_INDICES as needed. CONTAINER is as for
9967 assign_aggregate. */
9968 static void
9969 aggregate_assign_positional (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, LONGEST *indices, int *num_indices,
9972 int max_indices, LONGEST low, LONGEST high)
9973 {
9974 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9975
9976 if (ind - 1 == high)
9977 warning (_("Extra components in aggregate ignored."));
9978 if (ind <= high)
9979 {
9980 add_component_interval (ind, ind, indices, num_indices, max_indices);
9981 *pos += 3;
9982 assign_component (container, lhs, ind, exp, pos);
9983 }
9984 else
9985 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9986 }
9987
9988 /* Assign into the components of LHS indexed by the OP_CHOICES
9989 construct at *POS, updating *POS past the construct, given that
9990 the allowable indices are LOW..HIGH. Record the indices assigned
9991 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9992 needed. CONTAINER is as for assign_aggregate. */
9993 static void
9994 aggregate_assign_from_choices (struct value *container,
9995 struct value *lhs, struct expression *exp,
9996 int *pos, LONGEST *indices, int *num_indices,
9997 int max_indices, LONGEST low, LONGEST high)
9998 {
9999 int j;
10000 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10001 int choice_pos, expr_pc;
10002 int is_array = ada_is_direct_array_type (value_type (lhs));
10003
10004 choice_pos = *pos += 3;
10005
10006 for (j = 0; j < n_choices; j += 1)
10007 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10008 expr_pc = *pos;
10009 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10010
10011 for (j = 0; j < n_choices; j += 1)
10012 {
10013 LONGEST lower, upper;
10014 enum exp_opcode op = exp->elts[choice_pos].opcode;
10015
10016 if (op == OP_DISCRETE_RANGE)
10017 {
10018 choice_pos += 1;
10019 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10020 EVAL_NORMAL));
10021 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10022 EVAL_NORMAL));
10023 }
10024 else if (is_array)
10025 {
10026 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10027 EVAL_NORMAL));
10028 upper = lower;
10029 }
10030 else
10031 {
10032 int ind;
10033 const char *name;
10034
10035 switch (op)
10036 {
10037 case OP_NAME:
10038 name = &exp->elts[choice_pos + 2].string;
10039 break;
10040 case OP_VAR_VALUE:
10041 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10042 break;
10043 default:
10044 error (_("Invalid record component association."));
10045 }
10046 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10047 ind = 0;
10048 if (! find_struct_field (name, value_type (lhs), 0,
10049 NULL, NULL, NULL, NULL, &ind))
10050 error (_("Unknown component name: %s."), name);
10051 lower = upper = ind;
10052 }
10053
10054 if (lower <= upper && (lower < low || upper > high))
10055 error (_("Index in component association out of bounds."));
10056
10057 add_component_interval (lower, upper, indices, num_indices,
10058 max_indices);
10059 while (lower <= upper)
10060 {
10061 int pos1;
10062
10063 pos1 = expr_pc;
10064 assign_component (container, lhs, lower, exp, &pos1);
10065 lower += 1;
10066 }
10067 }
10068 }
10069
10070 /* Assign the value of the expression in the OP_OTHERS construct in
10071 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10072 have not been previously assigned. The index intervals already assigned
10073 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10074 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10075 static void
10076 aggregate_assign_others (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int num_indices,
10079 LONGEST low, LONGEST high)
10080 {
10081 int i;
10082 int expr_pc = *pos + 1;
10083
10084 for (i = 0; i < num_indices - 2; i += 2)
10085 {
10086 LONGEST ind;
10087
10088 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10089 {
10090 int localpos;
10091
10092 localpos = expr_pc;
10093 assign_component (container, lhs, ind, exp, &localpos);
10094 }
10095 }
10096 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10097 }
10098
10099 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10100 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10101 modifying *SIZE as needed. It is an error if *SIZE exceeds
10102 MAX_SIZE. The resulting intervals do not overlap. */
10103 static void
10104 add_component_interval (LONGEST low, LONGEST high,
10105 LONGEST* indices, int *size, int max_size)
10106 {
10107 int i, j;
10108
10109 for (i = 0; i < *size; i += 2) {
10110 if (high >= indices[i] && low <= indices[i + 1])
10111 {
10112 int kh;
10113
10114 for (kh = i + 2; kh < *size; kh += 2)
10115 if (high < indices[kh])
10116 break;
10117 if (low < indices[i])
10118 indices[i] = low;
10119 indices[i + 1] = indices[kh - 1];
10120 if (high > indices[i + 1])
10121 indices[i + 1] = high;
10122 memcpy (indices + i + 2, indices + kh, *size - kh);
10123 *size -= kh - i - 2;
10124 return;
10125 }
10126 else if (high < indices[i])
10127 break;
10128 }
10129
10130 if (*size == max_size)
10131 error (_("Internal error: miscounted aggregate components."));
10132 *size += 2;
10133 for (j = *size-1; j >= i+2; j -= 1)
10134 indices[j] = indices[j - 2];
10135 indices[i] = low;
10136 indices[i + 1] = high;
10137 }
10138
10139 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10140 is different. */
10141
10142 static struct value *
10143 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10144 {
10145 if (type == ada_check_typedef (value_type (arg2)))
10146 return arg2;
10147
10148 if (ada_is_fixed_point_type (type))
10149 return (cast_to_fixed (type, arg2));
10150
10151 if (ada_is_fixed_point_type (value_type (arg2)))
10152 return cast_from_fixed (type, arg2);
10153
10154 return value_cast (type, arg2);
10155 }
10156
10157 /* Evaluating Ada expressions, and printing their result.
10158 ------------------------------------------------------
10159
10160 1. Introduction:
10161 ----------------
10162
10163 We usually evaluate an Ada expression in order to print its value.
10164 We also evaluate an expression in order to print its type, which
10165 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10166 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10167 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10168 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10169 similar.
10170
10171 Evaluating expressions is a little more complicated for Ada entities
10172 than it is for entities in languages such as C. The main reason for
10173 this is that Ada provides types whose definition might be dynamic.
10174 One example of such types is variant records. Or another example
10175 would be an array whose bounds can only be known at run time.
10176
10177 The following description is a general guide as to what should be
10178 done (and what should NOT be done) in order to evaluate an expression
10179 involving such types, and when. This does not cover how the semantic
10180 information is encoded by GNAT as this is covered separatly. For the
10181 document used as the reference for the GNAT encoding, see exp_dbug.ads
10182 in the GNAT sources.
10183
10184 Ideally, we should embed each part of this description next to its
10185 associated code. Unfortunately, the amount of code is so vast right
10186 now that it's hard to see whether the code handling a particular
10187 situation might be duplicated or not. One day, when the code is
10188 cleaned up, this guide might become redundant with the comments
10189 inserted in the code, and we might want to remove it.
10190
10191 2. ``Fixing'' an Entity, the Simple Case:
10192 -----------------------------------------
10193
10194 When evaluating Ada expressions, the tricky issue is that they may
10195 reference entities whose type contents and size are not statically
10196 known. Consider for instance a variant record:
10197
10198 type Rec (Empty : Boolean := True) is record
10199 case Empty is
10200 when True => null;
10201 when False => Value : Integer;
10202 end case;
10203 end record;
10204 Yes : Rec := (Empty => False, Value => 1);
10205 No : Rec := (empty => True);
10206
10207 The size and contents of that record depends on the value of the
10208 descriminant (Rec.Empty). At this point, neither the debugging
10209 information nor the associated type structure in GDB are able to
10210 express such dynamic types. So what the debugger does is to create
10211 "fixed" versions of the type that applies to the specific object.
10212 We also informally refer to this opperation as "fixing" an object,
10213 which means creating its associated fixed type.
10214
10215 Example: when printing the value of variable "Yes" above, its fixed
10216 type would look like this:
10217
10218 type Rec is record
10219 Empty : Boolean;
10220 Value : Integer;
10221 end record;
10222
10223 On the other hand, if we printed the value of "No", its fixed type
10224 would become:
10225
10226 type Rec is record
10227 Empty : Boolean;
10228 end record;
10229
10230 Things become a little more complicated when trying to fix an entity
10231 with a dynamic type that directly contains another dynamic type,
10232 such as an array of variant records, for instance. There are
10233 two possible cases: Arrays, and records.
10234
10235 3. ``Fixing'' Arrays:
10236 ---------------------
10237
10238 The type structure in GDB describes an array in terms of its bounds,
10239 and the type of its elements. By design, all elements in the array
10240 have the same type and we cannot represent an array of variant elements
10241 using the current type structure in GDB. When fixing an array,
10242 we cannot fix the array element, as we would potentially need one
10243 fixed type per element of the array. As a result, the best we can do
10244 when fixing an array is to produce an array whose bounds and size
10245 are correct (allowing us to read it from memory), but without having
10246 touched its element type. Fixing each element will be done later,
10247 when (if) necessary.
10248
10249 Arrays are a little simpler to handle than records, because the same
10250 amount of memory is allocated for each element of the array, even if
10251 the amount of space actually used by each element differs from element
10252 to element. Consider for instance the following array of type Rec:
10253
10254 type Rec_Array is array (1 .. 2) of Rec;
10255
10256 The actual amount of memory occupied by each element might be different
10257 from element to element, depending on the value of their discriminant.
10258 But the amount of space reserved for each element in the array remains
10259 fixed regardless. So we simply need to compute that size using
10260 the debugging information available, from which we can then determine
10261 the array size (we multiply the number of elements of the array by
10262 the size of each element).
10263
10264 The simplest case is when we have an array of a constrained element
10265 type. For instance, consider the following type declarations:
10266
10267 type Bounded_String (Max_Size : Integer) is
10268 Length : Integer;
10269 Buffer : String (1 .. Max_Size);
10270 end record;
10271 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10272
10273 In this case, the compiler describes the array as an array of
10274 variable-size elements (identified by its XVS suffix) for which
10275 the size can be read in the parallel XVZ variable.
10276
10277 In the case of an array of an unconstrained element type, the compiler
10278 wraps the array element inside a private PAD type. This type should not
10279 be shown to the user, and must be "unwrap"'ed before printing. Note
10280 that we also use the adjective "aligner" in our code to designate
10281 these wrapper types.
10282
10283 In some cases, the size allocated for each element is statically
10284 known. In that case, the PAD type already has the correct size,
10285 and the array element should remain unfixed.
10286
10287 But there are cases when this size is not statically known.
10288 For instance, assuming that "Five" is an integer variable:
10289
10290 type Dynamic is array (1 .. Five) of Integer;
10291 type Wrapper (Has_Length : Boolean := False) is record
10292 Data : Dynamic;
10293 case Has_Length is
10294 when True => Length : Integer;
10295 when False => null;
10296 end case;
10297 end record;
10298 type Wrapper_Array is array (1 .. 2) of Wrapper;
10299
10300 Hello : Wrapper_Array := (others => (Has_Length => True,
10301 Data => (others => 17),
10302 Length => 1));
10303
10304
10305 The debugging info would describe variable Hello as being an
10306 array of a PAD type. The size of that PAD type is not statically
10307 known, but can be determined using a parallel XVZ variable.
10308 In that case, a copy of the PAD type with the correct size should
10309 be used for the fixed array.
10310
10311 3. ``Fixing'' record type objects:
10312 ----------------------------------
10313
10314 Things are slightly different from arrays in the case of dynamic
10315 record types. In this case, in order to compute the associated
10316 fixed type, we need to determine the size and offset of each of
10317 its components. This, in turn, requires us to compute the fixed
10318 type of each of these components.
10319
10320 Consider for instance the example:
10321
10322 type Bounded_String (Max_Size : Natural) is record
10323 Str : String (1 .. Max_Size);
10324 Length : Natural;
10325 end record;
10326 My_String : Bounded_String (Max_Size => 10);
10327
10328 In that case, the position of field "Length" depends on the size
10329 of field Str, which itself depends on the value of the Max_Size
10330 discriminant. In order to fix the type of variable My_String,
10331 we need to fix the type of field Str. Therefore, fixing a variant
10332 record requires us to fix each of its components.
10333
10334 However, if a component does not have a dynamic size, the component
10335 should not be fixed. In particular, fields that use a PAD type
10336 should not fixed. Here is an example where this might happen
10337 (assuming type Rec above):
10338
10339 type Container (Big : Boolean) is record
10340 First : Rec;
10341 After : Integer;
10342 case Big is
10343 when True => Another : Integer;
10344 when False => null;
10345 end case;
10346 end record;
10347 My_Container : Container := (Big => False,
10348 First => (Empty => True),
10349 After => 42);
10350
10351 In that example, the compiler creates a PAD type for component First,
10352 whose size is constant, and then positions the component After just
10353 right after it. The offset of component After is therefore constant
10354 in this case.
10355
10356 The debugger computes the position of each field based on an algorithm
10357 that uses, among other things, the actual position and size of the field
10358 preceding it. Let's now imagine that the user is trying to print
10359 the value of My_Container. If the type fixing was recursive, we would
10360 end up computing the offset of field After based on the size of the
10361 fixed version of field First. And since in our example First has
10362 only one actual field, the size of the fixed type is actually smaller
10363 than the amount of space allocated to that field, and thus we would
10364 compute the wrong offset of field After.
10365
10366 To make things more complicated, we need to watch out for dynamic
10367 components of variant records (identified by the ___XVL suffix in
10368 the component name). Even if the target type is a PAD type, the size
10369 of that type might not be statically known. So the PAD type needs
10370 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10371 we might end up with the wrong size for our component. This can be
10372 observed with the following type declarations:
10373
10374 type Octal is new Integer range 0 .. 7;
10375 type Octal_Array is array (Positive range <>) of Octal;
10376 pragma Pack (Octal_Array);
10377
10378 type Octal_Buffer (Size : Positive) is record
10379 Buffer : Octal_Array (1 .. Size);
10380 Length : Integer;
10381 end record;
10382
10383 In that case, Buffer is a PAD type whose size is unset and needs
10384 to be computed by fixing the unwrapped type.
10385
10386 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10387 ----------------------------------------------------------
10388
10389 Lastly, when should the sub-elements of an entity that remained unfixed
10390 thus far, be actually fixed?
10391
10392 The answer is: Only when referencing that element. For instance
10393 when selecting one component of a record, this specific component
10394 should be fixed at that point in time. Or when printing the value
10395 of a record, each component should be fixed before its value gets
10396 printed. Similarly for arrays, the element of the array should be
10397 fixed when printing each element of the array, or when extracting
10398 one element out of that array. On the other hand, fixing should
10399 not be performed on the elements when taking a slice of an array!
10400
10401 Note that one of the side-effects of miscomputing the offset and
10402 size of each field is that we end up also miscomputing the size
10403 of the containing type. This can have adverse results when computing
10404 the value of an entity. GDB fetches the value of an entity based
10405 on the size of its type, and thus a wrong size causes GDB to fetch
10406 the wrong amount of memory. In the case where the computed size is
10407 too small, GDB fetches too little data to print the value of our
10408 entiry. Results in this case as unpredicatble, as we usually read
10409 past the buffer containing the data =:-o. */
10410
10411 /* Implement the evaluate_exp routine in the exp_descriptor structure
10412 for the Ada language. */
10413
10414 static struct value *
10415 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10416 int *pos, enum noside noside)
10417 {
10418 enum exp_opcode op;
10419 int tem;
10420 int pc;
10421 int preeval_pos;
10422 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10423 struct type *type;
10424 int nargs, oplen;
10425 struct value **argvec;
10426
10427 pc = *pos;
10428 *pos += 1;
10429 op = exp->elts[pc].opcode;
10430
10431 switch (op)
10432 {
10433 default:
10434 *pos -= 1;
10435 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10436
10437 if (noside == EVAL_NORMAL)
10438 arg1 = unwrap_value (arg1);
10439
10440 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10441 then we need to perform the conversion manually, because
10442 evaluate_subexp_standard doesn't do it. This conversion is
10443 necessary in Ada because the different kinds of float/fixed
10444 types in Ada have different representations.
