Fix bugs in 'val and 'pos with range types
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static int find_struct_field (const char *, struct type *, int,
208 struct type **, int *, int *, int *, int *);
209
210 static int ada_resolve_function (struct block_symbol *, int,
211 struct value **, int, const char *,
212 struct type *, int);
213
214 static int ada_is_direct_array_type (struct type *);
215
216 static void ada_language_arch_info (struct gdbarch *,
217 struct language_arch_info *);
218
219 static struct value *ada_index_struct_field (int, struct value *, int,
220 struct type *);
221
222 static struct value *assign_aggregate (struct value *, struct value *,
223 struct expression *,
224 int *, enum noside);
225
226 static void aggregate_assign_from_choices (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *,
229 int, LONGEST, LONGEST);
230
231 static void aggregate_assign_positional (struct value *, struct value *,
232 struct expression *,
233 int *, LONGEST *, int *, int,
234 LONGEST, LONGEST);
235
236
237 static void aggregate_assign_others (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int, LONGEST, LONGEST);
240
241
242 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
243
244
245 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
246 int *, enum noside);
247
248 static void ada_forward_operator_length (struct expression *, int, int *,
249 int *);
250
251 static struct type *ada_find_any_type (const char *name);
252
253 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
254 (const lookup_name_info &lookup_name);
255
256 \f
257
258 /* The result of a symbol lookup to be stored in our symbol cache. */
259
260 struct cache_entry
261 {
262 /* The name used to perform the lookup. */
263 const char *name;
264 /* The namespace used during the lookup. */
265 domain_enum domain;
266 /* The symbol returned by the lookup, or NULL if no matching symbol
267 was found. */
268 struct symbol *sym;
269 /* The block where the symbol was found, or NULL if no matching
270 symbol was found. */
271 const struct block *block;
272 /* A pointer to the next entry with the same hash. */
273 struct cache_entry *next;
274 };
275
276 /* The Ada symbol cache, used to store the result of Ada-mode symbol
277 lookups in the course of executing the user's commands.
278
279 The cache is implemented using a simple, fixed-sized hash.
280 The size is fixed on the grounds that there are not likely to be
281 all that many symbols looked up during any given session, regardless
282 of the size of the symbol table. If we decide to go to a resizable
283 table, let's just use the stuff from libiberty instead. */
284
285 #define HASH_SIZE 1009
286
287 struct ada_symbol_cache
288 {
289 /* An obstack used to store the entries in our cache. */
290 struct obstack cache_space;
291
292 /* The root of the hash table used to implement our symbol cache. */
293 struct cache_entry *root[HASH_SIZE];
294 };
295
296 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
297
298 /* Maximum-sized dynamic type. */
299 static unsigned int varsize_limit;
300
301 static const char ada_completer_word_break_characters[] =
302 #ifdef VMS
303 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
304 #else
305 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
306 #endif
307
308 /* The name of the symbol to use to get the name of the main subprogram. */
309 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
310 = "__gnat_ada_main_program_name";
311
312 /* Limit on the number of warnings to raise per expression evaluation. */
313 static int warning_limit = 2;
314
315 /* Number of warning messages issued; reset to 0 by cleanups after
316 expression evaluation. */
317 static int warnings_issued = 0;
318
319 static const char *known_runtime_file_name_patterns[] = {
320 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321 };
322
323 static const char *known_auxiliary_function_name_patterns[] = {
324 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325 };
326
327 /* Maintenance-related settings for this module. */
328
329 static struct cmd_list_element *maint_set_ada_cmdlist;
330 static struct cmd_list_element *maint_show_ada_cmdlist;
331
332 /* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334 static bool ada_ignore_descriptive_types_p = false;
335
336 /* Inferior-specific data. */
337
338 /* Per-inferior data for this module. */
339
340 struct ada_inferior_data
341 {
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type = nullptr;
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info = nullptr;
352 };
353
354 /* Our key to this module's inferior data. */
355 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
356
357 /* Return our inferior data for the given inferior (INF).
358
359 This function always returns a valid pointer to an allocated
360 ada_inferior_data structure. If INF's inferior data has not
361 been previously set, this functions creates a new one with all
362 fields set to zero, sets INF's inferior to it, and then returns
363 a pointer to that newly allocated ada_inferior_data. */
364
365 static struct ada_inferior_data *
366 get_ada_inferior_data (struct inferior *inf)
367 {
368 struct ada_inferior_data *data;
369
370 data = ada_inferior_data.get (inf);
371 if (data == NULL)
372 data = ada_inferior_data.emplace (inf);
373
374 return data;
375 }
376
377 /* Perform all necessary cleanups regarding our module's inferior data
378 that is required after the inferior INF just exited. */
379
380 static void
381 ada_inferior_exit (struct inferior *inf)
382 {
383 ada_inferior_data.clear (inf);
384 }
385
386
387 /* program-space-specific data. */
388
389 /* This module's per-program-space data. */
390 struct ada_pspace_data
391 {
392 ~ada_pspace_data ()
393 {
394 if (sym_cache != NULL)
395 ada_free_symbol_cache (sym_cache);
396 }
397
398 /* The Ada symbol cache. */
399 struct ada_symbol_cache *sym_cache = nullptr;
400 };
401
402 /* Key to our per-program-space data. */
403 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
404
405 /* Return this module's data for the given program space (PSPACE).
406 If not is found, add a zero'ed one now.
407
408 This function always returns a valid object. */
409
410 static struct ada_pspace_data *
411 get_ada_pspace_data (struct program_space *pspace)
412 {
413 struct ada_pspace_data *data;
414
415 data = ada_pspace_data_handle.get (pspace);
416 if (data == NULL)
417 data = ada_pspace_data_handle.emplace (pspace);
418
419 return data;
420 }
421
422 /* Utilities */
423
424 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
425 all typedef layers have been peeled. Otherwise, return TYPE.
426
427 Normally, we really expect a typedef type to only have 1 typedef layer.
428 In other words, we really expect the target type of a typedef type to be
429 a non-typedef type. This is particularly true for Ada units, because
430 the language does not have a typedef vs not-typedef distinction.
431 In that respect, the Ada compiler has been trying to eliminate as many
432 typedef definitions in the debugging information, since they generally
433 do not bring any extra information (we still use typedef under certain
434 circumstances related mostly to the GNAT encoding).
435
436 Unfortunately, we have seen situations where the debugging information
437 generated by the compiler leads to such multiple typedef layers. For
438 instance, consider the following example with stabs:
439
440 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
441 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
442
443 This is an error in the debugging information which causes type
444 pck__float_array___XUP to be defined twice, and the second time,
445 it is defined as a typedef of a typedef.
446
447 This is on the fringe of legality as far as debugging information is
448 concerned, and certainly unexpected. But it is easy to handle these
449 situations correctly, so we can afford to be lenient in this case. */
450
451 static struct type *
452 ada_typedef_target_type (struct type *type)
453 {
454 while (type->code () == TYPE_CODE_TYPEDEF)
455 type = TYPE_TARGET_TYPE (type);
456 return type;
457 }
458
459 /* Given DECODED_NAME a string holding a symbol name in its
460 decoded form (ie using the Ada dotted notation), returns
461 its unqualified name. */
462
463 static const char *
464 ada_unqualified_name (const char *decoded_name)
465 {
466 const char *result;
467
468 /* If the decoded name starts with '<', it means that the encoded
469 name does not follow standard naming conventions, and thus that
470 it is not your typical Ada symbol name. Trying to unqualify it
471 is therefore pointless and possibly erroneous. */
472 if (decoded_name[0] == '<')
473 return decoded_name;
474
475 result = strrchr (decoded_name, '.');
476 if (result != NULL)
477 result++; /* Skip the dot... */
478 else
479 result = decoded_name;
480
481 return result;
482 }
483
484 /* Return a string starting with '<', followed by STR, and '>'. */
485
486 static std::string
487 add_angle_brackets (const char *str)
488 {
489 return string_printf ("<%s>", str);
490 }
491
492 static const char *
493 ada_get_gdb_completer_word_break_characters (void)
494 {
495 return ada_completer_word_break_characters;
496 }
497
498 /* Print an array element index using the Ada syntax. */
499
500 static void
501 ada_print_array_index (struct value *index_value, struct ui_file *stream,
502 const struct value_print_options *options)
503 {
504 LA_VALUE_PRINT (index_value, stream, options);
505 fprintf_filtered (stream, " => ");
506 }
507
508 /* la_watch_location_expression for Ada. */
509
510 static gdb::unique_xmalloc_ptr<char>
511 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
512 {
513 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
514 std::string name = type_to_string (type);
515 return gdb::unique_xmalloc_ptr<char>
516 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
517 }
518
519 /* Assuming V points to an array of S objects, make sure that it contains at
520 least M objects, updating V and S as necessary. */
521
522 #define GROW_VECT(v, s, m) \
523 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
524
525 /* Assuming VECT points to an array of *SIZE objects of size
526 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
527 updating *SIZE as necessary and returning the (new) array. */
528
529 static void *
530 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
531 {
532 if (*size < min_size)
533 {
534 *size *= 2;
535 if (*size < min_size)
536 *size = min_size;
537 vect = xrealloc (vect, *size * element_size);
538 }
539 return vect;
540 }
541
542 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
543 suffix of FIELD_NAME beginning "___". */
544
545 static int
546 field_name_match (const char *field_name, const char *target)
547 {
548 int len = strlen (target);
549
550 return
551 (strncmp (field_name, target, len) == 0
552 && (field_name[len] == '\0'
553 || (startswith (field_name + len, "___")
554 && strcmp (field_name + strlen (field_name) - 6,
555 "___XVN") != 0)));
556 }
557
558
559 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
560 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
561 and return its index. This function also handles fields whose name
562 have ___ suffixes because the compiler sometimes alters their name
563 by adding such a suffix to represent fields with certain constraints.
564 If the field could not be found, return a negative number if
565 MAYBE_MISSING is set. Otherwise raise an error. */
566
567 int
568 ada_get_field_index (const struct type *type, const char *field_name,
569 int maybe_missing)
570 {
571 int fieldno;
572 struct type *struct_type = check_typedef ((struct type *) type);
573
574 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
575 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
576 return fieldno;
577
578 if (!maybe_missing)
579 error (_("Unable to find field %s in struct %s. Aborting"),
580 field_name, struct_type->name ());
581
582 return -1;
583 }
584
585 /* The length of the prefix of NAME prior to any "___" suffix. */
586
587 int
588 ada_name_prefix_len (const char *name)
589 {
590 if (name == NULL)
591 return 0;
592 else
593 {
594 const char *p = strstr (name, "___");
595
596 if (p == NULL)
597 return strlen (name);
598 else
599 return p - name;
600 }
601 }
602
603 /* Return non-zero if SUFFIX is a suffix of STR.
604 Return zero if STR is null. */
605
606 static int
607 is_suffix (const char *str, const char *suffix)
608 {
609 int len1, len2;
610
611 if (str == NULL)
612 return 0;
613 len1 = strlen (str);
614 len2 = strlen (suffix);
615 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
616 }
617
618 /* The contents of value VAL, treated as a value of type TYPE. The
619 result is an lval in memory if VAL is. */
620
621 static struct value *
622 coerce_unspec_val_to_type (struct value *val, struct type *type)
623 {
624 type = ada_check_typedef (type);
625 if (value_type (val) == type)
626 return val;
627 else
628 {
629 struct value *result;
630
631 /* Make sure that the object size is not unreasonable before
632 trying to allocate some memory for it. */
633 ada_ensure_varsize_limit (type);
634
635 if (value_lazy (val)
636 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
637 result = allocate_value_lazy (type);
638 else
639 {
640 result = allocate_value (type);
641 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
642 }
643 set_value_component_location (result, val);
644 set_value_bitsize (result, value_bitsize (val));
645 set_value_bitpos (result, value_bitpos (val));
646 if (VALUE_LVAL (result) == lval_memory)
647 set_value_address (result, value_address (val));
648 return result;
649 }
650 }
651
652 static const gdb_byte *
653 cond_offset_host (const gdb_byte *valaddr, long offset)
654 {
655 if (valaddr == NULL)
656 return NULL;
657 else
658 return valaddr + offset;
659 }
660
661 static CORE_ADDR
662 cond_offset_target (CORE_ADDR address, long offset)
663 {
664 if (address == 0)
665 return 0;
666 else
667 return address + offset;
668 }
669
670 /* Issue a warning (as for the definition of warning in utils.c, but
671 with exactly one argument rather than ...), unless the limit on the
672 number of warnings has passed during the evaluation of the current
673 expression. */
674
675 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
676 provided by "complaint". */
677 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
678
679 static void
680 lim_warning (const char *format, ...)
681 {
682 va_list args;
683
684 va_start (args, format);
685 warnings_issued += 1;
686 if (warnings_issued <= warning_limit)
687 vwarning (format, args);
688
689 va_end (args);
690 }
691
692 /* Issue an error if the size of an object of type T is unreasonable,
693 i.e. if it would be a bad idea to allocate a value of this type in
694 GDB. */
695
696 void
697 ada_ensure_varsize_limit (const struct type *type)
698 {
699 if (TYPE_LENGTH (type) > varsize_limit)
700 error (_("object size is larger than varsize-limit"));
701 }
702
703 /* Maximum value of a SIZE-byte signed integer type. */
704 static LONGEST
705 max_of_size (int size)
706 {
707 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
708
709 return top_bit | (top_bit - 1);
710 }
711
712 /* Minimum value of a SIZE-byte signed integer type. */
713 static LONGEST
714 min_of_size (int size)
715 {
716 return -max_of_size (size) - 1;
717 }
718
719 /* Maximum value of a SIZE-byte unsigned integer type. */
720 static ULONGEST
721 umax_of_size (int size)
722 {
723 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
724
725 return top_bit | (top_bit - 1);
726 }
727
728 /* Maximum value of integral type T, as a signed quantity. */
729 static LONGEST
730 max_of_type (struct type *t)
731 {
732 if (TYPE_UNSIGNED (t))
733 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
734 else
735 return max_of_size (TYPE_LENGTH (t));
736 }
737
738 /* Minimum value of integral type T, as a signed quantity. */
739 static LONGEST
740 min_of_type (struct type *t)
741 {
742 if (TYPE_UNSIGNED (t))
743 return 0;
744 else
745 return min_of_size (TYPE_LENGTH (t));
746 }
747
748 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
749 LONGEST
750 ada_discrete_type_high_bound (struct type *type)
751 {
752 type = resolve_dynamic_type (type, {}, 0);
753 switch (type->code ())
754 {
755 case TYPE_CODE_RANGE:
756 return TYPE_HIGH_BOUND (type);
757 case TYPE_CODE_ENUM:
758 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
759 case TYPE_CODE_BOOL:
760 return 1;
761 case TYPE_CODE_CHAR:
762 case TYPE_CODE_INT:
763 return max_of_type (type);
764 default:
765 error (_("Unexpected type in ada_discrete_type_high_bound."));
766 }
767 }
768
769 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_low_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, {}, 0);
774 switch (type->code ())
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_LOW_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, 0);
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return min_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
787 }
788 }
789
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
792
793 static struct type *
794 get_base_type (struct type *type)
795 {
796 while (type != NULL && type->code () == TYPE_CODE_RANGE)
797 {
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
803 }
804
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
809
810 struct value *
811 ada_get_decoded_value (struct value *value)
812 {
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
817 && type->code () != TYPE_CODE_PTR))
818 {
819 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828 }
829
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835 struct type *
836 ada_get_decoded_type (struct type *type)
837 {
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842 }
843
844 \f
845
846 /* Language Selection */
847
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
850
851 static enum language
852 ada_update_initial_language (enum language lang)
853 {
854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
855 return language_ada;
856
857 return lang;
858 }
859
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864 char *
865 ada_main_name (void)
866 {
867 struct bound_minimal_symbol msym;
868 static gdb::unique_xmalloc_ptr<char> main_program_name;
869
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
877 if (msym.minsym != NULL)
878 {
879 CORE_ADDR main_program_name_addr;
880 int err_code;
881
882 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
883 if (main_program_name_addr == 0)
884 error (_("Invalid address for Ada main program name."));
885
886 target_read_string (main_program_name_addr, &main_program_name,
887 1024, &err_code);
888
889 if (err_code != 0)
890 return NULL;
891 return main_program_name.get ();
892 }
893
894 /* The main procedure doesn't seem to be in Ada. */
895 return NULL;
896 }
897 \f
898 /* Symbols */
899
900 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
901 of NULLs. */
902
903 const struct ada_opname_map ada_opname_table[] = {
904 {"Oadd", "\"+\"", BINOP_ADD},
905 {"Osubtract", "\"-\"", BINOP_SUB},
906 {"Omultiply", "\"*\"", BINOP_MUL},
907 {"Odivide", "\"/\"", BINOP_DIV},
908 {"Omod", "\"mod\"", BINOP_MOD},
909 {"Orem", "\"rem\"", BINOP_REM},
910 {"Oexpon", "\"**\"", BINOP_EXP},
911 {"Olt", "\"<\"", BINOP_LESS},
912 {"Ole", "\"<=\"", BINOP_LEQ},
913 {"Ogt", "\">\"", BINOP_GTR},
914 {"Oge", "\">=\"", BINOP_GEQ},
915 {"Oeq", "\"=\"", BINOP_EQUAL},
916 {"One", "\"/=\"", BINOP_NOTEQUAL},
917 {"Oand", "\"and\"", BINOP_BITWISE_AND},
918 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
919 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
920 {"Oconcat", "\"&\"", BINOP_CONCAT},
921 {"Oabs", "\"abs\"", UNOP_ABS},
922 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
923 {"Oadd", "\"+\"", UNOP_PLUS},
924 {"Osubtract", "\"-\"", UNOP_NEG},
925 {NULL, NULL}
926 };
927
928 /* The "encoded" form of DECODED, according to GNAT conventions. The
929 result is valid until the next call to ada_encode. If
930 THROW_ERRORS, throw an error if invalid operator name is found.
931 Otherwise, return NULL in that case. */
932
933 static char *
934 ada_encode_1 (const char *decoded, bool throw_errors)
935 {
936 static char *encoding_buffer = NULL;
937 static size_t encoding_buffer_size = 0;
938 const char *p;
939 int k;
940
941 if (decoded == NULL)
942 return NULL;
943
944 GROW_VECT (encoding_buffer, encoding_buffer_size,
945 2 * strlen (decoded) + 10);
946
947 k = 0;
948 for (p = decoded; *p != '\0'; p += 1)
949 {
950 if (*p == '.')
951 {
952 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
953 k += 2;
954 }
955 else if (*p == '"')
956 {
957 const struct ada_opname_map *mapping;
958
959 for (mapping = ada_opname_table;
960 mapping->encoded != NULL
961 && !startswith (p, mapping->decoded); mapping += 1)
962 ;
963 if (mapping->encoded == NULL)
964 {
965 if (throw_errors)
966 error (_("invalid Ada operator name: %s"), p);
967 else
968 return NULL;
969 }
970 strcpy (encoding_buffer + k, mapping->encoded);
971 k += strlen (mapping->encoded);
972 break;
973 }
974 else
975 {
976 encoding_buffer[k] = *p;
977 k += 1;
978 }
979 }
980
981 encoding_buffer[k] = '\0';
982 return encoding_buffer;
983 }
984
985 /* The "encoded" form of DECODED, according to GNAT conventions.
986 The result is valid until the next call to ada_encode. */
987
988 char *
989 ada_encode (const char *decoded)
990 {
991 return ada_encode_1 (decoded, true);
992 }
993
994 /* Return NAME folded to lower case, or, if surrounded by single
995 quotes, unfolded, but with the quotes stripped away. Result good
996 to next call. */
997
998 static char *
999 ada_fold_name (gdb::string_view name)
1000 {
1001 static char *fold_buffer = NULL;
1002 static size_t fold_buffer_size = 0;
1003
1004 int len = name.size ();
1005 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1006
1007 if (name[0] == '\'')
1008 {
1009 strncpy (fold_buffer, name.data () + 1, len - 2);
1010 fold_buffer[len - 2] = '\000';
1011 }
1012 else
1013 {
1014 int i;
1015
1016 for (i = 0; i <= len; i += 1)
1017 fold_buffer[i] = tolower (name[i]);
1018 }
1019
1020 return fold_buffer;
1021 }
1022
1023 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1024
1025 static int
1026 is_lower_alphanum (const char c)
1027 {
1028 return (isdigit (c) || (isalpha (c) && islower (c)));
1029 }
1030
1031 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1032 This function saves in LEN the length of that same symbol name but
1033 without either of these suffixes:
1034 . .{DIGIT}+
1035 . ${DIGIT}+
1036 . ___{DIGIT}+
1037 . __{DIGIT}+.
1038
1039 These are suffixes introduced by the compiler for entities such as
1040 nested subprogram for instance, in order to avoid name clashes.
1041 They do not serve any purpose for the debugger. */
1042
1043 static void
1044 ada_remove_trailing_digits (const char *encoded, int *len)
1045 {
1046 if (*len > 1 && isdigit (encoded[*len - 1]))
1047 {
1048 int i = *len - 2;
1049
1050 while (i > 0 && isdigit (encoded[i]))
1051 i--;
1052 if (i >= 0 && encoded[i] == '.')
1053 *len = i;
1054 else if (i >= 0 && encoded[i] == '$')
1055 *len = i;
1056 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1057 *len = i - 2;
1058 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1059 *len = i - 1;
1060 }
1061 }
1062
1063 /* Remove the suffix introduced by the compiler for protected object
1064 subprograms. */
1065
1066 static void
1067 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1068 {
1069 /* Remove trailing N. */
1070
1071 /* Protected entry subprograms are broken into two
1072 separate subprograms: The first one is unprotected, and has
1073 a 'N' suffix; the second is the protected version, and has
1074 the 'P' suffix. The second calls the first one after handling
1075 the protection. Since the P subprograms are internally generated,
1076 we leave these names undecoded, giving the user a clue that this
1077 entity is internal. */
1078
1079 if (*len > 1
1080 && encoded[*len - 1] == 'N'
1081 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1082 *len = *len - 1;
1083 }
1084
1085 /* If ENCODED follows the GNAT entity encoding conventions, then return
1086 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1087 replaced by ENCODED. */
1088
1089 std::string
1090 ada_decode (const char *encoded)
1091 {
1092 int i, j;
1093 int len0;
1094 const char *p;
1095 int at_start_name;
1096 std::string decoded;
1097
1098 /* With function descriptors on PPC64, the value of a symbol named
1099 ".FN", if it exists, is the entry point of the function "FN". */
1100 if (encoded[0] == '.')
1101 encoded += 1;
1102
1103 /* The name of the Ada main procedure starts with "_ada_".
1104 This prefix is not part of the decoded name, so skip this part
1105 if we see this prefix. */
1106 if (startswith (encoded, "_ada_"))
1107 encoded += 5;
1108
1109 /* If the name starts with '_', then it is not a properly encoded
1110 name, so do not attempt to decode it. Similarly, if the name
1111 starts with '<', the name should not be decoded. */
1112 if (encoded[0] == '_' || encoded[0] == '<')
1113 goto Suppress;
1114
1115 len0 = strlen (encoded);
1116
1117 ada_remove_trailing_digits (encoded, &len0);
1118 ada_remove_po_subprogram_suffix (encoded, &len0);
1119
1120 /* Remove the ___X.* suffix if present. Do not forget to verify that
1121 the suffix is located before the current "end" of ENCODED. We want
1122 to avoid re-matching parts of ENCODED that have previously been
1123 marked as discarded (by decrementing LEN0). */
1124 p = strstr (encoded, "___");
1125 if (p != NULL && p - encoded < len0 - 3)
1126 {
1127 if (p[3] == 'X')
1128 len0 = p - encoded;
1129 else
1130 goto Suppress;
1131 }
1132
1133 /* Remove any trailing TKB suffix. It tells us that this symbol
1134 is for the body of a task, but that information does not actually
1135 appear in the decoded name. */
1136
1137 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1138 len0 -= 3;
1139
1140 /* Remove any trailing TB suffix. The TB suffix is slightly different
1141 from the TKB suffix because it is used for non-anonymous task
1142 bodies. */
1143
1144 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1145 len0 -= 2;
1146
1147 /* Remove trailing "B" suffixes. */
1148 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1149
1150 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1151 len0 -= 1;
1152
1153 /* Make decoded big enough for possible expansion by operator name. */
1154
1155 decoded.resize (2 * len0 + 1, 'X');
1156
1157 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1158
1159 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1160 {
1161 i = len0 - 2;
1162 while ((i >= 0 && isdigit (encoded[i]))
1163 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1164 i -= 1;
1165 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1166 len0 = i - 1;
1167 else if (encoded[i] == '$')
1168 len0 = i;
1169 }
1170
1171 /* The first few characters that are not alphabetic are not part
1172 of any encoding we use, so we can copy them over verbatim. */
1173
1174 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1175 decoded[j] = encoded[i];
1176
1177 at_start_name = 1;
1178 while (i < len0)
1179 {
1180 /* Is this a symbol function? */
1181 if (at_start_name && encoded[i] == 'O')
1182 {
1183 int k;
1184
1185 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1186 {
1187 int op_len = strlen (ada_opname_table[k].encoded);
1188 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1189 op_len - 1) == 0)
1190 && !isalnum (encoded[i + op_len]))
1191 {
1192 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1193 at_start_name = 0;
1194 i += op_len;
1195 j += strlen (ada_opname_table[k].decoded);
1196 break;
1197 }
1198 }
1199 if (ada_opname_table[k].encoded != NULL)
1200 continue;
1201 }
1202 at_start_name = 0;
1203
1204 /* Replace "TK__" with "__", which will eventually be translated
1205 into "." (just below). */
1206
1207 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1208 i += 2;
1209
1210 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1211 be translated into "." (just below). These are internal names
1212 generated for anonymous blocks inside which our symbol is nested. */
1213
1214 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1215 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1216 && isdigit (encoded [i+4]))
1217 {
1218 int k = i + 5;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++; /* Skip any extra digit. */
1222
1223 /* Double-check that the "__B_{DIGITS}+" sequence we found
1224 is indeed followed by "__". */
1225 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1226 i = k;
1227 }
1228
1229 /* Remove _E{DIGITS}+[sb] */
1230
1231 /* Just as for protected object subprograms, there are 2 categories
1232 of subprograms created by the compiler for each entry. The first
1233 one implements the actual entry code, and has a suffix following
1234 the convention above; the second one implements the barrier and
1235 uses the same convention as above, except that the 'E' is replaced
1236 by a 'B'.
1237
1238 Just as above, we do not decode the name of barrier functions
1239 to give the user a clue that the code he is debugging has been
1240 internally generated. */
1241
1242 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1243 && isdigit (encoded[i+2]))
1244 {
1245 int k = i + 3;
1246
1247 while (k < len0 && isdigit (encoded[k]))
1248 k++;
1249
1250 if (k < len0
1251 && (encoded[k] == 'b' || encoded[k] == 's'))
1252 {
1253 k++;
1254 /* Just as an extra precaution, make sure that if this
1255 suffix is followed by anything else, it is a '_'.
1256 Otherwise, we matched this sequence by accident. */
1257 if (k == len0
1258 || (k < len0 && encoded[k] == '_'))
1259 i = k;
1260 }
1261 }
1262
1263 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1264 the GNAT front-end in protected object subprograms. */
1265
1266 if (i < len0 + 3
1267 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1268 {
1269 /* Backtrack a bit up until we reach either the begining of
1270 the encoded name, or "__". Make sure that we only find
1271 digits or lowercase characters. */
1272 const char *ptr = encoded + i - 1;
1273
1274 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1275 ptr--;
1276 if (ptr < encoded
1277 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1278 i++;
1279 }
1280
1281 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1282 {
1283 /* This is a X[bn]* sequence not separated from the previous
1284 part of the name with a non-alpha-numeric character (in other
1285 words, immediately following an alpha-numeric character), then
1286 verify that it is placed at the end of the encoded name. If
1287 not, then the encoding is not valid and we should abort the
1288 decoding. Otherwise, just skip it, it is used in body-nested
1289 package names. */
1290 do
1291 i += 1;
1292 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1293 if (i < len0)
1294 goto Suppress;
1295 }
1296 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1297 {
1298 /* Replace '__' by '.'. */
1299 decoded[j] = '.';
1300 at_start_name = 1;
1301 i += 2;
1302 j += 1;
1303 }
1304 else
1305 {
1306 /* It's a character part of the decoded name, so just copy it
1307 over. */
1308 decoded[j] = encoded[i];
1309 i += 1;
1310 j += 1;
1311 }
1312 }
1313 decoded.resize (j);
1314
1315 /* Decoded names should never contain any uppercase character.
1316 Double-check this, and abort the decoding if we find one. */
1317
1318 for (i = 0; i < decoded.length(); ++i)
1319 if (isupper (decoded[i]) || decoded[i] == ' ')
1320 goto Suppress;
1321
1322 return decoded;
1323
1324 Suppress:
1325 if (encoded[0] == '<')
1326 decoded = encoded;
1327 else
1328 decoded = '<' + std::string(encoded) + '>';
1329 return decoded;
1330
1331 }
1332
1333 /* Table for keeping permanent unique copies of decoded names. Once
1334 allocated, names in this table are never released. While this is a
1335 storage leak, it should not be significant unless there are massive
1336 changes in the set of decoded names in successive versions of a
1337 symbol table loaded during a single session. */
1338 static struct htab *decoded_names_store;
1339
1340 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1341 in the language-specific part of GSYMBOL, if it has not been
1342 previously computed. Tries to save the decoded name in the same
1343 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1344 in any case, the decoded symbol has a lifetime at least that of
1345 GSYMBOL).
1346 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1347 const, but nevertheless modified to a semantically equivalent form
1348 when a decoded name is cached in it. */
1349
1350 const char *
1351 ada_decode_symbol (const struct general_symbol_info *arg)
1352 {
1353 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1354 const char **resultp =
1355 &gsymbol->language_specific.demangled_name;
1356
1357 if (!gsymbol->ada_mangled)
1358 {
1359 std::string decoded = ada_decode (gsymbol->linkage_name ());
1360 struct obstack *obstack = gsymbol->language_specific.obstack;
1361
1362 gsymbol->ada_mangled = 1;
1363
1364 if (obstack != NULL)
1365 *resultp = obstack_strdup (obstack, decoded.c_str ());
1366 else
1367 {
1368 /* Sometimes, we can't find a corresponding objfile, in
1369 which case, we put the result on the heap. Since we only
1370 decode when needed, we hope this usually does not cause a
1371 significant memory leak (FIXME). */
1372
1373 char **slot = (char **) htab_find_slot (decoded_names_store,
1374 decoded.c_str (), INSERT);
1375
1376 if (*slot == NULL)
1377 *slot = xstrdup (decoded.c_str ());
1378 *resultp = *slot;
1379 }
1380 }
1381
1382 return *resultp;
1383 }
1384
1385 static char *
1386 ada_la_decode (const char *encoded, int options)
1387 {
1388 return xstrdup (ada_decode (encoded).c_str ());
1389 }
1390
1391 /* Implement la_sniff_from_mangled_name for Ada. */
1392
1393 static int
1394 ada_sniff_from_mangled_name (const char *mangled, char **out)
1395 {
1396 std::string demangled = ada_decode (mangled);
1397
1398 *out = NULL;
1399
1400 if (demangled != mangled && demangled[0] != '<')
1401 {
1402 /* Set the gsymbol language to Ada, but still return 0.
1403 Two reasons for that:
1404
1405 1. For Ada, we prefer computing the symbol's decoded name
1406 on the fly rather than pre-compute it, in order to save
1407 memory (Ada projects are typically very large).
1408
1409 2. There are some areas in the definition of the GNAT
1410 encoding where, with a bit of bad luck, we might be able
1411 to decode a non-Ada symbol, generating an incorrect
1412 demangled name (Eg: names ending with "TB" for instance
1413 are identified as task bodies and so stripped from
1414 the decoded name returned).
1415
1416 Returning 1, here, but not setting *DEMANGLED, helps us get a
1417 little bit of the best of both worlds. Because we're last,
1418 we should not affect any of the other languages that were
1419 able to demangle the symbol before us; we get to correctly
1420 tag Ada symbols as such; and even if we incorrectly tagged a
1421 non-Ada symbol, which should be rare, any routing through the
1422 Ada language should be transparent (Ada tries to behave much
1423 like C/C++ with non-Ada symbols). */
1424 return 1;
1425 }
1426
1427 return 0;
1428 }
1429
1430 \f
1431
1432 /* Arrays */
1433
1434 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1435 generated by the GNAT compiler to describe the index type used
1436 for each dimension of an array, check whether it follows the latest
1437 known encoding. If not, fix it up to conform to the latest encoding.
1438 Otherwise, do nothing. This function also does nothing if
1439 INDEX_DESC_TYPE is NULL.
1440
1441 The GNAT encoding used to describe the array index type evolved a bit.
1442 Initially, the information would be provided through the name of each
1443 field of the structure type only, while the type of these fields was
1444 described as unspecified and irrelevant. The debugger was then expected
1445 to perform a global type lookup using the name of that field in order
1446 to get access to the full index type description. Because these global
1447 lookups can be very expensive, the encoding was later enhanced to make
1448 the global lookup unnecessary by defining the field type as being
1449 the full index type description.
1450
1451 The purpose of this routine is to allow us to support older versions
1452 of the compiler by detecting the use of the older encoding, and by
1453 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1454 we essentially replace each field's meaningless type by the associated
1455 index subtype). */
1456
1457 void
1458 ada_fixup_array_indexes_type (struct type *index_desc_type)
1459 {
1460 int i;
1461
1462 if (index_desc_type == NULL)
1463 return;
1464 gdb_assert (index_desc_type->num_fields () > 0);
1465
1466 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1467 to check one field only, no need to check them all). If not, return
1468 now.
1469
1470 If our INDEX_DESC_TYPE was generated using the older encoding,
1471 the field type should be a meaningless integer type whose name
1472 is not equal to the field name. */
1473 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1474 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
1475 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1476 return;
1477
1478 /* Fixup each field of INDEX_DESC_TYPE. */
1479 for (i = 0; i < index_desc_type->num_fields (); i++)
1480 {
1481 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1482 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1483
1484 if (raw_type)
1485 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1486 }
1487 }
1488
1489 /* The desc_* routines return primitive portions of array descriptors
1490 (fat pointers). */
1491
1492 /* The descriptor or array type, if any, indicated by TYPE; removes
1493 level of indirection, if needed. */
1494
1495 static struct type *
1496 desc_base_type (struct type *type)
1497 {
1498 if (type == NULL)
1499 return NULL;
1500 type = ada_check_typedef (type);
1501 if (type->code () == TYPE_CODE_TYPEDEF)
1502 type = ada_typedef_target_type (type);
1503
1504 if (type != NULL
1505 && (type->code () == TYPE_CODE_PTR
1506 || type->code () == TYPE_CODE_REF))
1507 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1508 else
1509 return type;
1510 }
1511
1512 /* True iff TYPE indicates a "thin" array pointer type. */
1513
1514 static int
1515 is_thin_pntr (struct type *type)
1516 {
1517 return
1518 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1519 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1520 }
1521
1522 /* The descriptor type for thin pointer type TYPE. */
1523
1524 static struct type *
1525 thin_descriptor_type (struct type *type)
1526 {
1527 struct type *base_type = desc_base_type (type);
1528
1529 if (base_type == NULL)
1530 return NULL;
1531 if (is_suffix (ada_type_name (base_type), "___XVE"))
1532 return base_type;
1533 else
1534 {
1535 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1536
1537 if (alt_type == NULL)
1538 return base_type;
1539 else
1540 return alt_type;
1541 }
1542 }
1543
1544 /* A pointer to the array data for thin-pointer value VAL. */
1545
1546 static struct value *
1547 thin_data_pntr (struct value *val)
1548 {
1549 struct type *type = ada_check_typedef (value_type (val));
1550 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1551
1552 data_type = lookup_pointer_type (data_type);
1553
1554 if (type->code () == TYPE_CODE_PTR)
1555 return value_cast (data_type, value_copy (val));
1556 else
1557 return value_from_longest (data_type, value_address (val));
1558 }
1559
1560 /* True iff TYPE indicates a "thick" array pointer type. */
1561
1562 static int
1563 is_thick_pntr (struct type *type)
1564 {
1565 type = desc_base_type (type);
1566 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1567 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1568 }
1569
1570 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1571 pointer to one, the type of its bounds data; otherwise, NULL. */
1572
1573 static struct type *
1574 desc_bounds_type (struct type *type)
1575 {
1576 struct type *r;
1577
1578 type = desc_base_type (type);
1579
1580 if (type == NULL)
1581 return NULL;
1582 else if (is_thin_pntr (type))
1583 {
1584 type = thin_descriptor_type (type);
1585 if (type == NULL)
1586 return NULL;
1587 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1588 if (r != NULL)
1589 return ada_check_typedef (r);
1590 }
1591 else if (type->code () == TYPE_CODE_STRUCT)
1592 {
1593 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1594 if (r != NULL)
1595 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1596 }
1597 return NULL;
1598 }
1599
1600 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1601 one, a pointer to its bounds data. Otherwise NULL. */
1602
1603 static struct value *
1604 desc_bounds (struct value *arr)
1605 {
1606 struct type *type = ada_check_typedef (value_type (arr));
1607
1608 if (is_thin_pntr (type))
1609 {
1610 struct type *bounds_type =
1611 desc_bounds_type (thin_descriptor_type (type));
1612 LONGEST addr;
1613
1614 if (bounds_type == NULL)
1615 error (_("Bad GNAT array descriptor"));
1616
1617 /* NOTE: The following calculation is not really kosher, but
1618 since desc_type is an XVE-encoded type (and shouldn't be),
1619 the correct calculation is a real pain. FIXME (and fix GCC). */
1620 if (type->code () == TYPE_CODE_PTR)
1621 addr = value_as_long (arr);
1622 else
1623 addr = value_address (arr);
1624
1625 return
1626 value_from_longest (lookup_pointer_type (bounds_type),
1627 addr - TYPE_LENGTH (bounds_type));
1628 }
1629
1630 else if (is_thick_pntr (type))
1631 {
1632 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1633 _("Bad GNAT array descriptor"));
1634 struct type *p_bounds_type = value_type (p_bounds);
1635
1636 if (p_bounds_type
1637 && p_bounds_type->code () == TYPE_CODE_PTR)
1638 {
1639 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1640
1641 if (TYPE_STUB (target_type))
1642 p_bounds = value_cast (lookup_pointer_type
1643 (ada_check_typedef (target_type)),
1644 p_bounds);
1645 }
1646 else
1647 error (_("Bad GNAT array descriptor"));
1648
1649 return p_bounds;
1650 }
1651 else
1652 return NULL;
1653 }
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the bounds data. */
1657
1658 static int
1659 fat_pntr_bounds_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the bounds data. */
1666
1667 static int
1668 fat_pntr_bounds_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 1);
1674 else
1675 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1676 }
1677
1678 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1679 pointer to one, the type of its array data (a array-with-no-bounds type);
1680 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1681 data. */
1682
1683 static struct type *
1684 desc_data_target_type (struct type *type)
1685 {
1686 type = desc_base_type (type);
1687
1688 /* NOTE: The following is bogus; see comment in desc_bounds. */
1689 if (is_thin_pntr (type))
1690 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1691 else if (is_thick_pntr (type))
1692 {
1693 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1694
1695 if (data_type
1696 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1697 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1698 }
1699
1700 return NULL;
1701 }
1702
1703 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1704 its array data. */
1705
1706 static struct value *
1707 desc_data (struct value *arr)
1708 {
1709 struct type *type = value_type (arr);
1710
1711 if (is_thin_pntr (type))
1712 return thin_data_pntr (arr);
1713 else if (is_thick_pntr (type))
1714 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1715 _("Bad GNAT array descriptor"));
1716 else
1717 return NULL;
1718 }
1719
1720
1721 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1722 position of the field containing the address of the data. */
1723
1724 static int
1725 fat_pntr_data_bitpos (struct type *type)
1726 {
1727 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1728 }
1729
1730 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1731 size of the field containing the address of the data. */
1732
1733 static int
1734 fat_pntr_data_bitsize (struct type *type)
1735 {
1736 type = desc_base_type (type);
1737
1738 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1739 return TYPE_FIELD_BITSIZE (type, 0);
1740 else
1741 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1742 }
1743
1744 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1745 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1746 bound, if WHICH is 1. The first bound is I=1. */
1747
1748 static struct value *
1749 desc_one_bound (struct value *bounds, int i, int which)
1750 {
1751 char bound_name[20];
1752 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1753 which ? 'U' : 'L', i - 1);
1754 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1755 _("Bad GNAT array descriptor bounds"));
1756 }
1757
1758 /* If BOUNDS is an array-bounds structure type, return the bit position
1759 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1760 bound, if WHICH is 1. The first bound is I=1. */
1761
1762 static int
1763 desc_bound_bitpos (struct type *type, int i, int which)
1764 {
1765 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1766 }
1767
1768 /* If BOUNDS is an array-bounds structure type, return the bit field size
1769 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1770 bound, if WHICH is 1. The first bound is I=1. */
1771
1772 static int
1773 desc_bound_bitsize (struct type *type, int i, int which)
1774 {
1775 type = desc_base_type (type);
1776
1777 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1778 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1779 else
1780 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1781 }
1782
1783 /* If TYPE is the type of an array-bounds structure, the type of its
1784 Ith bound (numbering from 1). Otherwise, NULL. */
1785
1786 static struct type *
1787 desc_index_type (struct type *type, int i)
1788 {
1789 type = desc_base_type (type);
1790
1791 if (type->code () == TYPE_CODE_STRUCT)
1792 {
1793 char bound_name[20];
1794 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1795 return lookup_struct_elt_type (type, bound_name, 1);
1796 }
1797 else
1798 return NULL;
1799 }
1800
1801 /* The number of index positions in the array-bounds type TYPE.
1802 Return 0 if TYPE is NULL. */
1803
1804 static int
1805 desc_arity (struct type *type)
1806 {
1807 type = desc_base_type (type);
1808
1809 if (type != NULL)
1810 return type->num_fields () / 2;
1811 return 0;
1812 }
1813
1814 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1815 an array descriptor type (representing an unconstrained array
1816 type). */
1817
1818 static int
1819 ada_is_direct_array_type (struct type *type)
1820 {
1821 if (type == NULL)
1822 return 0;
1823 type = ada_check_typedef (type);
1824 return (type->code () == TYPE_CODE_ARRAY
1825 || ada_is_array_descriptor_type (type));
1826 }
1827
1828 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1829 * to one. */
1830
1831 static int
1832 ada_is_array_type (struct type *type)
1833 {
1834 while (type != NULL
1835 && (type->code () == TYPE_CODE_PTR
1836 || type->code () == TYPE_CODE_REF))
1837 type = TYPE_TARGET_TYPE (type);
1838 return ada_is_direct_array_type (type);
1839 }
1840
1841 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1842
1843 int
1844 ada_is_simple_array_type (struct type *type)
1845 {
1846 if (type == NULL)
1847 return 0;
1848 type = ada_check_typedef (type);
1849 return (type->code () == TYPE_CODE_ARRAY
1850 || (type->code () == TYPE_CODE_PTR
1851 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1852 == TYPE_CODE_ARRAY)));
1853 }
1854
1855 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1856
1857 int
1858 ada_is_array_descriptor_type (struct type *type)
1859 {
1860 struct type *data_type = desc_data_target_type (type);
1861
1862 if (type == NULL)
1863 return 0;
1864 type = ada_check_typedef (type);
1865 return (data_type != NULL
1866 && data_type->code () == TYPE_CODE_ARRAY
1867 && desc_arity (desc_bounds_type (type)) > 0);
1868 }
1869
1870 /* Non-zero iff type is a partially mal-formed GNAT array
1871 descriptor. FIXME: This is to compensate for some problems with
1872 debugging output from GNAT. Re-examine periodically to see if it
1873 is still needed. */
1874
1875 int
1876 ada_is_bogus_array_descriptor (struct type *type)
1877 {
1878 return
1879 type != NULL
1880 && type->code () == TYPE_CODE_STRUCT
1881 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1882 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1883 && !ada_is_array_descriptor_type (type);
1884 }
1885
1886
1887 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1888 (fat pointer) returns the type of the array data described---specifically,
1889 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1890 in from the descriptor; otherwise, they are left unspecified. If
1891 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1892 returns NULL. The result is simply the type of ARR if ARR is not
1893 a descriptor. */
1894
1895 static struct type *
1896 ada_type_of_array (struct value *arr, int bounds)
1897 {
1898 if (ada_is_constrained_packed_array_type (value_type (arr)))
1899 return decode_constrained_packed_array_type (value_type (arr));
1900
1901 if (!ada_is_array_descriptor_type (value_type (arr)))
1902 return value_type (arr);
1903
1904 if (!bounds)
1905 {
1906 struct type *array_type =
1907 ada_check_typedef (desc_data_target_type (value_type (arr)));
1908
1909 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1910 TYPE_FIELD_BITSIZE (array_type, 0) =
1911 decode_packed_array_bitsize (value_type (arr));
1912
1913 return array_type;
1914 }
1915 else
1916 {
1917 struct type *elt_type;
1918 int arity;
1919 struct value *descriptor;
1920
1921 elt_type = ada_array_element_type (value_type (arr), -1);
1922 arity = ada_array_arity (value_type (arr));
1923
1924 if (elt_type == NULL || arity == 0)
1925 return ada_check_typedef (value_type (arr));
1926
1927 descriptor = desc_bounds (arr);
1928 if (value_as_long (descriptor) == 0)
1929 return NULL;
1930 while (arity > 0)
1931 {
1932 struct type *range_type = alloc_type_copy (value_type (arr));
1933 struct type *array_type = alloc_type_copy (value_type (arr));
1934 struct value *low = desc_one_bound (descriptor, arity, 0);
1935 struct value *high = desc_one_bound (descriptor, arity, 1);
1936
1937 arity -= 1;
1938 create_static_range_type (range_type, value_type (low),
1939 longest_to_int (value_as_long (low)),
1940 longest_to_int (value_as_long (high)));
1941 elt_type = create_array_type (array_type, elt_type, range_type);
1942
1943 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1944 {
1945 /* We need to store the element packed bitsize, as well as
1946 recompute the array size, because it was previously
1947 computed based on the unpacked element size. */
1948 LONGEST lo = value_as_long (low);
1949 LONGEST hi = value_as_long (high);
1950
1951 TYPE_FIELD_BITSIZE (elt_type, 0) =
1952 decode_packed_array_bitsize (value_type (arr));
1953 /* If the array has no element, then the size is already
1954 zero, and does not need to be recomputed. */
1955 if (lo < hi)
1956 {
1957 int array_bitsize =
1958 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1959
1960 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1961 }
1962 }
1963 }
1964
1965 return lookup_pointer_type (elt_type);
1966 }
1967 }
1968
1969 /* If ARR does not represent an array, returns ARR unchanged.
1970 Otherwise, returns either a standard GDB array with bounds set
1971 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1972 GDB array. Returns NULL if ARR is a null fat pointer. */
1973
1974 struct value *
1975 ada_coerce_to_simple_array_ptr (struct value *arr)
1976 {
1977 if (ada_is_array_descriptor_type (value_type (arr)))
1978 {
1979 struct type *arrType = ada_type_of_array (arr, 1);
1980
1981 if (arrType == NULL)
1982 return NULL;
1983 return value_cast (arrType, value_copy (desc_data (arr)));
1984 }
1985 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array (arr);
1987 else
1988 return arr;
1989 }
1990
1991 /* If ARR does not represent an array, returns ARR unchanged.
1992 Otherwise, returns a standard GDB array describing ARR (which may
1993 be ARR itself if it already is in the proper form). */
1994
1995 struct value *
1996 ada_coerce_to_simple_array (struct value *arr)
1997 {
1998 if (ada_is_array_descriptor_type (value_type (arr)))
1999 {
2000 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2001
2002 if (arrVal == NULL)
2003 error (_("Bounds unavailable for null array pointer."));
2004 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2005 return value_ind (arrVal);
2006 }
2007 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2008 return decode_constrained_packed_array (arr);
2009 else
2010 return arr;
2011 }
2012
2013 /* If TYPE represents a GNAT array type, return it translated to an
2014 ordinary GDB array type (possibly with BITSIZE fields indicating
2015 packing). For other types, is the identity. */
2016
2017 struct type *
2018 ada_coerce_to_simple_array_type (struct type *type)
2019 {
2020 if (ada_is_constrained_packed_array_type (type))
2021 return decode_constrained_packed_array_type (type);
2022
2023 if (ada_is_array_descriptor_type (type))
2024 return ada_check_typedef (desc_data_target_type (type));
2025
2026 return type;
2027 }
2028
2029 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2030
2031 static int
2032 ada_is_packed_array_type (struct type *type)
2033 {
2034 if (type == NULL)
2035 return 0;
2036 type = desc_base_type (type);
2037 type = ada_check_typedef (type);
2038 return
2039 ada_type_name (type) != NULL
2040 && strstr (ada_type_name (type), "___XP") != NULL;
2041 }
2042
2043 /* Non-zero iff TYPE represents a standard GNAT constrained
2044 packed-array type. */
2045
2046 int
2047 ada_is_constrained_packed_array_type (struct type *type)
2048 {
2049 return ada_is_packed_array_type (type)
2050 && !ada_is_array_descriptor_type (type);
2051 }
2052
2053 /* Non-zero iff TYPE represents an array descriptor for a
2054 unconstrained packed-array type. */
2055
2056 static int
2057 ada_is_unconstrained_packed_array_type (struct type *type)
2058 {
2059 return ada_is_packed_array_type (type)
2060 && ada_is_array_descriptor_type (type);
2061 }
2062
2063 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2064 return the size of its elements in bits. */
2065
2066 static long
2067 decode_packed_array_bitsize (struct type *type)
2068 {
2069 const char *raw_name;
2070 const char *tail;
2071 long bits;
2072
2073 /* Access to arrays implemented as fat pointers are encoded as a typedef
2074 of the fat pointer type. We need the name of the fat pointer type
2075 to do the decoding, so strip the typedef layer. */
2076 if (type->code () == TYPE_CODE_TYPEDEF)
2077 type = ada_typedef_target_type (type);
2078
2079 raw_name = ada_type_name (ada_check_typedef (type));
2080 if (!raw_name)
2081 raw_name = ada_type_name (desc_base_type (type));
2082
2083 if (!raw_name)
2084 return 0;
2085
2086 tail = strstr (raw_name, "___XP");
2087 gdb_assert (tail != NULL);
2088
2089 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2090 {
2091 lim_warning
2092 (_("could not understand bit size information on packed array"));
2093 return 0;
2094 }
2095
2096 return bits;
2097 }
2098
2099 /* Given that TYPE is a standard GDB array type with all bounds filled
2100 in, and that the element size of its ultimate scalar constituents
2101 (that is, either its elements, or, if it is an array of arrays, its
2102 elements' elements, etc.) is *ELT_BITS, return an identical type,
2103 but with the bit sizes of its elements (and those of any
2104 constituent arrays) recorded in the BITSIZE components of its
2105 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2106 in bits.
2107
2108 Note that, for arrays whose index type has an XA encoding where
2109 a bound references a record discriminant, getting that discriminant,
2110 and therefore the actual value of that bound, is not possible
2111 because none of the given parameters gives us access to the record.
