Rename field_int to field_signed
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static int ada_ignore_descriptive_types_p = 0;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp
1399 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1400 else
1401 {
1402 /* Sometimes, we can't find a corresponding objfile, in
1403 which case, we put the result on the heap. Since we only
1404 decode when needed, we hope this usually does not cause a
1405 significant memory leak (FIXME). */
1406
1407 char **slot = (char **) htab_find_slot (decoded_names_store,
1408 decoded, INSERT);
1409
1410 if (*slot == NULL)
1411 *slot = xstrdup (decoded);
1412 *resultp = *slot;
1413 }
1414 }
1415
1416 return *resultp;
1417 }
1418
1419 static char *
1420 ada_la_decode (const char *encoded, int options)
1421 {
1422 return xstrdup (ada_decode (encoded));
1423 }
1424
1425 /* Implement la_sniff_from_mangled_name for Ada. */
1426
1427 static int
1428 ada_sniff_from_mangled_name (const char *mangled, char **out)
1429 {
1430 const char *demangled = ada_decode (mangled);
1431
1432 *out = NULL;
1433
1434 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1435 {
1436 /* Set the gsymbol language to Ada, but still return 0.
1437 Two reasons for that:
1438
1439 1. For Ada, we prefer computing the symbol's decoded name
1440 on the fly rather than pre-compute it, in order to save
1441 memory (Ada projects are typically very large).
1442
1443 2. There are some areas in the definition of the GNAT
1444 encoding where, with a bit of bad luck, we might be able
1445 to decode a non-Ada symbol, generating an incorrect
1446 demangled name (Eg: names ending with "TB" for instance
1447 are identified as task bodies and so stripped from
1448 the decoded name returned).
1449
1450 Returning 1, here, but not setting *DEMANGLED, helps us get a
1451 little bit of the best of both worlds. Because we're last,
1452 we should not affect any of the other languages that were
1453 able to demangle the symbol before us; we get to correctly
1454 tag Ada symbols as such; and even if we incorrectly tagged a
1455 non-Ada symbol, which should be rare, any routing through the
1456 Ada language should be transparent (Ada tries to behave much
1457 like C/C++ with non-Ada symbols). */
1458 return 1;
1459 }
1460
1461 return 0;
1462 }
1463
1464 \f
1465
1466 /* Arrays */
1467
1468 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1469 generated by the GNAT compiler to describe the index type used
1470 for each dimension of an array, check whether it follows the latest
1471 known encoding. If not, fix it up to conform to the latest encoding.
1472 Otherwise, do nothing. This function also does nothing if
1473 INDEX_DESC_TYPE is NULL.
1474
1475 The GNAT encoding used to describle the array index type evolved a bit.
1476 Initially, the information would be provided through the name of each
1477 field of the structure type only, while the type of these fields was
1478 described as unspecified and irrelevant. The debugger was then expected
1479 to perform a global type lookup using the name of that field in order
1480 to get access to the full index type description. Because these global
1481 lookups can be very expensive, the encoding was later enhanced to make
1482 the global lookup unnecessary by defining the field type as being
1483 the full index type description.
1484
1485 The purpose of this routine is to allow us to support older versions
1486 of the compiler by detecting the use of the older encoding, and by
1487 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1488 we essentially replace each field's meaningless type by the associated
1489 index subtype). */
1490
1491 void
1492 ada_fixup_array_indexes_type (struct type *index_desc_type)
1493 {
1494 int i;
1495
1496 if (index_desc_type == NULL)
1497 return;
1498 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1499
1500 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1501 to check one field only, no need to check them all). If not, return
1502 now.
1503
1504 If our INDEX_DESC_TYPE was generated using the older encoding,
1505 the field type should be a meaningless integer type whose name
1506 is not equal to the field name. */
1507 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1508 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1509 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1510 return;
1511
1512 /* Fixup each field of INDEX_DESC_TYPE. */
1513 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1514 {
1515 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1516 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1517
1518 if (raw_type)
1519 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1520 }
1521 }
1522
1523 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1524
1525 static const char *bound_name[] = {
1526 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1527 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1528 };
1529
1530 /* Maximum number of array dimensions we are prepared to handle. */
1531
1532 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1533
1534
1535 /* The desc_* routines return primitive portions of array descriptors
1536 (fat pointers). */
1537
1538 /* The descriptor or array type, if any, indicated by TYPE; removes
1539 level of indirection, if needed. */
1540
1541 static struct type *
1542 desc_base_type (struct type *type)
1543 {
1544 if (type == NULL)
1545 return NULL;
1546 type = ada_check_typedef (type);
1547 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1548 type = ada_typedef_target_type (type);
1549
1550 if (type != NULL
1551 && (TYPE_CODE (type) == TYPE_CODE_PTR
1552 || TYPE_CODE (type) == TYPE_CODE_REF))
1553 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1554 else
1555 return type;
1556 }
1557
1558 /* True iff TYPE indicates a "thin" array pointer type. */
1559
1560 static int
1561 is_thin_pntr (struct type *type)
1562 {
1563 return
1564 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1565 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1566 }
1567
1568 /* The descriptor type for thin pointer type TYPE. */
1569
1570 static struct type *
1571 thin_descriptor_type (struct type *type)
1572 {
1573 struct type *base_type = desc_base_type (type);
1574
1575 if (base_type == NULL)
1576 return NULL;
1577 if (is_suffix (ada_type_name (base_type), "___XVE"))
1578 return base_type;
1579 else
1580 {
1581 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1582
1583 if (alt_type == NULL)
1584 return base_type;
1585 else
1586 return alt_type;
1587 }
1588 }
1589
1590 /* A pointer to the array data for thin-pointer value VAL. */
1591
1592 static struct value *
1593 thin_data_pntr (struct value *val)
1594 {
1595 struct type *type = ada_check_typedef (value_type (val));
1596 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1597
1598 data_type = lookup_pointer_type (data_type);
1599
1600 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1601 return value_cast (data_type, value_copy (val));
1602 else
1603 return value_from_longest (data_type, value_address (val));
1604 }
1605
1606 /* True iff TYPE indicates a "thick" array pointer type. */
1607
1608 static int
1609 is_thick_pntr (struct type *type)
1610 {
1611 type = desc_base_type (type);
1612 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1613 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1614 }
1615
1616 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1617 pointer to one, the type of its bounds data; otherwise, NULL. */
1618
1619 static struct type *
1620 desc_bounds_type (struct type *type)
1621 {
1622 struct type *r;
1623
1624 type = desc_base_type (type);
1625
1626 if (type == NULL)
1627 return NULL;
1628 else if (is_thin_pntr (type))
1629 {
1630 type = thin_descriptor_type (type);
1631 if (type == NULL)
1632 return NULL;
1633 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1634 if (r != NULL)
1635 return ada_check_typedef (r);
1636 }
1637 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1638 {
1639 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1640 if (r != NULL)
1641 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1642 }
1643 return NULL;
1644 }
1645
1646 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1647 one, a pointer to its bounds data. Otherwise NULL. */
1648
1649 static struct value *
1650 desc_bounds (struct value *arr)
1651 {
1652 struct type *type = ada_check_typedef (value_type (arr));
1653
1654 if (is_thin_pntr (type))
1655 {
1656 struct type *bounds_type =
1657 desc_bounds_type (thin_descriptor_type (type));
1658 LONGEST addr;
1659
1660 if (bounds_type == NULL)
1661 error (_("Bad GNAT array descriptor"));
1662
1663 /* NOTE: The following calculation is not really kosher, but
1664 since desc_type is an XVE-encoded type (and shouldn't be),
1665 the correct calculation is a real pain. FIXME (and fix GCC). */
1666 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1667 addr = value_as_long (arr);
1668 else
1669 addr = value_address (arr);
1670
1671 return
1672 value_from_longest (lookup_pointer_type (bounds_type),
1673 addr - TYPE_LENGTH (bounds_type));
1674 }
1675
1676 else if (is_thick_pntr (type))
1677 {
1678 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1679 _("Bad GNAT array descriptor"));
1680 struct type *p_bounds_type = value_type (p_bounds);
1681
1682 if (p_bounds_type
1683 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1684 {
1685 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1686
1687 if (TYPE_STUB (target_type))
1688 p_bounds = value_cast (lookup_pointer_type
1689 (ada_check_typedef (target_type)),
1690 p_bounds);
1691 }
1692 else
1693 error (_("Bad GNAT array descriptor"));
1694
1695 return p_bounds;
1696 }
1697 else
1698 return NULL;
1699 }
1700
1701 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1702 position of the field containing the address of the bounds data. */
1703
1704 static int
1705 fat_pntr_bounds_bitpos (struct type *type)
1706 {
1707 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1708 }
1709
1710 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1711 size of the field containing the address of the bounds data. */
1712
1713 static int
1714 fat_pntr_bounds_bitsize (struct type *type)
1715 {
1716 type = desc_base_type (type);
1717
1718 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1719 return TYPE_FIELD_BITSIZE (type, 1);
1720 else
1721 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1722 }
1723
1724 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1725 pointer to one, the type of its array data (a array-with-no-bounds type);
1726 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1727 data. */
1728
1729 static struct type *
1730 desc_data_target_type (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 /* NOTE: The following is bogus; see comment in desc_bounds. */
1735 if (is_thin_pntr (type))
1736 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1737 else if (is_thick_pntr (type))
1738 {
1739 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1740
1741 if (data_type
1742 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1743 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1744 }
1745
1746 return NULL;
1747 }
1748
1749 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1750 its array data. */
1751
1752 static struct value *
1753 desc_data (struct value *arr)
1754 {
1755 struct type *type = value_type (arr);
1756
1757 if (is_thin_pntr (type))
1758 return thin_data_pntr (arr);
1759 else if (is_thick_pntr (type))
1760 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1761 _("Bad GNAT array descriptor"));
1762 else
1763 return NULL;
1764 }
1765
1766
1767 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1768 position of the field containing the address of the data. */
1769
1770 static int
1771 fat_pntr_data_bitpos (struct type *type)
1772 {
1773 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1774 }
1775
1776 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1777 size of the field containing the address of the data. */
1778
1779 static int
1780 fat_pntr_data_bitsize (struct type *type)
1781 {
1782 type = desc_base_type (type);
1783
1784 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1785 return TYPE_FIELD_BITSIZE (type, 0);
1786 else
1787 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1788 }
1789
1790 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1791 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1792 bound, if WHICH is 1. The first bound is I=1. */
1793
1794 static struct value *
1795 desc_one_bound (struct value *bounds, int i, int which)
1796 {
1797 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1798 _("Bad GNAT array descriptor bounds"));
1799 }
1800
1801 /* If BOUNDS is an array-bounds structure type, return the bit position
1802 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
1805 static int
1806 desc_bound_bitpos (struct type *type, int i, int which)
1807 {
1808 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit field size
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitsize (struct type *type, int i, int which)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1821 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1822 else
1823 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1824 }
1825
1826 /* If TYPE is the type of an array-bounds structure, the type of its
1827 Ith bound (numbering from 1). Otherwise, NULL. */
1828
1829 static struct type *
1830 desc_index_type (struct type *type, int i)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1835 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1836 else
1837 return NULL;
1838 }
1839
1840 /* The number of index positions in the array-bounds type TYPE.
1841 Return 0 if TYPE is NULL. */
1842
1843 static int
1844 desc_arity (struct type *type)
1845 {
1846 type = desc_base_type (type);
1847
1848 if (type != NULL)
1849 return TYPE_NFIELDS (type) / 2;
1850 return 0;
1851 }
1852
1853 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1854 an array descriptor type (representing an unconstrained array
1855 type). */
1856
1857 static int
1858 ada_is_direct_array_type (struct type *type)
1859 {
1860 if (type == NULL)
1861 return 0;
1862 type = ada_check_typedef (type);
1863 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1864 || ada_is_array_descriptor_type (type));
1865 }
1866
1867 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1868 * to one. */
1869
1870 static int
1871 ada_is_array_type (struct type *type)
1872 {
1873 while (type != NULL
1874 && (TYPE_CODE (type) == TYPE_CODE_PTR
1875 || TYPE_CODE (type) == TYPE_CODE_REF))
1876 type = TYPE_TARGET_TYPE (type);
1877 return ada_is_direct_array_type (type);
1878 }
1879
1880 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1881
1882 int
1883 ada_is_simple_array_type (struct type *type)
1884 {
1885 if (type == NULL)
1886 return 0;
1887 type = ada_check_typedef (type);
1888 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1889 || (TYPE_CODE (type) == TYPE_CODE_PTR
1890 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1891 == TYPE_CODE_ARRAY));
1892 }
1893
1894 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1895
1896 int
1897 ada_is_array_descriptor_type (struct type *type)
1898 {
1899 struct type *data_type = desc_data_target_type (type);
1900
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (data_type != NULL
1905 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1906 && desc_arity (desc_bounds_type (type)) > 0);
1907 }
1908
1909 /* Non-zero iff type is a partially mal-formed GNAT array
1910 descriptor. FIXME: This is to compensate for some problems with
1911 debugging output from GNAT. Re-examine periodically to see if it
1912 is still needed. */
1913
1914 int
1915 ada_is_bogus_array_descriptor (struct type *type)
1916 {
1917 return
1918 type != NULL
1919 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1920 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1921 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1922 && !ada_is_array_descriptor_type (type);
1923 }
1924
1925
1926 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1927 (fat pointer) returns the type of the array data described---specifically,
1928 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1929 in from the descriptor; otherwise, they are left unspecified. If
1930 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1931 returns NULL. The result is simply the type of ARR if ARR is not
1932 a descriptor. */
1933 struct type *
1934 ada_type_of_array (struct value *arr, int bounds)
1935 {
1936 if (ada_is_constrained_packed_array_type (value_type (arr)))
1937 return decode_constrained_packed_array_type (value_type (arr));
1938
1939 if (!ada_is_array_descriptor_type (value_type (arr)))
1940 return value_type (arr);
1941
1942 if (!bounds)
1943 {
1944 struct type *array_type =
1945 ada_check_typedef (desc_data_target_type (value_type (arr)));
1946
1947 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1948 TYPE_FIELD_BITSIZE (array_type, 0) =
1949 decode_packed_array_bitsize (value_type (arr));
1950
1951 return array_type;
1952 }
1953 else
1954 {
1955 struct type *elt_type;
1956 int arity;
1957 struct value *descriptor;
1958
1959 elt_type = ada_array_element_type (value_type (arr), -1);
1960 arity = ada_array_arity (value_type (arr));
1961
1962 if (elt_type == NULL || arity == 0)
1963 return ada_check_typedef (value_type (arr));
1964
1965 descriptor = desc_bounds (arr);
1966 if (value_as_long (descriptor) == 0)
1967 return NULL;
1968 while (arity > 0)
1969 {
1970 struct type *range_type = alloc_type_copy (value_type (arr));
1971 struct type *array_type = alloc_type_copy (value_type (arr));
1972 struct value *low = desc_one_bound (descriptor, arity, 0);
1973 struct value *high = desc_one_bound (descriptor, arity, 1);
1974
1975 arity -= 1;
1976 create_static_range_type (range_type, value_type (low),
1977 longest_to_int (value_as_long (low)),
1978 longest_to_int (value_as_long (high)));
1979 elt_type = create_array_type (array_type, elt_type, range_type);
1980
1981 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1982 {
1983 /* We need to store the element packed bitsize, as well as
1984 recompute the array size, because it was previously
1985 computed based on the unpacked element size. */
1986 LONGEST lo = value_as_long (low);
1987 LONGEST hi = value_as_long (high);
1988
1989 TYPE_FIELD_BITSIZE (elt_type, 0) =
1990 decode_packed_array_bitsize (value_type (arr));
1991 /* If the array has no element, then the size is already
1992 zero, and does not need to be recomputed. */
1993 if (lo < hi)
1994 {
1995 int array_bitsize =
1996 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1997
1998 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1999 }
2000 }
2001 }
2002
2003 return lookup_pointer_type (elt_type);
2004 }
2005 }
2006
2007 /* If ARR does not represent an array, returns ARR unchanged.
2008 Otherwise, returns either a standard GDB array with bounds set
2009 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2010 GDB array. Returns NULL if ARR is a null fat pointer. */
2011
2012 struct value *
2013 ada_coerce_to_simple_array_ptr (struct value *arr)
2014 {
2015 if (ada_is_array_descriptor_type (value_type (arr)))
2016 {
2017 struct type *arrType = ada_type_of_array (arr, 1);
2018
2019 if (arrType == NULL)
2020 return NULL;
2021 return value_cast (arrType, value_copy (desc_data (arr)));
2022 }
2023 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2024 return decode_constrained_packed_array (arr);
2025 else
2026 return arr;
2027 }
2028
2029 /* If ARR does not represent an array, returns ARR unchanged.
2030 Otherwise, returns a standard GDB array describing ARR (which may
2031 be ARR itself if it already is in the proper form). */
2032
2033 struct value *
2034 ada_coerce_to_simple_array (struct value *arr)
2035 {
2036 if (ada_is_array_descriptor_type (value_type (arr)))
2037 {
2038 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2039
2040 if (arrVal == NULL)
2041 error (_("Bounds unavailable for null array pointer."));
2042 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2043 return value_ind (arrVal);
2044 }
2045 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2046 return decode_constrained_packed_array (arr);
2047 else
2048 return arr;
2049 }
2050
2051 /* If TYPE represents a GNAT array type, return it translated to an
2052 ordinary GDB array type (possibly with BITSIZE fields indicating
2053 packing). For other types, is the identity. */
2054
2055 struct type *
2056 ada_coerce_to_simple_array_type (struct type *type)
2057 {
2058 if (ada_is_constrained_packed_array_type (type))
2059 return decode_constrained_packed_array_type (type);
2060
2061 if (ada_is_array_descriptor_type (type))
2062 return ada_check_typedef (desc_data_target_type (type));
2063
2064 return type;
2065 }
2066
2067 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2068
2069 static int
2070 ada_is_packed_array_type (struct type *type)
2071 {
2072 if (type == NULL)
2073 return 0;
2074 type = desc_base_type (type);
2075 type = ada_check_typedef (type);
2076 return
2077 ada_type_name (type) != NULL
2078 && strstr (ada_type_name (type), "___XP") != NULL;
2079 }
2080
2081 /* Non-zero iff TYPE represents a standard GNAT constrained
2082 packed-array type. */
2083
2084 int
2085 ada_is_constrained_packed_array_type (struct type *type)
2086 {
2087 return ada_is_packed_array_type (type)
2088 && !ada_is_array_descriptor_type (type);
2089 }
2090
2091 /* Non-zero iff TYPE represents an array descriptor for a
2092 unconstrained packed-array type. */
2093
2094 static int
2095 ada_is_unconstrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2102 return the size of its elements in bits. */
2103
2104 static long
2105 decode_packed_array_bitsize (struct type *type)
2106 {
2107 const char *raw_name;
2108 const char *tail;
2109 long bits;
2110
2111 /* Access to arrays implemented as fat pointers are encoded as a typedef
2112 of the fat pointer type. We need the name of the fat pointer type
2113 to do the decoding, so strip the typedef layer. */
2114 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2115 type = ada_typedef_target_type (type);
2116
2117 raw_name = ada_type_name (ada_check_typedef (type));
2118 if (!raw_name)
2119 raw_name = ada_type_name (desc_base_type (type));
2120
2121 if (!raw_name)
2122 return 0;
2123
2124 tail = strstr (raw_name, "___XP");
2125 gdb_assert (tail != NULL);
2126
2127 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2128 {
2129 lim_warning
2130 (_("could not understand bit size information on packed array"));
2131 return 0;
2132 }
2133
2134 return bits;
2135 }
2136
2137 /* Given that TYPE is a standard GDB array type with all bounds filled
2138 in, and that the element size of its ultimate scalar constituents
2139 (that is, either its elements, or, if it is an array of arrays, its
2140 elements' elements, etc.) is *ELT_BITS, return an identical type,
2141 but with the bit sizes of its elements (and those of any
2142 constituent arrays) recorded in the BITSIZE components of its
2143 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2144 in bits.
2145
2146 Note that, for arrays whose index type has an XA encoding where
2147 a bound references a record discriminant, getting that discriminant,
2148 and therefore the actual value of that bound, is not possible
2149 because none of the given parameters gives us access to the record.
2150 This function assumes that it is OK in the context where it is being
2151 used to return an array whose bounds are still dynamic and where
2152 the length is arbitrary. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2183 && is_dynamic_type (check_typedef (index_type)))
2184 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2185 low_bound = high_bound = 0;
2186 if (high_bound < low_bound)
2187 *elt_bits = TYPE_LENGTH (new_type) = 0;
2188 else
2189 {
2190 *elt_bits *= (high_bound - low_bound + 1);
2191 TYPE_LENGTH (new_type) =
2192 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2193 }
2194
2195 TYPE_FIXED_INSTANCE (new_type) = 1;
2196 return new_type;
2197 }
2198
2199 /* The array type encoded by TYPE, where
2200 ada_is_constrained_packed_array_type (TYPE). */
2201
2202 static struct type *
2203 decode_constrained_packed_array_type (struct type *type)
2204 {
2205 const char *raw_name = ada_type_name (ada_check_typedef (type));
2206 char *name;
2207 const char *tail;
2208 struct type *shadow_type;
2209 long bits;
2210
2211 if (!raw_name)
2212 raw_name = ada_type_name (desc_base_type (type));
2213
2214 if (!raw_name)
2215 return NULL;
2216
2217 name = (char *) alloca (strlen (raw_name) + 1);
2218 tail = strstr (raw_name, "___XP");
2219 type = desc_base_type (type);
2220
2221 memcpy (name, raw_name, tail - raw_name);
2222 name[tail - raw_name] = '\000';
2223
2224 shadow_type = ada_find_parallel_type_with_name (type, name);
2225
2226 if (shadow_type == NULL)
2227 {
2228 lim_warning (_("could not find bounds information on packed array"));
2229 return NULL;
2230 }
2231 shadow_type = check_typedef (shadow_type);
2232
2233 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 {
2235 lim_warning (_("could not understand bounds "
2236 "information on packed array"));
2237 return NULL;
2238 }
2239
2240 bits = decode_packed_array_bitsize (type);
2241 return constrained_packed_array_type (shadow_type, &bits);
2242 }
2243
2244 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2245 array, returns a simple array that denotes that array. Its type is a
2246 standard GDB array type except that the BITSIZEs of the array
2247 target types are set to the number of bits in each element, and the
2248 type length is set appropriately. */
2249
2250 static struct value *
2251 decode_constrained_packed_array (struct value *arr)
2252 {
2253 struct type *type;
2254
2255 /* If our value is a pointer, then dereference it. Likewise if
2256 the value is a reference. Make sure that this operation does not
2257 cause the target type to be fixed, as this would indirectly cause
2258 this array to be decoded. The rest of the routine assumes that
2259 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2260 and "value_ind" routines to perform the dereferencing, as opposed
2261 to using "ada_coerce_ref" or "ada_value_ind". */
2262 arr = coerce_ref (arr);
2263 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2264 arr = value_ind (arr);
2265
2266 type = decode_constrained_packed_array_type (value_type (arr));
2267 if (type == NULL)
2268 {
2269 error (_("can't unpack array"));
2270 return NULL;
2271 }
2272
2273 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2274 && ada_is_modular_type (value_type (arr)))
2275 {
2276 /* This is a (right-justified) modular type representing a packed
2277 array with no wrapper. In order to interpret the value through
2278 the (left-justified) packed array type we just built, we must
2279 first left-justify it. */
2280 int bit_size, bit_pos;
2281 ULONGEST mod;
2282
2283 mod = ada_modulus (value_type (arr)) - 1;
2284 bit_size = 0;
2285 while (mod > 0)
2286 {
2287 bit_size += 1;
2288 mod >>= 1;
2289 }
2290 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2291 arr = ada_value_primitive_packed_val (arr, NULL,
2292 bit_pos / HOST_CHAR_BIT,
2293 bit_pos % HOST_CHAR_BIT,
2294 bit_size,
2295 type);
2296 }
2297
2298 return coerce_unspec_val_to_type (arr, type);
2299 }
2300
2301
2302 /* The value of the element of packed array ARR at the ARITY indices
2303 given in IND. ARR must be a simple array. */
2304
2305 static struct value *
2306 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2307 {
2308 int i;
2309 int bits, elt_off, bit_off;
2310 long elt_total_bit_offset;
2311 struct type *elt_type;
2312 struct value *v;
2313
2314 bits = 0;
2315 elt_total_bit_offset = 0;
2316 elt_type = ada_check_typedef (value_type (arr));
2317 for (i = 0; i < arity; i += 1)
2318 {
2319 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2320 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 error
2322 (_("attempt to do packed indexing of "
2323 "something other than a packed array"));
2324 else
2325 {
2326 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2327 LONGEST lowerbound, upperbound;
2328 LONGEST idx;
2329
2330 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 {
2332 lim_warning (_("don't know bounds of array"));
2333 lowerbound = upperbound = 0;
2334 }
2335
2336 idx = pos_atr (ind[i]);
2337 if (idx < lowerbound || idx > upperbound)
2338 lim_warning (_("packed array index %ld out of bounds"),
2339 (long) idx);
2340 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2341 elt_total_bit_offset += (idx - lowerbound) * bits;
2342 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2343 }
2344 }
2345 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2346 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2347
2348 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2349 bits, elt_type);
2350 return v;
2351 }
2352
2353 /* Non-zero iff TYPE includes negative integer values. */
2354
2355 static int
2356 has_negatives (struct type *type)
2357 {
2358 switch (TYPE_CODE (type))
2359 {
2360 default:
2361 return 0;
2362 case TYPE_CODE_INT:
2363 return !TYPE_UNSIGNED (type);
2364 case TYPE_CODE_RANGE:
2365 return TYPE_LOW_BOUND (type) < 0;
2366 }
2367 }
2368
2369 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2370 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2371 the unpacked buffer.
2372
2373 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2374 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2375
2376 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2377 zero otherwise.
2378
2379 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2380
2381 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2382
2383 static void
2384 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2385 gdb_byte *unpacked, int unpacked_len,
2386 int is_big_endian, int is_signed_type,
2387 int is_scalar)
2388 {
2389 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2390 int src_idx; /* Index into the source area */
2391 int src_bytes_left; /* Number of source bytes left to process. */
2392 int srcBitsLeft; /* Number of source bits left to move */
2393 int unusedLS; /* Number of bits in next significant
2394 byte of source that are unused */
2395
2396 int unpacked_idx; /* Index into the unpacked buffer */
2397 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2398
2399 unsigned long accum; /* Staging area for bits being transferred */
2400 int accumSize; /* Number of meaningful bits in accum */
2401 unsigned char sign;
2402
2403 /* Transmit bytes from least to most significant; delta is the direction
2404 the indices move. */
2405 int delta = is_big_endian ? -1 : 1;
2406
2407 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2408 bits from SRC. .*/
2409 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2410 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2411 bit_size, unpacked_len);
2412
2413 srcBitsLeft = bit_size;
2414 src_bytes_left = src_len;
2415 unpacked_bytes_left = unpacked_len;
2416 sign = 0;
2417
2418 if (is_big_endian)
2419 {
2420 src_idx = src_len - 1;
2421 if (is_signed_type
2422 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2423 sign = ~0;
2424
2425 unusedLS =
2426 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2427 % HOST_CHAR_BIT;
2428
2429 if (is_scalar)
2430 {
2431 accumSize = 0;
2432 unpacked_idx = unpacked_len - 1;
2433 }
2434 else
2435 {
2436 /* Non-scalar values must be aligned at a byte boundary... */
2437 accumSize =
2438 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2439 /* ... And are placed at the beginning (most-significant) bytes
2440 of the target. */
2441 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2442 unpacked_bytes_left = unpacked_idx + 1;
2443 }
2444 }
2445 else
2446 {
2447 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2448
2449 src_idx = unpacked_idx = 0;
2450 unusedLS = bit_offset;
2451 accumSize = 0;
2452
2453 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2454 sign = ~0;
2455 }
2456
2457 accum = 0;
2458 while (src_bytes_left > 0)
2459 {
2460 /* Mask for removing bits of the next source byte that are not
2461 part of the value. */
2462 unsigned int unusedMSMask =
2463 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2464 1;
2465 /* Sign-extend bits for this byte. */
2466 unsigned int signMask = sign & ~unusedMSMask;
2467
2468 accum |=
2469 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2470 accumSize += HOST_CHAR_BIT - unusedLS;
2471 if (accumSize >= HOST_CHAR_BIT)
2472 {
2473 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2474 accumSize -= HOST_CHAR_BIT;
2475 accum >>= HOST_CHAR_BIT;
2476 unpacked_bytes_left -= 1;
2477 unpacked_idx += delta;
2478 }
2479 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2480 unusedLS = 0;
2481 src_bytes_left -= 1;
2482 src_idx += delta;
2483 }
2484 while (unpacked_bytes_left > 0)
2485 {
2486 accum |= sign << accumSize;
2487 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2488 accumSize -= HOST_CHAR_BIT;
2489 if (accumSize < 0)
2490 accumSize = 0;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2494 }
2495 }
2496
2497 /* Create a new value of type TYPE from the contents of OBJ starting
2498 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2499 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2500 assigning through the result will set the field fetched from.
2501 VALADDR is ignored unless OBJ is NULL, in which case,
2502 VALADDR+OFFSET must address the start of storage containing the
2503 packed value. The value returned in this case is never an lval.
2504 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2505
2506 struct value *
2507 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2508 long offset, int bit_offset, int bit_size,
2509 struct type *type)
2510 {
2511 struct value *v;
2512 const gdb_byte *src; /* First byte containing data to unpack */
2513 gdb_byte *unpacked;
2514 const int is_scalar = is_scalar_type (type);
2515 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2516 gdb::byte_vector staging;
2517
2518 type = ada_check_typedef (type);
2519
2520 if (obj == NULL)
2521 src = valaddr + offset;
2522 else
2523 src = value_contents (obj) + offset;
2524
2525 if (is_dynamic_type (type))
2526 {
2527 /* The length of TYPE might by dynamic, so we need to resolve
2528 TYPE in order to know its actual size, which we then use
2529 to create the contents buffer of the value we return.
2530 The difficulty is that the data containing our object is
2531 packed, and therefore maybe not at a byte boundary. So, what
2532 we do, is unpack the data into a byte-aligned buffer, and then
2533 use that buffer as our object's value for resolving the type. */
2534 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2535 staging.resize (staging_len);
2536
2537 ada_unpack_from_contents (src, bit_offset, bit_size,
2538 staging.data (), staging.size (),
2539 is_big_endian, has_negatives (type),
2540 is_scalar);
2541 type = resolve_dynamic_type (type, staging.data (), 0);
2542 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2543 {
2544 /* This happens when the length of the object is dynamic,
2545 and is actually smaller than the space reserved for it.
2546 For instance, in an array of variant records, the bit_size
2547 we're given is the array stride, which is constant and
2548 normally equal to the maximum size of its element.
2549 But, in reality, each element only actually spans a portion
2550 of that stride. */
2551 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2552 }
2553 }
2554
2555 if (obj == NULL)
2556 {
2557 v = allocate_value (type);
2558 src = valaddr + offset;
2559 }
2560 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2561 {
2562 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2563 gdb_byte *buf;
2564
2565 v = value_at (type, value_address (obj) + offset);
2566 buf = (gdb_byte *) alloca (src_len);
2567 read_memory (value_address (v), buf, src_len);
2568 src = buf;
2569 }
2570 else
2571 {
2572 v = allocate_value (type);
2573 src = value_contents (obj) + offset;
2574 }
2575
2576 if (obj != NULL)
2577 {
2578 long new_offset = offset;
2579
2580 set_value_component_location (v, obj);
2581 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2582 set_value_bitsize (v, bit_size);
2583 if (value_bitpos (v) >= HOST_CHAR_BIT)
2584 {
2585 ++new_offset;
2586 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2587 }
2588 set_value_offset (v, new_offset);
2589
2590 /* Also set the parent value. This is needed when trying to
2591 assign a new value (in inferior memory). */
2592 set_value_parent (v, obj);
2593 }
2594 else
2595 set_value_bitsize (v, bit_size);
2596 unpacked = value_contents_writeable (v);
2597
2598 if (bit_size == 0)
2599 {
2600 memset (unpacked, 0, TYPE_LENGTH (type));
2601 return v;
2602 }
2603
2604 if (staging.size () == TYPE_LENGTH (type))
2605 {
2606 /* Small short-cut: If we've unpacked the data into a buffer
2607 of the same size as TYPE's length, then we can reuse that,
2608 instead of doing the unpacking again. */
2609 memcpy (unpacked, staging.data (), staging.size ());
2610 }
2611 else
2612 ada_unpack_from_contents (src, bit_offset, bit_size,
2613 unpacked, TYPE_LENGTH (type),
2614 is_big_endian, has_negatives (type), is_scalar);
2615
2616 return v;
2617 }
2618
2619 /* Store the contents of FROMVAL into the location of TOVAL.