10445
10446 Similarly, we need to perform the conversion from OP_LONG
10447 ourselves. */
10448 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10449 arg1 = ada_value_cast (expect_type, arg1, noside);
10450
10451 return arg1;
10452
10453 case OP_STRING:
10454 {
10455 struct value *result;
10456
10457 *pos -= 1;
10458 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 /* The result type will have code OP_STRING, bashed there from
10460 OP_ARRAY. Bash it back. */
10461 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10462 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10463 return result;
10464 }
10465
10466 case UNOP_CAST:
10467 (*pos) += 2;
10468 type = exp->elts[pc + 1].type;
10469 arg1 = evaluate_subexp (type, exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472 arg1 = ada_value_cast (type, arg1, noside);
10473 return arg1;
10474
10475 case UNOP_QUAL:
10476 (*pos) += 2;
10477 type = exp->elts[pc + 1].type;
10478 return ada_evaluate_subexp (type, exp, pos, noside);
10479
10480 case BINOP_ASSIGN:
10481 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10483 {
10484 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10485 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10486 return arg1;
10487 return ada_value_assign (arg1, arg1);
10488 }
10489 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10490 except if the lhs of our assignment is a convenience variable.
10491 In the case of assigning to a convenience variable, the lhs
10492 should be exactly the result of the evaluation of the rhs. */
10493 type = value_type (arg1);
10494 if (VALUE_LVAL (arg1) == lval_internalvar)
10495 type = NULL;
10496 arg2 = evaluate_subexp (type, exp, pos, noside);
10497 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10498 return arg1;
10499 if (ada_is_fixed_point_type (value_type (arg1)))
10500 arg2 = cast_to_fixed (value_type (arg1), arg2);
10501 else if (ada_is_fixed_point_type (value_type (arg2)))
10502 error
10503 (_("Fixed-point values must be assigned to fixed-point variables"));
10504 else
10505 arg2 = coerce_for_assign (value_type (arg1), arg2);
10506 return ada_value_assign (arg1, arg2);
10507
10508 case BINOP_ADD:
10509 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10511 if (noside == EVAL_SKIP)
10512 goto nosideret;
10513 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg1),
10516 value_as_long (arg1) + value_as_long (arg2)));
10517 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg2),
10520 value_as_long (arg1) + value_as_long (arg2)));
10521 if ((ada_is_fixed_point_type (value_type (arg1))
10522 || ada_is_fixed_point_type (value_type (arg2)))
10523 && value_type (arg1) != value_type (arg2))
10524 error (_("Operands of fixed-point addition must have the same type"));
10525 /* Do the addition, and cast the result to the type of the first
10526 argument. We cannot cast the result to a reference type, so if
10527 ARG1 is a reference type, find its underlying type. */
10528 type = value_type (arg1);
10529 while (TYPE_CODE (type) == TYPE_CODE_REF)
10530 type = TYPE_TARGET_TYPE (type);
10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10532 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10533
10534 case BINOP_SUB:
10535 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10537 if (noside == EVAL_SKIP)
10538 goto nosideret;
10539 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg1),
10542 value_as_long (arg1) - value_as_long (arg2)));
10543 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10544 return (value_from_longest
10545 (value_type (arg2),
10546 value_as_long (arg1) - value_as_long (arg2)));
10547 if ((ada_is_fixed_point_type (value_type (arg1))
10548 || ada_is_fixed_point_type (value_type (arg2)))
10549 && value_type (arg1) != value_type (arg2))
10550 error (_("Operands of fixed-point subtraction "
10551 "must have the same type"));
10552 /* Do the substraction, and cast the result to the type of the first
10553 argument. We cannot cast the result to a reference type, so if
10554 ARG1 is a reference type, find its underlying type. */
10555 type = value_type (arg1);
10556 while (TYPE_CODE (type) == TYPE_CODE_REF)
10557 type = TYPE_TARGET_TYPE (type);
10558 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10559 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10560
10561 case BINOP_MUL:
10562 case BINOP_DIV:
10563 case BINOP_REM:
10564 case BINOP_MOD:
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567 if (noside == EVAL_SKIP)
10568 goto nosideret;
10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570 {
10571 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10572 return value_zero (value_type (arg1), not_lval);
10573 }
10574 else
10575 {
10576 type = builtin_type (exp->gdbarch)->builtin_double;
10577 if (ada_is_fixed_point_type (value_type (arg1)))
10578 arg1 = cast_from_fixed (type, arg1);
10579 if (ada_is_fixed_point_type (value_type (arg2)))
10580 arg2 = cast_from_fixed (type, arg2);
10581 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10582 return ada_value_binop (arg1, arg2, op);
10583 }
10584
10585 case BINOP_EQUAL:
10586 case BINOP_NOTEQUAL:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 tem = 0;
10593 else
10594 {
10595 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10596 tem = ada_value_equal (arg1, arg2);
10597 }
10598 if (op == BINOP_NOTEQUAL)
10599 tem = !tem;
10600 type = language_bool_type (exp->language_defn, exp->gdbarch);
10601 return value_from_longest (type, (LONGEST) tem);
10602
10603 case UNOP_NEG:
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 if (noside == EVAL_SKIP)
10606 goto nosideret;
10607 else if (ada_is_fixed_point_type (value_type (arg1)))
10608 return value_cast (value_type (arg1), value_neg (arg1));
10609 else
10610 {
10611 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10612 return value_neg (arg1);
10613 }
10614
10615 case BINOP_LOGICAL_AND:
10616 case BINOP_LOGICAL_OR:
10617 case UNOP_LOGICAL_NOT:
10618 {
10619 struct value *val;
10620
10621 *pos -= 1;
10622 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return value_cast (type, val);
10625 }
10626
10627 case BINOP_BITWISE_AND:
10628 case BINOP_BITWISE_IOR:
10629 case BINOP_BITWISE_XOR:
10630 {
10631 struct value *val;
10632
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10634 *pos = pc;
10635 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636
10637 return value_cast (value_type (arg1), val);
10638 }
10639
10640 case OP_VAR_VALUE:
10641 *pos -= 1;
10642
10643 if (noside == EVAL_SKIP)
10644 {
10645 *pos += 4;
10646 goto nosideret;
10647 }
10648
10649 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10650 /* Only encountered when an unresolved symbol occurs in a
10651 context other than a function call, in which case, it is
10652 invalid. */
10653 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10654 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10655
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 {
10658 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10659 /* Check to see if this is a tagged type. We also need to handle
10660 the case where the type is a reference to a tagged type, but
10661 we have to be careful to exclude pointers to tagged types.
10662 The latter should be shown as usual (as a pointer), whereas
10663 a reference should mostly be transparent to the user. */
10664 if (ada_is_tagged_type (type, 0)
10665 || (TYPE_CODE (type) == TYPE_CODE_REF
10666 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10667 {
10668 /* Tagged types are a little special in the fact that the real
10669 type is dynamic and can only be determined by inspecting the
10670 object's tag. This means that we need to get the object's
10671 value first (EVAL_NORMAL) and then extract the actual object
10672 type from its tag.
10673
10674 Note that we cannot skip the final step where we extract
10675 the object type from its tag, because the EVAL_NORMAL phase
10676 results in dynamic components being resolved into fixed ones.
10677 This can cause problems when trying to print the type
10678 description of tagged types whose parent has a dynamic size:
10679 We use the type name of the "_parent" component in order
10680 to print the name of the ancestor type in the type description.
10681 If that component had a dynamic size, the resolution into
10682 a fixed type would result in the loss of that type name,
10683 thus preventing us from printing the name of the ancestor
10684 type in the type description. */
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10686
10687 if (TYPE_CODE (type) != TYPE_CODE_REF)
10688 {
10689 struct type *actual_type;
10690
10691 actual_type = type_from_tag (ada_value_tag (arg1));
10692 if (actual_type == NULL)
10693 /* If, for some reason, we were unable to determine
10694 the actual type from the tag, then use the static
10695 approximation that we just computed as a fallback.
10696 This can happen if the debugging information is
10697 incomplete, for instance. */
10698 actual_type = type;
10699 return value_zero (actual_type, not_lval);
10700 }
10701 else
10702 {
10703 /* In the case of a ref, ada_coerce_ref takes care
10704 of determining the actual type. But the evaluation
10705 should return a ref as it should be valid to ask
10706 for its address; so rebuild a ref after coerce. */
10707 arg1 = ada_coerce_ref (arg1);
10708 return value_ref (arg1, TYPE_CODE_REF);
10709 }
10710 }
10711
10712 /* Records and unions for which GNAT encodings have been
10713 generated need to be statically fixed as well.
10714 Otherwise, non-static fixing produces a type where
10715 all dynamic properties are removed, which prevents "ptype"
10716 from being able to completely describe the type.
10717 For instance, a case statement in a variant record would be
10718 replaced by the relevant components based on the actual
10719 value of the discriminants. */
10720 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10721 && dynamic_template_type (type) != NULL)
10722 || (TYPE_CODE (type) == TYPE_CODE_UNION
10723 && ada_find_parallel_type (type, "___XVU") != NULL))
10724 {
10725 *pos += 4;
10726 return value_zero (to_static_fixed_type (type), not_lval);
10727 }
10728 }
10729
10730 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10731 return ada_to_fixed_value (arg1);
10732
10733 case OP_FUNCALL:
10734 (*pos) += 2;
10735
10736 /* Allocate arg vector, including space for the function to be
10737 called in argvec[0] and a terminating NULL. */
10738 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10739 argvec = XALLOCAVEC (struct value *, nargs + 2);
10740
10741 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10742 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10743 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10744 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10745 else
10746 {
10747 for (tem = 0; tem <= nargs; tem += 1)
10748 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 argvec[tem] = 0;
10750
10751 if (noside == EVAL_SKIP)
10752 goto nosideret;
10753 }
10754
10755 if (ada_is_constrained_packed_array_type
10756 (desc_base_type (value_type (argvec[0]))))
10757 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10759 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10760 /* This is a packed array that has already been fixed, and
10761 therefore already coerced to a simple array. Nothing further
10762 to do. */
10763 ;
10764 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10765 {
10766 /* Make sure we dereference references so that all the code below
10767 feels like it's really handling the referenced value. Wrapping
10768 types (for alignment) may be there, so make sure we strip them as
10769 well. */
10770 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10771 }
10772 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10773 && VALUE_LVAL (argvec[0]) == lval_memory)
10774 argvec[0] = value_addr (argvec[0]);
10775
10776 type = ada_check_typedef (value_type (argvec[0]));
10777
10778 /* Ada allows us to implicitly dereference arrays when subscripting
10779 them. So, if this is an array typedef (encoding use for array
10780 access types encoded as fat pointers), strip it now. */
10781 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10782 type = ada_typedef_target_type (type);
10783
10784 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10785 {
10786 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10787 {
10788 case TYPE_CODE_FUNC:
10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10790 break;
10791 case TYPE_CODE_ARRAY:
10792 break;
10793 case TYPE_CODE_STRUCT:
10794 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10795 argvec[0] = ada_value_ind (argvec[0]);
10796 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10797 break;
10798 default:
10799 error (_("cannot subscript or call something of type `%s'"),
10800 ada_type_name (value_type (argvec[0])));
10801 break;
10802 }
10803 }
10804
10805 switch (TYPE_CODE (type))
10806 {
10807 case TYPE_CODE_FUNC:
10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10809 {
10810 struct type *rtype = TYPE_TARGET_TYPE (type);
10811
10812 if (TYPE_GNU_IFUNC (type))
10813 return allocate_value (TYPE_TARGET_TYPE (rtype));
10814 return allocate_value (rtype);
10815 }
10816 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10817 case TYPE_CODE_INTERNAL_FUNCTION:
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 /* We don't know anything about what the internal
10820 function might return, but we have to return
10821 something. */
10822 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10823 not_lval);
10824 else
10825 return call_internal_function (exp->gdbarch, exp->language_defn,
10826 argvec[0], nargs, argvec + 1);
10827
10828 case TYPE_CODE_STRUCT:
10829 {
10830 int arity;
10831
10832 arity = ada_array_arity (type);
10833 type = ada_array_element_type (type, nargs);
10834 if (type == NULL)
10835 error (_("cannot subscript or call a record"));
10836 if (arity != nargs)
10837 error (_("wrong number of subscripts; expecting %d"), arity);
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 return value_zero (ada_aligned_type (type), lval_memory);
10840 return
10841 unwrap_value (ada_value_subscript
10842 (argvec[0], nargs, argvec + 1));
10843 }
10844 case TYPE_CODE_ARRAY:
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 {
10847 type = ada_array_element_type (type, nargs);
10848 if (type == NULL)
10849 error (_("element type of array unknown"));
10850 else
10851 return value_zero (ada_aligned_type (type), lval_memory);
10852 }
10853 return
10854 unwrap_value (ada_value_subscript
10855 (ada_coerce_to_simple_array (argvec[0]),
10856 nargs, argvec + 1));
10857 case TYPE_CODE_PTR: /* Pointer to array */
10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859 {
10860 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10861 type = ada_array_element_type (type, nargs);
10862 if (type == NULL)
10863 error (_("element type of array unknown"));
10864 else
10865 return value_zero (ada_aligned_type (type), lval_memory);
10866 }
10867 return
10868 unwrap_value (ada_value_ptr_subscript (argvec[0],
10869 nargs, argvec + 1));
10870
10871 default:
10872 error (_("Attempt to index or call something other than an "
10873 "array or function"));
10874 }
10875
10876 case TERNOP_SLICE:
10877 {
10878 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 struct value *low_bound_val =
10880 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 struct value *high_bound_val =
10882 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 LONGEST low_bound;
10884 LONGEST high_bound;
10885
10886 low_bound_val = coerce_ref (low_bound_val);
10887 high_bound_val = coerce_ref (high_bound_val);
10888 low_bound = value_as_long (low_bound_val);
10889 high_bound = value_as_long (high_bound_val);
10890
10891 if (noside == EVAL_SKIP)
10892 goto nosideret;
10893
10894 /* If this is a reference to an aligner type, then remove all
10895 the aligners. */
10896 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10897 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10898 TYPE_TARGET_TYPE (value_type (array)) =
10899 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10900
10901 if (ada_is_constrained_packed_array_type (value_type (array)))
10902 error (_("cannot slice a packed array"));
10903
10904 /* If this is a reference to an array or an array lvalue,
10905 convert to a pointer. */
10906 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10907 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10908 && VALUE_LVAL (array) == lval_memory))
10909 array = value_addr (array);
10910
10911 if (noside == EVAL_AVOID_SIDE_EFFECTS
10912 && ada_is_array_descriptor_type (ada_check_typedef
10913 (value_type (array))))
10914 return empty_array (ada_type_of_array (array, 0), low_bound);
10915
10916 array = ada_coerce_to_simple_array_ptr (array);
10917
10918 /* If we have more than one level of pointer indirection,
10919 dereference the value until we get only one level. */
10920 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10921 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10922 == TYPE_CODE_PTR))
10923 array = value_ind (array);
10924
10925 /* Make sure we really do have an array type before going further,
10926 to avoid a SEGV when trying to get the index type or the target
10927 type later down the road if the debug info generated by
10928 the compiler is incorrect or incomplete. */
10929 if (!ada_is_simple_array_type (value_type (array)))
10930 error (_("cannot take slice of non-array"));
10931
10932 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10933 == TYPE_CODE_PTR)
10934 {
10935 struct type *type0 = ada_check_typedef (value_type (array));
10936
10937 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10938 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10939 else
10940 {
10941 struct type *arr_type0 =
10942 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10943
10944 return ada_value_slice_from_ptr (array, arr_type0,
10945 longest_to_int (low_bound),
10946 longest_to_int (high_bound));
10947 }
10948 }
10949 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10950 return array;
10951 else if (high_bound < low_bound)
10952 return empty_array (value_type (array), low_bound);
10953 else
10954 return ada_value_slice (array, longest_to_int (low_bound),
10955 longest_to_int (high_bound));
10956 }
10957
10958 case UNOP_IN_RANGE:
10959 (*pos) += 2;
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 type = check_typedef (exp->elts[pc + 1].type);
10962
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
10965
10966 switch (TYPE_CODE (type))
10967 {
10968 default:
10969 lim_warning (_("Membership test incompletely implemented; "
10970 "always returns true"));
10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
10972 return value_from_longest (type, (LONGEST) 1);
10973
10974 case TYPE_CODE_RANGE:
10975 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10976 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10980 return
10981 value_from_longest (type,
10982 (value_less (arg1, arg3)
10983 || value_equal (arg1, arg3))
10984 && (value_less (arg2, arg1)
10985 || value_equal (arg2, arg1)));
10986 }
10987
10988 case BINOP_IN_BOUNDS:
10989 (*pos) += 2;
10990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10992