2112 This function assumes that it is OK in the context where it is being
2113 used to return an array whose bounds are still dynamic and where
2114 the length is arbitrary. */
2115
2116 static struct type *
2117 constrained_packed_array_type (struct type *type, long *elt_bits)
2118 {
2119 struct type *new_elt_type;
2120 struct type *new_type;
2121 struct type *index_type_desc;
2122 struct type *index_type;
2123 LONGEST low_bound, high_bound;
2124
2125 type = ada_check_typedef (type);
2126 if (type->code () != TYPE_CODE_ARRAY)
2127 return type;
2128
2129 index_type_desc = ada_find_parallel_type (type, "___XA");
2130 if (index_type_desc)
2131 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2132 NULL);
2133 else
2134 index_type = TYPE_INDEX_TYPE (type);
2135
2136 new_type = alloc_type_copy (type);
2137 new_elt_type =
2138 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2139 elt_bits);
2140 create_array_type (new_type, new_elt_type, index_type);
2141 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2142 new_type->set_name (ada_type_name (type));
2143
2144 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2145 && is_dynamic_type (check_typedef (index_type)))
2146 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2147 low_bound = high_bound = 0;
2148 if (high_bound < low_bound)
2149 *elt_bits = TYPE_LENGTH (new_type) = 0;
2150 else
2151 {
2152 *elt_bits *= (high_bound - low_bound + 1);
2153 TYPE_LENGTH (new_type) =
2154 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2155 }
2156
2157 TYPE_FIXED_INSTANCE (new_type) = 1;
2158 return new_type;
2159 }
2160
2161 /* The array type encoded by TYPE, where
2162 ada_is_constrained_packed_array_type (TYPE). */
2163
2164 static struct type *
2165 decode_constrained_packed_array_type (struct type *type)
2166 {
2167 const char *raw_name = ada_type_name (ada_check_typedef (type));
2168 char *name;
2169 const char *tail;
2170 struct type *shadow_type;
2171 long bits;
2172
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return NULL;
2178
2179 name = (char *) alloca (strlen (raw_name) + 1);
2180 tail = strstr (raw_name, "___XP");
2181 type = desc_base_type (type);
2182
2183 memcpy (name, raw_name, tail - raw_name);
2184 name[tail - raw_name] = '\000';
2185
2186 shadow_type = ada_find_parallel_type_with_name (type, name);
2187
2188 if (shadow_type == NULL)
2189 {
2190 lim_warning (_("could not find bounds information on packed array"));
2191 return NULL;
2192 }
2193 shadow_type = check_typedef (shadow_type);
2194
2195 if (shadow_type->code () != TYPE_CODE_ARRAY)
2196 {
2197 lim_warning (_("could not understand bounds "
2198 "information on packed array"));
2199 return NULL;
2200 }
2201
2202 bits = decode_packed_array_bitsize (type);
2203 return constrained_packed_array_type (shadow_type, &bits);
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2236 && ada_is_modular_type (value_type (arr)))
2237 {
2238 /* This is a (right-justified) modular type representing a packed
2239 array with no wrapper. In order to interpret the value through
2240 the (left-justified) packed array type we just built, we must
2241 first left-justify it. */
2242 int bit_size, bit_pos;
2243 ULONGEST mod;
2244
2245 mod = ada_modulus (value_type (arr)) - 1;
2246 bit_size = 0;
2247 while (mod > 0)
2248 {
2249 bit_size += 1;
2250 mod >>= 1;
2251 }
2252 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2253 arr = ada_value_primitive_packed_val (arr, NULL,
2254 bit_pos / HOST_CHAR_BIT,
2255 bit_pos % HOST_CHAR_BIT,
2256 bit_size,
2257 type);
2258 }
2259
2260 return coerce_unspec_val_to_type (arr, type);
2261 }
2262
2263
2264 /* The value of the element of packed array ARR at the ARITY indices
2265 given in IND. ARR must be a simple array. */
2266
2267 static struct value *
2268 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2269 {
2270 int i;
2271 int bits, elt_off, bit_off;
2272 long elt_total_bit_offset;
2273 struct type *elt_type;
2274 struct value *v;
2275
2276 bits = 0;
2277 elt_total_bit_offset = 0;
2278 elt_type = ada_check_typedef (value_type (arr));
2279 for (i = 0; i < arity; i += 1)
2280 {
2281 if (elt_type->code () != TYPE_CODE_ARRAY
2282 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2283 error
2284 (_("attempt to do packed indexing of "
2285 "something other than a packed array"));
2286 else
2287 {
2288 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2289 LONGEST lowerbound, upperbound;
2290 LONGEST idx;
2291
2292 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2293 {
2294 lim_warning (_("don't know bounds of array"));
2295 lowerbound = upperbound = 0;
2296 }
2297
2298 idx = pos_atr (ind[i]);
2299 if (idx < lowerbound || idx > upperbound)
2300 lim_warning (_("packed array index %ld out of bounds"),
2301 (long) idx);
2302 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2303 elt_total_bit_offset += (idx - lowerbound) * bits;
2304 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2305 }
2306 }
2307 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2308 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2309
2310 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2311 bits, elt_type);
2312 return v;
2313 }
2314
2315 /* Non-zero iff TYPE includes negative integer values. */
2316
2317 static int
2318 has_negatives (struct type *type)
2319 {
2320 switch (type->code ())
2321 {
2322 default:
2323 return 0;
2324 case TYPE_CODE_INT:
2325 return !TYPE_UNSIGNED (type);
2326 case TYPE_CODE_RANGE:
2327 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2328 }
2329 }
2330
2331 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2332 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2333 the unpacked buffer.
2334
2335 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2336 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2337
2338 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2339 zero otherwise.
2340
2341 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2342
2343 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2344
2345 static void
2346 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2347 gdb_byte *unpacked, int unpacked_len,
2348 int is_big_endian, int is_signed_type,
2349 int is_scalar)
2350 {
2351 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2352 int src_idx; /* Index into the source area */
2353 int src_bytes_left; /* Number of source bytes left to process. */
2354 int srcBitsLeft; /* Number of source bits left to move */
2355 int unusedLS; /* Number of bits in next significant
2356 byte of source that are unused */
2357
2358 int unpacked_idx; /* Index into the unpacked buffer */
2359 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2360
2361 unsigned long accum; /* Staging area for bits being transferred */
2362 int accumSize; /* Number of meaningful bits in accum */
2363 unsigned char sign;
2364
2365 /* Transmit bytes from least to most significant; delta is the direction
2366 the indices move. */
2367 int delta = is_big_endian ? -1 : 1;
2368
2369 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2370 bits from SRC. .*/
2371 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2372 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2373 bit_size, unpacked_len);
2374
2375 srcBitsLeft = bit_size;
2376 src_bytes_left = src_len;
2377 unpacked_bytes_left = unpacked_len;
2378 sign = 0;
2379
2380 if (is_big_endian)
2381 {
2382 src_idx = src_len - 1;
2383 if (is_signed_type
2384 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2385 sign = ~0;
2386
2387 unusedLS =
2388 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2389 % HOST_CHAR_BIT;
2390
2391 if (is_scalar)
2392 {
2393 accumSize = 0;
2394 unpacked_idx = unpacked_len - 1;
2395 }
2396 else
2397 {
2398 /* Non-scalar values must be aligned at a byte boundary... */
2399 accumSize =
2400 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2401 /* ... And are placed at the beginning (most-significant) bytes
2402 of the target. */
2403 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2404 unpacked_bytes_left = unpacked_idx + 1;
2405 }
2406 }
2407 else
2408 {
2409 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2410
2411 src_idx = unpacked_idx = 0;
2412 unusedLS = bit_offset;
2413 accumSize = 0;
2414
2415 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2416 sign = ~0;
2417 }
2418
2419 accum = 0;
2420 while (src_bytes_left > 0)
2421 {
2422 /* Mask for removing bits of the next source byte that are not
2423 part of the value. */
2424 unsigned int unusedMSMask =
2425 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2426 1;
2427 /* Sign-extend bits for this byte. */
2428 unsigned int signMask = sign & ~unusedMSMask;
2429
2430 accum |=
2431 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2432 accumSize += HOST_CHAR_BIT - unusedLS;
2433 if (accumSize >= HOST_CHAR_BIT)
2434 {
2435 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2436 accumSize -= HOST_CHAR_BIT;
2437 accum >>= HOST_CHAR_BIT;
2438 unpacked_bytes_left -= 1;
2439 unpacked_idx += delta;
2440 }
2441 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2442 unusedLS = 0;
2443 src_bytes_left -= 1;
2444 src_idx += delta;
2445 }
2446 while (unpacked_bytes_left > 0)
2447 {
2448 accum |= sign << accumSize;
2449 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2450 accumSize -= HOST_CHAR_BIT;
2451 if (accumSize < 0)
2452 accumSize = 0;
2453 accum >>= HOST_CHAR_BIT;
2454 unpacked_bytes_left -= 1;
2455 unpacked_idx += delta;
2456 }
2457 }
2458
2459 /* Create a new value of type TYPE from the contents of OBJ starting
2460 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2461 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2462 assigning through the result will set the field fetched from.
2463 VALADDR is ignored unless OBJ is NULL, in which case,
2464 VALADDR+OFFSET must address the start of storage containing the
2465 packed value. The value returned in this case is never an lval.
2466 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2467
2468 struct value *
2469 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2470 long offset, int bit_offset, int bit_size,
2471 struct type *type)
2472 {
2473 struct value *v;
2474 const gdb_byte *src; /* First byte containing data to unpack */
2475 gdb_byte *unpacked;
2476 const int is_scalar = is_scalar_type (type);
2477 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2478 gdb::byte_vector staging;
2479
2480 type = ada_check_typedef (type);
2481
2482 if (obj == NULL)
2483 src = valaddr + offset;
2484 else
2485 src = value_contents (obj) + offset;
2486
2487 if (is_dynamic_type (type))
2488 {
2489 /* The length of TYPE might by dynamic, so we need to resolve
2490 TYPE in order to know its actual size, which we then use
2491 to create the contents buffer of the value we return.
2492 The difficulty is that the data containing our object is
2493 packed, and therefore maybe not at a byte boundary. So, what
2494 we do, is unpack the data into a byte-aligned buffer, and then
2495 use that buffer as our object's value for resolving the type. */
2496 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2497 staging.resize (staging_len);
2498
2499 ada_unpack_from_contents (src, bit_offset, bit_size,
2500 staging.data (), staging.size (),
2501 is_big_endian, has_negatives (type),
2502 is_scalar);
2503 type = resolve_dynamic_type (type, staging, 0);
2504 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2505 {
2506 /* This happens when the length of the object is dynamic,
2507 and is actually smaller than the space reserved for it.
2508 For instance, in an array of variant records, the bit_size
2509 we're given is the array stride, which is constant and
2510 normally equal to the maximum size of its element.
2511 But, in reality, each element only actually spans a portion
2512 of that stride. */
2513 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2514 }
2515 }
2516
2517 if (obj == NULL)
2518 {
2519 v = allocate_value (type);
2520 src = valaddr + offset;
2521 }
2522 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2523 {
2524 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2525 gdb_byte *buf;
2526
2527 v = value_at (type, value_address (obj) + offset);
2528 buf = (gdb_byte *) alloca (src_len);
2529 read_memory (value_address (v), buf, src_len);
2530 src = buf;
2531 }
2532 else
2533 {
2534 v = allocate_value (type);
2535 src = value_contents (obj) + offset;
2536 }
2537
2538 if (obj != NULL)
2539 {
2540 long new_offset = offset;
2541
2542 set_value_component_location (v, obj);
2543 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2544 set_value_bitsize (v, bit_size);
2545 if (value_bitpos (v) >= HOST_CHAR_BIT)
2546 {
2547 ++new_offset;
2548 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2549 }
2550 set_value_offset (v, new_offset);
2551
2552 /* Also set the parent value. This is needed when trying to
2553 assign a new value (in inferior memory). */
2554 set_value_parent (v, obj);
2555 }
2556 else
2557 set_value_bitsize (v, bit_size);
2558 unpacked = value_contents_writeable (v);
2559
2560 if (bit_size == 0)
2561 {
2562 memset (unpacked, 0, TYPE_LENGTH (type));
2563 return v;
2564 }
2565
2566 if (staging.size () == TYPE_LENGTH (type))
2567 {
2568 /* Small short-cut: If we've unpacked the data into a buffer
2569 of the same size as TYPE's length, then we can reuse that,
2570 instead of doing the unpacking again. */
2571 memcpy (unpacked, staging.data (), staging.size ());
2572 }
2573 else
2574 ada_unpack_from_contents (src, bit_offset, bit_size,
2575 unpacked, TYPE_LENGTH (type),
2576 is_big_endian, has_negatives (type), is_scalar);
2577
2578 return v;
2579 }
2580
2581 /* Store the contents of FROMVAL into the location of TOVAL.
2582 Return a new value with the location of TOVAL and contents of
2583 FROMVAL. Handles assignment into packed fields that have
2584 floating-point or non-scalar types. */
2585
2586 static struct value *
2587 ada_value_assign (struct value *toval, struct value *fromval)
2588 {
2589 struct type *type = value_type (toval);
2590 int bits = value_bitsize (toval);
2591
2592 toval = ada_coerce_ref (toval);
2593 fromval = ada_coerce_ref (fromval);
2594
2595 if (ada_is_direct_array_type (value_type (toval)))
2596 toval = ada_coerce_to_simple_array (toval);
2597 if (ada_is_direct_array_type (value_type (fromval)))
2598 fromval = ada_coerce_to_simple_array (fromval);
2599
2600 if (!deprecated_value_modifiable (toval))
2601 error (_("Left operand of assignment is not a modifiable lvalue."));
2602
2603 if (VALUE_LVAL (toval) == lval_memory
2604 && bits > 0
2605 && (type->code () == TYPE_CODE_FLT
2606 || type->code () == TYPE_CODE_STRUCT))
2607 {
2608 int len = (value_bitpos (toval)
2609 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2610 int from_size;
2611 gdb_byte *buffer = (gdb_byte *) alloca (len);
2612 struct value *val;
2613 CORE_ADDR to_addr = value_address (toval);
2614
2615 if (type->code () == TYPE_CODE_FLT)
2616 fromval = value_cast (type, fromval);
2617
2618 read_memory (to_addr, buffer, len);
2619 from_size = value_bitsize (fromval);
2620 if (from_size == 0)
2621 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2622
2623 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2624 ULONGEST from_offset = 0;
2625 if (is_big_endian && is_scalar_type (value_type (fromval)))
2626 from_offset = from_size - bits;
2627 copy_bitwise (buffer, value_bitpos (toval),
2628 value_contents (fromval), from_offset,
2629 bits, is_big_endian);
2630 write_memory_with_notification (to_addr, buffer, len);
2631
2632 val = value_copy (toval);
2633 memcpy (value_contents_raw (val), value_contents (fromval),
2634 TYPE_LENGTH (type));
2635 deprecated_set_value_type (val, type);
2636
2637 return val;
2638 }
2639
2640 return value_assign (toval, fromval);
2641 }
2642
2643
2644 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2645 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2646 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2647 COMPONENT, and not the inferior's memory. The current contents
2648 of COMPONENT are ignored.
2649
2650 Although not part of the initial design, this function also works
2651 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2652 had a null address, and COMPONENT had an address which is equal to
2653 its offset inside CONTAINER. */
2654
2655 static void
2656 value_assign_to_component (struct value *container, struct value *component,
2657 struct value *val)
2658 {
2659 LONGEST offset_in_container =
2660 (LONGEST) (value_address (component) - value_address (container));
2661 int bit_offset_in_container =
2662 value_bitpos (component) - value_bitpos (container);
2663 int bits;
2664
2665 val = value_cast (value_type (component), val);
2666
2667 if (value_bitsize (component) == 0)
2668 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2669 else
2670 bits = value_bitsize (component);
2671
2672 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2673 {
2674 int src_offset;
2675
2676 if (is_scalar_type (check_typedef (value_type (component))))
2677 src_offset
2678 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2679 else
2680 src_offset = 0;
2681 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2682 value_bitpos (container) + bit_offset_in_container,
2683 value_contents (val), src_offset, bits, 1);
2684 }
2685 else
2686 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), 0, bits, 0);
2689 }
2690
2691 /* Determine if TYPE is an access to an unconstrained array. */
2692
2693 bool
2694 ada_is_access_to_unconstrained_array (struct type *type)
2695 {
2696 return (type->code () == TYPE_CODE_TYPEDEF
2697 && is_thick_pntr (ada_typedef_target_type (type)));
2698 }
2699
2700 /* The value of the element of array ARR at the ARITY indices given in IND.
2701 ARR may be either a simple array, GNAT array descriptor, or pointer
2702 thereto. */
2703
2704 struct value *
2705 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2706 {
2707 int k;
2708 struct value *elt;
2709 struct type *elt_type;
2710
2711 elt = ada_coerce_to_simple_array (arr);
2712
2713 elt_type = ada_check_typedef (value_type (elt));
2714 if (elt_type->code () == TYPE_CODE_ARRAY
2715 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2716 return value_subscript_packed (elt, arity, ind);
2717
2718 for (k = 0; k < arity; k += 1)
2719 {
2720 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2721
2722 if (elt_type->code () != TYPE_CODE_ARRAY)
2723 error (_("too many subscripts (%d expected)"), k);
2724
2725 elt = value_subscript (elt, pos_atr (ind[k]));
2726
2727 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2728 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2729 {
2730 /* The element is a typedef to an unconstrained array,
2731 except that the value_subscript call stripped the
2732 typedef layer. The typedef layer is GNAT's way to
2733 specify that the element is, at the source level, an
2734 access to the unconstrained array, rather than the
2735 unconstrained array. So, we need to restore that
2736 typedef layer, which we can do by forcing the element's
2737 type back to its original type. Otherwise, the returned
2738 value is going to be printed as the array, rather
2739 than as an access. Another symptom of the same issue
2740 would be that an expression trying to dereference the
2741 element would also be improperly rejected. */
2742 deprecated_set_value_type (elt, saved_elt_type);
2743 }
2744
2745 elt_type = ada_check_typedef (value_type (elt));
2746 }
2747
2748 return elt;
2749 }
2750
2751 /* Assuming ARR is a pointer to a GDB array, the value of the element
2752 of *ARR at the ARITY indices given in IND.
2753 Does not read the entire array into memory.
2754
2755 Note: Unlike what one would expect, this function is used instead of
2756 ada_value_subscript for basically all non-packed array types. The reason
2757 for this is that a side effect of doing our own pointer arithmetics instead
2758 of relying on value_subscript is that there is no implicit typedef peeling.
2759 This is important for arrays of array accesses, where it allows us to
2760 preserve the fact that the array's element is an array access, where the
2761 access part os encoded in a typedef layer. */
2762
2763 static struct value *
2764 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2765 {
2766 int k;
2767 struct value *array_ind = ada_value_ind (arr);
2768 struct type *type
2769 = check_typedef (value_enclosing_type (array_ind));
2770
2771 if (type->code () == TYPE_CODE_ARRAY
2772 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2773 return value_subscript_packed (array_ind, arity, ind);
2774
2775 for (k = 0; k < arity; k += 1)
2776 {
2777 LONGEST lwb, upb;
2778 struct value *lwb_value;
2779
2780 if (type->code () != TYPE_CODE_ARRAY)
2781 error (_("too many subscripts (%d expected)"), k);
2782 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2783 value_copy (arr));
2784 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2785 lwb_value = value_from_longest (value_type (ind[k]), lwb);
2786 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2787 type = TYPE_TARGET_TYPE (type);
2788 }
2789
2790 return value_ind (arr);
2791 }
2792
2793 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2794 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2795 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2796 this array is LOW, as per Ada rules. */
2797 static struct value *
2798 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2799 int low, int high)
2800 {
2801 struct type *type0 = ada_check_typedef (type);
2802 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2803 struct type *index_type
2804 = create_static_range_type (NULL, base_index_type, low, high);
2805 struct type *slice_type = create_array_type_with_stride
2806 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2807 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2808 TYPE_FIELD_BITSIZE (type0, 0));
2809 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2810 LONGEST base_low_pos, low_pos;
2811 CORE_ADDR base;
2812
2813 if (!discrete_position (base_index_type, low, &low_pos)
2814 || !discrete_position (base_index_type, base_low, &base_low_pos))
2815 {
2816 warning (_("unable to get positions in slice, use bounds instead"));
2817 low_pos = low;
2818 base_low_pos = base_low;
2819 }
2820
2821 base = value_as_address (array_ptr)
2822 + ((low_pos - base_low_pos)
2823 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2824 return value_at_lazy (slice_type, base);
2825 }
2826
2827
2828 static struct value *
2829 ada_value_slice (struct value *array, int low, int high)
2830 {
2831 struct type *type = ada_check_typedef (value_type (array));
2832 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2833 struct type *index_type
2834 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2835 struct type *slice_type = create_array_type_with_stride
2836 (NULL, TYPE_TARGET_TYPE (type), index_type,
2837 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2838 TYPE_FIELD_BITSIZE (type, 0));
2839 LONGEST low_pos, high_pos;
2840
2841 if (!discrete_position (base_index_type, low, &low_pos)
2842 || !discrete_position (base_index_type, high, &high_pos))
2843 {
2844 warning (_("unable to get positions in slice, use bounds instead"));
2845 low_pos = low;
2846 high_pos = high;
2847 }
2848
2849 return value_cast (slice_type,
2850 value_slice (array, low, high_pos - low_pos + 1));
2851 }
2852
2853 /* If type is a record type in the form of a standard GNAT array
2854 descriptor, returns the number of dimensions for type. If arr is a
2855 simple array, returns the number of "array of"s that prefix its
2856 type designation. Otherwise, returns 0. */
2857
2858 int
2859 ada_array_arity (struct type *type)
2860 {
2861 int arity;
2862
2863 if (type == NULL)
2864 return 0;
2865
2866 type = desc_base_type (type);
2867
2868 arity = 0;
2869 if (type->code () == TYPE_CODE_STRUCT)
2870 return desc_arity (desc_bounds_type (type));
2871 else
2872 while (type->code () == TYPE_CODE_ARRAY)
2873 {
2874 arity += 1;
2875 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2876 }
2877
2878 return arity;
2879 }
2880
2881 /* If TYPE is a record type in the form of a standard GNAT array
2882 descriptor or a simple array type, returns the element type for
2883 TYPE after indexing by NINDICES indices, or by all indices if
2884 NINDICES is -1. Otherwise, returns NULL. */
2885
2886 struct type *
2887 ada_array_element_type (struct type *type, int nindices)
2888 {
2889 type = desc_base_type (type);
2890
2891 if (type->code () == TYPE_CODE_STRUCT)
2892 {
2893 int k;
2894 struct type *p_array_type;
2895
2896 p_array_type = desc_data_target_type (type);
2897
2898 k = ada_array_arity (type);
2899 if (k == 0)
2900 return NULL;
2901
2902 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2903 if (nindices >= 0 && k > nindices)
2904 k = nindices;
2905 while (k > 0 && p_array_type != NULL)
2906 {
2907 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2908 k -= 1;
2909 }
2910 return p_array_type;
2911 }
2912 else if (type->code () == TYPE_CODE_ARRAY)
2913 {
2914 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2915 {
2916 type = TYPE_TARGET_TYPE (type);
2917 nindices -= 1;
2918 }
2919 return type;
2920 }
2921
2922 return NULL;
2923 }
2924
2925 /* The type of nth index in arrays of given type (n numbering from 1).
2926 Does not examine memory. Throws an error if N is invalid or TYPE
2927 is not an array type. NAME is the name of the Ada attribute being
2928 evaluated ('range, 'first, 'last, or 'length); it is used in building
2929 the error message. */
2930
2931 static struct type *
2932 ada_index_type (struct type *type, int n, const char *name)
2933 {
2934 struct type *result_type;
2935
2936 type = desc_base_type (type);
2937
2938 if (n < 0 || n > ada_array_arity (type))
2939 error (_("invalid dimension number to '%s"), name);
2940
2941 if (ada_is_simple_array_type (type))
2942 {
2943 int i;
2944
2945 for (i = 1; i < n; i += 1)
2946 type = TYPE_TARGET_TYPE (type);
2947 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2948 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2949 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2950 perhaps stabsread.c would make more sense. */
2951 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2952 result_type = NULL;
2953 }
2954 else
2955 {
2956 result_type = desc_index_type (desc_bounds_type (type), n);
2957 if (result_type == NULL)
2958 error (_("attempt to take bound of something that is not an array"));
2959 }
2960
2961 return result_type;
2962 }
2963
2964 /* Given that arr is an array type, returns the lower bound of the
2965 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2966 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2967 array-descriptor type. It works for other arrays with bounds supplied
2968 by run-time quantities other than discriminants. */
2969
2970 static LONGEST
2971 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2972 {
2973 struct type *type, *index_type_desc, *index_type;
2974 int i;
2975
2976 gdb_assert (which == 0 || which == 1);
2977
2978 if (ada_is_constrained_packed_array_type (arr_type))
2979 arr_type = decode_constrained_packed_array_type (arr_type);
2980
2981 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2982 return (LONGEST) - which;
2983
2984 if (arr_type->code () == TYPE_CODE_PTR)
2985 type = TYPE_TARGET_TYPE (arr_type);
2986 else
2987 type = arr_type;
2988
2989 if (TYPE_FIXED_INSTANCE (type))
2990 {
2991 /* The array has already been fixed, so we do not need to
2992 check the parallel ___XA type again. That encoding has
2993 already been applied, so ignore it now. */
2994 index_type_desc = NULL;
2995 }
2996 else
2997 {
2998 index_type_desc = ada_find_parallel_type (type, "___XA");
2999 ada_fixup_array_indexes_type (index_type_desc);
3000 }
3001
3002 if (index_type_desc != NULL)
3003 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3004 NULL);
3005 else
3006 {
3007 struct type *elt_type = check_typedef (type);
3008
3009 for (i = 1; i < n; i++)
3010 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3011
3012 index_type = TYPE_INDEX_TYPE (elt_type);
3013 }
3014
3015 return
3016 (LONGEST) (which == 0
3017 ? ada_discrete_type_low_bound (index_type)
3018 : ada_discrete_type_high_bound (index_type));
3019 }
3020
3021 /* Given that arr is an array value, returns the lower bound of the
3022 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3023 WHICH is 1. This routine will also work for arrays with bounds
3024 supplied by run-time quantities other than discriminants. */
3025
3026 static LONGEST
3027 ada_array_bound (struct value *arr, int n, int which)
3028 {
3029 struct type *arr_type;
3030
3031 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3032 arr = value_ind (arr);
3033 arr_type = value_enclosing_type (arr);
3034
3035 if (ada_is_constrained_packed_array_type (arr_type))
3036 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3037 else if (ada_is_simple_array_type (arr_type))
3038 return ada_array_bound_from_type (arr_type, n, which);
3039 else
3040 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3041 }
3042
3043 /* Given that arr is an array value, returns the length of the
3044 nth index. This routine will also work for arrays with bounds
3045 supplied by run-time quantities other than discriminants.
3046 Does not work for arrays indexed by enumeration types with representation
3047 clauses at the moment. */
3048
3049 static LONGEST
3050 ada_array_length (struct value *arr, int n)
3051 {
3052 struct type *arr_type, *index_type;
3053 int low, high;
3054
3055 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3056 arr = value_ind (arr);
3057 arr_type = value_enclosing_type (arr);
3058
3059 if (ada_is_constrained_packed_array_type (arr_type))
3060 return ada_array_length (decode_constrained_packed_array (arr), n);
3061
3062 if (ada_is_simple_array_type (arr_type))
3063 {
3064 low = ada_array_bound_from_type (arr_type, n, 0);
3065 high = ada_array_bound_from_type (arr_type, n, 1);
3066 }
3067 else
3068 {
3069 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3070 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3071 }
3072
3073 arr_type = check_typedef (arr_type);
3074 index_type = ada_index_type (arr_type, n, "length");
3075 if (index_type != NULL)
3076 {
3077 struct type *base_type;
3078 if (index_type->code () == TYPE_CODE_RANGE)
3079 base_type = TYPE_TARGET_TYPE (index_type);
3080 else
3081 base_type = index_type;
3082
3083 low = pos_atr (value_from_longest (base_type, low));
3084 high = pos_atr (value_from_longest (base_type, high));
3085 }
3086 return high - low + 1;
3087 }
3088
3089 /* An array whose type is that of ARR_TYPE (an array type), with
3090 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3091 less than LOW, then LOW-1 is used. */
3092
3093 static struct value *
3094 empty_array (struct type *arr_type, int low, int high)
3095 {
3096 struct type *arr_type0 = ada_check_typedef (arr_type);
3097 struct type *index_type
3098 = create_static_range_type
3099 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3100 high < low ? low - 1 : high);
3101 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3102
3103 return allocate_value (create_array_type (NULL, elt_type, index_type));
3104 }
3105 \f
3106
3107 /* Name resolution */
3108
3109 /* The "decoded" name for the user-definable Ada operator corresponding
3110 to OP. */
3111
3112 static const char *
3113 ada_decoded_op_name (enum exp_opcode op)
3114 {
3115 int i;
3116
3117 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3118 {
3119 if (ada_opname_table[i].op == op)
3120 return ada_opname_table[i].decoded;
3121 }
3122 error (_("Could not find operator name for opcode"));
3123 }
3124
3125 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3126 in a listing of choices during disambiguation (see sort_choices, below).
3127 The idea is that overloadings of a subprogram name from the
3128 same package should sort in their source order. We settle for ordering
3129 such symbols by their trailing number (__N or $N). */
3130
3131 static int
3132 encoded_ordered_before (const char *N0, const char *N1)
3133 {
3134 if (N1 == NULL)
3135 return 0;
3136 else if (N0 == NULL)
3137 return 1;
3138 else
3139 {
3140 int k0, k1;
3141
3142 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3143 ;
3144 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3145 ;
3146 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3147 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3148 {
3149 int n0, n1;
3150
3151 n0 = k0;
3152 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3153 n0 -= 1;
3154 n1 = k1;
3155 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3156 n1 -= 1;
3157 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3158 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3159 }
3160 return (strcmp (N0, N1) < 0);
3161 }
3162 }
3163
3164 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3165 encoded names. */
3166
3167 static void
3168 sort_choices (struct block_symbol syms[], int nsyms)
3169 {
3170 int i;
3171
3172 for (i = 1; i < nsyms; i += 1)
3173 {
3174 struct block_symbol sym = syms[i];
3175 int j;
3176
3177 for (j = i - 1; j >= 0; j -= 1)
3178 {
3179 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3180 sym.symbol->linkage_name ()))
3181 break;
3182 syms[j + 1] = syms[j];
3183 }
3184 syms[j + 1] = sym;
3185 }
3186 }
3187
3188 /* Whether GDB should display formals and return types for functions in the
3189 overloads selection menu. */
3190 static bool print_signatures = true;
3191
3192 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3193 all but functions, the signature is just the name of the symbol. For
3194 functions, this is the name of the function, the list of types for formals
3195 and the return type (if any). */
3196
3197 static void
3198 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3199 const struct type_print_options *flags)
3200 {
3201 struct type *type = SYMBOL_TYPE (sym);
3202
3203 fprintf_filtered (stream, "%s", sym->print_name ());
3204 if (!print_signatures
3205 || type == NULL
3206 || type->code () != TYPE_CODE_FUNC)
3207 return;
3208
3209 if (type->num_fields () > 0)
3210 {
3211 int i;
3212
3213 fprintf_filtered (stream, " (");
3214 for (i = 0; i < type->num_fields (); ++i)
3215 {
3216 if (i > 0)
3217 fprintf_filtered (stream, "; ");
3218 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3219 flags);
3220 }
3221 fprintf_filtered (stream, ")");
3222 }
3223 if (TYPE_TARGET_TYPE (type) != NULL
3224 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3225 {
3226 fprintf_filtered (stream, " return ");
3227 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3228 }
3229 }
3230
3231 /* Read and validate a set of numeric choices from the user in the
3232 range 0 .. N_CHOICES-1. Place the results in increasing
3233 order in CHOICES[0 .. N-1], and return N.
3234
3235 The user types choices as a sequence of numbers on one line
3236 separated by blanks, encoding them as follows:
3237
3238 + A choice of 0 means to cancel the selection, throwing an error.
3239 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3240 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3241
3242 The user is not allowed to choose more than MAX_RESULTS values.
3243
3244 ANNOTATION_SUFFIX, if present, is used to annotate the input
3245 prompts (for use with the -f switch). */
3246
3247 static int
3248 get_selections (int *choices, int n_choices, int max_results,
3249 int is_all_choice, const char *annotation_suffix)
3250 {
3251 const char *args;
3252 const char *prompt;
3253 int n_chosen;
3254 int first_choice = is_all_choice ? 2 : 1;
3255
3256 prompt = getenv ("PS2");
3257 if (prompt == NULL)
3258 prompt = "> ";
3259
3260 args = command_line_input (prompt, annotation_suffix);
3261
3262 if (args == NULL)
3263 error_no_arg (_("one or more choice numbers"));
3264
3265 n_chosen = 0;
3266
3267 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3268 order, as given in args. Choices are validated. */
3269 while (1)
3270 {
3271 char *args2;
3272 int choice, j;
3273
3274 args = skip_spaces (args);
3275 if (*args == '\0' && n_chosen == 0)
3276 error_no_arg (_("one or more choice numbers"));
3277 else if (*args == '\0')
3278 break;
3279
3280 choice = strtol (args, &args2, 10);
3281 if (args == args2 || choice < 0
3282 || choice > n_choices + first_choice - 1)
3283 error (_("Argument must be choice number"));
3284 args = args2;
3285
3286 if (choice == 0)
3287 error (_("cancelled"));
3288
3289 if (choice < first_choice)
3290 {
3291 n_chosen = n_choices;
3292 for (j = 0; j < n_choices; j += 1)
3293 choices[j] = j;
3294 break;
3295 }
3296 choice -= first_choice;
3297
3298 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3299 {
3300 }
3301
3302 if (j < 0 || choice != choices[j])
3303 {
3304 int k;
3305
3306 for (k = n_chosen - 1; k > j; k -= 1)
3307 choices[k + 1] = choices[k];
3308 choices[j + 1] = choice;
3309 n_chosen += 1;
3310 }
3311 }
3312
3313 if (n_chosen > max_results)
3314 error (_("Select no more than %d of the above"), max_results);
3315
3316 return n_chosen;
3317 }
3318
3319 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3320 by asking the user (if necessary), returning the number selected,
3321 and setting the first elements of SYMS items. Error if no symbols
3322 selected. */
3323
3324 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3325 to be re-integrated one of these days. */
3326
3327 static int
3328 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3329 {
3330 int i;
3331 int *chosen = XALLOCAVEC (int , nsyms);
3332 int n_chosen;
3333 int first_choice = (max_results == 1) ? 1 : 2;
3334 const char *select_mode = multiple_symbols_select_mode ();
3335
3336 if (max_results < 1)
3337 error (_("Request to select 0 symbols!"));
3338 if (nsyms <= 1)
3339 return nsyms;
3340
3341 if (select_mode == multiple_symbols_cancel)
3342 error (_("\
3343 canceled because the command is ambiguous\n\
3344 See set/show multiple-symbol."));
3345
3346 /* If select_mode is "all", then return all possible symbols.
3347 Only do that if more than one symbol can be selected, of course.
3348 Otherwise, display the menu as usual. */
3349 if (select_mode == multiple_symbols_all && max_results > 1)
3350 return nsyms;
3351
3352 printf_filtered (_("[0] cancel\n"));
3353 if (max_results > 1)
3354 printf_filtered (_("[1] all\n"));
3355
3356 sort_choices (syms, nsyms);
3357
3358 for (i = 0; i < nsyms; i += 1)
3359 {
3360 if (syms[i].symbol == NULL)
3361 continue;
3362
3363 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3364 {
3365 struct symtab_and_line sal =
3366 find_function_start_sal (syms[i].symbol, 1);
3367
3368 printf_filtered ("[%d] ", i + first_choice);
3369 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3370 &type_print_raw_options);
3371 if (sal.symtab == NULL)
3372 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3373 metadata_style.style ().ptr (), nullptr, sal.line);
3374 else
3375 printf_filtered
3376 (_(" at %ps:%d\n"),
3377 styled_string (file_name_style.style (),
3378 symtab_to_filename_for_display (sal.symtab)),
3379 sal.line);
3380 continue;
3381 }
3382 else
3383 {
3384 int is_enumeral =
3385 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3386 && SYMBOL_TYPE (syms[i].symbol) != NULL
3387 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3388 struct symtab *symtab = NULL;
3389
3390 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3391 symtab = symbol_symtab (syms[i].symbol);
3392
3393 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3394 {
3395 printf_filtered ("[%d] ", i + first_choice);
3396 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3397 &type_print_raw_options);
3398 printf_filtered (_(" at %s:%d\n"),
3399 symtab_to_filename_for_display (symtab),
3400 SYMBOL_LINE (syms[i].symbol));
3401 }
3402 else if (is_enumeral
3403 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3404 {
3405 printf_filtered (("[%d] "), i + first_choice);
3406 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3407 gdb_stdout, -1, 0, &type_print_raw_options);
3408 printf_filtered (_("'(%s) (enumeral)\n"),
3409 syms[i].symbol->print_name ());
3410 }
3411 else
3412 {
3413 printf_filtered ("[%d] ", i + first_choice);
3414 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3415 &type_print_raw_options);
3416
3417 if (symtab != NULL)
3418 printf_filtered (is_enumeral
3419 ? _(" in %s (enumeral)\n")
3420 : _(" at %s:?\n"),
3421 symtab_to_filename_for_display (symtab));
3422 else
3423 printf_filtered (is_enumeral
3424 ? _(" (enumeral)\n")
3425 : _(" at ?\n"));
3426 }
3427 }
3428 }
3429
3430 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3431 "overload-choice");
3432
3433 for (i = 0; i < n_chosen; i += 1)
3434 syms[i] = syms[chosen[i]];
3435
3436 return n_chosen;
3437 }
3438
3439 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3440 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3441 undefined namespace) and converts operators that are
3442 user-defined into appropriate function calls. If CONTEXT_TYPE is
3443 non-null, it provides a preferred result type [at the moment, only
3444 type void has any effect---causing procedures to be preferred over
3445 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3446 return type is preferred. May change (expand) *EXP. */
3447
3448 static void
3449 resolve (expression_up *expp, int void_context_p, int parse_completion,
3450 innermost_block_tracker *tracker)
3451 {
3452 struct type *context_type = NULL;
3453 int pc = 0;
3454
3455 if (void_context_p)
3456 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3457
3458 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3459 }
3460
3461 /* Resolve the operator of the subexpression beginning at
3462 position *POS of *EXPP. "Resolving" consists of replacing
3463 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3464 with their resolutions, replacing built-in operators with
3465 function calls to user-defined operators, where appropriate, and,
3466 when DEPROCEDURE_P is non-zero, converting function-valued variables
3467 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3468 are as in ada_resolve, above. */
3469
3470 static struct value *
3471 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3472 struct type *context_type, int parse_completion,
3473 innermost_block_tracker *tracker)
3474 {
3475 int pc = *pos;
3476 int i;
3477 struct expression *exp; /* Convenience: == *expp. */
3478 enum exp_opcode op = (*expp)->elts[pc].opcode;
3479 struct value **argvec; /* Vector of operand types (alloca'ed). */
3480 int nargs; /* Number of operands. */
3481 int oplen;
3482
3483 argvec = NULL;
3484 nargs = 0;
3485 exp = expp->get ();
3486
3487 /* Pass one: resolve operands, saving their types and updating *pos,
3488 if needed. */
3489 switch (op)
3490 {
3491 case OP_FUNCALL:
3492 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3493 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3494 *pos += 7;
3495 else
3496 {
3497 *pos += 3;
3498 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3499 }
3500 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3501 break;
3502
3503 case UNOP_ADDR:
3504 *pos += 1;
3505 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3506 break;
3507
3508 case UNOP_QUAL:
3509 *pos += 3;
3510 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3511 parse_completion, tracker);
3512 break;
3513
3514 case OP_ATR_MODULUS:
3515 case OP_ATR_SIZE:
3516 case OP_ATR_TAG:
3517 case OP_ATR_FIRST:
3518 case OP_ATR_LAST:
3519 case OP_ATR_LENGTH:
3520 case OP_ATR_POS:
3521 case OP_ATR_VAL:
3522 case OP_ATR_MIN:
3523 case OP_ATR_MAX:
3524 case TERNOP_IN_RANGE:
3525 case BINOP_IN_BOUNDS:
3526 case UNOP_IN_RANGE:
3527 case OP_AGGREGATE:
3528 case OP_OTHERS:
3529 case OP_CHOICES:
3530 case OP_POSITIONAL:
3531 case OP_DISCRETE_RANGE:
3532 case OP_NAME:
3533 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3534 *pos += oplen;
3535 break;
3536
3537 case BINOP_ASSIGN:
3538 {
3539 struct value *arg1;
3540
3541 *pos += 1;
3542 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3543 if (arg1 == NULL)
3544 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3545 else
3546 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3547 tracker);
3548 break;
3549 }
3550
3551 case UNOP_CAST:
3552 *pos += 3;
3553 nargs = 1;
3554 break;
3555
3556 case BINOP_ADD:
3557 case BINOP_SUB:
3558 case BINOP_MUL:
3559 case BINOP_DIV:
3560 case BINOP_REM:
3561 case BINOP_MOD:
3562 case BINOP_EXP:
3563 case BINOP_CONCAT:
3564 case BINOP_LOGICAL_AND:
3565 case BINOP_LOGICAL_OR:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569
3570 case BINOP_EQUAL:
3571 case BINOP_NOTEQUAL:
3572 case BINOP_LESS:
3573 case BINOP_GTR:
3574 case BINOP_LEQ:
3575 case BINOP_GEQ:
3576
3577 case BINOP_REPEAT:
3578 case BINOP_SUBSCRIPT:
3579 case BINOP_COMMA:
3580 *pos += 1;
3581 nargs = 2;
3582 break;
3583
3584 case UNOP_NEG:
3585 case UNOP_PLUS:
3586 case UNOP_LOGICAL_NOT:
3587 case UNOP_ABS:
3588 case UNOP_IND:
3589 *pos += 1;
3590 nargs = 1;
3591 break;
3592
3593 case OP_LONG:
3594 case OP_FLOAT:
3595 case OP_VAR_VALUE:
3596 case OP_VAR_MSYM_VALUE:
3597 *pos += 4;
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_BOOL:
3602 case OP_LAST:
3603 case OP_INTERNALVAR:
3604 *pos += 3;
3605 break;
3606
3607 case UNOP_MEMVAL:
3608 *pos += 3;
3609 nargs = 1;
3610 break;
3611
3612 case OP_REGISTER:
3613 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3614 break;
3615
3616 case STRUCTOP_STRUCT:
3617 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3618 nargs = 1;
3619 break;
3620
3621 case TERNOP_SLICE:
3622 *pos += 1;
3623 nargs = 3;
3624 break;
3625
3626 case OP_STRING:
3627 break;
3628
3629 default:
3630 error (_("Unexpected operator during name resolution"));
3631 }
3632
3633 argvec = XALLOCAVEC (struct value *, nargs + 1);
3634 for (i = 0; i < nargs; i += 1)
3635 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3636 tracker);
3637 argvec[i] = NULL;
3638 exp = expp->get ();
3639
3640 /* Pass two: perform any resolution on principal operator. */
3641 switch (op)
3642 {
3643 default:
3644 break;
3645
3646 case OP_VAR_VALUE:
3647 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3648 {
3649 std::vector<struct block_symbol> candidates;
3650 int n_candidates;
3651
3652 n_candidates =
3653 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3654 exp->elts[pc + 1].block, VAR_DOMAIN,
3655 &candidates);
3656
3657 if (n_candidates > 1)
3658 {
3659 /* Types tend to get re-introduced locally, so if there
3660 are any local symbols that are not types, first filter
3661 out all types. */
3662 int j;
3663 for (j = 0; j < n_candidates; j += 1)
3664 switch (SYMBOL_CLASS (candidates[j].symbol))
3665 {
3666 case LOC_REGISTER:
3667 case LOC_ARG:
3668 case LOC_REF_ARG:
3669 case LOC_REGPARM_ADDR:
3670 case LOC_LOCAL:
3671 case LOC_COMPUTED:
3672 goto FoundNonType;
3673 default:
3674 break;
3675 }
3676 FoundNonType:
3677 if (j < n_candidates)
3678 {
3679 j = 0;
3680 while (j < n_candidates)
3681 {
3682 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3683 {
3684 candidates[j] = candidates[n_candidates - 1];
3685 n_candidates -= 1;
3686 }
3687 else
3688 j += 1;
3689 }
3690 }
3691 }
3692
3693 if (n_candidates == 0)
3694 error (_("No definition found for %s"),
3695 exp->elts[pc + 2].symbol->print_name ());
3696 else if (n_candidates == 1)
3697 i = 0;
3698 else if (deprocedure_p
3699 && !is_nonfunction (candidates.data (), n_candidates))
3700 {
3701 i = ada_resolve_function
3702 (candidates.data (), n_candidates, NULL, 0,
3703 exp->elts[pc + 2].symbol->linkage_name (),
3704 context_type, parse_completion);
3705 if (i < 0)
3706 error (_("Could not find a match for %s"),
3707 exp->elts[pc + 2].symbol->print_name ());
3708 }
3709 else
3710 {
3711 printf_filtered (_("Multiple matches for %s\n"),
3712 exp->elts[pc + 2].symbol->print_name ());
3713 user_select_syms (candidates.data (), n_candidates, 1);
3714 i = 0;
3715 }
3716
3717 exp->elts[pc + 1].block = candidates[i].block;
3718 exp->elts[pc + 2].symbol = candidates[i].symbol;
3719 tracker->update (candidates[i]);
3720 }
3721
3722 if (deprocedure_p
3723 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3724 == TYPE_CODE_FUNC))
3725 {
3726 replace_operator_with_call (expp, pc, 0, 4,
3727 exp->elts[pc + 2].symbol,
3728 exp->elts[pc + 1].block);
3729 exp = expp->get ();
3730 }
3731 break;
3732
3733 case OP_FUNCALL:
3734 {
3735 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3736 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3737 {
3738 std::vector<struct block_symbol> candidates;
3739 int n_candidates;
3740
3741 n_candidates =
3742 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3743 exp->elts[pc + 4].block, VAR_DOMAIN,
3744 &candidates);
3745
3746 if (n_candidates == 1)
3747 i = 0;
3748 else
3749 {
3750 i = ada_resolve_function
3751 (candidates.data (), n_candidates,
3752 argvec, nargs,
3753 exp->elts[pc + 5].symbol->linkage_name (),
3754 context_type, parse_completion);
3755 if (i < 0)
3756 error (_("Could not find a match for %s"),
3757 exp->elts[pc + 5].symbol->print_name ());
3758 }
3759
3760 exp->elts[pc + 4].block = candidates[i].block;
3761 exp->elts[pc + 5].symbol = candidates[i].symbol;
3762 tracker->update (candidates[i]);
3763 }
3764 }
3765 break;
3766 case BINOP_ADD:
3767 case BINOP_SUB:
3768 case BINOP_MUL:
3769 case BINOP_DIV:
3770 case BINOP_REM:
3771 case BINOP_MOD:
3772 case BINOP_CONCAT:
3773 case BINOP_BITWISE_AND:
3774 case BINOP_BITWISE_IOR:
3775 case BINOP_BITWISE_XOR:
3776 case BINOP_EQUAL:
3777 case BINOP_NOTEQUAL:
3778 case BINOP_LESS:
3779 case BINOP_GTR:
3780 case BINOP_LEQ:
3781 case BINOP_GEQ:
3782 case BINOP_EXP:
3783 case UNOP_NEG:
3784 case UNOP_PLUS:
3785 case UNOP_LOGICAL_NOT:
3786 case UNOP_ABS:
3787 if (possible_user_operator_p (op, argvec))
3788 {
3789 std::vector<struct block_symbol> candidates;
3790 int n_candidates;
3791
3792 n_candidates =
3793 ada_lookup_symbol_list (ada_decoded_op_name (op),
3794 NULL, VAR_DOMAIN,
3795 &candidates);
3796
3797 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3798 nargs, ada_decoded_op_name (op), NULL,
3799 parse_completion);
3800 if (i < 0)
3801 break;
3802
3803 replace_operator_with_call (expp, pc, nargs, 1,
3804 candidates[i].symbol,
3805 candidates[i].block);
3806 exp = expp->get ();
3807 }
3808 break;
3809
3810 case OP_TYPE:
3811 case OP_REGISTER:
3812 return NULL;
3813 }
3814
3815 *pos = pc;
3816 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3817 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3818 exp->elts[pc + 1].objfile,
3819 exp->elts[pc + 2].msymbol);
3820 else
3821 return evaluate_subexp_type (exp, pos);
3822 }
3823
3824 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3825 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3826 a non-pointer. */
3827 /* The term "match" here is rather loose. The match is heuristic and
3828 liberal. */
3829
3830 static int
3831 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3832 {
3833 ftype = ada_check_typedef (ftype);
3834 atype = ada_check_typedef (atype);
3835
3836 if (ftype->code () == TYPE_CODE_REF)
3837 ftype = TYPE_TARGET_TYPE (ftype);
3838 if (atype->code () == TYPE_CODE_REF)
3839 atype = TYPE_TARGET_TYPE (atype);
3840
3841 switch (ftype->code ())
3842 {
3843 default:
3844 return ftype->code () == atype->code ();
3845 case TYPE_CODE_PTR:
3846 if (atype->code () == TYPE_CODE_PTR)
3847 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3848 TYPE_TARGET_TYPE (atype), 0);
3849 else
3850 return (may_deref
3851 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3852 case TYPE_CODE_INT:
3853 case TYPE_CODE_ENUM:
3854 case TYPE_CODE_RANGE:
3855 switch (atype->code ())
3856 {
3857 case TYPE_CODE_INT:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_RANGE:
3860 return 1;
3861 default:
3862 return 0;
3863 }
3864
3865 case TYPE_CODE_ARRAY:
3866 return (atype->code () == TYPE_CODE_ARRAY
3867 || ada_is_array_descriptor_type (atype));
3868
3869 case TYPE_CODE_STRUCT:
3870 if (ada_is_array_descriptor_type (ftype))
3871 return (atype->code () == TYPE_CODE_ARRAY
3872 || ada_is_array_descriptor_type (atype));
3873 else
3874 return (atype->code () == TYPE_CODE_STRUCT
3875 && !ada_is_array_descriptor_type (atype));
3876
3877 case TYPE_CODE_UNION:
3878 case TYPE_CODE_FLT:
3879 return (atype->code () == ftype->code ());
3880 }
3881 }
3882
3883 /* Return non-zero if the formals of FUNC "sufficiently match" the
3884 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3885 may also be an enumeral, in which case it is treated as a 0-
3886 argument function. */
3887
3888 static int
3889 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3890 {
3891 int i;
3892 struct type *func_type = SYMBOL_TYPE (func);
3893
3894 if (SYMBOL_CLASS (func) == LOC_CONST
3895 && func_type->code () == TYPE_CODE_ENUM)
3896 return (n_actuals == 0);
3897 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3898 return 0;
3899
3900 if (func_type->num_fields () != n_actuals)
3901 return 0;
3902
3903 for (i = 0; i < n_actuals; i += 1)
3904 {
3905 if (actuals[i] == NULL)
3906 return 0;
3907 else
3908 {
3909 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3910 i));
3911 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3912
3913 if (!ada_type_match (ftype, atype, 1))
3914 return 0;
3915 }
3916 }
3917 return 1;
3918 }
3919
3920 /* False iff function type FUNC_TYPE definitely does not produce a value
3921 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3922 FUNC_TYPE is not a valid function type with a non-null return type
3923 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3924
3925 static int
3926 return_match (struct type *func_type, struct type *context_type)
3927 {
3928 struct type *return_type;
3929
3930 if (func_type == NULL)
3931 return 1;
3932
3933 if (func_type->code () == TYPE_CODE_FUNC)
3934 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3935 else
3936 return_type = get_base_type (func_type);
3937 if (return_type == NULL)
3938 return 1;
3939
3940 context_type = get_base_type (context_type);
3941
3942 if (return_type->code () == TYPE_CODE_ENUM)
3943 return context_type == NULL || return_type == context_type;
3944 else if (context_type == NULL)
3945 return return_type->code () != TYPE_CODE_VOID;
3946 else
3947 return return_type->code () == context_type->code ();
3948 }
3949
3950
3951 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3952 function (if any) that matches the types of the NARGS arguments in
3953 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3954 that returns that type, then eliminate matches that don't. If
3955 CONTEXT_TYPE is void and there is at least one match that does not
3956 return void, eliminate all matches that do.