2620 Return a new value with the location of TOVAL and contents of
2621 FROMVAL. Handles assignment into packed fields that have
2622 floating-point or non-scalar types. */
2623
2624 static struct value *
2625 ada_value_assign (struct value *toval, struct value *fromval)
2626 {
2627 struct type *type = value_type (toval);
2628 int bits = value_bitsize (toval);
2629
2630 toval = ada_coerce_ref (toval);
2631 fromval = ada_coerce_ref (fromval);
2632
2633 if (ada_is_direct_array_type (value_type (toval)))
2634 toval = ada_coerce_to_simple_array (toval);
2635 if (ada_is_direct_array_type (value_type (fromval)))
2636 fromval = ada_coerce_to_simple_array (fromval);
2637
2638 if (!deprecated_value_modifiable (toval))
2639 error (_("Left operand of assignment is not a modifiable lvalue."));
2640
2641 if (VALUE_LVAL (toval) == lval_memory
2642 && bits > 0
2643 && (TYPE_CODE (type) == TYPE_CODE_FLT
2644 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2645 {
2646 int len = (value_bitpos (toval)
2647 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2648 int from_size;
2649 gdb_byte *buffer = (gdb_byte *) alloca (len);
2650 struct value *val;
2651 CORE_ADDR to_addr = value_address (toval);
2652
2653 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2654 fromval = value_cast (type, fromval);
2655
2656 read_memory (to_addr, buffer, len);
2657 from_size = value_bitsize (fromval);
2658 if (from_size == 0)
2659 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2660
2661 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2662 ULONGEST from_offset = 0;
2663 if (is_big_endian && is_scalar_type (value_type (fromval)))
2664 from_offset = from_size - bits;
2665 copy_bitwise (buffer, value_bitpos (toval),
2666 value_contents (fromval), from_offset,
2667 bits, is_big_endian);
2668 write_memory_with_notification (to_addr, buffer, len);
2669
2670 val = value_copy (toval);
2671 memcpy (value_contents_raw (val), value_contents (fromval),
2672 TYPE_LENGTH (type));
2673 deprecated_set_value_type (val, type);
2674
2675 return val;
2676 }
2677
2678 return value_assign (toval, fromval);
2679 }
2680
2681
2682 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2683 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2684 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2685 COMPONENT, and not the inferior's memory. The current contents
2686 of COMPONENT are ignored.
2687
2688 Although not part of the initial design, this function also works
2689 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2690 had a null address, and COMPONENT had an address which is equal to
2691 its offset inside CONTAINER. */
2692
2693 static void
2694 value_assign_to_component (struct value *container, struct value *component,
2695 struct value *val)
2696 {
2697 LONGEST offset_in_container =
2698 (LONGEST) (value_address (component) - value_address (container));
2699 int bit_offset_in_container =
2700 value_bitpos (component) - value_bitpos (container);
2701 int bits;
2702
2703 val = value_cast (value_type (component), val);
2704
2705 if (value_bitsize (component) == 0)
2706 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2707 else
2708 bits = value_bitsize (component);
2709
2710 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2711 {
2712 int src_offset;
2713
2714 if (is_scalar_type (check_typedef (value_type (component))))
2715 src_offset
2716 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2717 else
2718 src_offset = 0;
2719 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2720 value_bitpos (container) + bit_offset_in_container,
2721 value_contents (val), src_offset, bits, 1);
2722 }
2723 else
2724 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2725 value_bitpos (container) + bit_offset_in_container,
2726 value_contents (val), 0, bits, 0);
2727 }
2728
2729 /* Determine if TYPE is an access to an unconstrained array. */
2730
2731 bool
2732 ada_is_access_to_unconstrained_array (struct type *type)
2733 {
2734 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2735 && is_thick_pntr (ada_typedef_target_type (type)));
2736 }
2737
2738 /* The value of the element of array ARR at the ARITY indices given in IND.
2739 ARR may be either a simple array, GNAT array descriptor, or pointer
2740 thereto. */
2741
2742 struct value *
2743 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2744 {
2745 int k;
2746 struct value *elt;
2747 struct type *elt_type;
2748
2749 elt = ada_coerce_to_simple_array (arr);
2750
2751 elt_type = ada_check_typedef (value_type (elt));
2752 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2753 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2754 return value_subscript_packed (elt, arity, ind);
2755
2756 for (k = 0; k < arity; k += 1)
2757 {
2758 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2759
2760 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2761 error (_("too many subscripts (%d expected)"), k);
2762
2763 elt = value_subscript (elt, pos_atr (ind[k]));
2764
2765 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2766 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2767 {
2768 /* The element is a typedef to an unconstrained array,
2769 except that the value_subscript call stripped the
2770 typedef layer. The typedef layer is GNAT's way to
2771 specify that the element is, at the source level, an
2772 access to the unconstrained array, rather than the
2773 unconstrained array. So, we need to restore that
2774 typedef layer, which we can do by forcing the element's
2775 type back to its original type. Otherwise, the returned
2776 value is going to be printed as the array, rather
2777 than as an access. Another symptom of the same issue
2778 would be that an expression trying to dereference the
2779 element would also be improperly rejected. */
2780 deprecated_set_value_type (elt, saved_elt_type);
2781 }
2782
2783 elt_type = ada_check_typedef (value_type (elt));
2784 }
2785
2786 return elt;
2787 }
2788
2789 /* Assuming ARR is a pointer to a GDB array, the value of the element
2790 of *ARR at the ARITY indices given in IND.
2791 Does not read the entire array into memory.
2792
2793 Note: Unlike what one would expect, this function is used instead of
2794 ada_value_subscript for basically all non-packed array types. The reason
2795 for this is that a side effect of doing our own pointer arithmetics instead
2796 of relying on value_subscript is that there is no implicit typedef peeling.
2797 This is important for arrays of array accesses, where it allows us to
2798 preserve the fact that the array's element is an array access, where the
2799 access part os encoded in a typedef layer. */
2800
2801 static struct value *
2802 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2803 {
2804 int k;
2805 struct value *array_ind = ada_value_ind (arr);
2806 struct type *type
2807 = check_typedef (value_enclosing_type (array_ind));
2808
2809 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2810 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2811 return value_subscript_packed (array_ind, arity, ind);
2812
2813 for (k = 0; k < arity; k += 1)
2814 {
2815 LONGEST lwb, upb;
2816 struct value *lwb_value;
2817
2818 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2819 error (_("too many subscripts (%d expected)"), k);
2820 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2821 value_copy (arr));
2822 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2823 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2824 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2825 type = TYPE_TARGET_TYPE (type);
2826 }
2827
2828 return value_ind (arr);
2829 }
2830
2831 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2832 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2833 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2834 this array is LOW, as per Ada rules. */
2835 static struct value *
2836 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2837 int low, int high)
2838 {
2839 struct type *type0 = ada_check_typedef (type);
2840 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2841 struct type *index_type
2842 = create_static_range_type (NULL, base_index_type, low, high);
2843 struct type *slice_type = create_array_type_with_stride
2844 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2845 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2846 TYPE_FIELD_BITSIZE (type0, 0));
2847 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2848 LONGEST base_low_pos, low_pos;
2849 CORE_ADDR base;
2850
2851 if (!discrete_position (base_index_type, low, &low_pos)
2852 || !discrete_position (base_index_type, base_low, &base_low_pos))
2853 {
2854 warning (_("unable to get positions in slice, use bounds instead"));
2855 low_pos = low;
2856 base_low_pos = base_low;
2857 }
2858
2859 base = value_as_address (array_ptr)
2860 + ((low_pos - base_low_pos)
2861 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2862 return value_at_lazy (slice_type, base);
2863 }
2864
2865
2866 static struct value *
2867 ada_value_slice (struct value *array, int low, int high)
2868 {
2869 struct type *type = ada_check_typedef (value_type (array));
2870 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2871 struct type *index_type
2872 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2873 struct type *slice_type = create_array_type_with_stride
2874 (NULL, TYPE_TARGET_TYPE (type), index_type,
2875 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2876 TYPE_FIELD_BITSIZE (type, 0));
2877 LONGEST low_pos, high_pos;
2878
2879 if (!discrete_position (base_index_type, low, &low_pos)
2880 || !discrete_position (base_index_type, high, &high_pos))
2881 {
2882 warning (_("unable to get positions in slice, use bounds instead"));
2883 low_pos = low;
2884 high_pos = high;
2885 }
2886
2887 return value_cast (slice_type,
2888 value_slice (array, low, high_pos - low_pos + 1));
2889 }
2890
2891 /* If type is a record type in the form of a standard GNAT array
2892 descriptor, returns the number of dimensions for type. If arr is a
2893 simple array, returns the number of "array of"s that prefix its
2894 type designation. Otherwise, returns 0. */
2895
2896 int
2897 ada_array_arity (struct type *type)
2898 {
2899 int arity;
2900
2901 if (type == NULL)
2902 return 0;
2903
2904 type = desc_base_type (type);
2905
2906 arity = 0;
2907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2908 return desc_arity (desc_bounds_type (type));
2909 else
2910 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2911 {
2912 arity += 1;
2913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2914 }
2915
2916 return arity;
2917 }
2918
2919 /* If TYPE is a record type in the form of a standard GNAT array
2920 descriptor or a simple array type, returns the element type for
2921 TYPE after indexing by NINDICES indices, or by all indices if
2922 NINDICES is -1. Otherwise, returns NULL. */
2923
2924 struct type *
2925 ada_array_element_type (struct type *type, int nindices)
2926 {
2927 type = desc_base_type (type);
2928
2929 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2930 {
2931 int k;
2932 struct type *p_array_type;
2933
2934 p_array_type = desc_data_target_type (type);
2935
2936 k = ada_array_arity (type);
2937 if (k == 0)
2938 return NULL;
2939
2940 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2941 if (nindices >= 0 && k > nindices)
2942 k = nindices;
2943 while (k > 0 && p_array_type != NULL)
2944 {
2945 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2946 k -= 1;
2947 }
2948 return p_array_type;
2949 }
2950 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2951 {
2952 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2953 {
2954 type = TYPE_TARGET_TYPE (type);
2955 nindices -= 1;
2956 }
2957 return type;
2958 }
2959
2960 return NULL;
2961 }
2962
2963 /* The type of nth index in arrays of given type (n numbering from 1).
2964 Does not examine memory. Throws an error if N is invalid or TYPE
2965 is not an array type. NAME is the name of the Ada attribute being
2966 evaluated ('range, 'first, 'last, or 'length); it is used in building
2967 the error message. */
2968
2969 static struct type *
2970 ada_index_type (struct type *type, int n, const char *name)
2971 {
2972 struct type *result_type;
2973
2974 type = desc_base_type (type);
2975
2976 if (n < 0 || n > ada_array_arity (type))
2977 error (_("invalid dimension number to '%s"), name);
2978
2979 if (ada_is_simple_array_type (type))
2980 {
2981 int i;
2982
2983 for (i = 1; i < n; i += 1)
2984 type = TYPE_TARGET_TYPE (type);
2985 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2986 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2987 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2988 perhaps stabsread.c would make more sense. */
2989 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2990 result_type = NULL;
2991 }
2992 else
2993 {
2994 result_type = desc_index_type (desc_bounds_type (type), n);
2995 if (result_type == NULL)
2996 error (_("attempt to take bound of something that is not an array"));
2997 }
2998
2999 return result_type;
3000 }
3001
3002 /* Given that arr is an array type, returns the lower bound of the
3003 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3004 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3005 array-descriptor type. It works for other arrays with bounds supplied
3006 by run-time quantities other than discriminants. */
3007
3008 static LONGEST
3009 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3010 {
3011 struct type *type, *index_type_desc, *index_type;
3012 int i;
3013
3014 gdb_assert (which == 0 || which == 1);
3015
3016 if (ada_is_constrained_packed_array_type (arr_type))
3017 arr_type = decode_constrained_packed_array_type (arr_type);
3018
3019 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3020 return (LONGEST) - which;
3021
3022 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3023 type = TYPE_TARGET_TYPE (arr_type);
3024 else
3025 type = arr_type;
3026
3027 if (TYPE_FIXED_INSTANCE (type))
3028 {
3029 /* The array has already been fixed, so we do not need to
3030 check the parallel ___XA type again. That encoding has
3031 already been applied, so ignore it now. */
3032 index_type_desc = NULL;
3033 }
3034 else
3035 {
3036 index_type_desc = ada_find_parallel_type (type, "___XA");
3037 ada_fixup_array_indexes_type (index_type_desc);
3038 }
3039
3040 if (index_type_desc != NULL)
3041 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3042 NULL);
3043 else
3044 {
3045 struct type *elt_type = check_typedef (type);
3046
3047 for (i = 1; i < n; i++)
3048 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3049
3050 index_type = TYPE_INDEX_TYPE (elt_type);
3051 }
3052
3053 return
3054 (LONGEST) (which == 0
3055 ? ada_discrete_type_low_bound (index_type)
3056 : ada_discrete_type_high_bound (index_type));
3057 }
3058
3059 /* Given that arr is an array value, returns the lower bound of the
3060 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3061 WHICH is 1. This routine will also work for arrays with bounds
3062 supplied by run-time quantities other than discriminants. */
3063
3064 static LONGEST
3065 ada_array_bound (struct value *arr, int n, int which)
3066 {
3067 struct type *arr_type;
3068
3069 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3070 arr = value_ind (arr);
3071 arr_type = value_enclosing_type (arr);
3072
3073 if (ada_is_constrained_packed_array_type (arr_type))
3074 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3075 else if (ada_is_simple_array_type (arr_type))
3076 return ada_array_bound_from_type (arr_type, n, which);
3077 else
3078 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3079 }
3080
3081 /* Given that arr is an array value, returns the length of the
3082 nth index. This routine will also work for arrays with bounds
3083 supplied by run-time quantities other than discriminants.
3084 Does not work for arrays indexed by enumeration types with representation
3085 clauses at the moment. */
3086
3087 static LONGEST
3088 ada_array_length (struct value *arr, int n)
3089 {
3090 struct type *arr_type, *index_type;
3091 int low, high;
3092
3093 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3094 arr = value_ind (arr);
3095 arr_type = value_enclosing_type (arr);
3096
3097 if (ada_is_constrained_packed_array_type (arr_type))
3098 return ada_array_length (decode_constrained_packed_array (arr), n);
3099
3100 if (ada_is_simple_array_type (arr_type))
3101 {
3102 low = ada_array_bound_from_type (arr_type, n, 0);
3103 high = ada_array_bound_from_type (arr_type, n, 1);
3104 }
3105 else
3106 {
3107 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3108 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3109 }
3110
3111 arr_type = check_typedef (arr_type);
3112 index_type = ada_index_type (arr_type, n, "length");
3113 if (index_type != NULL)
3114 {
3115 struct type *base_type;
3116 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3117 base_type = TYPE_TARGET_TYPE (index_type);
3118 else
3119 base_type = index_type;
3120
3121 low = pos_atr (value_from_longest (base_type, low));
3122 high = pos_atr (value_from_longest (base_type, high));
3123 }
3124 return high - low + 1;
3125 }
3126
3127 /* An array whose type is that of ARR_TYPE (an array type), with
3128 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3129 less than LOW, then LOW-1 is used. */
3130
3131 static struct value *
3132 empty_array (struct type *arr_type, int low, int high)
3133 {
3134 struct type *arr_type0 = ada_check_typedef (arr_type);
3135 struct type *index_type
3136 = create_static_range_type
3137 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3138 high < low ? low - 1 : high);
3139 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3140
3141 return allocate_value (create_array_type (NULL, elt_type, index_type));
3142 }
3143 \f
3144
3145 /* Name resolution */
3146
3147 /* The "decoded" name for the user-definable Ada operator corresponding
3148 to OP. */
3149
3150 static const char *
3151 ada_decoded_op_name (enum exp_opcode op)
3152 {
3153 int i;
3154
3155 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3156 {
3157 if (ada_opname_table[i].op == op)
3158 return ada_opname_table[i].decoded;
3159 }
3160 error (_("Could not find operator name for opcode"));
3161 }
3162
3163
3164 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3165 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3166 undefined namespace) and converts operators that are
3167 user-defined into appropriate function calls. If CONTEXT_TYPE is
3168 non-null, it provides a preferred result type [at the moment, only
3169 type void has any effect---causing procedures to be preferred over
3170 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3171 return type is preferred. May change (expand) *EXP. */
3172
3173 static void
3174 resolve (expression_up *expp, int void_context_p, int parse_completion,
3175 innermost_block_tracker *tracker)
3176 {
3177 struct type *context_type = NULL;
3178 int pc = 0;
3179
3180 if (void_context_p)
3181 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3182
3183 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3184 }
3185
3186 /* Resolve the operator of the subexpression beginning at
3187 position *POS of *EXPP. "Resolving" consists of replacing
3188 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3189 with their resolutions, replacing built-in operators with
3190 function calls to user-defined operators, where appropriate, and,
3191 when DEPROCEDURE_P is non-zero, converting function-valued variables
3192 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3193 are as in ada_resolve, above. */
3194
3195 static struct value *
3196 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3197 struct type *context_type, int parse_completion,
3198 innermost_block_tracker *tracker)
3199 {
3200 int pc = *pos;
3201 int i;
3202 struct expression *exp; /* Convenience: == *expp. */
3203 enum exp_opcode op = (*expp)->elts[pc].opcode;
3204 struct value **argvec; /* Vector of operand types (alloca'ed). */
3205 int nargs; /* Number of operands. */
3206 int oplen;
3207
3208 argvec = NULL;
3209 nargs = 0;
3210 exp = expp->get ();
3211
3212 /* Pass one: resolve operands, saving their types and updating *pos,
3213 if needed. */
3214 switch (op)
3215 {
3216 case OP_FUNCALL:
3217 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3218 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3219 *pos += 7;
3220 else
3221 {
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3224 }
3225 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3226 break;
3227
3228 case UNOP_ADDR:
3229 *pos += 1;
3230 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3231 break;
3232
3233 case UNOP_QUAL:
3234 *pos += 3;
3235 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3236 parse_completion, tracker);
3237 break;
3238
3239 case OP_ATR_MODULUS:
3240 case OP_ATR_SIZE:
3241 case OP_ATR_TAG:
3242 case OP_ATR_FIRST:
3243 case OP_ATR_LAST:
3244 case OP_ATR_LENGTH:
3245 case OP_ATR_POS:
3246 case OP_ATR_VAL:
3247 case OP_ATR_MIN:
3248 case OP_ATR_MAX:
3249 case TERNOP_IN_RANGE:
3250 case BINOP_IN_BOUNDS:
3251 case UNOP_IN_RANGE:
3252 case OP_AGGREGATE:
3253 case OP_OTHERS:
3254 case OP_CHOICES:
3255 case OP_POSITIONAL:
3256 case OP_DISCRETE_RANGE:
3257 case OP_NAME:
3258 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3259 *pos += oplen;
3260 break;
3261
3262 case BINOP_ASSIGN:
3263 {
3264 struct value *arg1;
3265
3266 *pos += 1;
3267 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3268 if (arg1 == NULL)
3269 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3270 else
3271 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3272 tracker);
3273 break;
3274 }
3275
3276 case UNOP_CAST:
3277 *pos += 3;
3278 nargs = 1;
3279 break;
3280
3281 case BINOP_ADD:
3282 case BINOP_SUB:
3283 case BINOP_MUL:
3284 case BINOP_DIV:
3285 case BINOP_REM:
3286 case BINOP_MOD:
3287 case BINOP_EXP:
3288 case BINOP_CONCAT:
3289 case BINOP_LOGICAL_AND:
3290 case BINOP_LOGICAL_OR:
3291 case BINOP_BITWISE_AND:
3292 case BINOP_BITWISE_IOR:
3293 case BINOP_BITWISE_XOR:
3294
3295 case BINOP_EQUAL:
3296 case BINOP_NOTEQUAL:
3297 case BINOP_LESS:
3298 case BINOP_GTR:
3299 case BINOP_LEQ:
3300 case BINOP_GEQ:
3301
3302 case BINOP_REPEAT:
3303 case BINOP_SUBSCRIPT:
3304 case BINOP_COMMA:
3305 *pos += 1;
3306 nargs = 2;
3307 break;
3308
3309 case UNOP_NEG:
3310 case UNOP_PLUS:
3311 case UNOP_LOGICAL_NOT:
3312 case UNOP_ABS:
3313 case UNOP_IND:
3314 *pos += 1;
3315 nargs = 1;
3316 break;
3317
3318 case OP_LONG:
3319 case OP_FLOAT:
3320 case OP_VAR_VALUE:
3321 case OP_VAR_MSYM_VALUE:
3322 *pos += 4;
3323 break;
3324
3325 case OP_TYPE:
3326 case OP_BOOL:
3327 case OP_LAST:
3328 case OP_INTERNALVAR:
3329 *pos += 3;
3330 break;
3331
3332 case UNOP_MEMVAL:
3333 *pos += 3;
3334 nargs = 1;
3335 break;
3336
3337 case OP_REGISTER:
3338 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3339 break;
3340
3341 case STRUCTOP_STRUCT:
3342 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3343 nargs = 1;
3344 break;
3345
3346 case TERNOP_SLICE:
3347 *pos += 1;
3348 nargs = 3;
3349 break;
3350
3351 case OP_STRING:
3352 break;
3353
3354 default:
3355 error (_("Unexpected operator during name resolution"));
3356 }
3357
3358 argvec = XALLOCAVEC (struct value *, nargs + 1);
3359 for (i = 0; i < nargs; i += 1)
3360 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3361 tracker);
3362 argvec[i] = NULL;
3363 exp = expp->get ();
3364
3365 /* Pass two: perform any resolution on principal operator. */
3366 switch (op)
3367 {
3368 default:
3369 break;
3370
3371 case OP_VAR_VALUE:
3372 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3373 {
3374 std::vector<struct block_symbol> candidates;
3375 int n_candidates;
3376
3377 n_candidates =
3378 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3379 (exp->elts[pc + 2].symbol),
3380 exp->elts[pc + 1].block, VAR_DOMAIN,
3381 &candidates);
3382
3383 if (n_candidates > 1)
3384 {
3385 /* Types tend to get re-introduced locally, so if there
3386 are any local symbols that are not types, first filter
3387 out all types. */
3388 int j;
3389 for (j = 0; j < n_candidates; j += 1)
3390 switch (SYMBOL_CLASS (candidates[j].symbol))
3391 {
3392 case LOC_REGISTER:
3393 case LOC_ARG:
3394 case LOC_REF_ARG:
3395 case LOC_REGPARM_ADDR:
3396 case LOC_LOCAL:
3397 case LOC_COMPUTED:
3398 goto FoundNonType;
3399 default:
3400 break;
3401 }
3402 FoundNonType:
3403 if (j < n_candidates)
3404 {
3405 j = 0;
3406 while (j < n_candidates)
3407 {
3408 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3409 {
3410 candidates[j] = candidates[n_candidates - 1];
3411 n_candidates -= 1;
3412 }
3413 else
3414 j += 1;
3415 }
3416 }
3417 }
3418
3419 if (n_candidates == 0)
3420 error (_("No definition found for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 else if (n_candidates == 1)
3423 i = 0;
3424 else if (deprocedure_p
3425 && !is_nonfunction (candidates.data (), n_candidates))
3426 {
3427 i = ada_resolve_function
3428 (candidates.data (), n_candidates, NULL, 0,
3429 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3430 context_type, parse_completion);
3431 if (i < 0)
3432 error (_("Could not find a match for %s"),
3433 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3434 }
3435 else
3436 {
3437 printf_filtered (_("Multiple matches for %s\n"),
3438 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3439 user_select_syms (candidates.data (), n_candidates, 1);
3440 i = 0;
3441 }
3442
3443 exp->elts[pc + 1].block = candidates[i].block;
3444 exp->elts[pc + 2].symbol = candidates[i].symbol;
3445 tracker->update (candidates[i]);
3446 }
3447
3448 if (deprocedure_p
3449 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3450 == TYPE_CODE_FUNC))
3451 {
3452 replace_operator_with_call (expp, pc, 0, 4,
3453 exp->elts[pc + 2].symbol,
3454 exp->elts[pc + 1].block);
3455 exp = expp->get ();
3456 }
3457 break;
3458
3459 case OP_FUNCALL:
3460 {
3461 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3462 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3463 {
3464 std::vector<struct block_symbol> candidates;
3465 int n_candidates;
3466
3467 n_candidates =
3468 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3469 (exp->elts[pc + 5].symbol),
3470 exp->elts[pc + 4].block, VAR_DOMAIN,
3471 &candidates);
3472
3473 if (n_candidates == 1)
3474 i = 0;
3475 else
3476 {
3477 i = ada_resolve_function
3478 (candidates.data (), n_candidates,
3479 argvec, nargs,
3480 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3481 context_type, parse_completion);
3482 if (i < 0)
3483 error (_("Could not find a match for %s"),
3484 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3485 }
3486
3487 exp->elts[pc + 4].block = candidates[i].block;
3488 exp->elts[pc + 5].symbol = candidates[i].symbol;
3489 tracker->update (candidates[i]);
3490 }
3491 }
3492 break;
3493 case BINOP_ADD:
3494 case BINOP_SUB:
3495 case BINOP_MUL:
3496 case BINOP_DIV:
3497 case BINOP_REM:
3498 case BINOP_MOD:
3499 case BINOP_CONCAT:
3500 case BINOP_BITWISE_AND:
3501 case BINOP_BITWISE_IOR:
3502 case BINOP_BITWISE_XOR:
3503 case BINOP_EQUAL:
3504 case BINOP_NOTEQUAL:
3505 case BINOP_LESS:
3506 case BINOP_GTR:
3507 case BINOP_LEQ:
3508 case BINOP_GEQ:
3509 case BINOP_EXP:
3510 case UNOP_NEG:
3511 case UNOP_PLUS:
3512 case UNOP_LOGICAL_NOT:
3513 case UNOP_ABS:
3514 if (possible_user_operator_p (op, argvec))
3515 {
3516 std::vector<struct block_symbol> candidates;
3517 int n_candidates;
3518
3519 n_candidates =
3520 ada_lookup_symbol_list (ada_decoded_op_name (op),
3521 NULL, VAR_DOMAIN,
3522 &candidates);
3523
3524 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3525 nargs, ada_decoded_op_name (op), NULL,
3526 parse_completion);
3527 if (i < 0)
3528 break;
3529
3530 replace_operator_with_call (expp, pc, nargs, 1,
3531 candidates[i].symbol,
3532 candidates[i].block);
3533 exp = expp->get ();
3534 }
3535 break;
3536
3537 case OP_TYPE:
3538 case OP_REGISTER:
3539 return NULL;
3540 }
3541
3542 *pos = pc;
3543 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3544 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3545 exp->elts[pc + 1].objfile,
3546 exp->elts[pc + 2].msymbol);
3547 else
3548 return evaluate_subexp_type (exp, pos);
3549 }
3550
3551 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3552 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3553 a non-pointer. */
3554 /* The term "match" here is rather loose. The match is heuristic and
3555 liberal. */
3556
3557 static int
3558 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3559 {
3560 ftype = ada_check_typedef (ftype);
3561 atype = ada_check_typedef (atype);
3562
3563 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3564 ftype = TYPE_TARGET_TYPE (ftype);
3565 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3566 atype = TYPE_TARGET_TYPE (atype);
3567
3568 switch (TYPE_CODE (ftype))
3569 {
3570 default:
3571 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3572 case TYPE_CODE_PTR:
3573 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3574 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3575 TYPE_TARGET_TYPE (atype), 0);
3576 else
3577 return (may_deref
3578 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3579 case TYPE_CODE_INT:
3580 case TYPE_CODE_ENUM:
3581 case TYPE_CODE_RANGE:
3582 switch (TYPE_CODE (atype))
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_RANGE:
3587 return 1;
3588 default:
3589 return 0;
3590 }
3591
3592 case TYPE_CODE_ARRAY:
3593 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3594 || ada_is_array_descriptor_type (atype));
3595
3596 case TYPE_CODE_STRUCT:
3597 if (ada_is_array_descriptor_type (ftype))
3598 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3599 || ada_is_array_descriptor_type (atype));
3600 else
3601 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3602 && !ada_is_array_descriptor_type (atype));
3603
3604 case TYPE_CODE_UNION:
3605 case TYPE_CODE_FLT:
3606 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3607 }
3608 }
3609
3610 /* Return non-zero if the formals of FUNC "sufficiently match" the
3611 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3612 may also be an enumeral, in which case it is treated as a 0-
3613 argument function. */
3614
3615 static int
3616 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3617 {
3618 int i;
3619 struct type *func_type = SYMBOL_TYPE (func);
3620
3621 if (SYMBOL_CLASS (func) == LOC_CONST
3622 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3623 return (n_actuals == 0);
3624 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3625 return 0;
3626
3627 if (TYPE_NFIELDS (func_type) != n_actuals)
3628 return 0;
3629
3630 for (i = 0; i < n_actuals; i += 1)
3631 {
3632 if (actuals[i] == NULL)
3633 return 0;
3634 else
3635 {
3636 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3637 i));
3638 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3639
3640 if (!ada_type_match (ftype, atype, 1))
3641 return 0;
3642 }
3643 }
3644 return 1;
3645 }
3646
3647 /* False iff function type FUNC_TYPE definitely does not produce a value
3648 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3649 FUNC_TYPE is not a valid function type with a non-null return type
3650 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3651
3652 static int
3653 return_match (struct type *func_type, struct type *context_type)
3654 {
3655 struct type *return_type;
3656
3657 if (func_type == NULL)
3658 return 1;
3659
3660 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3661 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3662 else
3663 return_type = get_base_type (func_type);
3664 if (return_type == NULL)
3665 return 1;
3666
3667 context_type = get_base_type (context_type);
3668
3669 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3670 return context_type == NULL || return_type == context_type;
3671 else if (context_type == NULL)
3672 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3673 else
3674 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3675 }
3676
3677
3678 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3679 function (if any) that matches the types of the NARGS arguments in
3680 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3681 that returns that type, then eliminate matches that don't. If
3682 CONTEXT_TYPE is void and there is at least one match that does not
3683 return void, eliminate all matches that do.
3684
3685 Asks the user if there is more than one match remaining. Returns -1
3686 if there is no such symbol or none is selected. NAME is used
3687 solely for messages. May re-arrange and modify SYMS in
3688 the process; the index returned is for the modified vector. */
3689
3690 static int
3691 ada_resolve_function (struct block_symbol syms[],
3692 int nsyms, struct value **args, int nargs,
3693 const char *name, struct type *context_type,
3694 int parse_completion)
3695 {
3696 int fallback;
3697 int k;
3698 int m; /* Number of hits */
3699
3700 m = 0;
3701 /* In the first pass of the loop, we only accept functions matching
3702 context_type. If none are found, we add a second pass of the loop
3703 where every function is accepted. */
3704 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3705 {
3706 for (k = 0; k < nsyms; k += 1)
3707 {
3708 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3709
3710 if (ada_args_match (syms[k].symbol, args, nargs)
3711 && (fallback || return_match (type, context_type)))
3712 {
3713 syms[m] = syms[k];
3714 m += 1;
3715 }
3716 }
3717 }
3718
3719 /* If we got multiple matches, ask the user which one to use. Don't do this
3720 interactive thing during completion, though, as the purpose of the
3721 completion is providing a list of all possible matches. Prompting the
3722 user to filter it down would be completely unexpected in this case. */
3723 if (m == 0)
3724 return -1;
3725 else if (m > 1 && !parse_completion)
3726 {
3727 printf_filtered (_("Multiple matches for %s\n"), name);
3728 user_select_syms (syms, m, 1);
3729 return 0;
3730 }
3731 return 0;
3732 }
3733
3734 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3735 in a listing of choices during disambiguation (see sort_choices, below).
3736 The idea is that overloadings of a subprogram name from the
3737 same package should sort in their source order. We settle for ordering
3738 such symbols by their trailing number (__N or $N). */
3739
3740 static int
3741 encoded_ordered_before (const char *N0, const char *N1)
3742 {
3743 if (N1 == NULL)
3744 return 0;
3745 else if (N0 == NULL)
3746 return 1;
3747 else
3748 {
3749 int k0, k1;
3750
3751 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3752 ;
3753 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3754 ;
3755 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3756 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3757 {
3758 int n0, n1;
3759
3760 n0 = k0;
3761 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3762 n0 -= 1;
3763 n1 = k1;
3764 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3765 n1 -= 1;
3766 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3767 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3768 }
3769 return (strcmp (N0, N1) < 0);
3770 }
3771 }
3772
3773 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3774 encoded names. */
3775
3776 static void
3777 sort_choices (struct block_symbol syms[], int nsyms)
3778 {
3779 int i;
3780
3781 for (i = 1; i < nsyms; i += 1)
3782 {
3783 struct block_symbol sym = syms[i];
3784 int j;
3785
3786 for (j = i - 1; j >= 0; j -= 1)
3787 {
3788 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3789 SYMBOL_LINKAGE_NAME (sym.symbol)))
3790 break;
3791 syms[j + 1] = syms[j];
3792 }
3793 syms[j + 1] = sym;
3794 }
3795 }
3796
3797 /* Whether GDB should display formals and return types for functions in the
3798 overloads selection menu. */
3799 static int print_signatures = 1;
3800
3801 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3802 all but functions, the signature is just the name of the symbol. For
3803 functions, this is the name of the function, the list of types for formals
3804 and the return type (if any). */
3805
3806 static void
3807 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3808 const struct type_print_options *flags)
3809 {
3810 struct type *type = SYMBOL_TYPE (sym);
3811
3812 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3813 if (!print_signatures
3814 || type == NULL
3815 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3816 return;
3817
3818 if (TYPE_NFIELDS (type) > 0)
3819 {
3820 int i;
3821
3822 fprintf_filtered (stream, " (");
3823 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3824 {
3825 if (i > 0)
3826 fprintf_filtered (stream, "; ");
3827 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3828 flags);
3829 }
3830 fprintf_filtered (stream, ")");
3831 }
3832 if (TYPE_TARGET_TYPE (type) != NULL
3833 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3834 {
3835 fprintf_filtered (stream, " return ");
3836 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3837 }
3838 }
3839
3840 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3841 by asking the user (if necessary), returning the number selected,
3842 and setting the first elements of SYMS items. Error if no symbols
3843 selected. */
3844
3845 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3846 to be re-integrated one of these days. */
3847
3848 int
3849 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3850 {
3851 int i;
3852 int *chosen = XALLOCAVEC (int , nsyms);
3853 int n_chosen;
3854 int first_choice = (max_results == 1) ? 1 : 2;
3855 const char *select_mode = multiple_symbols_select_mode ();
3856
3857 if (max_results < 1)
3858 error (_("Request to select 0 symbols!"));
3859 if (nsyms <= 1)
3860 return nsyms;
3861
3862 if (select_mode == multiple_symbols_cancel)
3863 error (_("\
3864 canceled because the command is ambiguous\n\
3865 See set/show multiple-symbol."));
3866
3867 /* If select_mode is "all", then return all possible symbols.