10993 if (noside == EVAL_SKIP)
10994 goto nosideret;
10995
10996 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10997 {
10998 type = language_bool_type (exp->language_defn, exp->gdbarch);
10999 return value_zero (type, not_lval);
11000 }
11001
11002 tem = longest_to_int (exp->elts[pc + 1].longconst);
11003
11004 type = ada_index_type (value_type (arg2), tem, "range");
11005 if (!type)
11006 type = value_type (arg1);
11007
11008 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11009 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11010
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11013 type = language_bool_type (exp->language_defn, exp->gdbarch);
11014 return
11015 value_from_longest (type,
11016 (value_less (arg1, arg3)
11017 || value_equal (arg1, arg3))
11018 && (value_less (arg2, arg1)
11019 || value_equal (arg2, arg1)));
11020
11021 case TERNOP_IN_RANGE:
11022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028
11029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11031 type = language_bool_type (exp->language_defn, exp->gdbarch);
11032 return
11033 value_from_longest (type,
11034 (value_less (arg1, arg3)
11035 || value_equal (arg1, arg3))
11036 && (value_less (arg2, arg1)
11037 || value_equal (arg2, arg1)));
11038
11039 case OP_ATR_FIRST:
11040 case OP_ATR_LAST:
11041 case OP_ATR_LENGTH:
11042 {
11043 struct type *type_arg;
11044
11045 if (exp->elts[*pos].opcode == OP_TYPE)
11046 {
11047 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11048 arg1 = NULL;
11049 type_arg = check_typedef (exp->elts[pc + 2].type);
11050 }
11051 else
11052 {
11053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054 type_arg = NULL;
11055 }
11056
11057 if (exp->elts[*pos].opcode != OP_LONG)
11058 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11059 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11060 *pos += 4;
11061
11062 if (noside == EVAL_SKIP)
11063 goto nosideret;
11064
11065 if (type_arg == NULL)
11066 {
11067 arg1 = ada_coerce_ref (arg1);
11068
11069 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11070 arg1 = ada_coerce_to_simple_array (arg1);
11071
11072 if (op == OP_ATR_LENGTH)
11073 type = builtin_type (exp->gdbarch)->builtin_int;
11074 else
11075 {
11076 type = ada_index_type (value_type (arg1), tem,
11077 ada_attribute_name (op));
11078 if (type == NULL)
11079 type = builtin_type (exp->gdbarch)->builtin_int;
11080 }
11081
11082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11083 return allocate_value (type);
11084
11085 switch (op)
11086 {
11087 default: /* Should never happen. */
11088 error (_("unexpected attribute encountered"));
11089 case OP_ATR_FIRST:
11090 return value_from_longest
11091 (type, ada_array_bound (arg1, tem, 0));
11092 case OP_ATR_LAST:
11093 return value_from_longest
11094 (type, ada_array_bound (arg1, tem, 1));
11095 case OP_ATR_LENGTH:
11096 return value_from_longest
11097 (type, ada_array_length (arg1, tem));
11098 }
11099 }
11100 else if (discrete_type_p (type_arg))
11101 {
11102 struct type *range_type;
11103 const char *name = ada_type_name (type_arg);
11104
11105 range_type = NULL;
11106 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11107 range_type = to_fixed_range_type (type_arg, NULL);
11108 if (range_type == NULL)
11109 range_type = type_arg;
11110 switch (op)
11111 {
11112 default:
11113 error (_("unexpected attribute encountered"));
11114 case OP_ATR_FIRST:
11115 return value_from_longest
11116 (range_type, ada_discrete_type_low_bound (range_type));
11117 case OP_ATR_LAST:
11118 return value_from_longest
11119 (range_type, ada_discrete_type_high_bound (range_type));
11120 case OP_ATR_LENGTH:
11121 error (_("the 'length attribute applies only to array types"));
11122 }
11123 }
11124 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11125 error (_("unimplemented type attribute"));
11126 else
11127 {
11128 LONGEST low, high;
11129
11130 if (ada_is_constrained_packed_array_type (type_arg))
11131 type_arg = decode_constrained_packed_array_type (type_arg);
11132
11133 if (op == OP_ATR_LENGTH)
11134 type = builtin_type (exp->gdbarch)->builtin_int;
11135 else
11136 {
11137 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11138 if (type == NULL)
11139 type = builtin_type (exp->gdbarch)->builtin_int;
11140 }
11141
11142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11143 return allocate_value (type);
11144
11145 switch (op)
11146 {
11147 default:
11148 error (_("unexpected attribute encountered"));
11149 case OP_ATR_FIRST:
11150 low = ada_array_bound_from_type (type_arg, tem, 0);
11151 return value_from_longest (type, low);
11152 case OP_ATR_LAST:
11153 high = ada_array_bound_from_type (type_arg, tem, 1);
11154 return value_from_longest (type, high);
11155 case OP_ATR_LENGTH:
11156 low = ada_array_bound_from_type (type_arg, tem, 0);
11157 high = ada_array_bound_from_type (type_arg, tem, 1);
11158 return value_from_longest (type, high - low + 1);
11159 }
11160 }
11161 }
11162
11163 case OP_ATR_TAG:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
11167
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 return value_zero (ada_tag_type (arg1), not_lval);
11170
11171 return ada_value_tag (arg1);
11172
11173 case OP_ATR_MIN:
11174 case OP_ATR_MAX:
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
11179 goto nosideret;
11180 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181 return value_zero (value_type (arg1), not_lval);
11182 else
11183 {
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185 return value_binop (arg1, arg2,
11186 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11187 }
11188
11189 case OP_ATR_MODULUS:
11190 {
11191 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11192
11193 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11194 if (noside == EVAL_SKIP)
11195 goto nosideret;
11196
11197 if (!ada_is_modular_type (type_arg))
11198 error (_("'modulus must be applied to modular type"));
11199
11200 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11201 ada_modulus (type_arg));
11202 }
11203
11204
11205 case OP_ATR_POS:
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212 return value_zero (type, not_lval);
11213 else
11214 return value_pos_atr (type, arg1);
11215
11216 case OP_ATR_SIZE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 type = value_type (arg1);
11219
11220 /* If the argument is a reference, then dereference its type, since
11221 the user is really asking for the size of the actual object,
11222 not the size of the pointer. */
11223 if (TYPE_CODE (type) == TYPE_CODE_REF)
11224 type = TYPE_TARGET_TYPE (type);
11225
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11230 else
11231 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11232 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11233
11234 case OP_ATR_VAL:
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 type = exp->elts[pc + 2].type;
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (type, not_lval);
11242 else
11243 return value_val_atr (type, arg1);
11244
11245 case BINOP_EXP:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (value_type (arg1), not_lval);
11252 else
11253 {
11254 /* For integer exponentiation operations,
11255 only promote the first argument. */
11256 if (is_integral_type (value_type (arg2)))
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 else
11259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11260
11261 return value_binop (arg1, arg2, op);
11262 }
11263
11264 case UNOP_PLUS:
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 else
11269 return arg1;
11270
11271 case UNOP_ABS:
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
11274 goto nosideret;
11275 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11276 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11277 return value_neg (arg1);
11278 else
11279 return arg1;
11280
11281 case UNOP_IND:
11282 preeval_pos = *pos;
11283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11284 if (noside == EVAL_SKIP)
11285 goto nosideret;
11286 type = ada_check_typedef (value_type (arg1));
11287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11288 {
11289 if (ada_is_array_descriptor_type (type))
11290 /* GDB allows dereferencing GNAT array descriptors. */
11291 {
11292 struct type *arrType = ada_type_of_array (arg1, 0);
11293
11294 if (arrType == NULL)
11295 error (_("Attempt to dereference null array pointer."));
11296 return value_at_lazy (arrType, 0);
11297 }
11298 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11299 || TYPE_CODE (type) == TYPE_CODE_REF
11300 /* In C you can dereference an array to get the 1st elt. */
11301 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11302 {
11303 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11304 only be determined by inspecting the object's tag.
11305 This means that we need to evaluate completely the
11306 expression in order to get its type. */
11307
11308 if ((TYPE_CODE (type) == TYPE_CODE_REF
11309 || TYPE_CODE (type) == TYPE_CODE_PTR)
11310 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11311 {
11312 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11313 EVAL_NORMAL);
11314 type = value_type (ada_value_ind (arg1));
11315 }
11316 else
11317 {
11318 type = to_static_fixed_type
11319 (ada_aligned_type
11320 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11321 }
11322 ada_ensure_varsize_limit (type);
11323 return value_zero (type, lval_memory);
11324 }
11325 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11326 {
11327 /* GDB allows dereferencing an int. */
11328 if (expect_type == NULL)
11329 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11330 lval_memory);
11331 else
11332 {
11333 expect_type =
11334 to_static_fixed_type (ada_aligned_type (expect_type));
11335 return value_zero (expect_type, lval_memory);
11336 }
11337 }
11338 else
11339 error (_("Attempt to take contents of a non-pointer value."));
11340 }
11341 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11342 type = ada_check_typedef (value_type (arg1));
11343
11344 if (TYPE_CODE (type) == TYPE_CODE_INT)
11345 /* GDB allows dereferencing an int. If we were given
11346 the expect_type, then use that as the target type.
11347 Otherwise, assume that the target type is an int. */
11348 {
11349 if (expect_type != NULL)
11350 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11351 arg1));
11352 else
11353 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11354 (CORE_ADDR) value_as_address (arg1));
11355 }
11356
11357 if (ada_is_array_descriptor_type (type))
11358 /* GDB allows dereferencing GNAT array descriptors. */
11359 return ada_coerce_to_simple_array (arg1);
11360 else
11361 return ada_value_ind (arg1);
11362
11363 case STRUCTOP_STRUCT:
11364 tem = longest_to_int (exp->elts[pc + 1].longconst);
11365 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11366 preeval_pos = *pos;
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 if (noside == EVAL_SKIP)
11369 goto nosideret;
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 {
11372 struct type *type1 = value_type (arg1);
11373
11374 if (ada_is_tagged_type (type1, 1))
11375 {
11376 type = ada_lookup_struct_elt_type (type1,
11377 &exp->elts[pc + 2].string,
11378 1, 1, NULL);
11379
11380 /* If the field is not found, check if it exists in the
11381 extension of this object's type. This means that we
11382 need to evaluate completely the expression. */
11383
11384 if (type == NULL)
11385 {
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11387 EVAL_NORMAL);
11388 arg1 = ada_value_struct_elt (arg1,
11389 &exp->elts[pc + 2].string,
11390 0);
11391 arg1 = unwrap_value (arg1);
11392 type = value_type (ada_to_fixed_value (arg1));
11393 }
11394 }
11395 else
11396 type =
11397 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11398 0, NULL);
11399
11400 return value_zero (ada_aligned_type (type), lval_memory);
11401 }
11402 else
11403 {
11404 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11405 arg1 = unwrap_value (arg1);
11406 return ada_to_fixed_value (arg1);
11407 }
11408
11409 case OP_TYPE:
11410 /* The value is not supposed to be used. This is here to make it
11411 easier to accommodate expressions that contain types. */
11412 (*pos) += 2;
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416 return allocate_value (exp->elts[pc + 1].type);
11417 else
11418 error (_("Attempt to use a type name as an expression"));
11419
11420 case OP_AGGREGATE:
11421 case OP_CHOICES:
11422 case OP_OTHERS:
11423 case OP_DISCRETE_RANGE:
11424 case OP_POSITIONAL:
11425 case OP_NAME:
11426 if (noside == EVAL_NORMAL)
11427 switch (op)
11428 {
11429 case OP_NAME:
11430 error (_("Undefined name, ambiguous name, or renaming used in "
11431 "component association: %s."), &exp->elts[pc+2].string);
11432 case OP_AGGREGATE:
11433 error (_("Aggregates only allowed on the right of an assignment"));
11434 default:
11435 internal_error (__FILE__, __LINE__,
11436 _("aggregate apparently mangled"));
11437 }
11438
11439 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11440 *pos += oplen - 1;
11441 for (tem = 0; tem < nargs; tem += 1)
11442 ada_evaluate_subexp (NULL, exp, pos, noside);
11443 goto nosideret;
11444 }
11445
11446 nosideret:
11447 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11448 }
11449 \f
11450
11451 /* Fixed point */
11452
11453 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11454 type name that encodes the 'small and 'delta information.
11455 Otherwise, return NULL. */
11456
11457 static const char *
11458 fixed_type_info (struct type *type)
11459 {
11460 const char *name = ada_type_name (type);
11461 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11462
11463 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11464 {
11465 const char *tail = strstr (name, "___XF_");
11466
11467 if (tail == NULL)
11468 return NULL;
11469 else
11470 return tail + 5;
11471 }
11472 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11473 return fixed_type_info (TYPE_TARGET_TYPE (type));
11474 else
11475 return NULL;
11476 }
11477
11478 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11479
11480 int
11481 ada_is_fixed_point_type (struct type *type)
11482 {
11483 return fixed_type_info (type) != NULL;
11484 }
11485
11486 /* Return non-zero iff TYPE represents a System.Address type. */
11487
11488 int
11489 ada_is_system_address_type (struct type *type)
11490 {
11491 return (TYPE_NAME (type)
11492 && strcmp (TYPE_NAME (type), "system__address") == 0);
11493 }
11494
11495 /* Assuming that TYPE is the representation of an Ada fixed-point
11496 type, return its delta, or -1 if the type is malformed and the
11497 delta cannot be determined. */
11498
11499 DOUBLEST
11500 ada_delta (struct type *type)
11501 {
11502 const char *encoding = fixed_type_info (type);
11503 DOUBLEST num, den;
11504
11505 /* Strictly speaking, num and den are encoded as integer. However,
11506 they may not fit into a long, and they will have to be converted
11507 to DOUBLEST anyway. So scan them as DOUBLEST. */
11508 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11509 &num, &den) < 2)
11510 return -1.0;
11511 else
11512 return num / den;
11513 }
11514
11515 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11516 factor ('SMALL value) associated with the type. */
11517
11518 static DOUBLEST
11519 scaling_factor (struct type *type)
11520 {
11521 const char *encoding = fixed_type_info (type);
11522 DOUBLEST num0, den0, num1, den1;
11523 int n;
11524
11525 /* Strictly speaking, num's and den's are encoded as integer. However,
11526 they may not fit into a long, and they will have to be converted
11527 to DOUBLEST anyway. So scan them as DOUBLEST. */
11528 n = sscanf (encoding,
11529 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11530 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11531 &num0, &den0, &num1, &den1);
11532
11533 if (n < 2)
11534 return 1.0;
11535 else if (n == 4)
11536 return num1 / den1;
11537 else
11538 return num0 / den0;
11539 }
11540
11541
11542 /* Assuming that X is the representation of a value of fixed-point
11543 type TYPE, return its floating-point equivalent. */
11544
11545 DOUBLEST
11546 ada_fixed_to_float (struct type *type, LONGEST x)
11547 {
11548 return (DOUBLEST) x *scaling_factor (type);
11549 }
11550
11551 /* The representation of a fixed-point value of type TYPE
11552 corresponding to the value X. */
11553
11554 LONGEST
11555 ada_float_to_fixed (struct type *type, DOUBLEST x)
11556 {
11557 return (LONGEST) (x / scaling_factor (type) + 0.5);
11558 }
11559
11560 \f
11561
11562 /* Range types */
11563
11564 /* Scan STR beginning at position K for a discriminant name, and
11565 return the value of that discriminant field of DVAL in *PX. If
11566 PNEW_K is not null, put the position of the character beyond the
11567 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11568 not alter *PX and *PNEW_K if unsuccessful. */
11569
11570 static int
11571 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11572 int *pnew_k)
11573 {
11574 static char *bound_buffer = NULL;
11575 static size_t bound_buffer_len = 0;
11576 const char *pstart, *pend, *bound;
11577 struct value *bound_val;
11578
11579 if (dval == NULL || str == NULL || str[k] == '\0')
11580 return 0;
11581
11582 pstart = str + k;
11583 pend = strstr (pstart, "__");
11584 if (pend == NULL)
11585 {
11586 bound = pstart;
11587 k += strlen (bound);
11588 }
11589 else
11590 {
11591 int len = pend - pstart;
11592
11593 /* Strip __ and beyond. */
11594 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11595 strncpy (bound_buffer, pstart, len);
11596 bound_buffer[len] = '\0';
11597
11598 bound = bound_buffer;
11599 k = pend - str;
11600 }
11601
11602 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11603 if (bound_val == NULL)
11604 return 0;
11605
11606 *px = value_as_long (bound_val);
11607 if (pnew_k != NULL)
11608 *pnew_k = k;
11609 return 1;
11610 }
11611
11612 /* Value of variable named NAME in the current environment. If
11613 no such variable found, then if ERR_MSG is null, returns 0, and
11614 otherwise causes an error with message ERR_MSG. */
11615
11616 static struct value *
11617 get_var_value (char *name, char *err_msg)
11618 {
11619 struct block_symbol *syms;
11620 int nsyms;
11621
11622 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11623 &syms);
11624
11625 if (nsyms != 1)
11626 {
11627 if (err_msg == NULL)
11628 return 0;
11629 else
11630 error (("%s"), err_msg);
11631 }
11632
11633 return value_of_variable (syms[0].symbol, syms[0].block);
11634 }
11635
11636 /* Value of integer variable named NAME in the current environment. If
11637 no such variable found, returns 0, and sets *FLAG to 0. If
11638 successful, sets *FLAG to 1. */
11639
11640 LONGEST
11641 get_int_var_value (char *name, int *flag)
11642 {
11643 struct value *var_val = get_var_value (name, 0);
11644
11645 if (var_val == 0)
11646 {
11647 if (flag != NULL)
11648 *flag = 0;
11649 return 0;
11650 }
11651 else
11652 {
11653 if (flag != NULL)
11654 *flag = 1;
11655 return value_as_long (var_val);
11656 }
11657 }
11658
11659
11660 /* Return a range type whose base type is that of the range type named
11661 NAME in the current environment, and whose bounds are calculated
11662 from NAME according to the GNAT range encoding conventions.