3957
3958 Asks the user if there is more than one match remaining. Returns -1
3959 if there is no such symbol or none is selected. NAME is used
3960 solely for messages. May re-arrange and modify SYMS in
3961 the process; the index returned is for the modified vector. */
3962
3963 static int
3964 ada_resolve_function (struct block_symbol syms[],
3965 int nsyms, struct value **args, int nargs,
3966 const char *name, struct type *context_type,
3967 int parse_completion)
3968 {
3969 int fallback;
3970 int k;
3971 int m; /* Number of hits */
3972
3973 m = 0;
3974 /* In the first pass of the loop, we only accept functions matching
3975 context_type. If none are found, we add a second pass of the loop
3976 where every function is accepted. */
3977 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3978 {
3979 for (k = 0; k < nsyms; k += 1)
3980 {
3981 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3982
3983 if (ada_args_match (syms[k].symbol, args, nargs)
3984 && (fallback || return_match (type, context_type)))
3985 {
3986 syms[m] = syms[k];
3987 m += 1;
3988 }
3989 }
3990 }
3991
3992 /* If we got multiple matches, ask the user which one to use. Don't do this
3993 interactive thing during completion, though, as the purpose of the
3994 completion is providing a list of all possible matches. Prompting the
3995 user to filter it down would be completely unexpected in this case. */
3996 if (m == 0)
3997 return -1;
3998 else if (m > 1 && !parse_completion)
3999 {
4000 printf_filtered (_("Multiple matches for %s\n"), name);
4001 user_select_syms (syms, m, 1);
4002 return 0;
4003 }
4004 return 0;
4005 }
4006
4007 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4008 on the function identified by SYM and BLOCK, and taking NARGS
4009 arguments. Update *EXPP as needed to hold more space. */
4010
4011 static void
4012 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4013 int oplen, struct symbol *sym,
4014 const struct block *block)
4015 {
4016 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4017 symbol, -oplen for operator being replaced). */
4018 struct expression *newexp = (struct expression *)
4019 xzalloc (sizeof (struct expression)
4020 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4021 struct expression *exp = expp->get ();
4022
4023 newexp->nelts = exp->nelts + 7 - oplen;
4024 newexp->language_defn = exp->language_defn;
4025 newexp->gdbarch = exp->gdbarch;
4026 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4027 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4028 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4029
4030 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4031 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4032
4033 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4034 newexp->elts[pc + 4].block = block;
4035 newexp->elts[pc + 5].symbol = sym;
4036
4037 expp->reset (newexp);
4038 }
4039
4040 /* Type-class predicates */
4041
4042 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4043 or FLOAT). */
4044
4045 static int
4046 numeric_type_p (struct type *type)
4047 {
4048 if (type == NULL)
4049 return 0;
4050 else
4051 {
4052 switch (type->code ())
4053 {
4054 case TYPE_CODE_INT:
4055 case TYPE_CODE_FLT:
4056 return 1;
4057 case TYPE_CODE_RANGE:
4058 return (type == TYPE_TARGET_TYPE (type)
4059 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4060 default:
4061 return 0;
4062 }
4063 }
4064 }
4065
4066 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4067
4068 static int
4069 integer_type_p (struct type *type)
4070 {
4071 if (type == NULL)
4072 return 0;
4073 else
4074 {
4075 switch (type->code ())
4076 {
4077 case TYPE_CODE_INT:
4078 return 1;
4079 case TYPE_CODE_RANGE:
4080 return (type == TYPE_TARGET_TYPE (type)
4081 || integer_type_p (TYPE_TARGET_TYPE (type)));
4082 default:
4083 return 0;
4084 }
4085 }
4086 }
4087
4088 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4089
4090 static int
4091 scalar_type_p (struct type *type)
4092 {
4093 if (type == NULL)
4094 return 0;
4095 else
4096 {
4097 switch (type->code ())
4098 {
4099 case TYPE_CODE_INT:
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_ENUM:
4102 case TYPE_CODE_FLT:
4103 return 1;
4104 default:
4105 return 0;
4106 }
4107 }
4108 }
4109
4110 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4111
4112 static int
4113 discrete_type_p (struct type *type)
4114 {
4115 if (type == NULL)
4116 return 0;
4117 else
4118 {
4119 switch (type->code ())
4120 {
4121 case TYPE_CODE_INT:
4122 case TYPE_CODE_RANGE:
4123 case TYPE_CODE_ENUM:
4124 case TYPE_CODE_BOOL:
4125 return 1;
4126 default:
4127 return 0;
4128 }
4129 }
4130 }
4131
4132 /* Returns non-zero if OP with operands in the vector ARGS could be
4133 a user-defined function. Errs on the side of pre-defined operators
4134 (i.e., result 0). */
4135
4136 static int
4137 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4138 {
4139 struct type *type0 =
4140 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4141 struct type *type1 =
4142 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4143
4144 if (type0 == NULL)
4145 return 0;
4146
4147 switch (op)
4148 {
4149 default:
4150 return 0;
4151
4152 case BINOP_ADD:
4153 case BINOP_SUB:
4154 case BINOP_MUL:
4155 case BINOP_DIV:
4156 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4157
4158 case BINOP_REM:
4159 case BINOP_MOD:
4160 case BINOP_BITWISE_AND:
4161 case BINOP_BITWISE_IOR:
4162 case BINOP_BITWISE_XOR:
4163 return (!(integer_type_p (type0) && integer_type_p (type1)));
4164
4165 case BINOP_EQUAL:
4166 case BINOP_NOTEQUAL:
4167 case BINOP_LESS:
4168 case BINOP_GTR:
4169 case BINOP_LEQ:
4170 case BINOP_GEQ:
4171 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4172
4173 case BINOP_CONCAT:
4174 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4175
4176 case BINOP_EXP:
4177 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4178
4179 case UNOP_NEG:
4180 case UNOP_PLUS:
4181 case UNOP_LOGICAL_NOT:
4182 case UNOP_ABS:
4183 return (!numeric_type_p (type0));
4184
4185 }
4186 }
4187 \f
4188 /* Renaming */
4189
4190 /* NOTES:
4191
4192 1. In the following, we assume that a renaming type's name may
4193 have an ___XD suffix. It would be nice if this went away at some
4194 point.
4195 2. We handle both the (old) purely type-based representation of
4196 renamings and the (new) variable-based encoding. At some point,
4197 it is devoutly to be hoped that the former goes away
4198 (FIXME: hilfinger-2007-07-09).
4199 3. Subprogram renamings are not implemented, although the XRS
4200 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4201
4202 /* If SYM encodes a renaming,
4203
4204 <renaming> renames <renamed entity>,
4205
4206 sets *LEN to the length of the renamed entity's name,
4207 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4208 the string describing the subcomponent selected from the renamed
4209 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4210 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4211 are undefined). Otherwise, returns a value indicating the category
4212 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4213 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4214 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4215 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4216 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4217 may be NULL, in which case they are not assigned.
4218
4219 [Currently, however, GCC does not generate subprogram renamings.] */
4220
4221 enum ada_renaming_category
4222 ada_parse_renaming (struct symbol *sym,
4223 const char **renamed_entity, int *len,
4224 const char **renaming_expr)
4225 {
4226 enum ada_renaming_category kind;
4227 const char *info;
4228 const char *suffix;
4229
4230 if (sym == NULL)
4231 return ADA_NOT_RENAMING;
4232 switch (SYMBOL_CLASS (sym))
4233 {
4234 default:
4235 return ADA_NOT_RENAMING;
4236 case LOC_LOCAL:
4237 case LOC_STATIC:
4238 case LOC_COMPUTED:
4239 case LOC_OPTIMIZED_OUT:
4240 info = strstr (sym->linkage_name (), "___XR");
4241 if (info == NULL)
4242 return ADA_NOT_RENAMING;
4243 switch (info[5])
4244 {
4245 case '_':
4246 kind = ADA_OBJECT_RENAMING;
4247 info += 6;
4248 break;
4249 case 'E':
4250 kind = ADA_EXCEPTION_RENAMING;
4251 info += 7;
4252 break;
4253 case 'P':
4254 kind = ADA_PACKAGE_RENAMING;
4255 info += 7;
4256 break;
4257 case 'S':
4258 kind = ADA_SUBPROGRAM_RENAMING;
4259 info += 7;
4260 break;
4261 default:
4262 return ADA_NOT_RENAMING;
4263 }
4264 }
4265
4266 if (renamed_entity != NULL)
4267 *renamed_entity = info;
4268 suffix = strstr (info, "___XE");
4269 if (suffix == NULL || suffix == info)
4270 return ADA_NOT_RENAMING;
4271 if (len != NULL)
4272 *len = strlen (info) - strlen (suffix);
4273 suffix += 5;
4274 if (renaming_expr != NULL)
4275 *renaming_expr = suffix;
4276 return kind;
4277 }
4278
4279 /* Compute the value of the given RENAMING_SYM, which is expected to
4280 be a symbol encoding a renaming expression. BLOCK is the block
4281 used to evaluate the renaming. */
4282
4283 static struct value *
4284 ada_read_renaming_var_value (struct symbol *renaming_sym,
4285 const struct block *block)
4286 {
4287 const char *sym_name;
4288
4289 sym_name = renaming_sym->linkage_name ();
4290 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4291 return evaluate_expression (expr.get ());
4292 }
4293 \f
4294
4295 /* Evaluation: Function Calls */
4296
4297 /* Return an lvalue containing the value VAL. This is the identity on
4298 lvalues, and otherwise has the side-effect of allocating memory
4299 in the inferior where a copy of the value contents is copied. */
4300
4301 static struct value *
4302 ensure_lval (struct value *val)
4303 {
4304 if (VALUE_LVAL (val) == not_lval
4305 || VALUE_LVAL (val) == lval_internalvar)
4306 {
4307 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4308 const CORE_ADDR addr =
4309 value_as_long (value_allocate_space_in_inferior (len));
4310
4311 VALUE_LVAL (val) = lval_memory;
4312 set_value_address (val, addr);
4313 write_memory (addr, value_contents (val), len);
4314 }
4315
4316 return val;
4317 }
4318
4319 /* Given ARG, a value of type (pointer or reference to a)*
4320 structure/union, extract the component named NAME from the ultimate
4321 target structure/union and return it as a value with its
4322 appropriate type.
4323
4324 The routine searches for NAME among all members of the structure itself
4325 and (recursively) among all members of any wrapper members
4326 (e.g., '_parent').
4327
4328 If NO_ERR, then simply return NULL in case of error, rather than
4329 calling error. */
4330
4331 static struct value *
4332 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4333 {
4334 struct type *t, *t1;
4335 struct value *v;
4336 int check_tag;
4337
4338 v = NULL;
4339 t1 = t = ada_check_typedef (value_type (arg));
4340 if (t->code () == TYPE_CODE_REF)
4341 {
4342 t1 = TYPE_TARGET_TYPE (t);
4343 if (t1 == NULL)
4344 goto BadValue;
4345 t1 = ada_check_typedef (t1);
4346 if (t1->code () == TYPE_CODE_PTR)
4347 {
4348 arg = coerce_ref (arg);
4349 t = t1;
4350 }
4351 }
4352
4353 while (t->code () == TYPE_CODE_PTR)
4354 {
4355 t1 = TYPE_TARGET_TYPE (t);
4356 if (t1 == NULL)
4357 goto BadValue;
4358 t1 = ada_check_typedef (t1);
4359 if (t1->code () == TYPE_CODE_PTR)
4360 {
4361 arg = value_ind (arg);
4362 t = t1;
4363 }
4364 else
4365 break;
4366 }
4367
4368 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4369 goto BadValue;
4370
4371 if (t1 == t)
4372 v = ada_search_struct_field (name, arg, 0, t);
4373 else
4374 {
4375 int bit_offset, bit_size, byte_offset;
4376 struct type *field_type;
4377 CORE_ADDR address;
4378
4379 if (t->code () == TYPE_CODE_PTR)
4380 address = value_address (ada_value_ind (arg));
4381 else
4382 address = value_address (ada_coerce_ref (arg));
4383
4384 /* Check to see if this is a tagged type. We also need to handle
4385 the case where the type is a reference to a tagged type, but
4386 we have to be careful to exclude pointers to tagged types.
4387 The latter should be shown as usual (as a pointer), whereas
4388 a reference should mostly be transparent to the user. */
4389
4390 if (ada_is_tagged_type (t1, 0)
4391 || (t1->code () == TYPE_CODE_REF
4392 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4393 {
4394 /* We first try to find the searched field in the current type.
4395 If not found then let's look in the fixed type. */
4396
4397 if (!find_struct_field (name, t1, 0,
4398 &field_type, &byte_offset, &bit_offset,
4399 &bit_size, NULL))
4400 check_tag = 1;
4401 else
4402 check_tag = 0;
4403 }
4404 else
4405 check_tag = 0;
4406
4407 /* Convert to fixed type in all cases, so that we have proper
4408 offsets to each field in unconstrained record types. */
4409 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4410 address, NULL, check_tag);
4411
4412 if (find_struct_field (name, t1, 0,
4413 &field_type, &byte_offset, &bit_offset,
4414 &bit_size, NULL))
4415 {
4416 if (bit_size != 0)
4417 {
4418 if (t->code () == TYPE_CODE_REF)
4419 arg = ada_coerce_ref (arg);
4420 else
4421 arg = ada_value_ind (arg);
4422 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4423 bit_offset, bit_size,
4424 field_type);
4425 }
4426 else
4427 v = value_at_lazy (field_type, address + byte_offset);
4428 }
4429 }
4430
4431 if (v != NULL || no_err)
4432 return v;
4433 else
4434 error (_("There is no member named %s."), name);
4435
4436 BadValue:
4437 if (no_err)
4438 return NULL;
4439 else
4440 error (_("Attempt to extract a component of "
4441 "a value that is not a record."));
4442 }
4443
4444 /* Return the value ACTUAL, converted to be an appropriate value for a
4445 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4446 allocating any necessary descriptors (fat pointers), or copies of
4447 values not residing in memory, updating it as needed. */
4448
4449 struct value *
4450 ada_convert_actual (struct value *actual, struct type *formal_type0)
4451 {
4452 struct type *actual_type = ada_check_typedef (value_type (actual));
4453 struct type *formal_type = ada_check_typedef (formal_type0);
4454 struct type *formal_target =
4455 formal_type->code () == TYPE_CODE_PTR
4456 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4457 struct type *actual_target =
4458 actual_type->code () == TYPE_CODE_PTR
4459 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4460
4461 if (ada_is_array_descriptor_type (formal_target)
4462 && actual_target->code () == TYPE_CODE_ARRAY)
4463 return make_array_descriptor (formal_type, actual);
4464 else if (formal_type->code () == TYPE_CODE_PTR
4465 || formal_type->code () == TYPE_CODE_REF)
4466 {
4467 struct value *result;
4468
4469 if (formal_target->code () == TYPE_CODE_ARRAY
4470 && ada_is_array_descriptor_type (actual_target))
4471 result = desc_data (actual);
4472 else if (formal_type->code () != TYPE_CODE_PTR)
4473 {
4474 if (VALUE_LVAL (actual) != lval_memory)
4475 {
4476 struct value *val;
4477
4478 actual_type = ada_check_typedef (value_type (actual));
4479 val = allocate_value (actual_type);
4480 memcpy ((char *) value_contents_raw (val),
4481 (char *) value_contents (actual),
4482 TYPE_LENGTH (actual_type));
4483 actual = ensure_lval (val);
4484 }
4485 result = value_addr (actual);
4486 }
4487 else
4488 return actual;
4489 return value_cast_pointers (formal_type, result, 0);
4490 }
4491 else if (actual_type->code () == TYPE_CODE_PTR)
4492 return ada_value_ind (actual);
4493 else if (ada_is_aligner_type (formal_type))
4494 {
4495 /* We need to turn this parameter into an aligner type
4496 as well. */
4497 struct value *aligner = allocate_value (formal_type);
4498 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4499
4500 value_assign_to_component (aligner, component, actual);
4501 return aligner;
4502 }
4503
4504 return actual;
4505 }
4506
4507 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4508 type TYPE. This is usually an inefficient no-op except on some targets
4509 (such as AVR) where the representation of a pointer and an address
4510 differs. */
4511
4512 static CORE_ADDR
4513 value_pointer (struct value *value, struct type *type)
4514 {
4515 struct gdbarch *gdbarch = get_type_arch (type);
4516 unsigned len = TYPE_LENGTH (type);
4517 gdb_byte *buf = (gdb_byte *) alloca (len);
4518 CORE_ADDR addr;
4519
4520 addr = value_address (value);
4521 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4522 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4523 return addr;
4524 }
4525
4526
4527 /* Push a descriptor of type TYPE for array value ARR on the stack at
4528 *SP, updating *SP to reflect the new descriptor. Return either
4529 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4530 to-descriptor type rather than a descriptor type), a struct value *
4531 representing a pointer to this descriptor. */
4532
4533 static struct value *
4534 make_array_descriptor (struct type *type, struct value *arr)
4535 {
4536 struct type *bounds_type = desc_bounds_type (type);
4537 struct type *desc_type = desc_base_type (type);
4538 struct value *descriptor = allocate_value (desc_type);
4539 struct value *bounds = allocate_value (bounds_type);
4540 int i;
4541
4542 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4543 i > 0; i -= 1)
4544 {
4545 modify_field (value_type (bounds), value_contents_writeable (bounds),
4546 ada_array_bound (arr, i, 0),
4547 desc_bound_bitpos (bounds_type, i, 0),
4548 desc_bound_bitsize (bounds_type, i, 0));
4549 modify_field (value_type (bounds), value_contents_writeable (bounds),
4550 ada_array_bound (arr, i, 1),
4551 desc_bound_bitpos (bounds_type, i, 1),
4552 desc_bound_bitsize (bounds_type, i, 1));
4553 }
4554
4555 bounds = ensure_lval (bounds);
4556
4557 modify_field (value_type (descriptor),
4558 value_contents_writeable (descriptor),
4559 value_pointer (ensure_lval (arr),
4560 TYPE_FIELD_TYPE (desc_type, 0)),
4561 fat_pntr_data_bitpos (desc_type),
4562 fat_pntr_data_bitsize (desc_type));
4563
4564 modify_field (value_type (descriptor),
4565 value_contents_writeable (descriptor),
4566 value_pointer (bounds,
4567 TYPE_FIELD_TYPE (desc_type, 1)),
4568 fat_pntr_bounds_bitpos (desc_type),
4569 fat_pntr_bounds_bitsize (desc_type));
4570
4571 descriptor = ensure_lval (descriptor);
4572
4573 if (type->code () == TYPE_CODE_PTR)
4574 return value_addr (descriptor);
4575 else
4576 return descriptor;
4577 }
4578 \f
4579 /* Symbol Cache Module */
4580
4581 /* Performance measurements made as of 2010-01-15 indicate that
4582 this cache does bring some noticeable improvements. Depending
4583 on the type of entity being printed, the cache can make it as much
4584 as an order of magnitude faster than without it.
4585
4586 The descriptive type DWARF extension has significantly reduced
4587 the need for this cache, at least when DWARF is being used. However,
4588 even in this case, some expensive name-based symbol searches are still
4589 sometimes necessary - to find an XVZ variable, mostly. */
4590
4591 /* Initialize the contents of SYM_CACHE. */
4592
4593 static void
4594 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4595 {
4596 obstack_init (&sym_cache->cache_space);
4597 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4598 }
4599
4600 /* Free the memory used by SYM_CACHE. */
4601
4602 static void
4603 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4604 {
4605 obstack_free (&sym_cache->cache_space, NULL);
4606 xfree (sym_cache);
4607 }
4608
4609 /* Return the symbol cache associated to the given program space PSPACE.
4610 If not allocated for this PSPACE yet, allocate and initialize one. */
4611
4612 static struct ada_symbol_cache *
4613 ada_get_symbol_cache (struct program_space *pspace)
4614 {
4615 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4616
4617 if (pspace_data->sym_cache == NULL)
4618 {
4619 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4620 ada_init_symbol_cache (pspace_data->sym_cache);
4621 }
4622
4623 return pspace_data->sym_cache;
4624 }
4625
4626 /* Clear all entries from the symbol cache. */
4627
4628 static void
4629 ada_clear_symbol_cache (void)
4630 {
4631 struct ada_symbol_cache *sym_cache
4632 = ada_get_symbol_cache (current_program_space);
4633
4634 obstack_free (&sym_cache->cache_space, NULL);
4635 ada_init_symbol_cache (sym_cache);
4636 }
4637
4638 /* Search our cache for an entry matching NAME and DOMAIN.
4639 Return it if found, or NULL otherwise. */
4640
4641 static struct cache_entry **
4642 find_entry (const char *name, domain_enum domain)
4643 {
4644 struct ada_symbol_cache *sym_cache
4645 = ada_get_symbol_cache (current_program_space);
4646 int h = msymbol_hash (name) % HASH_SIZE;
4647 struct cache_entry **e;
4648
4649 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4650 {
4651 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4652 return e;
4653 }
4654 return NULL;
4655 }
4656
4657 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4658 Return 1 if found, 0 otherwise.
4659
4660 If an entry was found and SYM is not NULL, set *SYM to the entry's
4661 SYM. Same principle for BLOCK if not NULL. */
4662
4663 static int
4664 lookup_cached_symbol (const char *name, domain_enum domain,
4665 struct symbol **sym, const struct block **block)
4666 {
4667 struct cache_entry **e = find_entry (name, domain);
4668
4669 if (e == NULL)
4670 return 0;
4671 if (sym != NULL)
4672 *sym = (*e)->sym;
4673 if (block != NULL)
4674 *block = (*e)->block;
4675 return 1;
4676 }
4677
4678 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4679 in domain DOMAIN, save this result in our symbol cache. */
4680
4681 static void
4682 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4683 const struct block *block)
4684 {
4685 struct ada_symbol_cache *sym_cache
4686 = ada_get_symbol_cache (current_program_space);
4687 int h;
4688 struct cache_entry *e;
4689
4690 /* Symbols for builtin types don't have a block.
4691 For now don't cache such symbols. */
4692 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4693 return;
4694
4695 /* If the symbol is a local symbol, then do not cache it, as a search
4696 for that symbol depends on the context. To determine whether
4697 the symbol is local or not, we check the block where we found it
4698 against the global and static blocks of its associated symtab. */
4699 if (sym
4700 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4701 GLOBAL_BLOCK) != block
4702 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4703 STATIC_BLOCK) != block)
4704 return;
4705
4706 h = msymbol_hash (name) % HASH_SIZE;
4707 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4708 e->next = sym_cache->root[h];
4709 sym_cache->root[h] = e;
4710 e->name = obstack_strdup (&sym_cache->cache_space, name);
4711 e->sym = sym;
4712 e->domain = domain;
4713 e->block = block;
4714 }
4715 \f
4716 /* Symbol Lookup */
4717
4718 /* Return the symbol name match type that should be used used when
4719 searching for all symbols matching LOOKUP_NAME.
4720
4721 LOOKUP_NAME is expected to be a symbol name after transformation
4722 for Ada lookups. */
4723
4724 static symbol_name_match_type
4725 name_match_type_from_name (const char *lookup_name)
4726 {
4727 return (strstr (lookup_name, "__") == NULL
4728 ? symbol_name_match_type::WILD
4729 : symbol_name_match_type::FULL);
4730 }
4731
4732 /* Return the result of a standard (literal, C-like) lookup of NAME in
4733 given DOMAIN, visible from lexical block BLOCK. */
4734
4735 static struct symbol *
4736 standard_lookup (const char *name, const struct block *block,
4737 domain_enum domain)
4738 {
4739 /* Initialize it just to avoid a GCC false warning. */
4740 struct block_symbol sym = {};
4741
4742 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4743 return sym.symbol;
4744 ada_lookup_encoded_symbol (name, block, domain, &sym);
4745 cache_symbol (name, domain, sym.symbol, sym.block);
4746 return sym.symbol;
4747 }
4748
4749
4750 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4751 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4752 since they contend in overloading in the same way. */
4753 static int
4754 is_nonfunction (struct block_symbol syms[], int n)
4755 {
4756 int i;
4757
4758 for (i = 0; i < n; i += 1)
4759 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4760 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4761 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4762 return 1;
4763
4764 return 0;
4765 }
4766
4767 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4768 struct types. Otherwise, they may not. */
4769
4770 static int
4771 equiv_types (struct type *type0, struct type *type1)
4772 {
4773 if (type0 == type1)
4774 return 1;
4775 if (type0 == NULL || type1 == NULL
4776 || type0->code () != type1->code ())
4777 return 0;
4778 if ((type0->code () == TYPE_CODE_STRUCT
4779 || type0->code () == TYPE_CODE_ENUM)
4780 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4781 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4782 return 1;
4783
4784 return 0;
4785 }
4786
4787 /* True iff SYM0 represents the same entity as SYM1, or one that is
4788 no more defined than that of SYM1. */
4789
4790 static int
4791 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4792 {
4793 if (sym0 == sym1)
4794 return 1;
4795 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4796 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4797 return 0;
4798
4799 switch (SYMBOL_CLASS (sym0))
4800 {
4801 case LOC_UNDEF:
4802 return 1;
4803 case LOC_TYPEDEF:
4804 {
4805 struct type *type0 = SYMBOL_TYPE (sym0);
4806 struct type *type1 = SYMBOL_TYPE (sym1);
4807 const char *name0 = sym0->linkage_name ();
4808 const char *name1 = sym1->linkage_name ();
4809 int len0 = strlen (name0);
4810
4811 return
4812 type0->code () == type1->code ()
4813 && (equiv_types (type0, type1)
4814 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4815 && startswith (name1 + len0, "___XV")));
4816 }
4817 case LOC_CONST:
4818 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4819 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4820
4821 case LOC_STATIC:
4822 {
4823 const char *name0 = sym0->linkage_name ();
4824 const char *name1 = sym1->linkage_name ();
4825 return (strcmp (name0, name1) == 0
4826 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4827 }
4828
4829 default:
4830 return 0;
4831 }
4832 }
4833
4834 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4835 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4836
4837 static void
4838 add_defn_to_vec (struct obstack *obstackp,
4839 struct symbol *sym,
4840 const struct block *block)
4841 {
4842 int i;
4843 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4844
4845 /* Do not try to complete stub types, as the debugger is probably
4846 already scanning all symbols matching a certain name at the
4847 time when this function is called. Trying to replace the stub
4848 type by its associated full type will cause us to restart a scan
4849 which may lead to an infinite recursion. Instead, the client
4850 collecting the matching symbols will end up collecting several
4851 matches, with at least one of them complete. It can then filter
4852 out the stub ones if needed. */
4853
4854 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4855 {
4856 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4857 return;
4858 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4859 {
4860 prevDefns[i].symbol = sym;
4861 prevDefns[i].block = block;
4862 return;
4863 }
4864 }
4865
4866 {
4867 struct block_symbol info;
4868
4869 info.symbol = sym;
4870 info.block = block;
4871 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4872 }
4873 }
4874
4875 /* Number of block_symbol structures currently collected in current vector in
4876 OBSTACKP. */
4877
4878 static int
4879 num_defns_collected (struct obstack *obstackp)
4880 {
4881 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4882 }
4883
4884 /* Vector of block_symbol structures currently collected in current vector in
4885 OBSTACKP. If FINISH, close off the vector and return its final address. */
4886
4887 static struct block_symbol *
4888 defns_collected (struct obstack *obstackp, int finish)
4889 {
4890 if (finish)
4891 return (struct block_symbol *) obstack_finish (obstackp);
4892 else
4893 return (struct block_symbol *) obstack_base (obstackp);
4894 }
4895
4896 /* Return a bound minimal symbol matching NAME according to Ada
4897 decoding rules. Returns an invalid symbol if there is no such
4898 minimal symbol. Names prefixed with "standard__" are handled
4899 specially: "standard__" is first stripped off, and only static and
4900 global symbols are searched. */
4901
4902 struct bound_minimal_symbol
4903 ada_lookup_simple_minsym (const char *name)
4904 {
4905 struct bound_minimal_symbol result;
4906
4907 memset (&result, 0, sizeof (result));
4908
4909 symbol_name_match_type match_type = name_match_type_from_name (name);
4910 lookup_name_info lookup_name (name, match_type);
4911
4912 symbol_name_matcher_ftype *match_name
4913 = ada_get_symbol_name_matcher (lookup_name);
4914
4915 for (objfile *objfile : current_program_space->objfiles ())
4916 {
4917 for (minimal_symbol *msymbol : objfile->msymbols ())
4918 {
4919 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4920 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4921 {
4922 result.minsym = msymbol;
4923 result.objfile = objfile;
4924 break;
4925 }
4926 }
4927 }
4928
4929 return result;
4930 }
4931
4932 /* For all subprograms that statically enclose the subprogram of the
4933 selected frame, add symbols matching identifier NAME in DOMAIN
4934 and their blocks to the list of data in OBSTACKP, as for
4935 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4936 with a wildcard prefix. */
4937
4938 static void
4939 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4940 const lookup_name_info &lookup_name,
4941 domain_enum domain)
4942 {
4943 }
4944
4945 /* True if TYPE is definitely an artificial type supplied to a symbol
4946 for which no debugging information was given in the symbol file. */
4947
4948 static int
4949 is_nondebugging_type (struct type *type)
4950 {
4951 const char *name = ada_type_name (type);
4952
4953 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4954 }
4955
4956 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4957 that are deemed "identical" for practical purposes.
4958
4959 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4960 types and that their number of enumerals is identical (in other
4961 words, type1->num_fields () == type2->num_fields ()). */
4962
4963 static int
4964 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4965 {
4966 int i;
4967
4968 /* The heuristic we use here is fairly conservative. We consider
4969 that 2 enumerate types are identical if they have the same
4970 number of enumerals and that all enumerals have the same
4971 underlying value and name. */
4972
4973 /* All enums in the type should have an identical underlying value. */
4974 for (i = 0; i < type1->num_fields (); i++)
4975 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4976 return 0;
4977
4978 /* All enumerals should also have the same name (modulo any numerical
4979 suffix). */
4980 for (i = 0; i < type1->num_fields (); i++)
4981 {
4982 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4983 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4984 int len_1 = strlen (name_1);
4985 int len_2 = strlen (name_2);
4986
4987 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4988 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4989 if (len_1 != len_2
4990 || strncmp (TYPE_FIELD_NAME (type1, i),
4991 TYPE_FIELD_NAME (type2, i),
4992 len_1) != 0)
4993 return 0;
4994 }
4995
4996 return 1;
4997 }
4998
4999 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5000 that are deemed "identical" for practical purposes. Sometimes,
5001 enumerals are not strictly identical, but their types are so similar
5002 that they can be considered identical.
5003
5004 For instance, consider the following code:
5005
5006 type Color is (Black, Red, Green, Blue, White);
5007 type RGB_Color is new Color range Red .. Blue;
5008
5009 Type RGB_Color is a subrange of an implicit type which is a copy
5010 of type Color. If we call that implicit type RGB_ColorB ("B" is
5011 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5012 As a result, when an expression references any of the enumeral
5013 by name (Eg. "print green"), the expression is technically
5014 ambiguous and the user should be asked to disambiguate. But
5015 doing so would only hinder the user, since it wouldn't matter
5016 what choice he makes, the outcome would always be the same.
5017 So, for practical purposes, we consider them as the same. */
5018
5019 static int
5020 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5021 {
5022 int i;
5023
5024 /* Before performing a thorough comparison check of each type,
5025 we perform a series of inexpensive checks. We expect that these
5026 checks will quickly fail in the vast majority of cases, and thus
5027 help prevent the unnecessary use of a more expensive comparison.
5028 Said comparison also expects us to make some of these checks
5029 (see ada_identical_enum_types_p). */
5030
5031 /* Quick check: All symbols should have an enum type. */
5032 for (i = 0; i < syms.size (); i++)
5033 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5034 return 0;
5035
5036 /* Quick check: They should all have the same value. */
5037 for (i = 1; i < syms.size (); i++)
5038 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5039 return 0;
5040
5041 /* Quick check: They should all have the same number of enumerals. */
5042 for (i = 1; i < syms.size (); i++)
5043 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5044 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5045 return 0;
5046
5047 /* All the sanity checks passed, so we might have a set of
5048 identical enumeration types. Perform a more complete
5049 comparison of the type of each symbol. */
5050 for (i = 1; i < syms.size (); i++)
5051 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5052 SYMBOL_TYPE (syms[0].symbol)))
5053 return 0;
5054
5055 return 1;
5056 }
5057
5058 /* Remove any non-debugging symbols in SYMS that definitely
5059 duplicate other symbols in the list (The only case I know of where
5060 this happens is when object files containing stabs-in-ecoff are
5061 linked with files containing ordinary ecoff debugging symbols (or no
5062 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5063 Returns the number of items in the modified list. */
5064
5065 static int
5066 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5067 {
5068 int i, j;
5069
5070 /* We should never be called with less than 2 symbols, as there
5071 cannot be any extra symbol in that case. But it's easy to
5072 handle, since we have nothing to do in that case. */
5073 if (syms->size () < 2)
5074 return syms->size ();
5075
5076 i = 0;
5077 while (i < syms->size ())
5078 {
5079 int remove_p = 0;
5080
5081 /* If two symbols have the same name and one of them is a stub type,
5082 the get rid of the stub. */
5083
5084 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5085 && (*syms)[i].symbol->linkage_name () != NULL)
5086 {
5087 for (j = 0; j < syms->size (); j++)
5088 {
5089 if (j != i
5090 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5091 && (*syms)[j].symbol->linkage_name () != NULL
5092 && strcmp ((*syms)[i].symbol->linkage_name (),
5093 (*syms)[j].symbol->linkage_name ()) == 0)
5094 remove_p = 1;
5095 }
5096 }
5097
5098 /* Two symbols with the same name, same class and same address
5099 should be identical. */
5100
5101 else if ((*syms)[i].symbol->linkage_name () != NULL
5102 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5103 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5104 {
5105 for (j = 0; j < syms->size (); j += 1)
5106 {
5107 if (i != j
5108 && (*syms)[j].symbol->linkage_name () != NULL
5109 && strcmp ((*syms)[i].symbol->linkage_name (),
5110 (*syms)[j].symbol->linkage_name ()) == 0
5111 && SYMBOL_CLASS ((*syms)[i].symbol)
5112 == SYMBOL_CLASS ((*syms)[j].symbol)
5113 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5114 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5115 remove_p = 1;
5116 }
5117 }
5118
5119 if (remove_p)
5120 syms->erase (syms->begin () + i);
5121
5122 i += 1;
5123 }
5124
5125 /* If all the remaining symbols are identical enumerals, then
5126 just keep the first one and discard the rest.
5127
5128 Unlike what we did previously, we do not discard any entry
5129 unless they are ALL identical. This is because the symbol
5130 comparison is not a strict comparison, but rather a practical
5131 comparison. If all symbols are considered identical, then
5132 we can just go ahead and use the first one and discard the rest.
5133 But if we cannot reduce the list to a single element, we have
5134 to ask the user to disambiguate anyways. And if we have to
5135 present a multiple-choice menu, it's less confusing if the list
5136 isn't missing some choices that were identical and yet distinct. */
5137 if (symbols_are_identical_enums (*syms))
5138 syms->resize (1);
5139
5140 return syms->size ();
5141 }
5142
5143 /* Given a type that corresponds to a renaming entity, use the type name
5144 to extract the scope (package name or function name, fully qualified,
5145 and following the GNAT encoding convention) where this renaming has been
5146 defined. */
5147
5148 static std::string
5149 xget_renaming_scope (struct type *renaming_type)
5150 {
5151 /* The renaming types adhere to the following convention:
5152 <scope>__<rename>___<XR extension>.
5153 So, to extract the scope, we search for the "___XR" extension,
5154 and then backtrack until we find the first "__". */
5155
5156 const char *name = renaming_type->name ();
5157 const char *suffix = strstr (name, "___XR");
5158 const char *last;
5159
5160 /* Now, backtrack a bit until we find the first "__". Start looking
5161 at suffix - 3, as the <rename> part is at least one character long. */
5162
5163 for (last = suffix - 3; last > name; last--)
5164 if (last[0] == '_' && last[1] == '_')
5165 break;
5166
5167 /* Make a copy of scope and return it. */
5168 return std::string (name, last);
5169 }
5170
5171 /* Return nonzero if NAME corresponds to a package name. */
5172
5173 static int
5174 is_package_name (const char *name)
5175 {
5176 /* Here, We take advantage of the fact that no symbols are generated
5177 for packages, while symbols are generated for each function.
5178 So the condition for NAME represent a package becomes equivalent
5179 to NAME not existing in our list of symbols. There is only one
5180 small complication with library-level functions (see below). */
5181
5182 /* If it is a function that has not been defined at library level,
5183 then we should be able to look it up in the symbols. */
5184 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5185 return 0;
5186
5187 /* Library-level function names start with "_ada_". See if function
5188 "_ada_" followed by NAME can be found. */
5189
5190 /* Do a quick check that NAME does not contain "__", since library-level
5191 functions names cannot contain "__" in them. */
5192 if (strstr (name, "__") != NULL)
5193 return 0;
5194
5195 std::string fun_name = string_printf ("_ada_%s", name);
5196
5197 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5198 }
5199
5200 /* Return nonzero if SYM corresponds to a renaming entity that is
5201 not visible from FUNCTION_NAME. */
5202
5203 static int
5204 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5205 {
5206 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5207 return 0;
5208
5209 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5210
5211 /* If the rename has been defined in a package, then it is visible. */
5212 if (is_package_name (scope.c_str ()))
5213 return 0;
5214
5215 /* Check that the rename is in the current function scope by checking
5216 that its name starts with SCOPE. */
5217
5218 /* If the function name starts with "_ada_", it means that it is
5219 a library-level function. Strip this prefix before doing the
5220 comparison, as the encoding for the renaming does not contain
5221 this prefix. */
5222 if (startswith (function_name, "_ada_"))
5223 function_name += 5;
5224
5225 return !startswith (function_name, scope.c_str ());
5226 }
5227
5228 /* Remove entries from SYMS that corresponds to a renaming entity that
5229 is not visible from the function associated with CURRENT_BLOCK or
5230 that is superfluous due to the presence of more specific renaming
5231 information. Places surviving symbols in the initial entries of
5232 SYMS and returns the number of surviving symbols.
5233
5234 Rationale:
5235 First, in cases where an object renaming is implemented as a
5236 reference variable, GNAT may produce both the actual reference
5237 variable and the renaming encoding. In this case, we discard the
5238 latter.
5239
5240 Second, GNAT emits a type following a specified encoding for each renaming
5241 entity. Unfortunately, STABS currently does not support the definition
5242 of types that are local to a given lexical block, so all renamings types
5243 are emitted at library level. As a consequence, if an application
5244 contains two renaming entities using the same name, and a user tries to
5245 print the value of one of these entities, the result of the ada symbol
5246 lookup will also contain the wrong renaming type.
5247
5248 This function partially covers for this limitation by attempting to
5249 remove from the SYMS list renaming symbols that should be visible
5250 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5251 method with the current information available. The implementation
5252 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5253
5254 - When the user tries to print a rename in a function while there
5255 is another rename entity defined in a package: Normally, the
5256 rename in the function has precedence over the rename in the
5257 package, so the latter should be removed from the list. This is
5258 currently not the case.
5259
5260 - This function will incorrectly remove valid renames if
5261 the CURRENT_BLOCK corresponds to a function which symbol name
5262 has been changed by an "Export" pragma. As a consequence,
5263 the user will be unable to print such rename entities. */
5264
5265 static int
5266 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5267 const struct block *current_block)
5268 {
5269 struct symbol *current_function;
5270 const char *current_function_name;
5271 int i;
5272 int is_new_style_renaming;
5273
5274 /* If there is both a renaming foo___XR... encoded as a variable and
5275 a simple variable foo in the same block, discard the latter.
5276 First, zero out such symbols, then compress. */
5277 is_new_style_renaming = 0;
5278 for (i = 0; i < syms->size (); i += 1)
5279 {
5280 struct symbol *sym = (*syms)[i].symbol;
5281 const struct block *block = (*syms)[i].block;
5282 const char *name;
5283 const char *suffix;
5284
5285 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5286 continue;
5287 name = sym->linkage_name ();
5288 suffix = strstr (name, "___XR");
5289
5290 if (suffix != NULL)
5291 {
5292 int name_len = suffix - name;
5293 int j;
5294
5295 is_new_style_renaming = 1;
5296 for (j = 0; j < syms->size (); j += 1)
5297 if (i != j && (*syms)[j].symbol != NULL
5298 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5299 name_len) == 0
5300 && block == (*syms)[j].block)
5301 (*syms)[j].symbol = NULL;
5302 }
5303 }
5304 if (is_new_style_renaming)
5305 {
5306 int j, k;
5307
5308 for (j = k = 0; j < syms->size (); j += 1)
5309 if ((*syms)[j].symbol != NULL)
5310 {
5311 (*syms)[k] = (*syms)[j];
5312 k += 1;
5313 }
5314 return k;
5315 }
5316
5317 /* Extract the function name associated to CURRENT_BLOCK.
5318 Abort if unable to do so. */
5319
5320 if (current_block == NULL)
5321 return syms->size ();
5322
5323 current_function = block_linkage_function (current_block);
5324 if (current_function == NULL)
5325 return syms->size ();
5326
5327 current_function_name = current_function->linkage_name ();
5328 if (current_function_name == NULL)
5329 return syms->size ();
5330
5331 /* Check each of the symbols, and remove it from the list if it is
5332 a type corresponding to a renaming that is out of the scope of
5333 the current block. */
5334
5335 i = 0;
5336 while (i < syms->size ())
5337 {
5338 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5339 == ADA_OBJECT_RENAMING
5340 && old_renaming_is_invisible ((*syms)[i].symbol,
5341 current_function_name))
5342 syms->erase (syms->begin () + i);
5343 else
5344 i += 1;
5345 }
5346
5347 return syms->size ();
5348 }
5349
5350 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5351 whose name and domain match NAME and DOMAIN respectively.
5352 If no match was found, then extend the search to "enclosing"
5353 routines (in other words, if we're inside a nested function,
5354 search the symbols defined inside the enclosing functions).
5355 If WILD_MATCH_P is nonzero, perform the naming matching in
5356 "wild" mode (see function "wild_match" for more info).
5357
5358 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5359
5360 static void
5361 ada_add_local_symbols (struct obstack *obstackp,
5362 const lookup_name_info &lookup_name,
5363 const struct block *block, domain_enum domain)
5364 {
5365 int block_depth = 0;
5366
5367 while (block != NULL)
5368 {
5369 block_depth += 1;
5370 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5371
5372 /* If we found a non-function match, assume that's the one. */
5373 if (is_nonfunction (defns_collected (obstackp, 0),
5374 num_defns_collected (obstackp)))
5375 return;
5376
5377 block = BLOCK_SUPERBLOCK (block);
5378 }
5379
5380 /* If no luck so far, try to find NAME as a local symbol in some lexically
5381 enclosing subprogram. */
5382 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5383 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5384 }
5385
5386 /* An object of this type is used as the user_data argument when
5387 calling the map_matching_symbols method. */
5388
5389 struct match_data
5390 {
5391 struct objfile *objfile;
5392 struct obstack *obstackp;
5393 struct symbol *arg_sym;
5394 int found_sym;
5395 };
5396
5397 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5398 to a list of symbols. DATA is a pointer to a struct match_data *
5399 containing the obstack that collects the symbol list, the file that SYM
5400 must come from, a flag indicating whether a non-argument symbol has
5401 been found in the current block, and the last argument symbol
5402 passed in SYM within the current block (if any). When SYM is null,
5403 marking the end of a block, the argument symbol is added if no
5404 other has been found. */
5405
5406 static bool
5407 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5408 struct match_data *data)
5409 {
5410 const struct block *block = bsym->block;
5411 struct symbol *sym = bsym->symbol;
5412
5413 if (sym == NULL)
5414 {
5415 if (!data->found_sym && data->arg_sym != NULL)
5416 add_defn_to_vec (data->obstackp,
5417 fixup_symbol_section (data->arg_sym, data->objfile),
5418 block);
5419 data->found_sym = 0;
5420 data->arg_sym = NULL;
5421 }
5422 else
5423 {
5424 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5425 return true;
5426 else if (SYMBOL_IS_ARGUMENT (sym))
5427 data->arg_sym = sym;
5428 else
5429 {
5430 data->found_sym = 1;
5431 add_defn_to_vec (data->obstackp,
5432 fixup_symbol_section (sym, data->objfile),
5433 block);
5434 }
5435 }
5436 return true;
5437 }
5438
5439 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5440 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5441 symbols to OBSTACKP. Return whether we found such symbols. */
5442
5443 static int
5444 ada_add_block_renamings (struct obstack *obstackp,
5445 const struct block *block,
5446 const lookup_name_info &lookup_name,
5447 domain_enum domain)
5448 {
5449 struct using_direct *renaming;
5450 int defns_mark = num_defns_collected (obstackp);
5451
5452 symbol_name_matcher_ftype *name_match
5453 = ada_get_symbol_name_matcher (lookup_name);
5454
5455 for (renaming = block_using (block);
5456 renaming != NULL;
5457 renaming = renaming->next)
5458 {
5459 const char *r_name;
5460
5461 /* Avoid infinite recursions: skip this renaming if we are actually
5462 already traversing it.
5463
5464 Currently, symbol lookup in Ada don't use the namespace machinery from
5465 C++/Fortran support: skip namespace imports that use them. */
5466 if (renaming->searched
5467 || (renaming->import_src != NULL
5468 && renaming->import_src[0] != '\0')
5469 || (renaming->import_dest != NULL
5470 && renaming->import_dest[0] != '\0'))
5471 continue;
5472 renaming->searched = 1;
5473
5474 /* TODO: here, we perform another name-based symbol lookup, which can
5475 pull its own multiple overloads. In theory, we should be able to do
5476 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5477 not a simple name. But in order to do this, we would need to enhance
5478 the DWARF reader to associate a symbol to this renaming, instead of a
5479 name. So, for now, we do something simpler: re-use the C++/Fortran
5480 namespace machinery. */
5481 r_name = (renaming->alias != NULL
5482 ? renaming->alias
5483 : renaming->declaration);
5484 if (name_match (r_name, lookup_name, NULL))
5485 {
5486 lookup_name_info decl_lookup_name (renaming->declaration,
5487 lookup_name.match_type ());
5488 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5489 1, NULL);
5490 }
5491 renaming->searched = 0;
5492 }
5493 return num_defns_collected (obstackp) != defns_mark;
5494 }
5495
5496 /* Implements compare_names, but only applying the comparision using
5497 the given CASING. */
5498
5499 static int
5500 compare_names_with_case (const char *string1, const char *string2,
5501 enum case_sensitivity casing)
5502 {
5503 while (*string1 != '\0' && *string2 != '\0')
5504 {
5505 char c1, c2;
5506
5507 if (isspace (*string1) || isspace (*string2))
5508 return strcmp_iw_ordered (string1, string2);
5509
5510 if (casing == case_sensitive_off)
5511 {
5512 c1 = tolower (*string1);
5513 c2 = tolower (*string2);
5514 }
5515 else
5516 {
5517 c1 = *string1;
5518 c2 = *string2;
5519 }
5520 if (c1 != c2)
5521 break;
5522
5523 string1 += 1;
5524 string2 += 1;
5525 }
5526
5527 switch (*string1)
5528 {
5529 case '(':
5530 return strcmp_iw_ordered (string1, string2);
5531 case '_':
5532 if (*string2 == '\0')
5533 {
5534 if (is_name_suffix (string1))
5535 return 0;
5536 else
5537 return 1;
5538 }
5539 /* FALLTHROUGH */
5540 default:
5541 if (*string2 == '(')
5542 return strcmp_iw_ordered (string1, string2);
5543 else
5544 {
5545 if (casing == case_sensitive_off)
5546 return tolower (*string1) - tolower (*string2);
5547 else
5548 return *string1 - *string2;
5549 }
5550 }
5551 }
5552
5553 /* Compare STRING1 to STRING2, with results as for strcmp.
5554 Compatible with strcmp_iw_ordered in that...
5555
5556 strcmp_iw_ordered (STRING1, STRING2) <= 0
5557
5558 ... implies...
5559
5560 compare_names (STRING1, STRING2) <= 0
5561
5562 (they may differ as to what symbols compare equal). */
5563
5564 static int
5565 compare_names (const char *string1, const char *string2)
5566 {
5567 int result;
5568
5569 /* Similar to what strcmp_iw_ordered does, we need to perform
5570 a case-insensitive comparison first, and only resort to
5571 a second, case-sensitive, comparison if the first one was
5572 not sufficient to differentiate the two strings. */
5573
5574 result = compare_names_with_case (string1, string2, case_sensitive_off);
5575 if (result == 0)
5576 result = compare_names_with_case (string1, string2, case_sensitive_on);
5577
5578 return result;
5579 }
5580
5581 /* Convenience function to get at the Ada encoded lookup name for
5582 LOOKUP_NAME, as a C string. */
5583
5584 static const char *
5585 ada_lookup_name (const lookup_name_info &lookup_name)
5586 {
5587 return lookup_name.ada ().lookup_name ().c_str ();
5588 }
5589
5590 /* Add to OBSTACKP all non-local symbols whose name and domain match
5591 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5592 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5593 symbols otherwise. */
5594
5595 static void
5596 add_nonlocal_symbols (struct obstack *obstackp,
5597 const lookup_name_info &lookup_name,
5598 domain_enum domain, int global)
5599 {
5600 struct match_data data;
5601
5602 memset (&data, 0, sizeof data);
5603 data.obstackp = obstackp;
5604
5605 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5606
5607 auto callback = [&] (struct block_symbol *bsym)
5608 {
5609 return aux_add_nonlocal_symbols (bsym, &data);
5610 };
5611
5612 for (objfile *objfile : current_program_space->objfiles ())
5613 {
5614 data.objfile = objfile;
5615
5616 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5617 domain, global, callback,
5618 (is_wild_match
5619 ? NULL : compare_names));
5620
5621 for (compunit_symtab *cu : objfile->compunits ())
5622 {
5623 const struct block *global_block
5624 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5625
5626 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5627 domain))
5628 data.found_sym = 1;
5629 }
5630 }
5631
5632 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5633 {
5634 const char *name = ada_lookup_name (lookup_name);
5635 std::string bracket_name = std::string ("<_ada_") + name + '>';
5636 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5637
5638 for (objfile *objfile : current_program_space->objfiles ())
5639 {
5640 data.objfile = objfile;
5641 objfile->sf->qf->map_matching_symbols (objfile, name1,
5642 domain, global, callback,
5643 compare_names);
5644 }
5645 }
5646 }
5647
5648 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5649 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5650 returning the number of matches. Add these to OBSTACKP.
5651
5652 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5653 symbol match within the nest of blocks whose innermost member is BLOCK,
5654 is the one match returned (no other matches in that or
5655 enclosing blocks is returned). If there are any matches in or
5656 surrounding BLOCK, then these alone are returned.
5657
5658 Names prefixed with "standard__" are handled specially:
5659 "standard__" is first stripped off (by the lookup_name
5660 constructor), and only static and global symbols are searched.