3868 Only do that if more than one symbol can be selected, of course.
3869 Otherwise, display the menu as usual. */
3870 if (select_mode == multiple_symbols_all && max_results > 1)
3871 return nsyms;
3872
3873 printf_filtered (_("[0] cancel\n"));
3874 if (max_results > 1)
3875 printf_filtered (_("[1] all\n"));
3876
3877 sort_choices (syms, nsyms);
3878
3879 for (i = 0; i < nsyms; i += 1)
3880 {
3881 if (syms[i].symbol == NULL)
3882 continue;
3883
3884 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3885 {
3886 struct symtab_and_line sal =
3887 find_function_start_sal (syms[i].symbol, 1);
3888
3889 printf_filtered ("[%d] ", i + first_choice);
3890 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3891 &type_print_raw_options);
3892 if (sal.symtab == NULL)
3893 printf_filtered (_(" at <no source file available>:%d\n"),
3894 sal.line);
3895 else
3896 printf_filtered (_(" at %s:%d\n"),
3897 symtab_to_filename_for_display (sal.symtab),
3898 sal.line);
3899 continue;
3900 }
3901 else
3902 {
3903 int is_enumeral =
3904 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3905 && SYMBOL_TYPE (syms[i].symbol) != NULL
3906 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3907 struct symtab *symtab = NULL;
3908
3909 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3910 symtab = symbol_symtab (syms[i].symbol);
3911
3912 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3913 {
3914 printf_filtered ("[%d] ", i + first_choice);
3915 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3916 &type_print_raw_options);
3917 printf_filtered (_(" at %s:%d\n"),
3918 symtab_to_filename_for_display (symtab),
3919 SYMBOL_LINE (syms[i].symbol));
3920 }
3921 else if (is_enumeral
3922 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3923 {
3924 printf_filtered (("[%d] "), i + first_choice);
3925 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3926 gdb_stdout, -1, 0, &type_print_raw_options);
3927 printf_filtered (_("'(%s) (enumeral)\n"),
3928 SYMBOL_PRINT_NAME (syms[i].symbol));
3929 }
3930 else
3931 {
3932 printf_filtered ("[%d] ", i + first_choice);
3933 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3934 &type_print_raw_options);
3935
3936 if (symtab != NULL)
3937 printf_filtered (is_enumeral
3938 ? _(" in %s (enumeral)\n")
3939 : _(" at %s:?\n"),
3940 symtab_to_filename_for_display (symtab));
3941 else
3942 printf_filtered (is_enumeral
3943 ? _(" (enumeral)\n")
3944 : _(" at ?\n"));
3945 }
3946 }
3947 }
3948
3949 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3950 "overload-choice");
3951
3952 for (i = 0; i < n_chosen; i += 1)
3953 syms[i] = syms[chosen[i]];
3954
3955 return n_chosen;
3956 }
3957
3958 /* Read and validate a set of numeric choices from the user in the
3959 range 0 .. N_CHOICES-1. Place the results in increasing
3960 order in CHOICES[0 .. N-1], and return N.
3961
3962 The user types choices as a sequence of numbers on one line
3963 separated by blanks, encoding them as follows:
3964
3965 + A choice of 0 means to cancel the selection, throwing an error.
3966 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3967 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3968
3969 The user is not allowed to choose more than MAX_RESULTS values.
3970
3971 ANNOTATION_SUFFIX, if present, is used to annotate the input
3972 prompts (for use with the -f switch). */
3973
3974 int
3975 get_selections (int *choices, int n_choices, int max_results,
3976 int is_all_choice, const char *annotation_suffix)
3977 {
3978 char *args;
3979 const char *prompt;
3980 int n_chosen;
3981 int first_choice = is_all_choice ? 2 : 1;
3982
3983 prompt = getenv ("PS2");
3984 if (prompt == NULL)
3985 prompt = "> ";
3986
3987 args = command_line_input (prompt, annotation_suffix);
3988
3989 if (args == NULL)
3990 error_no_arg (_("one or more choice numbers"));
3991
3992 n_chosen = 0;
3993
3994 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3995 order, as given in args. Choices are validated. */
3996 while (1)
3997 {
3998 char *args2;
3999 int choice, j;
4000
4001 args = skip_spaces (args);
4002 if (*args == '\0' && n_chosen == 0)
4003 error_no_arg (_("one or more choice numbers"));
4004 else if (*args == '\0')
4005 break;
4006
4007 choice = strtol (args, &args2, 10);
4008 if (args == args2 || choice < 0
4009 || choice > n_choices + first_choice - 1)
4010 error (_("Argument must be choice number"));
4011 args = args2;
4012
4013 if (choice == 0)
4014 error (_("cancelled"));
4015
4016 if (choice < first_choice)
4017 {
4018 n_chosen = n_choices;
4019 for (j = 0; j < n_choices; j += 1)
4020 choices[j] = j;
4021 break;
4022 }
4023 choice -= first_choice;
4024
4025 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4026 {
4027 }
4028
4029 if (j < 0 || choice != choices[j])
4030 {
4031 int k;
4032
4033 for (k = n_chosen - 1; k > j; k -= 1)
4034 choices[k + 1] = choices[k];
4035 choices[j + 1] = choice;
4036 n_chosen += 1;
4037 }
4038 }
4039
4040 if (n_chosen > max_results)
4041 error (_("Select no more than %d of the above"), max_results);
4042
4043 return n_chosen;
4044 }
4045
4046 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4047 on the function identified by SYM and BLOCK, and taking NARGS
4048 arguments. Update *EXPP as needed to hold more space. */
4049
4050 static void
4051 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4052 int oplen, struct symbol *sym,
4053 const struct block *block)
4054 {
4055 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4056 symbol, -oplen for operator being replaced). */
4057 struct expression *newexp = (struct expression *)
4058 xzalloc (sizeof (struct expression)
4059 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4060 struct expression *exp = expp->get ();
4061
4062 newexp->nelts = exp->nelts + 7 - oplen;
4063 newexp->language_defn = exp->language_defn;
4064 newexp->gdbarch = exp->gdbarch;
4065 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4066 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4067 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4068
4069 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4070 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4071
4072 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4073 newexp->elts[pc + 4].block = block;
4074 newexp->elts[pc + 5].symbol = sym;
4075
4076 expp->reset (newexp);
4077 }
4078
4079 /* Type-class predicates */
4080
4081 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4082 or FLOAT). */
4083
4084 static int
4085 numeric_type_p (struct type *type)
4086 {
4087 if (type == NULL)
4088 return 0;
4089 else
4090 {
4091 switch (TYPE_CODE (type))
4092 {
4093 case TYPE_CODE_INT:
4094 case TYPE_CODE_FLT:
4095 return 1;
4096 case TYPE_CODE_RANGE:
4097 return (type == TYPE_TARGET_TYPE (type)
4098 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4099 default:
4100 return 0;
4101 }
4102 }
4103 }
4104
4105 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4106
4107 static int
4108 integer_type_p (struct type *type)
4109 {
4110 if (type == NULL)
4111 return 0;
4112 else
4113 {
4114 switch (TYPE_CODE (type))
4115 {
4116 case TYPE_CODE_INT:
4117 return 1;
4118 case TYPE_CODE_RANGE:
4119 return (type == TYPE_TARGET_TYPE (type)
4120 || integer_type_p (TYPE_TARGET_TYPE (type)));
4121 default:
4122 return 0;
4123 }
4124 }
4125 }
4126
4127 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4128
4129 static int
4130 scalar_type_p (struct type *type)
4131 {
4132 if (type == NULL)
4133 return 0;
4134 else
4135 {
4136 switch (TYPE_CODE (type))
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_RANGE:
4140 case TYPE_CODE_ENUM:
4141 case TYPE_CODE_FLT:
4142 return 1;
4143 default:
4144 return 0;
4145 }
4146 }
4147 }
4148
4149 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4150
4151 static int
4152 discrete_type_p (struct type *type)
4153 {
4154 if (type == NULL)
4155 return 0;
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_RANGE:
4162 case TYPE_CODE_ENUM:
4163 case TYPE_CODE_BOOL:
4164 return 1;
4165 default:
4166 return 0;
4167 }
4168 }
4169 }
4170
4171 /* Returns non-zero if OP with operands in the vector ARGS could be
4172 a user-defined function. Errs on the side of pre-defined operators
4173 (i.e., result 0). */
4174
4175 static int
4176 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4177 {
4178 struct type *type0 =
4179 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4180 struct type *type1 =
4181 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4182
4183 if (type0 == NULL)
4184 return 0;
4185
4186 switch (op)
4187 {
4188 default:
4189 return 0;
4190
4191 case BINOP_ADD:
4192 case BINOP_SUB:
4193 case BINOP_MUL:
4194 case BINOP_DIV:
4195 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4196
4197 case BINOP_REM:
4198 case BINOP_MOD:
4199 case BINOP_BITWISE_AND:
4200 case BINOP_BITWISE_IOR:
4201 case BINOP_BITWISE_XOR:
4202 return (!(integer_type_p (type0) && integer_type_p (type1)));
4203
4204 case BINOP_EQUAL:
4205 case BINOP_NOTEQUAL:
4206 case BINOP_LESS:
4207 case BINOP_GTR:
4208 case BINOP_LEQ:
4209 case BINOP_GEQ:
4210 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4211
4212 case BINOP_CONCAT:
4213 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4214
4215 case BINOP_EXP:
4216 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4217
4218 case UNOP_NEG:
4219 case UNOP_PLUS:
4220 case UNOP_LOGICAL_NOT:
4221 case UNOP_ABS:
4222 return (!numeric_type_p (type0));
4223
4224 }
4225 }
4226 \f
4227 /* Renaming */
4228
4229 /* NOTES:
4230
4231 1. In the following, we assume that a renaming type's name may
4232 have an ___XD suffix. It would be nice if this went away at some
4233 point.
4234 2. We handle both the (old) purely type-based representation of
4235 renamings and the (new) variable-based encoding. At some point,
4236 it is devoutly to be hoped that the former goes away
4237 (FIXME: hilfinger-2007-07-09).
4238 3. Subprogram renamings are not implemented, although the XRS
4239 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4240
4241 /* If SYM encodes a renaming,
4242
4243 <renaming> renames <renamed entity>,
4244
4245 sets *LEN to the length of the renamed entity's name,
4246 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4247 the string describing the subcomponent selected from the renamed
4248 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4249 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4250 are undefined). Otherwise, returns a value indicating the category
4251 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4252 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4253 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4254 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4255 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4256 may be NULL, in which case they are not assigned.
4257
4258 [Currently, however, GCC does not generate subprogram renamings.] */
4259
4260 enum ada_renaming_category
4261 ada_parse_renaming (struct symbol *sym,
4262 const char **renamed_entity, int *len,
4263 const char **renaming_expr)
4264 {
4265 enum ada_renaming_category kind;
4266 const char *info;
4267 const char *suffix;
4268
4269 if (sym == NULL)
4270 return ADA_NOT_RENAMING;
4271 switch (SYMBOL_CLASS (sym))
4272 {
4273 default:
4274 return ADA_NOT_RENAMING;
4275 case LOC_LOCAL:
4276 case LOC_STATIC:
4277 case LOC_COMPUTED:
4278 case LOC_OPTIMIZED_OUT:
4279 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4280 if (info == NULL)
4281 return ADA_NOT_RENAMING;
4282 switch (info[5])
4283 {
4284 case '_':
4285 kind = ADA_OBJECT_RENAMING;
4286 info += 6;
4287 break;
4288 case 'E':
4289 kind = ADA_EXCEPTION_RENAMING;
4290 info += 7;
4291 break;
4292 case 'P':
4293 kind = ADA_PACKAGE_RENAMING;
4294 info += 7;
4295 break;
4296 case 'S':
4297 kind = ADA_SUBPROGRAM_RENAMING;
4298 info += 7;
4299 break;
4300 default:
4301 return ADA_NOT_RENAMING;
4302 }
4303 }
4304
4305 if (renamed_entity != NULL)
4306 *renamed_entity = info;
4307 suffix = strstr (info, "___XE");
4308 if (suffix == NULL || suffix == info)
4309 return ADA_NOT_RENAMING;
4310 if (len != NULL)
4311 *len = strlen (info) - strlen (suffix);
4312 suffix += 5;
4313 if (renaming_expr != NULL)
4314 *renaming_expr = suffix;
4315 return kind;
4316 }
4317
4318 /* Compute the value of the given RENAMING_SYM, which is expected to
4319 be a symbol encoding a renaming expression. BLOCK is the block
4320 used to evaluate the renaming. */
4321
4322 static struct value *
4323 ada_read_renaming_var_value (struct symbol *renaming_sym,
4324 const struct block *block)
4325 {
4326 const char *sym_name;
4327
4328 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4329 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4330 return evaluate_expression (expr.get ());
4331 }
4332 \f
4333
4334 /* Evaluation: Function Calls */
4335
4336 /* Return an lvalue containing the value VAL. This is the identity on
4337 lvalues, and otherwise has the side-effect of allocating memory
4338 in the inferior where a copy of the value contents is copied. */
4339
4340 static struct value *
4341 ensure_lval (struct value *val)
4342 {
4343 if (VALUE_LVAL (val) == not_lval
4344 || VALUE_LVAL (val) == lval_internalvar)
4345 {
4346 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4347 const CORE_ADDR addr =
4348 value_as_long (value_allocate_space_in_inferior (len));
4349
4350 VALUE_LVAL (val) = lval_memory;
4351 set_value_address (val, addr);
4352 write_memory (addr, value_contents (val), len);
4353 }
4354
4355 return val;
4356 }
4357
4358 /* Return the value ACTUAL, converted to be an appropriate value for a
4359 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4360 allocating any necessary descriptors (fat pointers), or copies of
4361 values not residing in memory, updating it as needed. */
4362
4363 struct value *
4364 ada_convert_actual (struct value *actual, struct type *formal_type0)
4365 {
4366 struct type *actual_type = ada_check_typedef (value_type (actual));
4367 struct type *formal_type = ada_check_typedef (formal_type0);
4368 struct type *formal_target =
4369 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4370 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4371 struct type *actual_target =
4372 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4373 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4374
4375 if (ada_is_array_descriptor_type (formal_target)
4376 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4377 return make_array_descriptor (formal_type, actual);
4378 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4379 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4380 {
4381 struct value *result;
4382
4383 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4384 && ada_is_array_descriptor_type (actual_target))
4385 result = desc_data (actual);
4386 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4387 {
4388 if (VALUE_LVAL (actual) != lval_memory)
4389 {
4390 struct value *val;
4391
4392 actual_type = ada_check_typedef (value_type (actual));
4393 val = allocate_value (actual_type);
4394 memcpy ((char *) value_contents_raw (val),
4395 (char *) value_contents (actual),
4396 TYPE_LENGTH (actual_type));
4397 actual = ensure_lval (val);
4398 }
4399 result = value_addr (actual);
4400 }
4401 else
4402 return actual;
4403 return value_cast_pointers (formal_type, result, 0);
4404 }
4405 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4406 return ada_value_ind (actual);
4407 else if (ada_is_aligner_type (formal_type))
4408 {
4409 /* We need to turn this parameter into an aligner type
4410 as well. */
4411 struct value *aligner = allocate_value (formal_type);
4412 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4413
4414 value_assign_to_component (aligner, component, actual);
4415 return aligner;
4416 }
4417
4418 return actual;
4419 }
4420
4421 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4422 type TYPE. This is usually an inefficient no-op except on some targets
4423 (such as AVR) where the representation of a pointer and an address
4424 differs. */
4425
4426 static CORE_ADDR
4427 value_pointer (struct value *value, struct type *type)
4428 {
4429 struct gdbarch *gdbarch = get_type_arch (type);
4430 unsigned len = TYPE_LENGTH (type);
4431 gdb_byte *buf = (gdb_byte *) alloca (len);
4432 CORE_ADDR addr;
4433
4434 addr = value_address (value);
4435 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4436 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4437 return addr;
4438 }
4439
4440
4441 /* Push a descriptor of type TYPE for array value ARR on the stack at
4442 *SP, updating *SP to reflect the new descriptor. Return either
4443 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4444 to-descriptor type rather than a descriptor type), a struct value *
4445 representing a pointer to this descriptor. */
4446
4447 static struct value *
4448 make_array_descriptor (struct type *type, struct value *arr)
4449 {
4450 struct type *bounds_type = desc_bounds_type (type);
4451 struct type *desc_type = desc_base_type (type);
4452 struct value *descriptor = allocate_value (desc_type);
4453 struct value *bounds = allocate_value (bounds_type);
4454 int i;
4455
4456 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4457 i > 0; i -= 1)
4458 {
4459 modify_field (value_type (bounds), value_contents_writeable (bounds),
4460 ada_array_bound (arr, i, 0),
4461 desc_bound_bitpos (bounds_type, i, 0),
4462 desc_bound_bitsize (bounds_type, i, 0));
4463 modify_field (value_type (bounds), value_contents_writeable (bounds),
4464 ada_array_bound (arr, i, 1),
4465 desc_bound_bitpos (bounds_type, i, 1),
4466 desc_bound_bitsize (bounds_type, i, 1));
4467 }
4468
4469 bounds = ensure_lval (bounds);
4470
4471 modify_field (value_type (descriptor),
4472 value_contents_writeable (descriptor),
4473 value_pointer (ensure_lval (arr),
4474 TYPE_FIELD_TYPE (desc_type, 0)),
4475 fat_pntr_data_bitpos (desc_type),
4476 fat_pntr_data_bitsize (desc_type));
4477
4478 modify_field (value_type (descriptor),
4479 value_contents_writeable (descriptor),
4480 value_pointer (bounds,
4481 TYPE_FIELD_TYPE (desc_type, 1)),
4482 fat_pntr_bounds_bitpos (desc_type),
4483 fat_pntr_bounds_bitsize (desc_type));
4484
4485 descriptor = ensure_lval (descriptor);
4486
4487 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4488 return value_addr (descriptor);
4489 else
4490 return descriptor;
4491 }
4492 \f
4493 /* Symbol Cache Module */
4494
4495 /* Performance measurements made as of 2010-01-15 indicate that
4496 this cache does bring some noticeable improvements. Depending
4497 on the type of entity being printed, the cache can make it as much
4498 as an order of magnitude faster than without it.
4499
4500 The descriptive type DWARF extension has significantly reduced
4501 the need for this cache, at least when DWARF is being used. However,
4502 even in this case, some expensive name-based symbol searches are still
4503 sometimes necessary - to find an XVZ variable, mostly. */
4504
4505 /* Initialize the contents of SYM_CACHE. */
4506
4507 static void
4508 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4509 {
4510 obstack_init (&sym_cache->cache_space);
4511 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4512 }
4513
4514 /* Free the memory used by SYM_CACHE. */
4515
4516 static void
4517 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4518 {
4519 obstack_free (&sym_cache->cache_space, NULL);
4520 xfree (sym_cache);
4521 }
4522
4523 /* Return the symbol cache associated to the given program space PSPACE.
4524 If not allocated for this PSPACE yet, allocate and initialize one. */
4525
4526 static struct ada_symbol_cache *
4527 ada_get_symbol_cache (struct program_space *pspace)
4528 {
4529 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4530
4531 if (pspace_data->sym_cache == NULL)
4532 {
4533 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4534 ada_init_symbol_cache (pspace_data->sym_cache);
4535 }
4536
4537 return pspace_data->sym_cache;
4538 }
4539
4540 /* Clear all entries from the symbol cache. */
4541
4542 static void
4543 ada_clear_symbol_cache (void)
4544 {
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
4547
4548 obstack_free (&sym_cache->cache_space, NULL);
4549 ada_init_symbol_cache (sym_cache);
4550 }
4551
4552 /* Search our cache for an entry matching NAME and DOMAIN.
4553 Return it if found, or NULL otherwise. */
4554
4555 static struct cache_entry **
4556 find_entry (const char *name, domain_enum domain)
4557 {
4558 struct ada_symbol_cache *sym_cache
4559 = ada_get_symbol_cache (current_program_space);
4560 int h = msymbol_hash (name) % HASH_SIZE;
4561 struct cache_entry **e;
4562
4563 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4564 {
4565 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4566 return e;
4567 }
4568 return NULL;
4569 }
4570
4571 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4572 Return 1 if found, 0 otherwise.
4573
4574 If an entry was found and SYM is not NULL, set *SYM to the entry's
4575 SYM. Same principle for BLOCK if not NULL. */
4576
4577 static int
4578 lookup_cached_symbol (const char *name, domain_enum domain,
4579 struct symbol **sym, const struct block **block)
4580 {
4581 struct cache_entry **e = find_entry (name, domain);
4582
4583 if (e == NULL)
4584 return 0;
4585 if (sym != NULL)
4586 *sym = (*e)->sym;
4587 if (block != NULL)
4588 *block = (*e)->block;
4589 return 1;
4590 }
4591
4592 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4593 in domain DOMAIN, save this result in our symbol cache. */
4594
4595 static void
4596 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4597 const struct block *block)
4598 {
4599 struct ada_symbol_cache *sym_cache
4600 = ada_get_symbol_cache (current_program_space);
4601 int h;
4602 char *copy;
4603 struct cache_entry *e;
4604
4605 /* Symbols for builtin types don't have a block.
4606 For now don't cache such symbols. */
4607 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4608 return;
4609
4610 /* If the symbol is a local symbol, then do not cache it, as a search
4611 for that symbol depends on the context. To determine whether
4612 the symbol is local or not, we check the block where we found it
4613 against the global and static blocks of its associated symtab. */
4614 if (sym
4615 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4616 GLOBAL_BLOCK) != block
4617 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4618 STATIC_BLOCK) != block)
4619 return;
4620
4621 h = msymbol_hash (name) % HASH_SIZE;
4622 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4623 e->next = sym_cache->root[h];
4624 sym_cache->root[h] = e;
4625 e->name = copy
4626 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4627 strcpy (copy, name);
4628 e->sym = sym;
4629 e->domain = domain;
4630 e->block = block;
4631 }
4632 \f
4633 /* Symbol Lookup */
4634
4635 /* Return the symbol name match type that should be used used when
4636 searching for all symbols matching LOOKUP_NAME.
4637
4638 LOOKUP_NAME is expected to be a symbol name after transformation
4639 for Ada lookups. */
4640
4641 static symbol_name_match_type
4642 name_match_type_from_name (const char *lookup_name)
4643 {
4644 return (strstr (lookup_name, "__") == NULL
4645 ? symbol_name_match_type::WILD
4646 : symbol_name_match_type::FULL);
4647 }
4648
4649 /* Return the result of a standard (literal, C-like) lookup of NAME in
4650 given DOMAIN, visible from lexical block BLOCK. */
4651
4652 static struct symbol *
4653 standard_lookup (const char *name, const struct block *block,
4654 domain_enum domain)
4655 {
4656 /* Initialize it just to avoid a GCC false warning. */
4657 struct block_symbol sym = {};
4658
4659 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4660 return sym.symbol;
4661 ada_lookup_encoded_symbol (name, block, domain, &sym);
4662 cache_symbol (name, domain, sym.symbol, sym.block);
4663 return sym.symbol;
4664 }
4665
4666
4667 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4668 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4669 since they contend in overloading in the same way. */
4670 static int
4671 is_nonfunction (struct block_symbol syms[], int n)
4672 {
4673 int i;
4674
4675 for (i = 0; i < n; i += 1)
4676 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4677 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4678 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4679 return 1;
4680
4681 return 0;
4682 }
4683
4684 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4685 struct types. Otherwise, they may not. */
4686
4687 static int
4688 equiv_types (struct type *type0, struct type *type1)
4689 {
4690 if (type0 == type1)
4691 return 1;
4692 if (type0 == NULL || type1 == NULL
4693 || TYPE_CODE (type0) != TYPE_CODE (type1))
4694 return 0;
4695 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4696 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4697 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4698 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4699 return 1;
4700
4701 return 0;
4702 }
4703
4704 /* True iff SYM0 represents the same entity as SYM1, or one that is
4705 no more defined than that of SYM1. */
4706
4707 static int
4708 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4709 {
4710 if (sym0 == sym1)
4711 return 1;
4712 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4713 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4714 return 0;
4715
4716 switch (SYMBOL_CLASS (sym0))
4717 {
4718 case LOC_UNDEF:
4719 return 1;
4720 case LOC_TYPEDEF:
4721 {
4722 struct type *type0 = SYMBOL_TYPE (sym0);
4723 struct type *type1 = SYMBOL_TYPE (sym1);
4724 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4725 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4726 int len0 = strlen (name0);
4727
4728 return
4729 TYPE_CODE (type0) == TYPE_CODE (type1)
4730 && (equiv_types (type0, type1)
4731 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4732 && startswith (name1 + len0, "___XV")));
4733 }
4734 case LOC_CONST:
4735 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4736 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4737 default:
4738 return 0;
4739 }
4740 }
4741
4742 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4743 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4744
4745 static void
4746 add_defn_to_vec (struct obstack *obstackp,
4747 struct symbol *sym,
4748 const struct block *block)
4749 {
4750 int i;
4751 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4752
4753 /* Do not try to complete stub types, as the debugger is probably
4754 already scanning all symbols matching a certain name at the
4755 time when this function is called. Trying to replace the stub
4756 type by its associated full type will cause us to restart a scan
4757 which may lead to an infinite recursion. Instead, the client
4758 collecting the matching symbols will end up collecting several
4759 matches, with at least one of them complete. It can then filter
4760 out the stub ones if needed. */
4761
4762 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4763 {
4764 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4765 return;
4766 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4767 {
4768 prevDefns[i].symbol = sym;
4769 prevDefns[i].block = block;
4770 return;
4771 }
4772 }
4773
4774 {
4775 struct block_symbol info;
4776
4777 info.symbol = sym;
4778 info.block = block;
4779 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4780 }
4781 }
4782
4783 /* Number of block_symbol structures currently collected in current vector in
4784 OBSTACKP. */
4785
4786 static int
4787 num_defns_collected (struct obstack *obstackp)
4788 {
4789 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4790 }
4791
4792 /* Vector of block_symbol structures currently collected in current vector in
4793 OBSTACKP. If FINISH, close off the vector and return its final address. */
4794
4795 static struct block_symbol *
4796 defns_collected (struct obstack *obstackp, int finish)
4797 {
4798 if (finish)
4799 return (struct block_symbol *) obstack_finish (obstackp);
4800 else
4801 return (struct block_symbol *) obstack_base (obstackp);
4802 }
4803
4804 /* Return a bound minimal symbol matching NAME according to Ada
4805 decoding rules. Returns an invalid symbol if there is no such
4806 minimal symbol. Names prefixed with "standard__" are handled
4807 specially: "standard__" is first stripped off, and only static and
4808 global symbols are searched. */
4809
4810 struct bound_minimal_symbol
4811 ada_lookup_simple_minsym (const char *name)
4812 {
4813 struct bound_minimal_symbol result;
4814
4815 memset (&result, 0, sizeof (result));
4816
4817 symbol_name_match_type match_type = name_match_type_from_name (name);
4818 lookup_name_info lookup_name (name, match_type);
4819
4820 symbol_name_matcher_ftype *match_name
4821 = ada_get_symbol_name_matcher (lookup_name);
4822
4823 for (objfile *objfile : current_program_space->objfiles ())
4824 {
4825 for (minimal_symbol *msymbol : objfile->msymbols ())
4826 {
4827 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4828 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4829 {
4830 result.minsym = msymbol;
4831 result.objfile = objfile;
4832 break;
4833 }
4834 }
4835 }
4836
4837 return result;
4838 }
4839
4840 /* Return all the bound minimal symbols matching NAME according to Ada
4841 decoding rules. Returns an empty vector if there is no such
4842 minimal symbol. Names prefixed with "standard__" are handled
4843 specially: "standard__" is first stripped off, and only static and
4844 global symbols are searched. */
4845
4846 static std::vector<struct bound_minimal_symbol>
4847 ada_lookup_simple_minsyms (const char *name)
4848 {
4849 std::vector<struct bound_minimal_symbol> result;
4850
4851 symbol_name_match_type match_type = name_match_type_from_name (name);
4852 lookup_name_info lookup_name (name, match_type);
4853
4854 symbol_name_matcher_ftype *match_name
4855 = ada_get_symbol_name_matcher (lookup_name);
4856
4857 for (objfile *objfile : current_program_space->objfiles ())
4858 {
4859 for (minimal_symbol *msymbol : objfile->msymbols ())
4860 {
4861 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4862 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4863 result.push_back ({msymbol, objfile});
4864 }
4865 }
4866
4867 return result;
4868 }
4869
4870 /* For all subprograms that statically enclose the subprogram of the
4871 selected frame, add symbols matching identifier NAME in DOMAIN
4872 and their blocks to the list of data in OBSTACKP, as for
4873 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4874 with a wildcard prefix. */
4875
4876 static void
4877 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4878 const lookup_name_info &lookup_name,
4879 domain_enum domain)
4880 {
4881 }
4882
4883 /* True if TYPE is definitely an artificial type supplied to a symbol
4884 for which no debugging information was given in the symbol file. */
4885
4886 static int
4887 is_nondebugging_type (struct type *type)
4888 {
4889 const char *name = ada_type_name (type);
4890
4891 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4892 }
4893
4894 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4895 that are deemed "identical" for practical purposes.
4896
4897 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4898 types and that their number of enumerals is identical (in other
4899 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4900
4901 static int
4902 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4903 {
4904 int i;
4905
4906 /* The heuristic we use here is fairly conservative. We consider
4907 that 2 enumerate types are identical if they have the same
4908 number of enumerals and that all enumerals have the same
4909 underlying value and name. */
4910
4911 /* All enums in the type should have an identical underlying value. */
4912 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4913 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4914 return 0;
4915
4916 /* All enumerals should also have the same name (modulo any numerical
4917 suffix). */
4918 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4919 {
4920 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4921 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4922 int len_1 = strlen (name_1);
4923 int len_2 = strlen (name_2);
4924
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4926 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4927 if (len_1 != len_2
4928 || strncmp (TYPE_FIELD_NAME (type1, i),
4929 TYPE_FIELD_NAME (type2, i),
4930 len_1) != 0)
4931 return 0;
4932 }
4933
4934 return 1;
4935 }
4936
4937 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4938 that are deemed "identical" for practical purposes. Sometimes,
4939 enumerals are not strictly identical, but their types are so similar
4940 that they can be considered identical.
4941
4942 For instance, consider the following code:
4943
4944 type Color is (Black, Red, Green, Blue, White);
4945 type RGB_Color is new Color range Red .. Blue;
4946
4947 Type RGB_Color is a subrange of an implicit type which is a copy
4948 of type Color. If we call that implicit type RGB_ColorB ("B" is
4949 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4950 As a result, when an expression references any of the enumeral
4951 by name (Eg. "print green"), the expression is technically
4952 ambiguous and the user should be asked to disambiguate. But
4953 doing so would only hinder the user, since it wouldn't matter
4954 what choice he makes, the outcome would always be the same.
4955 So, for practical purposes, we consider them as the same. */
4956
4957 static int
4958 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4959 {
4960 int i;
4961
4962 /* Before performing a thorough comparison check of each type,
4963 we perform a series of inexpensive checks. We expect that these
4964 checks will quickly fail in the vast majority of cases, and thus
4965 help prevent the unnecessary use of a more expensive comparison.
4966 Said comparison also expects us to make some of these checks
4967 (see ada_identical_enum_types_p). */
4968
4969 /* Quick check: All symbols should have an enum type. */
4970 for (i = 0; i < syms.size (); i++)
4971 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4972 return 0;
4973
4974 /* Quick check: They should all have the same value. */
4975 for (i = 1; i < syms.size (); i++)
4976 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4977 return 0;
4978
4979 /* Quick check: They should all have the same number of enumerals. */
4980 for (i = 1; i < syms.size (); i++)
4981 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4982 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4983 return 0;
4984
4985 /* All the sanity checks passed, so we might have a set of
4986 identical enumeration types. Perform a more complete
4987 comparison of the type of each symbol. */
4988 for (i = 1; i < syms.size (); i++)
4989 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4990 SYMBOL_TYPE (syms[0].symbol)))
4991 return 0;
4992
4993 return 1;
4994 }
4995
4996 /* Remove any non-debugging symbols in SYMS that definitely
4997 duplicate other symbols in the list (The only case I know of where
4998 this happens is when object files containing stabs-in-ecoff are
4999 linked with files containing ordinary ecoff debugging symbols (or no
5000 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5001 Returns the number of items in the modified list. */
5002
5003 static int
5004 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5005 {
5006 int i, j;
5007
5008 /* We should never be called with less than 2 symbols, as there
5009 cannot be any extra symbol in that case. But it's easy to
5010 handle, since we have nothing to do in that case. */
5011 if (syms->size () < 2)
5012 return syms->size ();
5013
5014 i = 0;
5015 while (i < syms->size ())
5016 {
5017 int remove_p = 0;
5018
5019 /* If two symbols have the same name and one of them is a stub type,
5020 the get rid of the stub. */
5021
5022 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5023 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5024 {
5025 for (j = 0; j < syms->size (); j++)
5026 {
5027 if (j != i
5028 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5029 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5030 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5031 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5032 remove_p = 1;
5033 }
5034 }
5035
5036 /* Two symbols with the same name, same class and same address
5037 should be identical. */
5038
5039 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5040 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5041 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5042 {
5043 for (j = 0; j < syms->size (); j += 1)
5044 {
5045 if (i != j
5046 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5047 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5048 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5049 && SYMBOL_CLASS ((*syms)[i].symbol)
5050 == SYMBOL_CLASS ((*syms)[j].symbol)
5051 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5052 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5053 remove_p = 1;
5054 }
5055 }
5056
5057 if (remove_p)
5058 syms->erase (syms->begin () + i);
5059
5060 i += 1;
5061 }
5062
5063 /* If all the remaining symbols are identical enumerals, then
5064 just keep the first one and discard the rest.