11663 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11664 corresponding range type from debug information; fall back to using it
11665 if symbol lookup fails. If a new type must be created, allocate it
11666 like ORIG_TYPE was. The bounds information, in general, is encoded
11667 in NAME, the base type given in the named range type. */
11668
11669 static struct type *
11670 to_fixed_range_type (struct type *raw_type, struct value *dval)
11671 {
11672 const char *name;
11673 struct type *base_type;
11674 const char *subtype_info;
11675
11676 gdb_assert (raw_type != NULL);
11677 gdb_assert (TYPE_NAME (raw_type) != NULL);
11678
11679 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11680 base_type = TYPE_TARGET_TYPE (raw_type);
11681 else
11682 base_type = raw_type;
11683
11684 name = TYPE_NAME (raw_type);
11685 subtype_info = strstr (name, "___XD");
11686 if (subtype_info == NULL)
11687 {
11688 LONGEST L = ada_discrete_type_low_bound (raw_type);
11689 LONGEST U = ada_discrete_type_high_bound (raw_type);
11690
11691 if (L < INT_MIN || U > INT_MAX)
11692 return raw_type;
11693 else
11694 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11695 L, U);
11696 }
11697 else
11698 {
11699 static char *name_buf = NULL;
11700 static size_t name_len = 0;
11701 int prefix_len = subtype_info - name;
11702 LONGEST L, U;
11703 struct type *type;
11704 const char *bounds_str;
11705 int n;
11706
11707 GROW_VECT (name_buf, name_len, prefix_len + 5);
11708 strncpy (name_buf, name, prefix_len);
11709 name_buf[prefix_len] = '\0';
11710
11711 subtype_info += 5;
11712 bounds_str = strchr (subtype_info, '_');
11713 n = 1;
11714
11715 if (*subtype_info == 'L')
11716 {
11717 if (!ada_scan_number (bounds_str, n, &L, &n)
11718 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11719 return raw_type;
11720 if (bounds_str[n] == '_')
11721 n += 2;
11722 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11723 n += 1;
11724 subtype_info += 1;
11725 }
11726 else
11727 {
11728 int ok;
11729
11730 strcpy (name_buf + prefix_len, "___L");
11731 L = get_int_var_value (name_buf, &ok);
11732 if (!ok)
11733 {
11734 lim_warning (_("Unknown lower bound, using 1."));
11735 L = 1;
11736 }
11737 }
11738
11739 if (*subtype_info == 'U')
11740 {
11741 if (!ada_scan_number (bounds_str, n, &U, &n)
11742 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11743 return raw_type;
11744 }
11745 else
11746 {
11747 int ok;
11748
11749 strcpy (name_buf + prefix_len, "___U");
11750 U = get_int_var_value (name_buf, &ok);
11751 if (!ok)
11752 {
11753 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11754 U = L;
11755 }
11756 }
11757
11758 type = create_static_range_type (alloc_type_copy (raw_type),
11759 base_type, L, U);
11760 TYPE_NAME (type) = name;
11761 return type;
11762 }
11763 }
11764
11765 /* True iff NAME is the name of a range type. */
11766
11767 int
11768 ada_is_range_type_name (const char *name)
11769 {
11770 return (name != NULL && strstr (name, "___XD"));
11771 }
11772 \f
11773
11774 /* Modular types */
11775
11776 /* True iff TYPE is an Ada modular type. */
11777
11778 int
11779 ada_is_modular_type (struct type *type)
11780 {
11781 struct type *subranged_type = get_base_type (type);
11782
11783 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11784 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11785 && TYPE_UNSIGNED (subranged_type));
11786 }
11787
11788 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11789
11790 ULONGEST
11791 ada_modulus (struct type *type)
11792 {
11793 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11794 }
11795 \f
11796
11797 /* Ada exception catchpoint support:
11798 ---------------------------------
11799
11800 We support 3 kinds of exception catchpoints:
11801 . catchpoints on Ada exceptions
11802 . catchpoints on unhandled Ada exceptions
11803 . catchpoints on failed assertions
11804
11805 Exceptions raised during failed assertions, or unhandled exceptions
11806 could perfectly be caught with the general catchpoint on Ada exceptions.
11807 However, we can easily differentiate these two special cases, and having
11808 the option to distinguish these two cases from the rest can be useful
11809 to zero-in on certain situations.
11810
11811 Exception catchpoints are a specialized form of breakpoint,
11812 since they rely on inserting breakpoints inside known routines
11813 of the GNAT runtime. The implementation therefore uses a standard
11814 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11815 of breakpoint_ops.
11816
11817 Support in the runtime for exception catchpoints have been changed
11818 a few times already, and these changes affect the implementation
11819 of these catchpoints. In order to be able to support several
11820 variants of the runtime, we use a sniffer that will determine
11821 the runtime variant used by the program being debugged. */
11822
11823 /* Ada's standard exceptions.
11824
11825 The Ada 83 standard also defined Numeric_Error. But there so many
11826 situations where it was unclear from the Ada 83 Reference Manual
11827 (RM) whether Constraint_Error or Numeric_Error should be raised,
11828 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11829 Interpretation saying that anytime the RM says that Numeric_Error
11830 should be raised, the implementation may raise Constraint_Error.
11831 Ada 95 went one step further and pretty much removed Numeric_Error
11832 from the list of standard exceptions (it made it a renaming of
11833 Constraint_Error, to help preserve compatibility when compiling
11834 an Ada83 compiler). As such, we do not include Numeric_Error from
11835 this list of standard exceptions. */
11836
11837 static const char *standard_exc[] = {
11838 "constraint_error",
11839 "program_error",
11840 "storage_error",
11841 "tasking_error"
11842 };
11843
11844 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11845
11846 /* A structure that describes how to support exception catchpoints
11847 for a given executable. */
11848
11849 struct exception_support_info
11850 {
11851 /* The name of the symbol to break on in order to insert
11852 a catchpoint on exceptions. */
11853 const char *catch_exception_sym;
11854
11855 /* The name of the symbol to break on in order to insert
11856 a catchpoint on unhandled exceptions. */
11857 const char *catch_exception_unhandled_sym;
11858
11859 /* The name of the symbol to break on in order to insert
11860 a catchpoint on failed assertions. */
11861 const char *catch_assert_sym;
11862
11863 /* Assuming that the inferior just triggered an unhandled exception
11864 catchpoint, this function is responsible for returning the address
11865 in inferior memory where the name of that exception is stored.
11866 Return zero if the address could not be computed. */
11867 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11868 };
11869
11870 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11871 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11872
11873 /* The following exception support info structure describes how to
11874 implement exception catchpoints with the latest version of the
11875 Ada runtime (as of 2007-03-06). */
11876
11877 static const struct exception_support_info default_exception_support_info =
11878 {
11879 "__gnat_debug_raise_exception", /* catch_exception_sym */
11880 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11881 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11882 ada_unhandled_exception_name_addr
11883 };
11884
11885 /* The following exception support info structure describes how to
11886 implement exception catchpoints with a slightly older version
11887 of the Ada runtime. */
11888
11889 static const struct exception_support_info exception_support_info_fallback =
11890 {
11891 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11892 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11893 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11894 ada_unhandled_exception_name_addr_from_raise
11895 };
11896
11897 /* Return nonzero if we can detect the exception support routines
11898 described in EINFO.
11899
11900 This function errors out if an abnormal situation is detected
11901 (for instance, if we find the exception support routines, but
11902 that support is found to be incomplete). */
11903
11904 static int
11905 ada_has_this_exception_support (const struct exception_support_info *einfo)
11906 {
11907 struct symbol *sym;
11908
11909 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11910 that should be compiled with debugging information. As a result, we
11911 expect to find that symbol in the symtabs. */
11912
11913 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11914 if (sym == NULL)
11915 {
11916 /* Perhaps we did not find our symbol because the Ada runtime was
11917 compiled without debugging info, or simply stripped of it.
11918 It happens on some GNU/Linux distributions for instance, where
11919 users have to install a separate debug package in order to get
11920 the runtime's debugging info. In that situation, let the user
11921 know why we cannot insert an Ada exception catchpoint.
11922
11923 Note: Just for the purpose of inserting our Ada exception
11924 catchpoint, we could rely purely on the associated minimal symbol.
11925 But we would be operating in degraded mode anyway, since we are
11926 still lacking the debugging info needed later on to extract
11927 the name of the exception being raised (this name is printed in
11928 the catchpoint message, and is also used when trying to catch
11929 a specific exception). We do not handle this case for now. */
11930 struct bound_minimal_symbol msym
11931 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11932
11933 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11937
11938 return 0;
11939 }
11940
11941 /* Make sure that the symbol we found corresponds to a function. */
11942
11943 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11944 error (_("Symbol \"%s\" is not a function (class = %d)"),
11945 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11946
11947 return 1;
11948 }
11949
11950 /* Inspect the Ada runtime and determine which exception info structure
11951 should be used to provide support for exception catchpoints.
11952
11953 This function will always set the per-inferior exception_info,
11954 or raise an error. */
11955
11956 static void
11957 ada_exception_support_info_sniffer (void)
11958 {
11959 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11960
11961 /* If the exception info is already known, then no need to recompute it. */
11962 if (data->exception_info != NULL)
11963 return;
11964
11965 /* Check the latest (default) exception support info. */
11966 if (ada_has_this_exception_support (&default_exception_support_info))
11967 {
11968 data->exception_info = &default_exception_support_info;
11969 return;
11970 }
11971
11972 /* Try our fallback exception suport info. */
11973 if (ada_has_this_exception_support (&exception_support_info_fallback))
11974 {
11975 data->exception_info = &exception_support_info_fallback;
11976 return;
11977 }
11978
11979 /* Sometimes, it is normal for us to not be able to find the routine
11980 we are looking for. This happens when the program is linked with
11981 the shared version of the GNAT runtime, and the program has not been
11982 started yet. Inform the user of these two possible causes if
11983 applicable. */
11984
11985 if (ada_update_initial_language (language_unknown) != language_ada)
11986 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11987
11988 /* If the symbol does not exist, then check that the program is
11989 already started, to make sure that shared libraries have been
11990 loaded. If it is not started, this may mean that the symbol is
11991 in a shared library. */
11992
11993 if (ptid_get_pid (inferior_ptid) == 0)
11994 error (_("Unable to insert catchpoint. Try to start the program first."));
11995
11996 /* At this point, we know that we are debugging an Ada program and
11997 that the inferior has been started, but we still are not able to
11998 find the run-time symbols. That can mean that we are in
11999 configurable run time mode, or that a-except as been optimized
12000 out by the linker... In any case, at this point it is not worth
12001 supporting this feature. */
12002
12003 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12004 }
12005
12006 /* True iff FRAME is very likely to be that of a function that is
12007 part of the runtime system. This is all very heuristic, but is
12008 intended to be used as advice as to what frames are uninteresting
12009 to most users. */
12010
12011 static int
12012 is_known_support_routine (struct frame_info *frame)
12013 {
12014 struct symtab_and_line sal;
12015 char *func_name;
12016 enum language func_lang;
12017 int i;
12018 const char *fullname;
12019
12020 /* If this code does not have any debugging information (no symtab),
12021 This cannot be any user code. */
12022
12023 find_frame_sal (frame, &sal);
12024 if (sal.symtab == NULL)
12025 return 1;
12026
12027 /* If there is a symtab, but the associated source file cannot be
12028 located, then assume this is not user code: Selecting a frame
12029 for which we cannot display the code would not be very helpful
12030 for the user. This should also take care of case such as VxWorks
12031 where the kernel has some debugging info provided for a few units. */
12032
12033 fullname = symtab_to_fullname (sal.symtab);
12034 if (access (fullname, R_OK) != 0)
12035 return 1;
12036
12037 /* Check the unit filename againt the Ada runtime file naming.
12038 We also check the name of the objfile against the name of some
12039 known system libraries that sometimes come with debugging info
12040 too. */
12041
12042 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12043 {
12044 re_comp (known_runtime_file_name_patterns[i]);
12045 if (re_exec (lbasename (sal.symtab->filename)))
12046 return 1;
12047 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12048 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12049 return 1;
12050 }
12051
12052 /* Check whether the function is a GNAT-generated entity. */
12053
12054 find_frame_funname (frame, &func_name, &func_lang, NULL);
12055 if (func_name == NULL)
12056 return 1;
12057
12058 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12059 {
12060 re_comp (known_auxiliary_function_name_patterns[i]);
12061 if (re_exec (func_name))
12062 {
12063 xfree (func_name);
12064 return 1;
12065 }
12066 }
12067
12068 xfree (func_name);
12069 return 0;
12070 }
12071
12072 /* Find the first frame that contains debugging information and that is not
12073 part of the Ada run-time, starting from FI and moving upward. */
12074
12075 void
12076 ada_find_printable_frame (struct frame_info *fi)
12077 {
12078 for (; fi != NULL; fi = get_prev_frame (fi))
12079 {
12080 if (!is_known_support_routine (fi))
12081 {
12082 select_frame (fi);
12083 break;
12084 }
12085 }
12086
12087 }
12088
12089 /* Assuming that the inferior just triggered an unhandled exception
12090 catchpoint, return the address in inferior memory where the name
12091 of the exception is stored.