5661
5662 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5663 to lookup global symbols. */
5664
5665 static void
5666 ada_add_all_symbols (struct obstack *obstackp,
5667 const struct block *block,
5668 const lookup_name_info &lookup_name,
5669 domain_enum domain,
5670 int full_search,
5671 int *made_global_lookup_p)
5672 {
5673 struct symbol *sym;
5674
5675 if (made_global_lookup_p)
5676 *made_global_lookup_p = 0;
5677
5678 /* Special case: If the user specifies a symbol name inside package
5679 Standard, do a non-wild matching of the symbol name without
5680 the "standard__" prefix. This was primarily introduced in order
5681 to allow the user to specifically access the standard exceptions
5682 using, for instance, Standard.Constraint_Error when Constraint_Error
5683 is ambiguous (due to the user defining its own Constraint_Error
5684 entity inside its program). */
5685 if (lookup_name.ada ().standard_p ())
5686 block = NULL;
5687
5688 /* Check the non-global symbols. If we have ANY match, then we're done. */
5689
5690 if (block != NULL)
5691 {
5692 if (full_search)
5693 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5694 else
5695 {
5696 /* In the !full_search case we're are being called by
5697 ada_iterate_over_symbols, and we don't want to search
5698 superblocks. */
5699 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5700 }
5701 if (num_defns_collected (obstackp) > 0 || !full_search)
5702 return;
5703 }
5704
5705 /* No non-global symbols found. Check our cache to see if we have
5706 already performed this search before. If we have, then return
5707 the same result. */
5708
5709 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5710 domain, &sym, &block))
5711 {
5712 if (sym != NULL)
5713 add_defn_to_vec (obstackp, sym, block);
5714 return;
5715 }
5716
5717 if (made_global_lookup_p)
5718 *made_global_lookup_p = 1;
5719
5720 /* Search symbols from all global blocks. */
5721
5722 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5723
5724 /* Now add symbols from all per-file blocks if we've gotten no hits
5725 (not strictly correct, but perhaps better than an error). */
5726
5727 if (num_defns_collected (obstackp) == 0)
5728 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5729 }
5730
5731 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5732 is non-zero, enclosing scope and in global scopes, returning the number of
5733 matches.
5734 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5735 found and the blocks and symbol tables (if any) in which they were
5736 found.
5737
5738 When full_search is non-zero, any non-function/non-enumeral
5739 symbol match within the nest of blocks whose innermost member is BLOCK,
5740 is the one match returned (no other matches in that or
5741 enclosing blocks is returned). If there are any matches in or
5742 surrounding BLOCK, then these alone are returned.
5743
5744 Names prefixed with "standard__" are handled specially: "standard__"
5745 is first stripped off, and only static and global symbols are searched. */
5746
5747 static int
5748 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5749 const struct block *block,
5750 domain_enum domain,
5751 std::vector<struct block_symbol> *results,
5752 int full_search)
5753 {
5754 int syms_from_global_search;
5755 int ndefns;
5756 auto_obstack obstack;
5757
5758 ada_add_all_symbols (&obstack, block, lookup_name,
5759 domain, full_search, &syms_from_global_search);
5760
5761 ndefns = num_defns_collected (&obstack);
5762
5763 struct block_symbol *base = defns_collected (&obstack, 1);
5764 for (int i = 0; i < ndefns; ++i)
5765 results->push_back (base[i]);
5766
5767 ndefns = remove_extra_symbols (results);
5768
5769 if (ndefns == 0 && full_search && syms_from_global_search)
5770 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5771
5772 if (ndefns == 1 && full_search && syms_from_global_search)
5773 cache_symbol (ada_lookup_name (lookup_name), domain,
5774 (*results)[0].symbol, (*results)[0].block);
5775
5776 ndefns = remove_irrelevant_renamings (results, block);
5777
5778 return ndefns;
5779 }
5780
5781 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5782 in global scopes, returning the number of matches, and filling *RESULTS
5783 with (SYM,BLOCK) tuples.
5784
5785 See ada_lookup_symbol_list_worker for further details. */
5786
5787 int
5788 ada_lookup_symbol_list (const char *name, const struct block *block,
5789 domain_enum domain,
5790 std::vector<struct block_symbol> *results)
5791 {
5792 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5793 lookup_name_info lookup_name (name, name_match_type);
5794
5795 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5796 }
5797
5798 /* Implementation of the la_iterate_over_symbols method. */
5799
5800 static bool
5801 ada_iterate_over_symbols
5802 (const struct block *block, const lookup_name_info &name,
5803 domain_enum domain,
5804 gdb::function_view<symbol_found_callback_ftype> callback)
5805 {
5806 int ndefs, i;
5807 std::vector<struct block_symbol> results;
5808
5809 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5810
5811 for (i = 0; i < ndefs; ++i)
5812 {
5813 if (!callback (&results[i]))
5814 return false;
5815 }
5816
5817 return true;
5818 }
5819
5820 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5821 to 1, but choosing the first symbol found if there are multiple
5822 choices.
5823
5824 The result is stored in *INFO, which must be non-NULL.
5825 If no match is found, INFO->SYM is set to NULL. */
5826
5827 void
5828 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5829 domain_enum domain,
5830 struct block_symbol *info)
5831 {
5832 /* Since we already have an encoded name, wrap it in '<>' to force a
5833 verbatim match. Otherwise, if the name happens to not look like
5834 an encoded name (because it doesn't include a "__"),
5835 ada_lookup_name_info would re-encode/fold it again, and that
5836 would e.g., incorrectly lowercase object renaming names like
5837 "R28b" -> "r28b". */
5838 std::string verbatim = std::string ("<") + name + '>';
5839
5840 gdb_assert (info != NULL);
5841 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5842 }
5843
5844 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5845 scope and in global scopes, or NULL if none. NAME is folded and
5846 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5847 choosing the first symbol if there are multiple choices. */
5848
5849 struct block_symbol
5850 ada_lookup_symbol (const char *name, const struct block *block0,
5851 domain_enum domain)
5852 {
5853 std::vector<struct block_symbol> candidates;
5854 int n_candidates;
5855
5856 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5857
5858 if (n_candidates == 0)
5859 return {};
5860
5861 block_symbol info = candidates[0];
5862 info.symbol = fixup_symbol_section (info.symbol, NULL);
5863 return info;
5864 }
5865
5866 static struct block_symbol
5867 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5868 const char *name,
5869 const struct block *block,
5870 const domain_enum domain)
5871 {
5872 struct block_symbol sym;
5873
5874 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5875 if (sym.symbol != NULL)
5876 return sym;
5877
5878 /* If we haven't found a match at this point, try the primitive
5879 types. In other languages, this search is performed before
5880 searching for global symbols in order to short-circuit that
5881 global-symbol search if it happens that the name corresponds
5882 to a primitive type. But we cannot do the same in Ada, because
5883 it is perfectly legitimate for a program to declare a type which
5884 has the same name as a standard type. If looking up a type in
5885 that situation, we have traditionally ignored the primitive type
5886 in favor of user-defined types. This is why, unlike most other
5887 languages, we search the primitive types this late and only after
5888 having searched the global symbols without success. */
5889
5890 if (domain == VAR_DOMAIN)
5891 {
5892 struct gdbarch *gdbarch;
5893
5894 if (block == NULL)
5895 gdbarch = target_gdbarch ();
5896 else
5897 gdbarch = block_gdbarch (block);
5898 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5899 if (sym.symbol != NULL)
5900 return sym;
5901 }
5902
5903 return {};
5904 }
5905
5906
5907 /* True iff STR is a possible encoded suffix of a normal Ada name
5908 that is to be ignored for matching purposes. Suffixes of parallel
5909 names (e.g., XVE) are not included here. Currently, the possible suffixes
5910 are given by any of the regular expressions:
5911
5912 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5913 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5914 TKB [subprogram suffix for task bodies]
5915 _E[0-9]+[bs]$ [protected object entry suffixes]
5916 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5917
5918 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5919 match is performed. This sequence is used to differentiate homonyms,
5920 is an optional part of a valid name suffix. */
5921
5922 static int
5923 is_name_suffix (const char *str)
5924 {
5925 int k;
5926 const char *matching;
5927 const int len = strlen (str);
5928
5929 /* Skip optional leading __[0-9]+. */
5930
5931 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5932 {
5933 str += 3;
5934 while (isdigit (str[0]))
5935 str += 1;
5936 }
5937
5938 /* [.$][0-9]+ */
5939
5940 if (str[0] == '.' || str[0] == '$')
5941 {
5942 matching = str + 1;
5943 while (isdigit (matching[0]))
5944 matching += 1;
5945 if (matching[0] == '\0')
5946 return 1;
5947 }
5948
5949 /* ___[0-9]+ */
5950
5951 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5952 {
5953 matching = str + 3;
5954 while (isdigit (matching[0]))
5955 matching += 1;
5956 if (matching[0] == '\0')
5957 return 1;
5958 }
5959
5960 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5961
5962 if (strcmp (str, "TKB") == 0)
5963 return 1;
5964
5965 #if 0
5966 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5967 with a N at the end. Unfortunately, the compiler uses the same
5968 convention for other internal types it creates. So treating
5969 all entity names that end with an "N" as a name suffix causes
5970 some regressions. For instance, consider the case of an enumerated
5971 type. To support the 'Image attribute, it creates an array whose
5972 name ends with N.
5973 Having a single character like this as a suffix carrying some
5974 information is a bit risky. Perhaps we should change the encoding
5975 to be something like "_N" instead. In the meantime, do not do
5976 the following check. */
5977 /* Protected Object Subprograms */
5978 if (len == 1 && str [0] == 'N')
5979 return 1;
5980 #endif
5981
5982 /* _E[0-9]+[bs]$ */
5983 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5984 {
5985 matching = str + 3;
5986 while (isdigit (matching[0]))
5987 matching += 1;
5988 if ((matching[0] == 'b' || matching[0] == 's')
5989 && matching [1] == '\0')
5990 return 1;
5991 }
5992
5993 /* ??? We should not modify STR directly, as we are doing below. This
5994 is fine in this case, but may become problematic later if we find
5995 that this alternative did not work, and want to try matching
5996 another one from the begining of STR. Since we modified it, we
5997 won't be able to find the begining of the string anymore! */
5998 if (str[0] == 'X')
5999 {
6000 str += 1;
6001 while (str[0] != '_' && str[0] != '\0')
6002 {
6003 if (str[0] != 'n' && str[0] != 'b')
6004 return 0;
6005 str += 1;
6006 }
6007 }
6008
6009 if (str[0] == '\000')
6010 return 1;
6011
6012 if (str[0] == '_')
6013 {
6014 if (str[1] != '_' || str[2] == '\000')
6015 return 0;
6016 if (str[2] == '_')
6017 {
6018 if (strcmp (str + 3, "JM") == 0)
6019 return 1;
6020 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6021 the LJM suffix in favor of the JM one. But we will
6022 still accept LJM as a valid suffix for a reasonable
6023 amount of time, just to allow ourselves to debug programs
6024 compiled using an older version of GNAT. */
6025 if (strcmp (str + 3, "LJM") == 0)
6026 return 1;
6027 if (str[3] != 'X')
6028 return 0;
6029 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6030 || str[4] == 'U' || str[4] == 'P')
6031 return 1;
6032 if (str[4] == 'R' && str[5] != 'T')
6033 return 1;
6034 return 0;
6035 }
6036 if (!isdigit (str[2]))
6037 return 0;
6038 for (k = 3; str[k] != '\0'; k += 1)
6039 if (!isdigit (str[k]) && str[k] != '_')
6040 return 0;
6041 return 1;
6042 }
6043 if (str[0] == '$' && isdigit (str[1]))
6044 {
6045 for (k = 2; str[k] != '\0'; k += 1)
6046 if (!isdigit (str[k]) && str[k] != '_')
6047 return 0;
6048 return 1;
6049 }
6050 return 0;
6051 }
6052
6053 /* Return non-zero if the string starting at NAME and ending before
6054 NAME_END contains no capital letters. */
6055
6056 static int
6057 is_valid_name_for_wild_match (const char *name0)
6058 {
6059 std::string decoded_name = ada_decode (name0);
6060 int i;
6061
6062 /* If the decoded name starts with an angle bracket, it means that
6063 NAME0 does not follow the GNAT encoding format. It should then
6064 not be allowed as a possible wild match. */
6065 if (decoded_name[0] == '<')
6066 return 0;
6067
6068 for (i=0; decoded_name[i] != '\0'; i++)
6069 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6070 return 0;
6071
6072 return 1;
6073 }
6074
6075 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6076 that could start a simple name. Assumes that *NAMEP points into
6077 the string beginning at NAME0. */
6078
6079 static int
6080 advance_wild_match (const char **namep, const char *name0, int target0)
6081 {
6082 const char *name = *namep;
6083
6084 while (1)
6085 {
6086 int t0, t1;
6087
6088 t0 = *name;
6089 if (t0 == '_')
6090 {
6091 t1 = name[1];
6092 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6093 {
6094 name += 1;
6095 if (name == name0 + 5 && startswith (name0, "_ada"))
6096 break;
6097 else
6098 name += 1;
6099 }
6100 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6101 || name[2] == target0))
6102 {
6103 name += 2;
6104 break;
6105 }
6106 else
6107 return 0;
6108 }
6109 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6110 name += 1;
6111 else
6112 return 0;
6113 }
6114
6115 *namep = name;
6116 return 1;
6117 }
6118
6119 /* Return true iff NAME encodes a name of the form prefix.PATN.
6120 Ignores any informational suffixes of NAME (i.e., for which
6121 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6122 simple name. */
6123
6124 static bool
6125 wild_match (const char *name, const char *patn)
6126 {
6127 const char *p;
6128 const char *name0 = name;
6129
6130 while (1)
6131 {
6132 const char *match = name;
6133
6134 if (*name == *patn)
6135 {
6136 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6137 if (*p != *name)
6138 break;
6139 if (*p == '\0' && is_name_suffix (name))
6140 return match == name0 || is_valid_name_for_wild_match (name0);
6141
6142 if (name[-1] == '_')
6143 name -= 1;
6144 }
6145 if (!advance_wild_match (&name, name0, *patn))
6146 return false;
6147 }
6148 }
6149
6150 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6151 any trailing suffixes that encode debugging information or leading
6152 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6153 information that is ignored). */
6154
6155 static bool
6156 full_match (const char *sym_name, const char *search_name)
6157 {
6158 size_t search_name_len = strlen (search_name);
6159
6160 if (strncmp (sym_name, search_name, search_name_len) == 0
6161 && is_name_suffix (sym_name + search_name_len))
6162 return true;
6163
6164 if (startswith (sym_name, "_ada_")
6165 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6166 && is_name_suffix (sym_name + search_name_len + 5))
6167 return true;
6168
6169 return false;
6170 }
6171
6172 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6173 *defn_symbols, updating the list of symbols in OBSTACKP (if
6174 necessary). OBJFILE is the section containing BLOCK. */
6175
6176 static void
6177 ada_add_block_symbols (struct obstack *obstackp,
6178 const struct block *block,
6179 const lookup_name_info &lookup_name,
6180 domain_enum domain, struct objfile *objfile)
6181 {
6182 struct block_iterator iter;
6183 /* A matching argument symbol, if any. */
6184 struct symbol *arg_sym;
6185 /* Set true when we find a matching non-argument symbol. */
6186 int found_sym;
6187 struct symbol *sym;
6188
6189 arg_sym = NULL;
6190 found_sym = 0;
6191 for (sym = block_iter_match_first (block, lookup_name, &iter);
6192 sym != NULL;
6193 sym = block_iter_match_next (lookup_name, &iter))
6194 {
6195 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6196 {
6197 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6198 {
6199 if (SYMBOL_IS_ARGUMENT (sym))
6200 arg_sym = sym;
6201 else
6202 {
6203 found_sym = 1;
6204 add_defn_to_vec (obstackp,
6205 fixup_symbol_section (sym, objfile),
6206 block);
6207 }
6208 }
6209 }
6210 }
6211
6212 /* Handle renamings. */
6213
6214 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6215 found_sym = 1;
6216
6217 if (!found_sym && arg_sym != NULL)
6218 {
6219 add_defn_to_vec (obstackp,
6220 fixup_symbol_section (arg_sym, objfile),
6221 block);
6222 }
6223
6224 if (!lookup_name.ada ().wild_match_p ())
6225 {
6226 arg_sym = NULL;
6227 found_sym = 0;
6228 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6229 const char *name = ada_lookup_name.c_str ();
6230 size_t name_len = ada_lookup_name.size ();
6231
6232 ALL_BLOCK_SYMBOLS (block, iter, sym)
6233 {
6234 if (symbol_matches_domain (sym->language (),
6235 SYMBOL_DOMAIN (sym), domain))
6236 {
6237 int cmp;
6238
6239 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6240 if (cmp == 0)
6241 {
6242 cmp = !startswith (sym->linkage_name (), "_ada_");
6243 if (cmp == 0)
6244 cmp = strncmp (name, sym->linkage_name () + 5,
6245 name_len);
6246 }
6247
6248 if (cmp == 0
6249 && is_name_suffix (sym->linkage_name () + name_len + 5))
6250 {
6251 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6252 {
6253 if (SYMBOL_IS_ARGUMENT (sym))
6254 arg_sym = sym;
6255 else
6256 {
6257 found_sym = 1;
6258 add_defn_to_vec (obstackp,
6259 fixup_symbol_section (sym, objfile),
6260 block);
6261 }
6262 }
6263 }
6264 }
6265 }
6266
6267 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6268 They aren't parameters, right? */
6269 if (!found_sym && arg_sym != NULL)
6270 {
6271 add_defn_to_vec (obstackp,
6272 fixup_symbol_section (arg_sym, objfile),
6273 block);
6274 }
6275 }
6276 }
6277 \f
6278
6279 /* Symbol Completion */
6280
6281 /* See symtab.h. */
6282
6283 bool
6284 ada_lookup_name_info::matches
6285 (const char *sym_name,
6286 symbol_name_match_type match_type,
6287 completion_match_result *comp_match_res) const
6288 {
6289 bool match = false;
6290 const char *text = m_encoded_name.c_str ();
6291 size_t text_len = m_encoded_name.size ();
6292
6293 /* First, test against the fully qualified name of the symbol. */
6294
6295 if (strncmp (sym_name, text, text_len) == 0)
6296 match = true;
6297
6298 std::string decoded_name = ada_decode (sym_name);
6299 if (match && !m_encoded_p)
6300 {
6301 /* One needed check before declaring a positive match is to verify
6302 that iff we are doing a verbatim match, the decoded version
6303 of the symbol name starts with '<'. Otherwise, this symbol name
6304 is not a suitable completion. */
6305
6306 bool has_angle_bracket = (decoded_name[0] == '<');
6307 match = (has_angle_bracket == m_verbatim_p);
6308 }
6309
6310 if (match && !m_verbatim_p)
6311 {
6312 /* When doing non-verbatim match, another check that needs to
6313 be done is to verify that the potentially matching symbol name
6314 does not include capital letters, because the ada-mode would
6315 not be able to understand these symbol names without the
6316 angle bracket notation. */
6317 const char *tmp;
6318
6319 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6320 if (*tmp != '\0')
6321 match = false;
6322 }
6323
6324 /* Second: Try wild matching... */
6325
6326 if (!match && m_wild_match_p)
6327 {
6328 /* Since we are doing wild matching, this means that TEXT
6329 may represent an unqualified symbol name. We therefore must
6330 also compare TEXT against the unqualified name of the symbol. */
6331 sym_name = ada_unqualified_name (decoded_name.c_str ());
6332
6333 if (strncmp (sym_name, text, text_len) == 0)
6334 match = true;
6335 }
6336
6337 /* Finally: If we found a match, prepare the result to return. */
6338
6339 if (!match)
6340 return false;
6341
6342 if (comp_match_res != NULL)
6343 {
6344 std::string &match_str = comp_match_res->match.storage ();
6345
6346 if (!m_encoded_p)
6347 match_str = ada_decode (sym_name);
6348 else
6349 {
6350 if (m_verbatim_p)
6351 match_str = add_angle_brackets (sym_name);
6352 else
6353 match_str = sym_name;
6354
6355 }
6356
6357 comp_match_res->set_match (match_str.c_str ());
6358 }
6359
6360 return true;
6361 }
6362
6363 /* Add the list of possible symbol names completing TEXT to TRACKER.
6364 WORD is the entire command on which completion is made. */
6365
6366 static void
6367 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6368 complete_symbol_mode mode,
6369 symbol_name_match_type name_match_type,
6370 const char *text, const char *word,
6371 enum type_code code)
6372 {
6373 struct symbol *sym;
6374 const struct block *b, *surrounding_static_block = 0;
6375 struct block_iterator iter;
6376
6377 gdb_assert (code == TYPE_CODE_UNDEF);
6378
6379 lookup_name_info lookup_name (text, name_match_type, true);
6380
6381 /* First, look at the partial symtab symbols. */
6382 expand_symtabs_matching (NULL,
6383 lookup_name,
6384 NULL,
6385 NULL,
6386 ALL_DOMAIN);
6387
6388 /* At this point scan through the misc symbol vectors and add each
6389 symbol you find to the list. Eventually we want to ignore
6390 anything that isn't a text symbol (everything else will be
6391 handled by the psymtab code above). */
6392
6393 for (objfile *objfile : current_program_space->objfiles ())
6394 {
6395 for (minimal_symbol *msymbol : objfile->msymbols ())
6396 {
6397 QUIT;
6398
6399 if (completion_skip_symbol (mode, msymbol))
6400 continue;
6401
6402 language symbol_language = msymbol->language ();
6403
6404 /* Ada minimal symbols won't have their language set to Ada. If
6405 we let completion_list_add_name compare using the
6406 default/C-like matcher, then when completing e.g., symbols in a
6407 package named "pck", we'd match internal Ada symbols like
6408 "pckS", which are invalid in an Ada expression, unless you wrap
6409 them in '<' '>' to request a verbatim match.
6410
6411 Unfortunately, some Ada encoded names successfully demangle as
6412 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6413 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6414 with the wrong language set. Paper over that issue here. */
6415 if (symbol_language == language_auto
6416 || symbol_language == language_cplus)
6417 symbol_language = language_ada;
6418
6419 completion_list_add_name (tracker,
6420 symbol_language,
6421 msymbol->linkage_name (),
6422 lookup_name, text, word);
6423 }
6424 }
6425
6426 /* Search upwards from currently selected frame (so that we can
6427 complete on local vars. */
6428
6429 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6430 {
6431 if (!BLOCK_SUPERBLOCK (b))
6432 surrounding_static_block = b; /* For elmin of dups */
6433
6434 ALL_BLOCK_SYMBOLS (b, iter, sym)
6435 {
6436 if (completion_skip_symbol (mode, sym))
6437 continue;
6438
6439 completion_list_add_name (tracker,
6440 sym->language (),
6441 sym->linkage_name (),
6442 lookup_name, text, word);
6443 }
6444 }
6445
6446 /* Go through the symtabs and check the externs and statics for
6447 symbols which match. */
6448
6449 for (objfile *objfile : current_program_space->objfiles ())
6450 {
6451 for (compunit_symtab *s : objfile->compunits ())
6452 {
6453 QUIT;
6454 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6455 ALL_BLOCK_SYMBOLS (b, iter, sym)
6456 {
6457 if (completion_skip_symbol (mode, sym))
6458 continue;
6459
6460 completion_list_add_name (tracker,
6461 sym->language (),
6462 sym->linkage_name (),
6463 lookup_name, text, word);
6464 }
6465 }
6466 }
6467
6468 for (objfile *objfile : current_program_space->objfiles ())
6469 {
6470 for (compunit_symtab *s : objfile->compunits ())
6471 {
6472 QUIT;
6473 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6474 /* Don't do this block twice. */
6475 if (b == surrounding_static_block)
6476 continue;
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6478 {
6479 if (completion_skip_symbol (mode, sym))
6480 continue;
6481
6482 completion_list_add_name (tracker,
6483 sym->language (),
6484 sym->linkage_name (),
6485 lookup_name, text, word);
6486 }
6487 }
6488 }
6489 }
6490
6491 /* Field Access */
6492
6493 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6494 for tagged types. */
6495
6496 static int
6497 ada_is_dispatch_table_ptr_type (struct type *type)
6498 {
6499 const char *name;
6500
6501 if (type->code () != TYPE_CODE_PTR)
6502 return 0;
6503
6504 name = TYPE_TARGET_TYPE (type)->name ();
6505 if (name == NULL)
6506 return 0;
6507
6508 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6509 }
6510
6511 /* Return non-zero if TYPE is an interface tag. */
6512
6513 static int
6514 ada_is_interface_tag (struct type *type)
6515 {
6516 const char *name = type->name ();
6517
6518 if (name == NULL)
6519 return 0;
6520
6521 return (strcmp (name, "ada__tags__interface_tag") == 0);
6522 }
6523
6524 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6525 to be invisible to users. */
6526
6527 int
6528 ada_is_ignored_field (struct type *type, int field_num)
6529 {
6530 if (field_num < 0 || field_num > type->num_fields ())
6531 return 1;
6532
6533 /* Check the name of that field. */
6534 {
6535 const char *name = TYPE_FIELD_NAME (type, field_num);
6536
6537 /* Anonymous field names should not be printed.
6538 brobecker/2007-02-20: I don't think this can actually happen
6539 but we don't want to print the value of anonymous fields anyway. */
6540 if (name == NULL)
6541 return 1;
6542
6543 /* Normally, fields whose name start with an underscore ("_")
6544 are fields that have been internally generated by the compiler,
6545 and thus should not be printed. The "_parent" field is special,
6546 however: This is a field internally generated by the compiler
6547 for tagged types, and it contains the components inherited from
6548 the parent type. This field should not be printed as is, but
6549 should not be ignored either. */
6550 if (name[0] == '_' && !startswith (name, "_parent"))
6551 return 1;
6552 }
6553
6554 /* If this is the dispatch table of a tagged type or an interface tag,
6555 then ignore. */
6556 if (ada_is_tagged_type (type, 1)
6557 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6558 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6559 return 1;
6560
6561 /* Not a special field, so it should not be ignored. */
6562 return 0;
6563 }
6564
6565 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6566 pointer or reference type whose ultimate target has a tag field. */
6567
6568 int
6569 ada_is_tagged_type (struct type *type, int refok)
6570 {
6571 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6572 }
6573
6574 /* True iff TYPE represents the type of X'Tag */
6575
6576 int
6577 ada_is_tag_type (struct type *type)
6578 {
6579 type = ada_check_typedef (type);
6580
6581 if (type == NULL || type->code () != TYPE_CODE_PTR)
6582 return 0;
6583 else
6584 {
6585 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6586
6587 return (name != NULL
6588 && strcmp (name, "ada__tags__dispatch_table") == 0);
6589 }
6590 }
6591
6592 /* The type of the tag on VAL. */
6593
6594 static struct type *
6595 ada_tag_type (struct value *val)
6596 {
6597 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6598 }
6599
6600 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6601 retired at Ada 05). */
6602
6603 static int
6604 is_ada95_tag (struct value *tag)
6605 {
6606 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6607 }
6608
6609 /* The value of the tag on VAL. */
6610
6611 static struct value *
6612 ada_value_tag (struct value *val)
6613 {
6614 return ada_value_struct_elt (val, "_tag", 0);
6615 }
6616
6617 /* The value of the tag on the object of type TYPE whose contents are
6618 saved at VALADDR, if it is non-null, or is at memory address
6619 ADDRESS. */
6620
6621 static struct value *
6622 value_tag_from_contents_and_address (struct type *type,
6623 const gdb_byte *valaddr,
6624 CORE_ADDR address)
6625 {
6626 int tag_byte_offset;
6627 struct type *tag_type;
6628
6629 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6630 NULL, NULL, NULL))
6631 {
6632 const gdb_byte *valaddr1 = ((valaddr == NULL)
6633 ? NULL
6634 : valaddr + tag_byte_offset);
6635 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6636
6637 return value_from_contents_and_address (tag_type, valaddr1, address1);
6638 }
6639 return NULL;
6640 }
6641
6642 static struct type *
6643 type_from_tag (struct value *tag)
6644 {
6645 const char *type_name = ada_tag_name (tag);
6646
6647 if (type_name != NULL)
6648 return ada_find_any_type (ada_encode (type_name));
6649 return NULL;
6650 }
6651
6652 /* Given a value OBJ of a tagged type, return a value of this
6653 type at the base address of the object. The base address, as
6654 defined in Ada.Tags, it is the address of the primary tag of
6655 the object, and therefore where the field values of its full
6656 view can be fetched. */
6657
6658 struct value *
6659 ada_tag_value_at_base_address (struct value *obj)
6660 {
6661 struct value *val;
6662 LONGEST offset_to_top = 0;
6663 struct type *ptr_type, *obj_type;
6664 struct value *tag;
6665 CORE_ADDR base_address;
6666
6667 obj_type = value_type (obj);
6668
6669 /* It is the responsability of the caller to deref pointers. */
6670
6671 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6672 return obj;
6673
6674 tag = ada_value_tag (obj);
6675 if (!tag)
6676 return obj;
6677
6678 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6679
6680 if (is_ada95_tag (tag))
6681 return obj;
6682
6683 ptr_type = language_lookup_primitive_type
6684 (language_def (language_ada), target_gdbarch(), "storage_offset");
6685 ptr_type = lookup_pointer_type (ptr_type);
6686 val = value_cast (ptr_type, tag);
6687 if (!val)
6688 return obj;
6689
6690 /* It is perfectly possible that an exception be raised while
6691 trying to determine the base address, just like for the tag;
6692 see ada_tag_name for more details. We do not print the error
6693 message for the same reason. */
6694
6695 try
6696 {
6697 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6698 }
6699
6700 catch (const gdb_exception_error &e)
6701 {
6702 return obj;
6703 }
6704
6705 /* If offset is null, nothing to do. */
6706
6707 if (offset_to_top == 0)
6708 return obj;
6709
6710 /* -1 is a special case in Ada.Tags; however, what should be done
6711 is not quite clear from the documentation. So do nothing for
6712 now. */
6713
6714 if (offset_to_top == -1)
6715 return obj;
6716
6717 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6718 from the base address. This was however incompatible with
6719 C++ dispatch table: C++ uses a *negative* value to *add*
6720 to the base address. Ada's convention has therefore been
6721 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6722 use the same convention. Here, we support both cases by
6723 checking the sign of OFFSET_TO_TOP. */
6724
6725 if (offset_to_top > 0)
6726 offset_to_top = -offset_to_top;
6727
6728 base_address = value_address (obj) + offset_to_top;
6729 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6730
6731 /* Make sure that we have a proper tag at the new address.
6732 Otherwise, offset_to_top is bogus (which can happen when
6733 the object is not initialized yet). */
6734
6735 if (!tag)
6736 return obj;
6737
6738 obj_type = type_from_tag (tag);
6739
6740 if (!obj_type)
6741 return obj;
6742
6743 return value_from_contents_and_address (obj_type, NULL, base_address);
6744 }
6745
6746 /* Return the "ada__tags__type_specific_data" type. */
6747
6748 static struct type *
6749 ada_get_tsd_type (struct inferior *inf)
6750 {
6751 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6752
6753 if (data->tsd_type == 0)
6754 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6755 return data->tsd_type;
6756 }
6757
6758 /* Return the TSD (type-specific data) associated to the given TAG.
6759 TAG is assumed to be the tag of a tagged-type entity.
6760
6761 May return NULL if we are unable to get the TSD. */
6762
6763 static struct value *
6764 ada_get_tsd_from_tag (struct value *tag)
6765 {
6766 struct value *val;
6767 struct type *type;
6768
6769 /* First option: The TSD is simply stored as a field of our TAG.
6770 Only older versions of GNAT would use this format, but we have
6771 to test it first, because there are no visible markers for
6772 the current approach except the absence of that field. */
6773
6774 val = ada_value_struct_elt (tag, "tsd", 1);
6775 if (val)
6776 return val;
6777
6778 /* Try the second representation for the dispatch table (in which
6779 there is no explicit 'tsd' field in the referent of the tag pointer,
6780 and instead the tsd pointer is stored just before the dispatch
6781 table. */
6782
6783 type = ada_get_tsd_type (current_inferior());
6784 if (type == NULL)
6785 return NULL;
6786 type = lookup_pointer_type (lookup_pointer_type (type));
6787 val = value_cast (type, tag);
6788 if (val == NULL)
6789 return NULL;
6790 return value_ind (value_ptradd (val, -1));
6791 }
6792
6793 /* Given the TSD of a tag (type-specific data), return a string
6794 containing the name of the associated type.
6795
6796 The returned value is good until the next call. May return NULL
6797 if we are unable to determine the tag name. */
6798
6799 static char *
6800 ada_tag_name_from_tsd (struct value *tsd)
6801 {
6802 static char name[1024];
6803 char *p;
6804 struct value *val;
6805
6806 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6807 if (val == NULL)
6808 return NULL;
6809 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6810 for (p = name; *p != '\0'; p += 1)
6811 if (isalpha (*p))
6812 *p = tolower (*p);
6813 return name;
6814 }
6815
6816 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6817 a C string.
6818
6819 Return NULL if the TAG is not an Ada tag, or if we were unable to
6820 determine the name of that tag. The result is good until the next
6821 call. */
6822
6823 const char *
6824 ada_tag_name (struct value *tag)
6825 {
6826 char *name = NULL;
6827
6828 if (!ada_is_tag_type (value_type (tag)))
6829 return NULL;
6830
6831 /* It is perfectly possible that an exception be raised while trying
6832 to determine the TAG's name, even under normal circumstances:
6833 The associated variable may be uninitialized or corrupted, for
6834 instance. We do not let any exception propagate past this point.
6835 instead we return NULL.
6836
6837 We also do not print the error message either (which often is very
6838 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6839 the caller print a more meaningful message if necessary. */
6840 try
6841 {
6842 struct value *tsd = ada_get_tsd_from_tag (tag);
6843
6844 if (tsd != NULL)
6845 name = ada_tag_name_from_tsd (tsd);
6846 }
6847 catch (const gdb_exception_error &e)
6848 {
6849 }
6850
6851 return name;
6852 }
6853
6854 /* The parent type of TYPE, or NULL if none. */
6855
6856 struct type *
6857 ada_parent_type (struct type *type)
6858 {
6859 int i;
6860
6861 type = ada_check_typedef (type);
6862
6863 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6864 return NULL;
6865
6866 for (i = 0; i < type->num_fields (); i += 1)
6867 if (ada_is_parent_field (type, i))
6868 {
6869 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6870
6871 /* If the _parent field is a pointer, then dereference it. */
6872 if (parent_type->code () == TYPE_CODE_PTR)
6873 parent_type = TYPE_TARGET_TYPE (parent_type);
6874 /* If there is a parallel XVS type, get the actual base type. */
6875 parent_type = ada_get_base_type (parent_type);
6876
6877 return ada_check_typedef (parent_type);
6878 }
6879
6880 return NULL;
6881 }
6882
6883 /* True iff field number FIELD_NUM of structure type TYPE contains the
6884 parent-type (inherited) fields of a derived type. Assumes TYPE is
6885 a structure type with at least FIELD_NUM+1 fields. */
6886
6887 int
6888 ada_is_parent_field (struct type *type, int field_num)
6889 {
6890 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6891
6892 return (name != NULL
6893 && (startswith (name, "PARENT")
6894 || startswith (name, "_parent")));
6895 }
6896
6897 /* True iff field number FIELD_NUM of structure type TYPE is a
6898 transparent wrapper field (which should be silently traversed when doing
6899 field selection and flattened when printing). Assumes TYPE is a
6900 structure type with at least FIELD_NUM+1 fields. Such fields are always
6901 structures. */
6902
6903 int
6904 ada_is_wrapper_field (struct type *type, int field_num)
6905 {
6906 const char *name = TYPE_FIELD_NAME (type, field_num);
6907
6908 if (name != NULL && strcmp (name, "RETVAL") == 0)
6909 {
6910 /* This happens in functions with "out" or "in out" parameters
6911 which are passed by copy. For such functions, GNAT describes
6912 the function's return type as being a struct where the return
6913 value is in a field called RETVAL, and where the other "out"
6914 or "in out" parameters are fields of that struct. This is not
6915 a wrapper. */
6916 return 0;
6917 }
6918
6919 return (name != NULL
6920 && (startswith (name, "PARENT")
6921 || strcmp (name, "REP") == 0
6922 || startswith (name, "_parent")
6923 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6924 }
6925
6926 /* True iff field number FIELD_NUM of structure or union type TYPE
6927 is a variant wrapper. Assumes TYPE is a structure type with at least
6928 FIELD_NUM+1 fields. */
6929
6930 int
6931 ada_is_variant_part (struct type *type, int field_num)
6932 {
6933 /* Only Ada types are eligible. */
6934 if (!ADA_TYPE_P (type))
6935 return 0;
6936
6937 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6938
6939 return (field_type->code () == TYPE_CODE_UNION
6940 || (is_dynamic_field (type, field_num)
6941 && (TYPE_TARGET_TYPE (field_type)->code ()
6942 == TYPE_CODE_UNION)));
6943 }
6944
6945 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6946 whose discriminants are contained in the record type OUTER_TYPE,
6947 returns the type of the controlling discriminant for the variant.
6948 May return NULL if the type could not be found. */
6949
6950 struct type *
6951 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6952 {
6953 const char *name = ada_variant_discrim_name (var_type);
6954
6955 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6956 }
6957
6958 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6959 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6960 represents a 'when others' clause; otherwise 0. */
6961
6962 static int
6963 ada_is_others_clause (struct type *type, int field_num)
6964 {
6965 const char *name = TYPE_FIELD_NAME (type, field_num);
6966
6967 return (name != NULL && name[0] == 'O');
6968 }
6969
6970 /* Assuming that TYPE0 is the type of the variant part of a record,
6971 returns the name of the discriminant controlling the variant.
6972 The value is valid until the next call to ada_variant_discrim_name. */
6973
6974 const char *
6975 ada_variant_discrim_name (struct type *type0)
6976 {
6977 static char *result = NULL;
6978 static size_t result_len = 0;
6979 struct type *type;
6980 const char *name;
6981 const char *discrim_end;
6982 const char *discrim_start;
6983
6984 if (type0->code () == TYPE_CODE_PTR)
6985 type = TYPE_TARGET_TYPE (type0);
6986 else
6987 type = type0;
6988
6989 name = ada_type_name (type);
6990
6991 if (name == NULL || name[0] == '\000')
6992 return "";
6993
6994 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6995 discrim_end -= 1)
6996 {
6997 if (startswith (discrim_end, "___XVN"))
6998 break;
6999 }
7000 if (discrim_end == name)
7001 return "";
7002
7003 for (discrim_start = discrim_end; discrim_start != name + 3;
7004 discrim_start -= 1)
7005 {
7006 if (discrim_start == name + 1)
7007 return "";
7008 if ((discrim_start > name + 3
7009 && startswith (discrim_start - 3, "___"))
7010 || discrim_start[-1] == '.')
7011 break;
7012 }
7013
7014 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7015 strncpy (result, discrim_start, discrim_end - discrim_start);
7016 result[discrim_end - discrim_start] = '\0';
7017 return result;
7018 }
7019
7020 /* Scan STR for a subtype-encoded number, beginning at position K.
7021 Put the position of the character just past the number scanned in
7022 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7023 Return 1 if there was a valid number at the given position, and 0
7024 otherwise. A "subtype-encoded" number consists of the absolute value
7025 in decimal, followed by the letter 'm' to indicate a negative number.
7026 Assumes 0m does not occur. */
7027
7028 int
7029 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7030 {
7031 ULONGEST RU;
7032
7033 if (!isdigit (str[k]))
7034 return 0;
7035
7036 /* Do it the hard way so as not to make any assumption about
7037 the relationship of unsigned long (%lu scan format code) and
7038 LONGEST. */
7039 RU = 0;
7040 while (isdigit (str[k]))
7041 {
7042 RU = RU * 10 + (str[k] - '0');
7043 k += 1;
7044 }
7045
7046 if (str[k] == 'm')
7047 {
7048 if (R != NULL)
7049 *R = (-(LONGEST) (RU - 1)) - 1;
7050 k += 1;
7051 }
7052 else if (R != NULL)
7053 *R = (LONGEST) RU;
7054
7055 /* NOTE on the above: Technically, C does not say what the results of
7056 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7057 number representable as a LONGEST (although either would probably work
7058 in most implementations). When RU>0, the locution in the then branch
7059 above is always equivalent to the negative of RU. */
7060
7061 if (new_k != NULL)
7062 *new_k = k;
7063 return 1;
7064 }
7065
7066 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7067 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7068 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7069
7070 static int
7071 ada_in_variant (LONGEST val, struct type *type, int field_num)
7072 {
7073 const char *name = TYPE_FIELD_NAME (type, field_num);
7074 int p;
7075
7076 p = 0;
7077 while (1)
7078 {
7079 switch (name[p])
7080 {
7081 case '\0':
7082 return 0;
7083 case 'S':
7084 {
7085 LONGEST W;
7086
7087 if (!ada_scan_number (name, p + 1, &W, &p))
7088 return 0;
7089 if (val == W)
7090 return 1;
7091 break;
7092 }
7093 case 'R':
7094 {
7095 LONGEST L, U;
7096
7097 if (!ada_scan_number (name, p + 1, &L, &p)
7098 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7099 return 0;
7100 if (val >= L && val <= U)
7101 return 1;
7102 break;
7103 }
7104 case 'O':
7105 return 1;
7106 default:
7107 return 0;
7108 }
7109 }
7110 }
7111
7112 /* FIXME: Lots of redundancy below. Try to consolidate. */
7113
7114 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7115 ARG_TYPE, extract and return the value of one of its (non-static)
7116 fields. FIELDNO says which field. Differs from value_primitive_field
7117 only in that it can handle packed values of arbitrary type. */
7118
7119 struct value *
7120 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7121 struct type *arg_type)
7122 {
7123 struct type *type;
7124
7125 arg_type = ada_check_typedef (arg_type);
7126 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7127
7128 /* Handle packed fields. It might be that the field is not packed
7129 relative to its containing structure, but the structure itself is
7130 packed; in this case we must take the bit-field path. */
7131 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7132 {
7133 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7134 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7135
7136 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7137 offset + bit_pos / 8,
7138 bit_pos % 8, bit_size, type);
7139 }
7140 else
7141 return value_primitive_field (arg1, offset, fieldno, arg_type);
7142 }
7143
7144 /* Find field with name NAME in object of type TYPE. If found,
7145 set the following for each argument that is non-null:
7146 - *FIELD_TYPE_P to the field's type;
7147 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7148 an object of that type;
7149 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7150 - *BIT_SIZE_P to its size in bits if the field is packed, and
7151 0 otherwise;
7152 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7153 fields up to but not including the desired field, or by the total
7154 number of fields if not found. A NULL value of NAME never
7155 matches; the function just counts visible fields in this case.
7156
7157 Notice that we need to handle when a tagged record hierarchy
7158 has some components with the same name, like in this scenario:
7159
7160 type Top_T is tagged record
7161 N : Integer := 1;
7162 U : Integer := 974;
7163 A : Integer := 48;
7164 end record;
7165
7166 type Middle_T is new Top.Top_T with record
7167 N : Character := 'a';
7168 C : Integer := 3;
7169 end record;
7170
7171 type Bottom_T is new Middle.Middle_T with record
7172 N : Float := 4.0;
7173 C : Character := '5';
7174 X : Integer := 6;
7175 A : Character := 'J';
7176 end record;
7177
7178 Let's say we now have a variable declared and initialized as follow:
7179
7180 TC : Top_A := new Bottom_T;
7181
7182 And then we use this variable to call this function
7183
7184 procedure Assign (Obj: in out Top_T; TV : Integer);
7185
7186 as follow:
7187
7188 Assign (Top_T (B), 12);
7189
7190 Now, we're in the debugger, and we're inside that procedure
7191 then and we want to print the value of obj.c:
7192
7193 Usually, the tagged record or one of the parent type owns the
7194 component to print and there's no issue but in this particular
7195 case, what does it mean to ask for Obj.C? Since the actual
7196 type for object is type Bottom_T, it could mean two things: type
7197 component C from the Middle_T view, but also component C from
7198 Bottom_T. So in that "undefined" case, when the component is
7199 not found in the non-resolved type (which includes all the
7200 components of the parent type), then resolve it and see if we
7201 get better luck once expanded.
7202
7203 In the case of homonyms in the derived tagged type, we don't
7204 guaranty anything, and pick the one that's easiest for us
7205 to program.
7206
7207 Returns 1 if found, 0 otherwise. */
7208
7209 static int
7210 find_struct_field (const char *name, struct type *type, int offset,
7211 struct type **field_type_p,
7212 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7213 int *index_p)
7214 {
7215 int i;
7216 int parent_offset = -1;
7217
7218 type = ada_check_typedef (type);
7219
7220 if (field_type_p != NULL)
7221 *field_type_p = NULL;
7222 if (byte_offset_p != NULL)
7223 *byte_offset_p = 0;
7224 if (bit_offset_p != NULL)
7225 *bit_offset_p = 0;
7226 if (bit_size_p != NULL)
7227 *bit_size_p = 0;
7228
7229 for (i = 0; i < type->num_fields (); i += 1)
7230 {
7231 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7232 int fld_offset = offset + bit_pos / 8;
7233 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7234
7235 if (t_field_name == NULL)
7236 continue;
7237
7238 else if (ada_is_parent_field (type, i))
7239 {
7240 /* This is a field pointing us to the parent type of a tagged
7241 type. As hinted in this function's documentation, we give
7242 preference to fields in the current record first, so what
7243 we do here is just record the index of this field before
7244 we skip it. If it turns out we couldn't find our field
7245 in the current record, then we'll get back to it and search
7246 inside it whether the field might exist in the parent. */
7247
7248 parent_offset = i;
7249 continue;
7250 }
7251
7252 else if (name != NULL && field_name_match (t_field_name, name))
7253 {
7254 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7255
7256 if (field_type_p != NULL)
7257 *field_type_p = TYPE_FIELD_TYPE (type, i);
7258 if (byte_offset_p != NULL)
7259 *byte_offset_p = fld_offset;
7260 if (bit_offset_p != NULL)
7261 *bit_offset_p = bit_pos % 8;
7262 if (bit_size_p != NULL)
7263 *bit_size_p = bit_size;
7264 return 1;
7265 }
7266 else if (ada_is_wrapper_field (type, i))
7267 {
7268 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7269 field_type_p, byte_offset_p, bit_offset_p,
7270 bit_size_p, index_p))
7271 return 1;
7272 }
7273 else if (ada_is_variant_part (type, i))
7274 {
7275 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7276 fixed type?? */
7277 int j;
7278 struct type *field_type
7279 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7280
7281 for (j = 0; j < field_type->num_fields (); j += 1)
7282 {
7283 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7284 fld_offset
7285 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7286 field_type_p, byte_offset_p,
7287 bit_offset_p, bit_size_p, index_p))
7288 return 1;
7289 }
7290 }
7291 else if (index_p != NULL)
7292 *index_p += 1;
7293 }
7294
7295 /* Field not found so far. If this is a tagged type which
7296 has a parent, try finding that field in the parent now. */
7297
7298 if (parent_offset != -1)
7299 {
7300 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7301 int fld_offset = offset + bit_pos / 8;
7302
7303 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7304 fld_offset, field_type_p, byte_offset_p,
7305 bit_offset_p, bit_size_p, index_p))
7306 return 1;
7307 }
7308
7309 return 0;
7310 }
7311
7312 /* Number of user-visible fields in record type TYPE. */
7313
7314 static int
7315 num_visible_fields (struct type *type)
7316 {
7317 int n;
7318
7319 n = 0;
7320 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7321 return n;
7322 }
7323
7324 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7325 and search in it assuming it has (class) type TYPE.
7326 If found, return value, else return NULL.
7327
7328 Searches recursively through wrapper fields (e.g., '_parent').
7329
7330 In the case of homonyms in the tagged types, please refer to the
7331 long explanation in find_struct_field's function documentation. */
7332
7333 static struct value *
7334 ada_search_struct_field (const char *name, struct value *arg, int offset,
7335 struct type *type)
7336 {
7337 int i;
7338 int parent_offset = -1;
7339
7340 type = ada_check_typedef (type);
7341 for (i = 0; i < type->num_fields (); i += 1)
7342 {
7343 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7344
7345 if (t_field_name == NULL)
7346 continue;
7347
7348 else if (ada_is_parent_field (type, i))
7349 {
7350 /* This is a field pointing us to the parent type of a tagged
7351 type. As hinted in this function's documentation, we give
7352 preference to fields in the current record first, so what
7353 we do here is just record the index of this field before
7354 we skip it. If it turns out we couldn't find our field
7355 in the current record, then we'll get back to it and search
7356 inside it whether the field might exist in the parent. */
7357
7358 parent_offset = i;
7359 continue;
7360 }
7361
7362 else if (field_name_match (t_field_name, name))
7363 return ada_value_primitive_field (arg, offset, i, type);
7364
7365 else if (ada_is_wrapper_field (type, i))
7366 {
7367 struct value *v = /* Do not let indent join lines here. */
7368 ada_search_struct_field (name, arg,
7369 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7370 TYPE_FIELD_TYPE (type, i));
7371
7372 if (v != NULL)
7373 return v;
7374 }
7375
7376 else if (ada_is_variant_part (type, i))
7377 {
7378 /* PNH: Do we ever get here? See find_struct_field. */
7379 int j;
7380 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7381 i));
7382 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7383
7384 for (j = 0; j < field_type->num_fields (); j += 1)
7385 {
7386 struct value *v = ada_search_struct_field /* Force line
7387 break. */
7388 (name, arg,
7389 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7390 TYPE_FIELD_TYPE (field_type, j));
7391
7392 if (v != NULL)
7393 return v;
7394 }
7395 }
7396 }
7397
7398 /* Field not found so far. If this is a tagged type which
7399 has a parent, try finding that field in the parent now. */
7400
7401 if (parent_offset != -1)
7402 {
7403 struct value *v = ada_search_struct_field (
7404 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7405 TYPE_FIELD_TYPE (type, parent_offset));
7406
7407 if (v != NULL)
7408 return v;
7409 }
7410
7411 return NULL;
7412 }
7413
7414 static struct value *ada_index_struct_field_1 (int *, struct value *,
7415 int, struct type *);
7416
7417
7418 /* Return field #INDEX in ARG, where the index is that returned by
7419 * find_struct_field through its INDEX_P argument. Adjust the address
7420 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7421 * If found, return value, else return NULL. */
7422
7423 static struct value *
7424 ada_index_struct_field (int index, struct value *arg, int offset,
7425 struct type *type)
7426 {
7427 return ada_index_struct_field_1 (&index, arg, offset, type);
7428 }
7429
7430
7431 /* Auxiliary function for ada_index_struct_field. Like
7432 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7433 * *INDEX_P. */
7434
7435 static struct value *
7436 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7437 struct type *type)
7438 {
7439 int i;
7440 type = ada_check_typedef (type);
7441
7442 for (i = 0; i < type->num_fields (); i += 1)
7443 {
7444 if (TYPE_FIELD_NAME (type, i) == NULL)
7445 continue;
7446 else if (ada_is_wrapper_field (type, i))
7447 {
7448 struct value *v = /* Do not let indent join lines here. */
7449 ada_index_struct_field_1 (index_p, arg,
7450 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7451 TYPE_FIELD_TYPE (type, i));
7452
7453 if (v != NULL)
7454 return v;
7455 }
7456
7457 else if (ada_is_variant_part (type, i))
7458 {
7459 /* PNH: Do we ever get here? See ada_search_struct_field,
7460 find_struct_field. */
7461 error (_("Cannot assign this kind of variant record"));
7462 }
7463 else if (*index_p == 0)
7464 return ada_value_primitive_field (arg, offset, i, type);
7465 else
7466 *index_p -= 1;
7467 }
7468 return NULL;
7469 }
7470
7471 /* Return a string representation of type TYPE. */
7472
7473 static std::string
7474 type_as_string (struct type *type)
7475 {
7476 string_file tmp_stream;
7477
7478 type_print (type, "", &tmp_stream, -1);
7479
7480 return std::move (tmp_stream.string ());
7481 }
7482
7483 /* Given a type TYPE, look up the type of the component of type named NAME.
7484 If DISPP is non-null, add its byte displacement from the beginning of a
7485 structure (pointed to by a value) of type TYPE to *DISPP (does not
7486 work for packed fields).