5065
5066 Unlike what we did previously, we do not discard any entry
5067 unless they are ALL identical. This is because the symbol
5068 comparison is not a strict comparison, but rather a practical
5069 comparison. If all symbols are considered identical, then
5070 we can just go ahead and use the first one and discard the rest.
5071 But if we cannot reduce the list to a single element, we have
5072 to ask the user to disambiguate anyways. And if we have to
5073 present a multiple-choice menu, it's less confusing if the list
5074 isn't missing some choices that were identical and yet distinct. */
5075 if (symbols_are_identical_enums (*syms))
5076 syms->resize (1);
5077
5078 return syms->size ();
5079 }
5080
5081 /* Given a type that corresponds to a renaming entity, use the type name
5082 to extract the scope (package name or function name, fully qualified,
5083 and following the GNAT encoding convention) where this renaming has been
5084 defined. */
5085
5086 static std::string
5087 xget_renaming_scope (struct type *renaming_type)
5088 {
5089 /* The renaming types adhere to the following convention:
5090 <scope>__<rename>___<XR extension>.
5091 So, to extract the scope, we search for the "___XR" extension,
5092 and then backtrack until we find the first "__". */
5093
5094 const char *name = TYPE_NAME (renaming_type);
5095 const char *suffix = strstr (name, "___XR");
5096 const char *last;
5097
5098 /* Now, backtrack a bit until we find the first "__". Start looking
5099 at suffix - 3, as the <rename> part is at least one character long. */
5100
5101 for (last = suffix - 3; last > name; last--)
5102 if (last[0] == '_' && last[1] == '_')
5103 break;
5104
5105 /* Make a copy of scope and return it. */
5106 return std::string (name, last);
5107 }
5108
5109 /* Return nonzero if NAME corresponds to a package name. */
5110
5111 static int
5112 is_package_name (const char *name)
5113 {
5114 /* Here, We take advantage of the fact that no symbols are generated
5115 for packages, while symbols are generated for each function.
5116 So the condition for NAME represent a package becomes equivalent
5117 to NAME not existing in our list of symbols. There is only one
5118 small complication with library-level functions (see below). */
5119
5120 /* If it is a function that has not been defined at library level,
5121 then we should be able to look it up in the symbols. */
5122 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5123 return 0;
5124
5125 /* Library-level function names start with "_ada_". See if function
5126 "_ada_" followed by NAME can be found. */
5127
5128 /* Do a quick check that NAME does not contain "__", since library-level
5129 functions names cannot contain "__" in them. */
5130 if (strstr (name, "__") != NULL)
5131 return 0;
5132
5133 std::string fun_name = string_printf ("_ada_%s", name);
5134
5135 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5136 }
5137
5138 /* Return nonzero if SYM corresponds to a renaming entity that is
5139 not visible from FUNCTION_NAME. */
5140
5141 static int
5142 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5143 {
5144 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5145 return 0;
5146
5147 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5148
5149 /* If the rename has been defined in a package, then it is visible. */
5150 if (is_package_name (scope.c_str ()))
5151 return 0;
5152
5153 /* Check that the rename is in the current function scope by checking
5154 that its name starts with SCOPE. */
5155
5156 /* If the function name starts with "_ada_", it means that it is
5157 a library-level function. Strip this prefix before doing the
5158 comparison, as the encoding for the renaming does not contain
5159 this prefix. */
5160 if (startswith (function_name, "_ada_"))
5161 function_name += 5;
5162
5163 return !startswith (function_name, scope.c_str ());
5164 }
5165
5166 /* Remove entries from SYMS that corresponds to a renaming entity that
5167 is not visible from the function associated with CURRENT_BLOCK or
5168 that is superfluous due to the presence of more specific renaming
5169 information. Places surviving symbols in the initial entries of
5170 SYMS and returns the number of surviving symbols.
5171
5172 Rationale:
5173 First, in cases where an object renaming is implemented as a
5174 reference variable, GNAT may produce both the actual reference
5175 variable and the renaming encoding. In this case, we discard the
5176 latter.
5177
5178 Second, GNAT emits a type following a specified encoding for each renaming
5179 entity. Unfortunately, STABS currently does not support the definition
5180 of types that are local to a given lexical block, so all renamings types
5181 are emitted at library level. As a consequence, if an application
5182 contains two renaming entities using the same name, and a user tries to
5183 print the value of one of these entities, the result of the ada symbol
5184 lookup will also contain the wrong renaming type.
5185
5186 This function partially covers for this limitation by attempting to
5187 remove from the SYMS list renaming symbols that should be visible
5188 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5189 method with the current information available. The implementation
5190 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5191
5192 - When the user tries to print a rename in a function while there
5193 is another rename entity defined in a package: Normally, the
5194 rename in the function has precedence over the rename in the
5195 package, so the latter should be removed from the list. This is
5196 currently not the case.
5197
5198 - This function will incorrectly remove valid renames if
5199 the CURRENT_BLOCK corresponds to a function which symbol name
5200 has been changed by an "Export" pragma. As a consequence,
5201 the user will be unable to print such rename entities. */
5202
5203 static int
5204 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5205 const struct block *current_block)
5206 {
5207 struct symbol *current_function;
5208 const char *current_function_name;
5209 int i;
5210 int is_new_style_renaming;
5211
5212 /* If there is both a renaming foo___XR... encoded as a variable and
5213 a simple variable foo in the same block, discard the latter.
5214 First, zero out such symbols, then compress. */
5215 is_new_style_renaming = 0;
5216 for (i = 0; i < syms->size (); i += 1)
5217 {
5218 struct symbol *sym = (*syms)[i].symbol;
5219 const struct block *block = (*syms)[i].block;
5220 const char *name;
5221 const char *suffix;
5222
5223 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5224 continue;
5225 name = SYMBOL_LINKAGE_NAME (sym);
5226 suffix = strstr (name, "___XR");
5227
5228 if (suffix != NULL)
5229 {
5230 int name_len = suffix - name;
5231 int j;
5232
5233 is_new_style_renaming = 1;
5234 for (j = 0; j < syms->size (); j += 1)
5235 if (i != j && (*syms)[j].symbol != NULL
5236 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5237 name_len) == 0
5238 && block == (*syms)[j].block)
5239 (*syms)[j].symbol = NULL;
5240 }
5241 }
5242 if (is_new_style_renaming)
5243 {
5244 int j, k;
5245
5246 for (j = k = 0; j < syms->size (); j += 1)
5247 if ((*syms)[j].symbol != NULL)
5248 {
5249 (*syms)[k] = (*syms)[j];
5250 k += 1;
5251 }
5252 return k;
5253 }
5254
5255 /* Extract the function name associated to CURRENT_BLOCK.
5256 Abort if unable to do so. */
5257
5258 if (current_block == NULL)
5259 return syms->size ();
5260
5261 current_function = block_linkage_function (current_block);
5262 if (current_function == NULL)
5263 return syms->size ();
5264
5265 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5266 if (current_function_name == NULL)
5267 return syms->size ();
5268
5269 /* Check each of the symbols, and remove it from the list if it is
5270 a type corresponding to a renaming that is out of the scope of
5271 the current block. */
5272
5273 i = 0;
5274 while (i < syms->size ())
5275 {
5276 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5277 == ADA_OBJECT_RENAMING
5278 && old_renaming_is_invisible ((*syms)[i].symbol,
5279 current_function_name))
5280 syms->erase (syms->begin () + i);
5281 else
5282 i += 1;
5283 }
5284
5285 return syms->size ();
5286 }
5287
5288 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5289 whose name and domain match NAME and DOMAIN respectively.
5290 If no match was found, then extend the search to "enclosing"
5291 routines (in other words, if we're inside a nested function,
5292 search the symbols defined inside the enclosing functions).
5293 If WILD_MATCH_P is nonzero, perform the naming matching in
5294 "wild" mode (see function "wild_match" for more info).
5295
5296 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5297
5298 static void
5299 ada_add_local_symbols (struct obstack *obstackp,
5300 const lookup_name_info &lookup_name,
5301 const struct block *block, domain_enum domain)
5302 {
5303 int block_depth = 0;
5304
5305 while (block != NULL)
5306 {
5307 block_depth += 1;
5308 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5309
5310 /* If we found a non-function match, assume that's the one. */
5311 if (is_nonfunction (defns_collected (obstackp, 0),
5312 num_defns_collected (obstackp)))
5313 return;
5314
5315 block = BLOCK_SUPERBLOCK (block);
5316 }
5317
5318 /* If no luck so far, try to find NAME as a local symbol in some lexically
5319 enclosing subprogram. */
5320 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5321 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5322 }
5323
5324 /* An object of this type is used as the user_data argument when
5325 calling the map_matching_symbols method. */
5326
5327 struct match_data
5328 {
5329 struct objfile *objfile;
5330 struct obstack *obstackp;
5331 struct symbol *arg_sym;
5332 int found_sym;
5333 };
5334
5335 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5336 to a list of symbols. DATA0 is a pointer to a struct match_data *
5337 containing the obstack that collects the symbol list, the file that SYM
5338 must come from, a flag indicating whether a non-argument symbol has
5339 been found in the current block, and the last argument symbol
5340 passed in SYM within the current block (if any). When SYM is null,
5341 marking the end of a block, the argument symbol is added if no
5342 other has been found. */
5343
5344 static int
5345 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5346 void *data0)
5347 {
5348 struct match_data *data = (struct match_data *) data0;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return 0;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return 0;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 for (objfile *objfile : current_program_space->objfiles ())
5545 {
5546 data.objfile = objfile;
5547
5548 if (is_wild_match)
5549 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5550 domain, global,
5551 aux_add_nonlocal_symbols, &data,
5552 symbol_name_match_type::WILD,
5553 NULL);
5554 else
5555 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5556 domain, global,
5557 aux_add_nonlocal_symbols, &data,
5558 symbol_name_match_type::FULL,
5559 compare_names);
5560
5561 for (compunit_symtab *cu : objfile->compunits ())
5562 {
5563 const struct block *global_block
5564 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5565
5566 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5567 domain))
5568 data.found_sym = 1;
5569 }
5570 }
5571
5572 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5573 {
5574 const char *name = ada_lookup_name (lookup_name);
5575 std::string name1 = std::string ("<_ada_") + name + '>';
5576
5577 for (objfile *objfile : current_program_space->objfiles ())
5578 {
5579 data.objfile = objfile;
5580 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5581 domain, global,
5582 aux_add_nonlocal_symbols,
5583 &data,
5584 symbol_name_match_type::FULL,
5585 compare_names);
5586 }
5587 }
5588 }
5589
5590 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5591 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5592 returning the number of matches. Add these to OBSTACKP.
5593
5594 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5595 symbol match within the nest of blocks whose innermost member is BLOCK,
5596 is the one match returned (no other matches in that or
5597 enclosing blocks is returned). If there are any matches in or
5598 surrounding BLOCK, then these alone are returned.
5599
5600 Names prefixed with "standard__" are handled specially:
5601 "standard__" is first stripped off (by the lookup_name
5602 constructor), and only static and global symbols are searched.
5603
5604 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5605 to lookup global symbols. */
5606
5607 static void
5608 ada_add_all_symbols (struct obstack *obstackp,
5609 const struct block *block,
5610 const lookup_name_info &lookup_name,
5611 domain_enum domain,
5612 int full_search,
5613 int *made_global_lookup_p)
5614 {
5615 struct symbol *sym;
5616
5617 if (made_global_lookup_p)
5618 *made_global_lookup_p = 0;
5619
5620 /* Special case: If the user specifies a symbol name inside package
5621 Standard, do a non-wild matching of the symbol name without
5622 the "standard__" prefix. This was primarily introduced in order
5623 to allow the user to specifically access the standard exceptions
5624 using, for instance, Standard.Constraint_Error when Constraint_Error
5625 is ambiguous (due to the user defining its own Constraint_Error
5626 entity inside its program). */
5627 if (lookup_name.ada ().standard_p ())
5628 block = NULL;
5629
5630 /* Check the non-global symbols. If we have ANY match, then we're done. */
5631
5632 if (block != NULL)
5633 {
5634 if (full_search)
5635 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5636 else
5637 {
5638 /* In the !full_search case we're are being called by
5639 ada_iterate_over_symbols, and we don't want to search
5640 superblocks. */
5641 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5642 }
5643 if (num_defns_collected (obstackp) > 0 || !full_search)
5644 return;
5645 }
5646
5647 /* No non-global symbols found. Check our cache to see if we have
5648 already performed this search before. If we have, then return
5649 the same result. */
5650
5651 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5652 domain, &sym, &block))
5653 {
5654 if (sym != NULL)
5655 add_defn_to_vec (obstackp, sym, block);
5656 return;
5657 }
5658
5659 if (made_global_lookup_p)
5660 *made_global_lookup_p = 1;
5661
5662 /* Search symbols from all global blocks. */
5663
5664 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5665
5666 /* Now add symbols from all per-file blocks if we've gotten no hits
5667 (not strictly correct, but perhaps better than an error). */
5668
5669 if (num_defns_collected (obstackp) == 0)
5670 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5671 }
5672
5673 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5674 is non-zero, enclosing scope and in global scopes, returning the number of
5675 matches.
5676 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5677 found and the blocks and symbol tables (if any) in which they were
5678 found.
5679
5680 When full_search is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5685
5686 Names prefixed with "standard__" are handled specially: "standard__"
5687 is first stripped off, and only static and global symbols are searched. */
5688
5689 static int
5690 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5691 const struct block *block,
5692 domain_enum domain,
5693 std::vector<struct block_symbol> *results,
5694 int full_search)
5695 {
5696 int syms_from_global_search;
5697 int ndefns;
5698 auto_obstack obstack;
5699
5700 ada_add_all_symbols (&obstack, block, lookup_name,
5701 domain, full_search, &syms_from_global_search);
5702
5703 ndefns = num_defns_collected (&obstack);
5704
5705 struct block_symbol *base = defns_collected (&obstack, 1);
5706 for (int i = 0; i < ndefns; ++i)
5707 results->push_back (base[i]);
5708
5709 ndefns = remove_extra_symbols (results);
5710
5711 if (ndefns == 0 && full_search && syms_from_global_search)
5712 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5713
5714 if (ndefns == 1 && full_search && syms_from_global_search)
5715 cache_symbol (ada_lookup_name (lookup_name), domain,
5716 (*results)[0].symbol, (*results)[0].block);
5717
5718 ndefns = remove_irrelevant_renamings (results, block);
5719
5720 return ndefns;
5721 }
5722
5723 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5724 in global scopes, returning the number of matches, and filling *RESULTS
5725 with (SYM,BLOCK) tuples.
5726
5727 See ada_lookup_symbol_list_worker for further details. */
5728
5729 int
5730 ada_lookup_symbol_list (const char *name, const struct block *block,
5731 domain_enum domain,
5732 std::vector<struct block_symbol> *results)
5733 {
5734 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5735 lookup_name_info lookup_name (name, name_match_type);
5736
5737 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5738 }
5739
5740 /* Implementation of the la_iterate_over_symbols method. */
5741
5742 static void
5743 ada_iterate_over_symbols
5744 (const struct block *block, const lookup_name_info &name,
5745 domain_enum domain,
5746 gdb::function_view<symbol_found_callback_ftype> callback)
5747 {
5748 int ndefs, i;
5749 std::vector<struct block_symbol> results;
5750
5751 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5752
5753 for (i = 0; i < ndefs; ++i)
5754 {
5755 if (!callback (&results[i]))
5756 break;
5757 }
5758 }
5759
5760 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5761 to 1, but choosing the first symbol found if there are multiple
5762 choices.
5763
5764 The result is stored in *INFO, which must be non-NULL.
5765 If no match is found, INFO->SYM is set to NULL. */
5766
5767 void
5768 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5769 domain_enum domain,
5770 struct block_symbol *info)
5771 {
5772 /* Since we already have an encoded name, wrap it in '<>' to force a
5773 verbatim match. Otherwise, if the name happens to not look like
5774 an encoded name (because it doesn't include a "__"),
5775 ada_lookup_name_info would re-encode/fold it again, and that
5776 would e.g., incorrectly lowercase object renaming names like
5777 "R28b" -> "r28b". */
5778 std::string verbatim = std::string ("<") + name + '>';
5779
5780 gdb_assert (info != NULL);
5781 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5782 }
5783
5784 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5785 scope and in global scopes, or NULL if none. NAME is folded and
5786 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5787 choosing the first symbol if there are multiple choices. */
5788
5789 struct block_symbol
5790 ada_lookup_symbol (const char *name, const struct block *block0,
5791 domain_enum domain)
5792 {
5793 std::vector<struct block_symbol> candidates;
5794 int n_candidates;
5795
5796 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5797
5798 if (n_candidates == 0)
5799 return {};
5800
5801 block_symbol info = candidates[0];
5802 info.symbol = fixup_symbol_section (info.symbol, NULL);
5803 return info;
5804 }
5805
5806 static struct block_symbol
5807 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5808 const char *name,
5809 const struct block *block,
5810 const domain_enum domain)
5811 {
5812 struct block_symbol sym;
5813
5814 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5815 if (sym.symbol != NULL)
5816 return sym;
5817
5818 /* If we haven't found a match at this point, try the primitive
5819 types. In other languages, this search is performed before
5820 searching for global symbols in order to short-circuit that
5821 global-symbol search if it happens that the name corresponds
5822 to a primitive type. But we cannot do the same in Ada, because
5823 it is perfectly legitimate for a program to declare a type which
5824 has the same name as a standard type. If looking up a type in
5825 that situation, we have traditionally ignored the primitive type
5826 in favor of user-defined types. This is why, unlike most other
5827 languages, we search the primitive types this late and only after
5828 having searched the global symbols without success. */
5829
5830 if (domain == VAR_DOMAIN)
5831 {
5832 struct gdbarch *gdbarch;
5833
5834 if (block == NULL)
5835 gdbarch = target_gdbarch ();
5836 else
5837 gdbarch = block_gdbarch (block);
5838 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5839 if (sym.symbol != NULL)
5840 return sym;
5841 }
5842
5843 return {};
5844 }
5845
5846
5847 /* True iff STR is a possible encoded suffix of a normal Ada name
5848 that is to be ignored for matching purposes. Suffixes of parallel
5849 names (e.g., XVE) are not included here. Currently, the possible suffixes
5850 are given by any of the regular expressions:
5851
5852 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5853 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5854 TKB [subprogram suffix for task bodies]
5855 _E[0-9]+[bs]$ [protected object entry suffixes]
5856 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5857
5858 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5859 match is performed. This sequence is used to differentiate homonyms,
5860 is an optional part of a valid name suffix. */
5861
5862 static int
5863 is_name_suffix (const char *str)
5864 {
5865 int k;
5866 const char *matching;
5867 const int len = strlen (str);
5868
5869 /* Skip optional leading __[0-9]+. */
5870
5871 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5872 {
5873 str += 3;
5874 while (isdigit (str[0]))
5875 str += 1;
5876 }
5877
5878 /* [.$][0-9]+ */
5879
5880 if (str[0] == '.' || str[0] == '$')
5881 {
5882 matching = str + 1;
5883 while (isdigit (matching[0]))
5884 matching += 1;
5885 if (matching[0] == '\0')
5886 return 1;
5887 }
5888
5889 /* ___[0-9]+ */
5890
5891 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5892 {
5893 matching = str + 3;
5894 while (isdigit (matching[0]))
5895 matching += 1;
5896 if (matching[0] == '\0')
5897 return 1;
5898 }
5899
5900 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5901
5902 if (strcmp (str, "TKB") == 0)
5903 return 1;
5904
5905 #if 0
5906 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5907 with a N at the end. Unfortunately, the compiler uses the same
5908 convention for other internal types it creates. So treating
5909 all entity names that end with an "N" as a name suffix causes
5910 some regressions. For instance, consider the case of an enumerated
5911 type. To support the 'Image attribute, it creates an array whose
5912 name ends with N.
5913 Having a single character like this as a suffix carrying some
5914 information is a bit risky. Perhaps we should change the encoding
5915 to be something like "_N" instead. In the meantime, do not do
5916 the following check. */
5917 /* Protected Object Subprograms */
5918 if (len == 1 && str [0] == 'N')
5919 return 1;
5920 #endif
5921
5922 /* _E[0-9]+[bs]$ */
5923 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5924 {
5925 matching = str + 3;
5926 while (isdigit (matching[0]))
5927 matching += 1;
5928 if ((matching[0] == 'b' || matching[0] == 's')
5929 && matching [1] == '\0')
5930 return 1;
5931 }
5932
5933 /* ??? We should not modify STR directly, as we are doing below. This
5934 is fine in this case, but may become problematic later if we find
5935 that this alternative did not work, and want to try matching
5936 another one from the begining of STR. Since we modified it, we
5937 won't be able to find the begining of the string anymore! */
5938 if (str[0] == 'X')
5939 {
5940 str += 1;
5941 while (str[0] != '_' && str[0] != '\0')
5942 {
5943 if (str[0] != 'n' && str[0] != 'b')
5944 return 0;
5945 str += 1;
5946 }
5947 }
5948
5949 if (str[0] == '\000')
5950 return 1;
5951
5952 if (str[0] == '_')
5953 {
5954 if (str[1] != '_' || str[2] == '\000')
5955 return 0;
5956 if (str[2] == '_')
5957 {
5958 if (strcmp (str + 3, "JM") == 0)
5959 return 1;
5960 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5961 the LJM suffix in favor of the JM one. But we will
5962 still accept LJM as a valid suffix for a reasonable
5963 amount of time, just to allow ourselves to debug programs
5964 compiled using an older version of GNAT. */
5965 if (strcmp (str + 3, "LJM") == 0)
5966 return 1;
5967 if (str[3] != 'X')
5968 return 0;
5969 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5970 || str[4] == 'U' || str[4] == 'P')
5971 return 1;
5972 if (str[4] == 'R' && str[5] != 'T')
5973 return 1;
5974 return 0;
5975 }
5976 if (!isdigit (str[2]))
5977 return 0;
5978 for (k = 3; str[k] != '\0'; k += 1)
5979 if (!isdigit (str[k]) && str[k] != '_')
5980 return 0;
5981 return 1;
5982 }
5983 if (str[0] == '$' && isdigit (str[1]))
5984 {
5985 for (k = 2; str[k] != '\0'; k += 1)
5986 if (!isdigit (str[k]) && str[k] != '_')
5987 return 0;
5988 return 1;
5989 }
5990 return 0;
5991 }
5992
5993 /* Return non-zero if the string starting at NAME and ending before
5994 NAME_END contains no capital letters. */
5995
5996 static int
5997 is_valid_name_for_wild_match (const char *name0)
5998 {
5999 const char *decoded_name = ada_decode (name0);
6000 int i;
6001
6002 /* If the decoded name starts with an angle bracket, it means that
6003 NAME0 does not follow the GNAT encoding format. It should then
6004 not be allowed as a possible wild match. */
6005 if (decoded_name[0] == '<')
6006 return 0;
6007
6008 for (i=0; decoded_name[i] != '\0'; i++)
6009 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6010 return 0;
6011
6012 return 1;
6013 }
6014
6015 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6016 that could start a simple name. Assumes that *NAMEP points into
6017 the string beginning at NAME0. */
6018
6019 static int
6020 advance_wild_match (const char **namep, const char *name0, int target0)
6021 {
6022 const char *name = *namep;
6023
6024 while (1)
6025 {
6026 int t0, t1;
6027
6028 t0 = *name;
6029 if (t0 == '_')
6030 {
6031 t1 = name[1];
6032 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6033 {
6034 name += 1;
6035 if (name == name0 + 5 && startswith (name0, "_ada"))
6036 break;
6037 else
6038 name += 1;
6039 }
6040 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6041 || name[2] == target0))
6042 {
6043 name += 2;
6044 break;
6045 }
6046 else
6047 return 0;
6048 }
6049 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6050 name += 1;
6051 else
6052 return 0;
6053 }
6054
6055 *namep = name;
6056 return 1;
6057 }
6058
6059 /* Return true iff NAME encodes a name of the form prefix.PATN.
6060 Ignores any informational suffixes of NAME (i.e., for which
6061 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6062 simple name. */
6063
6064 static bool
6065 wild_match (const char *name, const char *patn)
6066 {
6067 const char *p;
6068 const char *name0 = name;
6069
6070 while (1)
6071 {
6072 const char *match = name;
6073
6074 if (*name == *patn)
6075 {
6076 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6077 if (*p != *name)
6078 break;
6079 if (*p == '\0' && is_name_suffix (name))
6080 return match == name0 || is_valid_name_for_wild_match (name0);
6081
6082 if (name[-1] == '_')
6083 name -= 1;
6084 }
6085 if (!advance_wild_match (&name, name0, *patn))
6086 return false;
6087 }
6088 }
6089
6090 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6091 any trailing suffixes that encode debugging information or leading
6092 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6093 information that is ignored). */
6094
6095 static bool
6096 full_match (const char *sym_name, const char *search_name)
6097 {
6098 size_t search_name_len = strlen (search_name);
6099
6100 if (strncmp (sym_name, search_name, search_name_len) == 0
6101 && is_name_suffix (sym_name + search_name_len))
6102 return true;
6103
6104 if (startswith (sym_name, "_ada_")
6105 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6106 && is_name_suffix (sym_name + search_name_len + 5))
6107 return true;
6108
6109 return false;
6110 }
6111
6112 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6113 *defn_symbols, updating the list of symbols in OBSTACKP (if
6114 necessary). OBJFILE is the section containing BLOCK. */
6115
6116 static void
6117 ada_add_block_symbols (struct obstack *obstackp,
6118 const struct block *block,
6119 const lookup_name_info &lookup_name,
6120 domain_enum domain, struct objfile *objfile)
6121 {
6122 struct block_iterator iter;
6123 /* A matching argument symbol, if any. */
6124 struct symbol *arg_sym;
6125 /* Set true when we find a matching non-argument symbol. */
6126 int found_sym;
6127 struct symbol *sym;
6128
6129 arg_sym = NULL;
6130 found_sym = 0;
6131 for (sym = block_iter_match_first (block, lookup_name, &iter);
6132 sym != NULL;
6133 sym = block_iter_match_next (lookup_name, &iter))
6134 {
6135 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6136 SYMBOL_DOMAIN (sym), domain))
6137 {
6138 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6139 {
6140 if (SYMBOL_IS_ARGUMENT (sym))
6141 arg_sym = sym;
6142 else
6143 {
6144 found_sym = 1;
6145 add_defn_to_vec (obstackp,
6146 fixup_symbol_section (sym, objfile),
6147 block);
6148 }
6149 }
6150 }
6151 }
6152
6153 /* Handle renamings. */
6154
6155 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6156 found_sym = 1;
6157
6158 if (!found_sym && arg_sym != NULL)
6159 {
6160 add_defn_to_vec (obstackp,
6161 fixup_symbol_section (arg_sym, objfile),
6162 block);
6163 }
6164
6165 if (!lookup_name.ada ().wild_match_p ())
6166 {
6167 arg_sym = NULL;
6168 found_sym = 0;
6169 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6170 const char *name = ada_lookup_name.c_str ();
6171 size_t name_len = ada_lookup_name.size ();
6172
6173 ALL_BLOCK_SYMBOLS (block, iter, sym)
6174 {
6175 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6176 SYMBOL_DOMAIN (sym), domain))
6177 {
6178 int cmp;
6179
6180 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6181 if (cmp == 0)
6182 {
6183 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6184 if (cmp == 0)
6185 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6186 name_len);
6187 }
6188
6189 if (cmp == 0
6190 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6191 {
6192 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6193 {
6194 if (SYMBOL_IS_ARGUMENT (sym))
6195 arg_sym = sym;
6196 else
6197 {
6198 found_sym = 1;
6199 add_defn_to_vec (obstackp,
6200 fixup_symbol_section (sym, objfile),
6201 block);
6202 }
6203 }
6204 }
6205 }
6206 }
6207
6208 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6209 They aren't parameters, right? */
6210 if (!found_sym && arg_sym != NULL)
6211 {
6212 add_defn_to_vec (obstackp,
6213 fixup_symbol_section (arg_sym, objfile),
6214 block);
6215 }
6216 }
6217 }
6218 \f
6219
6220 /* Symbol Completion */
6221
6222 /* See symtab.h. */
6223
6224 bool
6225 ada_lookup_name_info::matches
6226 (const char *sym_name,
6227 symbol_name_match_type match_type,
6228 completion_match_result *comp_match_res) const
6229 {
6230 bool match = false;
6231 const char *text = m_encoded_name.c_str ();
6232 size_t text_len = m_encoded_name.size ();
6233
6234 /* First, test against the fully qualified name of the symbol. */
6235
6236 if (strncmp (sym_name, text, text_len) == 0)
6237 match = true;
6238
6239 if (match && !m_encoded_p)
6240 {
6241 /* One needed check before declaring a positive match is to verify
6242 that iff we are doing a verbatim match, the decoded version
6243 of the symbol name starts with '<'. Otherwise, this symbol name
6244 is not a suitable completion. */
6245 const char *sym_name_copy = sym_name;
6246 bool has_angle_bracket;
6247
6248 sym_name = ada_decode (sym_name);
6249 has_angle_bracket = (sym_name[0] == '<');
6250 match = (has_angle_bracket == m_verbatim_p);
6251 sym_name = sym_name_copy;
6252 }
6253
6254 if (match && !m_verbatim_p)
6255 {
6256 /* When doing non-verbatim match, another check that needs to
6257 be done is to verify that the potentially matching symbol name
6258 does not include capital letters, because the ada-mode would
6259 not be able to understand these symbol names without the
6260 angle bracket notation. */
6261 const char *tmp;
6262
6263 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6264 if (*tmp != '\0')
6265 match = false;
6266 }
6267
6268 /* Second: Try wild matching... */
6269
6270 if (!match && m_wild_match_p)
6271 {
6272 /* Since we are doing wild matching, this means that TEXT
6273 may represent an unqualified symbol name. We therefore must
6274 also compare TEXT against the unqualified name of the symbol. */
6275 sym_name = ada_unqualified_name (ada_decode (sym_name));
6276
6277 if (strncmp (sym_name, text, text_len) == 0)
6278 match = true;
6279 }
6280
6281 /* Finally: If we found a match, prepare the result to return. */
6282
6283 if (!match)
6284 return false;
6285
6286 if (comp_match_res != NULL)
6287 {
6288 std::string &match_str = comp_match_res->match.storage ();
6289
6290 if (!m_encoded_p)
6291 match_str = ada_decode (sym_name);
6292 else
6293 {
6294 if (m_verbatim_p)
6295 match_str = add_angle_brackets (sym_name);
6296 else
6297 match_str = sym_name;
6298
6299 }
6300
6301 comp_match_res->set_match (match_str.c_str ());
6302 }
6303
6304 return true;
6305 }
6306
6307 /* Add the list of possible symbol names completing TEXT to TRACKER.
6308 WORD is the entire command on which completion is made. */
6309
6310 static void
6311 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6312 complete_symbol_mode mode,
6313 symbol_name_match_type name_match_type,
6314 const char *text, const char *word,
6315 enum type_code code)
6316 {
6317 struct symbol *sym;
6318 const struct block *b, *surrounding_static_block = 0;
6319 struct block_iterator iter;
6320
6321 gdb_assert (code == TYPE_CODE_UNDEF);
6322
6323 lookup_name_info lookup_name (text, name_match_type, true);
6324
6325 /* First, look at the partial symtab symbols. */
6326 expand_symtabs_matching (NULL,
6327 lookup_name,
6328 NULL,
6329 NULL,
6330 ALL_DOMAIN);
6331
6332 /* At this point scan through the misc symbol vectors and add each
6333 symbol you find to the list. Eventually we want to ignore
6334 anything that isn't a text symbol (everything else will be
6335 handled by the psymtab code above). */
6336
6337 for (objfile *objfile : current_program_space->objfiles ())
6338 {
6339 for (minimal_symbol *msymbol : objfile->msymbols ())
6340 {
6341 QUIT;
6342
6343 if (completion_skip_symbol (mode, msymbol))
6344 continue;
6345
6346 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6347
6348 /* Ada minimal symbols won't have their language set to Ada. If
6349 we let completion_list_add_name compare using the
6350 default/C-like matcher, then when completing e.g., symbols in a
6351 package named "pck", we'd match internal Ada symbols like
6352 "pckS", which are invalid in an Ada expression, unless you wrap
6353 them in '<' '>' to request a verbatim match.