12092
12093 Return zero if the address could not be computed. */
12094
12095 static CORE_ADDR
12096 ada_unhandled_exception_name_addr (void)
12097 {
12098 return parse_and_eval_address ("e.full_name");
12099 }
12100
12101 /* Same as ada_unhandled_exception_name_addr, except that this function
12102 should be used when the inferior uses an older version of the runtime,
12103 where the exception name needs to be extracted from a specific frame
12104 several frames up in the callstack. */
12105
12106 static CORE_ADDR
12107 ada_unhandled_exception_name_addr_from_raise (void)
12108 {
12109 int frame_level;
12110 struct frame_info *fi;
12111 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12112 struct cleanup *old_chain;
12113
12114 /* To determine the name of this exception, we need to select
12115 the frame corresponding to RAISE_SYM_NAME. This frame is
12116 at least 3 levels up, so we simply skip the first 3 frames
12117 without checking the name of their associated function. */
12118 fi = get_current_frame ();
12119 for (frame_level = 0; frame_level < 3; frame_level += 1)
12120 if (fi != NULL)
12121 fi = get_prev_frame (fi);
12122
12123 old_chain = make_cleanup (null_cleanup, NULL);
12124 while (fi != NULL)
12125 {
12126 char *func_name;
12127 enum language func_lang;
12128
12129 find_frame_funname (fi, &func_name, &func_lang, NULL);
12130 if (func_name != NULL)
12131 {
12132 make_cleanup (xfree, func_name);
12133
12134 if (strcmp (func_name,
12135 data->exception_info->catch_exception_sym) == 0)
12136 break; /* We found the frame we were looking for... */
12137 fi = get_prev_frame (fi);
12138 }
12139 }
12140 do_cleanups (old_chain);
12141
12142 if (fi == NULL)
12143 return 0;
12144
12145 select_frame (fi);
12146 return parse_and_eval_address ("id.full_name");
12147 }
12148
12149 /* Assuming the inferior just triggered an Ada exception catchpoint
12150 (of any type), return the address in inferior memory where the name
12151 of the exception is stored, if applicable.
12152
12153 Assumes the selected frame is the current frame.
12154
12155 Return zero if the address could not be computed, or if not relevant. */
12156
12157 static CORE_ADDR
12158 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12159 struct breakpoint *b)
12160 {
12161 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12162
12163 switch (ex)
12164 {
12165 case ada_catch_exception:
12166 return (parse_and_eval_address ("e.full_name"));
12167 break;
12168
12169 case ada_catch_exception_unhandled:
12170 return data->exception_info->unhandled_exception_name_addr ();
12171 break;
12172
12173 case ada_catch_assert:
12174 return 0; /* Exception name is not relevant in this case. */
12175 break;
12176
12177 default:
12178 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12179 break;
12180 }
12181
12182 return 0; /* Should never be reached. */
12183 }
12184
12185 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12186 any error that ada_exception_name_addr_1 might cause to be thrown.
12187 When an error is intercepted, a warning with the error message is printed,
12188 and zero is returned. */
12189
12190 static CORE_ADDR
12191 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12192 struct breakpoint *b)
12193 {
12194 CORE_ADDR result = 0;
12195
12196 TRY
12197 {
12198 result = ada_exception_name_addr_1 (ex, b);
12199 }
12200
12201 CATCH (e, RETURN_MASK_ERROR)
12202 {
12203 warning (_("failed to get exception name: %s"), e.message);
12204 return 0;
12205 }
12206 END_CATCH
12207
12208 return result;
12209 }
12210
12211 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12212
12213 /* Ada catchpoints.
12214
12215 In the case of catchpoints on Ada exceptions, the catchpoint will
12216 stop the target on every exception the program throws. When a user
12217 specifies the name of a specific exception, we translate this
12218 request into a condition expression (in text form), and then parse
12219 it into an expression stored in each of the catchpoint's locations.
12220 We then use this condition to check whether the exception that was
12221 raised is the one the user is interested in. If not, then the
12222 target is resumed again. We store the name of the requested
12223 exception, in order to be able to re-set the condition expression
12224 when symbols change. */
12225
12226 /* An instance of this type is used to represent an Ada catchpoint
12227 breakpoint location. */
12228
12229 class ada_catchpoint_location : public bp_location
12230 {
12231 public:
12232 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12233 : bp_location (ops, owner)
12234 {}
12235
12236 /* The condition that checks whether the exception that was raised
12237 is the specific exception the user specified on catchpoint
12238 creation. */
12239 expression_up excep_cond_expr;
12240 };
12241
12242 /* Implement the DTOR method in the bp_location_ops structure for all
12243 Ada exception catchpoint kinds. */
12244
12245 static void
12246 ada_catchpoint_location_dtor (struct bp_location *bl)
12247 {
12248 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12249
12250 al->excep_cond_expr.reset ();
12251 }
12252
12253 /* The vtable to be used in Ada catchpoint locations. */
12254
12255 static const struct bp_location_ops ada_catchpoint_location_ops =
12256 {
12257 ada_catchpoint_location_dtor
12258 };
12259
12260 /* An instance of this type is used to represent an Ada catchpoint. */
12261
12262 struct ada_catchpoint : public breakpoint
12263 {
12264 ~ada_catchpoint () override;
12265
12266 /* The name of the specific exception the user specified. */
12267 char *excep_string;
12268 };
12269
12270 /* Parse the exception condition string in the context of each of the
12271 catchpoint's locations, and store them for later evaluation. */
12272
12273 static void
12274 create_excep_cond_exprs (struct ada_catchpoint *c)
12275 {
12276 struct cleanup *old_chain;
12277 struct bp_location *bl;
12278 char *cond_string;
12279
12280 /* Nothing to do if there's no specific exception to catch. */
12281 if (c->excep_string == NULL)
12282 return;
12283
12284 /* Same if there are no locations... */
12285 if (c->loc == NULL)
12286 return;
12287
12288 /* Compute the condition expression in text form, from the specific
12289 expection we want to catch. */
12290 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12291 old_chain = make_cleanup (xfree, cond_string);
12292
12293 /* Iterate over all the catchpoint's locations, and parse an
12294 expression for each. */
12295 for (bl = c->loc; bl != NULL; bl = bl->next)
12296 {
12297 struct ada_catchpoint_location *ada_loc
12298 = (struct ada_catchpoint_location *) bl;
12299 expression_up exp;
12300
12301 if (!bl->shlib_disabled)
12302 {
12303 const char *s;
12304
12305 s = cond_string;
12306 TRY
12307 {
12308 exp = parse_exp_1 (&s, bl->address,
12309 block_for_pc (bl->address),
12310 0);
12311 }
12312 CATCH (e, RETURN_MASK_ERROR)
12313 {
12314 warning (_("failed to reevaluate internal exception condition "
12315 "for catchpoint %d: %s"),
12316 c->number, e.message);
12317 }
12318 END_CATCH
12319 }
12320
12321 ada_loc->excep_cond_expr = std::move (exp);
12322 }
12323
12324 do_cleanups (old_chain);
12325 }
12326
12327 /* ada_catchpoint destructor. */
12328
12329 ada_catchpoint::~ada_catchpoint ()
12330 {
12331 xfree (this->excep_string);
12332 }
12333
12334 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12335 structure for all exception catchpoint kinds. */
12336
12337 static struct bp_location *
12338 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12339 struct breakpoint *self)
12340 {
12341 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12342 }
12343
12344 /* Implement the RE_SET method in the breakpoint_ops structure for all
12345 exception catchpoint kinds. */
12346
12347 static void
12348 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12349 {
12350 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12351
12352 /* Call the base class's method. This updates the catchpoint's
12353 locations. */
12354 bkpt_breakpoint_ops.re_set (b);
12355
12356 /* Reparse the exception conditional expressions. One for each
12357 location. */
12358 create_excep_cond_exprs (c);
12359 }
12360
12361 /* Returns true if we should stop for this breakpoint hit. If the
12362 user specified a specific exception, we only want to cause a stop
12363 if the program thrown that exception. */
12364
12365 static int
12366 should_stop_exception (const struct bp_location *bl)
12367 {
12368 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12369 const struct ada_catchpoint_location *ada_loc
12370 = (const struct ada_catchpoint_location *) bl;
12371 int stop;
12372
12373 /* With no specific exception, should always stop. */
12374 if (c->excep_string == NULL)
12375 return 1;
12376
12377 if (ada_loc->excep_cond_expr == NULL)
12378 {
12379 /* We will have a NULL expression if back when we were creating
12380 the expressions, this location's had failed to parse. */
12381 return 1;
12382 }
12383
12384 stop = 1;
12385 TRY
12386 {
12387 struct value *mark;
12388
12389 mark = value_mark ();
12390 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12391 value_free_to_mark (mark);
12392 }
12393 CATCH (ex, RETURN_MASK_ALL)
12394 {
12395 exception_fprintf (gdb_stderr, ex,
12396 _("Error in testing exception condition:\n"));
12397 }
12398 END_CATCH
12399
12400 return stop;
12401 }
12402
12403 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12404 for all exception catchpoint kinds. */
12405
12406 static void
12407 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12408 {
12409 bs->stop = should_stop_exception (bs->bp_location_at);
12410 }
12411
12412 /* Implement the PRINT_IT method in the breakpoint_ops structure
12413 for all exception catchpoint kinds. */
12414
12415 static enum print_stop_action
12416 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12417 {
12418 struct ui_out *uiout = current_uiout;
12419 struct breakpoint *b = bs->breakpoint_at;
12420
12421 annotate_catchpoint (b->number);
12422
12423 if (uiout->is_mi_like_p ())
12424 {
12425 uiout->field_string ("reason",
12426 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12427 uiout->field_string ("disp", bpdisp_text (b->disposition));
12428 }
12429
12430 uiout->text (b->disposition == disp_del
12431 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12432 uiout->field_int ("bkptno", b->number);
12433 uiout->text (", ");
12434
12435 /* ada_exception_name_addr relies on the selected frame being the
12436 current frame. Need to do this here because this function may be
12437 called more than once when printing a stop, and below, we'll
12438 select the first frame past the Ada run-time (see
12439 ada_find_printable_frame). */
12440 select_frame (get_current_frame ());
12441
12442 switch (ex)
12443 {
12444 case ada_catch_exception:
12445 case ada_catch_exception_unhandled:
12446 {
12447 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12448 char exception_name[256];
12449
12450 if (addr != 0)
12451 {
12452 read_memory (addr, (gdb_byte *) exception_name,
12453 sizeof (exception_name) - 1);
12454 exception_name [sizeof (exception_name) - 1] = '\0';
12455 }
12456 else
12457 {
12458 /* For some reason, we were unable to read the exception
12459 name. This could happen if the Runtime was compiled
12460 without debugging info, for instance. In that case,
12461 just replace the exception name by the generic string
12462 "exception" - it will read as "an exception" in the
12463 notification we are about to print. */
12464 memcpy (exception_name, "exception", sizeof ("exception"));
12465 }
12466 /* In the case of unhandled exception breakpoints, we print
12467 the exception name as "unhandled EXCEPTION_NAME", to make
12468 it clearer to the user which kind of catchpoint just got
12469 hit. We used ui_out_text to make sure that this extra
12470 info does not pollute the exception name in the MI case. */
12471 if (ex == ada_catch_exception_unhandled)
12472 uiout->text ("unhandled ");
12473 uiout->field_string ("exception-name", exception_name);
12474 }
12475 break;
12476 case ada_catch_assert:
12477 /* In this case, the name of the exception is not really
12478 important. Just print "failed assertion" to make it clearer
12479 that his program just hit an assertion-failure catchpoint.
12480 We used ui_out_text because this info does not belong in
12481 the MI output. */
12482 uiout->text ("failed assertion");
12483 break;
12484 }
12485 uiout->text (" at ");
12486 ada_find_printable_frame (get_current_frame ());
12487
12488 return PRINT_SRC_AND_LOC;
12489 }
12490
12491 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12492 for all exception catchpoint kinds. */
12493
12494 static void
12495 print_one_exception (enum ada_exception_catchpoint_kind ex,
12496 struct breakpoint *b, struct bp_location **last_loc)
12497 {
12498 struct ui_out *uiout = current_uiout;
12499 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12500 struct value_print_options opts;
12501
12502 get_user_print_options (&opts);
12503 if (opts.addressprint)
12504 {
12505 annotate_field (4);
12506 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12507 }
12508
12509 annotate_field (5);
12510 *last_loc = b->loc;
12511 switch (ex)
12512 {
12513 case ada_catch_exception:
12514 if (c->excep_string != NULL)
12515 {
12516 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12517
12518 uiout->field_string ("what", msg);
12519 xfree (msg);
12520 }
12521 else
12522 uiout->field_string ("what", "all Ada exceptions");
12523
12524 break;
12525
12526 case ada_catch_exception_unhandled:
12527 uiout->field_string ("what", "unhandled Ada exceptions");
12528 break;
12529
12530 case ada_catch_assert:
12531 uiout->field_string ("what", "failed Ada assertions");
12532 break;
12533
12534 default:
12535 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12536 break;
12537 }
12538 }
12539
12540 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12541 for all exception catchpoint kinds. */
12542
12543 static void
12544 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12545 struct breakpoint *b)
12546 {
12547 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12548 struct ui_out *uiout = current_uiout;
12549
12550 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12551 : _("Catchpoint "));
12552 uiout->field_int ("bkptno", b->number);
12553 uiout->text (": ");
12554
12555 switch (ex)
12556 {
12557 case ada_catch_exception:
12558 if (c->excep_string != NULL)
12559 {
12560 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12561 struct cleanup *old_chain = make_cleanup (xfree, info);
12562
12563 uiout->text (info);
12564 do_cleanups (old_chain);
12565 }
12566 else
12567 uiout->text (_("all Ada exceptions"));
12568 break;
12569
12570 case ada_catch_exception_unhandled:
12571 uiout->text (_("unhandled Ada exceptions"));
12572 break;
12573
12574 case ada_catch_assert:
12575 uiout->text (_("failed Ada assertions"));
12576 break;
12577
12578 default:
12579 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12580 break;
12581 }
12582 }
12583
12584 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12585 for all exception catchpoint kinds. */
12586
12587 static void
12588 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12589 struct breakpoint *b, struct ui_file *fp)
12590 {
12591 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12592
12593 switch (ex)
12594 {
12595 case ada_catch_exception:
12596 fprintf_filtered (fp, "catch exception");
12597 if (c->excep_string != NULL)
12598 fprintf_filtered (fp, " %s", c->excep_string);
12599 break;
12600
12601 case ada_catch_exception_unhandled:
12602 fprintf_filtered (fp, "catch exception unhandled");
12603 break;
12604
12605 case ada_catch_assert:
12606 fprintf_filtered (fp, "catch assert");
12607 break;
12608
12609 default:
12610 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12611 }
12612 print_recreate_thread (b, fp);
12613 }
12614
12615 /* Virtual table for "catch exception" breakpoints. */
12616
12617 static struct bp_location *
12618 allocate_location_catch_exception (struct breakpoint *self)
12619 {
12620 return allocate_location_exception (ada_catch_exception, self);
12621 }
12622
12623 static void
12624 re_set_catch_exception (struct breakpoint *b)
12625 {
12626 re_set_exception (ada_catch_exception, b);
12627 }
12628
12629 static void
12630 check_status_catch_exception (bpstat bs)
12631 {
12632 check_status_exception (ada_catch_exception, bs);
12633 }
12634
12635 static enum print_stop_action
12636 print_it_catch_exception (bpstat bs)
12637 {
12638 return print_it_exception (ada_catch_exception, bs);
12639 }
12640
12641 static void
12642 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12643 {
12644 print_one_exception (ada_catch_exception, b, last_loc);
12645 }
12646
12647 static void
12648 print_mention_catch_exception (struct breakpoint *b)
12649 {
12650 print_mention_exception (ada_catch_exception, b);
12651 }
12652
12653 static void
12654 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12655 {
12656 print_recreate_exception (ada_catch_exception, b, fp);
12657 }
12658
12659 static struct breakpoint_ops catch_exception_breakpoint_ops;
12660
12661 /* Virtual table for "catch exception unhandled" breakpoints. */
12662
12663 static struct bp_location *
12664 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12665 {
12666 return allocate_location_exception (ada_catch_exception_unhandled, self);
12667 }
12668
12669 static void
12670 re_set_catch_exception_unhandled (struct breakpoint *b)
12671 {
12672 re_set_exception (ada_catch_exception_unhandled, b);
12673 }
12674
12675 static void
12676 check_status_catch_exception_unhandled (bpstat bs)
12677 {
12678 check_status_exception (ada_catch_exception_unhandled, bs);
12679 }
12680
12681 static enum print_stop_action
12682 print_it_catch_exception_unhandled (bpstat bs)
12683 {
12684 return print_it_exception (ada_catch_exception_unhandled, bs);
12685 }
12686
12687 static void
12688 print_one_catch_exception_unhandled (struct breakpoint *b,
12689 struct bp_location **last_loc)
12690 {
12691 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12692 }
12693
12694 static void
12695 print_mention_catch_exception_unhandled (struct breakpoint *b)
12696 {
12697 print_mention_exception (ada_catch_exception_unhandled, b);
12698 }
12699
12700 static void
12701 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12702 struct ui_file *fp)
12703 {
12704 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12705 }
12706
12707 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12708
12709 /* Virtual table for "catch assert" breakpoints. */
12710
12711 static struct bp_location *
12712 allocate_location_catch_assert (struct breakpoint *self)
12713 {
12714 return allocate_location_exception (ada_catch_assert, self);
12715 }
12716
12717 static void
12718 re_set_catch_assert (struct breakpoint *b)
12719 {
12720 re_set_exception (ada_catch_assert, b);
12721 }
12722
12723 static void
12724 check_status_catch_assert (bpstat bs)
12725 {
12726 check_status_exception (ada_catch_assert, bs);
12727 }
12728
12729 static enum print_stop_action
12730 print_it_catch_assert (bpstat bs)
12731 {
12732 return print_it_exception (ada_catch_assert, bs);
12733 }
12734
12735 static void
12736 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12737 {
12738 print_one_exception (ada_catch_assert, b, last_loc);
12739 }
12740
12741 static void
12742 print_mention_catch_assert (struct breakpoint *b)
12743 {
12744 print_mention_exception (ada_catch_assert, b);
12745 }
12746
12747 static void
12748 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12749 {
12750 print_recreate_exception (ada_catch_assert, b, fp);
12751 }
12752
12753 static struct breakpoint_ops catch_assert_breakpoint_ops;
12754
12755 /* Return a newly allocated copy of the first space-separated token
12756 in ARGSP, and then adjust ARGSP to point immediately after that
12757 token.