7487
7488 Matches any field whose name has NAME as a prefix, possibly
7489 followed by "___".
7490
7491 TYPE can be either a struct or union. If REFOK, TYPE may also
7492 be a (pointer or reference)+ to a struct or union, and the
7493 ultimate target type will be searched.
7494
7495 Looks recursively into variant clauses and parent types.
7496
7497 In the case of homonyms in the tagged types, please refer to the
7498 long explanation in find_struct_field's function documentation.
7499
7500 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7501 TYPE is not a type of the right kind. */
7502
7503 static struct type *
7504 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7505 int noerr)
7506 {
7507 int i;
7508 int parent_offset = -1;
7509
7510 if (name == NULL)
7511 goto BadName;
7512
7513 if (refok && type != NULL)
7514 while (1)
7515 {
7516 type = ada_check_typedef (type);
7517 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7518 break;
7519 type = TYPE_TARGET_TYPE (type);
7520 }
7521
7522 if (type == NULL
7523 || (type->code () != TYPE_CODE_STRUCT
7524 && type->code () != TYPE_CODE_UNION))
7525 {
7526 if (noerr)
7527 return NULL;
7528
7529 error (_("Type %s is not a structure or union type"),
7530 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7531 }
7532
7533 type = to_static_fixed_type (type);
7534
7535 for (i = 0; i < type->num_fields (); i += 1)
7536 {
7537 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7538 struct type *t;
7539
7540 if (t_field_name == NULL)
7541 continue;
7542
7543 else if (ada_is_parent_field (type, i))
7544 {
7545 /* This is a field pointing us to the parent type of a tagged
7546 type. As hinted in this function's documentation, we give
7547 preference to fields in the current record first, so what
7548 we do here is just record the index of this field before
7549 we skip it. If it turns out we couldn't find our field
7550 in the current record, then we'll get back to it and search
7551 inside it whether the field might exist in the parent. */
7552
7553 parent_offset = i;
7554 continue;
7555 }
7556
7557 else if (field_name_match (t_field_name, name))
7558 return TYPE_FIELD_TYPE (type, i);
7559
7560 else if (ada_is_wrapper_field (type, i))
7561 {
7562 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7563 0, 1);
7564 if (t != NULL)
7565 return t;
7566 }
7567
7568 else if (ada_is_variant_part (type, i))
7569 {
7570 int j;
7571 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7572 i));
7573
7574 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7575 {
7576 /* FIXME pnh 2008/01/26: We check for a field that is
7577 NOT wrapped in a struct, since the compiler sometimes
7578 generates these for unchecked variant types. Revisit
7579 if the compiler changes this practice. */
7580 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7581
7582 if (v_field_name != NULL
7583 && field_name_match (v_field_name, name))
7584 t = TYPE_FIELD_TYPE (field_type, j);
7585 else
7586 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7587 j),
7588 name, 0, 1);
7589
7590 if (t != NULL)
7591 return t;
7592 }
7593 }
7594
7595 }
7596
7597 /* Field not found so far. If this is a tagged type which
7598 has a parent, try finding that field in the parent now. */
7599
7600 if (parent_offset != -1)
7601 {
7602 struct type *t;
7603
7604 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7605 name, 0, 1);
7606 if (t != NULL)
7607 return t;
7608 }
7609
7610 BadName:
7611 if (!noerr)
7612 {
7613 const char *name_str = name != NULL ? name : _("<null>");
7614
7615 error (_("Type %s has no component named %s"),
7616 type_as_string (type).c_str (), name_str);
7617 }
7618
7619 return NULL;
7620 }
7621
7622 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7623 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7624 represents an unchecked union (that is, the variant part of a
7625 record that is named in an Unchecked_Union pragma). */
7626
7627 static int
7628 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7629 {
7630 const char *discrim_name = ada_variant_discrim_name (var_type);
7631
7632 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7633 }
7634
7635
7636 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7637 within OUTER, determine which variant clause (field number in VAR_TYPE,
7638 numbering from 0) is applicable. Returns -1 if none are. */
7639
7640 int
7641 ada_which_variant_applies (struct type *var_type, struct value *outer)
7642 {
7643 int others_clause;
7644 int i;
7645 const char *discrim_name = ada_variant_discrim_name (var_type);
7646 struct value *discrim;
7647 LONGEST discrim_val;
7648
7649 /* Using plain value_from_contents_and_address here causes problems
7650 because we will end up trying to resolve a type that is currently
7651 being constructed. */
7652 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7653 if (discrim == NULL)
7654 return -1;
7655 discrim_val = value_as_long (discrim);
7656
7657 others_clause = -1;
7658 for (i = 0; i < var_type->num_fields (); i += 1)
7659 {
7660 if (ada_is_others_clause (var_type, i))
7661 others_clause = i;
7662 else if (ada_in_variant (discrim_val, var_type, i))
7663 return i;
7664 }
7665
7666 return others_clause;
7667 }
7668 \f
7669
7670
7671 /* Dynamic-Sized Records */
7672
7673 /* Strategy: The type ostensibly attached to a value with dynamic size
7674 (i.e., a size that is not statically recorded in the debugging
7675 data) does not accurately reflect the size or layout of the value.
7676 Our strategy is to convert these values to values with accurate,
7677 conventional types that are constructed on the fly. */
7678
7679 /* There is a subtle and tricky problem here. In general, we cannot
7680 determine the size of dynamic records without its data. However,
7681 the 'struct value' data structure, which GDB uses to represent
7682 quantities in the inferior process (the target), requires the size
7683 of the type at the time of its allocation in order to reserve space
7684 for GDB's internal copy of the data. That's why the
7685 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7686 rather than struct value*s.
7687
7688 However, GDB's internal history variables ($1, $2, etc.) are
7689 struct value*s containing internal copies of the data that are not, in
7690 general, the same as the data at their corresponding addresses in
7691 the target. Fortunately, the types we give to these values are all
7692 conventional, fixed-size types (as per the strategy described
7693 above), so that we don't usually have to perform the
7694 'to_fixed_xxx_type' conversions to look at their values.
7695 Unfortunately, there is one exception: if one of the internal
7696 history variables is an array whose elements are unconstrained
7697 records, then we will need to create distinct fixed types for each
7698 element selected. */
7699
7700 /* The upshot of all of this is that many routines take a (type, host
7701 address, target address) triple as arguments to represent a value.
7702 The host address, if non-null, is supposed to contain an internal
7703 copy of the relevant data; otherwise, the program is to consult the
7704 target at the target address. */
7705
7706 /* Assuming that VAL0 represents a pointer value, the result of
7707 dereferencing it. Differs from value_ind in its treatment of
7708 dynamic-sized types. */
7709
7710 struct value *
7711 ada_value_ind (struct value *val0)
7712 {
7713 struct value *val = value_ind (val0);
7714
7715 if (ada_is_tagged_type (value_type (val), 0))
7716 val = ada_tag_value_at_base_address (val);
7717
7718 return ada_to_fixed_value (val);
7719 }
7720
7721 /* The value resulting from dereferencing any "reference to"
7722 qualifiers on VAL0. */
7723
7724 static struct value *
7725 ada_coerce_ref (struct value *val0)
7726 {
7727 if (value_type (val0)->code () == TYPE_CODE_REF)
7728 {
7729 struct value *val = val0;
7730
7731 val = coerce_ref (val);
7732
7733 if (ada_is_tagged_type (value_type (val), 0))
7734 val = ada_tag_value_at_base_address (val);
7735
7736 return ada_to_fixed_value (val);
7737 }
7738 else
7739 return val0;
7740 }
7741
7742 /* Return the bit alignment required for field #F of template type TYPE. */
7743
7744 static unsigned int
7745 field_alignment (struct type *type, int f)
7746 {
7747 const char *name = TYPE_FIELD_NAME (type, f);
7748 int len;
7749 int align_offset;
7750
7751 /* The field name should never be null, unless the debugging information
7752 is somehow malformed. In this case, we assume the field does not
7753 require any alignment. */
7754 if (name == NULL)
7755 return 1;
7756
7757 len = strlen (name);
7758
7759 if (!isdigit (name[len - 1]))
7760 return 1;
7761
7762 if (isdigit (name[len - 2]))
7763 align_offset = len - 2;
7764 else
7765 align_offset = len - 1;
7766
7767 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7768 return TARGET_CHAR_BIT;
7769
7770 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7771 }
7772
7773 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7774
7775 static struct symbol *
7776 ada_find_any_type_symbol (const char *name)
7777 {
7778 struct symbol *sym;
7779
7780 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7781 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7782 return sym;
7783
7784 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7785 return sym;
7786 }
7787
7788 /* Find a type named NAME. Ignores ambiguity. This routine will look
7789 solely for types defined by debug info, it will not search the GDB
7790 primitive types. */
7791
7792 static struct type *
7793 ada_find_any_type (const char *name)
7794 {
7795 struct symbol *sym = ada_find_any_type_symbol (name);
7796
7797 if (sym != NULL)
7798 return SYMBOL_TYPE (sym);
7799
7800 return NULL;
7801 }
7802
7803 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7804 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7805 symbol, in which case it is returned. Otherwise, this looks for
7806 symbols whose name is that of NAME_SYM suffixed with "___XR".
7807 Return symbol if found, and NULL otherwise. */
7808
7809 static bool
7810 ada_is_renaming_symbol (struct symbol *name_sym)
7811 {
7812 const char *name = name_sym->linkage_name ();
7813 return strstr (name, "___XR") != NULL;
7814 }
7815
7816 /* Because of GNAT encoding conventions, several GDB symbols may match a
7817 given type name. If the type denoted by TYPE0 is to be preferred to
7818 that of TYPE1 for purposes of type printing, return non-zero;
7819 otherwise return 0. */
7820
7821 int
7822 ada_prefer_type (struct type *type0, struct type *type1)
7823 {
7824 if (type1 == NULL)
7825 return 1;
7826 else if (type0 == NULL)
7827 return 0;
7828 else if (type1->code () == TYPE_CODE_VOID)
7829 return 1;
7830 else if (type0->code () == TYPE_CODE_VOID)
7831 return 0;
7832 else if (type1->name () == NULL && type0->name () != NULL)
7833 return 1;
7834 else if (ada_is_constrained_packed_array_type (type0))
7835 return 1;
7836 else if (ada_is_array_descriptor_type (type0)
7837 && !ada_is_array_descriptor_type (type1))
7838 return 1;
7839 else
7840 {
7841 const char *type0_name = type0->name ();
7842 const char *type1_name = type1->name ();
7843
7844 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7845 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7846 return 1;
7847 }
7848 return 0;
7849 }
7850
7851 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7852 null. */
7853
7854 const char *
7855 ada_type_name (struct type *type)
7856 {
7857 if (type == NULL)
7858 return NULL;
7859 return type->name ();
7860 }
7861
7862 /* Search the list of "descriptive" types associated to TYPE for a type
7863 whose name is NAME. */
7864
7865 static struct type *
7866 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7867 {
7868 struct type *result, *tmp;
7869
7870 if (ada_ignore_descriptive_types_p)
7871 return NULL;
7872
7873 /* If there no descriptive-type info, then there is no parallel type
7874 to be found. */
7875 if (!HAVE_GNAT_AUX_INFO (type))
7876 return NULL;
7877
7878 result = TYPE_DESCRIPTIVE_TYPE (type);
7879 while (result != NULL)
7880 {
7881 const char *result_name = ada_type_name (result);
7882
7883 if (result_name == NULL)
7884 {
7885 warning (_("unexpected null name on descriptive type"));
7886 return NULL;
7887 }
7888
7889 /* If the names match, stop. */
7890 if (strcmp (result_name, name) == 0)
7891 break;
7892
7893 /* Otherwise, look at the next item on the list, if any. */
7894 if (HAVE_GNAT_AUX_INFO (result))
7895 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7896 else
7897 tmp = NULL;
7898
7899 /* If not found either, try after having resolved the typedef. */
7900 if (tmp != NULL)
7901 result = tmp;
7902 else
7903 {
7904 result = check_typedef (result);
7905 if (HAVE_GNAT_AUX_INFO (result))
7906 result = TYPE_DESCRIPTIVE_TYPE (result);
7907 else
7908 result = NULL;
7909 }
7910 }
7911
7912 /* If we didn't find a match, see whether this is a packed array. With
7913 older compilers, the descriptive type information is either absent or
7914 irrelevant when it comes to packed arrays so the above lookup fails.
7915 Fall back to using a parallel lookup by name in this case. */
7916 if (result == NULL && ada_is_constrained_packed_array_type (type))
7917 return ada_find_any_type (name);
7918
7919 return result;
7920 }
7921
7922 /* Find a parallel type to TYPE with the specified NAME, using the
7923 descriptive type taken from the debugging information, if available,
7924 and otherwise using the (slower) name-based method. */
7925
7926 static struct type *
7927 ada_find_parallel_type_with_name (struct type *type, const char *name)
7928 {
7929 struct type *result = NULL;
7930
7931 if (HAVE_GNAT_AUX_INFO (type))
7932 result = find_parallel_type_by_descriptive_type (type, name);
7933 else
7934 result = ada_find_any_type (name);
7935
7936 return result;
7937 }
7938
7939 /* Same as above, but specify the name of the parallel type by appending
7940 SUFFIX to the name of TYPE. */
7941
7942 struct type *
7943 ada_find_parallel_type (struct type *type, const char *suffix)
7944 {
7945 char *name;
7946 const char *type_name = ada_type_name (type);
7947 int len;
7948
7949 if (type_name == NULL)
7950 return NULL;
7951
7952 len = strlen (type_name);
7953
7954 name = (char *) alloca (len + strlen (suffix) + 1);
7955
7956 strcpy (name, type_name);
7957 strcpy (name + len, suffix);
7958
7959 return ada_find_parallel_type_with_name (type, name);
7960 }
7961
7962 /* If TYPE is a variable-size record type, return the corresponding template
7963 type describing its fields. Otherwise, return NULL. */
7964
7965 static struct type *
7966 dynamic_template_type (struct type *type)
7967 {
7968 type = ada_check_typedef (type);
7969
7970 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7971 || ada_type_name (type) == NULL)
7972 return NULL;
7973 else
7974 {
7975 int len = strlen (ada_type_name (type));
7976
7977 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7978 return type;
7979 else
7980 return ada_find_parallel_type (type, "___XVE");
7981 }
7982 }
7983
7984 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7985 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7986
7987 static int
7988 is_dynamic_field (struct type *templ_type, int field_num)
7989 {
7990 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7991
7992 return name != NULL
7993 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
7994 && strstr (name, "___XVL") != NULL;
7995 }
7996
7997 /* The index of the variant field of TYPE, or -1 if TYPE does not
7998 represent a variant record type. */
7999
8000 static int
8001 variant_field_index (struct type *type)
8002 {
8003 int f;
8004
8005 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
8006 return -1;
8007
8008 for (f = 0; f < type->num_fields (); f += 1)
8009 {
8010 if (ada_is_variant_part (type, f))
8011 return f;
8012 }
8013 return -1;
8014 }
8015
8016 /* A record type with no fields. */
8017
8018 static struct type *
8019 empty_record (struct type *templ)
8020 {
8021 struct type *type = alloc_type_copy (templ);
8022
8023 type->set_code (TYPE_CODE_STRUCT);
8024 INIT_NONE_SPECIFIC (type);
8025 type->set_name ("<empty>");
8026 TYPE_LENGTH (type) = 0;
8027 return type;
8028 }
8029
8030 /* An ordinary record type (with fixed-length fields) that describes
8031 the value of type TYPE at VALADDR or ADDRESS (see comments at
8032 the beginning of this section) VAL according to GNAT conventions.
8033 DVAL0 should describe the (portion of a) record that contains any
8034 necessary discriminants. It should be NULL if value_type (VAL) is
8035 an outer-level type (i.e., as opposed to a branch of a variant.) A
8036 variant field (unless unchecked) is replaced by a particular branch
8037 of the variant.
8038
8039 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8040 length are not statically known are discarded. As a consequence,
8041 VALADDR, ADDRESS and DVAL0 are ignored.
8042
8043 NOTE: Limitations: For now, we assume that dynamic fields and
8044 variants occupy whole numbers of bytes. However, they need not be
8045 byte-aligned. */
8046
8047 struct type *
8048 ada_template_to_fixed_record_type_1 (struct type *type,
8049 const gdb_byte *valaddr,
8050 CORE_ADDR address, struct value *dval0,
8051 int keep_dynamic_fields)
8052 {
8053 struct value *mark = value_mark ();
8054 struct value *dval;
8055 struct type *rtype;
8056 int nfields, bit_len;
8057 int variant_field;
8058 long off;
8059 int fld_bit_len;
8060 int f;
8061
8062 /* Compute the number of fields in this record type that are going
8063 to be processed: unless keep_dynamic_fields, this includes only
8064 fields whose position and length are static will be processed. */
8065 if (keep_dynamic_fields)
8066 nfields = type->num_fields ();
8067 else
8068 {
8069 nfields = 0;
8070 while (nfields < type->num_fields ()
8071 && !ada_is_variant_part (type, nfields)
8072 && !is_dynamic_field (type, nfields))
8073 nfields++;
8074 }
8075
8076 rtype = alloc_type_copy (type);
8077 rtype->set_code (TYPE_CODE_STRUCT);
8078 INIT_NONE_SPECIFIC (rtype);
8079 rtype->set_num_fields (nfields);
8080 rtype->set_fields
8081 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
8082 rtype->set_name (ada_type_name (type));
8083 TYPE_FIXED_INSTANCE (rtype) = 1;
8084
8085 off = 0;
8086 bit_len = 0;
8087 variant_field = -1;
8088
8089 for (f = 0; f < nfields; f += 1)
8090 {
8091 off = align_up (off, field_alignment (type, f))
8092 + TYPE_FIELD_BITPOS (type, f);
8093 SET_FIELD_BITPOS (rtype->field (f), off);
8094 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8095
8096 if (ada_is_variant_part (type, f))
8097 {
8098 variant_field = f;
8099 fld_bit_len = 0;
8100 }
8101 else if (is_dynamic_field (type, f))
8102 {
8103 const gdb_byte *field_valaddr = valaddr;
8104 CORE_ADDR field_address = address;
8105 struct type *field_type =
8106 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8107
8108 if (dval0 == NULL)
8109 {
8110 /* rtype's length is computed based on the run-time
8111 value of discriminants. If the discriminants are not
8112 initialized, the type size may be completely bogus and
8113 GDB may fail to allocate a value for it. So check the
8114 size first before creating the value. */
8115 ada_ensure_varsize_limit (rtype);
8116 /* Using plain value_from_contents_and_address here
8117 causes problems because we will end up trying to
8118 resolve a type that is currently being
8119 constructed. */
8120 dval = value_from_contents_and_address_unresolved (rtype,
8121 valaddr,
8122 address);
8123 rtype = value_type (dval);
8124 }
8125 else
8126 dval = dval0;
8127
8128 /* If the type referenced by this field is an aligner type, we need
8129 to unwrap that aligner type, because its size might not be set.
8130 Keeping the aligner type would cause us to compute the wrong
8131 size for this field, impacting the offset of the all the fields
8132 that follow this one. */
8133 if (ada_is_aligner_type (field_type))
8134 {
8135 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8136
8137 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8138 field_address = cond_offset_target (field_address, field_offset);
8139 field_type = ada_aligned_type (field_type);
8140 }
8141
8142 field_valaddr = cond_offset_host (field_valaddr,
8143 off / TARGET_CHAR_BIT);
8144 field_address = cond_offset_target (field_address,
8145 off / TARGET_CHAR_BIT);
8146
8147 /* Get the fixed type of the field. Note that, in this case,
8148 we do not want to get the real type out of the tag: if
8149 the current field is the parent part of a tagged record,
8150 we will get the tag of the object. Clearly wrong: the real
8151 type of the parent is not the real type of the child. We
8152 would end up in an infinite loop. */
8153 field_type = ada_get_base_type (field_type);
8154 field_type = ada_to_fixed_type (field_type, field_valaddr,
8155 field_address, dval, 0);
8156 /* If the field size is already larger than the maximum
8157 object size, then the record itself will necessarily
8158 be larger than the maximum object size. We need to make
8159 this check now, because the size might be so ridiculously
8160 large (due to an uninitialized variable in the inferior)
8161 that it would cause an overflow when adding it to the
8162 record size. */
8163 ada_ensure_varsize_limit (field_type);
8164
8165 TYPE_FIELD_TYPE (rtype, f) = field_type;
8166 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8167 /* The multiplication can potentially overflow. But because
8168 the field length has been size-checked just above, and
8169 assuming that the maximum size is a reasonable value,
8170 an overflow should not happen in practice. So rather than
8171 adding overflow recovery code to this already complex code,
8172 we just assume that it's not going to happen. */
8173 fld_bit_len =
8174 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8175 }
8176 else
8177 {
8178 /* Note: If this field's type is a typedef, it is important
8179 to preserve the typedef layer.
8180
8181 Otherwise, we might be transforming a typedef to a fat
8182 pointer (encoding a pointer to an unconstrained array),
8183 into a basic fat pointer (encoding an unconstrained
8184 array). As both types are implemented using the same
8185 structure, the typedef is the only clue which allows us
8186 to distinguish between the two options. Stripping it
8187 would prevent us from printing this field appropriately. */
8188 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8189 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8190 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8191 fld_bit_len =
8192 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8193 else
8194 {
8195 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8196
8197 /* We need to be careful of typedefs when computing
8198 the length of our field. If this is a typedef,
8199 get the length of the target type, not the length
8200 of the typedef. */
8201 if (field_type->code () == TYPE_CODE_TYPEDEF)
8202 field_type = ada_typedef_target_type (field_type);
8203
8204 fld_bit_len =
8205 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8206 }
8207 }
8208 if (off + fld_bit_len > bit_len)
8209 bit_len = off + fld_bit_len;
8210 off += fld_bit_len;
8211 TYPE_LENGTH (rtype) =
8212 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8213 }
8214
8215 /* We handle the variant part, if any, at the end because of certain
8216 odd cases in which it is re-ordered so as NOT to be the last field of
8217 the record. This can happen in the presence of representation
8218 clauses. */
8219 if (variant_field >= 0)
8220 {
8221 struct type *branch_type;
8222
8223 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8224
8225 if (dval0 == NULL)
8226 {
8227 /* Using plain value_from_contents_and_address here causes
8228 problems because we will end up trying to resolve a type
8229 that is currently being constructed. */
8230 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8231 address);
8232 rtype = value_type (dval);
8233 }
8234 else
8235 dval = dval0;
8236
8237 branch_type =
8238 to_fixed_variant_branch_type
8239 (TYPE_FIELD_TYPE (type, variant_field),
8240 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8241 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8242 if (branch_type == NULL)
8243 {
8244 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8245 rtype->field (f - 1) = rtype->field (f);
8246 rtype->set_num_fields (rtype->num_fields () - 1);
8247 }
8248 else
8249 {
8250 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8251 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8252 fld_bit_len =
8253 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8254 TARGET_CHAR_BIT;
8255 if (off + fld_bit_len > bit_len)
8256 bit_len = off + fld_bit_len;
8257 TYPE_LENGTH (rtype) =
8258 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8259 }
8260 }
8261
8262 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8263 should contain the alignment of that record, which should be a strictly
8264 positive value. If null or negative, then something is wrong, most
8265 probably in the debug info. In that case, we don't round up the size
8266 of the resulting type. If this record is not part of another structure,
8267 the current RTYPE length might be good enough for our purposes. */
8268 if (TYPE_LENGTH (type) <= 0)
8269 {
8270 if (rtype->name ())
8271 warning (_("Invalid type size for `%s' detected: %s."),
8272 rtype->name (), pulongest (TYPE_LENGTH (type)));
8273 else
8274 warning (_("Invalid type size for <unnamed> detected: %s."),
8275 pulongest (TYPE_LENGTH (type)));
8276 }
8277 else
8278 {
8279 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8280 TYPE_LENGTH (type));
8281 }
8282
8283 value_free_to_mark (mark);
8284 if (TYPE_LENGTH (rtype) > varsize_limit)
8285 error (_("record type with dynamic size is larger than varsize-limit"));
8286 return rtype;
8287 }
8288
8289 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8290 of 1. */
8291
8292 static struct type *
8293 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8294 CORE_ADDR address, struct value *dval0)
8295 {
8296 return ada_template_to_fixed_record_type_1 (type, valaddr,
8297 address, dval0, 1);
8298 }
8299
8300 /* An ordinary record type in which ___XVL-convention fields and
8301 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8302 static approximations, containing all possible fields. Uses
8303 no runtime values. Useless for use in values, but that's OK,
8304 since the results are used only for type determinations. Works on both
8305 structs and unions. Representation note: to save space, we memorize
8306 the result of this function in the TYPE_TARGET_TYPE of the
8307 template type. */
8308
8309 static struct type *
8310 template_to_static_fixed_type (struct type *type0)
8311 {
8312 struct type *type;
8313 int nfields;
8314 int f;
8315
8316 /* No need no do anything if the input type is already fixed. */
8317 if (TYPE_FIXED_INSTANCE (type0))
8318 return type0;
8319
8320 /* Likewise if we already have computed the static approximation. */
8321 if (TYPE_TARGET_TYPE (type0) != NULL)
8322 return TYPE_TARGET_TYPE (type0);
8323
8324 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8325 type = type0;
8326 nfields = type0->num_fields ();
8327
8328 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8329 recompute all over next time. */
8330 TYPE_TARGET_TYPE (type0) = type;
8331
8332 for (f = 0; f < nfields; f += 1)
8333 {
8334 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8335 struct type *new_type;
8336
8337 if (is_dynamic_field (type0, f))
8338 {
8339 field_type = ada_check_typedef (field_type);
8340 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8341 }
8342 else
8343 new_type = static_unwrap_type (field_type);
8344
8345 if (new_type != field_type)
8346 {
8347 /* Clone TYPE0 only the first time we get a new field type. */
8348 if (type == type0)
8349 {
8350 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8351 type->set_code (type0->code ());
8352 INIT_NONE_SPECIFIC (type);
8353 type->set_num_fields (nfields);
8354
8355 field *fields =
8356 ((struct field *)
8357 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8358 memcpy (fields, type0->fields (),
8359 sizeof (struct field) * nfields);
8360 type->set_fields (fields);
8361
8362 type->set_name (ada_type_name (type0));
8363 TYPE_FIXED_INSTANCE (type) = 1;
8364 TYPE_LENGTH (type) = 0;
8365 }
8366 TYPE_FIELD_TYPE (type, f) = new_type;
8367 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8368 }
8369 }
8370
8371 return type;
8372 }
8373
8374 /* Given an object of type TYPE whose contents are at VALADDR and
8375 whose address in memory is ADDRESS, returns a revision of TYPE,
8376 which should be a non-dynamic-sized record, in which the variant
8377 part, if any, is replaced with the appropriate branch. Looks
8378 for discriminant values in DVAL0, which can be NULL if the record
8379 contains the necessary discriminant values. */
8380
8381 static struct type *
8382 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8383 CORE_ADDR address, struct value *dval0)
8384 {
8385 struct value *mark = value_mark ();
8386 struct value *dval;
8387 struct type *rtype;
8388 struct type *branch_type;
8389 int nfields = type->num_fields ();
8390 int variant_field = variant_field_index (type);
8391
8392 if (variant_field == -1)
8393 return type;
8394
8395 if (dval0 == NULL)
8396 {
8397 dval = value_from_contents_and_address (type, valaddr, address);
8398 type = value_type (dval);
8399 }
8400 else
8401 dval = dval0;
8402
8403 rtype = alloc_type_copy (type);
8404 rtype->set_code (TYPE_CODE_STRUCT);
8405 INIT_NONE_SPECIFIC (rtype);
8406 rtype->set_num_fields (nfields);
8407
8408 field *fields =
8409 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8410 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8411 rtype->set_fields (fields);
8412
8413 rtype->set_name (ada_type_name (type));
8414 TYPE_FIXED_INSTANCE (rtype) = 1;
8415 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8416
8417 branch_type = to_fixed_variant_branch_type
8418 (TYPE_FIELD_TYPE (type, variant_field),
8419 cond_offset_host (valaddr,
8420 TYPE_FIELD_BITPOS (type, variant_field)
8421 / TARGET_CHAR_BIT),
8422 cond_offset_target (address,
8423 TYPE_FIELD_BITPOS (type, variant_field)
8424 / TARGET_CHAR_BIT), dval);
8425 if (branch_type == NULL)
8426 {
8427 int f;
8428
8429 for (f = variant_field + 1; f < nfields; f += 1)
8430 rtype->field (f - 1) = rtype->field (f);
8431 rtype->set_num_fields (rtype->num_fields () - 1);
8432 }
8433 else
8434 {
8435 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8436 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8437 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8438 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8439 }
8440 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8441
8442 value_free_to_mark (mark);
8443 return rtype;
8444 }
8445
8446 /* An ordinary record type (with fixed-length fields) that describes
8447 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8448 beginning of this section]. Any necessary discriminants' values
8449 should be in DVAL, a record value; it may be NULL if the object
8450 at ADDR itself contains any necessary discriminant values.
8451 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8452 values from the record are needed. Except in the case that DVAL,
8453 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8454 unchecked) is replaced by a particular branch of the variant.
8455
8456 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8457 is questionable and may be removed. It can arise during the
8458 processing of an unconstrained-array-of-record type where all the
8459 variant branches have exactly the same size. This is because in
8460 such cases, the compiler does not bother to use the XVS convention
8461 when encoding the record. I am currently dubious of this
8462 shortcut and suspect the compiler should be altered. FIXME. */
8463
8464 static struct type *
8465 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8466 CORE_ADDR address, struct value *dval)
8467 {
8468 struct type *templ_type;
8469
8470 if (TYPE_FIXED_INSTANCE (type0))
8471 return type0;
8472
8473 templ_type = dynamic_template_type (type0);
8474
8475 if (templ_type != NULL)
8476 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8477 else if (variant_field_index (type0) >= 0)
8478 {
8479 if (dval == NULL && valaddr == NULL && address == 0)
8480 return type0;
8481 return to_record_with_fixed_variant_part (type0, valaddr, address,
8482 dval);
8483 }
8484 else
8485 {
8486 TYPE_FIXED_INSTANCE (type0) = 1;
8487 return type0;
8488 }
8489
8490 }
8491
8492 /* An ordinary record type (with fixed-length fields) that describes
8493 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8494 union type. Any necessary discriminants' values should be in DVAL,
8495 a record value. That is, this routine selects the appropriate
8496 branch of the union at ADDR according to the discriminant value
8497 indicated in the union's type name. Returns VAR_TYPE0 itself if
8498 it represents a variant subject to a pragma Unchecked_Union. */
8499
8500 static struct type *
8501 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8502 CORE_ADDR address, struct value *dval)
8503 {
8504 int which;
8505 struct type *templ_type;
8506 struct type *var_type;
8507
8508 if (var_type0->code () == TYPE_CODE_PTR)
8509 var_type = TYPE_TARGET_TYPE (var_type0);
8510 else
8511 var_type = var_type0;
8512
8513 templ_type = ada_find_parallel_type (var_type, "___XVU");
8514
8515 if (templ_type != NULL)
8516 var_type = templ_type;
8517
8518 if (is_unchecked_variant (var_type, value_type (dval)))
8519 return var_type0;
8520 which = ada_which_variant_applies (var_type, dval);
8521
8522 if (which < 0)
8523 return empty_record (var_type);
8524 else if (is_dynamic_field (var_type, which))
8525 return to_fixed_record_type
8526 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8527 valaddr, address, dval);
8528 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8529 return
8530 to_fixed_record_type
8531 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8532 else
8533 return TYPE_FIELD_TYPE (var_type, which);
8534 }
8535
8536 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8537 ENCODING_TYPE, a type following the GNAT conventions for discrete
8538 type encodings, only carries redundant information. */
8539
8540 static int
8541 ada_is_redundant_range_encoding (struct type *range_type,
8542 struct type *encoding_type)
8543 {
8544 const char *bounds_str;
8545 int n;
8546 LONGEST lo, hi;
8547
8548 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8549
8550 if (get_base_type (range_type)->code ()
8551 != get_base_type (encoding_type)->code ())
8552 {
8553 /* The compiler probably used a simple base type to describe
8554 the range type instead of the range's actual base type,
8555 expecting us to get the real base type from the encoding
8556 anyway. In this situation, the encoding cannot be ignored
8557 as redundant. */
8558 return 0;
8559 }
8560
8561 if (is_dynamic_type (range_type))
8562 return 0;
8563
8564 if (encoding_type->name () == NULL)
8565 return 0;
8566
8567 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8568 if (bounds_str == NULL)
8569 return 0;
8570
8571 n = 8; /* Skip "___XDLU_". */
8572 if (!ada_scan_number (bounds_str, n, &lo, &n))
8573 return 0;
8574 if (TYPE_LOW_BOUND (range_type) != lo)
8575 return 0;
8576
8577 n += 2; /* Skip the "__" separator between the two bounds. */
8578 if (!ada_scan_number (bounds_str, n, &hi, &n))
8579 return 0;
8580 if (TYPE_HIGH_BOUND (range_type) != hi)
8581 return 0;
8582
8583 return 1;
8584 }
8585
8586 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8587 a type following the GNAT encoding for describing array type
8588 indices, only carries redundant information. */
8589
8590 static int
8591 ada_is_redundant_index_type_desc (struct type *array_type,
8592 struct type *desc_type)
8593 {
8594 struct type *this_layer = check_typedef (array_type);
8595 int i;
8596
8597 for (i = 0; i < desc_type->num_fields (); i++)
8598 {
8599 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8600 TYPE_FIELD_TYPE (desc_type, i)))
8601 return 0;
8602 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8603 }
8604
8605 return 1;
8606 }
8607
8608 /* Assuming that TYPE0 is an array type describing the type of a value
8609 at ADDR, and that DVAL describes a record containing any
8610 discriminants used in TYPE0, returns a type for the value that
8611 contains no dynamic components (that is, no components whose sizes
8612 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8613 true, gives an error message if the resulting type's size is over
8614 varsize_limit. */
8615
8616 static struct type *
8617 to_fixed_array_type (struct type *type0, struct value *dval,
8618 int ignore_too_big)
8619 {
8620 struct type *index_type_desc;
8621 struct type *result;
8622 int constrained_packed_array_p;
8623 static const char *xa_suffix = "___XA";
8624
8625 type0 = ada_check_typedef (type0);
8626 if (TYPE_FIXED_INSTANCE (type0))
8627 return type0;
8628
8629 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8630 if (constrained_packed_array_p)
8631 type0 = decode_constrained_packed_array_type (type0);
8632
8633 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8634
8635 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8636 encoding suffixed with 'P' may still be generated. If so,
8637 it should be used to find the XA type. */
8638
8639 if (index_type_desc == NULL)
8640 {
8641 const char *type_name = ada_type_name (type0);
8642
8643 if (type_name != NULL)
8644 {
8645 const int len = strlen (type_name);
8646 char *name = (char *) alloca (len + strlen (xa_suffix));
8647
8648 if (type_name[len - 1] == 'P')
8649 {
8650 strcpy (name, type_name);
8651 strcpy (name + len - 1, xa_suffix);
8652 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8653 }
8654 }
8655 }
8656
8657 ada_fixup_array_indexes_type (index_type_desc);
8658 if (index_type_desc != NULL
8659 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8660 {
8661 /* Ignore this ___XA parallel type, as it does not bring any
8662 useful information. This allows us to avoid creating fixed
8663 versions of the array's index types, which would be identical
8664 to the original ones. This, in turn, can also help avoid
8665 the creation of fixed versions of the array itself. */
8666 index_type_desc = NULL;
8667 }
8668
8669 if (index_type_desc == NULL)
8670 {
8671 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8672
8673 /* NOTE: elt_type---the fixed version of elt_type0---should never
8674 depend on the contents of the array in properly constructed
8675 debugging data. */
8676 /* Create a fixed version of the array element type.
8677 We're not providing the address of an element here,
8678 and thus the actual object value cannot be inspected to do
8679 the conversion. This should not be a problem, since arrays of
8680 unconstrained objects are not allowed. In particular, all
8681 the elements of an array of a tagged type should all be of
8682 the same type specified in the debugging info. No need to
8683 consult the object tag. */
8684 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8685
8686 /* Make sure we always create a new array type when dealing with
8687 packed array types, since we're going to fix-up the array
8688 type length and element bitsize a little further down. */
8689 if (elt_type0 == elt_type && !constrained_packed_array_p)
8690 result = type0;
8691 else
8692 result = create_array_type (alloc_type_copy (type0),
8693 elt_type, TYPE_INDEX_TYPE (type0));
8694 }
8695 else
8696 {
8697 int i;
8698 struct type *elt_type0;
8699
8700 elt_type0 = type0;
8701 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8702 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8703
8704 /* NOTE: result---the fixed version of elt_type0---should never
8705 depend on the contents of the array in properly constructed
8706 debugging data. */
8707 /* Create a fixed version of the array element type.
8708 We're not providing the address of an element here,
8709 and thus the actual object value cannot be inspected to do
8710 the conversion. This should not be a problem, since arrays of
8711 unconstrained objects are not allowed. In particular, all
8712 the elements of an array of a tagged type should all be of
8713 the same type specified in the debugging info. No need to
8714 consult the object tag. */
8715 result =
8716 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8717
8718 elt_type0 = type0;
8719 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8720 {
8721 struct type *range_type =
8722 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8723
8724 result = create_array_type (alloc_type_copy (elt_type0),
8725 result, range_type);
8726 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8727 }
8728 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8729 error (_("array type with dynamic size is larger than varsize-limit"));
8730 }
8731
8732 /* We want to preserve the type name. This can be useful when
8733 trying to get the type name of a value that has already been
8734 printed (for instance, if the user did "print VAR; whatis $". */
8735 result->set_name (type0->name ());
8736
8737 if (constrained_packed_array_p)
8738 {
8739 /* So far, the resulting type has been created as if the original
8740 type was a regular (non-packed) array type. As a result, the
8741 bitsize of the array elements needs to be set again, and the array
8742 length needs to be recomputed based on that bitsize. */
8743 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8744 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8745
8746 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8747 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8748 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8749 TYPE_LENGTH (result)++;
8750 }
8751
8752 TYPE_FIXED_INSTANCE (result) = 1;
8753 return result;
8754 }
8755
8756
8757 /* A standard type (containing no dynamically sized components)
8758 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8759 DVAL describes a record containing any discriminants used in TYPE0,
8760 and may be NULL if there are none, or if the object of type TYPE at
8761 ADDRESS or in VALADDR contains these discriminants.
8762
8763 If CHECK_TAG is not null, in the case of tagged types, this function
8764 attempts to locate the object's tag and use it to compute the actual
8765 type. However, when ADDRESS is null, we cannot use it to determine the
8766 location of the tag, and therefore compute the tagged type's actual type.
8767 So we return the tagged type without consulting the tag. */
8768
8769 static struct type *
8770 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8771 CORE_ADDR address, struct value *dval, int check_tag)
8772 {
8773 type = ada_check_typedef (type);
8774
8775 /* Only un-fixed types need to be handled here. */
8776 if (!HAVE_GNAT_AUX_INFO (type))
8777 return type;
8778
8779 switch (type->code ())
8780 {
8781 default:
8782 return type;
8783 case TYPE_CODE_STRUCT:
8784 {
8785 struct type *static_type = to_static_fixed_type (type);
8786 struct type *fixed_record_type =
8787 to_fixed_record_type (type, valaddr, address, NULL);
8788
8789 /* If STATIC_TYPE is a tagged type and we know the object's address,
8790 then we can determine its tag, and compute the object's actual
8791 type from there. Note that we have to use the fixed record
8792 type (the parent part of the record may have dynamic fields
8793 and the way the location of _tag is expressed may depend on
8794 them). */
8795
8796 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8797 {
8798 struct value *tag =
8799 value_tag_from_contents_and_address
8800 (fixed_record_type,
8801 valaddr,
8802 address);
8803 struct type *real_type = type_from_tag (tag);
8804 struct value *obj =
8805 value_from_contents_and_address (fixed_record_type,
8806 valaddr,
8807 address);
8808 fixed_record_type = value_type (obj);
8809 if (real_type != NULL)
8810 return to_fixed_record_type
8811 (real_type, NULL,
8812 value_address (ada_tag_value_at_base_address (obj)), NULL);
8813 }
8814
8815 /* Check to see if there is a parallel ___XVZ variable.
8816 If there is, then it provides the actual size of our type. */
8817 else if (ada_type_name (fixed_record_type) != NULL)
8818 {
8819 const char *name = ada_type_name (fixed_record_type);
8820 char *xvz_name
8821 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8822 bool xvz_found = false;
8823 LONGEST size;
8824
8825 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8826 try
8827 {
8828 xvz_found = get_int_var_value (xvz_name, size);
8829 }
8830 catch (const gdb_exception_error &except)
8831 {
8832 /* We found the variable, but somehow failed to read
8833 its value. Rethrow the same error, but with a little
8834 bit more information, to help the user understand
8835 what went wrong (Eg: the variable might have been
8836 optimized out). */
8837 throw_error (except.error,
8838 _("unable to read value of %s (%s)"),
8839 xvz_name, except.what ());
8840 }
8841
8842 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8843 {
8844 fixed_record_type = copy_type (fixed_record_type);
8845 TYPE_LENGTH (fixed_record_type) = size;
8846
8847 /* The FIXED_RECORD_TYPE may have be a stub. We have
8848 observed this when the debugging info is STABS, and
8849 apparently it is something that is hard to fix.
8850
8851 In practice, we don't need the actual type definition
8852 at all, because the presence of the XVZ variable allows us
8853 to assume that there must be a XVS type as well, which we
8854 should be able to use later, when we need the actual type
8855 definition.
8856
8857 In the meantime, pretend that the "fixed" type we are
8858 returning is NOT a stub, because this can cause trouble
8859 when using this type to create new types targeting it.
8860 Indeed, the associated creation routines often check
8861 whether the target type is a stub and will try to replace
8862 it, thus using a type with the wrong size. This, in turn,
8863 might cause the new type to have the wrong size too.
8864 Consider the case of an array, for instance, where the size
8865 of the array is computed from the number of elements in
8866 our array multiplied by the size of its element. */
8867 TYPE_STUB (fixed_record_type) = 0;
8868 }
8869 }
8870 return fixed_record_type;
8871 }
8872 case TYPE_CODE_ARRAY:
8873 return to_fixed_array_type (type, dval, 1);
8874 case TYPE_CODE_UNION:
8875 if (dval == NULL)
8876 return type;
8877 else
8878 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8879 }
8880 }
8881
8882 /* The same as ada_to_fixed_type_1, except that it preserves the type
8883 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8884
8885 The typedef layer needs be preserved in order to differentiate between
8886 arrays and array pointers when both types are implemented using the same
8887 fat pointer. In the array pointer case, the pointer is encoded as
8888 a typedef of the pointer type. For instance, considering:
8889
8890 type String_Access is access String;
8891 S1 : String_Access := null;
8892
8893 To the debugger, S1 is defined as a typedef of type String. But
8894 to the user, it is a pointer. So if the user tries to print S1,
8895 we should not dereference the array, but print the array address
8896 instead.
8897
8898 If we didn't preserve the typedef layer, we would lose the fact that
8899 the type is to be presented as a pointer (needs de-reference before
8900 being printed). And we would also use the source-level type name. */
8901
8902 struct type *
8903 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8904 CORE_ADDR address, struct value *dval, int check_tag)
8905
8906 {
8907 struct type *fixed_type =
8908 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8909
8910 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8911 then preserve the typedef layer.
8912
8913 Implementation note: We can only check the main-type portion of
8914 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8915 from TYPE now returns a type that has the same instance flags
8916 as TYPE. For instance, if TYPE is a "typedef const", and its
8917 target type is a "struct", then the typedef elimination will return
8918 a "const" version of the target type. See check_typedef for more
8919 details about how the typedef layer elimination is done.
8920
8921 brobecker/2010-11-19: It seems to me that the only case where it is
8922 useful to preserve the typedef layer is when dealing with fat pointers.
8923 Perhaps, we could add a check for that and preserve the typedef layer
8924 only in that situation. But this seems unnecessary so far, probably
8925 because we call check_typedef/ada_check_typedef pretty much everywhere.
8926 */
8927 if (type->code () == TYPE_CODE_TYPEDEF
8928 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8929 == TYPE_MAIN_TYPE (fixed_type)))
8930 return type;
8931
8932 return fixed_type;
8933 }
8934
8935 /* A standard (static-sized) type corresponding as well as possible to
8936 TYPE0, but based on no runtime data. */
8937
8938 static struct type *
8939 to_static_fixed_type (struct type *type0)
8940 {
8941 struct type *type;
8942
8943 if (type0 == NULL)
8944 return NULL;
8945
8946 if (TYPE_FIXED_INSTANCE (type0))
8947 return type0;
8948
8949 type0 = ada_check_typedef (type0);
8950
8951 switch (type0->code ())
8952 {
8953 default:
8954 return type0;
8955 case TYPE_CODE_STRUCT:
8956 type = dynamic_template_type (type0);
8957 if (type != NULL)
8958 return template_to_static_fixed_type (type);
8959 else
8960 return template_to_static_fixed_type (type0);
8961 case TYPE_CODE_UNION:
8962 type = ada_find_parallel_type (type0, "___XVU");
8963 if (type != NULL)
8964 return template_to_static_fixed_type (type);
8965 else
8966 return template_to_static_fixed_type (type0);
8967 }
8968 }
8969
8970 /* A static approximation of TYPE with all type wrappers removed. */
8971
8972 static struct type *
8973 static_unwrap_type (struct type *type)
8974 {
8975 if (ada_is_aligner_type (type))
8976 {
8977 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8978 if (ada_type_name (type1) == NULL)
8979 type1->set_name (ada_type_name (type));
8980
8981 return static_unwrap_type (type1);
8982 }
8983 else
8984 {
8985 struct type *raw_real_type = ada_get_base_type (type);
8986
8987 if (raw_real_type == type)
8988 return type;
8989 else
8990 return to_static_fixed_type (raw_real_type);
8991 }
8992 }
8993
8994 /* In some cases, incomplete and private types require
8995 cross-references that are not resolved as records (for example,
8996 type Foo;
8997 type FooP is access Foo;
8998 V: FooP;
8999 type Foo is array ...;
9000 ). In these cases, since there is no mechanism for producing
9001 cross-references to such types, we instead substitute for FooP a
9002 stub enumeration type that is nowhere resolved, and whose tag is
9003 the name of the actual type. Call these types "non-record stubs". */
9004
9005 /* A type equivalent to TYPE that is not a non-record stub, if one
9006 exists, otherwise TYPE. */
9007
9008 struct type *
9009 ada_check_typedef (struct type *type)
9010 {
9011 if (type == NULL)
9012 return NULL;
9013
9014 /* If our type is an access to an unconstrained array, which is encoded
9015 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9016 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9017 what allows us to distinguish between fat pointers that represent
9018 array types, and fat pointers that represent array access types
9019 (in both cases, the compiler implements them as fat pointers). */
9020 if (ada_is_access_to_unconstrained_array (type))
9021 return type;
9022
9023 type = check_typedef (type);
9024 if (type == NULL || type->code () != TYPE_CODE_ENUM
9025 || !TYPE_STUB (type)
9026 || type->name () == NULL)
9027 return type;
9028 else
9029 {
9030 const char *name = type->name ();
9031 struct type *type1 = ada_find_any_type (name);
9032
9033 if (type1 == NULL)
9034 return type;
9035
9036 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9037 stubs pointing to arrays, as we don't create symbols for array
9038 types, only for the typedef-to-array types). If that's the case,
9039 strip the typedef layer. */
9040 if (type1->code () == TYPE_CODE_TYPEDEF)
9041 type1 = ada_check_typedef (type1);
9042
9043 return type1;
9044 }
9045 }
9046
9047 /* A value representing the data at VALADDR/ADDRESS as described by
9048 type TYPE0, but with a standard (static-sized) type that correctly
9049 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9050 type, then return VAL0 [this feature is simply to avoid redundant
9051 creation of struct values]. */
9052
9053 static struct value *
9054 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9055 struct value *val0)
9056 {
9057 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9058
9059 if (type == type0 && val0 != NULL)
9060 return val0;
9061
9062 if (VALUE_LVAL (val0) != lval_memory)
9063 {
9064 /* Our value does not live in memory; it could be a convenience
9065 variable, for instance. Create a not_lval value using val0's
9066 contents. */
9067 return value_from_contents (type, value_contents (val0));
9068 }
9069
9070 return value_from_contents_and_address (type, 0, address);
9071 }
9072
9073 /* A value representing VAL, but with a standard (static-sized) type
9074 that correctly describes it. Does not necessarily create a new
9075 value. */
9076
9077 struct value *
9078 ada_to_fixed_value (struct value *val)
9079 {
9080 val = unwrap_value (val);
9081 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9082 return val;
9083 }
9084 \f
9085
9086 /* Attributes */
9087
9088 /* Table mapping attribute numbers to names.
9089 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9090
9091 static const char *attribute_names[] = {
9092 "<?>",
9093
9094 "first",
9095 "last",
9096 "length",
9097 "image",
9098 "max",
9099 "min",
9100 "modulus",
9101 "pos",
9102 "size",
9103 "tag",
9104 "val",
9105 0
9106 };
9107
9108 static const char *
9109 ada_attribute_name (enum exp_opcode n)
9110 {
9111 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9112 return attribute_names[n - OP_ATR_FIRST + 1];
9113 else
9114 return attribute_names[0];
9115 }
9116
9117 /* Evaluate the 'POS attribute applied to ARG. */
9118
9119 static LONGEST
9120 pos_atr (struct value *arg)
9121 {
9122 struct value *val = coerce_ref (arg);
9123 struct type *type = value_type (val);
9124 LONGEST result;
9125
9126 if (!discrete_type_p (type))
9127 error (_("'POS only defined on discrete types"));
9128
9129 if (!discrete_position (type, value_as_long (val), &result))
9130 error (_("enumeration value is invalid: can't find 'POS"));
9131
9132 return result;
9133 }
9134
9135 static struct value *
9136 value_pos_atr (struct type *type, struct value *arg)
9137 {
9138 return value_from_longest (type, pos_atr (arg));
9139 }
9140
9141 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9142
9143 static struct value *
9144 value_val_atr (struct type *type, struct value *arg)
9145 {
9146 if (!discrete_type_p (type))
9147 error (_("'VAL only defined on discrete types"));
9148 if (!integer_type_p (value_type (arg)))
9149 error (_("'VAL requires integral argument"));
9150
9151 if (type->code () == TYPE_CODE_RANGE)
9152 type = TYPE_TARGET_TYPE (type);
9153
9154 if (type->code () == TYPE_CODE_ENUM)
9155 {
9156 long pos = value_as_long (arg);
9157
9158 if (pos < 0 || pos >= type->num_fields ())
9159 error (_("argument to 'VAL out of range"));
9160 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9161 }
9162 else
9163 return value_from_longest (type, value_as_long (arg));
9164 }
9165 \f
9166
9167 /* Evaluation */
9168
9169 /* True if TYPE appears to be an Ada character type.