6354
6355 Unfortunately, some Ada encoded names successfully demangle as
6356 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6357 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6358 with the wrong language set. Paper over that issue here. */
6359 if (symbol_language == language_auto
6360 || symbol_language == language_cplus)
6361 symbol_language = language_ada;
6362
6363 completion_list_add_name (tracker,
6364 symbol_language,
6365 MSYMBOL_LINKAGE_NAME (msymbol),
6366 lookup_name, text, word);
6367 }
6368 }
6369
6370 /* Search upwards from currently selected frame (so that we can
6371 complete on local vars. */
6372
6373 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6374 {
6375 if (!BLOCK_SUPERBLOCK (b))
6376 surrounding_static_block = b; /* For elmin of dups */
6377
6378 ALL_BLOCK_SYMBOLS (b, iter, sym)
6379 {
6380 if (completion_skip_symbol (mode, sym))
6381 continue;
6382
6383 completion_list_add_name (tracker,
6384 SYMBOL_LANGUAGE (sym),
6385 SYMBOL_LINKAGE_NAME (sym),
6386 lookup_name, text, word);
6387 }
6388 }
6389
6390 /* Go through the symtabs and check the externs and statics for
6391 symbols which match. */
6392
6393 for (objfile *objfile : current_program_space->objfiles ())
6394 {
6395 for (compunit_symtab *s : objfile->compunits ())
6396 {
6397 QUIT;
6398 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6399 ALL_BLOCK_SYMBOLS (b, iter, sym)
6400 {
6401 if (completion_skip_symbol (mode, sym))
6402 continue;
6403
6404 completion_list_add_name (tracker,
6405 SYMBOL_LANGUAGE (sym),
6406 SYMBOL_LINKAGE_NAME (sym),
6407 lookup_name, text, word);
6408 }
6409 }
6410 }
6411
6412 for (objfile *objfile : current_program_space->objfiles ())
6413 {
6414 for (compunit_symtab *s : objfile->compunits ())
6415 {
6416 QUIT;
6417 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6418 /* Don't do this block twice. */
6419 if (b == surrounding_static_block)
6420 continue;
6421 ALL_BLOCK_SYMBOLS (b, iter, sym)
6422 {
6423 if (completion_skip_symbol (mode, sym))
6424 continue;
6425
6426 completion_list_add_name (tracker,
6427 SYMBOL_LANGUAGE (sym),
6428 SYMBOL_LINKAGE_NAME (sym),
6429 lookup_name, text, word);
6430 }
6431 }
6432 }
6433 }
6434
6435 /* Field Access */
6436
6437 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6438 for tagged types. */
6439
6440 static int
6441 ada_is_dispatch_table_ptr_type (struct type *type)
6442 {
6443 const char *name;
6444
6445 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6446 return 0;
6447
6448 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6449 if (name == NULL)
6450 return 0;
6451
6452 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6453 }
6454
6455 /* Return non-zero if TYPE is an interface tag. */
6456
6457 static int
6458 ada_is_interface_tag (struct type *type)
6459 {
6460 const char *name = TYPE_NAME (type);
6461
6462 if (name == NULL)
6463 return 0;
6464
6465 return (strcmp (name, "ada__tags__interface_tag") == 0);
6466 }
6467
6468 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6469 to be invisible to users. */
6470
6471 int
6472 ada_is_ignored_field (struct type *type, int field_num)
6473 {
6474 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6475 return 1;
6476
6477 /* Check the name of that field. */
6478 {
6479 const char *name = TYPE_FIELD_NAME (type, field_num);
6480
6481 /* Anonymous field names should not be printed.
6482 brobecker/2007-02-20: I don't think this can actually happen
6483 but we don't want to print the value of annonymous fields anyway. */
6484 if (name == NULL)
6485 return 1;
6486
6487 /* Normally, fields whose name start with an underscore ("_")
6488 are fields that have been internally generated by the compiler,
6489 and thus should not be printed. The "_parent" field is special,
6490 however: This is a field internally generated by the compiler
6491 for tagged types, and it contains the components inherited from
6492 the parent type. This field should not be printed as is, but
6493 should not be ignored either. */
6494 if (name[0] == '_' && !startswith (name, "_parent"))
6495 return 1;
6496 }
6497
6498 /* If this is the dispatch table of a tagged type or an interface tag,
6499 then ignore. */
6500 if (ada_is_tagged_type (type, 1)
6501 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6502 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6503 return 1;
6504
6505 /* Not a special field, so it should not be ignored. */
6506 return 0;
6507 }
6508
6509 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6510 pointer or reference type whose ultimate target has a tag field. */
6511
6512 int
6513 ada_is_tagged_type (struct type *type, int refok)
6514 {
6515 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6516 }
6517
6518 /* True iff TYPE represents the type of X'Tag */
6519
6520 int
6521 ada_is_tag_type (struct type *type)
6522 {
6523 type = ada_check_typedef (type);
6524
6525 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6526 return 0;
6527 else
6528 {
6529 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6530
6531 return (name != NULL
6532 && strcmp (name, "ada__tags__dispatch_table") == 0);
6533 }
6534 }
6535
6536 /* The type of the tag on VAL. */
6537
6538 struct type *
6539 ada_tag_type (struct value *val)
6540 {
6541 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6542 }
6543
6544 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6545 retired at Ada 05). */
6546
6547 static int
6548 is_ada95_tag (struct value *tag)
6549 {
6550 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6551 }
6552
6553 /* The value of the tag on VAL. */
6554
6555 struct value *
6556 ada_value_tag (struct value *val)
6557 {
6558 return ada_value_struct_elt (val, "_tag", 0);
6559 }
6560
6561 /* The value of the tag on the object of type TYPE whose contents are
6562 saved at VALADDR, if it is non-null, or is at memory address
6563 ADDRESS. */
6564
6565 static struct value *
6566 value_tag_from_contents_and_address (struct type *type,
6567 const gdb_byte *valaddr,
6568 CORE_ADDR address)
6569 {
6570 int tag_byte_offset;
6571 struct type *tag_type;
6572
6573 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6574 NULL, NULL, NULL))
6575 {
6576 const gdb_byte *valaddr1 = ((valaddr == NULL)
6577 ? NULL
6578 : valaddr + tag_byte_offset);
6579 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6580
6581 return value_from_contents_and_address (tag_type, valaddr1, address1);
6582 }
6583 return NULL;
6584 }
6585
6586 static struct type *
6587 type_from_tag (struct value *tag)
6588 {
6589 const char *type_name = ada_tag_name (tag);
6590
6591 if (type_name != NULL)
6592 return ada_find_any_type (ada_encode (type_name));
6593 return NULL;
6594 }
6595
6596 /* Given a value OBJ of a tagged type, return a value of this
6597 type at the base address of the object. The base address, as
6598 defined in Ada.Tags, it is the address of the primary tag of
6599 the object, and therefore where the field values of its full
6600 view can be fetched. */
6601
6602 struct value *
6603 ada_tag_value_at_base_address (struct value *obj)
6604 {
6605 struct value *val;
6606 LONGEST offset_to_top = 0;
6607 struct type *ptr_type, *obj_type;
6608 struct value *tag;
6609 CORE_ADDR base_address;
6610
6611 obj_type = value_type (obj);
6612
6613 /* It is the responsability of the caller to deref pointers. */
6614
6615 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6616 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6617 return obj;
6618
6619 tag = ada_value_tag (obj);
6620 if (!tag)
6621 return obj;
6622
6623 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6624
6625 if (is_ada95_tag (tag))
6626 return obj;
6627
6628 ptr_type = language_lookup_primitive_type
6629 (language_def (language_ada), target_gdbarch(), "storage_offset");
6630 ptr_type = lookup_pointer_type (ptr_type);
6631 val = value_cast (ptr_type, tag);
6632 if (!val)
6633 return obj;
6634
6635 /* It is perfectly possible that an exception be raised while
6636 trying to determine the base address, just like for the tag;
6637 see ada_tag_name for more details. We do not print the error
6638 message for the same reason. */
6639
6640 try
6641 {
6642 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6643 }
6644
6645 catch (const gdb_exception_error &e)
6646 {
6647 return obj;
6648 }
6649
6650 /* If offset is null, nothing to do. */
6651
6652 if (offset_to_top == 0)
6653 return obj;
6654
6655 /* -1 is a special case in Ada.Tags; however, what should be done
6656 is not quite clear from the documentation. So do nothing for
6657 now. */
6658
6659 if (offset_to_top == -1)
6660 return obj;
6661
6662 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6663 from the base address. This was however incompatible with
6664 C++ dispatch table: C++ uses a *negative* value to *add*
6665 to the base address. Ada's convention has therefore been
6666 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6667 use the same convention. Here, we support both cases by
6668 checking the sign of OFFSET_TO_TOP. */
6669
6670 if (offset_to_top > 0)
6671 offset_to_top = -offset_to_top;
6672
6673 base_address = value_address (obj) + offset_to_top;
6674 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6675
6676 /* Make sure that we have a proper tag at the new address.
6677 Otherwise, offset_to_top is bogus (which can happen when
6678 the object is not initialized yet). */
6679
6680 if (!tag)
6681 return obj;
6682
6683 obj_type = type_from_tag (tag);
6684
6685 if (!obj_type)
6686 return obj;
6687
6688 return value_from_contents_and_address (obj_type, NULL, base_address);
6689 }
6690
6691 /* Return the "ada__tags__type_specific_data" type. */
6692
6693 static struct type *
6694 ada_get_tsd_type (struct inferior *inf)
6695 {
6696 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6697
6698 if (data->tsd_type == 0)
6699 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6700 return data->tsd_type;
6701 }
6702
6703 /* Return the TSD (type-specific data) associated to the given TAG.
6704 TAG is assumed to be the tag of a tagged-type entity.
6705
6706 May return NULL if we are unable to get the TSD. */
6707
6708 static struct value *
6709 ada_get_tsd_from_tag (struct value *tag)
6710 {
6711 struct value *val;
6712 struct type *type;
6713
6714 /* First option: The TSD is simply stored as a field of our TAG.
6715 Only older versions of GNAT would use this format, but we have
6716 to test it first, because there are no visible markers for
6717 the current approach except the absence of that field. */
6718
6719 val = ada_value_struct_elt (tag, "tsd", 1);
6720 if (val)
6721 return val;
6722
6723 /* Try the second representation for the dispatch table (in which
6724 there is no explicit 'tsd' field in the referent of the tag pointer,
6725 and instead the tsd pointer is stored just before the dispatch
6726 table. */
6727
6728 type = ada_get_tsd_type (current_inferior());
6729 if (type == NULL)
6730 return NULL;
6731 type = lookup_pointer_type (lookup_pointer_type (type));
6732 val = value_cast (type, tag);
6733 if (val == NULL)
6734 return NULL;
6735 return value_ind (value_ptradd (val, -1));
6736 }
6737
6738 /* Given the TSD of a tag (type-specific data), return a string
6739 containing the name of the associated type.
6740
6741 The returned value is good until the next call. May return NULL
6742 if we are unable to determine the tag name. */
6743
6744 static char *
6745 ada_tag_name_from_tsd (struct value *tsd)
6746 {
6747 static char name[1024];
6748 char *p;
6749 struct value *val;
6750
6751 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6752 if (val == NULL)
6753 return NULL;
6754 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6755 for (p = name; *p != '\0'; p += 1)
6756 if (isalpha (*p))
6757 *p = tolower (*p);
6758 return name;
6759 }
6760
6761 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6762 a C string.
6763
6764 Return NULL if the TAG is not an Ada tag, or if we were unable to
6765 determine the name of that tag. The result is good until the next
6766 call. */
6767
6768 const char *
6769 ada_tag_name (struct value *tag)
6770 {
6771 char *name = NULL;
6772
6773 if (!ada_is_tag_type (value_type (tag)))
6774 return NULL;
6775
6776 /* It is perfectly possible that an exception be raised while trying
6777 to determine the TAG's name, even under normal circumstances:
6778 The associated variable may be uninitialized or corrupted, for
6779 instance. We do not let any exception propagate past this point.
6780 instead we return NULL.
6781
6782 We also do not print the error message either (which often is very
6783 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6784 the caller print a more meaningful message if necessary. */
6785 try
6786 {
6787 struct value *tsd = ada_get_tsd_from_tag (tag);
6788
6789 if (tsd != NULL)
6790 name = ada_tag_name_from_tsd (tsd);
6791 }
6792 catch (const gdb_exception_error &e)
6793 {
6794 }
6795
6796 return name;
6797 }
6798
6799 /* The parent type of TYPE, or NULL if none. */
6800
6801 struct type *
6802 ada_parent_type (struct type *type)
6803 {
6804 int i;
6805
6806 type = ada_check_typedef (type);
6807
6808 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6809 return NULL;
6810
6811 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6812 if (ada_is_parent_field (type, i))
6813 {
6814 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6815
6816 /* If the _parent field is a pointer, then dereference it. */
6817 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6818 parent_type = TYPE_TARGET_TYPE (parent_type);
6819 /* If there is a parallel XVS type, get the actual base type. */
6820 parent_type = ada_get_base_type (parent_type);
6821
6822 return ada_check_typedef (parent_type);
6823 }
6824
6825 return NULL;
6826 }
6827
6828 /* True iff field number FIELD_NUM of structure type TYPE contains the
6829 parent-type (inherited) fields of a derived type. Assumes TYPE is
6830 a structure type with at least FIELD_NUM+1 fields. */
6831
6832 int
6833 ada_is_parent_field (struct type *type, int field_num)
6834 {
6835 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6836
6837 return (name != NULL
6838 && (startswith (name, "PARENT")
6839 || startswith (name, "_parent")));
6840 }
6841
6842 /* True iff field number FIELD_NUM of structure type TYPE is a
6843 transparent wrapper field (which should be silently traversed when doing
6844 field selection and flattened when printing). Assumes TYPE is a
6845 structure type with at least FIELD_NUM+1 fields. Such fields are always
6846 structures. */
6847
6848 int
6849 ada_is_wrapper_field (struct type *type, int field_num)
6850 {
6851 const char *name = TYPE_FIELD_NAME (type, field_num);
6852
6853 if (name != NULL && strcmp (name, "RETVAL") == 0)
6854 {
6855 /* This happens in functions with "out" or "in out" parameters
6856 which are passed by copy. For such functions, GNAT describes
6857 the function's return type as being a struct where the return
6858 value is in a field called RETVAL, and where the other "out"
6859 or "in out" parameters are fields of that struct. This is not
6860 a wrapper. */
6861 return 0;
6862 }
6863
6864 return (name != NULL
6865 && (startswith (name, "PARENT")
6866 || strcmp (name, "REP") == 0
6867 || startswith (name, "_parent")
6868 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6869 }
6870
6871 /* True iff field number FIELD_NUM of structure or union type TYPE
6872 is a variant wrapper. Assumes TYPE is a structure type with at least
6873 FIELD_NUM+1 fields. */
6874
6875 int
6876 ada_is_variant_part (struct type *type, int field_num)
6877 {
6878 /* Only Ada types are eligible. */
6879 if (!ADA_TYPE_P (type))
6880 return 0;
6881
6882 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6883
6884 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6885 || (is_dynamic_field (type, field_num)
6886 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6887 == TYPE_CODE_UNION)));
6888 }
6889
6890 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6891 whose discriminants are contained in the record type OUTER_TYPE,
6892 returns the type of the controlling discriminant for the variant.
6893 May return NULL if the type could not be found. */
6894
6895 struct type *
6896 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6897 {
6898 const char *name = ada_variant_discrim_name (var_type);
6899
6900 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6901 }
6902
6903 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6904 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6905 represents a 'when others' clause; otherwise 0. */
6906
6907 int
6908 ada_is_others_clause (struct type *type, int field_num)
6909 {
6910 const char *name = TYPE_FIELD_NAME (type, field_num);
6911
6912 return (name != NULL && name[0] == 'O');
6913 }
6914
6915 /* Assuming that TYPE0 is the type of the variant part of a record,
6916 returns the name of the discriminant controlling the variant.
6917 The value is valid until the next call to ada_variant_discrim_name. */
6918
6919 const char *
6920 ada_variant_discrim_name (struct type *type0)
6921 {
6922 static char *result = NULL;
6923 static size_t result_len = 0;
6924 struct type *type;
6925 const char *name;
6926 const char *discrim_end;
6927 const char *discrim_start;
6928
6929 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6930 type = TYPE_TARGET_TYPE (type0);
6931 else
6932 type = type0;
6933
6934 name = ada_type_name (type);
6935
6936 if (name == NULL || name[0] == '\000')
6937 return "";
6938
6939 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6940 discrim_end -= 1)
6941 {
6942 if (startswith (discrim_end, "___XVN"))
6943 break;
6944 }
6945 if (discrim_end == name)
6946 return "";
6947
6948 for (discrim_start = discrim_end; discrim_start != name + 3;
6949 discrim_start -= 1)
6950 {
6951 if (discrim_start == name + 1)
6952 return "";
6953 if ((discrim_start > name + 3
6954 && startswith (discrim_start - 3, "___"))
6955 || discrim_start[-1] == '.')
6956 break;
6957 }
6958
6959 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6960 strncpy (result, discrim_start, discrim_end - discrim_start);
6961 result[discrim_end - discrim_start] = '\0';
6962 return result;
6963 }
6964
6965 /* Scan STR for a subtype-encoded number, beginning at position K.
6966 Put the position of the character just past the number scanned in
6967 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6968 Return 1 if there was a valid number at the given position, and 0
6969 otherwise. A "subtype-encoded" number consists of the absolute value
6970 in decimal, followed by the letter 'm' to indicate a negative number.
6971 Assumes 0m does not occur. */
6972
6973 int
6974 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6975 {
6976 ULONGEST RU;
6977
6978 if (!isdigit (str[k]))
6979 return 0;
6980
6981 /* Do it the hard way so as not to make any assumption about
6982 the relationship of unsigned long (%lu scan format code) and
6983 LONGEST. */
6984 RU = 0;
6985 while (isdigit (str[k]))
6986 {
6987 RU = RU * 10 + (str[k] - '0');
6988 k += 1;
6989 }
6990
6991 if (str[k] == 'm')
6992 {
6993 if (R != NULL)
6994 *R = (-(LONGEST) (RU - 1)) - 1;
6995 k += 1;
6996 }
6997 else if (R != NULL)
6998 *R = (LONGEST) RU;
6999
7000 /* NOTE on the above: Technically, C does not say what the results of
7001 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7002 number representable as a LONGEST (although either would probably work
7003 in most implementations). When RU>0, the locution in the then branch
7004 above is always equivalent to the negative of RU. */
7005
7006 if (new_k != NULL)
7007 *new_k = k;
7008 return 1;
7009 }
7010
7011 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7012 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7013 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7014
7015 int
7016 ada_in_variant (LONGEST val, struct type *type, int field_num)
7017 {
7018 const char *name = TYPE_FIELD_NAME (type, field_num);
7019 int p;
7020
7021 p = 0;
7022 while (1)
7023 {
7024 switch (name[p])
7025 {
7026 case '\0':
7027 return 0;
7028 case 'S':
7029 {
7030 LONGEST W;
7031
7032 if (!ada_scan_number (name, p + 1, &W, &p))
7033 return 0;
7034 if (val == W)
7035 return 1;
7036 break;
7037 }
7038 case 'R':
7039 {
7040 LONGEST L, U;
7041
7042 if (!ada_scan_number (name, p + 1, &L, &p)
7043 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7044 return 0;
7045 if (val >= L && val <= U)
7046 return 1;
7047 break;
7048 }
7049 case 'O':
7050 return 1;
7051 default:
7052 return 0;
7053 }
7054 }
7055 }
7056
7057 /* FIXME: Lots of redundancy below. Try to consolidate. */
7058
7059 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7060 ARG_TYPE, extract and return the value of one of its (non-static)
7061 fields. FIELDNO says which field. Differs from value_primitive_field
7062 only in that it can handle packed values of arbitrary type. */
7063
7064 static struct value *
7065 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7066 struct type *arg_type)
7067 {
7068 struct type *type;
7069
7070 arg_type = ada_check_typedef (arg_type);
7071 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7072
7073 /* Handle packed fields. It might be that the field is not packed
7074 relative to its containing structure, but the structure itself is
7075 packed; in this case we must take the bit-field path. */
7076 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7077 {
7078 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7079 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7080
7081 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7082 offset + bit_pos / 8,
7083 bit_pos % 8, bit_size, type);
7084 }
7085 else
7086 return value_primitive_field (arg1, offset, fieldno, arg_type);
7087 }
7088
7089 /* Find field with name NAME in object of type TYPE. If found,
7090 set the following for each argument that is non-null:
7091 - *FIELD_TYPE_P to the field's type;
7092 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7093 an object of that type;
7094 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7095 - *BIT_SIZE_P to its size in bits if the field is packed, and
7096 0 otherwise;
7097 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7098 fields up to but not including the desired field, or by the total
7099 number of fields if not found. A NULL value of NAME never
7100 matches; the function just counts visible fields in this case.
7101
7102 Notice that we need to handle when a tagged record hierarchy
7103 has some components with the same name, like in this scenario:
7104
7105 type Top_T is tagged record
7106 N : Integer := 1;
7107 U : Integer := 974;
7108 A : Integer := 48;
7109 end record;
7110
7111 type Middle_T is new Top.Top_T with record
7112 N : Character := 'a';
7113 C : Integer := 3;
7114 end record;
7115
7116 type Bottom_T is new Middle.Middle_T with record
7117 N : Float := 4.0;
7118 C : Character := '5';
7119 X : Integer := 6;
7120 A : Character := 'J';
7121 end record;
7122
7123 Let's say we now have a variable declared and initialized as follow:
7124
7125 TC : Top_A := new Bottom_T;
7126
7127 And then we use this variable to call this function
7128
7129 procedure Assign (Obj: in out Top_T; TV : Integer);
7130
7131 as follow:
7132
7133 Assign (Top_T (B), 12);
7134
7135 Now, we're in the debugger, and we're inside that procedure
7136 then and we want to print the value of obj.c:
7137
7138 Usually, the tagged record or one of the parent type owns the
7139 component to print and there's no issue but in this particular
7140 case, what does it mean to ask for Obj.C? Since the actual
7141 type for object is type Bottom_T, it could mean two things: type
7142 component C from the Middle_T view, but also component C from
7143 Bottom_T. So in that "undefined" case, when the component is
7144 not found in the non-resolved type (which includes all the
7145 components of the parent type), then resolve it and see if we
7146 get better luck once expanded.
7147
7148 In the case of homonyms in the derived tagged type, we don't
7149 guaranty anything, and pick the one that's easiest for us
7150 to program.
7151
7152 Returns 1 if found, 0 otherwise. */
7153
7154 static int
7155 find_struct_field (const char *name, struct type *type, int offset,
7156 struct type **field_type_p,
7157 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7158 int *index_p)
7159 {
7160 int i;
7161 int parent_offset = -1;
7162
7163 type = ada_check_typedef (type);
7164
7165 if (field_type_p != NULL)
7166 *field_type_p = NULL;
7167 if (byte_offset_p != NULL)
7168 *byte_offset_p = 0;
7169 if (bit_offset_p != NULL)
7170 *bit_offset_p = 0;
7171 if (bit_size_p != NULL)
7172 *bit_size_p = 0;
7173
7174 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7175 {
7176 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7177 int fld_offset = offset + bit_pos / 8;
7178 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7179
7180 if (t_field_name == NULL)
7181 continue;
7182
7183 else if (ada_is_parent_field (type, i))
7184 {
7185 /* This is a field pointing us to the parent type of a tagged
7186 type. As hinted in this function's documentation, we give
7187 preference to fields in the current record first, so what
7188 we do here is just record the index of this field before
7189 we skip it. If it turns out we couldn't find our field
7190 in the current record, then we'll get back to it and search
7191 inside it whether the field might exist in the parent. */
7192
7193 parent_offset = i;
7194 continue;
7195 }
7196
7197 else if (name != NULL && field_name_match (t_field_name, name))
7198 {
7199 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7200
7201 if (field_type_p != NULL)
7202 *field_type_p = TYPE_FIELD_TYPE (type, i);
7203 if (byte_offset_p != NULL)
7204 *byte_offset_p = fld_offset;
7205 if (bit_offset_p != NULL)
7206 *bit_offset_p = bit_pos % 8;
7207 if (bit_size_p != NULL)
7208 *bit_size_p = bit_size;
7209 return 1;
7210 }
7211 else if (ada_is_wrapper_field (type, i))
7212 {
7213 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7214 field_type_p, byte_offset_p, bit_offset_p,
7215 bit_size_p, index_p))
7216 return 1;
7217 }
7218 else if (ada_is_variant_part (type, i))
7219 {
7220 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7221 fixed type?? */
7222 int j;
7223 struct type *field_type
7224 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7225
7226 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7227 {
7228 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7229 fld_offset
7230 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7231 field_type_p, byte_offset_p,
7232 bit_offset_p, bit_size_p, index_p))
7233 return 1;
7234 }
7235 }
7236 else if (index_p != NULL)
7237 *index_p += 1;
7238 }
7239
7240 /* Field not found so far. If this is a tagged type which
7241 has a parent, try finding that field in the parent now. */
7242
7243 if (parent_offset != -1)
7244 {
7245 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7246 int fld_offset = offset + bit_pos / 8;
7247
7248 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7249 fld_offset, field_type_p, byte_offset_p,
7250 bit_offset_p, bit_size_p, index_p))
7251 return 1;
7252 }
7253
7254 return 0;
7255 }
7256
7257 /* Number of user-visible fields in record type TYPE. */
7258
7259 static int
7260 num_visible_fields (struct type *type)
7261 {
7262 int n;
7263
7264 n = 0;
7265 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7266 return n;
7267 }
7268
7269 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7270 and search in it assuming it has (class) type TYPE.
7271 If found, return value, else return NULL.
7272
7273 Searches recursively through wrapper fields (e.g., '_parent').
7274
7275 In the case of homonyms in the tagged types, please refer to the
7276 long explanation in find_struct_field's function documentation. */
7277
7278 static struct value *
7279 ada_search_struct_field (const char *name, struct value *arg, int offset,
7280 struct type *type)
7281 {
7282 int i;
7283 int parent_offset = -1;
7284
7285 type = ada_check_typedef (type);
7286 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7287 {
7288 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7289
7290 if (t_field_name == NULL)
7291 continue;
7292
7293 else if (ada_is_parent_field (type, i))
7294 {
7295 /* This is a field pointing us to the parent type of a tagged
7296 type. As hinted in this function's documentation, we give
7297 preference to fields in the current record first, so what
7298 we do here is just record the index of this field before
7299 we skip it. If it turns out we couldn't find our field
7300 in the current record, then we'll get back to it and search
7301 inside it whether the field might exist in the parent. */
7302
7303 parent_offset = i;
7304 continue;
7305 }
7306
7307 else if (field_name_match (t_field_name, name))
7308 return ada_value_primitive_field (arg, offset, i, type);
7309
7310 else if (ada_is_wrapper_field (type, i))
7311 {
7312 struct value *v = /* Do not let indent join lines here. */
7313 ada_search_struct_field (name, arg,
7314 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7315 TYPE_FIELD_TYPE (type, i));
7316
7317 if (v != NULL)
7318 return v;
7319 }
7320
7321 else if (ada_is_variant_part (type, i))
7322 {
7323 /* PNH: Do we ever get here? See find_struct_field. */
7324 int j;
7325 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7326 i));
7327 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7328
7329 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7330 {
7331 struct value *v = ada_search_struct_field /* Force line
7332 break. */
7333 (name, arg,
7334 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 TYPE_FIELD_TYPE (field_type, j));
7336
7337 if (v != NULL)
7338 return v;
7339 }
7340 }
7341 }
7342
7343 /* Field not found so far. If this is a tagged type which
7344 has a parent, try finding that field in the parent now. */
7345
7346 if (parent_offset != -1)
7347 {
7348 struct value *v = ada_search_struct_field (
7349 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7350 TYPE_FIELD_TYPE (type, parent_offset));
7351
7352 if (v != NULL)
7353 return v;
7354 }
7355
7356 return NULL;
7357 }
7358
7359 static struct value *ada_index_struct_field_1 (int *, struct value *,
7360 int, struct type *);
7361
7362
7363 /* Return field #INDEX in ARG, where the index is that returned by
7364 * find_struct_field through its INDEX_P argument. Adjust the address
7365 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7366 * If found, return value, else return NULL. */
7367
7368 static struct value *
7369 ada_index_struct_field (int index, struct value *arg, int offset,
7370 struct type *type)
7371 {
7372 return ada_index_struct_field_1 (&index, arg, offset, type);
7373 }
7374
7375
7376 /* Auxiliary function for ada_index_struct_field. Like
7377 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7378 * *INDEX_P. */
7379
7380 static struct value *
7381 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7382 struct type *type)
7383 {
7384 int i;
7385 type = ada_check_typedef (type);
7386
7387 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7388 {
7389 if (TYPE_FIELD_NAME (type, i) == NULL)
7390 continue;
7391 else if (ada_is_wrapper_field (type, i))
7392 {
7393 struct value *v = /* Do not let indent join lines here. */
7394 ada_index_struct_field_1 (index_p, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
7397
7398 if (v != NULL)
7399 return v;
7400 }
7401
7402 else if (ada_is_variant_part (type, i))
7403 {
7404 /* PNH: Do we ever get here? See ada_search_struct_field,
7405 find_struct_field. */
7406 error (_("Cannot assign this kind of variant record"));
7407 }
7408 else if (*index_p == 0)
7409 return ada_value_primitive_field (arg, offset, i, type);
7410 else
7411 *index_p -= 1;
7412 }
7413 return NULL;
7414 }
7415
7416 /* Given ARG, a value of type (pointer or reference to a)*
7417 structure/union, extract the component named NAME from the ultimate
7418 target structure/union and return it as a value with its
7419 appropriate type.
7420
7421 The routine searches for NAME among all members of the structure itself
7422 and (recursively) among all members of any wrapper members
7423 (e.g., '_parent').
7424
7425 If NO_ERR, then simply return NULL in case of error, rather than
7426 calling error. */
7427
7428 struct value *
7429 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7430 {
7431 struct type *t, *t1;
7432 struct value *v;
7433 int check_tag;
7434
7435 v = NULL;
7436 t1 = t = ada_check_typedef (value_type (arg));
7437 if (TYPE_CODE (t) == TYPE_CODE_REF)
7438 {
7439 t1 = TYPE_TARGET_TYPE (t);
7440 if (t1 == NULL)
7441 goto BadValue;
7442 t1 = ada_check_typedef (t1);
7443 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7444 {
7445 arg = coerce_ref (arg);
7446 t = t1;
7447 }
7448 }
7449
7450 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7451 {
7452 t1 = TYPE_TARGET_TYPE (t);
7453 if (t1 == NULL)
7454 goto BadValue;
7455 t1 = ada_check_typedef (t1);
7456 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7457 {
7458 arg = value_ind (arg);
7459 t = t1;
7460 }
7461 else
7462 break;
7463 }
7464
7465 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7466 goto BadValue;
7467
7468 if (t1 == t)
7469 v = ada_search_struct_field (name, arg, 0, t);
7470 else
7471 {
7472 int bit_offset, bit_size, byte_offset;
7473 struct type *field_type;
7474 CORE_ADDR address;
7475
7476 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7477 address = value_address (ada_value_ind (arg));
7478 else
7479 address = value_address (ada_coerce_ref (arg));
7480
7481 /* Check to see if this is a tagged type. We also need to handle
7482 the case where the type is a reference to a tagged type, but
7483 we have to be careful to exclude pointers to tagged types.
7484 The latter should be shown as usual (as a pointer), whereas
7485 a reference should mostly be transparent to the user. */
7486
7487 if (ada_is_tagged_type (t1, 0)
7488 || (TYPE_CODE (t1) == TYPE_CODE_REF
7489 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7490 {
7491 /* We first try to find the searched field in the current type.
7492 If not found then let's look in the fixed type. */
7493
7494 if (!find_struct_field (name, t1, 0,
7495 &field_type, &byte_offset, &bit_offset,
7496 &bit_size, NULL))
7497 check_tag = 1;
7498 else
7499 check_tag = 0;
7500 }
7501 else
7502 check_tag = 0;
7503
7504 /* Convert to fixed type in all cases, so that we have proper
7505 offsets to each field in unconstrained record types. */
7506 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7507 address, NULL, check_tag);
7508
7509 if (find_struct_field (name, t1, 0,
7510 &field_type, &byte_offset, &bit_offset,
7511 &bit_size, NULL))
7512 {
7513 if (bit_size != 0)
7514 {
7515 if (TYPE_CODE (t) == TYPE_CODE_REF)
7516 arg = ada_coerce_ref (arg);
7517 else
7518 arg = ada_value_ind (arg);
7519 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7520 bit_offset, bit_size,
7521 field_type);
7522 }
7523 else
7524 v = value_at_lazy (field_type, address + byte_offset);
7525 }
7526 }
7527
7528 if (v != NULL || no_err)
7529 return v;
7530 else
7531 error (_("There is no member named %s."), name);
7532
7533 BadValue:
7534 if (no_err)
7535 return NULL;
7536 else
7537 error (_("Attempt to extract a component of "
7538 "a value that is not a record."));
7539 }
7540
7541 /* Return a string representation of type TYPE. */
7542
7543 static std::string
7544 type_as_string (struct type *type)
7545 {
7546 string_file tmp_stream;
7547
7548 type_print (type, "", &tmp_stream, -1);
7549
7550 return std::move (tmp_stream.string ());
7551 }
7552
7553 /* Given a type TYPE, look up the type of the component of type named NAME.
7554 If DISPP is non-null, add its byte displacement from the beginning of a
7555 structure (pointed to by a value) of type TYPE to *DISPP (does not
7556 work for packed fields).
7557
7558 Matches any field whose name has NAME as a prefix, possibly
7559 followed by "___".
7560
7561 TYPE can be either a struct or union. If REFOK, TYPE may also
7562 be a (pointer or reference)+ to a struct or union, and the
7563 ultimate target type will be searched.
7564
7565 Looks recursively into variant clauses and parent types.
7566
7567 In the case of homonyms in the tagged types, please refer to the
7568 long explanation in find_struct_field's function documentation.