12758
12759 Return NULL if ARGPS does not contain any more tokens. */
12760
12761 static char *
12762 ada_get_next_arg (const char **argsp)
12763 {
12764 const char *args = *argsp;
12765 const char *end;
12766 char *result;
12767
12768 args = skip_spaces_const (args);
12769 if (args[0] == '\0')
12770 return NULL; /* No more arguments. */
12771
12772 /* Find the end of the current argument. */
12773
12774 end = skip_to_space_const (args);
12775
12776 /* Adjust ARGSP to point to the start of the next argument. */
12777
12778 *argsp = end;
12779
12780 /* Make a copy of the current argument and return it. */
12781
12782 result = (char *) xmalloc (end - args + 1);
12783 strncpy (result, args, end - args);
12784 result[end - args] = '\0';
12785
12786 return result;
12787 }
12788
12789 /* Split the arguments specified in a "catch exception" command.
12790 Set EX to the appropriate catchpoint type.
12791 Set EXCEP_STRING to the name of the specific exception if
12792 specified by the user.
12793 If a condition is found at the end of the arguments, the condition
12794 expression is stored in COND_STRING (memory must be deallocated
12795 after use). Otherwise COND_STRING is set to NULL. */
12796
12797 static void
12798 catch_ada_exception_command_split (const char *args,
12799 enum ada_exception_catchpoint_kind *ex,
12800 char **excep_string,
12801 char **cond_string)
12802 {
12803 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12804 char *exception_name;
12805 char *cond = NULL;
12806
12807 exception_name = ada_get_next_arg (&args);
12808 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12809 {
12810 /* This is not an exception name; this is the start of a condition
12811 expression for a catchpoint on all exceptions. So, "un-get"
12812 this token, and set exception_name to NULL. */
12813 xfree (exception_name);
12814 exception_name = NULL;
12815 args -= 2;
12816 }
12817 make_cleanup (xfree, exception_name);
12818
12819 /* Check to see if we have a condition. */
12820
12821 args = skip_spaces_const (args);
12822 if (startswith (args, "if")
12823 && (isspace (args[2]) || args[2] == '\0'))
12824 {
12825 args += 2;
12826 args = skip_spaces_const (args);
12827
12828 if (args[0] == '\0')
12829 error (_("Condition missing after `if' keyword"));
12830 cond = xstrdup (args);
12831 make_cleanup (xfree, cond);
12832
12833 args += strlen (args);
12834 }
12835
12836 /* Check that we do not have any more arguments. Anything else
12837 is unexpected. */
12838
12839 if (args[0] != '\0')
12840 error (_("Junk at end of expression"));
12841
12842 discard_cleanups (old_chain);
12843
12844 if (exception_name == NULL)
12845 {
12846 /* Catch all exceptions. */
12847 *ex = ada_catch_exception;
12848 *excep_string = NULL;
12849 }
12850 else if (strcmp (exception_name, "unhandled") == 0)
12851 {
12852 /* Catch unhandled exceptions. */
12853 *ex = ada_catch_exception_unhandled;
12854 *excep_string = NULL;
12855 }
12856 else
12857 {
12858 /* Catch a specific exception. */
12859 *ex = ada_catch_exception;
12860 *excep_string = exception_name;
12861 }
12862 *cond_string = cond;
12863 }
12864
12865 /* Return the name of the symbol on which we should break in order to
12866 implement a catchpoint of the EX kind. */
12867
12868 static const char *
12869 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12870 {
12871 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12872
12873 gdb_assert (data->exception_info != NULL);
12874
12875 switch (ex)
12876 {
12877 case ada_catch_exception:
12878 return (data->exception_info->catch_exception_sym);
12879 break;
12880 case ada_catch_exception_unhandled:
12881 return (data->exception_info->catch_exception_unhandled_sym);
12882 break;
12883 case ada_catch_assert:
12884 return (data->exception_info->catch_assert_sym);
12885 break;
12886 default:
12887 internal_error (__FILE__, __LINE__,
12888 _("unexpected catchpoint kind (%d)"), ex);
12889 }
12890 }
12891
12892 /* Return the breakpoint ops "virtual table" used for catchpoints
12893 of the EX kind. */
12894
12895 static const struct breakpoint_ops *
12896 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12897 {
12898 switch (ex)
12899 {
12900 case ada_catch_exception:
12901 return (&catch_exception_breakpoint_ops);
12902 break;
12903 case ada_catch_exception_unhandled:
12904 return (&catch_exception_unhandled_breakpoint_ops);
12905 break;
12906 case ada_catch_assert:
12907 return (&catch_assert_breakpoint_ops);
12908 break;
12909 default:
12910 internal_error (__FILE__, __LINE__,
12911 _("unexpected catchpoint kind (%d)"), ex);
12912 }
12913 }
12914
12915 /* Return the condition that will be used to match the current exception
12916 being raised with the exception that the user wants to catch. This
12917 assumes that this condition is used when the inferior just triggered
12918 an exception catchpoint.
12919
12920 The string returned is a newly allocated string that needs to be
12921 deallocated later. */
12922
12923 static char *
12924 ada_exception_catchpoint_cond_string (const char *excep_string)
12925 {
12926 int i;
12927
12928 /* The standard exceptions are a special case. They are defined in
12929 runtime units that have been compiled without debugging info; if
12930 EXCEP_STRING is the not-fully-qualified name of a standard
12931 exception (e.g. "constraint_error") then, during the evaluation
12932 of the condition expression, the symbol lookup on this name would
12933 *not* return this standard exception. The catchpoint condition
12934 may then be set only on user-defined exceptions which have the
12935 same not-fully-qualified name (e.g. my_package.constraint_error).
12936
12937 To avoid this unexcepted behavior, these standard exceptions are
12938 systematically prefixed by "standard". This means that "catch
12939 exception constraint_error" is rewritten into "catch exception
12940 standard.constraint_error".
12941
12942 If an exception named contraint_error is defined in another package of
12943 the inferior program, then the only way to specify this exception as a
12944 breakpoint condition is to use its fully-qualified named:
12945 e.g. my_package.constraint_error. */
12946
12947 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12948 {
12949 if (strcmp (standard_exc [i], excep_string) == 0)
12950 {
12951 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12952 excep_string);
12953 }
12954 }
12955 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12956 }
12957
12958 /* Return the symtab_and_line that should be used to insert an exception
12959 catchpoint of the TYPE kind.
12960
12961 EXCEP_STRING should contain the name of a specific exception that
12962 the catchpoint should catch, or NULL otherwise.
12963
12964 ADDR_STRING returns the name of the function where the real
12965 breakpoint that implements the catchpoints is set, depending on the
12966 type of catchpoint we need to create. */
12967
12968 static struct symtab_and_line
12969 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12970 char **addr_string, const struct breakpoint_ops **ops)
12971 {
12972 const char *sym_name;
12973 struct symbol *sym;
12974
12975 /* First, find out which exception support info to use. */
12976 ada_exception_support_info_sniffer ();
12977
12978 /* Then lookup the function on which we will break in order to catch
12979 the Ada exceptions requested by the user. */
12980 sym_name = ada_exception_sym_name (ex);
12981 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12982
12983 /* We can assume that SYM is not NULL at this stage. If the symbol
12984 did not exist, ada_exception_support_info_sniffer would have
12985 raised an exception.
12986
12987 Also, ada_exception_support_info_sniffer should have already
12988 verified that SYM is a function symbol. */
12989 gdb_assert (sym != NULL);
12990 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12991
12992 /* Set ADDR_STRING. */
12993 *addr_string = xstrdup (sym_name);
12994
12995 /* Set OPS. */
12996 *ops = ada_exception_breakpoint_ops (ex);
12997
12998 return find_function_start_sal (sym, 1);
12999 }
13000
13001 /* Create an Ada exception catchpoint.
13002
13003 EX_KIND is the kind of exception catchpoint to be created.
13004
13005 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13006 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13007 of the exception to which this catchpoint applies. When not NULL,
13008 the string must be allocated on the heap, and its deallocation
13009 is no longer the responsibility of the caller.
13010
13011 COND_STRING, if not NULL, is the catchpoint condition. This string
13012 must be allocated on the heap, and its deallocation is no longer
13013 the responsibility of the caller.
13014
13015 TEMPFLAG, if nonzero, means that the underlying breakpoint
13016 should be temporary.
13017
13018 FROM_TTY is the usual argument passed to all commands implementations. */
13019
13020 void
13021 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13022 enum ada_exception_catchpoint_kind ex_kind,
13023 char *excep_string,
13024 char *cond_string,
13025 int tempflag,
13026 int disabled,
13027 int from_tty)
13028 {
13029 struct ada_catchpoint *c;
13030 char *addr_string = NULL;
13031 const struct breakpoint_ops *ops = NULL;
13032 struct symtab_and_line sal
13033 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13034
13035 c = new ada_catchpoint ();
13036 init_ada_exception_breakpoint (c, gdbarch, sal, addr_string,
13037 ops, tempflag, disabled, from_tty);
13038 c->excep_string = excep_string;
13039 create_excep_cond_exprs (c);
13040 if (cond_string != NULL)
13041 set_breakpoint_condition (c, cond_string, from_tty);
13042 install_breakpoint (0, c, 1);
13043 }
13044
13045 /* Implement the "catch exception" command. */
13046
13047 static void
13048 catch_ada_exception_command (char *arg_entry, int from_tty,
13049 struct cmd_list_element *command)
13050 {
13051 const char *arg = arg_entry;
13052 struct gdbarch *gdbarch = get_current_arch ();
13053 int tempflag;
13054 enum ada_exception_catchpoint_kind ex_kind;
13055 char *excep_string = NULL;
13056 char *cond_string = NULL;
13057
13058 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13059
13060 if (!arg)
13061 arg = "";
13062 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13063 &cond_string);
13064 create_ada_exception_catchpoint (gdbarch, ex_kind,
13065 excep_string, cond_string,
13066 tempflag, 1 /* enabled */,
13067 from_tty);
13068 }
13069
13070 /* Split the arguments specified in a "catch assert" command.
13071
13072 ARGS contains the command's arguments (or the empty string if
13073 no arguments were passed).
13074
13075 If ARGS contains a condition, set COND_STRING to that condition
13076 (the memory needs to be deallocated after use). */
13077
13078 static void
13079 catch_ada_assert_command_split (const char *args, char **cond_string)
13080 {
13081 args = skip_spaces_const (args);
13082
13083 /* Check whether a condition was provided. */
13084 if (startswith (args, "if")
13085 && (isspace (args[2]) || args[2] == '\0'))
13086 {
13087 args += 2;
13088 args = skip_spaces_const (args);
13089 if (args[0] == '\0')
13090 error (_("condition missing after `if' keyword"));
13091 *cond_string = xstrdup (args);
13092 }
13093
13094 /* Otherwise, there should be no other argument at the end of
13095 the command. */
13096 else if (args[0] != '\0')
13097 error (_("Junk at end of arguments."));
13098 }
13099
13100 /* Implement the "catch assert" command. */
13101
13102 static void
13103 catch_assert_command (char *arg_entry, int from_tty,
13104 struct cmd_list_element *command)
13105 {
13106 const char *arg = arg_entry;
13107 struct gdbarch *gdbarch = get_current_arch ();
13108 int tempflag;
13109 char *cond_string = NULL;
13110
13111 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13112
13113 if (!arg)
13114 arg = "";
13115 catch_ada_assert_command_split (arg, &cond_string);
13116 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13117 NULL, cond_string,
13118 tempflag, 1 /* enabled */,
13119 from_tty);
13120 }
13121
13122 /* Return non-zero if the symbol SYM is an Ada exception object. */
13123
13124 static int
13125 ada_is_exception_sym (struct symbol *sym)
13126 {
13127 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13128
13129 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13130 && SYMBOL_CLASS (sym) != LOC_BLOCK
13131 && SYMBOL_CLASS (sym) != LOC_CONST
13132 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13133 && type_name != NULL && strcmp (type_name, "exception") == 0);
13134 }
13135
13136 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13137 Ada exception object. This matches all exceptions except the ones
13138 defined by the Ada language. */
13139
13140 static int
13141 ada_is_non_standard_exception_sym (struct symbol *sym)
13142 {
13143 int i;
13144
13145 if (!ada_is_exception_sym (sym))
13146 return 0;
13147
13148 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13149 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13150 return 0; /* A standard exception. */
13151
13152 /* Numeric_Error is also a standard exception, so exclude it.
13153 See the STANDARD_EXC description for more details as to why
13154 this exception is not listed in that array. */
13155 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13156 return 0;
13157
13158 return 1;
13159 }
13160
13161 /* A helper function for qsort, comparing two struct ada_exc_info
13162 objects.
13163
13164 The comparison is determined first by exception name, and then
13165 by exception address. */
13166
13167 static int
13168 compare_ada_exception_info (const void *a, const void *b)
13169 {
13170 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13171 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13172 int result;
13173
13174 result = strcmp (exc_a->name, exc_b->name);
13175 if (result != 0)
13176 return result;
13177
13178 if (exc_a->addr < exc_b->addr)
13179 return -1;
13180 if (exc_a->addr > exc_b->addr)
13181 return 1;
13182
13183 return 0;
13184 }
13185
13186 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13187 routine, but keeping the first SKIP elements untouched.