9170 [At the moment, this is true only for Character and Wide_Character;
9171 It is a heuristic test that could stand improvement]. */
9172
9173 bool
9174 ada_is_character_type (struct type *type)
9175 {
9176 const char *name;
9177
9178 /* If the type code says it's a character, then assume it really is,
9179 and don't check any further. */
9180 if (type->code () == TYPE_CODE_CHAR)
9181 return true;
9182
9183 /* Otherwise, assume it's a character type iff it is a discrete type
9184 with a known character type name. */
9185 name = ada_type_name (type);
9186 return (name != NULL
9187 && (type->code () == TYPE_CODE_INT
9188 || type->code () == TYPE_CODE_RANGE)
9189 && (strcmp (name, "character") == 0
9190 || strcmp (name, "wide_character") == 0
9191 || strcmp (name, "wide_wide_character") == 0
9192 || strcmp (name, "unsigned char") == 0));
9193 }
9194
9195 /* True if TYPE appears to be an Ada string type. */
9196
9197 bool
9198 ada_is_string_type (struct type *type)
9199 {
9200 type = ada_check_typedef (type);
9201 if (type != NULL
9202 && type->code () != TYPE_CODE_PTR
9203 && (ada_is_simple_array_type (type)
9204 || ada_is_array_descriptor_type (type))
9205 && ada_array_arity (type) == 1)
9206 {
9207 struct type *elttype = ada_array_element_type (type, 1);
9208
9209 return ada_is_character_type (elttype);
9210 }
9211 else
9212 return false;
9213 }
9214
9215 /* The compiler sometimes provides a parallel XVS type for a given
9216 PAD type. Normally, it is safe to follow the PAD type directly,
9217 but older versions of the compiler have a bug that causes the offset
9218 of its "F" field to be wrong. Following that field in that case
9219 would lead to incorrect results, but this can be worked around
9220 by ignoring the PAD type and using the associated XVS type instead.
9221
9222 Set to True if the debugger should trust the contents of PAD types.
9223 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9224 static bool trust_pad_over_xvs = true;
9225
9226 /* True if TYPE is a struct type introduced by the compiler to force the
9227 alignment of a value. Such types have a single field with a
9228 distinctive name. */
9229
9230 int
9231 ada_is_aligner_type (struct type *type)
9232 {
9233 type = ada_check_typedef (type);
9234
9235 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9236 return 0;
9237
9238 return (type->code () == TYPE_CODE_STRUCT
9239 && type->num_fields () == 1
9240 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9241 }
9242
9243 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9244 the parallel type. */
9245
9246 struct type *
9247 ada_get_base_type (struct type *raw_type)
9248 {
9249 struct type *real_type_namer;
9250 struct type *raw_real_type;
9251
9252 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9253 return raw_type;
9254
9255 if (ada_is_aligner_type (raw_type))
9256 /* The encoding specifies that we should always use the aligner type.
9257 So, even if this aligner type has an associated XVS type, we should
9258 simply ignore it.
9259
9260 According to the compiler gurus, an XVS type parallel to an aligner
9261 type may exist because of a stabs limitation. In stabs, aligner
9262 types are empty because the field has a variable-sized type, and
9263 thus cannot actually be used as an aligner type. As a result,
9264 we need the associated parallel XVS type to decode the type.
9265 Since the policy in the compiler is to not change the internal
9266 representation based on the debugging info format, we sometimes
9267 end up having a redundant XVS type parallel to the aligner type. */
9268 return raw_type;
9269
9270 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9271 if (real_type_namer == NULL
9272 || real_type_namer->code () != TYPE_CODE_STRUCT
9273 || real_type_namer->num_fields () != 1)
9274 return raw_type;
9275
9276 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
9277 {
9278 /* This is an older encoding form where the base type needs to be
9279 looked up by name. We prefer the newer encoding because it is
9280 more efficient. */
9281 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9282 if (raw_real_type == NULL)
9283 return raw_type;
9284 else
9285 return raw_real_type;
9286 }
9287
9288 /* The field in our XVS type is a reference to the base type. */
9289 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9290 }
9291
9292 /* The type of value designated by TYPE, with all aligners removed. */
9293
9294 struct type *
9295 ada_aligned_type (struct type *type)
9296 {
9297 if (ada_is_aligner_type (type))
9298 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9299 else
9300 return ada_get_base_type (type);
9301 }
9302
9303
9304 /* The address of the aligned value in an object at address VALADDR
9305 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9306
9307 const gdb_byte *
9308 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9309 {
9310 if (ada_is_aligner_type (type))
9311 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9312 valaddr +
9313 TYPE_FIELD_BITPOS (type,
9314 0) / TARGET_CHAR_BIT);
9315 else
9316 return valaddr;
9317 }
9318
9319
9320
9321 /* The printed representation of an enumeration literal with encoded
9322 name NAME. The value is good to the next call of ada_enum_name. */
9323 const char *
9324 ada_enum_name (const char *name)
9325 {
9326 static char *result;
9327 static size_t result_len = 0;
9328 const char *tmp;
9329
9330 /* First, unqualify the enumeration name:
9331 1. Search for the last '.' character. If we find one, then skip
9332 all the preceding characters, the unqualified name starts
9333 right after that dot.
9334 2. Otherwise, we may be debugging on a target where the compiler
9335 translates dots into "__". Search forward for double underscores,
9336 but stop searching when we hit an overloading suffix, which is
9337 of the form "__" followed by digits. */
9338
9339 tmp = strrchr (name, '.');
9340 if (tmp != NULL)
9341 name = tmp + 1;
9342 else
9343 {
9344 while ((tmp = strstr (name, "__")) != NULL)
9345 {
9346 if (isdigit (tmp[2]))
9347 break;
9348 else
9349 name = tmp + 2;
9350 }
9351 }
9352
9353 if (name[0] == 'Q')
9354 {
9355 int v;
9356
9357 if (name[1] == 'U' || name[1] == 'W')
9358 {
9359 if (sscanf (name + 2, "%x", &v) != 1)
9360 return name;
9361 }
9362 else if (((name[1] >= '0' && name[1] <= '9')
9363 || (name[1] >= 'a' && name[1] <= 'z'))
9364 && name[2] == '\0')
9365 {
9366 GROW_VECT (result, result_len, 4);
9367 xsnprintf (result, result_len, "'%c'", name[1]);
9368 return result;
9369 }
9370 else
9371 return name;
9372
9373 GROW_VECT (result, result_len, 16);
9374 if (isascii (v) && isprint (v))
9375 xsnprintf (result, result_len, "'%c'", v);
9376 else if (name[1] == 'U')
9377 xsnprintf (result, result_len, "[\"%02x\"]", v);
9378 else
9379 xsnprintf (result, result_len, "[\"%04x\"]", v);
9380
9381 return result;
9382 }
9383 else
9384 {
9385 tmp = strstr (name, "__");
9386 if (tmp == NULL)
9387 tmp = strstr (name, "$");
9388 if (tmp != NULL)
9389 {
9390 GROW_VECT (result, result_len, tmp - name + 1);
9391 strncpy (result, name, tmp - name);
9392 result[tmp - name] = '\0';
9393 return result;
9394 }
9395
9396 return name;
9397 }
9398 }
9399
9400 /* Evaluate the subexpression of EXP starting at *POS as for
9401 evaluate_type, updating *POS to point just past the evaluated
9402 expression. */
9403
9404 static struct value *
9405 evaluate_subexp_type (struct expression *exp, int *pos)
9406 {
9407 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9408 }
9409
9410 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9411 value it wraps. */
9412
9413 static struct value *
9414 unwrap_value (struct value *val)
9415 {
9416 struct type *type = ada_check_typedef (value_type (val));
9417
9418 if (ada_is_aligner_type (type))
9419 {
9420 struct value *v = ada_value_struct_elt (val, "F", 0);
9421 struct type *val_type = ada_check_typedef (value_type (v));
9422
9423 if (ada_type_name (val_type) == NULL)
9424 val_type->set_name (ada_type_name (type));
9425
9426 return unwrap_value (v);
9427 }
9428 else
9429 {
9430 struct type *raw_real_type =
9431 ada_check_typedef (ada_get_base_type (type));
9432
9433 /* If there is no parallel XVS or XVE type, then the value is
9434 already unwrapped. Return it without further modification. */
9435 if ((type == raw_real_type)
9436 && ada_find_parallel_type (type, "___XVE") == NULL)
9437 return val;
9438
9439 return
9440 coerce_unspec_val_to_type
9441 (val, ada_to_fixed_type (raw_real_type, 0,
9442 value_address (val),
9443 NULL, 1));
9444 }
9445 }
9446
9447 static struct value *
9448 cast_from_fixed (struct type *type, struct value *arg)
9449 {
9450 struct value *scale = ada_scaling_factor (value_type (arg));
9451 arg = value_cast (value_type (scale), arg);
9452
9453 arg = value_binop (arg, scale, BINOP_MUL);
9454 return value_cast (type, arg);
9455 }
9456
9457 static struct value *
9458 cast_to_fixed (struct type *type, struct value *arg)
9459 {
9460 if (type == value_type (arg))
9461 return arg;
9462
9463 struct value *scale = ada_scaling_factor (type);
9464 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9465 arg = cast_from_fixed (value_type (scale), arg);
9466 else
9467 arg = value_cast (value_type (scale), arg);
9468
9469 arg = value_binop (arg, scale, BINOP_DIV);
9470 return value_cast (type, arg);
9471 }
9472
9473 /* Given two array types T1 and T2, return nonzero iff both arrays
9474 contain the same number of elements. */
9475
9476 static int
9477 ada_same_array_size_p (struct type *t1, struct type *t2)
9478 {
9479 LONGEST lo1, hi1, lo2, hi2;
9480
9481 /* Get the array bounds in order to verify that the size of
9482 the two arrays match. */
9483 if (!get_array_bounds (t1, &lo1, &hi1)
9484 || !get_array_bounds (t2, &lo2, &hi2))
9485 error (_("unable to determine array bounds"));
9486
9487 /* To make things easier for size comparison, normalize a bit
9488 the case of empty arrays by making sure that the difference
9489 between upper bound and lower bound is always -1. */
9490 if (lo1 > hi1)
9491 hi1 = lo1 - 1;
9492 if (lo2 > hi2)
9493 hi2 = lo2 - 1;
9494
9495 return (hi1 - lo1 == hi2 - lo2);
9496 }
9497
9498 /* Assuming that VAL is an array of integrals, and TYPE represents
9499 an array with the same number of elements, but with wider integral
9500 elements, return an array "casted" to TYPE. In practice, this
9501 means that the returned array is built by casting each element
9502 of the original array into TYPE's (wider) element type. */
9503
9504 static struct value *
9505 ada_promote_array_of_integrals (struct type *type, struct value *val)
9506 {
9507 struct type *elt_type = TYPE_TARGET_TYPE (type);
9508 LONGEST lo, hi;
9509 struct value *res;
9510 LONGEST i;
9511
9512 /* Verify that both val and type are arrays of scalars, and
9513 that the size of val's elements is smaller than the size
9514 of type's element. */
9515 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9516 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9517 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9518 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9519 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9520 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9521
9522 if (!get_array_bounds (type, &lo, &hi))
9523 error (_("unable to determine array bounds"));
9524
9525 res = allocate_value (type);
9526
9527 /* Promote each array element. */
9528 for (i = 0; i < hi - lo + 1; i++)
9529 {
9530 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9531
9532 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9533 value_contents_all (elt), TYPE_LENGTH (elt_type));
9534 }
9535
9536 return res;
9537 }
9538
9539 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9540 return the converted value. */
9541
9542 static struct value *
9543 coerce_for_assign (struct type *type, struct value *val)
9544 {
9545 struct type *type2 = value_type (val);
9546
9547 if (type == type2)
9548 return val;
9549
9550 type2 = ada_check_typedef (type2);
9551 type = ada_check_typedef (type);
9552
9553 if (type2->code () == TYPE_CODE_PTR
9554 && type->code () == TYPE_CODE_ARRAY)
9555 {
9556 val = ada_value_ind (val);
9557 type2 = value_type (val);
9558 }
9559
9560 if (type2->code () == TYPE_CODE_ARRAY
9561 && type->code () == TYPE_CODE_ARRAY)
9562 {
9563 if (!ada_same_array_size_p (type, type2))
9564 error (_("cannot assign arrays of different length"));
9565
9566 if (is_integral_type (TYPE_TARGET_TYPE (type))
9567 && is_integral_type (TYPE_TARGET_TYPE (type2))
9568 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9569 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9570 {
9571 /* Allow implicit promotion of the array elements to
9572 a wider type. */
9573 return ada_promote_array_of_integrals (type, val);
9574 }
9575
9576 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9577 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9578 error (_("Incompatible types in assignment"));
9579 deprecated_set_value_type (val, type);
9580 }
9581 return val;
9582 }
9583
9584 static struct value *
9585 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9586 {
9587 struct value *val;
9588 struct type *type1, *type2;
9589 LONGEST v, v1, v2;
9590
9591 arg1 = coerce_ref (arg1);
9592 arg2 = coerce_ref (arg2);
9593 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9594 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9595
9596 if (type1->code () != TYPE_CODE_INT
9597 || type2->code () != TYPE_CODE_INT)
9598 return value_binop (arg1, arg2, op);
9599
9600 switch (op)
9601 {
9602 case BINOP_MOD:
9603 case BINOP_DIV:
9604 case BINOP_REM:
9605 break;
9606 default:
9607 return value_binop (arg1, arg2, op);
9608 }
9609
9610 v2 = value_as_long (arg2);
9611 if (v2 == 0)
9612 error (_("second operand of %s must not be zero."), op_string (op));
9613
9614 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9615 return value_binop (arg1, arg2, op);
9616
9617 v1 = value_as_long (arg1);
9618 switch (op)
9619 {
9620 case BINOP_DIV:
9621 v = v1 / v2;
9622 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9623 v += v > 0 ? -1 : 1;
9624 break;
9625 case BINOP_REM:
9626 v = v1 % v2;
9627 if (v * v1 < 0)
9628 v -= v2;
9629 break;
9630 default:
9631 /* Should not reach this point. */
9632 v = 0;
9633 }
9634
9635 val = allocate_value (type1);
9636 store_unsigned_integer (value_contents_raw (val),
9637 TYPE_LENGTH (value_type (val)),
9638 type_byte_order (type1), v);
9639 return val;
9640 }
9641
9642 static int
9643 ada_value_equal (struct value *arg1, struct value *arg2)
9644 {
9645 if (ada_is_direct_array_type (value_type (arg1))
9646 || ada_is_direct_array_type (value_type (arg2)))
9647 {
9648 struct type *arg1_type, *arg2_type;
9649
9650 /* Automatically dereference any array reference before
9651 we attempt to perform the comparison. */
9652 arg1 = ada_coerce_ref (arg1);
9653 arg2 = ada_coerce_ref (arg2);
9654
9655 arg1 = ada_coerce_to_simple_array (arg1);
9656 arg2 = ada_coerce_to_simple_array (arg2);
9657
9658 arg1_type = ada_check_typedef (value_type (arg1));
9659 arg2_type = ada_check_typedef (value_type (arg2));
9660
9661 if (arg1_type->code () != TYPE_CODE_ARRAY
9662 || arg2_type->code () != TYPE_CODE_ARRAY)
9663 error (_("Attempt to compare array with non-array"));
9664 /* FIXME: The following works only for types whose
9665 representations use all bits (no padding or undefined bits)
9666 and do not have user-defined equality. */
9667 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9668 && memcmp (value_contents (arg1), value_contents (arg2),
9669 TYPE_LENGTH (arg1_type)) == 0);
9670 }
9671 return value_equal (arg1, arg2);
9672 }
9673
9674 /* Total number of component associations in the aggregate starting at
9675 index PC in EXP. Assumes that index PC is the start of an
9676 OP_AGGREGATE. */
9677
9678 static int
9679 num_component_specs (struct expression *exp, int pc)
9680 {
9681 int n, m, i;
9682
9683 m = exp->elts[pc + 1].longconst;
9684 pc += 3;
9685 n = 0;
9686 for (i = 0; i < m; i += 1)
9687 {
9688 switch (exp->elts[pc].opcode)
9689 {
9690 default:
9691 n += 1;
9692 break;
9693 case OP_CHOICES:
9694 n += exp->elts[pc + 1].longconst;
9695 break;
9696 }
9697 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9698 }
9699 return n;
9700 }
9701
9702 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9703 component of LHS (a simple array or a record), updating *POS past
9704 the expression, assuming that LHS is contained in CONTAINER. Does
9705 not modify the inferior's memory, nor does it modify LHS (unless
9706 LHS == CONTAINER). */
9707
9708 static void
9709 assign_component (struct value *container, struct value *lhs, LONGEST index,
9710 struct expression *exp, int *pos)
9711 {
9712 struct value *mark = value_mark ();
9713 struct value *elt;
9714 struct type *lhs_type = check_typedef (value_type (lhs));
9715
9716 if (lhs_type->code () == TYPE_CODE_ARRAY)
9717 {
9718 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9719 struct value *index_val = value_from_longest (index_type, index);
9720
9721 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9722 }
9723 else
9724 {
9725 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9726 elt = ada_to_fixed_value (elt);
9727 }
9728
9729 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9730 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9731 else
9732 value_assign_to_component (container, elt,
9733 ada_evaluate_subexp (NULL, exp, pos,
9734 EVAL_NORMAL));
9735
9736 value_free_to_mark (mark);
9737 }
9738
9739 /* Assuming that LHS represents an lvalue having a record or array
9740 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9741 of that aggregate's value to LHS, advancing *POS past the
9742 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9743 lvalue containing LHS (possibly LHS itself). Does not modify
9744 the inferior's memory, nor does it modify the contents of
9745 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9746
9747 static struct value *
9748 assign_aggregate (struct value *container,
9749 struct value *lhs, struct expression *exp,
9750 int *pos, enum noside noside)
9751 {
9752 struct type *lhs_type;
9753 int n = exp->elts[*pos+1].longconst;
9754 LONGEST low_index, high_index;
9755 int num_specs;
9756 LONGEST *indices;
9757 int max_indices, num_indices;
9758 int i;
9759
9760 *pos += 3;
9761 if (noside != EVAL_NORMAL)
9762 {
9763 for (i = 0; i < n; i += 1)
9764 ada_evaluate_subexp (NULL, exp, pos, noside);
9765 return container;
9766 }
9767
9768 container = ada_coerce_ref (container);
9769 if (ada_is_direct_array_type (value_type (container)))
9770 container = ada_coerce_to_simple_array (container);
9771 lhs = ada_coerce_ref (lhs);
9772 if (!deprecated_value_modifiable (lhs))
9773 error (_("Left operand of assignment is not a modifiable lvalue."));
9774
9775 lhs_type = check_typedef (value_type (lhs));
9776 if (ada_is_direct_array_type (lhs_type))
9777 {
9778 lhs = ada_coerce_to_simple_array (lhs);
9779 lhs_type = check_typedef (value_type (lhs));
9780 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9781 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9782 }
9783 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9784 {
9785 low_index = 0;
9786 high_index = num_visible_fields (lhs_type) - 1;
9787 }
9788 else
9789 error (_("Left-hand side must be array or record."));
9790
9791 num_specs = num_component_specs (exp, *pos - 3);
9792 max_indices = 4 * num_specs + 4;
9793 indices = XALLOCAVEC (LONGEST, max_indices);
9794 indices[0] = indices[1] = low_index - 1;
9795 indices[2] = indices[3] = high_index + 1;
9796 num_indices = 4;
9797
9798 for (i = 0; i < n; i += 1)
9799 {
9800 switch (exp->elts[*pos].opcode)
9801 {
9802 case OP_CHOICES:
9803 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9804 &num_indices, max_indices,
9805 low_index, high_index);
9806 break;
9807 case OP_POSITIONAL:
9808 aggregate_assign_positional (container, lhs, exp, pos, indices,
9809 &num_indices, max_indices,
9810 low_index, high_index);
9811 break;
9812 case OP_OTHERS:
9813 if (i != n-1)
9814 error (_("Misplaced 'others' clause"));
9815 aggregate_assign_others (container, lhs, exp, pos, indices,
9816 num_indices, low_index, high_index);
9817 break;
9818 default:
9819 error (_("Internal error: bad aggregate clause"));
9820 }
9821 }
9822
9823 return container;
9824 }
9825
9826 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9827 construct at *POS, updating *POS past the construct, given that
9828 the positions are relative to lower bound LOW, where HIGH is the
9829 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9830 updating *NUM_INDICES as needed. CONTAINER is as for
9831 assign_aggregate. */
9832 static void
9833 aggregate_assign_positional (struct value *container,
9834 struct value *lhs, struct expression *exp,
9835 int *pos, LONGEST *indices, int *num_indices,
9836 int max_indices, LONGEST low, LONGEST high)
9837 {
9838 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9839
9840 if (ind - 1 == high)
9841 warning (_("Extra components in aggregate ignored."));
9842 if (ind <= high)
9843 {
9844 add_component_interval (ind, ind, indices, num_indices, max_indices);
9845 *pos += 3;
9846 assign_component (container, lhs, ind, exp, pos);
9847 }
9848 else
9849 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9850 }
9851
9852 /* Assign into the components of LHS indexed by the OP_CHOICES
9853 construct at *POS, updating *POS past the construct, given that
9854 the allowable indices are LOW..HIGH. Record the indices assigned
9855 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9856 needed. CONTAINER is as for assign_aggregate. */
9857 static void
9858 aggregate_assign_from_choices (struct value *container,
9859 struct value *lhs, struct expression *exp,
9860 int *pos, LONGEST *indices, int *num_indices,
9861 int max_indices, LONGEST low, LONGEST high)
9862 {
9863 int j;
9864 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9865 int choice_pos, expr_pc;
9866 int is_array = ada_is_direct_array_type (value_type (lhs));
9867
9868 choice_pos = *pos += 3;
9869
9870 for (j = 0; j < n_choices; j += 1)
9871 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9872 expr_pc = *pos;
9873 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9874
9875 for (j = 0; j < n_choices; j += 1)
9876 {
9877 LONGEST lower, upper;
9878 enum exp_opcode op = exp->elts[choice_pos].opcode;
9879
9880 if (op == OP_DISCRETE_RANGE)
9881 {
9882 choice_pos += 1;
9883 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9884 EVAL_NORMAL));
9885 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9886 EVAL_NORMAL));
9887 }
9888 else if (is_array)
9889 {
9890 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9891 EVAL_NORMAL));
9892 upper = lower;
9893 }
9894 else
9895 {
9896 int ind;
9897 const char *name;
9898
9899 switch (op)
9900 {
9901 case OP_NAME:
9902 name = &exp->elts[choice_pos + 2].string;
9903 break;
9904 case OP_VAR_VALUE:
9905 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9906 break;
9907 default:
9908 error (_("Invalid record component association."));
9909 }
9910 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9911 ind = 0;
9912 if (! find_struct_field (name, value_type (lhs), 0,
9913 NULL, NULL, NULL, NULL, &ind))
9914 error (_("Unknown component name: %s."), name);
9915 lower = upper = ind;
9916 }
9917
9918 if (lower <= upper && (lower < low || upper > high))
9919 error (_("Index in component association out of bounds."));
9920
9921 add_component_interval (lower, upper, indices, num_indices,
9922 max_indices);
9923 while (lower <= upper)
9924 {
9925 int pos1;
9926
9927 pos1 = expr_pc;
9928 assign_component (container, lhs, lower, exp, &pos1);
9929 lower += 1;
9930 }
9931 }
9932 }
9933
9934 /* Assign the value of the expression in the OP_OTHERS construct in
9935 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9936 have not been previously assigned. The index intervals already assigned
9937 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9938 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9939 static void
9940 aggregate_assign_others (struct value *container,
9941 struct value *lhs, struct expression *exp,
9942 int *pos, LONGEST *indices, int num_indices,
9943 LONGEST low, LONGEST high)
9944 {
9945 int i;
9946 int expr_pc = *pos + 1;
9947
9948 for (i = 0; i < num_indices - 2; i += 2)
9949 {
9950 LONGEST ind;
9951
9952 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9953 {
9954 int localpos;
9955
9956 localpos = expr_pc;
9957 assign_component (container, lhs, ind, exp, &localpos);
9958 }
9959 }
9960 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9961 }
9962
9963 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9964 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9965 modifying *SIZE as needed. It is an error if *SIZE exceeds
9966 MAX_SIZE. The resulting intervals do not overlap. */
9967 static void
9968 add_component_interval (LONGEST low, LONGEST high,
9969 LONGEST* indices, int *size, int max_size)
9970 {
9971 int i, j;
9972
9973 for (i = 0; i < *size; i += 2) {
9974 if (high >= indices[i] && low <= indices[i + 1])
9975 {
9976 int kh;
9977
9978 for (kh = i + 2; kh < *size; kh += 2)
9979 if (high < indices[kh])
9980 break;
9981 if (low < indices[i])
9982 indices[i] = low;
9983 indices[i + 1] = indices[kh - 1];
9984 if (high > indices[i + 1])
9985 indices[i + 1] = high;
9986 memcpy (indices + i + 2, indices + kh, *size - kh);
9987 *size -= kh - i - 2;
9988 return;
9989 }
9990 else if (high < indices[i])
9991 break;
9992 }
9993
9994 if (*size == max_size)
9995 error (_("Internal error: miscounted aggregate components."));
9996 *size += 2;
9997 for (j = *size-1; j >= i+2; j -= 1)
9998 indices[j] = indices[j - 2];
9999 indices[i] = low;
10000 indices[i + 1] = high;
10001 }
10002
10003 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10004 is different. */
10005
10006 static struct value *
10007 ada_value_cast (struct type *type, struct value *arg2)
10008 {
10009 if (type == ada_check_typedef (value_type (arg2)))
10010 return arg2;
10011
10012 if (ada_is_gnat_encoded_fixed_point_type (type))
10013 return cast_to_fixed (type, arg2);
10014
10015 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10016 return cast_from_fixed (type, arg2);
10017
10018 return value_cast (type, arg2);
10019 }
10020
10021 /* Evaluating Ada expressions, and printing their result.
10022 ------------------------------------------------------
10023
10024 1. Introduction:
10025 ----------------
10026
10027 We usually evaluate an Ada expression in order to print its value.
10028 We also evaluate an expression in order to print its type, which
10029 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10030 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10031 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10032 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10033 similar.
10034
10035 Evaluating expressions is a little more complicated for Ada entities
10036 than it is for entities in languages such as C. The main reason for
10037 this is that Ada provides types whose definition might be dynamic.
10038 One example of such types is variant records. Or another example
10039 would be an array whose bounds can only be known at run time.
10040
10041 The following description is a general guide as to what should be
10042 done (and what should NOT be done) in order to evaluate an expression
10043 involving such types, and when. This does not cover how the semantic
10044 information is encoded by GNAT as this is covered separatly. For the
10045 document used as the reference for the GNAT encoding, see exp_dbug.ads
10046 in the GNAT sources.
10047
10048 Ideally, we should embed each part of this description next to its
10049 associated code. Unfortunately, the amount of code is so vast right
10050 now that it's hard to see whether the code handling a particular
10051 situation might be duplicated or not. One day, when the code is
10052 cleaned up, this guide might become redundant with the comments
10053 inserted in the code, and we might want to remove it.
10054
10055 2. ``Fixing'' an Entity, the Simple Case:
10056 -----------------------------------------
10057
10058 When evaluating Ada expressions, the tricky issue is that they may
10059 reference entities whose type contents and size are not statically
10060 known. Consider for instance a variant record:
10061
10062 type Rec (Empty : Boolean := True) is record
10063 case Empty is
10064 when True => null;
10065 when False => Value : Integer;
10066 end case;
10067 end record;
10068 Yes : Rec := (Empty => False, Value => 1);
10069 No : Rec := (empty => True);
10070
10071 The size and contents of that record depends on the value of the
10072 descriminant (Rec.Empty). At this point, neither the debugging
10073 information nor the associated type structure in GDB are able to
10074 express such dynamic types. So what the debugger does is to create
10075 "fixed" versions of the type that applies to the specific object.
10076 We also informally refer to this operation as "fixing" an object,
10077 which means creating its associated fixed type.
10078
10079 Example: when printing the value of variable "Yes" above, its fixed
10080 type would look like this:
10081
10082 type Rec is record
10083 Empty : Boolean;
10084 Value : Integer;
10085 end record;
10086
10087 On the other hand, if we printed the value of "No", its fixed type
10088 would become:
10089
10090 type Rec is record
10091 Empty : Boolean;
10092 end record;
10093
10094 Things become a little more complicated when trying to fix an entity
10095 with a dynamic type that directly contains another dynamic type,
10096 such as an array of variant records, for instance. There are
10097 two possible cases: Arrays, and records.
10098
10099 3. ``Fixing'' Arrays:
10100 ---------------------
10101
10102 The type structure in GDB describes an array in terms of its bounds,
10103 and the type of its elements. By design, all elements in the array
10104 have the same type and we cannot represent an array of variant elements
10105 using the current type structure in GDB. When fixing an array,
10106 we cannot fix the array element, as we would potentially need one
10107 fixed type per element of the array. As a result, the best we can do
10108 when fixing an array is to produce an array whose bounds and size
10109 are correct (allowing us to read it from memory), but without having
10110 touched its element type. Fixing each element will be done later,
10111 when (if) necessary.
10112
10113 Arrays are a little simpler to handle than records, because the same
10114 amount of memory is allocated for each element of the array, even if
10115 the amount of space actually used by each element differs from element
10116 to element. Consider for instance the following array of type Rec:
10117
10118 type Rec_Array is array (1 .. 2) of Rec;
10119
10120 The actual amount of memory occupied by each element might be different
10121 from element to element, depending on the value of their discriminant.
10122 But the amount of space reserved for each element in the array remains
10123 fixed regardless. So we simply need to compute that size using
10124 the debugging information available, from which we can then determine
10125 the array size (we multiply the number of elements of the array by
10126 the size of each element).
10127
10128 The simplest case is when we have an array of a constrained element
10129 type. For instance, consider the following type declarations:
10130
10131 type Bounded_String (Max_Size : Integer) is
10132 Length : Integer;
10133 Buffer : String (1 .. Max_Size);
10134 end record;
10135 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10136
10137 In this case, the compiler describes the array as an array of
10138 variable-size elements (identified by its XVS suffix) for which
10139 the size can be read in the parallel XVZ variable.
10140
10141 In the case of an array of an unconstrained element type, the compiler
10142 wraps the array element inside a private PAD type. This type should not
10143 be shown to the user, and must be "unwrap"'ed before printing. Note
10144 that we also use the adjective "aligner" in our code to designate
10145 these wrapper types.
10146
10147 In some cases, the size allocated for each element is statically
10148 known. In that case, the PAD type already has the correct size,
10149 and the array element should remain unfixed.
10150
10151 But there are cases when this size is not statically known.
10152 For instance, assuming that "Five" is an integer variable:
10153
10154 type Dynamic is array (1 .. Five) of Integer;
10155 type Wrapper (Has_Length : Boolean := False) is record
10156 Data : Dynamic;
10157 case Has_Length is
10158 when True => Length : Integer;
10159 when False => null;
10160 end case;
10161 end record;
10162 type Wrapper_Array is array (1 .. 2) of Wrapper;
10163
10164 Hello : Wrapper_Array := (others => (Has_Length => True,
10165 Data => (others => 17),
10166 Length => 1));
10167
10168
10169 The debugging info would describe variable Hello as being an
10170 array of a PAD type. The size of that PAD type is not statically
10171 known, but can be determined using a parallel XVZ variable.
10172 In that case, a copy of the PAD type with the correct size should
10173 be used for the fixed array.
10174
10175 3. ``Fixing'' record type objects:
10176 ----------------------------------
10177
10178 Things are slightly different from arrays in the case of dynamic
10179 record types. In this case, in order to compute the associated
10180 fixed type, we need to determine the size and offset of each of
10181 its components. This, in turn, requires us to compute the fixed
10182 type of each of these components.
10183
10184 Consider for instance the example:
10185
10186 type Bounded_String (Max_Size : Natural) is record
10187 Str : String (1 .. Max_Size);
10188 Length : Natural;
10189 end record;
10190 My_String : Bounded_String (Max_Size => 10);
10191
10192 In that case, the position of field "Length" depends on the size
10193 of field Str, which itself depends on the value of the Max_Size
10194 discriminant. In order to fix the type of variable My_String,
10195 we need to fix the type of field Str. Therefore, fixing a variant
10196 record requires us to fix each of its components.
10197
10198 However, if a component does not have a dynamic size, the component
10199 should not be fixed. In particular, fields that use a PAD type
10200 should not fixed. Here is an example where this might happen
10201 (assuming type Rec above):
10202
10203 type Container (Big : Boolean) is record
10204 First : Rec;
10205 After : Integer;
10206 case Big is
10207 when True => Another : Integer;
10208 when False => null;
10209 end case;
10210 end record;
10211 My_Container : Container := (Big => False,
10212 First => (Empty => True),
10213 After => 42);
10214
10215 In that example, the compiler creates a PAD type for component First,
10216 whose size is constant, and then positions the component After just
10217 right after it. The offset of component After is therefore constant
10218 in this case.
10219
10220 The debugger computes the position of each field based on an algorithm
10221 that uses, among other things, the actual position and size of the field
10222 preceding it. Let's now imagine that the user is trying to print
10223 the value of My_Container. If the type fixing was recursive, we would
10224 end up computing the offset of field After based on the size of the
10225 fixed version of field First. And since in our example First has
10226 only one actual field, the size of the fixed type is actually smaller
10227 than the amount of space allocated to that field, and thus we would
10228 compute the wrong offset of field After.
10229
10230 To make things more complicated, we need to watch out for dynamic
10231 components of variant records (identified by the ___XVL suffix in
10232 the component name). Even if the target type is a PAD type, the size
10233 of that type might not be statically known. So the PAD type needs
10234 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10235 we might end up with the wrong size for our component. This can be
10236 observed with the following type declarations:
10237
10238 type Octal is new Integer range 0 .. 7;
10239 type Octal_Array is array (Positive range <>) of Octal;
10240 pragma Pack (Octal_Array);
10241
10242 type Octal_Buffer (Size : Positive) is record
10243 Buffer : Octal_Array (1 .. Size);
10244 Length : Integer;
10245 end record;
10246
10247 In that case, Buffer is a PAD type whose size is unset and needs
10248 to be computed by fixing the unwrapped type.
10249
10250 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10251 ----------------------------------------------------------
10252
10253 Lastly, when should the sub-elements of an entity that remained unfixed
10254 thus far, be actually fixed?
10255
10256 The answer is: Only when referencing that element. For instance
10257 when selecting one component of a record, this specific component
10258 should be fixed at that point in time. Or when printing the value
10259 of a record, each component should be fixed before its value gets
10260 printed. Similarly for arrays, the element of the array should be
10261 fixed when printing each element of the array, or when extracting
10262 one element out of that array. On the other hand, fixing should
10263 not be performed on the elements when taking a slice of an array!
10264
10265 Note that one of the side effects of miscomputing the offset and
10266 size of each field is that we end up also miscomputing the size
10267 of the containing type. This can have adverse results when computing
10268 the value of an entity. GDB fetches the value of an entity based
10269 on the size of its type, and thus a wrong size causes GDB to fetch
10270 the wrong amount of memory. In the case where the computed size is
10271 too small, GDB fetches too little data to print the value of our
10272 entity. Results in this case are unpredictable, as we usually read
10273 past the buffer containing the data =:-o. */
10274
10275 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10276 for that subexpression cast to TO_TYPE. Advance *POS over the
10277 subexpression. */
10278
10279 static value *
10280 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10281 enum noside noside, struct type *to_type)
10282 {
10283 int pc = *pos;
10284
10285 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10286 || exp->elts[pc].opcode == OP_VAR_VALUE)
10287 {
10288 (*pos) += 4;
10289
10290 value *val;
10291 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10292 {
10293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10294 return value_zero (to_type, not_lval);
10295
10296 val = evaluate_var_msym_value (noside,
10297 exp->elts[pc + 1].objfile,
10298 exp->elts[pc + 2].msymbol);
10299 }
10300 else
10301 val = evaluate_var_value (noside,
10302 exp->elts[pc + 1].block,
10303 exp->elts[pc + 2].symbol);
10304
10305 if (noside == EVAL_SKIP)
10306 return eval_skip_value (exp);
10307
10308 val = ada_value_cast (to_type, val);
10309
10310 /* Follow the Ada language semantics that do not allow taking
10311 an address of the result of a cast (view conversion in Ada). */
10312 if (VALUE_LVAL (val) == lval_memory)
10313 {
10314 if (value_lazy (val))
10315 value_fetch_lazy (val);
10316 VALUE_LVAL (val) = not_lval;
10317 }
10318 return val;
10319 }
10320
10321 value *val = evaluate_subexp (to_type, exp, pos, noside);
10322 if (noside == EVAL_SKIP)
10323 return eval_skip_value (exp);
10324 return ada_value_cast (to_type, val);
10325 }
10326
10327 /* Implement the evaluate_exp routine in the exp_descriptor structure
10328 for the Ada language. */
10329
10330 static struct value *
10331 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10332 int *pos, enum noside noside)
10333 {
10334 enum exp_opcode op;
10335 int tem;
10336 int pc;
10337 int preeval_pos;
10338 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10339 struct type *type;
10340 int nargs, oplen;
10341 struct value **argvec;
10342
10343 pc = *pos;
10344 *pos += 1;
10345 op = exp->elts[pc].opcode;
10346
10347 switch (op)
10348 {
10349 default:
10350 *pos -= 1;
10351 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10352
10353 if (noside == EVAL_NORMAL)
10354 arg1 = unwrap_value (arg1);
10355
10356 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10357 then we need to perform the conversion manually, because
10358 evaluate_subexp_standard doesn't do it. This conversion is
10359 necessary in Ada because the different kinds of float/fixed
10360 types in Ada have different representations.
10361
10362 Similarly, we need to perform the conversion from OP_LONG
10363 ourselves. */
10364 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10365 arg1 = ada_value_cast (expect_type, arg1);
10366
10367 return arg1;
10368
10369 case OP_STRING:
10370 {
10371 struct value *result;
10372
10373 *pos -= 1;
10374 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10375 /* The result type will have code OP_STRING, bashed there from
10376 OP_ARRAY. Bash it back. */
10377 if (value_type (result)->code () == TYPE_CODE_STRING)
10378 value_type (result)->set_code (TYPE_CODE_ARRAY);
10379 return result;
10380 }
10381
10382 case UNOP_CAST:
10383 (*pos) += 2;
10384 type = exp->elts[pc + 1].type;
10385 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10386
10387 case UNOP_QUAL:
10388 (*pos) += 2;
10389 type = exp->elts[pc + 1].type;
10390 return ada_evaluate_subexp (type, exp, pos, noside);
10391
10392 case BINOP_ASSIGN:
10393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10395 {
10396 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10397 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10398 return arg1;
10399 return ada_value_assign (arg1, arg1);
10400 }
10401 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10402 except if the lhs of our assignment is a convenience variable.
10403 In the case of assigning to a convenience variable, the lhs
10404 should be exactly the result of the evaluation of the rhs. */
10405 type = value_type (arg1);
10406 if (VALUE_LVAL (arg1) == lval_internalvar)
10407 type = NULL;
10408 arg2 = evaluate_subexp (type, exp, pos, noside);
10409 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10410 return arg1;
10411 if (VALUE_LVAL (arg1) == lval_internalvar)
10412 {
10413 /* Nothing. */
10414 }
10415 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10416 arg2 = cast_to_fixed (value_type (arg1), arg2);
10417 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10418 error
10419 (_("Fixed-point values must be assigned to fixed-point variables"));
10420 else
10421 arg2 = coerce_for_assign (value_type (arg1), arg2);
10422 return ada_value_assign (arg1, arg2);
10423
10424 case BINOP_ADD:
10425 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10426 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10427 if (noside == EVAL_SKIP)
10428 goto nosideret;
10429 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10430 return (value_from_longest
10431 (value_type (arg1),
10432 value_as_long (arg1) + value_as_long (arg2)));
10433 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10434 return (value_from_longest
10435 (value_type (arg2),
10436 value_as_long (arg1) + value_as_long (arg2)));
10437 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10438 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10439 && value_type (arg1) != value_type (arg2))
10440 error (_("Operands of fixed-point addition must have the same type"));
10441 /* Do the addition, and cast the result to the type of the first
10442 argument. We cannot cast the result to a reference type, so if
10443 ARG1 is a reference type, find its underlying type. */
10444 type = value_type (arg1);
10445 while (type->code () == TYPE_CODE_REF)
10446 type = TYPE_TARGET_TYPE (type);
10447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10448 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10449
10450 case BINOP_SUB:
10451 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10452 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10453 if (noside == EVAL_SKIP)
10454 goto nosideret;
10455 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10456 return (value_from_longest
10457 (value_type (arg1),
10458 value_as_long (arg1) - value_as_long (arg2)));
10459 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10460 return (value_from_longest
10461 (value_type (arg2),
10462 value_as_long (arg1) - value_as_long (arg2)));
10463 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10464 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10465 && value_type (arg1) != value_type (arg2))
10466 error (_("Operands of fixed-point subtraction "
10467 "must have the same type"));
10468 /* Do the substraction, and cast the result to the type of the first
10469 argument. We cannot cast the result to a reference type, so if
10470 ARG1 is a reference type, find its underlying type. */
10471 type = value_type (arg1);
10472 while (type->code () == TYPE_CODE_REF)
10473 type = TYPE_TARGET_TYPE (type);
10474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10475 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10476
10477 case BINOP_MUL:
10478 case BINOP_DIV:
10479 case BINOP_REM:
10480 case BINOP_MOD:
10481 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10483 if (noside == EVAL_SKIP)
10484 goto nosideret;
10485 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10486 {
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10488 return value_zero (value_type (arg1), not_lval);
10489 }
10490 else
10491 {
10492 type = builtin_type (exp->gdbarch)->builtin_double;
10493 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10494 arg1 = cast_from_fixed (type, arg1);
10495 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10496 arg2 = cast_from_fixed (type, arg2);
10497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10498 return ada_value_binop (arg1, arg2, op);
10499 }
10500
10501 case BINOP_EQUAL:
10502 case BINOP_NOTEQUAL:
10503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10504 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10505 if (noside == EVAL_SKIP)
10506 goto nosideret;
10507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10508 tem = 0;
10509 else
10510 {
10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10512 tem = ada_value_equal (arg1, arg2);
10513 }
10514 if (op == BINOP_NOTEQUAL)
10515 tem = !tem;
10516 type = language_bool_type (exp->language_defn, exp->gdbarch);
10517 return value_from_longest (type, (LONGEST) tem);
10518
10519 case UNOP_NEG:
10520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10521 if (noside == EVAL_SKIP)
10522 goto nosideret;
10523 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10524 return value_cast (value_type (arg1), value_neg (arg1));
10525 else
10526 {
10527 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10528 return value_neg (arg1);
10529 }
10530
10531 case BINOP_LOGICAL_AND:
10532 case BINOP_LOGICAL_OR:
10533 case UNOP_LOGICAL_NOT:
10534 {
10535 struct value *val;
10536
10537 *pos -= 1;
10538 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10539 type = language_bool_type (exp->language_defn, exp->gdbarch);
10540 return value_cast (type, val);
10541 }
10542
10543 case BINOP_BITWISE_AND:
10544 case BINOP_BITWISE_IOR:
10545 case BINOP_BITWISE_XOR:
10546 {
10547 struct value *val;
10548
10549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10550 *pos = pc;
10551 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10552
10553 return value_cast (value_type (arg1), val);
10554 }
10555
10556 case OP_VAR_VALUE:
10557 *pos -= 1;
10558
10559 if (noside == EVAL_SKIP)
10560 {
10561 *pos += 4;
10562 goto nosideret;
10563 }
10564
10565 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10566 /* Only encountered when an unresolved symbol occurs in a
10567 context other than a function call, in which case, it is
10568 invalid. */
10569 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10570 exp->elts[pc + 2].symbol->print_name ());
10571
10572 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10573 {
10574 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10575 /* Check to see if this is a tagged type. We also need to handle
10576 the case where the type is a reference to a tagged type, but
10577 we have to be careful to exclude pointers to tagged types.
10578 The latter should be shown as usual (as a pointer), whereas
10579 a reference should mostly be transparent to the user. */
10580 if (ada_is_tagged_type (type, 0)
10581 || (type->code () == TYPE_CODE_REF
10582 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10583 {
10584 /* Tagged types are a little special in the fact that the real
10585 type is dynamic and can only be determined by inspecting the
10586 object's tag. This means that we need to get the object's
10587 value first (EVAL_NORMAL) and then extract the actual object
10588 type from its tag.
10589
10590 Note that we cannot skip the final step where we extract
10591 the object type from its tag, because the EVAL_NORMAL phase
10592 results in dynamic components being resolved into fixed ones.
10593 This can cause problems when trying to print the type
10594 description of tagged types whose parent has a dynamic size:
10595 We use the type name of the "_parent" component in order
10596 to print the name of the ancestor type in the type description.
10597 If that component had a dynamic size, the resolution into
10598 a fixed type would result in the loss of that type name,
10599 thus preventing us from printing the name of the ancestor
10600 type in the type description. */
10601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10602
10603 if (type->code () != TYPE_CODE_REF)
10604 {
10605 struct type *actual_type;
10606
10607 actual_type = type_from_tag (ada_value_tag (arg1));
10608 if (actual_type == NULL)
10609 /* If, for some reason, we were unable to determine
10610 the actual type from the tag, then use the static
10611 approximation that we just computed as a fallback.
10612 This can happen if the debugging information is
10613 incomplete, for instance. */
10614 actual_type = type;
10615 return value_zero (actual_type, not_lval);
10616 }
10617 else
10618 {
10619 /* In the case of a ref, ada_coerce_ref takes care
10620 of determining the actual type. But the evaluation
10621 should return a ref as it should be valid to ask
10622 for its address; so rebuild a ref after coerce. */
10623 arg1 = ada_coerce_ref (arg1);
10624 return value_ref (arg1, TYPE_CODE_REF);
10625 }
10626 }
10627
10628 /* Records and unions for which GNAT encodings have been
10629 generated need to be statically fixed as well.
10630 Otherwise, non-static fixing produces a type where
10631 all dynamic properties are removed, which prevents "ptype"
10632 from being able to completely describe the type.