7569
7570 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7571 TYPE is not a type of the right kind. */
7572
7573 static struct type *
7574 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7575 int noerr)
7576 {
7577 int i;
7578 int parent_offset = -1;
7579
7580 if (name == NULL)
7581 goto BadName;
7582
7583 if (refok && type != NULL)
7584 while (1)
7585 {
7586 type = ada_check_typedef (type);
7587 if (TYPE_CODE (type) != TYPE_CODE_PTR
7588 && TYPE_CODE (type) != TYPE_CODE_REF)
7589 break;
7590 type = TYPE_TARGET_TYPE (type);
7591 }
7592
7593 if (type == NULL
7594 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7595 && TYPE_CODE (type) != TYPE_CODE_UNION))
7596 {
7597 if (noerr)
7598 return NULL;
7599
7600 error (_("Type %s is not a structure or union type"),
7601 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7602 }
7603
7604 type = to_static_fixed_type (type);
7605
7606 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7607 {
7608 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7609 struct type *t;
7610
7611 if (t_field_name == NULL)
7612 continue;
7613
7614 else if (ada_is_parent_field (type, i))
7615 {
7616 /* This is a field pointing us to the parent type of a tagged
7617 type. As hinted in this function's documentation, we give
7618 preference to fields in the current record first, so what
7619 we do here is just record the index of this field before
7620 we skip it. If it turns out we couldn't find our field
7621 in the current record, then we'll get back to it and search
7622 inside it whether the field might exist in the parent. */
7623
7624 parent_offset = i;
7625 continue;
7626 }
7627
7628 else if (field_name_match (t_field_name, name))
7629 return TYPE_FIELD_TYPE (type, i);
7630
7631 else if (ada_is_wrapper_field (type, i))
7632 {
7633 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7634 0, 1);
7635 if (t != NULL)
7636 return t;
7637 }
7638
7639 else if (ada_is_variant_part (type, i))
7640 {
7641 int j;
7642 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7643 i));
7644
7645 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7646 {
7647 /* FIXME pnh 2008/01/26: We check for a field that is
7648 NOT wrapped in a struct, since the compiler sometimes
7649 generates these for unchecked variant types. Revisit
7650 if the compiler changes this practice. */
7651 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7652
7653 if (v_field_name != NULL
7654 && field_name_match (v_field_name, name))
7655 t = TYPE_FIELD_TYPE (field_type, j);
7656 else
7657 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7658 j),
7659 name, 0, 1);
7660
7661 if (t != NULL)
7662 return t;
7663 }
7664 }
7665
7666 }
7667
7668 /* Field not found so far. If this is a tagged type which
7669 has a parent, try finding that field in the parent now. */
7670
7671 if (parent_offset != -1)
7672 {
7673 struct type *t;
7674
7675 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7676 name, 0, 1);
7677 if (t != NULL)
7678 return t;
7679 }
7680
7681 BadName:
7682 if (!noerr)
7683 {
7684 const char *name_str = name != NULL ? name : _("<null>");
7685
7686 error (_("Type %s has no component named %s"),
7687 type_as_string (type).c_str (), name_str);
7688 }
7689
7690 return NULL;
7691 }
7692
7693 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7694 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7695 represents an unchecked union (that is, the variant part of a
7696 record that is named in an Unchecked_Union pragma). */
7697
7698 static int
7699 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7700 {
7701 const char *discrim_name = ada_variant_discrim_name (var_type);
7702
7703 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7704 }
7705
7706
7707 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7708 within a value of type OUTER_TYPE that is stored in GDB at
7709 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7710 numbering from 0) is applicable. Returns -1 if none are. */
7711
7712 int
7713 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7714 const gdb_byte *outer_valaddr)
7715 {
7716 int others_clause;
7717 int i;
7718 const char *discrim_name = ada_variant_discrim_name (var_type);
7719 struct value *outer;
7720 struct value *discrim;
7721 LONGEST discrim_val;
7722
7723 /* Using plain value_from_contents_and_address here causes problems
7724 because we will end up trying to resolve a type that is currently
7725 being constructed. */
7726 outer = value_from_contents_and_address_unresolved (outer_type,
7727 outer_valaddr, 0);
7728 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7729 if (discrim == NULL)
7730 return -1;
7731 discrim_val = value_as_long (discrim);
7732
7733 others_clause = -1;
7734 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7735 {
7736 if (ada_is_others_clause (var_type, i))
7737 others_clause = i;
7738 else if (ada_in_variant (discrim_val, var_type, i))
7739 return i;
7740 }
7741
7742 return others_clause;
7743 }
7744 \f
7745
7746
7747 /* Dynamic-Sized Records */
7748
7749 /* Strategy: The type ostensibly attached to a value with dynamic size
7750 (i.e., a size that is not statically recorded in the debugging
7751 data) does not accurately reflect the size or layout of the value.
7752 Our strategy is to convert these values to values with accurate,
7753 conventional types that are constructed on the fly. */
7754
7755 /* There is a subtle and tricky problem here. In general, we cannot
7756 determine the size of dynamic records without its data. However,
7757 the 'struct value' data structure, which GDB uses to represent
7758 quantities in the inferior process (the target), requires the size
7759 of the type at the time of its allocation in order to reserve space
7760 for GDB's internal copy of the data. That's why the
7761 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7762 rather than struct value*s.
7763
7764 However, GDB's internal history variables ($1, $2, etc.) are
7765 struct value*s containing internal copies of the data that are not, in
7766 general, the same as the data at their corresponding addresses in
7767 the target. Fortunately, the types we give to these values are all
7768 conventional, fixed-size types (as per the strategy described
7769 above), so that we don't usually have to perform the
7770 'to_fixed_xxx_type' conversions to look at their values.
7771 Unfortunately, there is one exception: if one of the internal
7772 history variables is an array whose elements are unconstrained
7773 records, then we will need to create distinct fixed types for each
7774 element selected. */
7775
7776 /* The upshot of all of this is that many routines take a (type, host
7777 address, target address) triple as arguments to represent a value.
7778 The host address, if non-null, is supposed to contain an internal
7779 copy of the relevant data; otherwise, the program is to consult the
7780 target at the target address. */
7781
7782 /* Assuming that VAL0 represents a pointer value, the result of
7783 dereferencing it. Differs from value_ind in its treatment of
7784 dynamic-sized types. */
7785
7786 struct value *
7787 ada_value_ind (struct value *val0)
7788 {
7789 struct value *val = value_ind (val0);
7790
7791 if (ada_is_tagged_type (value_type (val), 0))
7792 val = ada_tag_value_at_base_address (val);
7793
7794 return ada_to_fixed_value (val);
7795 }
7796
7797 /* The value resulting from dereferencing any "reference to"
7798 qualifiers on VAL0. */
7799
7800 static struct value *
7801 ada_coerce_ref (struct value *val0)
7802 {
7803 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7804 {
7805 struct value *val = val0;
7806
7807 val = coerce_ref (val);
7808
7809 if (ada_is_tagged_type (value_type (val), 0))
7810 val = ada_tag_value_at_base_address (val);
7811
7812 return ada_to_fixed_value (val);
7813 }
7814 else
7815 return val0;
7816 }
7817
7818 /* Return OFF rounded upward if necessary to a multiple of
7819 ALIGNMENT (a power of 2). */
7820
7821 static unsigned int
7822 align_value (unsigned int off, unsigned int alignment)
7823 {
7824 return (off + alignment - 1) & ~(alignment - 1);
7825 }
7826
7827 /* Return the bit alignment required for field #F of template type TYPE. */
7828
7829 static unsigned int
7830 field_alignment (struct type *type, int f)
7831 {
7832 const char *name = TYPE_FIELD_NAME (type, f);
7833 int len;
7834 int align_offset;
7835
7836 /* The field name should never be null, unless the debugging information
7837 is somehow malformed. In this case, we assume the field does not
7838 require any alignment. */
7839 if (name == NULL)
7840 return 1;
7841
7842 len = strlen (name);
7843
7844 if (!isdigit (name[len - 1]))
7845 return 1;
7846
7847 if (isdigit (name[len - 2]))
7848 align_offset = len - 2;
7849 else
7850 align_offset = len - 1;
7851
7852 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7853 return TARGET_CHAR_BIT;
7854
7855 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7856 }
7857
7858 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7859
7860 static struct symbol *
7861 ada_find_any_type_symbol (const char *name)
7862 {
7863 struct symbol *sym;
7864
7865 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7866 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7867 return sym;
7868
7869 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7870 return sym;
7871 }
7872
7873 /* Find a type named NAME. Ignores ambiguity. This routine will look
7874 solely for types defined by debug info, it will not search the GDB
7875 primitive types. */
7876
7877 static struct type *
7878 ada_find_any_type (const char *name)
7879 {
7880 struct symbol *sym = ada_find_any_type_symbol (name);
7881
7882 if (sym != NULL)
7883 return SYMBOL_TYPE (sym);
7884
7885 return NULL;
7886 }
7887
7888 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7889 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7890 symbol, in which case it is returned. Otherwise, this looks for
7891 symbols whose name is that of NAME_SYM suffixed with "___XR".
7892 Return symbol if found, and NULL otherwise. */
7893
7894 static bool
7895 ada_is_renaming_symbol (struct symbol *name_sym)
7896 {
7897 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7898 return strstr (name, "___XR") != NULL;
7899 }
7900
7901 /* Because of GNAT encoding conventions, several GDB symbols may match a
7902 given type name. If the type denoted by TYPE0 is to be preferred to
7903 that of TYPE1 for purposes of type printing, return non-zero;
7904 otherwise return 0. */
7905
7906 int
7907 ada_prefer_type (struct type *type0, struct type *type1)
7908 {
7909 if (type1 == NULL)
7910 return 1;
7911 else if (type0 == NULL)
7912 return 0;
7913 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7914 return 1;
7915 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7916 return 0;
7917 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7918 return 1;
7919 else if (ada_is_constrained_packed_array_type (type0))
7920 return 1;
7921 else if (ada_is_array_descriptor_type (type0)
7922 && !ada_is_array_descriptor_type (type1))
7923 return 1;
7924 else
7925 {
7926 const char *type0_name = TYPE_NAME (type0);
7927 const char *type1_name = TYPE_NAME (type1);
7928
7929 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7930 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7931 return 1;
7932 }
7933 return 0;
7934 }
7935
7936 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7937 null. */
7938
7939 const char *
7940 ada_type_name (struct type *type)
7941 {
7942 if (type == NULL)
7943 return NULL;
7944 return TYPE_NAME (type);
7945 }
7946
7947 /* Search the list of "descriptive" types associated to TYPE for a type
7948 whose name is NAME. */
7949
7950 static struct type *
7951 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7952 {
7953 struct type *result, *tmp;
7954
7955 if (ada_ignore_descriptive_types_p)
7956 return NULL;
7957
7958 /* If there no descriptive-type info, then there is no parallel type
7959 to be found. */
7960 if (!HAVE_GNAT_AUX_INFO (type))
7961 return NULL;
7962
7963 result = TYPE_DESCRIPTIVE_TYPE (type);
7964 while (result != NULL)
7965 {
7966 const char *result_name = ada_type_name (result);
7967
7968 if (result_name == NULL)
7969 {
7970 warning (_("unexpected null name on descriptive type"));
7971 return NULL;
7972 }
7973
7974 /* If the names match, stop. */
7975 if (strcmp (result_name, name) == 0)
7976 break;
7977
7978 /* Otherwise, look at the next item on the list, if any. */
7979 if (HAVE_GNAT_AUX_INFO (result))
7980 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7981 else
7982 tmp = NULL;
7983
7984 /* If not found either, try after having resolved the typedef. */
7985 if (tmp != NULL)
7986 result = tmp;
7987 else
7988 {
7989 result = check_typedef (result);
7990 if (HAVE_GNAT_AUX_INFO (result))
7991 result = TYPE_DESCRIPTIVE_TYPE (result);
7992 else
7993 result = NULL;
7994 }
7995 }
7996
7997 /* If we didn't find a match, see whether this is a packed array. With
7998 older compilers, the descriptive type information is either absent or
7999 irrelevant when it comes to packed arrays so the above lookup fails.
8000 Fall back to using a parallel lookup by name in this case. */
8001 if (result == NULL && ada_is_constrained_packed_array_type (type))
8002 return ada_find_any_type (name);
8003
8004 return result;
8005 }
8006
8007 /* Find a parallel type to TYPE with the specified NAME, using the
8008 descriptive type taken from the debugging information, if available,
8009 and otherwise using the (slower) name-based method. */
8010
8011 static struct type *
8012 ada_find_parallel_type_with_name (struct type *type, const char *name)
8013 {
8014 struct type *result = NULL;
8015
8016 if (HAVE_GNAT_AUX_INFO (type))
8017 result = find_parallel_type_by_descriptive_type (type, name);
8018 else
8019 result = ada_find_any_type (name);
8020
8021 return result;
8022 }
8023
8024 /* Same as above, but specify the name of the parallel type by appending
8025 SUFFIX to the name of TYPE. */
8026
8027 struct type *
8028 ada_find_parallel_type (struct type *type, const char *suffix)
8029 {
8030 char *name;
8031 const char *type_name = ada_type_name (type);
8032 int len;
8033
8034 if (type_name == NULL)
8035 return NULL;
8036
8037 len = strlen (type_name);
8038
8039 name = (char *) alloca (len + strlen (suffix) + 1);
8040
8041 strcpy (name, type_name);
8042 strcpy (name + len, suffix);
8043
8044 return ada_find_parallel_type_with_name (type, name);
8045 }
8046
8047 /* If TYPE is a variable-size record type, return the corresponding template
8048 type describing its fields. Otherwise, return NULL. */
8049
8050 static struct type *
8051 dynamic_template_type (struct type *type)
8052 {
8053 type = ada_check_typedef (type);
8054
8055 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8056 || ada_type_name (type) == NULL)
8057 return NULL;
8058 else
8059 {
8060 int len = strlen (ada_type_name (type));
8061
8062 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8063 return type;
8064 else
8065 return ada_find_parallel_type (type, "___XVE");
8066 }
8067 }
8068
8069 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8070 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8071
8072 static int
8073 is_dynamic_field (struct type *templ_type, int field_num)
8074 {
8075 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8076
8077 return name != NULL
8078 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8079 && strstr (name, "___XVL") != NULL;
8080 }
8081
8082 /* The index of the variant field of TYPE, or -1 if TYPE does not
8083 represent a variant record type. */
8084
8085 static int
8086 variant_field_index (struct type *type)
8087 {
8088 int f;
8089
8090 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8091 return -1;
8092
8093 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8094 {
8095 if (ada_is_variant_part (type, f))
8096 return f;
8097 }
8098 return -1;
8099 }
8100
8101 /* A record type with no fields. */
8102
8103 static struct type *
8104 empty_record (struct type *templ)
8105 {
8106 struct type *type = alloc_type_copy (templ);
8107
8108 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8109 TYPE_NFIELDS (type) = 0;
8110 TYPE_FIELDS (type) = NULL;
8111 INIT_NONE_SPECIFIC (type);
8112 TYPE_NAME (type) = "<empty>";
8113 TYPE_LENGTH (type) = 0;
8114 return type;
8115 }
8116
8117 /* An ordinary record type (with fixed-length fields) that describes
8118 the value of type TYPE at VALADDR or ADDRESS (see comments at
8119 the beginning of this section) VAL according to GNAT conventions.
8120 DVAL0 should describe the (portion of a) record that contains any
8121 necessary discriminants. It should be NULL if value_type (VAL) is
8122 an outer-level type (i.e., as opposed to a branch of a variant.) A
8123 variant field (unless unchecked) is replaced by a particular branch
8124 of the variant.
8125
8126 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8127 length are not statically known are discarded. As a consequence,
8128 VALADDR, ADDRESS and DVAL0 are ignored.
8129
8130 NOTE: Limitations: For now, we assume that dynamic fields and
8131 variants occupy whole numbers of bytes. However, they need not be
8132 byte-aligned. */
8133
8134 struct type *
8135 ada_template_to_fixed_record_type_1 (struct type *type,
8136 const gdb_byte *valaddr,
8137 CORE_ADDR address, struct value *dval0,
8138 int keep_dynamic_fields)
8139 {
8140 struct value *mark = value_mark ();
8141 struct value *dval;
8142 struct type *rtype;
8143 int nfields, bit_len;
8144 int variant_field;
8145 long off;
8146 int fld_bit_len;
8147 int f;
8148
8149 /* Compute the number of fields in this record type that are going
8150 to be processed: unless keep_dynamic_fields, this includes only
8151 fields whose position and length are static will be processed. */
8152 if (keep_dynamic_fields)
8153 nfields = TYPE_NFIELDS (type);
8154 else
8155 {
8156 nfields = 0;
8157 while (nfields < TYPE_NFIELDS (type)
8158 && !ada_is_variant_part (type, nfields)
8159 && !is_dynamic_field (type, nfields))
8160 nfields++;
8161 }
8162
8163 rtype = alloc_type_copy (type);
8164 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8165 INIT_NONE_SPECIFIC (rtype);
8166 TYPE_NFIELDS (rtype) = nfields;
8167 TYPE_FIELDS (rtype) = (struct field *)
8168 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8169 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8170 TYPE_NAME (rtype) = ada_type_name (type);
8171 TYPE_FIXED_INSTANCE (rtype) = 1;
8172
8173 off = 0;
8174 bit_len = 0;
8175 variant_field = -1;
8176
8177 for (f = 0; f < nfields; f += 1)
8178 {
8179 off = align_value (off, field_alignment (type, f))
8180 + TYPE_FIELD_BITPOS (type, f);
8181 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8182 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8183
8184 if (ada_is_variant_part (type, f))
8185 {
8186 variant_field = f;
8187 fld_bit_len = 0;
8188 }
8189 else if (is_dynamic_field (type, f))
8190 {
8191 const gdb_byte *field_valaddr = valaddr;
8192 CORE_ADDR field_address = address;
8193 struct type *field_type =
8194 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8195
8196 if (dval0 == NULL)
8197 {
8198 /* rtype's length is computed based on the run-time
8199 value of discriminants. If the discriminants are not
8200 initialized, the type size may be completely bogus and
8201 GDB may fail to allocate a value for it. So check the
8202 size first before creating the value. */
8203 ada_ensure_varsize_limit (rtype);
8204 /* Using plain value_from_contents_and_address here
8205 causes problems because we will end up trying to
8206 resolve a type that is currently being
8207 constructed. */
8208 dval = value_from_contents_and_address_unresolved (rtype,
8209 valaddr,
8210 address);
8211 rtype = value_type (dval);
8212 }
8213 else
8214 dval = dval0;
8215
8216 /* If the type referenced by this field is an aligner type, we need
8217 to unwrap that aligner type, because its size might not be set.
8218 Keeping the aligner type would cause us to compute the wrong
8219 size for this field, impacting the offset of the all the fields
8220 that follow this one. */
8221 if (ada_is_aligner_type (field_type))
8222 {
8223 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8224
8225 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8226 field_address = cond_offset_target (field_address, field_offset);
8227 field_type = ada_aligned_type (field_type);
8228 }
8229
8230 field_valaddr = cond_offset_host (field_valaddr,
8231 off / TARGET_CHAR_BIT);
8232 field_address = cond_offset_target (field_address,
8233 off / TARGET_CHAR_BIT);
8234
8235 /* Get the fixed type of the field. Note that, in this case,
8236 we do not want to get the real type out of the tag: if
8237 the current field is the parent part of a tagged record,
8238 we will get the tag of the object. Clearly wrong: the real
8239 type of the parent is not the real type of the child. We
8240 would end up in an infinite loop. */
8241 field_type = ada_get_base_type (field_type);
8242 field_type = ada_to_fixed_type (field_type, field_valaddr,
8243 field_address, dval, 0);
8244 /* If the field size is already larger than the maximum
8245 object size, then the record itself will necessarily
8246 be larger than the maximum object size. We need to make
8247 this check now, because the size might be so ridiculously
8248 large (due to an uninitialized variable in the inferior)
8249 that it would cause an overflow when adding it to the
8250 record size. */
8251 ada_ensure_varsize_limit (field_type);
8252
8253 TYPE_FIELD_TYPE (rtype, f) = field_type;
8254 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8255 /* The multiplication can potentially overflow. But because
8256 the field length has been size-checked just above, and
8257 assuming that the maximum size is a reasonable value,
8258 an overflow should not happen in practice. So rather than
8259 adding overflow recovery code to this already complex code,
8260 we just assume that it's not going to happen. */
8261 fld_bit_len =
8262 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8263 }
8264 else
8265 {
8266 /* Note: If this field's type is a typedef, it is important
8267 to preserve the typedef layer.
8268
8269 Otherwise, we might be transforming a typedef to a fat
8270 pointer (encoding a pointer to an unconstrained array),
8271 into a basic fat pointer (encoding an unconstrained
8272 array). As both types are implemented using the same
8273 structure, the typedef is the only clue which allows us
8274 to distinguish between the two options. Stripping it
8275 would prevent us from printing this field appropriately. */
8276 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8277 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8278 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8279 fld_bit_len =
8280 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8281 else
8282 {
8283 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8284
8285 /* We need to be careful of typedefs when computing
8286 the length of our field. If this is a typedef,
8287 get the length of the target type, not the length
8288 of the typedef. */
8289 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8290 field_type = ada_typedef_target_type (field_type);
8291
8292 fld_bit_len =
8293 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8294 }
8295 }
8296 if (off + fld_bit_len > bit_len)
8297 bit_len = off + fld_bit_len;
8298 off += fld_bit_len;
8299 TYPE_LENGTH (rtype) =
8300 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8301 }
8302
8303 /* We handle the variant part, if any, at the end because of certain
8304 odd cases in which it is re-ordered so as NOT to be the last field of
8305 the record. This can happen in the presence of representation
8306 clauses. */
8307 if (variant_field >= 0)
8308 {
8309 struct type *branch_type;
8310
8311 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8312
8313 if (dval0 == NULL)
8314 {
8315 /* Using plain value_from_contents_and_address here causes
8316 problems because we will end up trying to resolve a type
8317 that is currently being constructed. */
8318 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8319 address);
8320 rtype = value_type (dval);
8321 }
8322 else
8323 dval = dval0;
8324
8325 branch_type =
8326 to_fixed_variant_branch_type
8327 (TYPE_FIELD_TYPE (type, variant_field),
8328 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8329 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8330 if (branch_type == NULL)
8331 {
8332 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8333 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8334 TYPE_NFIELDS (rtype) -= 1;
8335 }
8336 else
8337 {
8338 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8339 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8340 fld_bit_len =
8341 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8342 TARGET_CHAR_BIT;
8343 if (off + fld_bit_len > bit_len)
8344 bit_len = off + fld_bit_len;
8345 TYPE_LENGTH (rtype) =
8346 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8347 }
8348 }
8349
8350 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8351 should contain the alignment of that record, which should be a strictly
8352 positive value. If null or negative, then something is wrong, most
8353 probably in the debug info. In that case, we don't round up the size
8354 of the resulting type. If this record is not part of another structure,
8355 the current RTYPE length might be good enough for our purposes. */
8356 if (TYPE_LENGTH (type) <= 0)
8357 {
8358 if (TYPE_NAME (rtype))
8359 warning (_("Invalid type size for `%s' detected: %s."),
8360 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8361 else
8362 warning (_("Invalid type size for <unnamed> detected: %s."),
8363 pulongest (TYPE_LENGTH (type)));
8364 }
8365 else
8366 {
8367 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8368 TYPE_LENGTH (type));
8369 }
8370
8371 value_free_to_mark (mark);
8372 if (TYPE_LENGTH (rtype) > varsize_limit)
8373 error (_("record type with dynamic size is larger than varsize-limit"));
8374 return rtype;
8375 }
8376
8377 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8378 of 1. */
8379
8380 static struct type *
8381 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8382 CORE_ADDR address, struct value *dval0)
8383 {
8384 return ada_template_to_fixed_record_type_1 (type, valaddr,
8385 address, dval0, 1);
8386 }
8387
8388 /* An ordinary record type in which ___XVL-convention fields and
8389 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8390 static approximations, containing all possible fields. Uses
8391 no runtime values. Useless for use in values, but that's OK,
8392 since the results are used only for type determinations. Works on both
8393 structs and unions. Representation note: to save space, we memorize
8394 the result of this function in the TYPE_TARGET_TYPE of the
8395 template type. */
8396
8397 static struct type *
8398 template_to_static_fixed_type (struct type *type0)
8399 {
8400 struct type *type;
8401 int nfields;
8402 int f;
8403
8404 /* No need no do anything if the input type is already fixed. */
8405 if (TYPE_FIXED_INSTANCE (type0))
8406 return type0;
8407
8408 /* Likewise if we already have computed the static approximation. */
8409 if (TYPE_TARGET_TYPE (type0) != NULL)
8410 return TYPE_TARGET_TYPE (type0);
8411
8412 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8413 type = type0;
8414 nfields = TYPE_NFIELDS (type0);
8415
8416 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8417 recompute all over next time. */
8418 TYPE_TARGET_TYPE (type0) = type;
8419
8420 for (f = 0; f < nfields; f += 1)
8421 {
8422 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8423 struct type *new_type;
8424
8425 if (is_dynamic_field (type0, f))
8426 {
8427 field_type = ada_check_typedef (field_type);
8428 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8429 }
8430 else
8431 new_type = static_unwrap_type (field_type);
8432
8433 if (new_type != field_type)
8434 {
8435 /* Clone TYPE0 only the first time we get a new field type. */
8436 if (type == type0)
8437 {
8438 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8439 TYPE_CODE (type) = TYPE_CODE (type0);
8440 INIT_NONE_SPECIFIC (type);
8441 TYPE_NFIELDS (type) = nfields;
8442 TYPE_FIELDS (type) = (struct field *)
8443 TYPE_ALLOC (type, nfields * sizeof (struct field));
8444 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8445 sizeof (struct field) * nfields);
8446 TYPE_NAME (type) = ada_type_name (type0);
8447 TYPE_FIXED_INSTANCE (type) = 1;
8448 TYPE_LENGTH (type) = 0;
8449 }
8450 TYPE_FIELD_TYPE (type, f) = new_type;
8451 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8452 }
8453 }
8454
8455 return type;
8456 }
8457
8458 /* Given an object of type TYPE whose contents are at VALADDR and
8459 whose address in memory is ADDRESS, returns a revision of TYPE,
8460 which should be a non-dynamic-sized record, in which the variant
8461 part, if any, is replaced with the appropriate branch. Looks
8462 for discriminant values in DVAL0, which can be NULL if the record
8463 contains the necessary discriminant values. */
8464
8465 static struct type *
8466 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8467 CORE_ADDR address, struct value *dval0)
8468 {
8469 struct value *mark = value_mark ();
8470 struct value *dval;
8471 struct type *rtype;
8472 struct type *branch_type;
8473 int nfields = TYPE_NFIELDS (type);
8474 int variant_field = variant_field_index (type);
8475
8476 if (variant_field == -1)
8477 return type;
8478
8479 if (dval0 == NULL)
8480 {
8481 dval = value_from_contents_and_address (type, valaddr, address);
8482 type = value_type (dval);
8483 }
8484 else
8485 dval = dval0;
8486
8487 rtype = alloc_type_copy (type);
8488 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8489 INIT_NONE_SPECIFIC (rtype);
8490 TYPE_NFIELDS (rtype) = nfields;
8491 TYPE_FIELDS (rtype) =
8492 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8493 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8494 sizeof (struct field) * nfields);
8495 TYPE_NAME (rtype) = ada_type_name (type);
8496 TYPE_FIXED_INSTANCE (rtype) = 1;
8497 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8498
8499 branch_type = to_fixed_variant_branch_type
8500 (TYPE_FIELD_TYPE (type, variant_field),
8501 cond_offset_host (valaddr,
8502 TYPE_FIELD_BITPOS (type, variant_field)
8503 / TARGET_CHAR_BIT),
8504 cond_offset_target (address,
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT), dval);
8507 if (branch_type == NULL)
8508 {
8509 int f;
8510
8511 for (f = variant_field + 1; f < nfields; f += 1)
8512 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8513 TYPE_NFIELDS (rtype) -= 1;
8514 }
8515 else
8516 {
8517 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8518 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8519 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8520 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8521 }
8522 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8523
8524 value_free_to_mark (mark);
8525 return rtype;
8526 }
8527
8528 /* An ordinary record type (with fixed-length fields) that describes
8529 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8530 beginning of this section]. Any necessary discriminants' values
8531 should be in DVAL, a record value; it may be NULL if the object
8532 at ADDR itself contains any necessary discriminant values.
8533 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8534 values from the record are needed. Except in the case that DVAL,
8535 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8536 unchecked) is replaced by a particular branch of the variant.
8537
8538 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8539 is questionable and may be removed. It can arise during the
8540 processing of an unconstrained-array-of-record type where all the
8541 variant branches have exactly the same size. This is because in
8542 such cases, the compiler does not bother to use the XVS convention
8543 when encoding the record. I am currently dubious of this
8544 shortcut and suspect the compiler should be altered. FIXME. */
8545
8546 static struct type *
8547 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8548 CORE_ADDR address, struct value *dval)
8549 {
8550 struct type *templ_type;
8551
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 templ_type = dynamic_template_type (type0);
8556
8557 if (templ_type != NULL)
8558 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8559 else if (variant_field_index (type0) >= 0)
8560 {
8561 if (dval == NULL && valaddr == NULL && address == 0)
8562 return type0;
8563 return to_record_with_fixed_variant_part (type0, valaddr, address,
8564 dval);
8565 }
8566 else
8567 {
8568 TYPE_FIXED_INSTANCE (type0) = 1;
8569 return type0;
8570 }
8571
8572 }
8573
8574 /* An ordinary record type (with fixed-length fields) that describes
8575 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8576 union type. Any necessary discriminants' values should be in DVAL,
8577 a record value. That is, this routine selects the appropriate
8578 branch of the union at ADDR according to the discriminant value
8579 indicated in the union's type name. Returns VAR_TYPE0 itself if
8580 it represents a variant subject to a pragma Unchecked_Union. */
8581
8582 static struct type *
8583 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8584 CORE_ADDR address, struct value *dval)
8585 {
8586 int which;
8587 struct type *templ_type;
8588 struct type *var_type;
8589
8590 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8591 var_type = TYPE_TARGET_TYPE (var_type0);
8592 else
8593 var_type = var_type0;
8594
8595 templ_type = ada_find_parallel_type (var_type, "___XVU");
8596
8597 if (templ_type != NULL)
8598 var_type = templ_type;
8599
8600 if (is_unchecked_variant (var_type, value_type (dval)))
8601 return var_type0;
8602 which =
8603 ada_which_variant_applies (var_type,
8604 value_type (dval), value_contents (dval));
8605
8606 if (which < 0)
8607 return empty_record (var_type);
8608 else if (is_dynamic_field (var_type, which))
8609 return to_fixed_record_type
8610 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8611 valaddr, address, dval);
8612 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8613 return
8614 to_fixed_record_type
8615 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8616 else
8617 return TYPE_FIELD_TYPE (var_type, which);
8618 }
8619
8620 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8621 ENCODING_TYPE, a type following the GNAT conventions for discrete
8622 type encodings, only carries redundant information. */
8623
8624 static int
8625 ada_is_redundant_range_encoding (struct type *range_type,
8626 struct type *encoding_type)
8627 {
8628 const char *bounds_str;
8629 int n;
8630 LONGEST lo, hi;
8631
8632 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8633
8634 if (TYPE_CODE (get_base_type (range_type))
8635 != TYPE_CODE (get_base_type (encoding_type)))
8636 {
8637 /* The compiler probably used a simple base type to describe
8638 the range type instead of the range's actual base type,
8639 expecting us to get the real base type from the encoding
8640 anyway. In this situation, the encoding cannot be ignored
8641 as redundant. */
8642 return 0;
8643 }
8644
8645 if (is_dynamic_type (range_type))
8646 return 0;
8647
8648 if (TYPE_NAME (encoding_type) == NULL)
8649 return 0;
8650
8651 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8652 if (bounds_str == NULL)
8653 return 0;
8654
8655 n = 8; /* Skip "___XDLU_". */
8656 if (!ada_scan_number (bounds_str, n, &lo, &n))
8657 return 0;
8658 if (TYPE_LOW_BOUND (range_type) != lo)
8659 return 0;
8660
8661 n += 2; /* Skip the "__" separator between the two bounds. */
8662 if (!ada_scan_number (bounds_str, n, &hi, &n))
8663 return 0;
8664 if (TYPE_HIGH_BOUND (range_type) != hi)
8665 return 0;
8666
8667 return 1;
8668 }
8669
8670 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8671 a type following the GNAT encoding for describing array type
8672 indices, only carries redundant information. */
8673
8674 static int
8675 ada_is_redundant_index_type_desc (struct type *array_type,
8676 struct type *desc_type)
8677 {
8678 struct type *this_layer = check_typedef (array_type);
8679 int i;
8680
8681 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8682 {
8683 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8684 TYPE_FIELD_TYPE (desc_type, i)))
8685 return 0;
8686 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8687 }
8688
8689 return 1;
8690 }
8691
8692 /* Assuming that TYPE0 is an array type describing the type of a value
8693 at ADDR, and that DVAL describes a record containing any
8694 discriminants used in TYPE0, returns a type for the value that
8695 contains no dynamic components (that is, no components whose sizes
8696 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8697 true, gives an error message if the resulting type's size is over
8698 varsize_limit. */
8699
8700 static struct type *
8701 to_fixed_array_type (struct type *type0, struct value *dval,
8702 int ignore_too_big)
8703 {
8704 struct type *index_type_desc;
8705 struct type *result;
8706 int constrained_packed_array_p;
8707 static const char *xa_suffix = "___XA";
8708
8709 type0 = ada_check_typedef (type0);
8710 if (TYPE_FIXED_INSTANCE (type0))
8711 return type0;
8712
8713 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8714 if (constrained_packed_array_p)
8715 type0 = decode_constrained_packed_array_type (type0);
8716
8717 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8718
8719 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8720 encoding suffixed with 'P' may still be generated. If so,
8721 it should be used to find the XA type. */
8722
8723 if (index_type_desc == NULL)
8724 {
8725 const char *type_name = ada_type_name (type0);
8726
8727 if (type_name != NULL)
8728 {
8729 const int len = strlen (type_name);
8730 char *name = (char *) alloca (len + strlen (xa_suffix));
8731
8732 if (type_name[len - 1] == 'P')
8733 {
8734 strcpy (name, type_name);
8735 strcpy (name + len - 1, xa_suffix);
8736 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8737 }
8738 }
8739 }
8740
8741 ada_fixup_array_indexes_type (index_type_desc);
8742 if (index_type_desc != NULL
8743 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8744 {
8745 /* Ignore this ___XA parallel type, as it does not bring any
8746 useful information. This allows us to avoid creating fixed
8747 versions of the array's index types, which would be identical
8748 to the original ones. This, in turn, can also help avoid
8749 the creation of fixed versions of the array itself. */
8750 index_type_desc = NULL;
8751 }
8752
8753 if (index_type_desc == NULL)
8754 {
8755 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8756
8757 /* NOTE: elt_type---the fixed version of elt_type0---should never
8758 depend on the contents of the array in properly constructed
8759 debugging data. */
8760 /* Create a fixed version of the array element type.