13188
13189 All duplicates are also removed. */
13190
13191 static void
13192 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13193 int skip)
13194 {
13195 struct ada_exc_info *to_sort
13196 = VEC_address (ada_exc_info, *exceptions) + skip;
13197 int to_sort_len
13198 = VEC_length (ada_exc_info, *exceptions) - skip;
13199 int i, j;
13200
13201 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13202 compare_ada_exception_info);
13203
13204 for (i = 1, j = 1; i < to_sort_len; i++)
13205 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13206 to_sort[j++] = to_sort[i];
13207 to_sort_len = j;
13208 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13209 }
13210
13211 /* Add all exceptions defined by the Ada standard whose name match
13212 a regular expression.
13213
13214 If PREG is not NULL, then this regexp_t object is used to
13215 perform the symbol name matching. Otherwise, no name-based
13216 filtering is performed.
13217
13218 EXCEPTIONS is a vector of exceptions to which matching exceptions
13219 gets pushed. */
13220
13221 static void
13222 ada_add_standard_exceptions (compiled_regex *preg,
13223 VEC(ada_exc_info) **exceptions)
13224 {
13225 int i;
13226
13227 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13228 {
13229 if (preg == NULL
13230 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13231 {
13232 struct bound_minimal_symbol msymbol
13233 = ada_lookup_simple_minsym (standard_exc[i]);
13234
13235 if (msymbol.minsym != NULL)
13236 {
13237 struct ada_exc_info info
13238 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13239
13240 VEC_safe_push (ada_exc_info, *exceptions, &info);
13241 }
13242 }
13243 }
13244 }
13245
13246 /* Add all Ada exceptions defined locally and accessible from the given
13247 FRAME.
13248
13249 If PREG is not NULL, then this regexp_t object is used to
13250 perform the symbol name matching. Otherwise, no name-based
13251 filtering is performed.
13252
13253 EXCEPTIONS is a vector of exceptions to which matching exceptions
13254 gets pushed. */
13255
13256 static void
13257 ada_add_exceptions_from_frame (compiled_regex *preg,
13258 struct frame_info *frame,
13259 VEC(ada_exc_info) **exceptions)
13260 {
13261 const struct block *block = get_frame_block (frame, 0);
13262
13263 while (block != 0)
13264 {
13265 struct block_iterator iter;
13266 struct symbol *sym;
13267
13268 ALL_BLOCK_SYMBOLS (block, iter, sym)
13269 {
13270 switch (SYMBOL_CLASS (sym))
13271 {
13272 case LOC_TYPEDEF:
13273 case LOC_BLOCK:
13274 case LOC_CONST:
13275 break;
13276 default:
13277 if (ada_is_exception_sym (sym))
13278 {
13279 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13280 SYMBOL_VALUE_ADDRESS (sym)};
13281
13282 VEC_safe_push (ada_exc_info, *exceptions, &info);
13283 }
13284 }
13285 }
13286 if (BLOCK_FUNCTION (block) != NULL)
13287 break;
13288 block = BLOCK_SUPERBLOCK (block);
13289 }
13290 }
13291
13292 /* Return true if NAME matches PREG or if PREG is NULL. */
13293
13294 static bool
13295 name_matches_regex (const char *name, compiled_regex *preg)
13296 {
13297 return (preg == NULL
13298 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13299 }
13300
13301 /* Add all exceptions defined globally whose name name match
13302 a regular expression, excluding standard exceptions.
13303
13304 The reason we exclude standard exceptions is that they need
13305 to be handled separately: Standard exceptions are defined inside
13306 a runtime unit which is normally not compiled with debugging info,
13307 and thus usually do not show up in our symbol search. However,
13308 if the unit was in fact built with debugging info, we need to
13309 exclude them because they would duplicate the entry we found
13310 during the special loop that specifically searches for those
13311 standard exceptions.
13312
13313 If PREG is not NULL, then this regexp_t object is used to
13314 perform the symbol name matching. Otherwise, no name-based
13315 filtering is performed.
13316
13317 EXCEPTIONS is a vector of exceptions to which matching exceptions
13318 gets pushed. */
13319
13320 static void
13321 ada_add_global_exceptions (compiled_regex *preg,
13322 VEC(ada_exc_info) **exceptions)
13323 {
13324 struct objfile *objfile;
13325 struct compunit_symtab *s;
13326
13327 /* In Ada, the symbol "search name" is a linkage name, whereas the
13328 regular expression used to do the matching refers to the natural
13329 name. So match against the decoded name. */
13330 expand_symtabs_matching (NULL,
13331 [&] (const char *search_name)
13332 {
13333 const char *decoded = ada_decode (search_name);
13334 return name_matches_regex (decoded, preg);
13335 },
13336 NULL,
13337 VARIABLES_DOMAIN);
13338
13339 ALL_COMPUNITS (objfile, s)
13340 {
13341 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13342 int i;
13343
13344 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13345 {
13346 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13347 struct block_iterator iter;
13348 struct symbol *sym;
13349
13350 ALL_BLOCK_SYMBOLS (b, iter, sym)
13351 if (ada_is_non_standard_exception_sym (sym)
13352 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13353 {
13354 struct ada_exc_info info
13355 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13356
13357 VEC_safe_push (ada_exc_info, *exceptions, &info);
13358 }
13359 }
13360 }
13361 }
13362
13363 /* Implements ada_exceptions_list with the regular expression passed
13364 as a regex_t, rather than a string.
13365
13366 If not NULL, PREG is used to filter out exceptions whose names
13367 do not match. Otherwise, all exceptions are listed. */
13368
13369 static VEC(ada_exc_info) *
13370 ada_exceptions_list_1 (compiled_regex *preg)
13371 {
13372 VEC(ada_exc_info) *result = NULL;
13373 struct cleanup *old_chain
13374 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13375 int prev_len;
13376
13377 /* First, list the known standard exceptions. These exceptions
13378 need to be handled separately, as they are usually defined in
13379 runtime units that have been compiled without debugging info. */
13380
13381 ada_add_standard_exceptions (preg, &result);
13382
13383 /* Next, find all exceptions whose scope is local and accessible
13384 from the currently selected frame. */
13385
13386 if (has_stack_frames ())
13387 {
13388 prev_len = VEC_length (ada_exc_info, result);
13389 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13390 &result);
13391 if (VEC_length (ada_exc_info, result) > prev_len)
13392 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13393 }
13394
13395 /* Add all exceptions whose scope is global. */
13396
13397 prev_len = VEC_length (ada_exc_info, result);
13398 ada_add_global_exceptions (preg, &result);
13399 if (VEC_length (ada_exc_info, result) > prev_len)
13400 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13401
13402 discard_cleanups (old_chain);
13403 return result;
13404 }
13405
13406 /* Return a vector of ada_exc_info.
13407
13408 If REGEXP is NULL, all exceptions are included in the result.
13409 Otherwise, it should contain a valid regular expression,
13410 and only the exceptions whose names match that regular expression
13411 are included in the result.
13412
13413 The exceptions are sorted in the following order:
13414 - Standard exceptions (defined by the Ada language), in
13415 alphabetical order;
13416 - Exceptions only visible from the current frame, in
13417 alphabetical order;
13418 - Exceptions whose scope is global, in alphabetical order. */
13419
13420 VEC(ada_exc_info) *
13421 ada_exceptions_list (const char *regexp)
13422 {
13423 if (regexp == NULL)
13424 return ada_exceptions_list_1 (NULL);
13425
13426 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13427 return ada_exceptions_list_1 (&reg);
13428 }
13429
13430 /* Implement the "info exceptions" command. */
13431
13432 static void
13433 info_exceptions_command (char *regexp, int from_tty)
13434 {
13435 VEC(ada_exc_info) *exceptions;
13436 struct cleanup *cleanup;
13437 struct gdbarch *gdbarch = get_current_arch ();
13438 int ix;
13439 struct ada_exc_info *info;
13440
13441 exceptions = ada_exceptions_list (regexp);
13442 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13443
13444 if (regexp != NULL)
13445 printf_filtered
13446 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13447 else
13448 printf_filtered (_("All defined Ada exceptions:\n"));
13449
13450 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13451 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13452
13453 do_cleanups (cleanup);
13454 }
13455
13456 /* Operators */
13457 /* Information about operators given special treatment in functions
13458 below. */
13459 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13460
13461 #define ADA_OPERATORS \
13462 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13463 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13464 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13465 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13468 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13469 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13470 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13471 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13472 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13473 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13474 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13475 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13476 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13477 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13478 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13479 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13480 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13481
13482 static void
13483 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13484 int *argsp)
13485 {
13486 switch (exp->elts[pc - 1].opcode)
13487 {
13488 default:
13489 operator_length_standard (exp, pc, oplenp, argsp);
13490 break;
13491
13492 #define OP_DEFN(op, len, args, binop) \
13493 case op: *oplenp = len; *argsp = args; break;
13494 ADA_OPERATORS;
13495 #undef OP_DEFN
13496
13497 case OP_AGGREGATE:
13498 *oplenp = 3;
13499 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13500 break;
13501
13502 case OP_CHOICES:
13503 *oplenp = 3;
13504 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13505 break;
13506 }
13507 }
13508
13509 /* Implementation of the exp_descriptor method operator_check. */
13510
13511 static int
13512 ada_operator_check (struct expression *exp, int pos,
13513 int (*objfile_func) (struct objfile *objfile, void *data),
13514 void *data)
13515 {
13516 const union exp_element *const elts = exp->elts;
13517 struct type *type = NULL;
13518
13519 switch (elts[pos].opcode)
13520 {
13521 case UNOP_IN_RANGE:
13522 case UNOP_QUAL:
13523 type = elts[pos + 1].type;
13524 break;
13525
13526 default:
13527 return operator_check_standard (exp, pos, objfile_func, data);
13528 }
13529
13530 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13531
13532 if (type && TYPE_OBJFILE (type)
13533 && (*objfile_func) (TYPE_OBJFILE (type), data))
13534 return 1;
13535
13536 return 0;
13537 }
13538
13539 static const char *
13540 ada_op_name (enum exp_opcode opcode)
13541 {
13542 switch (opcode)
13543 {
13544 default:
13545 return op_name_standard (opcode);
13546
13547 #define OP_DEFN(op, len, args, binop) case op: return #op;
13548 ADA_OPERATORS;
13549 #undef OP_DEFN
13550
13551 case OP_AGGREGATE:
13552 return "OP_AGGREGATE";
13553 case OP_CHOICES:
13554 return "OP_CHOICES";
13555 case OP_NAME:
13556 return "OP_NAME";
13557 }
13558 }
13559
13560 /* As for operator_length, but assumes PC is pointing at the first
13561 element of the operator, and gives meaningful results only for the
13562 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13563
13564 static void
13565 ada_forward_operator_length (struct expression *exp, int pc,
13566 int *oplenp, int *argsp)
13567 {
13568 switch (exp->elts[pc].opcode)
13569 {
13570 default:
13571 *oplenp = *argsp = 0;
13572 break;
13573
13574 #define OP_DEFN(op, len, args, binop) \
13575 case op: *oplenp = len; *argsp = args; break;
13576 ADA_OPERATORS;
13577 #undef OP_DEFN
13578
13579 case OP_AGGREGATE:
13580 *oplenp = 3;
13581 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13582 break;
13583
13584 case OP_CHOICES:
13585 *oplenp = 3;
13586 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13587 break;
13588
13589 case OP_STRING:
13590 case OP_NAME:
13591 {
13592 int len = longest_to_int (exp->elts[pc + 1].longconst);
13593
13594 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13595 *argsp = 0;
13596 break;
13597 }
13598 }
13599 }
13600
13601 static int
13602 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13603 {
13604 enum exp_opcode op = exp->elts[elt].opcode;
13605 int oplen, nargs;
13606 int pc = elt;
13607 int i;
13608
13609 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13610
13611 switch (op)
13612 {
13613 /* Ada attributes ('Foo). */
13614 case OP_ATR_FIRST:
13615 case OP_ATR_LAST:
13616 case OP_ATR_LENGTH:
13617 case OP_ATR_IMAGE:
13618 case OP_ATR_MAX:
13619 case OP_ATR_MIN:
13620 case OP_ATR_MODULUS:
13621 case OP_ATR_POS:
13622 case OP_ATR_SIZE:
13623 case OP_ATR_TAG:
13624 case OP_ATR_VAL:
13625 break;
13626
13627 case UNOP_IN_RANGE:
13628 case UNOP_QUAL:
13629 /* XXX: gdb_sprint_host_address, type_sprint */
13630 fprintf_filtered (stream, _("Type @"));
13631 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13632 fprintf_filtered (stream, " (");
13633 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13634 fprintf_filtered (stream, ")");
13635 break;
13636 case BINOP_IN_BOUNDS:
13637 fprintf_filtered (stream, " (%d)",
13638 longest_to_int (exp->elts[pc + 2].longconst));
13639 break;
13640 case TERNOP_IN_RANGE:
13641 break;
13642
13643 case OP_AGGREGATE:
13644 case OP_OTHERS:
13645 case OP_DISCRETE_RANGE:
13646 case OP_POSITIONAL:
13647 case OP_CHOICES:
13648 break;
13649
13650 case OP_NAME:
13651 case OP_STRING:
13652 {
13653 char *name = &exp->elts[elt + 2].string;
13654 int len = longest_to_int (exp->elts[elt + 1].longconst);
13655
13656 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13657 break;
13658 }
13659
13660 default:
13661 return dump_subexp_body_standard (exp, stream, elt);
13662 }
13663
13664 elt += oplen;
13665 for (i = 0; i < nargs; i += 1)
13666 elt = dump_subexp (exp, stream, elt);
13667
13668 return elt;
13669 }
13670
13671 /* The Ada extension of print_subexp (q.v.). */
13672
13673 static void
13674 ada_print_subexp (struct expression *exp, int *pos,
13675 struct ui_file *stream, enum precedence prec)
13676 {
13677 int oplen, nargs, i;
13678 int pc = *pos;
13679 enum exp_opcode op = exp->elts[pc].opcode;
13680
13681 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13682
13683 *pos += oplen;
13684 switch (op)
13685 {
13686 default:
13687 *pos -= oplen;
13688 print_subexp_standard (exp, pos, stream, prec);
13689 return;
13690
13691 case OP_VAR_VALUE:
13692 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13693 return;
13694
13695 case BINOP_IN_BOUNDS:
13696 /* XXX: sprint_subexp */
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 fputs_filtered (" in ", stream);
13699 print_subexp (exp, pos, stream, PREC_SUFFIX);
13700 fputs_filtered ("'range", stream);
13701 if (exp->elts[pc + 1].longconst > 1)
13702 fprintf_filtered (stream, "(%ld)",
13703 (long) exp->elts[pc + 1].longconst);
13704 return;
13705
13706 case TERNOP_IN_RANGE:
13707 if (prec >= PREC_EQUAL)
13708 fputs_filtered ("(", stream);
13709 /* XXX: sprint_subexp */
13710 print_subexp (exp, pos, stream, PREC_SUFFIX);
13711 fputs_filtered (" in ", stream);
13712 print_subexp (exp, pos, stream, PREC_EQUAL);
13713 fputs_filtered (" .. ", stream);
13714 print_subexp (exp, pos, stream, PREC_EQUAL);
13715 if (prec >= PREC_EQUAL)
13716 fputs_filtered (")", stream);
13717 return;
13718
13719 case OP_ATR_FIRST:
13720 case OP_ATR_LAST:
13721 case OP_ATR_LENGTH:
13722 case OP_ATR_IMAGE:
13723 case OP_ATR_MAX:
13724 case OP_ATR_MIN:
13725 case OP_ATR_MODULUS:
13726 case OP_ATR_POS:
13727 case OP_ATR_SIZE:
13728 case OP_ATR_TAG:
13729 case OP_ATR_VAL:
13730 if (exp->elts[*pos].opcode == OP_TYPE)
13731 {
13732 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13733 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13734 &type_print_raw_options);
13735 *pos += 3;
13736 }
13737 else
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13740 if (nargs > 1)
13741 {
13742 int tem;
13743
13744 for (tem = 1; tem < nargs; tem += 1)
13745 {
13746 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13747 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13748 }