10633 For instance, a case statement in a variant record would be
10634 replaced by the relevant components based on the actual
10635 value of the discriminants. */
10636 if ((type->code () == TYPE_CODE_STRUCT
10637 && dynamic_template_type (type) != NULL)
10638 || (type->code () == TYPE_CODE_UNION
10639 && ada_find_parallel_type (type, "___XVU") != NULL))
10640 {
10641 *pos += 4;
10642 return value_zero (to_static_fixed_type (type), not_lval);
10643 }
10644 }
10645
10646 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10647 return ada_to_fixed_value (arg1);
10648
10649 case OP_FUNCALL:
10650 (*pos) += 2;
10651
10652 /* Allocate arg vector, including space for the function to be
10653 called in argvec[0] and a terminating NULL. */
10654 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10655 argvec = XALLOCAVEC (struct value *, nargs + 2);
10656
10657 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10658 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10659 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10660 exp->elts[pc + 5].symbol->print_name ());
10661 else
10662 {
10663 for (tem = 0; tem <= nargs; tem += 1)
10664 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10665 argvec[tem] = 0;
10666
10667 if (noside == EVAL_SKIP)
10668 goto nosideret;
10669 }
10670
10671 if (ada_is_constrained_packed_array_type
10672 (desc_base_type (value_type (argvec[0]))))
10673 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10674 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10675 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10676 /* This is a packed array that has already been fixed, and
10677 therefore already coerced to a simple array. Nothing further
10678 to do. */
10679 ;
10680 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10681 {
10682 /* Make sure we dereference references so that all the code below
10683 feels like it's really handling the referenced value. Wrapping
10684 types (for alignment) may be there, so make sure we strip them as
10685 well. */
10686 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10687 }
10688 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10689 && VALUE_LVAL (argvec[0]) == lval_memory)
10690 argvec[0] = value_addr (argvec[0]);
10691
10692 type = ada_check_typedef (value_type (argvec[0]));
10693
10694 /* Ada allows us to implicitly dereference arrays when subscripting
10695 them. So, if this is an array typedef (encoding use for array
10696 access types encoded as fat pointers), strip it now. */
10697 if (type->code () == TYPE_CODE_TYPEDEF)
10698 type = ada_typedef_target_type (type);
10699
10700 if (type->code () == TYPE_CODE_PTR)
10701 {
10702 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10703 {
10704 case TYPE_CODE_FUNC:
10705 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10706 break;
10707 case TYPE_CODE_ARRAY:
10708 break;
10709 case TYPE_CODE_STRUCT:
10710 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10711 argvec[0] = ada_value_ind (argvec[0]);
10712 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10713 break;
10714 default:
10715 error (_("cannot subscript or call something of type `%s'"),
10716 ada_type_name (value_type (argvec[0])));
10717 break;
10718 }
10719 }
10720
10721 switch (type->code ())
10722 {
10723 case TYPE_CODE_FUNC:
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 {
10726 if (TYPE_TARGET_TYPE (type) == NULL)
10727 error_call_unknown_return_type (NULL);
10728 return allocate_value (TYPE_TARGET_TYPE (type));
10729 }
10730 return call_function_by_hand (argvec[0], NULL,
10731 gdb::make_array_view (argvec + 1,
10732 nargs));
10733 case TYPE_CODE_INTERNAL_FUNCTION:
10734 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10735 /* We don't know anything about what the internal
10736 function might return, but we have to return
10737 something. */
10738 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10739 not_lval);
10740 else
10741 return call_internal_function (exp->gdbarch, exp->language_defn,
10742 argvec[0], nargs, argvec + 1);
10743
10744 case TYPE_CODE_STRUCT:
10745 {
10746 int arity;
10747
10748 arity = ada_array_arity (type);
10749 type = ada_array_element_type (type, nargs);
10750 if (type == NULL)
10751 error (_("cannot subscript or call a record"));
10752 if (arity != nargs)
10753 error (_("wrong number of subscripts; expecting %d"), arity);
10754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10755 return value_zero (ada_aligned_type (type), lval_memory);
10756 return
10757 unwrap_value (ada_value_subscript
10758 (argvec[0], nargs, argvec + 1));
10759 }
10760 case TYPE_CODE_ARRAY:
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 {
10763 type = ada_array_element_type (type, nargs);
10764 if (type == NULL)
10765 error (_("element type of array unknown"));
10766 else
10767 return value_zero (ada_aligned_type (type), lval_memory);
10768 }
10769 return
10770 unwrap_value (ada_value_subscript
10771 (ada_coerce_to_simple_array (argvec[0]),
10772 nargs, argvec + 1));
10773 case TYPE_CODE_PTR: /* Pointer to array */
10774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10775 {
10776 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10777 type = ada_array_element_type (type, nargs);
10778 if (type == NULL)
10779 error (_("element type of array unknown"));
10780 else
10781 return value_zero (ada_aligned_type (type), lval_memory);
10782 }
10783 return
10784 unwrap_value (ada_value_ptr_subscript (argvec[0],
10785 nargs, argvec + 1));
10786
10787 default:
10788 error (_("Attempt to index or call something other than an "
10789 "array or function"));
10790 }
10791
10792 case TERNOP_SLICE:
10793 {
10794 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10795 struct value *low_bound_val =
10796 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10797 struct value *high_bound_val =
10798 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10799 LONGEST low_bound;
10800 LONGEST high_bound;
10801
10802 low_bound_val = coerce_ref (low_bound_val);
10803 high_bound_val = coerce_ref (high_bound_val);
10804 low_bound = value_as_long (low_bound_val);
10805 high_bound = value_as_long (high_bound_val);
10806
10807 if (noside == EVAL_SKIP)
10808 goto nosideret;
10809
10810 /* If this is a reference to an aligner type, then remove all
10811 the aligners. */
10812 if (value_type (array)->code () == TYPE_CODE_REF
10813 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10814 TYPE_TARGET_TYPE (value_type (array)) =
10815 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10816
10817 if (ada_is_constrained_packed_array_type (value_type (array)))
10818 error (_("cannot slice a packed array"));
10819
10820 /* If this is a reference to an array or an array lvalue,
10821 convert to a pointer. */
10822 if (value_type (array)->code () == TYPE_CODE_REF
10823 || (value_type (array)->code () == TYPE_CODE_ARRAY
10824 && VALUE_LVAL (array) == lval_memory))
10825 array = value_addr (array);
10826
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS
10828 && ada_is_array_descriptor_type (ada_check_typedef
10829 (value_type (array))))
10830 return empty_array (ada_type_of_array (array, 0), low_bound,
10831 high_bound);
10832
10833 array = ada_coerce_to_simple_array_ptr (array);
10834
10835 /* If we have more than one level of pointer indirection,
10836 dereference the value until we get only one level. */
10837 while (value_type (array)->code () == TYPE_CODE_PTR
10838 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10839 == TYPE_CODE_PTR))
10840 array = value_ind (array);
10841
10842 /* Make sure we really do have an array type before going further,
10843 to avoid a SEGV when trying to get the index type or the target
10844 type later down the road if the debug info generated by
10845 the compiler is incorrect or incomplete. */
10846 if (!ada_is_simple_array_type (value_type (array)))
10847 error (_("cannot take slice of non-array"));
10848
10849 if (ada_check_typedef (value_type (array))->code ()
10850 == TYPE_CODE_PTR)
10851 {
10852 struct type *type0 = ada_check_typedef (value_type (array));
10853
10854 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10855 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10856 else
10857 {
10858 struct type *arr_type0 =
10859 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10860
10861 return ada_value_slice_from_ptr (array, arr_type0,
10862 longest_to_int (low_bound),
10863 longest_to_int (high_bound));
10864 }
10865 }
10866 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10867 return array;
10868 else if (high_bound < low_bound)
10869 return empty_array (value_type (array), low_bound, high_bound);
10870 else
10871 return ada_value_slice (array, longest_to_int (low_bound),
10872 longest_to_int (high_bound));
10873 }
10874
10875 case UNOP_IN_RANGE:
10876 (*pos) += 2;
10877 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10878 type = check_typedef (exp->elts[pc + 1].type);
10879
10880 if (noside == EVAL_SKIP)
10881 goto nosideret;
10882
10883 switch (type->code ())
10884 {
10885 default:
10886 lim_warning (_("Membership test incompletely implemented; "
10887 "always returns true"));
10888 type = language_bool_type (exp->language_defn, exp->gdbarch);
10889 return value_from_longest (type, (LONGEST) 1);
10890
10891 case TYPE_CODE_RANGE:
10892 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10893 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10894 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10895 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10896 type = language_bool_type (exp->language_defn, exp->gdbarch);
10897 return
10898 value_from_longest (type,
10899 (value_less (arg1, arg3)
10900 || value_equal (arg1, arg3))
10901 && (value_less (arg2, arg1)
10902 || value_equal (arg2, arg1)));
10903 }
10904
10905 case BINOP_IN_BOUNDS:
10906 (*pos) += 2;
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909
10910 if (noside == EVAL_SKIP)
10911 goto nosideret;
10912
10913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10914 {
10915 type = language_bool_type (exp->language_defn, exp->gdbarch);
10916 return value_zero (type, not_lval);
10917 }
10918
10919 tem = longest_to_int (exp->elts[pc + 1].longconst);
10920
10921 type = ada_index_type (value_type (arg2), tem, "range");
10922 if (!type)
10923 type = value_type (arg1);
10924
10925 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10926 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10927
10928 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10929 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10930 type = language_bool_type (exp->language_defn, exp->gdbarch);
10931 return
10932 value_from_longest (type,
10933 (value_less (arg1, arg3)
10934 || value_equal (arg1, arg3))
10935 && (value_less (arg2, arg1)
10936 || value_equal (arg2, arg1)));
10937
10938 case TERNOP_IN_RANGE:
10939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10941 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10942
10943 if (noside == EVAL_SKIP)
10944 goto nosideret;
10945
10946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10948 type = language_bool_type (exp->language_defn, exp->gdbarch);
10949 return
10950 value_from_longest (type,
10951 (value_less (arg1, arg3)
10952 || value_equal (arg1, arg3))
10953 && (value_less (arg2, arg1)
10954 || value_equal (arg2, arg1)));
10955
10956 case OP_ATR_FIRST:
10957 case OP_ATR_LAST:
10958 case OP_ATR_LENGTH:
10959 {
10960 struct type *type_arg;
10961
10962 if (exp->elts[*pos].opcode == OP_TYPE)
10963 {
10964 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10965 arg1 = NULL;
10966 type_arg = check_typedef (exp->elts[pc + 2].type);
10967 }
10968 else
10969 {
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 type_arg = NULL;
10972 }
10973
10974 if (exp->elts[*pos].opcode != OP_LONG)
10975 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10976 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10977 *pos += 4;
10978
10979 if (noside == EVAL_SKIP)
10980 goto nosideret;
10981 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10982 {
10983 if (type_arg == NULL)
10984 type_arg = value_type (arg1);
10985
10986 if (ada_is_constrained_packed_array_type (type_arg))
10987 type_arg = decode_constrained_packed_array_type (type_arg);
10988
10989 if (!discrete_type_p (type_arg))
10990 {
10991 switch (op)
10992 {
10993 default: /* Should never happen. */
10994 error (_("unexpected attribute encountered"));
10995 case OP_ATR_FIRST:
10996 case OP_ATR_LAST:
10997 type_arg = ada_index_type (type_arg, tem,
10998 ada_attribute_name (op));
10999 break;
11000 case OP_ATR_LENGTH:
11001 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11002 break;
11003 }
11004 }
11005
11006 return value_zero (type_arg, not_lval);
11007 }
11008 else if (type_arg == NULL)
11009 {
11010 arg1 = ada_coerce_ref (arg1);
11011
11012 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11013 arg1 = ada_coerce_to_simple_array (arg1);
11014
11015 if (op == OP_ATR_LENGTH)
11016 type = builtin_type (exp->gdbarch)->builtin_int;
11017 else
11018 {
11019 type = ada_index_type (value_type (arg1), tem,
11020 ada_attribute_name (op));
11021 if (type == NULL)
11022 type = builtin_type (exp->gdbarch)->builtin_int;
11023 }
11024
11025 switch (op)
11026 {
11027 default: /* Should never happen. */
11028 error (_("unexpected attribute encountered"));
11029 case OP_ATR_FIRST:
11030 return value_from_longest
11031 (type, ada_array_bound (arg1, tem, 0));
11032 case OP_ATR_LAST:
11033 return value_from_longest
11034 (type, ada_array_bound (arg1, tem, 1));
11035 case OP_ATR_LENGTH:
11036 return value_from_longest
11037 (type, ada_array_length (arg1, tem));
11038 }
11039 }
11040 else if (discrete_type_p (type_arg))
11041 {
11042 struct type *range_type;
11043 const char *name = ada_type_name (type_arg);
11044
11045 range_type = NULL;
11046 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
11047 range_type = to_fixed_range_type (type_arg, NULL);
11048 if (range_type == NULL)
11049 range_type = type_arg;
11050 switch (op)
11051 {
11052 default:
11053 error (_("unexpected attribute encountered"));
11054 case OP_ATR_FIRST:
11055 return value_from_longest
11056 (range_type, ada_discrete_type_low_bound (range_type));
11057 case OP_ATR_LAST:
11058 return value_from_longest
11059 (range_type, ada_discrete_type_high_bound (range_type));
11060 case OP_ATR_LENGTH:
11061 error (_("the 'length attribute applies only to array types"));
11062 }
11063 }
11064 else if (type_arg->code () == TYPE_CODE_FLT)
11065 error (_("unimplemented type attribute"));
11066 else
11067 {
11068 LONGEST low, high;
11069
11070 if (ada_is_constrained_packed_array_type (type_arg))
11071 type_arg = decode_constrained_packed_array_type (type_arg);
11072
11073 if (op == OP_ATR_LENGTH)
11074 type = builtin_type (exp->gdbarch)->builtin_int;
11075 else
11076 {
11077 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11078 if (type == NULL)
11079 type = builtin_type (exp->gdbarch)->builtin_int;
11080 }
11081
11082 switch (op)
11083 {
11084 default:
11085 error (_("unexpected attribute encountered"));
11086 case OP_ATR_FIRST:
11087 low = ada_array_bound_from_type (type_arg, tem, 0);
11088 return value_from_longest (type, low);
11089 case OP_ATR_LAST:
11090 high = ada_array_bound_from_type (type_arg, tem, 1);
11091 return value_from_longest (type, high);
11092 case OP_ATR_LENGTH:
11093 low = ada_array_bound_from_type (type_arg, tem, 0);
11094 high = ada_array_bound_from_type (type_arg, tem, 1);
11095 return value_from_longest (type, high - low + 1);
11096 }
11097 }
11098 }
11099
11100 case OP_ATR_TAG:
11101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11102 if (noside == EVAL_SKIP)
11103 goto nosideret;
11104
11105 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11106 return value_zero (ada_tag_type (arg1), not_lval);
11107
11108 return ada_value_tag (arg1);
11109
11110 case OP_ATR_MIN:
11111 case OP_ATR_MAX:
11112 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11115 if (noside == EVAL_SKIP)
11116 goto nosideret;
11117 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11118 return value_zero (value_type (arg1), not_lval);
11119 else
11120 {
11121 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11122 return value_binop (arg1, arg2,
11123 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11124 }
11125
11126 case OP_ATR_MODULUS:
11127 {
11128 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11129
11130 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11131 if (noside == EVAL_SKIP)
11132 goto nosideret;
11133
11134 if (!ada_is_modular_type (type_arg))
11135 error (_("'modulus must be applied to modular type"));
11136
11137 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11138 ada_modulus (type_arg));
11139 }
11140
11141
11142 case OP_ATR_POS:
11143 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145 if (noside == EVAL_SKIP)
11146 goto nosideret;
11147 type = builtin_type (exp->gdbarch)->builtin_int;
11148 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11149 return value_zero (type, not_lval);
11150 else
11151 return value_pos_atr (type, arg1);
11152
11153 case OP_ATR_SIZE:
11154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 type = value_type (arg1);
11156
11157 /* If the argument is a reference, then dereference its type, since
11158 the user is really asking for the size of the actual object,
11159 not the size of the pointer. */
11160 if (type->code () == TYPE_CODE_REF)
11161 type = TYPE_TARGET_TYPE (type);
11162
11163 if (noside == EVAL_SKIP)
11164 goto nosideret;
11165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11166 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11167 else
11168 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11169 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11170
11171 case OP_ATR_VAL:
11172 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 type = exp->elts[pc + 2].type;
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11178 return value_zero (type, not_lval);
11179 else
11180 return value_val_atr (type, arg1);
11181
11182 case BINOP_EXP:
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (value_type (arg1), not_lval);
11189 else
11190 {
11191 /* For integer exponentiation operations,
11192 only promote the first argument. */
11193 if (is_integral_type (value_type (arg2)))
11194 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11195 else
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11197
11198 return value_binop (arg1, arg2, op);
11199 }
11200
11201 case UNOP_PLUS:
11202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11203 if (noside == EVAL_SKIP)
11204 goto nosideret;
11205 else
11206 return arg1;
11207
11208 case UNOP_ABS:
11209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11210 if (noside == EVAL_SKIP)
11211 goto nosideret;
11212 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11213 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11214 return value_neg (arg1);
11215 else
11216 return arg1;
11217
11218 case UNOP_IND:
11219 preeval_pos = *pos;
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223 type = ada_check_typedef (value_type (arg1));
11224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11225 {
11226 if (ada_is_array_descriptor_type (type))
11227 /* GDB allows dereferencing GNAT array descriptors. */
11228 {
11229 struct type *arrType = ada_type_of_array (arg1, 0);
11230
11231 if (arrType == NULL)
11232 error (_("Attempt to dereference null array pointer."));
11233 return value_at_lazy (arrType, 0);
11234 }
11235 else if (type->code () == TYPE_CODE_PTR
11236 || type->code () == TYPE_CODE_REF
11237 /* In C you can dereference an array to get the 1st elt. */
11238 || type->code () == TYPE_CODE_ARRAY)
11239 {
11240 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11241 only be determined by inspecting the object's tag.
11242 This means that we need to evaluate completely the
11243 expression in order to get its type. */
11244
11245 if ((type->code () == TYPE_CODE_REF
11246 || type->code () == TYPE_CODE_PTR)
11247 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11248 {
11249 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11250 EVAL_NORMAL);
11251 type = value_type (ada_value_ind (arg1));
11252 }
11253 else
11254 {
11255 type = to_static_fixed_type
11256 (ada_aligned_type
11257 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11258 }
11259 ada_ensure_varsize_limit (type);
11260 return value_zero (type, lval_memory);
11261 }
11262 else if (type->code () == TYPE_CODE_INT)
11263 {
11264 /* GDB allows dereferencing an int. */
11265 if (expect_type == NULL)
11266 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11267 lval_memory);
11268 else
11269 {
11270 expect_type =
11271 to_static_fixed_type (ada_aligned_type (expect_type));
11272 return value_zero (expect_type, lval_memory);
11273 }
11274 }
11275 else
11276 error (_("Attempt to take contents of a non-pointer value."));
11277 }
11278 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11279 type = ada_check_typedef (value_type (arg1));
11280
11281 if (type->code () == TYPE_CODE_INT)
11282 /* GDB allows dereferencing an int. If we were given
11283 the expect_type, then use that as the target type.
11284 Otherwise, assume that the target type is an int. */
11285 {
11286 if (expect_type != NULL)
11287 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11288 arg1));
11289 else
11290 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11291 (CORE_ADDR) value_as_address (arg1));
11292 }
11293
11294 if (ada_is_array_descriptor_type (type))
11295 /* GDB allows dereferencing GNAT array descriptors. */
11296 return ada_coerce_to_simple_array (arg1);
11297 else
11298 return ada_value_ind (arg1);
11299
11300 case STRUCTOP_STRUCT:
11301 tem = longest_to_int (exp->elts[pc + 1].longconst);
11302 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11303 preeval_pos = *pos;
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
11306 goto nosideret;
11307 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11308 {
11309 struct type *type1 = value_type (arg1);
11310
11311 if (ada_is_tagged_type (type1, 1))
11312 {
11313 type = ada_lookup_struct_elt_type (type1,
11314 &exp->elts[pc + 2].string,
11315 1, 1);
11316
11317 /* If the field is not found, check if it exists in the
11318 extension of this object's type. This means that we
11319 need to evaluate completely the expression. */
11320
11321 if (type == NULL)
11322 {
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11324 EVAL_NORMAL);
11325 arg1 = ada_value_struct_elt (arg1,
11326 &exp->elts[pc + 2].string,
11327 0);
11328 arg1 = unwrap_value (arg1);
11329 type = value_type (ada_to_fixed_value (arg1));
11330 }
11331 }
11332 else
11333 type =
11334 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11335 0);
11336
11337 return value_zero (ada_aligned_type (type), lval_memory);
11338 }
11339 else
11340 {
11341 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11342 arg1 = unwrap_value (arg1);
11343 return ada_to_fixed_value (arg1);
11344 }
11345
11346 case OP_TYPE:
11347 /* The value is not supposed to be used. This is here to make it
11348 easier to accommodate expressions that contain types. */
11349 (*pos) += 2;
11350 if (noside == EVAL_SKIP)
11351 goto nosideret;
11352 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 return allocate_value (exp->elts[pc + 1].type);
11354 else
11355 error (_("Attempt to use a type name as an expression"));
11356
11357 case OP_AGGREGATE:
11358 case OP_CHOICES:
11359 case OP_OTHERS:
11360 case OP_DISCRETE_RANGE:
11361 case OP_POSITIONAL:
11362 case OP_NAME:
11363 if (noside == EVAL_NORMAL)
11364 switch (op)
11365 {
11366 case OP_NAME:
11367 error (_("Undefined name, ambiguous name, or renaming used in "
11368 "component association: %s."), &exp->elts[pc+2].string);
11369 case OP_AGGREGATE:
11370 error (_("Aggregates only allowed on the right of an assignment"));
11371 default:
11372 internal_error (__FILE__, __LINE__,
11373 _("aggregate apparently mangled"));
11374 }
11375
11376 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11377 *pos += oplen - 1;
11378 for (tem = 0; tem < nargs; tem += 1)
11379 ada_evaluate_subexp (NULL, exp, pos, noside);
11380 goto nosideret;
11381 }
11382
11383 nosideret:
11384 return eval_skip_value (exp);
11385 }
11386 \f
11387
11388 /* Fixed point */
11389
11390 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11391 type name that encodes the 'small and 'delta information.
11392 Otherwise, return NULL. */
11393
11394 static const char *
11395 gnat_encoded_fixed_type_info (struct type *type)
11396 {
11397 const char *name = ada_type_name (type);
11398 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11399
11400 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11401 {
11402 const char *tail = strstr (name, "___XF_");
11403
11404 if (tail == NULL)
11405 return NULL;
11406 else
11407 return tail + 5;
11408 }
11409 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11410 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11411 else
11412 return NULL;
11413 }
11414
11415 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11416
11417 int
11418 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11419 {
11420 return gnat_encoded_fixed_type_info (type) != NULL;
11421 }
11422
11423 /* Return non-zero iff TYPE represents a System.Address type. */
11424
11425 int
11426 ada_is_system_address_type (struct type *type)
11427 {
11428 return (type->name () && strcmp (type->name (), "system__address") == 0);
11429 }
11430
11431 /* Assuming that TYPE is the representation of an Ada fixed-point
11432 type, return the target floating-point type to be used to represent
11433 of this type during internal computation. */
11434
11435 static struct type *
11436 ada_scaling_type (struct type *type)
11437 {
11438 return builtin_type (get_type_arch (type))->builtin_long_double;
11439 }
11440
11441 /* Assuming that TYPE is the representation of an Ada fixed-point
11442 type, return its delta, or NULL if the type is malformed and the
11443 delta cannot be determined. */
11444
11445 struct value *
11446 gnat_encoded_fixed_point_delta (struct type *type)
11447 {
11448 const char *encoding = gnat_encoded_fixed_type_info (type);
11449 struct type *scale_type = ada_scaling_type (type);
11450
11451 long long num, den;
11452
11453 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11454 return nullptr;
11455 else
11456 return value_binop (value_from_longest (scale_type, num),
11457 value_from_longest (scale_type, den), BINOP_DIV);
11458 }
11459
11460 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11461 the scaling factor ('SMALL value) associated with the type. */
11462
11463 struct value *
11464 ada_scaling_factor (struct type *type)
11465 {
11466 const char *encoding = gnat_encoded_fixed_type_info (type);
11467 struct type *scale_type = ada_scaling_type (type);
11468
11469 long long num0, den0, num1, den1;
11470 int n;
11471
11472 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11473 &num0, &den0, &num1, &den1);
11474
11475 if (n < 2)
11476 return value_from_longest (scale_type, 1);
11477 else if (n == 4)
11478 return value_binop (value_from_longest (scale_type, num1),
11479 value_from_longest (scale_type, den1), BINOP_DIV);
11480 else
11481 return value_binop (value_from_longest (scale_type, num0),
11482 value_from_longest (scale_type, den0), BINOP_DIV);
11483 }
11484
11485 \f
11486
11487 /* Range types */
11488
11489 /* Scan STR beginning at position K for a discriminant name, and
11490 return the value of that discriminant field of DVAL in *PX. If
11491 PNEW_K is not null, put the position of the character beyond the
11492 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11493 not alter *PX and *PNEW_K if unsuccessful. */
11494
11495 static int
11496 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11497 int *pnew_k)
11498 {
11499 static char *bound_buffer = NULL;
11500 static size_t bound_buffer_len = 0;
11501 const char *pstart, *pend, *bound;
11502 struct value *bound_val;
11503
11504 if (dval == NULL || str == NULL || str[k] == '\0')
11505 return 0;
11506
11507 pstart = str + k;
11508 pend = strstr (pstart, "__");
11509 if (pend == NULL)
11510 {
11511 bound = pstart;
11512 k += strlen (bound);
11513 }
11514 else
11515 {
11516 int len = pend - pstart;
11517
11518 /* Strip __ and beyond. */
11519 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11520 strncpy (bound_buffer, pstart, len);
11521 bound_buffer[len] = '\0';
11522
11523 bound = bound_buffer;
11524 k = pend - str;
11525 }
11526
11527 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11528 if (bound_val == NULL)
11529 return 0;
11530
11531 *px = value_as_long (bound_val);
11532 if (pnew_k != NULL)
11533 *pnew_k = k;
11534 return 1;
11535 }
11536
11537 /* Value of variable named NAME in the current environment. If
11538 no such variable found, then if ERR_MSG is null, returns 0, and
11539 otherwise causes an error with message ERR_MSG. */
11540
11541 static struct value *
11542 get_var_value (const char *name, const char *err_msg)
11543 {
11544 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11545
11546 std::vector<struct block_symbol> syms;
11547 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11548 get_selected_block (0),
11549 VAR_DOMAIN, &syms, 1);
11550
11551 if (nsyms != 1)
11552 {
11553 if (err_msg == NULL)
11554 return 0;
11555 else
11556 error (("%s"), err_msg);
11557 }
11558
11559 return value_of_variable (syms[0].symbol, syms[0].block);
11560 }
11561
11562 /* Value of integer variable named NAME in the current environment.
11563 If no such variable is found, returns false. Otherwise, sets VALUE
11564 to the variable's value and returns true. */
11565
11566 bool
11567 get_int_var_value (const char *name, LONGEST &value)
11568 {
11569 struct value *var_val = get_var_value (name, 0);
11570
11571 if (var_val == 0)
11572 return false;
11573
11574 value = value_as_long (var_val);
11575 return true;
11576 }
11577
11578
11579 /* Return a range type whose base type is that of the range type named
11580 NAME in the current environment, and whose bounds are calculated
11581 from NAME according to the GNAT range encoding conventions.
11582 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11583 corresponding range type from debug information; fall back to using it
11584 if symbol lookup fails. If a new type must be created, allocate it
11585 like ORIG_TYPE was. The bounds information, in general, is encoded
11586 in NAME, the base type given in the named range type. */
11587
11588 static struct type *
11589 to_fixed_range_type (struct type *raw_type, struct value *dval)
11590 {
11591 const char *name;
11592 struct type *base_type;
11593 const char *subtype_info;
11594
11595 gdb_assert (raw_type != NULL);
11596 gdb_assert (raw_type->name () != NULL);
11597
11598 if (raw_type->code () == TYPE_CODE_RANGE)
11599 base_type = TYPE_TARGET_TYPE (raw_type);
11600 else
11601 base_type = raw_type;
11602
11603 name = raw_type->name ();
11604 subtype_info = strstr (name, "___XD");
11605 if (subtype_info == NULL)
11606 {
11607 LONGEST L = ada_discrete_type_low_bound (raw_type);
11608 LONGEST U = ada_discrete_type_high_bound (raw_type);
11609
11610 if (L < INT_MIN || U > INT_MAX)
11611 return raw_type;
11612 else
11613 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11614 L, U);
11615 }
11616 else
11617 {
11618 static char *name_buf = NULL;
11619 static size_t name_len = 0;
11620 int prefix_len = subtype_info - name;
11621 LONGEST L, U;
11622 struct type *type;
11623 const char *bounds_str;
11624 int n;
11625
11626 GROW_VECT (name_buf, name_len, prefix_len + 5);
11627 strncpy (name_buf, name, prefix_len);
11628 name_buf[prefix_len] = '\0';
11629
11630 subtype_info += 5;
11631 bounds_str = strchr (subtype_info, '_');
11632 n = 1;
11633
11634 if (*subtype_info == 'L')
11635 {
11636 if (!ada_scan_number (bounds_str, n, &L, &n)
11637 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11638 return raw_type;
11639 if (bounds_str[n] == '_')
11640 n += 2;
11641 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11642 n += 1;
11643 subtype_info += 1;
11644 }
11645 else
11646 {
11647 strcpy (name_buf + prefix_len, "___L");
11648 if (!get_int_var_value (name_buf, L))
11649 {
11650 lim_warning (_("Unknown lower bound, using 1."));
11651 L = 1;
11652 }
11653 }
11654
11655 if (*subtype_info == 'U')
11656 {
11657 if (!ada_scan_number (bounds_str, n, &U, &n)
11658 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11659 return raw_type;
11660 }
11661 else
11662 {
11663 strcpy (name_buf + prefix_len, "___U");
11664 if (!get_int_var_value (name_buf, U))
11665 {
11666 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11667 U = L;
11668 }
11669 }
11670
11671 type = create_static_range_type (alloc_type_copy (raw_type),
11672 base_type, L, U);
11673 /* create_static_range_type alters the resulting type's length
11674 to match the size of the base_type, which is not what we want.
11675 Set it back to the original range type's length. */
11676 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11677 type->set_name (name);
11678 return type;
11679 }
11680 }
11681
11682 /* True iff NAME is the name of a range type. */
11683
11684 int
11685 ada_is_range_type_name (const char *name)
11686 {
11687 return (name != NULL && strstr (name, "___XD"));
11688 }
11689 \f
11690
11691 /* Modular types */
11692
11693 /* True iff TYPE is an Ada modular type. */
11694
11695 int
11696 ada_is_modular_type (struct type *type)
11697 {
11698 struct type *subranged_type = get_base_type (type);
11699
11700 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11701 && subranged_type->code () == TYPE_CODE_INT
11702 && TYPE_UNSIGNED (subranged_type));
11703 }
11704
11705 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11706
11707 ULONGEST
11708 ada_modulus (struct type *type)
11709 {
11710 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11711 }
11712 \f
11713
11714 /* Ada exception catchpoint support:
11715 ---------------------------------
11716
11717 We support 3 kinds of exception catchpoints:
11718 . catchpoints on Ada exceptions
11719 . catchpoints on unhandled Ada exceptions
11720 . catchpoints on failed assertions
11721
11722 Exceptions raised during failed assertions, or unhandled exceptions
11723 could perfectly be caught with the general catchpoint on Ada exceptions.
11724 However, we can easily differentiate these two special cases, and having
11725 the option to distinguish these two cases from the rest can be useful
11726 to zero-in on certain situations.
11727
11728 Exception catchpoints are a specialized form of breakpoint,
11729 since they rely on inserting breakpoints inside known routines
11730 of the GNAT runtime. The implementation therefore uses a standard
11731 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11732 of breakpoint_ops.
11733
11734 Support in the runtime for exception catchpoints have been changed
11735 a few times already, and these changes affect the implementation
11736 of these catchpoints. In order to be able to support several
11737 variants of the runtime, we use a sniffer that will determine
11738 the runtime variant used by the program being debugged. */
11739
11740 /* Ada's standard exceptions.
11741
11742 The Ada 83 standard also defined Numeric_Error. But there so many
11743 situations where it was unclear from the Ada 83 Reference Manual
11744 (RM) whether Constraint_Error or Numeric_Error should be raised,
11745 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11746 Interpretation saying that anytime the RM says that Numeric_Error
11747 should be raised, the implementation may raise Constraint_Error.
11748 Ada 95 went one step further and pretty much removed Numeric_Error
11749 from the list of standard exceptions (it made it a renaming of
11750 Constraint_Error, to help preserve compatibility when compiling
11751 an Ada83 compiler). As such, we do not include Numeric_Error from
11752 this list of standard exceptions. */
11753
11754 static const char *standard_exc[] = {
11755 "constraint_error",
11756 "program_error",
11757 "storage_error",
11758 "tasking_error"
11759 };
11760
11761 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11762
11763 /* A structure that describes how to support exception catchpoints
11764 for a given executable. */
11765
11766 struct exception_support_info
11767 {
11768 /* The name of the symbol to break on in order to insert
11769 a catchpoint on exceptions. */
11770 const char *catch_exception_sym;
11771
11772 /* The name of the symbol to break on in order to insert
11773 a catchpoint on unhandled exceptions. */
11774 const char *catch_exception_unhandled_sym;
11775
11776 /* The name of the symbol to break on in order to insert
11777 a catchpoint on failed assertions. */
11778 const char *catch_assert_sym;
11779
11780 /* The name of the symbol to break on in order to insert
11781 a catchpoint on exception handling. */
11782 const char *catch_handlers_sym;
11783
11784 /* Assuming that the inferior just triggered an unhandled exception
11785 catchpoint, this function is responsible for returning the address
11786 in inferior memory where the name of that exception is stored.
11787 Return zero if the address could not be computed. */
11788 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11789 };
11790
11791 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11792 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11793
11794 /* The following exception support info structure describes how to
11795 implement exception catchpoints with the latest version of the
11796 Ada runtime (as of 2019-08-??). */
11797
11798 static const struct exception_support_info default_exception_support_info =
11799 {
11800 "__gnat_debug_raise_exception", /* catch_exception_sym */
11801 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11802 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11803 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11804 ada_unhandled_exception_name_addr
11805 };
11806
11807 /* The following exception support info structure describes how to
11808 implement exception catchpoints with an earlier version of the
11809 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11810
11811 static const struct exception_support_info exception_support_info_v0 =
11812 {
11813 "__gnat_debug_raise_exception", /* catch_exception_sym */
11814 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11815 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11816 "__gnat_begin_handler", /* catch_handlers_sym */
11817 ada_unhandled_exception_name_addr
11818 };
11819
11820 /* The following exception support info structure describes how to
11821 implement exception catchpoints with a slightly older version
11822 of the Ada runtime. */
11823
11824 static const struct exception_support_info exception_support_info_fallback =
11825 {
11826 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11827 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11828 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11829 "__gnat_begin_handler", /* catch_handlers_sym */
11830 ada_unhandled_exception_name_addr_from_raise
11831 };
11832
11833 /* Return nonzero if we can detect the exception support routines
11834 described in EINFO.
11835
11836 This function errors out if an abnormal situation is detected
11837 (for instance, if we find the exception support routines, but
11838 that support is found to be incomplete). */
11839
11840 static int
11841 ada_has_this_exception_support (const struct exception_support_info *einfo)
11842 {
11843 struct symbol *sym;
11844
11845 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11846 that should be compiled with debugging information. As a result, we
11847 expect to find that symbol in the symtabs. */
11848
11849 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11850 if (sym == NULL)
11851 {
11852 /* Perhaps we did not find our symbol because the Ada runtime was
11853 compiled without debugging info, or simply stripped of it.
11854 It happens on some GNU/Linux distributions for instance, where
11855 users have to install a separate debug package in order to get
11856 the runtime's debugging info. In that situation, let the user
11857 know why we cannot insert an Ada exception catchpoint.
11858
11859 Note: Just for the purpose of inserting our Ada exception
11860 catchpoint, we could rely purely on the associated minimal symbol.
11861 But we would be operating in degraded mode anyway, since we are
11862 still lacking the debugging info needed later on to extract
11863 the name of the exception being raised (this name is printed in
11864 the catchpoint message, and is also used when trying to catch
11865 a specific exception). We do not handle this case for now. */
11866 struct bound_minimal_symbol msym
11867 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11868
11869 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11870 error (_("Your Ada runtime appears to be missing some debugging "
11871 "information.\nCannot insert Ada exception catchpoint "
11872 "in this configuration."));
11873
11874 return 0;
11875 }
11876
11877 /* Make sure that the symbol we found corresponds to a function. */
11878
11879 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11880 {
11881 error (_("Symbol \"%s\" is not a function (class = %d)"),
11882 sym->linkage_name (), SYMBOL_CLASS (sym));
11883 return 0;
11884 }
11885
11886 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11887 if (sym == NULL)
11888 {
11889 struct bound_minimal_symbol msym
11890 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11891
11892 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11893 error (_("Your Ada runtime appears to be missing some debugging "
11894 "information.\nCannot insert Ada exception catchpoint "
11895 "in this configuration."));
11896
11897 return 0;
11898 }
11899
11900 /* Make sure that the symbol we found corresponds to a function. */
11901
11902 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11903 {
11904 error (_("Symbol \"%s\" is not a function (class = %d)"),
11905 sym->linkage_name (), SYMBOL_CLASS (sym));
11906 return 0;
11907 }
11908
11909 return 1;
11910 }
11911
11912 /* Inspect the Ada runtime and determine which exception info structure
11913 should be used to provide support for exception catchpoints.
11914
11915 This function will always set the per-inferior exception_info,
11916 or raise an error. */
11917
11918 static void
11919 ada_exception_support_info_sniffer (void)
11920 {
11921 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11922
11923 /* If the exception info is already known, then no need to recompute it. */
11924 if (data->exception_info != NULL)
11925 return;
11926
11927 /* Check the latest (default) exception support info. */
11928 if (ada_has_this_exception_support (&default_exception_support_info))
11929 {
11930 data->exception_info = &default_exception_support_info;
11931 return;
11932 }
11933
11934 /* Try the v0 exception suport info. */
11935 if (ada_has_this_exception_support (&exception_support_info_v0))
11936 {
11937 data->exception_info = &exception_support_info_v0;
11938 return;
11939 }
11940
11941 /* Try our fallback exception suport info. */
11942 if (ada_has_this_exception_support (&exception_support_info_fallback))
11943 {
11944 data->exception_info = &exception_support_info_fallback;
11945 return;
11946 }
11947
11948 /* Sometimes, it is normal for us to not be able to find the routine
11949 we are looking for. This happens when the program is linked with
11950 the shared version of the GNAT runtime, and the program has not been
11951 started yet. Inform the user of these two possible causes if
11952 applicable. */
11953
11954 if (ada_update_initial_language (language_unknown) != language_ada)
11955 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11956
11957 /* If the symbol does not exist, then check that the program is
11958 already started, to make sure that shared libraries have been
11959 loaded. If it is not started, this may mean that the symbol is
11960 in a shared library. */
11961
11962 if (inferior_ptid.pid () == 0)
11963 error (_("Unable to insert catchpoint. Try to start the program first."));
11964
11965 /* At this point, we know that we are debugging an Ada program and
11966 that the inferior has been started, but we still are not able to
11967 find the run-time symbols. That can mean that we are in
11968 configurable run time mode, or that a-except as been optimized
11969 out by the linker... In any case, at this point it is not worth
11970 supporting this feature. */
11971
11972 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11973 }
11974
11975 /* True iff FRAME is very likely to be that of a function that is
11976 part of the runtime system. This is all very heuristic, but is
11977 intended to be used as advice as to what frames are uninteresting
11978 to most users. */
11979
11980 static int
11981 is_known_support_routine (struct frame_info *frame)
11982 {
11983 enum language func_lang;
11984 int i;
11985 const char *fullname;
11986
11987 /* If this code does not have any debugging information (no symtab),
11988 This cannot be any user code. */
11989
11990 symtab_and_line sal = find_frame_sal (frame);
11991 if (sal.symtab == NULL)
11992 return 1;
11993
11994 /* If there is a symtab, but the associated source file cannot be
11995 located, then assume this is not user code: Selecting a frame
11996 for which we cannot display the code would not be very helpful
11997 for the user. This should also take care of case such as VxWorks
11998 where the kernel has some debugging info provided for a few units. */
11999
12000 fullname = symtab_to_fullname (sal.symtab);
12001 if (access (fullname, R_OK) != 0)
12002 return 1;
12003
12004 /* Check the unit filename against the Ada runtime file naming.
12005 We also check the name of the objfile against the name of some
12006 known system libraries that sometimes come with debugging info
12007 too. */
12008
12009 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12010 {
12011 re_comp (known_runtime_file_name_patterns[i]);
12012 if (re_exec (lbasename (sal.symtab->filename)))
12013 return 1;
12014 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12015 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12016 return 1;
12017 }
12018
12019 /* Check whether the function is a GNAT-generated entity. */
12020
12021 gdb::unique_xmalloc_ptr<char> func_name
12022 = find_frame_funname (frame, &func_lang, NULL);
12023 if (func_name == NULL)
12024 return 1;
12025
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 {
12028 re_comp (known_auxiliary_function_name_patterns[i]);
12029 if (re_exec (func_name.get ()))
12030 return 1;
12031 }
12032
12033 return 0;
12034 }
12035
12036 /* Find the first frame that contains debugging information and that is not
12037 part of the Ada run-time, starting from FI and moving upward. */
12038
12039 void
12040 ada_find_printable_frame (struct frame_info *fi)
12041 {
12042 for (; fi != NULL; fi = get_prev_frame (fi))
12043 {
12044 if (!is_known_support_routine (fi))
12045 {
12046 select_frame (fi);
12047 break;
12048 }
12049 }
12050
12051 }
12052
12053 /* Assuming that the inferior just triggered an unhandled exception
12054 catchpoint, return the address in inferior memory where the name
12055 of the exception is stored.
12056
12057 Return zero if the address could not be computed. */
12058
12059 static CORE_ADDR
12060 ada_unhandled_exception_name_addr (void)
12061 {
12062 return parse_and_eval_address ("e.full_name");
12063 }
12064
12065 /* Same as ada_unhandled_exception_name_addr, except that this function
12066 should be used when the inferior uses an older version of the runtime,
12067 where the exception name needs to be extracted from a specific frame
12068 several frames up in the callstack. */
12069
12070 static CORE_ADDR
12071 ada_unhandled_exception_name_addr_from_raise (void)
12072 {
12073 int frame_level;
12074 struct frame_info *fi;
12075 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12076
12077 /* To determine the name of this exception, we need to select
12078 the frame corresponding to RAISE_SYM_NAME. This frame is
12079 at least 3 levels up, so we simply skip the first 3 frames
12080 without checking the name of their associated function. */
12081 fi = get_current_frame ();
12082 for (frame_level = 0; frame_level < 3; frame_level += 1)
12083 if (fi != NULL)
12084 fi = get_prev_frame (fi);
12085
12086 while (fi != NULL)
12087 {
12088 enum language func_lang;
12089
12090 gdb::unique_xmalloc_ptr<char> func_name
12091 = find_frame_funname (fi, &func_lang, NULL);
12092 if (func_name != NULL)
12093 {
12094 if (strcmp (func_name.get (),
12095 data->exception_info->catch_exception_sym) == 0)
12096 break; /* We found the frame we were looking for... */
12097 }
12098 fi = get_prev_frame (fi);
12099 }
12100
12101 if (fi == NULL)
12102 return 0;
12103
12104 select_frame (fi);
12105 return parse_and_eval_address ("id.full_name");
12106 }
12107
12108 /* Assuming the inferior just triggered an Ada exception catchpoint
12109 (of any type), return the address in inferior memory where the name
12110 of the exception is stored, if applicable.
12111
12112 Assumes the selected frame is the current frame.
12113
12114 Return zero if the address could not be computed, or if not relevant. */
12115
12116 static CORE_ADDR
12117 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12118 struct breakpoint *b)
12119 {
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
12122 switch (ex)
12123 {
12124 case ada_catch_exception:
12125 return (parse_and_eval_address ("e.full_name"));
12126 break;
12127
12128 case ada_catch_exception_unhandled:
12129 return data->exception_info->unhandled_exception_name_addr ();
12130 break;
12131
12132 case ada_catch_handlers:
12133 return 0; /* The runtimes does not provide access to the exception
12134 name. */
12135 break;
12136
12137 case ada_catch_assert:
12138 return 0; /* Exception name is not relevant in this case. */
12139 break;
12140
12141 default:
12142 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12143 break;
12144 }
12145
12146 return 0; /* Should never be reached. */
12147 }
12148
12149 /* Assuming the inferior is stopped at an exception catchpoint,
12150 return the message which was associated to the exception, if
12151 available. Return NULL if the message could not be retrieved.
12152
12153 Note: The exception message can be associated to an exception
12154 either through the use of the Raise_Exception function, or
12155 more simply (Ada 2005 and later), via:
12156
12157 raise Exception_Name with "exception message";
12158
12159 */
12160
12161 static gdb::unique_xmalloc_ptr<char>
12162 ada_exception_message_1 (void)
12163 {
12164 struct value *e_msg_val;
12165 int e_msg_len;
12166
12167 /* For runtimes that support this feature, the exception message
12168 is passed as an unbounded string argument called "message". */
12169 e_msg_val = parse_and_eval ("message");
12170 if (e_msg_val == NULL)
12171 return NULL; /* Exception message not supported. */
12172
12173 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12174 gdb_assert (e_msg_val != NULL);
12175 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12176
12177 /* If the message string is empty, then treat it as if there was
12178 no exception message. */
12179 if (e_msg_len <= 0)
12180 return NULL;
12181
12182 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12183 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12184 e_msg.get ()[e_msg_len] = '\0';
12185
12186 return e_msg;
12187 }
12188
12189 /* Same as ada_exception_message_1, except that all exceptions are
12190 contained here (returning NULL instead). */
12191
12192 static gdb::unique_xmalloc_ptr<char>
12193 ada_exception_message (void)
12194 {
12195 gdb::unique_xmalloc_ptr<char> e_msg;
12196
12197 try
12198 {
12199 e_msg = ada_exception_message_1 ();
12200 }
12201 catch (const gdb_exception_error &e)
12202 {
12203 e_msg.reset (nullptr);
12204 }
12205
12206 return e_msg;
12207 }
12208
12209 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12210 any error that ada_exception_name_addr_1 might cause to be thrown.
12211 When an error is intercepted, a warning with the error message is printed,
12212 and zero is returned. */
12213
12214 static CORE_ADDR
12215 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12216 struct breakpoint *b)
12217 {
12218 CORE_ADDR result = 0;
12219
12220 try
12221 {
12222 result = ada_exception_name_addr_1 (ex, b);
12223 }
12224
12225 catch (const gdb_exception_error &e)
12226 {
12227 warning (_("failed to get exception name: %s"), e.what ());
12228 return 0;
12229 }
12230
12231 return result;
12232 }
12233
12234 static std::string ada_exception_catchpoint_cond_string
12235 (const char *excep_string,
12236 enum ada_exception_catchpoint_kind ex);
12237
12238 /* Ada catchpoints.
12239
12240 In the case of catchpoints on Ada exceptions, the catchpoint will
12241 stop the target on every exception the program throws. When a user
12242 specifies the name of a specific exception, we translate this
12243 request into a condition expression (in text form), and then parse
12244 it into an expression stored in each of the catchpoint's locations.
12245 We then use this condition to check whether the exception that was
12246 raised is the one the user is interested in. If not, then the
12247 target is resumed again. We store the name of the requested
12248 exception, in order to be able to re-set the condition expression
12249 when symbols change. */
12250
12251 /* An instance of this type is used to represent an Ada catchpoint
12252 breakpoint location. */
12253
12254 class ada_catchpoint_location : public bp_location
12255 {
12256 public:
12257 ada_catchpoint_location (breakpoint *owner)
12258 : bp_location (owner, bp_loc_software_breakpoint)
12259 {}
12260
12261 /* The condition that checks whether the exception that was raised
12262 is the specific exception the user specified on catchpoint
12263 creation. */
12264 expression_up excep_cond_expr;
12265 };
12266
12267 /* An instance of this type is used to represent an Ada catchpoint. */
12268
12269 struct ada_catchpoint : public breakpoint
12270 {
12271 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12272 : m_kind (kind)
12273 {
12274 }
12275
12276 /* The name of the specific exception the user specified. */
12277 std::string excep_string;
12278
12279 /* What kind of catchpoint this is. */
12280 enum ada_exception_catchpoint_kind m_kind;
12281 };
12282
12283 /* Parse the exception condition string in the context of each of the
12284 catchpoint's locations, and store them for later evaluation. */
12285
12286 static void
12287 create_excep_cond_exprs (struct ada_catchpoint *c,
12288 enum ada_exception_catchpoint_kind ex)
12289 {
12290 struct bp_location *bl;
12291
12292 /* Nothing to do if there's no specific exception to catch. */
12293 if (c->excep_string.empty ())
12294 return;
12295
12296 /* Same if there are no locations... */
12297 if (c->loc == NULL)
12298 return;
12299
12300 /* Compute the condition expression in text form, from the specific
12301 expection we want to catch. */
12302 std::string cond_string
12303 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12304
12305 /* Iterate over all the catchpoint's locations, and parse an
12306 expression for each. */
12307 for (bl = c->loc; bl != NULL; bl = bl->next)
12308 {
12309 struct ada_catchpoint_location *ada_loc
12310 = (struct ada_catchpoint_location *) bl;
12311 expression_up exp;
12312
12313 if (!bl->shlib_disabled)
12314 {
12315 const char *s;
12316
12317 s = cond_string.c_str ();
12318 try
12319 {
12320 exp = parse_exp_1 (&s, bl->address,
12321 block_for_pc (bl->address),
12322 0);
12323 }
12324 catch (const gdb_exception_error &e)
12325 {
12326 warning (_("failed to reevaluate internal exception condition "
12327 "for catchpoint %d: %s"),
12328 c->number, e.what ());
12329 }
12330 }
12331
12332 ada_loc->excep_cond_expr = std::move (exp);
12333 }
12334 }
12335
12336 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12337 structure for all exception catchpoint kinds. */
12338
12339 static struct bp_location *
12340 allocate_location_exception (struct breakpoint *self)
12341 {
12342 return new ada_catchpoint_location (self);
12343 }
12344
12345 /* Implement the RE_SET method in the breakpoint_ops structure for all
12346 exception catchpoint kinds. */
12347
12348 static void
12349 re_set_exception (struct breakpoint *b)
12350 {
12351 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12352
12353 /* Call the base class's method. This updates the catchpoint's
12354 locations. */
12355 bkpt_breakpoint_ops.re_set (b);
12356
12357 /* Reparse the exception conditional expressions. One for each
12358 location. */
12359 create_excep_cond_exprs (c, c->m_kind);
12360 }
12361
12362 /* Returns true if we should stop for this breakpoint hit. If the
12363 user specified a specific exception, we only want to cause a stop
12364 if the program thrown that exception. */
12365
12366 static int
12367 should_stop_exception (const struct bp_location *bl)
12368 {
12369 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12370 const struct ada_catchpoint_location *ada_loc
12371 = (const struct ada_catchpoint_location *) bl;
12372 int stop;
12373
12374 struct internalvar *var = lookup_internalvar ("_ada_exception");
12375 if (c->m_kind == ada_catch_assert)
12376 clear_internalvar (var);
12377 else
12378 {
12379 try
12380 {
12381 const char *expr;
12382
12383 if (c->m_kind == ada_catch_handlers)
12384 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12385 ".all.occurrence.id");
12386 else
12387 expr = "e";
12388
12389 struct value *exc = parse_and_eval (expr);
12390 set_internalvar (var, exc);
12391 }
12392 catch (const gdb_exception_error &ex)
12393 {
12394 clear_internalvar (var);
12395 }
12396 }
12397
12398 /* With no specific exception, should always stop. */
12399 if (c->excep_string.empty ())
12400 return 1;
12401
12402 if (ada_loc->excep_cond_expr == NULL)
12403 {
12404 /* We will have a NULL expression if back when we were creating
12405 the expressions, this location's had failed to parse. */
12406 return 1;
12407 }
12408
12409 stop = 1;
12410 try
12411 {
12412 struct value *mark;
12413
12414 mark = value_mark ();
12415 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12416 value_free_to_mark (mark);
12417 }
12418 catch (const gdb_exception &ex)
12419 {
12420 exception_fprintf (gdb_stderr, ex,
12421 _("Error in testing exception condition:\n"));
12422 }
12423
12424 return stop;
12425 }
12426
12427 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12428 for all exception catchpoint kinds. */
12429
12430 static void
12431 check_status_exception (bpstat bs)
12432 {
12433 bs->stop = should_stop_exception (bs->bp_location_at);
12434 }
12435
12436 /* Implement the PRINT_IT method in the breakpoint_ops structure
12437 for all exception catchpoint kinds. */
12438
12439 static enum print_stop_action
12440 print_it_exception (bpstat bs)
12441 {
12442 struct ui_out *uiout = current_uiout;
12443 struct breakpoint *b = bs->breakpoint_at;
12444
12445 annotate_catchpoint (b->number);
12446
12447 if (uiout->is_mi_like_p ())
12448 {
12449 uiout->field_string ("reason",
12450 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12451 uiout->field_string ("disp", bpdisp_text (b->disposition));
12452 }
12453
12454 uiout->text (b->disposition == disp_del
12455 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12456 uiout->field_signed ("bkptno", b->number);
12457 uiout->text (", ");
12458
12459 /* ada_exception_name_addr relies on the selected frame being the
12460 current frame. Need to do this here because this function may be
12461 called more than once when printing a stop, and below, we'll
12462 select the first frame past the Ada run-time (see
12463 ada_find_printable_frame). */
12464 select_frame (get_current_frame ());
12465
12466 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12467 switch (c->m_kind)
12468 {
12469 case ada_catch_exception:
12470 case ada_catch_exception_unhandled:
12471 case ada_catch_handlers:
12472 {
12473 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12474 char exception_name[256];
12475
12476 if (addr != 0)
12477 {
12478 read_memory (addr, (gdb_byte *) exception_name,
12479 sizeof (exception_name) - 1);
12480 exception_name [sizeof (exception_name) - 1] = '\0';
12481 }
12482 else
12483 {
12484 /* For some reason, we were unable to read the exception
12485 name. This could happen if the Runtime was compiled
12486 without debugging info, for instance. In that case,
12487 just replace the exception name by the generic string
12488 "exception" - it will read as "an exception" in the
12489 notification we are about to print. */
12490 memcpy (exception_name, "exception", sizeof ("exception"));
12491 }
12492 /* In the case of unhandled exception breakpoints, we print
12493 the exception name as "unhandled EXCEPTION_NAME", to make
12494 it clearer to the user which kind of catchpoint just got
12495 hit. We used ui_out_text to make sure that this extra
12496 info does not pollute the exception name in the MI case. */
12497 if (c->m_kind == ada_catch_exception_unhandled)
12498 uiout->text ("unhandled ");
12499 uiout->field_string ("exception-name", exception_name);
12500 }
12501 break;
12502 case ada_catch_assert:
12503 /* In this case, the name of the exception is not really
12504 important. Just print "failed assertion" to make it clearer
12505 that his program just hit an assertion-failure catchpoint.
12506 We used ui_out_text because this info does not belong in
12507 the MI output. */
12508 uiout->text ("failed assertion");
12509 break;
12510 }
12511
12512 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12513 if (exception_message != NULL)
12514 {
12515 uiout->text (" (");
12516 uiout->field_string ("exception-message", exception_message.get ());
12517 uiout->text (")");
12518 }
12519
12520 uiout->text (" at ");
12521 ada_find_printable_frame (get_current_frame ());
12522
12523 return PRINT_SRC_AND_LOC;
12524 }
12525
12526 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12527 for all exception catchpoint kinds. */
12528
12529 static void
12530 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12531 {
12532 struct ui_out *uiout = current_uiout;
12533 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12534 struct value_print_options opts;
12535
12536 get_user_print_options (&opts);
12537
12538 if (opts.addressprint)
12539 uiout->field_skip ("addr");
12540
12541 annotate_field (5);
12542 switch (c->m_kind)
12543 {
12544 case ada_catch_exception:
12545 if (!c->excep_string.empty ())
12546 {
12547 std::string msg = string_printf (_("`%s' Ada exception"),
12548 c->excep_string.c_str ());
12549
12550 uiout->field_string ("what", msg);
12551 }
12552 else
12553 uiout->field_string ("what", "all Ada exceptions");
12554
12555 break;
12556
12557 case ada_catch_exception_unhandled:
12558 uiout->field_string ("what", "unhandled Ada exceptions");
12559 break;
12560
12561 case ada_catch_handlers:
12562 if (!c->excep_string.empty ())
12563 {
12564 uiout->field_fmt ("what",
12565 _("`%s' Ada exception handlers"),
12566 c->excep_string.c_str ());
12567 }
12568 else
12569 uiout->field_string ("what", "all Ada exceptions handlers");
12570 break;
12571
12572 case ada_catch_assert:
12573 uiout->field_string ("what", "failed Ada assertions");
12574 break;
12575
12576 default:
12577 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12578 break;
12579 }
12580 }
12581
12582 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12583 for all exception catchpoint kinds. */
12584
12585 static void
12586 print_mention_exception (struct breakpoint *b)
12587 {
12588 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12589 struct ui_out *uiout = current_uiout;
12590
12591 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12592 : _("Catchpoint "));
12593 uiout->field_signed ("bkptno", b->number);
12594 uiout->text (": ");
12595
12596 switch (c->m_kind)
12597 {
12598 case ada_catch_exception:
12599 if (!c->excep_string.empty ())
12600 {
12601 std::string info = string_printf (_("`%s' Ada exception"),
12602 c->excep_string.c_str ());
12603 uiout->text (info.c_str ());
12604 }
12605 else
12606 uiout->text (_("all Ada exceptions"));
12607 break;
12608
12609 case ada_catch_exception_unhandled:
12610 uiout->text (_("unhandled Ada exceptions"));
12611 break;
12612
12613 case ada_catch_handlers:
12614 if (!c->excep_string.empty ())
12615 {
12616 std::string info
12617 = string_printf (_("`%s' Ada exception handlers"),
12618 c->excep_string.c_str ());
12619 uiout->text (info.c_str ());
12620 }
12621 else
12622 uiout->text (_("all Ada exceptions handlers"));
12623 break;
12624
12625 case ada_catch_assert:
12626 uiout->text (_("failed Ada assertions"));
12627 break;
12628
12629 default:
12630 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12631 break;
12632 }
12633 }
12634
12635 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12636 for all exception catchpoint kinds. */
12637
12638 static void
12639 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12640 {
12641 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12642
12643 switch (c->m_kind)
12644 {
12645 case ada_catch_exception:
12646 fprintf_filtered (fp, "catch exception");
12647 if (!c->excep_string.empty ())
12648 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12649 break;
12650
12651 case ada_catch_exception_unhandled:
12652 fprintf_filtered (fp, "catch exception unhandled");
12653 break;
12654
12655 case ada_catch_handlers:
12656 fprintf_filtered (fp, "catch handlers");
12657 break;
12658
12659 case ada_catch_assert:
12660 fprintf_filtered (fp, "catch assert");
12661 break;
12662
12663 default:
12664 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12665 }
12666 print_recreate_thread (b, fp);
12667 }
12668
12669 /* Virtual tables for various breakpoint types. */
12670 static struct breakpoint_ops catch_exception_breakpoint_ops;
12671 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12672 static struct breakpoint_ops catch_assert_breakpoint_ops;
12673 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12674
12675 /* See ada-lang.h. */
12676
12677 bool
12678 is_ada_exception_catchpoint (breakpoint *bp)
12679 {
12680 return (bp->ops == &catch_exception_breakpoint_ops
12681 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12682 || bp->ops == &catch_assert_breakpoint_ops
12683 || bp->ops == &catch_handlers_breakpoint_ops);
12684 }
12685
12686 /* Split the arguments specified in a "catch exception" command.