8761 We're not providing the address of an element here,
8762 and thus the actual object value cannot be inspected to do
8763 the conversion. This should not be a problem, since arrays of
8764 unconstrained objects are not allowed. In particular, all
8765 the elements of an array of a tagged type should all be of
8766 the same type specified in the debugging info. No need to
8767 consult the object tag. */
8768 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8769
8770 /* Make sure we always create a new array type when dealing with
8771 packed array types, since we're going to fix-up the array
8772 type length and element bitsize a little further down. */
8773 if (elt_type0 == elt_type && !constrained_packed_array_p)
8774 result = type0;
8775 else
8776 result = create_array_type (alloc_type_copy (type0),
8777 elt_type, TYPE_INDEX_TYPE (type0));
8778 }
8779 else
8780 {
8781 int i;
8782 struct type *elt_type0;
8783
8784 elt_type0 = type0;
8785 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8786 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8787
8788 /* NOTE: result---the fixed version of elt_type0---should never
8789 depend on the contents of the array in properly constructed
8790 debugging data. */
8791 /* Create a fixed version of the array element type.
8792 We're not providing the address of an element here,
8793 and thus the actual object value cannot be inspected to do
8794 the conversion. This should not be a problem, since arrays of
8795 unconstrained objects are not allowed. In particular, all
8796 the elements of an array of a tagged type should all be of
8797 the same type specified in the debugging info. No need to
8798 consult the object tag. */
8799 result =
8800 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8801
8802 elt_type0 = type0;
8803 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8804 {
8805 struct type *range_type =
8806 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8807
8808 result = create_array_type (alloc_type_copy (elt_type0),
8809 result, range_type);
8810 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8811 }
8812 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8813 error (_("array type with dynamic size is larger than varsize-limit"));
8814 }
8815
8816 /* We want to preserve the type name. This can be useful when
8817 trying to get the type name of a value that has already been
8818 printed (for instance, if the user did "print VAR; whatis $". */
8819 TYPE_NAME (result) = TYPE_NAME (type0);
8820
8821 if (constrained_packed_array_p)
8822 {
8823 /* So far, the resulting type has been created as if the original
8824 type was a regular (non-packed) array type. As a result, the
8825 bitsize of the array elements needs to be set again, and the array
8826 length needs to be recomputed based on that bitsize. */
8827 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8828 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8829
8830 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8831 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8832 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8833 TYPE_LENGTH (result)++;
8834 }
8835
8836 TYPE_FIXED_INSTANCE (result) = 1;
8837 return result;
8838 }
8839
8840
8841 /* A standard type (containing no dynamically sized components)
8842 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8843 DVAL describes a record containing any discriminants used in TYPE0,
8844 and may be NULL if there are none, or if the object of type TYPE at
8845 ADDRESS or in VALADDR contains these discriminants.
8846
8847 If CHECK_TAG is not null, in the case of tagged types, this function
8848 attempts to locate the object's tag and use it to compute the actual
8849 type. However, when ADDRESS is null, we cannot use it to determine the
8850 location of the tag, and therefore compute the tagged type's actual type.
8851 So we return the tagged type without consulting the tag. */
8852
8853 static struct type *
8854 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8855 CORE_ADDR address, struct value *dval, int check_tag)
8856 {
8857 type = ada_check_typedef (type);
8858
8859 /* Only un-fixed types need to be handled here. */
8860 if (!HAVE_GNAT_AUX_INFO (type))
8861 return type;
8862
8863 switch (TYPE_CODE (type))
8864 {
8865 default:
8866 return type;
8867 case TYPE_CODE_STRUCT:
8868 {
8869 struct type *static_type = to_static_fixed_type (type);
8870 struct type *fixed_record_type =
8871 to_fixed_record_type (type, valaddr, address, NULL);
8872
8873 /* If STATIC_TYPE is a tagged type and we know the object's address,
8874 then we can determine its tag, and compute the object's actual
8875 type from there. Note that we have to use the fixed record
8876 type (the parent part of the record may have dynamic fields
8877 and the way the location of _tag is expressed may depend on
8878 them). */
8879
8880 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8881 {
8882 struct value *tag =
8883 value_tag_from_contents_and_address
8884 (fixed_record_type,
8885 valaddr,
8886 address);
8887 struct type *real_type = type_from_tag (tag);
8888 struct value *obj =
8889 value_from_contents_and_address (fixed_record_type,
8890 valaddr,
8891 address);
8892 fixed_record_type = value_type (obj);
8893 if (real_type != NULL)
8894 return to_fixed_record_type
8895 (real_type, NULL,
8896 value_address (ada_tag_value_at_base_address (obj)), NULL);
8897 }
8898
8899 /* Check to see if there is a parallel ___XVZ variable.
8900 If there is, then it provides the actual size of our type. */
8901 else if (ada_type_name (fixed_record_type) != NULL)
8902 {
8903 const char *name = ada_type_name (fixed_record_type);
8904 char *xvz_name
8905 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8906 bool xvz_found = false;
8907 LONGEST size;
8908
8909 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8910 try
8911 {
8912 xvz_found = get_int_var_value (xvz_name, size);
8913 }
8914 catch (const gdb_exception_error &except)
8915 {
8916 /* We found the variable, but somehow failed to read
8917 its value. Rethrow the same error, but with a little
8918 bit more information, to help the user understand
8919 what went wrong (Eg: the variable might have been
8920 optimized out). */
8921 throw_error (except.error,
8922 _("unable to read value of %s (%s)"),
8923 xvz_name, except.what ());
8924 }
8925
8926 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8927 {
8928 fixed_record_type = copy_type (fixed_record_type);
8929 TYPE_LENGTH (fixed_record_type) = size;
8930
8931 /* The FIXED_RECORD_TYPE may have be a stub. We have
8932 observed this when the debugging info is STABS, and
8933 apparently it is something that is hard to fix.
8934
8935 In practice, we don't need the actual type definition
8936 at all, because the presence of the XVZ variable allows us
8937 to assume that there must be a XVS type as well, which we
8938 should be able to use later, when we need the actual type
8939 definition.
8940
8941 In the meantime, pretend that the "fixed" type we are
8942 returning is NOT a stub, because this can cause trouble
8943 when using this type to create new types targeting it.
8944 Indeed, the associated creation routines often check
8945 whether the target type is a stub and will try to replace
8946 it, thus using a type with the wrong size. This, in turn,
8947 might cause the new type to have the wrong size too.
8948 Consider the case of an array, for instance, where the size
8949 of the array is computed from the number of elements in
8950 our array multiplied by the size of its element. */
8951 TYPE_STUB (fixed_record_type) = 0;
8952 }
8953 }
8954 return fixed_record_type;
8955 }
8956 case TYPE_CODE_ARRAY:
8957 return to_fixed_array_type (type, dval, 1);
8958 case TYPE_CODE_UNION:
8959 if (dval == NULL)
8960 return type;
8961 else
8962 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8963 }
8964 }
8965
8966 /* The same as ada_to_fixed_type_1, except that it preserves the type
8967 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8968
8969 The typedef layer needs be preserved in order to differentiate between
8970 arrays and array pointers when both types are implemented using the same
8971 fat pointer. In the array pointer case, the pointer is encoded as
8972 a typedef of the pointer type. For instance, considering:
8973
8974 type String_Access is access String;
8975 S1 : String_Access := null;
8976
8977 To the debugger, S1 is defined as a typedef of type String. But
8978 to the user, it is a pointer. So if the user tries to print S1,
8979 we should not dereference the array, but print the array address
8980 instead.
8981
8982 If we didn't preserve the typedef layer, we would lose the fact that
8983 the type is to be presented as a pointer (needs de-reference before
8984 being printed). And we would also use the source-level type name. */
8985
8986 struct type *
8987 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8988 CORE_ADDR address, struct value *dval, int check_tag)
8989
8990 {
8991 struct type *fixed_type =
8992 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8993
8994 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8995 then preserve the typedef layer.
8996
8997 Implementation note: We can only check the main-type portion of
8998 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8999 from TYPE now returns a type that has the same instance flags
9000 as TYPE. For instance, if TYPE is a "typedef const", and its
9001 target type is a "struct", then the typedef elimination will return
9002 a "const" version of the target type. See check_typedef for more
9003 details about how the typedef layer elimination is done.
9004
9005 brobecker/2010-11-19: It seems to me that the only case where it is
9006 useful to preserve the typedef layer is when dealing with fat pointers.
9007 Perhaps, we could add a check for that and preserve the typedef layer
9008 only in that situation. But this seems unecessary so far, probably
9009 because we call check_typedef/ada_check_typedef pretty much everywhere.
9010 */
9011 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9012 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9013 == TYPE_MAIN_TYPE (fixed_type)))
9014 return type;
9015
9016 return fixed_type;
9017 }
9018
9019 /* A standard (static-sized) type corresponding as well as possible to
9020 TYPE0, but based on no runtime data. */
9021
9022 static struct type *
9023 to_static_fixed_type (struct type *type0)
9024 {
9025 struct type *type;
9026
9027 if (type0 == NULL)
9028 return NULL;
9029
9030 if (TYPE_FIXED_INSTANCE (type0))
9031 return type0;
9032
9033 type0 = ada_check_typedef (type0);
9034
9035 switch (TYPE_CODE (type0))
9036 {
9037 default:
9038 return type0;
9039 case TYPE_CODE_STRUCT:
9040 type = dynamic_template_type (type0);
9041 if (type != NULL)
9042 return template_to_static_fixed_type (type);
9043 else
9044 return template_to_static_fixed_type (type0);
9045 case TYPE_CODE_UNION:
9046 type = ada_find_parallel_type (type0, "___XVU");
9047 if (type != NULL)
9048 return template_to_static_fixed_type (type);
9049 else
9050 return template_to_static_fixed_type (type0);
9051 }
9052 }
9053
9054 /* A static approximation of TYPE with all type wrappers removed. */
9055
9056 static struct type *
9057 static_unwrap_type (struct type *type)
9058 {
9059 if (ada_is_aligner_type (type))
9060 {
9061 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9062 if (ada_type_name (type1) == NULL)
9063 TYPE_NAME (type1) = ada_type_name (type);
9064
9065 return static_unwrap_type (type1);
9066 }
9067 else
9068 {
9069 struct type *raw_real_type = ada_get_base_type (type);
9070
9071 if (raw_real_type == type)
9072 return type;
9073 else
9074 return to_static_fixed_type (raw_real_type);
9075 }
9076 }
9077
9078 /* In some cases, incomplete and private types require
9079 cross-references that are not resolved as records (for example,
9080 type Foo;
9081 type FooP is access Foo;
9082 V: FooP;
9083 type Foo is array ...;
9084 ). In these cases, since there is no mechanism for producing
9085 cross-references to such types, we instead substitute for FooP a
9086 stub enumeration type that is nowhere resolved, and whose tag is
9087 the name of the actual type. Call these types "non-record stubs". */
9088
9089 /* A type equivalent to TYPE that is not a non-record stub, if one
9090 exists, otherwise TYPE. */
9091
9092 struct type *
9093 ada_check_typedef (struct type *type)
9094 {
9095 if (type == NULL)
9096 return NULL;
9097
9098 /* If our type is an access to an unconstrained array, which is encoded
9099 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9100 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9101 what allows us to distinguish between fat pointers that represent
9102 array types, and fat pointers that represent array access types
9103 (in both cases, the compiler implements them as fat pointers). */
9104 if (ada_is_access_to_unconstrained_array (type))
9105 return type;
9106
9107 type = check_typedef (type);
9108 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9109 || !TYPE_STUB (type)
9110 || TYPE_NAME (type) == NULL)
9111 return type;
9112 else
9113 {
9114 const char *name = TYPE_NAME (type);
9115 struct type *type1 = ada_find_any_type (name);
9116
9117 if (type1 == NULL)
9118 return type;
9119
9120 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9121 stubs pointing to arrays, as we don't create symbols for array
9122 types, only for the typedef-to-array types). If that's the case,
9123 strip the typedef layer. */
9124 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9125 type1 = ada_check_typedef (type1);
9126
9127 return type1;
9128 }
9129 }
9130
9131 /* A value representing the data at VALADDR/ADDRESS as described by
9132 type TYPE0, but with a standard (static-sized) type that correctly
9133 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9134 type, then return VAL0 [this feature is simply to avoid redundant
9135 creation of struct values]. */
9136
9137 static struct value *
9138 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9139 struct value *val0)
9140 {
9141 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9142
9143 if (type == type0 && val0 != NULL)
9144 return val0;
9145
9146 if (VALUE_LVAL (val0) != lval_memory)
9147 {
9148 /* Our value does not live in memory; it could be a convenience
9149 variable, for instance. Create a not_lval value using val0's
9150 contents. */
9151 return value_from_contents (type, value_contents (val0));
9152 }
9153
9154 return value_from_contents_and_address (type, 0, address);
9155 }
9156
9157 /* A value representing VAL, but with a standard (static-sized) type
9158 that correctly describes it. Does not necessarily create a new
9159 value. */
9160
9161 struct value *
9162 ada_to_fixed_value (struct value *val)
9163 {
9164 val = unwrap_value (val);
9165 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9166 return val;
9167 }
9168 \f
9169
9170 /* Attributes */
9171
9172 /* Table mapping attribute numbers to names.
9173 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9174
9175 static const char *attribute_names[] = {
9176 "<?>",
9177
9178 "first",
9179 "last",
9180 "length",
9181 "image",
9182 "max",
9183 "min",
9184 "modulus",
9185 "pos",
9186 "size",
9187 "tag",
9188 "val",
9189 0
9190 };
9191
9192 const char *
9193 ada_attribute_name (enum exp_opcode n)
9194 {
9195 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9196 return attribute_names[n - OP_ATR_FIRST + 1];
9197 else
9198 return attribute_names[0];
9199 }
9200
9201 /* Evaluate the 'POS attribute applied to ARG. */
9202
9203 static LONGEST
9204 pos_atr (struct value *arg)
9205 {
9206 struct value *val = coerce_ref (arg);
9207 struct type *type = value_type (val);
9208 LONGEST result;
9209
9210 if (!discrete_type_p (type))
9211 error (_("'POS only defined on discrete types"));
9212
9213 if (!discrete_position (type, value_as_long (val), &result))
9214 error (_("enumeration value is invalid: can't find 'POS"));
9215
9216 return result;
9217 }
9218
9219 static struct value *
9220 value_pos_atr (struct type *type, struct value *arg)
9221 {
9222 return value_from_longest (type, pos_atr (arg));
9223 }
9224
9225 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9226
9227 static struct value *
9228 value_val_atr (struct type *type, struct value *arg)
9229 {
9230 if (!discrete_type_p (type))
9231 error (_("'VAL only defined on discrete types"));
9232 if (!integer_type_p (value_type (arg)))
9233 error (_("'VAL requires integral argument"));
9234
9235 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9236 {
9237 long pos = value_as_long (arg);
9238
9239 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9240 error (_("argument to 'VAL out of range"));
9241 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9242 }
9243 else
9244 return value_from_longest (type, value_as_long (arg));
9245 }
9246 \f
9247
9248 /* Evaluation */
9249
9250 /* True if TYPE appears to be an Ada character type.
9251 [At the moment, this is true only for Character and Wide_Character;
9252 It is a heuristic test that could stand improvement]. */
9253
9254 bool
9255 ada_is_character_type (struct type *type)
9256 {
9257 const char *name;
9258
9259 /* If the type code says it's a character, then assume it really is,
9260 and don't check any further. */
9261 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9262 return true;
9263
9264 /* Otherwise, assume it's a character type iff it is a discrete type
9265 with a known character type name. */
9266 name = ada_type_name (type);
9267 return (name != NULL
9268 && (TYPE_CODE (type) == TYPE_CODE_INT
9269 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9270 && (strcmp (name, "character") == 0
9271 || strcmp (name, "wide_character") == 0
9272 || strcmp (name, "wide_wide_character") == 0
9273 || strcmp (name, "unsigned char") == 0));
9274 }
9275
9276 /* True if TYPE appears to be an Ada string type. */
9277
9278 bool
9279 ada_is_string_type (struct type *type)
9280 {
9281 type = ada_check_typedef (type);
9282 if (type != NULL
9283 && TYPE_CODE (type) != TYPE_CODE_PTR
9284 && (ada_is_simple_array_type (type)
9285 || ada_is_array_descriptor_type (type))
9286 && ada_array_arity (type) == 1)
9287 {
9288 struct type *elttype = ada_array_element_type (type, 1);
9289
9290 return ada_is_character_type (elttype);
9291 }
9292 else
9293 return false;
9294 }
9295
9296 /* The compiler sometimes provides a parallel XVS type for a given
9297 PAD type. Normally, it is safe to follow the PAD type directly,
9298 but older versions of the compiler have a bug that causes the offset
9299 of its "F" field to be wrong. Following that field in that case
9300 would lead to incorrect results, but this can be worked around
9301 by ignoring the PAD type and using the associated XVS type instead.
9302
9303 Set to True if the debugger should trust the contents of PAD types.
9304 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9305 static int trust_pad_over_xvs = 1;
9306
9307 /* True if TYPE is a struct type introduced by the compiler to force the
9308 alignment of a value. Such types have a single field with a
9309 distinctive name. */
9310
9311 int
9312 ada_is_aligner_type (struct type *type)
9313 {
9314 type = ada_check_typedef (type);
9315
9316 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9317 return 0;
9318
9319 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9320 && TYPE_NFIELDS (type) == 1
9321 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9322 }
9323
9324 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9325 the parallel type. */
9326
9327 struct type *
9328 ada_get_base_type (struct type *raw_type)
9329 {
9330 struct type *real_type_namer;
9331 struct type *raw_real_type;
9332
9333 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9334 return raw_type;
9335
9336 if (ada_is_aligner_type (raw_type))
9337 /* The encoding specifies that we should always use the aligner type.
9338 So, even if this aligner type has an associated XVS type, we should
9339 simply ignore it.
9340
9341 According to the compiler gurus, an XVS type parallel to an aligner
9342 type may exist because of a stabs limitation. In stabs, aligner
9343 types are empty because the field has a variable-sized type, and
9344 thus cannot actually be used as an aligner type. As a result,
9345 we need the associated parallel XVS type to decode the type.
9346 Since the policy in the compiler is to not change the internal
9347 representation based on the debugging info format, we sometimes
9348 end up having a redundant XVS type parallel to the aligner type. */
9349 return raw_type;
9350
9351 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9352 if (real_type_namer == NULL
9353 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9354 || TYPE_NFIELDS (real_type_namer) != 1)
9355 return raw_type;
9356
9357 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9358 {
9359 /* This is an older encoding form where the base type needs to be
9360 looked up by name. We prefer the newer enconding because it is
9361 more efficient. */
9362 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9363 if (raw_real_type == NULL)
9364 return raw_type;
9365 else
9366 return raw_real_type;
9367 }
9368
9369 /* The field in our XVS type is a reference to the base type. */
9370 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9371 }
9372
9373 /* The type of value designated by TYPE, with all aligners removed. */
9374
9375 struct type *
9376 ada_aligned_type (struct type *type)
9377 {
9378 if (ada_is_aligner_type (type))
9379 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9380 else
9381 return ada_get_base_type (type);
9382 }
9383
9384
9385 /* The address of the aligned value in an object at address VALADDR
9386 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9387
9388 const gdb_byte *
9389 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9390 {
9391 if (ada_is_aligner_type (type))
9392 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9393 valaddr +
9394 TYPE_FIELD_BITPOS (type,
9395 0) / TARGET_CHAR_BIT);
9396 else
9397 return valaddr;
9398 }
9399
9400
9401
9402 /* The printed representation of an enumeration literal with encoded
9403 name NAME. The value is good to the next call of ada_enum_name. */
9404 const char *
9405 ada_enum_name (const char *name)
9406 {
9407 static char *result;
9408 static size_t result_len = 0;
9409 const char *tmp;
9410
9411 /* First, unqualify the enumeration name:
9412 1. Search for the last '.' character. If we find one, then skip
9413 all the preceding characters, the unqualified name starts
9414 right after that dot.
9415 2. Otherwise, we may be debugging on a target where the compiler
9416 translates dots into "__". Search forward for double underscores,
9417 but stop searching when we hit an overloading suffix, which is
9418 of the form "__" followed by digits. */
9419
9420 tmp = strrchr (name, '.');
9421 if (tmp != NULL)
9422 name = tmp + 1;
9423 else
9424 {
9425 while ((tmp = strstr (name, "__")) != NULL)
9426 {
9427 if (isdigit (tmp[2]))
9428 break;
9429 else
9430 name = tmp + 2;
9431 }
9432 }
9433
9434 if (name[0] == 'Q')
9435 {
9436 int v;
9437
9438 if (name[1] == 'U' || name[1] == 'W')
9439 {
9440 if (sscanf (name + 2, "%x", &v) != 1)
9441 return name;
9442 }
9443 else
9444 return name;
9445
9446 GROW_VECT (result, result_len, 16);
9447 if (isascii (v) && isprint (v))
9448 xsnprintf (result, result_len, "'%c'", v);
9449 else if (name[1] == 'U')
9450 xsnprintf (result, result_len, "[\"%02x\"]", v);
9451 else
9452 xsnprintf (result, result_len, "[\"%04x\"]", v);
9453
9454 return result;
9455 }
9456 else
9457 {
9458 tmp = strstr (name, "__");
9459 if (tmp == NULL)
9460 tmp = strstr (name, "$");
9461 if (tmp != NULL)
9462 {
9463 GROW_VECT (result, result_len, tmp - name + 1);
9464 strncpy (result, name, tmp - name);
9465 result[tmp - name] = '\0';
9466 return result;
9467 }
9468
9469 return name;
9470 }
9471 }
9472
9473 /* Evaluate the subexpression of EXP starting at *POS as for
9474 evaluate_type, updating *POS to point just past the evaluated
9475 expression. */
9476
9477 static struct value *
9478 evaluate_subexp_type (struct expression *exp, int *pos)
9479 {
9480 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9481 }
9482
9483 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9484 value it wraps. */
9485
9486 static struct value *
9487 unwrap_value (struct value *val)
9488 {
9489 struct type *type = ada_check_typedef (value_type (val));
9490
9491 if (ada_is_aligner_type (type))
9492 {
9493 struct value *v = ada_value_struct_elt (val, "F", 0);
9494 struct type *val_type = ada_check_typedef (value_type (v));
9495
9496 if (ada_type_name (val_type) == NULL)
9497 TYPE_NAME (val_type) = ada_type_name (type);
9498
9499 return unwrap_value (v);
9500 }
9501 else
9502 {
9503 struct type *raw_real_type =
9504 ada_check_typedef (ada_get_base_type (type));
9505
9506 /* If there is no parallel XVS or XVE type, then the value is
9507 already unwrapped. Return it without further modification. */
9508 if ((type == raw_real_type)
9509 && ada_find_parallel_type (type, "___XVE") == NULL)
9510 return val;
9511
9512 return
9513 coerce_unspec_val_to_type
9514 (val, ada_to_fixed_type (raw_real_type, 0,
9515 value_address (val),
9516 NULL, 1));
9517 }
9518 }
9519
9520 static struct value *
9521 cast_from_fixed (struct type *type, struct value *arg)
9522 {
9523 struct value *scale = ada_scaling_factor (value_type (arg));
9524 arg = value_cast (value_type (scale), arg);
9525
9526 arg = value_binop (arg, scale, BINOP_MUL);
9527 return value_cast (type, arg);
9528 }
9529
9530 static struct value *
9531 cast_to_fixed (struct type *type, struct value *arg)
9532 {
9533 if (type == value_type (arg))
9534 return arg;
9535
9536 struct value *scale = ada_scaling_factor (type);
9537 if (ada_is_fixed_point_type (value_type (arg)))
9538 arg = cast_from_fixed (value_type (scale), arg);
9539 else
9540 arg = value_cast (value_type (scale), arg);
9541
9542 arg = value_binop (arg, scale, BINOP_DIV);
9543 return value_cast (type, arg);
9544 }
9545
9546 /* Given two array types T1 and T2, return nonzero iff both arrays
9547 contain the same number of elements. */
9548
9549 static int
9550 ada_same_array_size_p (struct type *t1, struct type *t2)
9551 {
9552 LONGEST lo1, hi1, lo2, hi2;
9553
9554 /* Get the array bounds in order to verify that the size of
9555 the two arrays match. */
9556 if (!get_array_bounds (t1, &lo1, &hi1)
9557 || !get_array_bounds (t2, &lo2, &hi2))
9558 error (_("unable to determine array bounds"));
9559
9560 /* To make things easier for size comparison, normalize a bit
9561 the case of empty arrays by making sure that the difference
9562 between upper bound and lower bound is always -1. */
9563 if (lo1 > hi1)
9564 hi1 = lo1 - 1;
9565 if (lo2 > hi2)
9566 hi2 = lo2 - 1;
9567
9568 return (hi1 - lo1 == hi2 - lo2);
9569 }
9570
9571 /* Assuming that VAL is an array of integrals, and TYPE represents
9572 an array with the same number of elements, but with wider integral
9573 elements, return an array "casted" to TYPE. In practice, this
9574 means that the returned array is built by casting each element
9575 of the original array into TYPE's (wider) element type. */
9576
9577 static struct value *
9578 ada_promote_array_of_integrals (struct type *type, struct value *val)
9579 {
9580 struct type *elt_type = TYPE_TARGET_TYPE (type);
9581 LONGEST lo, hi;
9582 struct value *res;
9583 LONGEST i;
9584
9585 /* Verify that both val and type are arrays of scalars, and
9586 that the size of val's elements is smaller than the size
9587 of type's element. */
9588 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9589 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9590 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9591 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9592 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9593 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9594
9595 if (!get_array_bounds (type, &lo, &hi))
9596 error (_("unable to determine array bounds"));
9597
9598 res = allocate_value (type);
9599
9600 /* Promote each array element. */
9601 for (i = 0; i < hi - lo + 1; i++)
9602 {
9603 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9604
9605 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9606 value_contents_all (elt), TYPE_LENGTH (elt_type));
9607 }
9608
9609 return res;
9610 }
9611
9612 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9613 return the converted value. */
9614
9615 static struct value *
9616 coerce_for_assign (struct type *type, struct value *val)
9617 {
9618 struct type *type2 = value_type (val);
9619
9620 if (type == type2)
9621 return val;
9622
9623 type2 = ada_check_typedef (type2);
9624 type = ada_check_typedef (type);
9625
9626 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9627 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9628 {
9629 val = ada_value_ind (val);
9630 type2 = value_type (val);
9631 }
9632
9633 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9634 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9635 {
9636 if (!ada_same_array_size_p (type, type2))
9637 error (_("cannot assign arrays of different length"));
9638
9639 if (is_integral_type (TYPE_TARGET_TYPE (type))
9640 && is_integral_type (TYPE_TARGET_TYPE (type2))
9641 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9642 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9643 {
9644 /* Allow implicit promotion of the array elements to
9645 a wider type. */
9646 return ada_promote_array_of_integrals (type, val);
9647 }
9648
9649 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9650 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9651 error (_("Incompatible types in assignment"));
9652 deprecated_set_value_type (val, type);
9653 }
9654 return val;
9655 }
9656
9657 static struct value *
9658 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9659 {
9660 struct value *val;
9661 struct type *type1, *type2;
9662 LONGEST v, v1, v2;
9663
9664 arg1 = coerce_ref (arg1);
9665 arg2 = coerce_ref (arg2);
9666 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9667 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9668
9669 if (TYPE_CODE (type1) != TYPE_CODE_INT
9670 || TYPE_CODE (type2) != TYPE_CODE_INT)
9671 return value_binop (arg1, arg2, op);
9672
9673 switch (op)
9674 {
9675 case BINOP_MOD:
9676 case BINOP_DIV:
9677 case BINOP_REM:
9678 break;
9679 default:
9680 return value_binop (arg1, arg2, op);
9681 }
9682
9683 v2 = value_as_long (arg2);
9684 if (v2 == 0)
9685 error (_("second operand of %s must not be zero."), op_string (op));
9686
9687 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9688 return value_binop (arg1, arg2, op);
9689
9690 v1 = value_as_long (arg1);
9691 switch (op)
9692 {
9693 case BINOP_DIV:
9694 v = v1 / v2;
9695 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9696 v += v > 0 ? -1 : 1;
9697 break;
9698 case BINOP_REM:
9699 v = v1 % v2;
9700 if (v * v1 < 0)
9701 v -= v2;
9702 break;
9703 default:
9704 /* Should not reach this point. */
9705 v = 0;
9706 }
9707
9708 val = allocate_value (type1);
9709 store_unsigned_integer (value_contents_raw (val),
9710 TYPE_LENGTH (value_type (val)),
9711 gdbarch_byte_order (get_type_arch (type1)), v);
9712 return val;
9713 }
9714
9715 static int
9716 ada_value_equal (struct value *arg1, struct value *arg2)
9717 {
9718 if (ada_is_direct_array_type (value_type (arg1))
9719 || ada_is_direct_array_type (value_type (arg2)))
9720 {
9721 struct type *arg1_type, *arg2_type;
9722
9723 /* Automatically dereference any array reference before
9724 we attempt to perform the comparison. */
9725 arg1 = ada_coerce_ref (arg1);
9726 arg2 = ada_coerce_ref (arg2);
9727
9728 arg1 = ada_coerce_to_simple_array (arg1);
9729 arg2 = ada_coerce_to_simple_array (arg2);
9730
9731 arg1_type = ada_check_typedef (value_type (arg1));
9732 arg2_type = ada_check_typedef (value_type (arg2));
9733
9734 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9735 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9736 error (_("Attempt to compare array with non-array"));
9737 /* FIXME: The following works only for types whose
9738 representations use all bits (no padding or undefined bits)
9739 and do not have user-defined equality. */
9740 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9741 && memcmp (value_contents (arg1), value_contents (arg2),
9742 TYPE_LENGTH (arg1_type)) == 0);
9743 }
9744 return value_equal (arg1, arg2);
9745 }
9746
9747 /* Total number of component associations in the aggregate starting at
9748 index PC in EXP. Assumes that index PC is the start of an
9749 OP_AGGREGATE. */
9750
9751 static int
9752 num_component_specs (struct expression *exp, int pc)
9753 {
9754 int n, m, i;
9755
9756 m = exp->elts[pc + 1].longconst;
9757 pc += 3;
9758 n = 0;
9759 for (i = 0; i < m; i += 1)
9760 {
9761 switch (exp->elts[pc].opcode)
9762 {
9763 default:
9764 n += 1;
9765 break;
9766 case OP_CHOICES:
9767 n += exp->elts[pc + 1].longconst;
9768 break;
9769 }
9770 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9771 }
9772 return n;
9773 }
9774
9775 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9776 component of LHS (a simple array or a record), updating *POS past
9777 the expression, assuming that LHS is contained in CONTAINER. Does
9778 not modify the inferior's memory, nor does it modify LHS (unless
9779 LHS == CONTAINER). */
9780
9781 static void
9782 assign_component (struct value *container, struct value *lhs, LONGEST index,
9783 struct expression *exp, int *pos)
9784 {
9785 struct value *mark = value_mark ();
9786 struct value *elt;
9787 struct type *lhs_type = check_typedef (value_type (lhs));
9788
9789 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9790 {
9791 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9792 struct value *index_val = value_from_longest (index_type, index);
9793
9794 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9795 }
9796 else
9797 {
9798 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9799 elt = ada_to_fixed_value (elt);
9800 }
9801
9802 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9803 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9804 else
9805 value_assign_to_component (container, elt,
9806 ada_evaluate_subexp (NULL, exp, pos,
9807 EVAL_NORMAL));
9808
9809 value_free_to_mark (mark);
9810 }
9811
9812 /* Assuming that LHS represents an lvalue having a record or array
9813 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9814 of that aggregate's value to LHS, advancing *POS past the
9815 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9816 lvalue containing LHS (possibly LHS itself). Does not modify
9817 the inferior's memory, nor does it modify the contents of
9818 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9819
9820 static struct value *
9821 assign_aggregate (struct value *container,
9822 struct value *lhs, struct expression *exp,
9823 int *pos, enum noside noside)
9824 {
9825 struct type *lhs_type;
9826 int n = exp->elts[*pos+1].longconst;
9827 LONGEST low_index, high_index;
9828 int num_specs;
9829 LONGEST *indices;
9830 int max_indices, num_indices;
9831 int i;
9832
9833 *pos += 3;
9834 if (noside != EVAL_NORMAL)
9835 {
9836 for (i = 0; i < n; i += 1)
9837 ada_evaluate_subexp (NULL, exp, pos, noside);
9838 return container;
9839 }
9840
9841 container = ada_coerce_ref (container);
9842 if (ada_is_direct_array_type (value_type (container)))
9843 container = ada_coerce_to_simple_array (container);
9844 lhs = ada_coerce_ref (lhs);
9845 if (!deprecated_value_modifiable (lhs))
9846 error (_("Left operand of assignment is not a modifiable lvalue."));
9847
9848 lhs_type = check_typedef (value_type (lhs));
9849 if (ada_is_direct_array_type (lhs_type))
9850 {
9851 lhs = ada_coerce_to_simple_array (lhs);
9852 lhs_type = check_typedef (value_type (lhs));
9853 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9854 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9855 }
9856 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9857 {
9858 low_index = 0;
9859 high_index = num_visible_fields (lhs_type) - 1;
9860 }
9861 else
9862 error (_("Left-hand side must be array or record."));
9863
9864 num_specs = num_component_specs (exp, *pos - 3);
9865 max_indices = 4 * num_specs + 4;
9866 indices = XALLOCAVEC (LONGEST, max_indices);
9867 indices[0] = indices[1] = low_index - 1;
9868 indices[2] = indices[3] = high_index + 1;
9869 num_indices = 4;
9870
9871 for (i = 0; i < n; i += 1)
9872 {
9873 switch (exp->elts[*pos].opcode)
9874 {
9875 case OP_CHOICES:
9876 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9877 &num_indices, max_indices,
9878 low_index, high_index);
9879 break;
9880 case OP_POSITIONAL:
9881 aggregate_assign_positional (container, lhs, exp, pos, indices,
9882 &num_indices, max_indices,
9883 low_index, high_index);
9884 break;
9885 case OP_OTHERS:
9886 if (i != n-1)
9887 error (_("Misplaced 'others' clause"));
9888 aggregate_assign_others (container, lhs, exp, pos, indices,
9889 num_indices, low_index, high_index);
9890 break;
9891 default:
9892 error (_("Internal error: bad aggregate clause"));
9893 }
9894 }
9895
9896 return container;
9897 }
9898
9899 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9900 construct at *POS, updating *POS past the construct, given that
9901 the positions are relative to lower bound LOW, where HIGH is the
9902 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9903 updating *NUM_INDICES as needed. CONTAINER is as for
9904 assign_aggregate. */
9905 static void
9906 aggregate_assign_positional (struct value *container,
9907 struct value *lhs, struct expression *exp,
9908 int *pos, LONGEST *indices, int *num_indices,
9909 int max_indices, LONGEST low, LONGEST high)
9910 {
9911 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9912
9913 if (ind - 1 == high)
9914 warning (_("Extra components in aggregate ignored."));
9915 if (ind <= high)
9916 {
9917 add_component_interval (ind, ind, indices, num_indices, max_indices);
9918 *pos += 3;
9919 assign_component (container, lhs, ind, exp, pos);
9920 }
9921 else
9922 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9923 }
9924
9925 /* Assign into the components of LHS indexed by the OP_CHOICES
9926 construct at *POS, updating *POS past the construct, given that
9927 the allowable indices are LOW..HIGH. Record the indices assigned
9928 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9929 needed. CONTAINER is as for assign_aggregate. */
9930 static void
9931 aggregate_assign_from_choices (struct value *container,
9932 struct value *lhs, struct expression *exp,
9933 int *pos, LONGEST *indices, int *num_indices,
9934 int max_indices, LONGEST low, LONGEST high)
9935 {
9936 int j;
9937 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9938 int choice_pos, expr_pc;
9939 int is_array = ada_is_direct_array_type (value_type (lhs));
9940
9941 choice_pos = *pos += 3;
9942
9943 for (j = 0; j < n_choices; j += 1)
9944 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9945 expr_pc = *pos;
9946 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9947
9948 for (j = 0; j < n_choices; j += 1)
9949 {
9950 LONGEST lower, upper;
9951 enum exp_opcode op = exp->elts[choice_pos].opcode;
9952
9953 if (op == OP_DISCRETE_RANGE)
9954 {
9955 choice_pos += 1;
9956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9957 EVAL_NORMAL));
9958 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9959 EVAL_NORMAL));
9960 }
9961 else if (is_array)
9962 {
9963 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9964 EVAL_NORMAL));
9965 upper = lower;
9966 }
9967 else
9968 {
9969 int ind;
9970 const char *name;
9971
9972 switch (op)
9973 {
9974 case OP_NAME:
9975 name = &exp->elts[choice_pos + 2].string;
9976 break;
9977 case OP_VAR_VALUE:
9978 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9979 break;
9980 default:
9981 error (_("Invalid record component association."));
9982 }
9983 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9984 ind = 0;
9985 if (! find_struct_field (name, value_type (lhs), 0,
9986 NULL, NULL, NULL, NULL, &ind))
9987 error (_("Unknown component name: %s."), name);
9988 lower = upper = ind;
9989 }
9990
9991 if (lower <= upper && (lower < low || upper > high))
9992 error (_("Index in component association out of bounds."));
9993
9994 add_component_interval (lower, upper, indices, num_indices,
9995 max_indices);
9996 while (lower <= upper)
9997 {
9998 int pos1;
9999
10000 pos1 = expr_pc;
10001 assign_component (container, lhs, lower, exp, &pos1);
10002 lower += 1;
10003 }
10004 }
10005 }
10006
10007 /* Assign the value of the expression in the OP_OTHERS construct in
10008 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10009 have not been previously assigned. The index intervals already assigned
10010 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10011 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10012 static void
10013 aggregate_assign_others (struct value *container,
10014 struct value *lhs, struct expression *exp,
10015 int *pos, LONGEST *indices, int num_indices,
10016 LONGEST low, LONGEST high)
10017 {
10018 int i;
10019 int expr_pc = *pos + 1;
10020
10021 for (i = 0; i < num_indices - 2; i += 2)
10022 {
10023 LONGEST ind;
10024
10025 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10026 {
10027 int localpos;
10028
10029 localpos = expr_pc;
10030 assign_component (container, lhs, ind, exp, &localpos);
10031 }
10032 }
10033 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10034 }
10035
10036 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10037 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10038 modifying *SIZE as needed. It is an error if *SIZE exceeds
10039 MAX_SIZE. The resulting intervals do not overlap. */
10040 static void
10041 add_component_interval (LONGEST low, LONGEST high,
10042 LONGEST* indices, int *size, int max_size)
10043 {
10044 int i, j;
10045
10046 for (i = 0; i < *size; i += 2) {
10047 if (high >= indices[i] && low <= indices[i + 1])
10048 {
10049 int kh;
10050
10051 for (kh = i + 2; kh < *size; kh += 2)
10052 if (high < indices[kh])
10053 break;
10054 if (low < indices[i])
10055 indices[i] = low;
10056 indices[i + 1] = indices[kh - 1];
10057 if (high > indices[i + 1])
10058 indices[i + 1] = high;
10059 memcpy (indices + i + 2, indices + kh, *size - kh);
10060 *size -= kh - i - 2;
10061 return;
10062 }
10063 else if (high < indices[i])
10064 break;
10065 }
10066
10067 if (*size == max_size)
10068 error (_("Internal error: miscounted aggregate components."));
10069 *size += 2;
10070 for (j = *size-1; j >= i+2; j -= 1)
10071 indices[j] = indices[j - 2];
10072 indices[i] = low;
10073 indices[i + 1] = high;
10074 }
10075
10076 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10077 is different. */
10078
10079 static struct value *
10080 ada_value_cast (struct type *type, struct value *arg2)
10081 {
10082 if (type == ada_check_typedef (value_type (arg2)))
10083 return arg2;
10084
10085 if (ada_is_fixed_point_type (type))
10086 return cast_to_fixed (type, arg2);
10087
10088 if (ada_is_fixed_point_type (value_type (arg2)))
10089 return cast_from_fixed (type, arg2);
10090
10091 return value_cast (type, arg2);
10092 }
10093
10094 /* Evaluating Ada expressions, and printing their result.