13749 fputs_filtered (")", stream);
13750 }
13751 return;
13752
13753 case UNOP_QUAL:
13754 type_print (exp->elts[pc + 1].type, "", stream, 0);
13755 fputs_filtered ("'(", stream);
13756 print_subexp (exp, pos, stream, PREC_PREFIX);
13757 fputs_filtered (")", stream);
13758 return;
13759
13760 case UNOP_IN_RANGE:
13761 /* XXX: sprint_subexp */
13762 print_subexp (exp, pos, stream, PREC_SUFFIX);
13763 fputs_filtered (" in ", stream);
13764 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13765 &type_print_raw_options);
13766 return;
13767
13768 case OP_DISCRETE_RANGE:
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 fputs_filtered ("..", stream);
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 return;
13773
13774 case OP_OTHERS:
13775 fputs_filtered ("others => ", stream);
13776 print_subexp (exp, pos, stream, PREC_SUFFIX);
13777 return;
13778
13779 case OP_CHOICES:
13780 for (i = 0; i < nargs-1; i += 1)
13781 {
13782 if (i > 0)
13783 fputs_filtered ("|", stream);
13784 print_subexp (exp, pos, stream, PREC_SUFFIX);
13785 }
13786 fputs_filtered (" => ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 return;
13789
13790 case OP_POSITIONAL:
13791 print_subexp (exp, pos, stream, PREC_SUFFIX);
13792 return;
13793
13794 case OP_AGGREGATE:
13795 fputs_filtered ("(", stream);
13796 for (i = 0; i < nargs; i += 1)
13797 {
13798 if (i > 0)
13799 fputs_filtered (", ", stream);
13800 print_subexp (exp, pos, stream, PREC_SUFFIX);
13801 }
13802 fputs_filtered (")", stream);
13803 return;
13804 }
13805 }
13806
13807 /* Table mapping opcodes into strings for printing operators
13808 and precedences of the operators. */
13809
13810 static const struct op_print ada_op_print_tab[] = {
13811 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13812 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13813 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13814 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13815 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13816 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13817 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13818 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13819 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13820 {">=", BINOP_GEQ, PREC_ORDER, 0},
13821 {">", BINOP_GTR, PREC_ORDER, 0},
13822 {"<", BINOP_LESS, PREC_ORDER, 0},
13823 {">>", BINOP_RSH, PREC_SHIFT, 0},
13824 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13825 {"+", BINOP_ADD, PREC_ADD, 0},
13826 {"-", BINOP_SUB, PREC_ADD, 0},
13827 {"&", BINOP_CONCAT, PREC_ADD, 0},
13828 {"*", BINOP_MUL, PREC_MUL, 0},
13829 {"/", BINOP_DIV, PREC_MUL, 0},
13830 {"rem", BINOP_REM, PREC_MUL, 0},
13831 {"mod", BINOP_MOD, PREC_MUL, 0},
13832 {"**", BINOP_EXP, PREC_REPEAT, 0},
13833 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13834 {"-", UNOP_NEG, PREC_PREFIX, 0},
13835 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13836 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13837 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13838 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13839 {".all", UNOP_IND, PREC_SUFFIX, 1},
13840 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13841 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13842 {NULL, OP_NULL, PREC_SUFFIX, 0}
13843 };
13844 \f
13845 enum ada_primitive_types {
13846 ada_primitive_type_int,
13847 ada_primitive_type_long,
13848 ada_primitive_type_short,
13849 ada_primitive_type_char,
13850 ada_primitive_type_float,
13851 ada_primitive_type_double,
13852 ada_primitive_type_void,
13853 ada_primitive_type_long_long,
13854 ada_primitive_type_long_double,
13855 ada_primitive_type_natural,
13856 ada_primitive_type_positive,
13857 ada_primitive_type_system_address,
13858 nr_ada_primitive_types
13859 };
13860
13861 static void
13862 ada_language_arch_info (struct gdbarch *gdbarch,
13863 struct language_arch_info *lai)
13864 {
13865 const struct builtin_type *builtin = builtin_type (gdbarch);
13866
13867 lai->primitive_type_vector
13868 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13869 struct type *);
13870
13871 lai->primitive_type_vector [ada_primitive_type_int]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13873 0, "integer");
13874 lai->primitive_type_vector [ada_primitive_type_long]
13875 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13876 0, "long_integer");
13877 lai->primitive_type_vector [ada_primitive_type_short]
13878 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13879 0, "short_integer");
13880 lai->string_char_type
13881 = lai->primitive_type_vector [ada_primitive_type_char]
13882 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13883 lai->primitive_type_vector [ada_primitive_type_float]
13884 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13885 "float", gdbarch_float_format (gdbarch));
13886 lai->primitive_type_vector [ada_primitive_type_double]
13887 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13888 "long_float", gdbarch_double_format (gdbarch));
13889 lai->primitive_type_vector [ada_primitive_type_long_long]
13890 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13891 0, "long_long_integer");
13892 lai->primitive_type_vector [ada_primitive_type_long_double]
13893 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13894 "long_long_float", gdbarch_long_double_format (gdbarch));
13895 lai->primitive_type_vector [ada_primitive_type_natural]
13896 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13897 0, "natural");
13898 lai->primitive_type_vector [ada_primitive_type_positive]
13899 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13900 0, "positive");
13901 lai->primitive_type_vector [ada_primitive_type_void]
13902 = builtin->builtin_void;
13903
13904 lai->primitive_type_vector [ada_primitive_type_system_address]
13905 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13906 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13907 = "system__address";
13908
13909 lai->bool_type_symbol = NULL;
13910 lai->bool_type_default = builtin->builtin_bool;
13911 }
13912 \f
13913 /* Language vector */
13914
13915 /* Not really used, but needed in the ada_language_defn. */
13916
13917 static void
13918 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13919 {
13920 ada_emit_char (c, type, stream, quoter, 1);
13921 }
13922
13923 static int
13924 parse (struct parser_state *ps)
13925 {
13926 warnings_issued = 0;
13927 return ada_parse (ps);
13928 }
13929
13930 static const struct exp_descriptor ada_exp_descriptor = {
13931 ada_print_subexp,
13932 ada_operator_length,
13933 ada_operator_check,
13934 ada_op_name,
13935 ada_dump_subexp_body,
13936 ada_evaluate_subexp
13937 };
13938
13939 /* Implement the "la_get_symbol_name_cmp" language_defn method
13940 for Ada. */
13941
13942 static symbol_name_cmp_ftype
13943 ada_get_symbol_name_cmp (const char *lookup_name)
13944 {
13945 if (should_use_wild_match (lookup_name))
13946 return wild_match;
13947 else
13948 return compare_names;
13949 }
13950
13951 /* Implement the "la_read_var_value" language_defn method for Ada. */
13952
13953 static struct value *
13954 ada_read_var_value (struct symbol *var, const struct block *var_block,
13955 struct frame_info *frame)
13956 {
13957 const struct block *frame_block = NULL;
13958 struct symbol *renaming_sym = NULL;
13959
13960 /* The only case where default_read_var_value is not sufficient
13961 is when VAR is a renaming... */
13962 if (frame)
13963 frame_block = get_frame_block (frame, NULL);
13964 if (frame_block)
13965 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13966 if (renaming_sym != NULL)
13967 return ada_read_renaming_var_value (renaming_sym, frame_block);
13968
13969 /* This is a typical case where we expect the default_read_var_value
13970 function to work. */
13971 return default_read_var_value (var, var_block, frame);
13972 }
13973
13974 static const char *ada_extensions[] =
13975 {
13976 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13977 };
13978
13979 const struct language_defn ada_language_defn = {
13980 "ada", /* Language name */
13981 "Ada",
13982 language_ada,
13983 range_check_off,
13984 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13985 that's not quite what this means. */
13986 array_row_major,
13987 macro_expansion_no,
13988 ada_extensions,
13989 &ada_exp_descriptor,
13990 parse,
13991 ada_yyerror,
13992 resolve,
13993 ada_printchar, /* Print a character constant */
13994 ada_printstr, /* Function to print string constant */
13995 emit_char, /* Function to print single char (not used) */
13996 ada_print_type, /* Print a type using appropriate syntax */
13997 ada_print_typedef, /* Print a typedef using appropriate syntax */
13998 ada_val_print, /* Print a value using appropriate syntax */
13999 ada_value_print, /* Print a top-level value */
14000 ada_read_var_value, /* la_read_var_value */
14001 NULL, /* Language specific skip_trampoline */
14002 NULL, /* name_of_this */
14003 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14004 basic_lookup_transparent_type, /* lookup_transparent_type */
14005 ada_la_decode, /* Language specific symbol demangler */
14006 ada_sniff_from_mangled_name,
14007 NULL, /* Language specific
14008 class_name_from_physname */
14009 ada_op_print_tab, /* expression operators for printing */
14010 0, /* c-style arrays */
14011 1, /* String lower bound */
14012 ada_get_gdb_completer_word_break_characters,
14013 ada_make_symbol_completion_list,
14014 ada_language_arch_info,
14015 ada_print_array_index,
14016 default_pass_by_reference,
14017 c_get_string,
14018 c_watch_location_expression,
14019 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14020 ada_iterate_over_symbols,
14021 &ada_varobj_ops,
14022 NULL,
14023 NULL,
14024 LANG_MAGIC
14025 };
14026
14027 /* Provide a prototype to silence -Wmissing-prototypes. */
14028 extern initialize_file_ftype _initialize_ada_language;
14029
14030 /* Command-list for the "set/show ada" prefix command. */
14031 static struct cmd_list_element *set_ada_list;
14032 static struct cmd_list_element *show_ada_list;
14033
14034 /* Implement the "set ada" prefix command. */
14035
14036 static void
14037 set_ada_command (char *arg, int from_tty)
14038 {
14039 printf_unfiltered (_(\
14040 "\"set ada\" must be followed by the name of a setting.\n"));
14041 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14042 }
14043
14044 /* Implement the "show ada" prefix command. */
14045
14046 static void
14047 show_ada_command (char *args, int from_tty)
14048 {
14049 cmd_show_list (show_ada_list, from_tty, "");
14050 }
14051
14052 static void
14053 initialize_ada_catchpoint_ops (void)
14054 {
14055 struct breakpoint_ops *ops;
14056
14057 initialize_breakpoint_ops ();
14058
14059 ops = &catch_exception_breakpoint_ops;
14060 *ops = bkpt_breakpoint_ops;
14061 ops->allocate_location = allocate_location_catch_exception;
14062 ops->re_set = re_set_catch_exception;
14063 ops->check_status = check_status_catch_exception;
14064 ops->print_it = print_it_catch_exception;
14065 ops->print_one = print_one_catch_exception;
14066 ops->print_mention = print_mention_catch_exception;
14067 ops->print_recreate = print_recreate_catch_exception;
14068
14069 ops = &catch_exception_unhandled_breakpoint_ops;
14070 *ops = bkpt_breakpoint_ops;
14071 ops->allocate_location = allocate_location_catch_exception_unhandled;
14072 ops->re_set = re_set_catch_exception_unhandled;
14073 ops->check_status = check_status_catch_exception_unhandled;
14074 ops->print_it = print_it_catch_exception_unhandled;
14075 ops->print_one = print_one_catch_exception_unhandled;
14076 ops->print_mention = print_mention_catch_exception_unhandled;
14077 ops->print_recreate = print_recreate_catch_exception_unhandled;
14078
14079 ops = &catch_assert_breakpoint_ops;
14080 *ops = bkpt_breakpoint_ops;
14081 ops->allocate_location = allocate_location_catch_assert;
14082 ops->re_set = re_set_catch_assert;
14083 ops->check_status = check_status_catch_assert;
14084 ops->print_it = print_it_catch_assert;
14085 ops->print_one = print_one_catch_assert;
14086 ops->print_mention = print_mention_catch_assert;
14087 ops->print_recreate = print_recreate_catch_assert;
14088 }
14089
14090 /* This module's 'new_objfile' observer. */
14091
14092 static void
14093 ada_new_objfile_observer (struct objfile *objfile)
14094 {
14095 ada_clear_symbol_cache ();
14096 }
14097
14098 /* This module's 'free_objfile' observer. */
14099
14100 static void
14101 ada_free_objfile_observer (struct objfile *objfile)
14102 {
14103 ada_clear_symbol_cache ();
14104 }
14105
14106 void
14107 _initialize_ada_language (void)
14108 {
14109 add_language (&ada_language_defn);
14110
14111 initialize_ada_catchpoint_ops ();
14112
14113 add_prefix_cmd ("ada", no_class, set_ada_command,
14114 _("Prefix command for changing Ada-specfic settings"),
14115 &set_ada_list, "set ada ", 0, &setlist);
14116
14117 add_prefix_cmd ("ada", no_class, show_ada_command,
14118 _("Generic command for showing Ada-specific settings."),
14119 &show_ada_list, "show ada ", 0, &showlist);
14120
14121 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14122 &trust_pad_over_xvs, _("\
14123 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14124 Show whether an optimization trusting PAD types over XVS types is activated"),
14125 _("\
14126 This is related to the encoding used by the GNAT compiler. The debugger\n\
14127 should normally trust the contents of PAD types, but certain older versions\n\
14128 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14129 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14130 work around this bug. It is always safe to turn this option \"off\", but\n\
14131 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14132 this option to \"off\" unless necessary."),
14133 NULL, NULL, &set_ada_list, &show_ada_list);
14134
14135 add_setshow_boolean_cmd ("print-signatures", class_vars,
14136 &print_signatures, _("\
14137 Enable or disable the output of formal and return types for functions in the \
14138 overloads selection menu"), _("\
14139 Show whether the output of formal and return types for functions in the \
14140 overloads selection menu is activated"),
14141 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14142
14143 add_catch_command ("exception", _("\
14144 Catch Ada exceptions, when raised.\n\
14145 With an argument, catch only exceptions with the given name."),
14146 catch_ada_exception_command,
14147 NULL,
14148 CATCH_PERMANENT,
14149 CATCH_TEMPORARY);
14150 add_catch_command ("assert", _("\
14151 Catch failed Ada assertions, when raised.\n\
14152 With an argument, catch only exceptions with the given name."),
14153 catch_assert_command,
14154 NULL,
14155 CATCH_PERMANENT,
14156 CATCH_TEMPORARY);
14157
14158 varsize_limit = 65536;
14159
14160 add_info ("exceptions", info_exceptions_command,
14161 _("\
14162 List all Ada exception names.\n\
14163 If a regular expression is passed as an argument, only those matching\n\
14164 the regular expression are listed."));
14165
14166 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14167 _("Set Ada maintenance-related variables."),
14168 &maint_set_ada_cmdlist, "maintenance set ada ",
14169 0/*allow-unknown*/, &maintenance_set_cmdlist);
14170
14171 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14172 _("Show Ada maintenance-related variables"),
14173 &maint_show_ada_cmdlist, "maintenance show ada ",
14174 0/*allow-unknown*/, &maintenance_show_cmdlist);
14175
14176 add_setshow_boolean_cmd
14177 ("ignore-descriptive-types", class_maintenance,
14178 &ada_ignore_descriptive_types_p,
14179 _("Set whether descriptive types generated by GNAT should be ignored."),
14180 _("Show whether descriptive types generated by GNAT should be ignored."),
14181 _("\
14182 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14183 DWARF attribute."),
14184 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14185
14186 obstack_init (&symbol_list_obstack);
14187
14188 decoded_names_store = htab_create_alloc
14189 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14190 NULL, xcalloc, xfree);
14191
14192 /* The ada-lang observers. */
14193 observer_attach_new_objfile (ada_new_objfile_observer);
14194 observer_attach_free_objfile (ada_free_objfile_observer);
14195 observer_attach_inferior_exit (ada_inferior_exit);
14196
14197 /* Setup various context-specific data. */
14198 ada_inferior_data
14199 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14200 ada_pspace_data_handle
14201 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14202 }
This page took 0.48494 seconds and 3 git commands to generate.