12687 Set EX to the appropriate catchpoint type.
12688 Set EXCEP_STRING to the name of the specific exception if
12689 specified by the user.
12690 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12691 "catch handlers" command. False otherwise.
12692 If a condition is found at the end of the arguments, the condition
12693 expression is stored in COND_STRING (memory must be deallocated
12694 after use). Otherwise COND_STRING is set to NULL. */
12695
12696 static void
12697 catch_ada_exception_command_split (const char *args,
12698 bool is_catch_handlers_cmd,
12699 enum ada_exception_catchpoint_kind *ex,
12700 std::string *excep_string,
12701 std::string *cond_string)
12702 {
12703 std::string exception_name;
12704
12705 exception_name = extract_arg (&args);
12706 if (exception_name == "if")
12707 {
12708 /* This is not an exception name; this is the start of a condition
12709 expression for a catchpoint on all exceptions. So, "un-get"
12710 this token, and set exception_name to NULL. */
12711 exception_name.clear ();
12712 args -= 2;
12713 }
12714
12715 /* Check to see if we have a condition. */
12716
12717 args = skip_spaces (args);
12718 if (startswith (args, "if")
12719 && (isspace (args[2]) || args[2] == '\0'))
12720 {
12721 args += 2;
12722 args = skip_spaces (args);
12723
12724 if (args[0] == '\0')
12725 error (_("Condition missing after `if' keyword"));
12726 *cond_string = args;
12727
12728 args += strlen (args);
12729 }
12730
12731 /* Check that we do not have any more arguments. Anything else
12732 is unexpected. */
12733
12734 if (args[0] != '\0')
12735 error (_("Junk at end of expression"));
12736
12737 if (is_catch_handlers_cmd)
12738 {
12739 /* Catch handling of exceptions. */
12740 *ex = ada_catch_handlers;
12741 *excep_string = exception_name;
12742 }
12743 else if (exception_name.empty ())
12744 {
12745 /* Catch all exceptions. */
12746 *ex = ada_catch_exception;
12747 excep_string->clear ();
12748 }
12749 else if (exception_name == "unhandled")
12750 {
12751 /* Catch unhandled exceptions. */
12752 *ex = ada_catch_exception_unhandled;
12753 excep_string->clear ();
12754 }
12755 else
12756 {
12757 /* Catch a specific exception. */
12758 *ex = ada_catch_exception;
12759 *excep_string = exception_name;
12760 }
12761 }
12762
12763 /* Return the name of the symbol on which we should break in order to
12764 implement a catchpoint of the EX kind. */
12765
12766 static const char *
12767 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12768 {
12769 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12770
12771 gdb_assert (data->exception_info != NULL);
12772
12773 switch (ex)
12774 {
12775 case ada_catch_exception:
12776 return (data->exception_info->catch_exception_sym);
12777 break;
12778 case ada_catch_exception_unhandled:
12779 return (data->exception_info->catch_exception_unhandled_sym);
12780 break;
12781 case ada_catch_assert:
12782 return (data->exception_info->catch_assert_sym);
12783 break;
12784 case ada_catch_handlers:
12785 return (data->exception_info->catch_handlers_sym);
12786 break;
12787 default:
12788 internal_error (__FILE__, __LINE__,
12789 _("unexpected catchpoint kind (%d)"), ex);
12790 }
12791 }
12792
12793 /* Return the breakpoint ops "virtual table" used for catchpoints
12794 of the EX kind. */
12795
12796 static const struct breakpoint_ops *
12797 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12798 {
12799 switch (ex)
12800 {
12801 case ada_catch_exception:
12802 return (&catch_exception_breakpoint_ops);
12803 break;
12804 case ada_catch_exception_unhandled:
12805 return (&catch_exception_unhandled_breakpoint_ops);
12806 break;
12807 case ada_catch_assert:
12808 return (&catch_assert_breakpoint_ops);
12809 break;
12810 case ada_catch_handlers:
12811 return (&catch_handlers_breakpoint_ops);
12812 break;
12813 default:
12814 internal_error (__FILE__, __LINE__,
12815 _("unexpected catchpoint kind (%d)"), ex);
12816 }
12817 }
12818
12819 /* Return the condition that will be used to match the current exception
12820 being raised with the exception that the user wants to catch. This
12821 assumes that this condition is used when the inferior just triggered
12822 an exception catchpoint.
12823 EX: the type of catchpoints used for catching Ada exceptions. */
12824
12825 static std::string
12826 ada_exception_catchpoint_cond_string (const char *excep_string,
12827 enum ada_exception_catchpoint_kind ex)
12828 {
12829 int i;
12830 bool is_standard_exc = false;
12831 std::string result;
12832
12833 if (ex == ada_catch_handlers)
12834 {
12835 /* For exception handlers catchpoints, the condition string does
12836 not use the same parameter as for the other exceptions. */
12837 result = ("long_integer (GNAT_GCC_exception_Access"
12838 "(gcc_exception).all.occurrence.id)");
12839 }
12840 else
12841 result = "long_integer (e)";
12842
12843 /* The standard exceptions are a special case. They are defined in
12844 runtime units that have been compiled without debugging info; if
12845 EXCEP_STRING is the not-fully-qualified name of a standard
12846 exception (e.g. "constraint_error") then, during the evaluation
12847 of the condition expression, the symbol lookup on this name would
12848 *not* return this standard exception. The catchpoint condition
12849 may then be set only on user-defined exceptions which have the
12850 same not-fully-qualified name (e.g. my_package.constraint_error).
12851
12852 To avoid this unexcepted behavior, these standard exceptions are
12853 systematically prefixed by "standard". This means that "catch
12854 exception constraint_error" is rewritten into "catch exception
12855 standard.constraint_error".
12856
12857 If an exception named constraint_error is defined in another package of
12858 the inferior program, then the only way to specify this exception as a
12859 breakpoint condition is to use its fully-qualified named:
12860 e.g. my_package.constraint_error. */
12861
12862 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12863 {
12864 if (strcmp (standard_exc [i], excep_string) == 0)
12865 {
12866 is_standard_exc = true;
12867 break;
12868 }
12869 }
12870
12871 result += " = ";
12872
12873 if (is_standard_exc)
12874 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12875 else
12876 string_appendf (result, "long_integer (&%s)", excep_string);
12877
12878 return result;
12879 }
12880
12881 /* Return the symtab_and_line that should be used to insert an exception
12882 catchpoint of the TYPE kind.
12883
12884 ADDR_STRING returns the name of the function where the real
12885 breakpoint that implements the catchpoints is set, depending on the
12886 type of catchpoint we need to create. */
12887
12888 static struct symtab_and_line
12889 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12890 std::string *addr_string, const struct breakpoint_ops **ops)
12891 {
12892 const char *sym_name;
12893 struct symbol *sym;
12894
12895 /* First, find out which exception support info to use. */
12896 ada_exception_support_info_sniffer ();
12897
12898 /* Then lookup the function on which we will break in order to catch
12899 the Ada exceptions requested by the user. */
12900 sym_name = ada_exception_sym_name (ex);
12901 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12902
12903 if (sym == NULL)
12904 error (_("Catchpoint symbol not found: %s"), sym_name);
12905
12906 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12907 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12908
12909 /* Set ADDR_STRING. */
12910 *addr_string = sym_name;
12911
12912 /* Set OPS. */
12913 *ops = ada_exception_breakpoint_ops (ex);
12914
12915 return find_function_start_sal (sym, 1);
12916 }
12917
12918 /* Create an Ada exception catchpoint.
12919
12920 EX_KIND is the kind of exception catchpoint to be created.
12921
12922 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12923 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12924 of the exception to which this catchpoint applies.
12925
12926 COND_STRING, if not empty, is the catchpoint condition.
12927
12928 TEMPFLAG, if nonzero, means that the underlying breakpoint
12929 should be temporary.
12930
12931 FROM_TTY is the usual argument passed to all commands implementations. */
12932
12933 void
12934 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12935 enum ada_exception_catchpoint_kind ex_kind,
12936 const std::string &excep_string,
12937 const std::string &cond_string,
12938 int tempflag,
12939 int disabled,
12940 int from_tty)
12941 {
12942 std::string addr_string;
12943 const struct breakpoint_ops *ops = NULL;
12944 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12945
12946 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12947 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12948 ops, tempflag, disabled, from_tty);
12949 c->excep_string = excep_string;
12950 create_excep_cond_exprs (c.get (), ex_kind);
12951 if (!cond_string.empty ())
12952 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12953 install_breakpoint (0, std::move (c), 1);
12954 }
12955
12956 /* Implement the "catch exception" command. */
12957
12958 static void
12959 catch_ada_exception_command (const char *arg_entry, int from_tty,
12960 struct cmd_list_element *command)
12961 {
12962 const char *arg = arg_entry;
12963 struct gdbarch *gdbarch = get_current_arch ();
12964 int tempflag;
12965 enum ada_exception_catchpoint_kind ex_kind;
12966 std::string excep_string;
12967 std::string cond_string;
12968
12969 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12970
12971 if (!arg)
12972 arg = "";
12973 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12974 &cond_string);
12975 create_ada_exception_catchpoint (gdbarch, ex_kind,
12976 excep_string, cond_string,
12977 tempflag, 1 /* enabled */,
12978 from_tty);
12979 }
12980
12981 /* Implement the "catch handlers" command. */
12982
12983 static void
12984 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12985 struct cmd_list_element *command)
12986 {
12987 const char *arg = arg_entry;
12988 struct gdbarch *gdbarch = get_current_arch ();
12989 int tempflag;
12990 enum ada_exception_catchpoint_kind ex_kind;
12991 std::string excep_string;
12992 std::string cond_string;
12993
12994 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12995
12996 if (!arg)
12997 arg = "";
12998 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12999 &cond_string);
13000 create_ada_exception_catchpoint (gdbarch, ex_kind,
13001 excep_string, cond_string,
13002 tempflag, 1 /* enabled */,
13003 from_tty);
13004 }
13005
13006 /* Completion function for the Ada "catch" commands. */
13007
13008 static void
13009 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13010 const char *text, const char *word)
13011 {
13012 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13013
13014 for (const ada_exc_info &info : exceptions)
13015 {
13016 if (startswith (info.name, word))
13017 tracker.add_completion (make_unique_xstrdup (info.name));
13018 }
13019 }
13020
13021 /* Split the arguments specified in a "catch assert" command.
13022
13023 ARGS contains the command's arguments (or the empty string if
13024 no arguments were passed).
13025
13026 If ARGS contains a condition, set COND_STRING to that condition
13027 (the memory needs to be deallocated after use). */
13028
13029 static void
13030 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13031 {
13032 args = skip_spaces (args);
13033
13034 /* Check whether a condition was provided. */
13035 if (startswith (args, "if")
13036 && (isspace (args[2]) || args[2] == '\0'))
13037 {
13038 args += 2;
13039 args = skip_spaces (args);
13040 if (args[0] == '\0')
13041 error (_("condition missing after `if' keyword"));
13042 cond_string.assign (args);
13043 }
13044
13045 /* Otherwise, there should be no other argument at the end of
13046 the command. */
13047 else if (args[0] != '\0')
13048 error (_("Junk at end of arguments."));
13049 }
13050
13051 /* Implement the "catch assert" command. */
13052
13053 static void
13054 catch_assert_command (const char *arg_entry, int from_tty,
13055 struct cmd_list_element *command)
13056 {
13057 const char *arg = arg_entry;
13058 struct gdbarch *gdbarch = get_current_arch ();
13059 int tempflag;
13060 std::string cond_string;
13061
13062 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13063
13064 if (!arg)
13065 arg = "";
13066 catch_ada_assert_command_split (arg, cond_string);
13067 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13068 "", cond_string,
13069 tempflag, 1 /* enabled */,
13070 from_tty);
13071 }
13072
13073 /* Return non-zero if the symbol SYM is an Ada exception object. */
13074
13075 static int
13076 ada_is_exception_sym (struct symbol *sym)
13077 {
13078 const char *type_name = SYMBOL_TYPE (sym)->name ();
13079
13080 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13081 && SYMBOL_CLASS (sym) != LOC_BLOCK
13082 && SYMBOL_CLASS (sym) != LOC_CONST
13083 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13084 && type_name != NULL && strcmp (type_name, "exception") == 0);
13085 }
13086
13087 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13088 Ada exception object. This matches all exceptions except the ones
13089 defined by the Ada language. */
13090
13091 static int
13092 ada_is_non_standard_exception_sym (struct symbol *sym)
13093 {
13094 int i;
13095
13096 if (!ada_is_exception_sym (sym))
13097 return 0;
13098
13099 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13100 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13101 return 0; /* A standard exception. */
13102
13103 /* Numeric_Error is also a standard exception, so exclude it.
13104 See the STANDARD_EXC description for more details as to why
13105 this exception is not listed in that array. */
13106 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13107 return 0;
13108
13109 return 1;
13110 }
13111
13112 /* A helper function for std::sort, comparing two struct ada_exc_info
13113 objects.
13114
13115 The comparison is determined first by exception name, and then
13116 by exception address. */
13117
13118 bool
13119 ada_exc_info::operator< (const ada_exc_info &other) const
13120 {
13121 int result;
13122
13123 result = strcmp (name, other.name);
13124 if (result < 0)
13125 return true;
13126 if (result == 0 && addr < other.addr)
13127 return true;
13128 return false;
13129 }
13130
13131 bool
13132 ada_exc_info::operator== (const ada_exc_info &other) const
13133 {
13134 return addr == other.addr && strcmp (name, other.name) == 0;
13135 }
13136
13137 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13138 routine, but keeping the first SKIP elements untouched.
13139
13140 All duplicates are also removed. */
13141
13142 static void
13143 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13144 int skip)
13145 {
13146 std::sort (exceptions->begin () + skip, exceptions->end ());
13147 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13148 exceptions->end ());
13149 }
13150
13151 /* Add all exceptions defined by the Ada standard whose name match
13152 a regular expression.
13153
13154 If PREG is not NULL, then this regexp_t object is used to
13155 perform the symbol name matching. Otherwise, no name-based
13156 filtering is performed.
13157
13158 EXCEPTIONS is a vector of exceptions to which matching exceptions
13159 gets pushed. */
13160
13161 static void
13162 ada_add_standard_exceptions (compiled_regex *preg,
13163 std::vector<ada_exc_info> *exceptions)
13164 {
13165 int i;
13166
13167 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13168 {
13169 if (preg == NULL
13170 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13171 {
13172 struct bound_minimal_symbol msymbol
13173 = ada_lookup_simple_minsym (standard_exc[i]);
13174
13175 if (msymbol.minsym != NULL)
13176 {
13177 struct ada_exc_info info
13178 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13179
13180 exceptions->push_back (info);
13181 }
13182 }
13183 }
13184 }
13185
13186 /* Add all Ada exceptions defined locally and accessible from the given
13187 FRAME.
13188
13189 If PREG is not NULL, then this regexp_t object is used to
13190 perform the symbol name matching. Otherwise, no name-based
13191 filtering is performed.
13192
13193 EXCEPTIONS is a vector of exceptions to which matching exceptions
13194 gets pushed. */
13195
13196 static void
13197 ada_add_exceptions_from_frame (compiled_regex *preg,
13198 struct frame_info *frame,
13199 std::vector<ada_exc_info> *exceptions)
13200 {
13201 const struct block *block = get_frame_block (frame, 0);
13202
13203 while (block != 0)
13204 {
13205 struct block_iterator iter;
13206 struct symbol *sym;
13207
13208 ALL_BLOCK_SYMBOLS (block, iter, sym)
13209 {
13210 switch (SYMBOL_CLASS (sym))
13211 {
13212 case LOC_TYPEDEF:
13213 case LOC_BLOCK:
13214 case LOC_CONST:
13215 break;
13216 default:
13217 if (ada_is_exception_sym (sym))
13218 {
13219 struct ada_exc_info info = {sym->print_name (),
13220 SYMBOL_VALUE_ADDRESS (sym)};
13221
13222 exceptions->push_back (info);
13223 }
13224 }
13225 }
13226 if (BLOCK_FUNCTION (block) != NULL)
13227 break;
13228 block = BLOCK_SUPERBLOCK (block);
13229 }
13230 }
13231
13232 /* Return true if NAME matches PREG or if PREG is NULL. */
13233
13234 static bool
13235 name_matches_regex (const char *name, compiled_regex *preg)
13236 {
13237 return (preg == NULL
13238 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13239 }
13240
13241 /* Add all exceptions defined globally whose name name match
13242 a regular expression, excluding standard exceptions.
13243
13244 The reason we exclude standard exceptions is that they need
13245 to be handled separately: Standard exceptions are defined inside
13246 a runtime unit which is normally not compiled with debugging info,
13247 and thus usually do not show up in our symbol search. However,
13248 if the unit was in fact built with debugging info, we need to
13249 exclude them because they would duplicate the entry we found
13250 during the special loop that specifically searches for those
13251 standard exceptions.
13252
13253 If PREG is not NULL, then this regexp_t object is used to
13254 perform the symbol name matching. Otherwise, no name-based
13255 filtering is performed.
13256
13257 EXCEPTIONS is a vector of exceptions to which matching exceptions
13258 gets pushed. */
13259
13260 static void
13261 ada_add_global_exceptions (compiled_regex *preg,
13262 std::vector<ada_exc_info> *exceptions)
13263 {
13264 /* In Ada, the symbol "search name" is a linkage name, whereas the
13265 regular expression used to do the matching refers to the natural
13266 name. So match against the decoded name. */
13267 expand_symtabs_matching (NULL,
13268 lookup_name_info::match_any (),
13269 [&] (const char *search_name)
13270 {
13271 std::string decoded = ada_decode (search_name);
13272 return name_matches_regex (decoded.c_str (), preg);
13273 },
13274 NULL,
13275 VARIABLES_DOMAIN);
13276
13277 for (objfile *objfile : current_program_space->objfiles ())
13278 {
13279 for (compunit_symtab *s : objfile->compunits ())
13280 {
13281 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13282 int i;
13283
13284 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13285 {
13286 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13287 struct block_iterator iter;
13288 struct symbol *sym;
13289
13290 ALL_BLOCK_SYMBOLS (b, iter, sym)
13291 if (ada_is_non_standard_exception_sym (sym)
13292 && name_matches_regex (sym->natural_name (), preg))
13293 {
13294 struct ada_exc_info info
13295 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13296
13297 exceptions->push_back (info);
13298 }
13299 }
13300 }
13301 }
13302 }
13303
13304 /* Implements ada_exceptions_list with the regular expression passed
13305 as a regex_t, rather than a string.
13306
13307 If not NULL, PREG is used to filter out exceptions whose names
13308 do not match. Otherwise, all exceptions are listed. */
13309
13310 static std::vector<ada_exc_info>
13311 ada_exceptions_list_1 (compiled_regex *preg)
13312 {
13313 std::vector<ada_exc_info> result;
13314 int prev_len;
13315
13316 /* First, list the known standard exceptions. These exceptions
13317 need to be handled separately, as they are usually defined in
13318 runtime units that have been compiled without debugging info. */
13319
13320 ada_add_standard_exceptions (preg, &result);
13321
13322 /* Next, find all exceptions whose scope is local and accessible
13323 from the currently selected frame. */
13324
13325 if (has_stack_frames ())
13326 {
13327 prev_len = result.size ();
13328 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13329 &result);
13330 if (result.size () > prev_len)
13331 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13332 }
13333
13334 /* Add all exceptions whose scope is global. */
13335
13336 prev_len = result.size ();
13337 ada_add_global_exceptions (preg, &result);
13338 if (result.size () > prev_len)
13339 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13340
13341 return result;
13342 }
13343
13344 /* Return a vector of ada_exc_info.
13345
13346 If REGEXP is NULL, all exceptions are included in the result.
13347 Otherwise, it should contain a valid regular expression,
13348 and only the exceptions whose names match that regular expression
13349 are included in the result.
13350
13351 The exceptions are sorted in the following order:
13352 - Standard exceptions (defined by the Ada language), in
13353 alphabetical order;
13354 - Exceptions only visible from the current frame, in
13355 alphabetical order;
13356 - Exceptions whose scope is global, in alphabetical order. */
13357
13358 std::vector<ada_exc_info>
13359 ada_exceptions_list (const char *regexp)
13360 {
13361 if (regexp == NULL)
13362 return ada_exceptions_list_1 (NULL);
13363
13364 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13365 return ada_exceptions_list_1 (&reg);
13366 }
13367
13368 /* Implement the "info exceptions" command. */
13369
13370 static void
13371 info_exceptions_command (const char *regexp, int from_tty)
13372 {
13373 struct gdbarch *gdbarch = get_current_arch ();
13374
13375 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13376
13377 if (regexp != NULL)
13378 printf_filtered
13379 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13380 else
13381 printf_filtered (_("All defined Ada exceptions:\n"));
13382
13383 for (const ada_exc_info &info : exceptions)
13384 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13385 }
13386
13387 /* Operators */
13388 /* Information about operators given special treatment in functions
13389 below. */
13390 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13391
13392 #define ADA_OPERATORS \
13393 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13394 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13395 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13396 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13397 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13398 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13399 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13400 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13401 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13402 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13403 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13404 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13405 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13406 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13407 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13408 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13409 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13410 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13411 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13412
13413 static void
13414 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13415 int *argsp)
13416 {
13417 switch (exp->elts[pc - 1].opcode)
13418 {
13419 default:
13420 operator_length_standard (exp, pc, oplenp, argsp);
13421 break;
13422
13423 #define OP_DEFN(op, len, args, binop) \
13424 case op: *oplenp = len; *argsp = args; break;
13425 ADA_OPERATORS;
13426 #undef OP_DEFN
13427
13428 case OP_AGGREGATE:
13429 *oplenp = 3;
13430 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13431 break;
13432
13433 case OP_CHOICES:
13434 *oplenp = 3;
13435 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13436 break;
13437 }
13438 }
13439
13440 /* Implementation of the exp_descriptor method operator_check. */
13441
13442 static int
13443 ada_operator_check (struct expression *exp, int pos,
13444 int (*objfile_func) (struct objfile *objfile, void *data),
13445 void *data)
13446 {
13447 const union exp_element *const elts = exp->elts;
13448 struct type *type = NULL;
13449
13450 switch (elts[pos].opcode)
13451 {
13452 case UNOP_IN_RANGE:
13453 case UNOP_QUAL:
13454 type = elts[pos + 1].type;
13455 break;
13456
13457 default:
13458 return operator_check_standard (exp, pos, objfile_func, data);
13459 }
13460
13461 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13462
13463 if (type && TYPE_OBJFILE (type)
13464 && (*objfile_func) (TYPE_OBJFILE (type), data))
13465 return 1;
13466
13467 return 0;
13468 }
13469
13470 static const char *
13471 ada_op_name (enum exp_opcode opcode)
13472 {
13473 switch (opcode)
13474 {
13475 default:
13476 return op_name_standard (opcode);
13477
13478 #define OP_DEFN(op, len, args, binop) case op: return #op;
13479 ADA_OPERATORS;
13480 #undef OP_DEFN
13481
13482 case OP_AGGREGATE:
13483 return "OP_AGGREGATE";
13484 case OP_CHOICES:
13485 return "OP_CHOICES";
13486 case OP_NAME:
13487 return "OP_NAME";
13488 }
13489 }
13490
13491 /* As for operator_length, but assumes PC is pointing at the first
13492 element of the operator, and gives meaningful results only for the
13493 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13494
13495 static void
13496 ada_forward_operator_length (struct expression *exp, int pc,
13497 int *oplenp, int *argsp)
13498 {
13499 switch (exp->elts[pc].opcode)
13500 {
13501 default:
13502 *oplenp = *argsp = 0;
13503 break;
13504
13505 #define OP_DEFN(op, len, args, binop) \
13506 case op: *oplenp = len; *argsp = args; break;
13507 ADA_OPERATORS;
13508 #undef OP_DEFN
13509
13510 case OP_AGGREGATE:
13511 *oplenp = 3;
13512 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13513 break;
13514
13515 case OP_CHOICES:
13516 *oplenp = 3;
13517 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13518 break;
13519
13520 case OP_STRING:
13521 case OP_NAME:
13522 {
13523 int len = longest_to_int (exp->elts[pc + 1].longconst);
13524
13525 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13526 *argsp = 0;
13527 break;
13528 }
13529 }
13530 }
13531
13532 static int
13533 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13534 {
13535 enum exp_opcode op = exp->elts[elt].opcode;
13536 int oplen, nargs;
13537 int pc = elt;
13538 int i;
13539
13540 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13541
13542 switch (op)
13543 {
13544 /* Ada attributes ('Foo). */
13545 case OP_ATR_FIRST:
13546 case OP_ATR_LAST:
13547 case OP_ATR_LENGTH:
13548 case OP_ATR_IMAGE:
13549 case OP_ATR_MAX:
13550 case OP_ATR_MIN:
13551 case OP_ATR_MODULUS:
13552 case OP_ATR_POS:
13553 case OP_ATR_SIZE:
13554 case OP_ATR_TAG:
13555 case OP_ATR_VAL:
13556 break;
13557
13558 case UNOP_IN_RANGE:
13559 case UNOP_QUAL:
13560 /* XXX: gdb_sprint_host_address, type_sprint */
13561 fprintf_filtered (stream, _("Type @"));
13562 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13563 fprintf_filtered (stream, " (");
13564 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13565 fprintf_filtered (stream, ")");
13566 break;
13567 case BINOP_IN_BOUNDS:
13568 fprintf_filtered (stream, " (%d)",
13569 longest_to_int (exp->elts[pc + 2].longconst));
13570 break;
13571 case TERNOP_IN_RANGE:
13572 break;
13573
13574 case OP_AGGREGATE:
13575 case OP_OTHERS:
13576 case OP_DISCRETE_RANGE:
13577 case OP_POSITIONAL:
13578 case OP_CHOICES:
13579 break;
13580
13581 case OP_NAME:
13582 case OP_STRING:
13583 {
13584 char *name = &exp->elts[elt + 2].string;
13585 int len = longest_to_int (exp->elts[elt + 1].longconst);
13586
13587 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13588 break;
13589 }
13590
13591 default:
13592 return dump_subexp_body_standard (exp, stream, elt);
13593 }
13594
13595 elt += oplen;
13596 for (i = 0; i < nargs; i += 1)
13597 elt = dump_subexp (exp, stream, elt);
13598
13599 return elt;
13600 }
13601
13602 /* The Ada extension of print_subexp (q.v.). */
13603
13604 static void
13605 ada_print_subexp (struct expression *exp, int *pos,
13606 struct ui_file *stream, enum precedence prec)
13607 {
13608 int oplen, nargs, i;
13609 int pc = *pos;
13610 enum exp_opcode op = exp->elts[pc].opcode;
13611
13612 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13613
13614 *pos += oplen;
13615 switch (op)
13616 {
13617 default:
13618 *pos -= oplen;
13619 print_subexp_standard (exp, pos, stream, prec);
13620 return;
13621
13622 case OP_VAR_VALUE:
13623 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13624 return;
13625
13626 case BINOP_IN_BOUNDS:
13627 /* XXX: sprint_subexp */
13628 print_subexp (exp, pos, stream, PREC_SUFFIX);
13629 fputs_filtered (" in ", stream);
13630 print_subexp (exp, pos, stream, PREC_SUFFIX);
13631 fputs_filtered ("'range", stream);
13632 if (exp->elts[pc + 1].longconst > 1)
13633 fprintf_filtered (stream, "(%ld)",
13634 (long) exp->elts[pc + 1].longconst);
13635 return;
13636
13637 case TERNOP_IN_RANGE:
13638 if (prec >= PREC_EQUAL)
13639 fputs_filtered ("(", stream);
13640 /* XXX: sprint_subexp */
13641 print_subexp (exp, pos, stream, PREC_SUFFIX);
13642 fputs_filtered (" in ", stream);
13643 print_subexp (exp, pos, stream, PREC_EQUAL);
13644 fputs_filtered (" .. ", stream);
13645 print_subexp (exp, pos, stream, PREC_EQUAL);
13646 if (prec >= PREC_EQUAL)
13647 fputs_filtered (")", stream);
13648 return;
13649
13650 case OP_ATR_FIRST:
13651 case OP_ATR_LAST:
13652 case OP_ATR_LENGTH:
13653 case OP_ATR_IMAGE:
13654 case OP_ATR_MAX:
13655 case OP_ATR_MIN:
13656 case OP_ATR_MODULUS:
13657 case OP_ATR_POS:
13658 case OP_ATR_SIZE:
13659 case OP_ATR_TAG:
13660 case OP_ATR_VAL:
13661 if (exp->elts[*pos].opcode == OP_TYPE)
13662 {
13663 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13664 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13665 &type_print_raw_options);
13666 *pos += 3;
13667 }
13668 else
13669 print_subexp (exp, pos, stream, PREC_SUFFIX);
13670 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13671 if (nargs > 1)
13672 {
13673 int tem;
13674
13675 for (tem = 1; tem < nargs; tem += 1)
13676 {
13677 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13678 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13679 }
13680 fputs_filtered (")", stream);
13681 }
13682 return;
13683
13684 case UNOP_QUAL:
13685 type_print (exp->elts[pc + 1].type, "", stream, 0);
13686 fputs_filtered ("'(", stream);
13687 print_subexp (exp, pos, stream, PREC_PREFIX);
13688 fputs_filtered (")", stream);
13689 return;
13690
13691 case UNOP_IN_RANGE:
13692 /* XXX: sprint_subexp */
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 fputs_filtered (" in ", stream);
13695 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13696 &type_print_raw_options);
13697 return;
13698
13699 case OP_DISCRETE_RANGE:
13700 print_subexp (exp, pos, stream, PREC_SUFFIX);
13701 fputs_filtered ("..", stream);
13702 print_subexp (exp, pos, stream, PREC_SUFFIX);
13703 return;
13704
13705 case OP_OTHERS:
13706 fputs_filtered ("others => ", stream);
13707 print_subexp (exp, pos, stream, PREC_SUFFIX);
13708 return;
13709
13710 case OP_CHOICES:
13711 for (i = 0; i < nargs-1; i += 1)
13712 {
13713 if (i > 0)
13714 fputs_filtered ("|", stream);
13715 print_subexp (exp, pos, stream, PREC_SUFFIX);
13716 }
13717 fputs_filtered (" => ", stream);
13718 print_subexp (exp, pos, stream, PREC_SUFFIX);
13719 return;
13720
13721 case OP_POSITIONAL:
13722 print_subexp (exp, pos, stream, PREC_SUFFIX);
13723 return;
13724
13725 case OP_AGGREGATE:
13726 fputs_filtered ("(", stream);
13727 for (i = 0; i < nargs; i += 1)
13728 {
13729 if (i > 0)
13730 fputs_filtered (", ", stream);
13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 }
13733 fputs_filtered (")", stream);
13734 return;
13735 }
13736 }
13737
13738 /* Table mapping opcodes into strings for printing operators
13739 and precedences of the operators. */
13740
13741 static const struct op_print ada_op_print_tab[] = {
13742 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13743 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13744 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13745 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13746 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13747 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13748 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13749 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13750 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13751 {">=", BINOP_GEQ, PREC_ORDER, 0},
13752 {">", BINOP_GTR, PREC_ORDER, 0},
13753 {"<", BINOP_LESS, PREC_ORDER, 0},
13754 {">>", BINOP_RSH, PREC_SHIFT, 0},
13755 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13756 {"+", BINOP_ADD, PREC_ADD, 0},
13757 {"-", BINOP_SUB, PREC_ADD, 0},
13758 {"&", BINOP_CONCAT, PREC_ADD, 0},
13759 {"*", BINOP_MUL, PREC_MUL, 0},
13760 {"/", BINOP_DIV, PREC_MUL, 0},
13761 {"rem", BINOP_REM, PREC_MUL, 0},
13762 {"mod", BINOP_MOD, PREC_MUL, 0},
13763 {"**", BINOP_EXP, PREC_REPEAT, 0},
13764 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13765 {"-", UNOP_NEG, PREC_PREFIX, 0},
13766 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13767 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13768 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13769 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13770 {".all", UNOP_IND, PREC_SUFFIX, 1},
13771 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13772 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13773 {NULL, OP_NULL, PREC_SUFFIX, 0}
13774 };
13775 \f
13776 enum ada_primitive_types {
13777 ada_primitive_type_int,
13778 ada_primitive_type_long,
13779 ada_primitive_type_short,
13780 ada_primitive_type_char,
13781 ada_primitive_type_float,
13782 ada_primitive_type_double,
13783 ada_primitive_type_void,
13784 ada_primitive_type_long_long,
13785 ada_primitive_type_long_double,
13786 ada_primitive_type_natural,
13787 ada_primitive_type_positive,
13788 ada_primitive_type_system_address,
13789 ada_primitive_type_storage_offset,
13790 nr_ada_primitive_types
13791 };
13792
13793 static void
13794 ada_language_arch_info (struct gdbarch *gdbarch,
13795 struct language_arch_info *lai)
13796 {
13797 const struct builtin_type *builtin = builtin_type (gdbarch);
13798
13799 lai->primitive_type_vector
13800 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13801 struct type *);
13802
13803 lai->primitive_type_vector [ada_primitive_type_int]
13804 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13805 0, "integer");
13806 lai->primitive_type_vector [ada_primitive_type_long]
13807 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13808 0, "long_integer");
13809 lai->primitive_type_vector [ada_primitive_type_short]
13810 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13811 0, "short_integer");
13812 lai->string_char_type
13813 = lai->primitive_type_vector [ada_primitive_type_char]
13814 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13815 lai->primitive_type_vector [ada_primitive_type_float]
13816 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13817 "float", gdbarch_float_format (gdbarch));
13818 lai->primitive_type_vector [ada_primitive_type_double]
13819 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13820 "long_float", gdbarch_double_format (gdbarch));
13821 lai->primitive_type_vector [ada_primitive_type_long_long]
13822 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13823 0, "long_long_integer");
13824 lai->primitive_type_vector [ada_primitive_type_long_double]
13825 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13826 "long_long_float", gdbarch_long_double_format (gdbarch));
13827 lai->primitive_type_vector [ada_primitive_type_natural]
13828 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13829 0, "natural");
13830 lai->primitive_type_vector [ada_primitive_type_positive]
13831 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13832 0, "positive");
13833 lai->primitive_type_vector [ada_primitive_type_void]
13834 = builtin->builtin_void;
13835
13836 lai->primitive_type_vector [ada_primitive_type_system_address]
13837 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13838 "void"));
13839 lai->primitive_type_vector [ada_primitive_type_system_address]
13840 ->set_name ("system__address");
13841
13842 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13843 type. This is a signed integral type whose size is the same as
13844 the size of addresses. */
13845 {
13846 unsigned int addr_length = TYPE_LENGTH
13847 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13848
13849 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13850 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13851 "storage_offset");
13852 }
13853
13854 lai->bool_type_symbol = NULL;
13855 lai->bool_type_default = builtin->builtin_bool;
13856 }
13857 \f
13858 /* Language vector */
13859
13860 /* Not really used, but needed in the ada_language_defn. */
13861
13862 static void
13863 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13864 {
13865 ada_emit_char (c, type, stream, quoter, 1);
13866 }
13867
13868 static int
13869 parse (struct parser_state *ps)
13870 {
13871 warnings_issued = 0;
13872 return ada_parse (ps);
13873 }
13874
13875 static const struct exp_descriptor ada_exp_descriptor = {
13876 ada_print_subexp,
13877 ada_operator_length,
13878 ada_operator_check,
13879 ada_op_name,
13880 ada_dump_subexp_body,
13881 ada_evaluate_subexp
13882 };
13883
13884 /* symbol_name_matcher_ftype adapter for wild_match. */
13885
13886 static bool
13887 do_wild_match (const char *symbol_search_name,
13888 const lookup_name_info &lookup_name,
13889 completion_match_result *comp_match_res)
13890 {
13891 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13892 }
13893
13894 /* symbol_name_matcher_ftype adapter for full_match. */
13895
13896 static bool
13897 do_full_match (const char *symbol_search_name,
13898 const lookup_name_info &lookup_name,
13899 completion_match_result *comp_match_res)
13900 {
13901 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13902 }
13903
13904 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13905
13906 static bool
13907 do_exact_match (const char *symbol_search_name,
13908 const lookup_name_info &lookup_name,
13909 completion_match_result *comp_match_res)
13910 {
13911 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13912 }
13913
13914 /* Build the Ada lookup name for LOOKUP_NAME. */
13915
13916 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13917 {
13918 gdb::string_view user_name = lookup_name.name ();
13919
13920 if (user_name[0] == '<')
13921 {
13922 if (user_name.back () == '>')
13923 m_encoded_name
13924 = user_name.substr (1, user_name.size () - 2).to_string ();
13925 else
13926 m_encoded_name
13927 = user_name.substr (1, user_name.size () - 1).to_string ();
13928 m_encoded_p = true;
13929 m_verbatim_p = true;
13930 m_wild_match_p = false;
13931 m_standard_p = false;
13932 }
13933 else
13934 {
13935 m_verbatim_p = false;
13936
13937 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13938
13939 if (!m_encoded_p)
13940 {
13941 const char *folded = ada_fold_name (user_name);
13942 const char *encoded = ada_encode_1 (folded, false);
13943 if (encoded != NULL)
13944 m_encoded_name = encoded;
13945 else
13946 m_encoded_name = user_name.to_string ();
13947 }
13948 else
13949 m_encoded_name = user_name.to_string ();
13950
13951 /* Handle the 'package Standard' special case. See description
13952 of m_standard_p. */
13953 if (startswith (m_encoded_name.c_str (), "standard__"))
13954 {
13955 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13956 m_standard_p = true;
13957 }
13958 else
13959 m_standard_p = false;
13960
13961 /* If the name contains a ".", then the user is entering a fully
13962 qualified entity name, and the match must not be done in wild
13963 mode. Similarly, if the user wants to complete what looks
13964 like an encoded name, the match must not be done in wild
13965 mode. Also, in the standard__ special case always do
13966 non-wild matching. */
13967 m_wild_match_p
13968 = (lookup_name.match_type () != symbol_name_match_type::FULL
13969 && !m_encoded_p
13970 && !m_standard_p
13971 && user_name.find ('.') == std::string::npos);
13972 }
13973 }
13974
13975 /* symbol_name_matcher_ftype method for Ada. This only handles
13976 completion mode. */
13977
13978 static bool
13979 ada_symbol_name_matches (const char *symbol_search_name,
13980 const lookup_name_info &lookup_name,
13981 completion_match_result *comp_match_res)
13982 {
13983 return lookup_name.ada ().matches (symbol_search_name,
13984 lookup_name.match_type (),
13985 comp_match_res);
13986 }
13987
13988 /* A name matcher that matches the symbol name exactly, with
13989 strcmp. */
13990
13991 static bool
13992 literal_symbol_name_matcher (const char *symbol_search_name,
13993 const lookup_name_info &lookup_name,
13994 completion_match_result *comp_match_res)
13995 {
13996 gdb::string_view name_view = lookup_name.name ();
13997
13998 if (lookup_name.completion_mode ()
13999 ? (strncmp (symbol_search_name, name_view.data (),
14000 name_view.size ()) == 0)
14001 : symbol_search_name == name_view)
14002 {
14003 if (comp_match_res != NULL)
14004 comp_match_res->set_match (symbol_search_name);
14005 return true;
14006 }
14007 else
14008 return false;
14009 }
14010
14011 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14012 Ada. */
14013
14014 static symbol_name_matcher_ftype *
14015 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14016 {
14017 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14018 return literal_symbol_name_matcher;
14019
14020 if (lookup_name.completion_mode ())
14021 return ada_symbol_name_matches;
14022 else
14023 {
14024 if (lookup_name.ada ().wild_match_p ())
14025 return do_wild_match;
14026 else if (lookup_name.ada ().verbatim_p ())
14027 return do_exact_match;
14028 else
14029 return do_full_match;
14030 }
14031 }
14032
14033 /* Implement the "la_read_var_value" language_defn method for Ada. */
14034
14035 static struct value *
14036 ada_read_var_value (struct symbol *var, const struct block *var_block,
14037 struct frame_info *frame)
14038 {
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
14041 if (frame != nullptr)
14042 {
14043 const struct block *frame_block = get_frame_block (frame, NULL);
14044 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14045 return ada_read_renaming_var_value (var, frame_block);
14046 }
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
14050 return default_read_var_value (var, var_block, frame);
14051 }
14052
14053 static const char *ada_extensions[] =
14054 {
14055 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14056 };
14057
14058 extern const struct language_defn ada_language_defn = {
14059 "ada", /* Language name */
14060 "Ada",
14061 language_ada,
14062 range_check_off,
14063 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14064 that's not quite what this means. */
14065 array_row_major,
14066 macro_expansion_no,
14067 ada_extensions,
14068 &ada_exp_descriptor,
14069 parse,
14070 resolve,
14071 ada_printchar, /* Print a character constant */
14072 ada_printstr, /* Function to print string constant */
14073 emit_char, /* Function to print single char (not used) */
14074 ada_print_type, /* Print a type using appropriate syntax */
14075 ada_print_typedef, /* Print a typedef using appropriate syntax */
14076 ada_value_print_inner, /* la_value_print_inner */
14077 ada_value_print, /* Print a top-level value */
14078 ada_read_var_value, /* la_read_var_value */
14079 NULL, /* Language specific skip_trampoline */
14080 NULL, /* name_of_this */
14081 true, /* la_store_sym_names_in_linkage_form_p */
14082 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14083 basic_lookup_transparent_type, /* lookup_transparent_type */
14084 ada_la_decode, /* Language specific symbol demangler */
14085 ada_sniff_from_mangled_name,
14086 NULL, /* Language specific
14087 class_name_from_physname */
14088 ada_op_print_tab, /* expression operators for printing */
14089 0, /* c-style arrays */
14090 1, /* String lower bound */
14091 ada_get_gdb_completer_word_break_characters,
14092 ada_collect_symbol_completion_matches,
14093 ada_language_arch_info,
14094 ada_print_array_index,
14095 default_pass_by_reference,
14096 ada_watch_location_expression,
14097 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14098 ada_iterate_over_symbols,
14099 default_search_name_hash,
14100 &ada_varobj_ops,
14101 NULL,
14102 NULL,
14103 ada_is_string_type,
14104 "(...)" /* la_struct_too_deep_ellipsis */
14105 };
14106
14107 /* Command-list for the "set/show ada" prefix command. */
14108 static struct cmd_list_element *set_ada_list;
14109 static struct cmd_list_element *show_ada_list;
14110
14111 static void
14112 initialize_ada_catchpoint_ops (void)
14113 {
14114 struct breakpoint_ops *ops;
14115
14116 initialize_breakpoint_ops ();
14117
14118 ops = &catch_exception_breakpoint_ops;
14119 *ops = bkpt_breakpoint_ops;
14120 ops->allocate_location = allocate_location_exception;
14121 ops->re_set = re_set_exception;
14122 ops->check_status = check_status_exception;
14123 ops->print_it = print_it_exception;
14124 ops->print_one = print_one_exception;
14125 ops->print_mention = print_mention_exception;
14126 ops->print_recreate = print_recreate_exception;
14127
14128 ops = &catch_exception_unhandled_breakpoint_ops;
14129 *ops = bkpt_breakpoint_ops;
14130 ops->allocate_location = allocate_location_exception;
14131 ops->re_set = re_set_exception;
14132 ops->check_status = check_status_exception;
14133 ops->print_it = print_it_exception;
14134 ops->print_one = print_one_exception;
14135 ops->print_mention = print_mention_exception;
14136 ops->print_recreate = print_recreate_exception;
14137
14138 ops = &catch_assert_breakpoint_ops;
14139 *ops = bkpt_breakpoint_ops;
14140 ops->allocate_location = allocate_location_exception;
14141 ops->re_set = re_set_exception;
14142 ops->check_status = check_status_exception;
14143 ops->print_it = print_it_exception;
14144 ops->print_one = print_one_exception;
14145 ops->print_mention = print_mention_exception;
14146 ops->print_recreate = print_recreate_exception;
14147
14148 ops = &catch_handlers_breakpoint_ops;
14149 *ops = bkpt_breakpoint_ops;
14150 ops->allocate_location = allocate_location_exception;
14151 ops->re_set = re_set_exception;
14152 ops->check_status = check_status_exception;
14153 ops->print_it = print_it_exception;
14154 ops->print_one = print_one_exception;
14155 ops->print_mention = print_mention_exception;
14156 ops->print_recreate = print_recreate_exception;
14157 }
14158
14159 /* This module's 'new_objfile' observer. */
14160
14161 static void
14162 ada_new_objfile_observer (struct objfile *objfile)
14163 {
14164 ada_clear_symbol_cache ();
14165 }
14166
14167 /* This module's 'free_objfile' observer. */
14168
14169 static void
14170 ada_free_objfile_observer (struct objfile *objfile)
14171 {
14172 ada_clear_symbol_cache ();
14173 }
14174
14175 void _initialize_ada_language ();
14176 void
14177 _initialize_ada_language ()
14178 {
14179 initialize_ada_catchpoint_ops ();
14180
14181 add_basic_prefix_cmd ("ada", no_class,
14182 _("Prefix command for changing Ada-specific settings."),
14183 &set_ada_list, "set ada ", 0, &setlist);
14184
14185 add_show_prefix_cmd ("ada", no_class,
14186 _("Generic command for showing Ada-specific settings."),
14187 &show_ada_list, "show ada ", 0, &showlist);
14188
14189 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14190 &trust_pad_over_xvs, _("\
14191 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14192 Show whether an optimization trusting PAD types over XVS types is activated."),
14193 _("\
14194 This is related to the encoding used by the GNAT compiler. The debugger\n\
14195 should normally trust the contents of PAD types, but certain older versions\n\
14196 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14197 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14198 work around this bug. It is always safe to turn this option \"off\", but\n\
14199 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14200 this option to \"off\" unless necessary."),
14201 NULL, NULL, &set_ada_list, &show_ada_list);
14202
14203 add_setshow_boolean_cmd ("print-signatures", class_vars,
14204 &print_signatures, _("\
14205 Enable or disable the output of formal and return types for functions in the \
14206 overloads selection menu."), _("\
14207 Show whether the output of formal and return types for functions in the \
14208 overloads selection menu is activated."),
14209 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14210
14211 add_catch_command ("exception", _("\
14212 Catch Ada exceptions, when raised.\n\
14213 Usage: catch exception [ARG] [if CONDITION]\n\
14214 Without any argument, stop when any Ada exception is raised.\n\
14215 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14216 being raised does not have a handler (and will therefore lead to the task's\n\
14217 termination).\n\
14218 Otherwise, the catchpoint only stops when the name of the exception being\n\
14219 raised is the same as ARG.\n\
14220 CONDITION is a boolean expression that is evaluated to see whether the\n\
14221 exception should cause a stop."),
14222 catch_ada_exception_command,
14223 catch_ada_completer,
14224 CATCH_PERMANENT,
14225 CATCH_TEMPORARY);
14226
14227 add_catch_command ("handlers", _("\
14228 Catch Ada exceptions, when handled.\n\
14229 Usage: catch handlers [ARG] [if CONDITION]\n\
14230 Without any argument, stop when any Ada exception is handled.\n\
14231 With an argument, catch only exceptions with the given name.\n\
14232 CONDITION is a boolean expression that is evaluated to see whether the\n\
14233 exception should cause a stop."),
14234 catch_ada_handlers_command,
14235 catch_ada_completer,
14236 CATCH_PERMANENT,
14237 CATCH_TEMPORARY);
14238 add_catch_command ("assert", _("\
14239 Catch failed Ada assertions, when raised.\n\
14240 Usage: catch assert [if CONDITION]\n\
14241 CONDITION is a boolean expression that is evaluated to see whether the\n\
14242 exception should cause a stop."),
14243 catch_assert_command,
14244 NULL,
14245 CATCH_PERMANENT,
14246 CATCH_TEMPORARY);
14247
14248 varsize_limit = 65536;
14249 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14250 &varsize_limit, _("\
14251 Set the maximum number of bytes allowed in a variable-size object."), _("\
14252 Show the maximum number of bytes allowed in a variable-size object."), _("\
14253 Attempts to access an object whose size is not a compile-time constant\n\
14254 and exceeds this limit will cause an error."),
14255 NULL, NULL, &setlist, &showlist);
14256
14257 add_info ("exceptions", info_exceptions_command,
14258 _("\
14259 List all Ada exception names.\n\
14260 Usage: info exceptions [REGEXP]\n\
14261 If a regular expression is passed as an argument, only those matching\n\
14262 the regular expression are listed."));
14263
14264 add_basic_prefix_cmd ("ada", class_maintenance,
14265 _("Set Ada maintenance-related variables."),
14266 &maint_set_ada_cmdlist, "maintenance set ada ",
14267 0/*allow-unknown*/, &maintenance_set_cmdlist);
14268
14269 add_show_prefix_cmd ("ada", class_maintenance,
14270 _("Show Ada maintenance-related variables."),
14271 &maint_show_ada_cmdlist, "maintenance show ada ",
14272 0/*allow-unknown*/, &maintenance_show_cmdlist);
14273
14274 add_setshow_boolean_cmd
14275 ("ignore-descriptive-types", class_maintenance,
14276 &ada_ignore_descriptive_types_p,
14277 _("Set whether descriptive types generated by GNAT should be ignored."),
14278 _("Show whether descriptive types generated by GNAT should be ignored."),
14279 _("\
14280 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14281 DWARF attribute."),
14282 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14283
14284 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14285 NULL, xcalloc, xfree);
14286
14287 /* The ada-lang observers. */
14288 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14289 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14290 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14291 }
This page took 0.743609 seconds and 5 git commands to generate.