10095 ------------------------------------------------------
10096
10097 1. Introduction:
10098 ----------------
10099
10100 We usually evaluate an Ada expression in order to print its value.
10101 We also evaluate an expression in order to print its type, which
10102 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10103 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10104 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10105 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10106 similar.
10107
10108 Evaluating expressions is a little more complicated for Ada entities
10109 than it is for entities in languages such as C. The main reason for
10110 this is that Ada provides types whose definition might be dynamic.
10111 One example of such types is variant records. Or another example
10112 would be an array whose bounds can only be known at run time.
10113
10114 The following description is a general guide as to what should be
10115 done (and what should NOT be done) in order to evaluate an expression
10116 involving such types, and when. This does not cover how the semantic
10117 information is encoded by GNAT as this is covered separatly. For the
10118 document used as the reference for the GNAT encoding, see exp_dbug.ads
10119 in the GNAT sources.
10120
10121 Ideally, we should embed each part of this description next to its
10122 associated code. Unfortunately, the amount of code is so vast right
10123 now that it's hard to see whether the code handling a particular
10124 situation might be duplicated or not. One day, when the code is
10125 cleaned up, this guide might become redundant with the comments
10126 inserted in the code, and we might want to remove it.
10127
10128 2. ``Fixing'' an Entity, the Simple Case:
10129 -----------------------------------------
10130
10131 When evaluating Ada expressions, the tricky issue is that they may
10132 reference entities whose type contents and size are not statically
10133 known. Consider for instance a variant record:
10134
10135 type Rec (Empty : Boolean := True) is record
10136 case Empty is
10137 when True => null;
10138 when False => Value : Integer;
10139 end case;
10140 end record;
10141 Yes : Rec := (Empty => False, Value => 1);
10142 No : Rec := (empty => True);
10143
10144 The size and contents of that record depends on the value of the
10145 descriminant (Rec.Empty). At this point, neither the debugging
10146 information nor the associated type structure in GDB are able to
10147 express such dynamic types. So what the debugger does is to create
10148 "fixed" versions of the type that applies to the specific object.
10149 We also informally refer to this opperation as "fixing" an object,
10150 which means creating its associated fixed type.
10151
10152 Example: when printing the value of variable "Yes" above, its fixed
10153 type would look like this:
10154
10155 type Rec is record
10156 Empty : Boolean;
10157 Value : Integer;
10158 end record;
10159
10160 On the other hand, if we printed the value of "No", its fixed type
10161 would become:
10162
10163 type Rec is record
10164 Empty : Boolean;
10165 end record;
10166
10167 Things become a little more complicated when trying to fix an entity
10168 with a dynamic type that directly contains another dynamic type,
10169 such as an array of variant records, for instance. There are
10170 two possible cases: Arrays, and records.
10171
10172 3. ``Fixing'' Arrays:
10173 ---------------------
10174
10175 The type structure in GDB describes an array in terms of its bounds,
10176 and the type of its elements. By design, all elements in the array
10177 have the same type and we cannot represent an array of variant elements
10178 using the current type structure in GDB. When fixing an array,
10179 we cannot fix the array element, as we would potentially need one
10180 fixed type per element of the array. As a result, the best we can do
10181 when fixing an array is to produce an array whose bounds and size
10182 are correct (allowing us to read it from memory), but without having
10183 touched its element type. Fixing each element will be done later,
10184 when (if) necessary.
10185
10186 Arrays are a little simpler to handle than records, because the same
10187 amount of memory is allocated for each element of the array, even if
10188 the amount of space actually used by each element differs from element
10189 to element. Consider for instance the following array of type Rec:
10190
10191 type Rec_Array is array (1 .. 2) of Rec;
10192
10193 The actual amount of memory occupied by each element might be different
10194 from element to element, depending on the value of their discriminant.
10195 But the amount of space reserved for each element in the array remains
10196 fixed regardless. So we simply need to compute that size using
10197 the debugging information available, from which we can then determine
10198 the array size (we multiply the number of elements of the array by
10199 the size of each element).
10200
10201 The simplest case is when we have an array of a constrained element
10202 type. For instance, consider the following type declarations:
10203
10204 type Bounded_String (Max_Size : Integer) is
10205 Length : Integer;
10206 Buffer : String (1 .. Max_Size);
10207 end record;
10208 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10209
10210 In this case, the compiler describes the array as an array of
10211 variable-size elements (identified by its XVS suffix) for which
10212 the size can be read in the parallel XVZ variable.
10213
10214 In the case of an array of an unconstrained element type, the compiler
10215 wraps the array element inside a private PAD type. This type should not
10216 be shown to the user, and must be "unwrap"'ed before printing. Note
10217 that we also use the adjective "aligner" in our code to designate
10218 these wrapper types.
10219
10220 In some cases, the size allocated for each element is statically
10221 known. In that case, the PAD type already has the correct size,
10222 and the array element should remain unfixed.
10223
10224 But there are cases when this size is not statically known.
10225 For instance, assuming that "Five" is an integer variable:
10226
10227 type Dynamic is array (1 .. Five) of Integer;
10228 type Wrapper (Has_Length : Boolean := False) is record
10229 Data : Dynamic;
10230 case Has_Length is
10231 when True => Length : Integer;
10232 when False => null;
10233 end case;
10234 end record;
10235 type Wrapper_Array is array (1 .. 2) of Wrapper;
10236
10237 Hello : Wrapper_Array := (others => (Has_Length => True,
10238 Data => (others => 17),
10239 Length => 1));
10240
10241
10242 The debugging info would describe variable Hello as being an
10243 array of a PAD type. The size of that PAD type is not statically
10244 known, but can be determined using a parallel XVZ variable.
10245 In that case, a copy of the PAD type with the correct size should
10246 be used for the fixed array.
10247
10248 3. ``Fixing'' record type objects:
10249 ----------------------------------
10250
10251 Things are slightly different from arrays in the case of dynamic
10252 record types. In this case, in order to compute the associated
10253 fixed type, we need to determine the size and offset of each of
10254 its components. This, in turn, requires us to compute the fixed
10255 type of each of these components.
10256
10257 Consider for instance the example:
10258
10259 type Bounded_String (Max_Size : Natural) is record
10260 Str : String (1 .. Max_Size);
10261 Length : Natural;
10262 end record;
10263 My_String : Bounded_String (Max_Size => 10);
10264
10265 In that case, the position of field "Length" depends on the size
10266 of field Str, which itself depends on the value of the Max_Size
10267 discriminant. In order to fix the type of variable My_String,
10268 we need to fix the type of field Str. Therefore, fixing a variant
10269 record requires us to fix each of its components.
10270
10271 However, if a component does not have a dynamic size, the component
10272 should not be fixed. In particular, fields that use a PAD type
10273 should not fixed. Here is an example where this might happen
10274 (assuming type Rec above):
10275
10276 type Container (Big : Boolean) is record
10277 First : Rec;
10278 After : Integer;
10279 case Big is
10280 when True => Another : Integer;
10281 when False => null;
10282 end case;
10283 end record;
10284 My_Container : Container := (Big => False,
10285 First => (Empty => True),
10286 After => 42);
10287
10288 In that example, the compiler creates a PAD type for component First,
10289 whose size is constant, and then positions the component After just
10290 right after it. The offset of component After is therefore constant
10291 in this case.
10292
10293 The debugger computes the position of each field based on an algorithm
10294 that uses, among other things, the actual position and size of the field
10295 preceding it. Let's now imagine that the user is trying to print
10296 the value of My_Container. If the type fixing was recursive, we would
10297 end up computing the offset of field After based on the size of the
10298 fixed version of field First. And since in our example First has
10299 only one actual field, the size of the fixed type is actually smaller
10300 than the amount of space allocated to that field, and thus we would
10301 compute the wrong offset of field After.
10302
10303 To make things more complicated, we need to watch out for dynamic
10304 components of variant records (identified by the ___XVL suffix in
10305 the component name). Even if the target type is a PAD type, the size
10306 of that type might not be statically known. So the PAD type needs
10307 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10308 we might end up with the wrong size for our component. This can be
10309 observed with the following type declarations:
10310
10311 type Octal is new Integer range 0 .. 7;
10312 type Octal_Array is array (Positive range <>) of Octal;
10313 pragma Pack (Octal_Array);
10314
10315 type Octal_Buffer (Size : Positive) is record
10316 Buffer : Octal_Array (1 .. Size);
10317 Length : Integer;
10318 end record;
10319
10320 In that case, Buffer is a PAD type whose size is unset and needs
10321 to be computed by fixing the unwrapped type.
10322
10323 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10324 ----------------------------------------------------------
10325
10326 Lastly, when should the sub-elements of an entity that remained unfixed
10327 thus far, be actually fixed?
10328
10329 The answer is: Only when referencing that element. For instance
10330 when selecting one component of a record, this specific component
10331 should be fixed at that point in time. Or when printing the value
10332 of a record, each component should be fixed before its value gets
10333 printed. Similarly for arrays, the element of the array should be
10334 fixed when printing each element of the array, or when extracting
10335 one element out of that array. On the other hand, fixing should
10336 not be performed on the elements when taking a slice of an array!
10337
10338 Note that one of the side effects of miscomputing the offset and
10339 size of each field is that we end up also miscomputing the size
10340 of the containing type. This can have adverse results when computing
10341 the value of an entity. GDB fetches the value of an entity based
10342 on the size of its type, and thus a wrong size causes GDB to fetch
10343 the wrong amount of memory. In the case where the computed size is
10344 too small, GDB fetches too little data to print the value of our
10345 entity. Results in this case are unpredictable, as we usually read
10346 past the buffer containing the data =:-o. */
10347
10348 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10349 for that subexpression cast to TO_TYPE. Advance *POS over the
10350 subexpression. */
10351
10352 static value *
10353 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10354 enum noside noside, struct type *to_type)
10355 {
10356 int pc = *pos;
10357
10358 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10359 || exp->elts[pc].opcode == OP_VAR_VALUE)
10360 {
10361 (*pos) += 4;
10362
10363 value *val;
10364 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10365 {
10366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (to_type, not_lval);
10368
10369 val = evaluate_var_msym_value (noside,
10370 exp->elts[pc + 1].objfile,
10371 exp->elts[pc + 2].msymbol);
10372 }
10373 else
10374 val = evaluate_var_value (noside,
10375 exp->elts[pc + 1].block,
10376 exp->elts[pc + 2].symbol);
10377
10378 if (noside == EVAL_SKIP)
10379 return eval_skip_value (exp);
10380
10381 val = ada_value_cast (to_type, val);
10382
10383 /* Follow the Ada language semantics that do not allow taking
10384 an address of the result of a cast (view conversion in Ada). */
10385 if (VALUE_LVAL (val) == lval_memory)
10386 {
10387 if (value_lazy (val))
10388 value_fetch_lazy (val);
10389 VALUE_LVAL (val) = not_lval;
10390 }
10391 return val;
10392 }
10393
10394 value *val = evaluate_subexp (to_type, exp, pos, noside);
10395 if (noside == EVAL_SKIP)
10396 return eval_skip_value (exp);
10397 return ada_value_cast (to_type, val);
10398 }
10399
10400 /* Implement the evaluate_exp routine in the exp_descriptor structure
10401 for the Ada language. */
10402
10403 static struct value *
10404 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10405 int *pos, enum noside noside)
10406 {
10407 enum exp_opcode op;
10408 int tem;
10409 int pc;
10410 int preeval_pos;
10411 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10412 struct type *type;
10413 int nargs, oplen;
10414 struct value **argvec;
10415
10416 pc = *pos;
10417 *pos += 1;
10418 op = exp->elts[pc].opcode;
10419
10420 switch (op)
10421 {
10422 default:
10423 *pos -= 1;
10424 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10425
10426 if (noside == EVAL_NORMAL)
10427 arg1 = unwrap_value (arg1);
10428
10429 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10430 then we need to perform the conversion manually, because
10431 evaluate_subexp_standard doesn't do it. This conversion is
10432 necessary in Ada because the different kinds of float/fixed
10433 types in Ada have different representations.
10434
10435 Similarly, we need to perform the conversion from OP_LONG
10436 ourselves. */
10437 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10438 arg1 = ada_value_cast (expect_type, arg1);
10439
10440 return arg1;
10441
10442 case OP_STRING:
10443 {
10444 struct value *result;
10445
10446 *pos -= 1;
10447 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10448 /* The result type will have code OP_STRING, bashed there from
10449 OP_ARRAY. Bash it back. */
10450 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10451 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10452 return result;
10453 }
10454
10455 case UNOP_CAST:
10456 (*pos) += 2;
10457 type = exp->elts[pc + 1].type;
10458 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10459
10460 case UNOP_QUAL:
10461 (*pos) += 2;
10462 type = exp->elts[pc + 1].type;
10463 return ada_evaluate_subexp (type, exp, pos, noside);
10464
10465 case BINOP_ASSIGN:
10466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10468 {
10469 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10470 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10471 return arg1;
10472 return ada_value_assign (arg1, arg1);
10473 }
10474 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10475 except if the lhs of our assignment is a convenience variable.
10476 In the case of assigning to a convenience variable, the lhs
10477 should be exactly the result of the evaluation of the rhs. */
10478 type = value_type (arg1);
10479 if (VALUE_LVAL (arg1) == lval_internalvar)
10480 type = NULL;
10481 arg2 = evaluate_subexp (type, exp, pos, noside);
10482 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10483 return arg1;
10484 if (VALUE_LVAL (arg1) == lval_internalvar)
10485 {
10486 /* Nothing. */
10487 }
10488 else if (ada_is_fixed_point_type (value_type (arg1)))
10489 arg2 = cast_to_fixed (value_type (arg1), arg2);
10490 else if (ada_is_fixed_point_type (value_type (arg2)))
10491 error
10492 (_("Fixed-point values must be assigned to fixed-point variables"));
10493 else
10494 arg2 = coerce_for_assign (value_type (arg1), arg2);
10495 return ada_value_assign (arg1, arg2);
10496
10497 case BINOP_ADD:
10498 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10499 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10500 if (noside == EVAL_SKIP)
10501 goto nosideret;
10502 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10503 return (value_from_longest
10504 (value_type (arg1),
10505 value_as_long (arg1) + value_as_long (arg2)));
10506 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10507 return (value_from_longest
10508 (value_type (arg2),
10509 value_as_long (arg1) + value_as_long (arg2)));
10510 if ((ada_is_fixed_point_type (value_type (arg1))
10511 || ada_is_fixed_point_type (value_type (arg2)))
10512 && value_type (arg1) != value_type (arg2))
10513 error (_("Operands of fixed-point addition must have the same type"));
10514 /* Do the addition, and cast the result to the type of the first
10515 argument. We cannot cast the result to a reference type, so if
10516 ARG1 is a reference type, find its underlying type. */
10517 type = value_type (arg1);
10518 while (TYPE_CODE (type) == TYPE_CODE_REF)
10519 type = TYPE_TARGET_TYPE (type);
10520 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10521 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10522
10523 case BINOP_SUB:
10524 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10525 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10526 if (noside == EVAL_SKIP)
10527 goto nosideret;
10528 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10529 return (value_from_longest
10530 (value_type (arg1),
10531 value_as_long (arg1) - value_as_long (arg2)));
10532 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10533 return (value_from_longest
10534 (value_type (arg2),
10535 value_as_long (arg1) - value_as_long (arg2)));
10536 if ((ada_is_fixed_point_type (value_type (arg1))
10537 || ada_is_fixed_point_type (value_type (arg2)))
10538 && value_type (arg1) != value_type (arg2))
10539 error (_("Operands of fixed-point subtraction "
10540 "must have the same type"));
10541 /* Do the substraction, and cast the result to the type of the first
10542 argument. We cannot cast the result to a reference type, so if
10543 ARG1 is a reference type, find its underlying type. */
10544 type = value_type (arg1);
10545 while (TYPE_CODE (type) == TYPE_CODE_REF)
10546 type = TYPE_TARGET_TYPE (type);
10547 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10548 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10549
10550 case BINOP_MUL:
10551 case BINOP_DIV:
10552 case BINOP_REM:
10553 case BINOP_MOD:
10554 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10555 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10556 if (noside == EVAL_SKIP)
10557 goto nosideret;
10558 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10559 {
10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10561 return value_zero (value_type (arg1), not_lval);
10562 }
10563 else
10564 {
10565 type = builtin_type (exp->gdbarch)->builtin_double;
10566 if (ada_is_fixed_point_type (value_type (arg1)))
10567 arg1 = cast_from_fixed (type, arg1);
10568 if (ada_is_fixed_point_type (value_type (arg2)))
10569 arg2 = cast_from_fixed (type, arg2);
10570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10571 return ada_value_binop (arg1, arg2, op);
10572 }
10573
10574 case BINOP_EQUAL:
10575 case BINOP_NOTEQUAL:
10576 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10577 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10578 if (noside == EVAL_SKIP)
10579 goto nosideret;
10580 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10581 tem = 0;
10582 else
10583 {
10584 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10585 tem = ada_value_equal (arg1, arg2);
10586 }
10587 if (op == BINOP_NOTEQUAL)
10588 tem = !tem;
10589 type = language_bool_type (exp->language_defn, exp->gdbarch);
10590 return value_from_longest (type, (LONGEST) tem);
10591
10592 case UNOP_NEG:
10593 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10594 if (noside == EVAL_SKIP)
10595 goto nosideret;
10596 else if (ada_is_fixed_point_type (value_type (arg1)))
10597 return value_cast (value_type (arg1), value_neg (arg1));
10598 else
10599 {
10600 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10601 return value_neg (arg1);
10602 }
10603
10604 case BINOP_LOGICAL_AND:
10605 case BINOP_LOGICAL_OR:
10606 case UNOP_LOGICAL_NOT:
10607 {
10608 struct value *val;
10609
10610 *pos -= 1;
10611 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10612 type = language_bool_type (exp->language_defn, exp->gdbarch);
10613 return value_cast (type, val);
10614 }
10615
10616 case BINOP_BITWISE_AND:
10617 case BINOP_BITWISE_IOR:
10618 case BINOP_BITWISE_XOR:
10619 {
10620 struct value *val;
10621
10622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10623 *pos = pc;
10624 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10625
10626 return value_cast (value_type (arg1), val);
10627 }
10628
10629 case OP_VAR_VALUE:
10630 *pos -= 1;
10631
10632 if (noside == EVAL_SKIP)
10633 {
10634 *pos += 4;
10635 goto nosideret;
10636 }
10637
10638 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10639 /* Only encountered when an unresolved symbol occurs in a
10640 context other than a function call, in which case, it is
10641 invalid. */
10642 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10643 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10644
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 {
10647 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10648 /* Check to see if this is a tagged type. We also need to handle
10649 the case where the type is a reference to a tagged type, but
10650 we have to be careful to exclude pointers to tagged types.
10651 The latter should be shown as usual (as a pointer), whereas
10652 a reference should mostly be transparent to the user. */
10653 if (ada_is_tagged_type (type, 0)
10654 || (TYPE_CODE (type) == TYPE_CODE_REF
10655 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10656 {
10657 /* Tagged types are a little special in the fact that the real
10658 type is dynamic and can only be determined by inspecting the
10659 object's tag. This means that we need to get the object's
10660 value first (EVAL_NORMAL) and then extract the actual object
10661 type from its tag.
10662
10663 Note that we cannot skip the final step where we extract
10664 the object type from its tag, because the EVAL_NORMAL phase
10665 results in dynamic components being resolved into fixed ones.
10666 This can cause problems when trying to print the type
10667 description of tagged types whose parent has a dynamic size:
10668 We use the type name of the "_parent" component in order
10669 to print the name of the ancestor type in the type description.
10670 If that component had a dynamic size, the resolution into
10671 a fixed type would result in the loss of that type name,
10672 thus preventing us from printing the name of the ancestor
10673 type in the type description. */
10674 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10675
10676 if (TYPE_CODE (type) != TYPE_CODE_REF)
10677 {
10678 struct type *actual_type;
10679
10680 actual_type = type_from_tag (ada_value_tag (arg1));
10681 if (actual_type == NULL)
10682 /* If, for some reason, we were unable to determine
10683 the actual type from the tag, then use the static
10684 approximation that we just computed as a fallback.
10685 This can happen if the debugging information is
10686 incomplete, for instance. */
10687 actual_type = type;
10688 return value_zero (actual_type, not_lval);
10689 }
10690 else
10691 {
10692 /* In the case of a ref, ada_coerce_ref takes care
10693 of determining the actual type. But the evaluation
10694 should return a ref as it should be valid to ask
10695 for its address; so rebuild a ref after coerce. */
10696 arg1 = ada_coerce_ref (arg1);
10697 return value_ref (arg1, TYPE_CODE_REF);
10698 }
10699 }
10700
10701 /* Records and unions for which GNAT encodings have been
10702 generated need to be statically fixed as well.
10703 Otherwise, non-static fixing produces a type where
10704 all dynamic properties are removed, which prevents "ptype"
10705 from being able to completely describe the type.
10706 For instance, a case statement in a variant record would be
10707 replaced by the relevant components based on the actual
10708 value of the discriminants. */
10709 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10710 && dynamic_template_type (type) != NULL)
10711 || (TYPE_CODE (type) == TYPE_CODE_UNION
10712 && ada_find_parallel_type (type, "___XVU") != NULL))
10713 {
10714 *pos += 4;
10715 return value_zero (to_static_fixed_type (type), not_lval);
10716 }
10717 }
10718
10719 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10720 return ada_to_fixed_value (arg1);
10721
10722 case OP_FUNCALL:
10723 (*pos) += 2;
10724
10725 /* Allocate arg vector, including space for the function to be
10726 called in argvec[0] and a terminating NULL. */
10727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10728 argvec = XALLOCAVEC (struct value *, nargs + 2);
10729
10730 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10731 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10732 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10733 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10734 else
10735 {
10736 for (tem = 0; tem <= nargs; tem += 1)
10737 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 argvec[tem] = 0;
10739
10740 if (noside == EVAL_SKIP)
10741 goto nosideret;
10742 }
10743
10744 if (ada_is_constrained_packed_array_type
10745 (desc_base_type (value_type (argvec[0]))))
10746 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10747 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10748 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10749 /* This is a packed array that has already been fixed, and
10750 therefore already coerced to a simple array. Nothing further
10751 to do. */
10752 ;
10753 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10754 {
10755 /* Make sure we dereference references so that all the code below
10756 feels like it's really handling the referenced value. Wrapping
10757 types (for alignment) may be there, so make sure we strip them as
10758 well. */
10759 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10760 }
10761 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10762 && VALUE_LVAL (argvec[0]) == lval_memory)
10763 argvec[0] = value_addr (argvec[0]);
10764
10765 type = ada_check_typedef (value_type (argvec[0]));
10766
10767 /* Ada allows us to implicitly dereference arrays when subscripting
10768 them. So, if this is an array typedef (encoding use for array
10769 access types encoded as fat pointers), strip it now. */
10770 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10771 type = ada_typedef_target_type (type);
10772
10773 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10774 {
10775 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10776 {
10777 case TYPE_CODE_FUNC:
10778 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10779 break;
10780 case TYPE_CODE_ARRAY:
10781 break;
10782 case TYPE_CODE_STRUCT:
10783 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10784 argvec[0] = ada_value_ind (argvec[0]);
10785 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10786 break;
10787 default:
10788 error (_("cannot subscript or call something of type `%s'"),
10789 ada_type_name (value_type (argvec[0])));
10790 break;
10791 }
10792 }
10793
10794 switch (TYPE_CODE (type))
10795 {
10796 case TYPE_CODE_FUNC:
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 {
10799 if (TYPE_TARGET_TYPE (type) == NULL)
10800 error_call_unknown_return_type (NULL);
10801 return allocate_value (TYPE_TARGET_TYPE (type));
10802 }
10803 return call_function_by_hand (argvec[0], NULL,
10804 gdb::make_array_view (argvec + 1,
10805 nargs));
10806 case TYPE_CODE_INTERNAL_FUNCTION:
10807 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10808 /* We don't know anything about what the internal
10809 function might return, but we have to return
10810 something. */
10811 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10812 not_lval);
10813 else
10814 return call_internal_function (exp->gdbarch, exp->language_defn,
10815 argvec[0], nargs, argvec + 1);
10816
10817 case TYPE_CODE_STRUCT:
10818 {
10819 int arity;
10820
10821 arity = ada_array_arity (type);
10822 type = ada_array_element_type (type, nargs);
10823 if (type == NULL)
10824 error (_("cannot subscript or call a record"));
10825 if (arity != nargs)
10826 error (_("wrong number of subscripts; expecting %d"), arity);
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 return value_zero (ada_aligned_type (type), lval_memory);
10829 return
10830 unwrap_value (ada_value_subscript
10831 (argvec[0], nargs, argvec + 1));
10832 }
10833 case TYPE_CODE_ARRAY:
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 {
10836 type = ada_array_element_type (type, nargs);
10837 if (type == NULL)
10838 error (_("element type of array unknown"));
10839 else
10840 return value_zero (ada_aligned_type (type), lval_memory);
10841 }
10842 return
10843 unwrap_value (ada_value_subscript
10844 (ada_coerce_to_simple_array (argvec[0]),
10845 nargs, argvec + 1));
10846 case TYPE_CODE_PTR: /* Pointer to array */
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 {
10849 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10850 type = ada_array_element_type (type, nargs);
10851 if (type == NULL)
10852 error (_("element type of array unknown"));
10853 else
10854 return value_zero (ada_aligned_type (type), lval_memory);
10855 }
10856 return
10857 unwrap_value (ada_value_ptr_subscript (argvec[0],
10858 nargs, argvec + 1));
10859
10860 default:
10861 error (_("Attempt to index or call something other than an "
10862 "array or function"));
10863 }
10864
10865 case TERNOP_SLICE:
10866 {
10867 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 struct value *low_bound_val =
10869 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 struct value *high_bound_val =
10871 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 LONGEST low_bound;
10873 LONGEST high_bound;
10874
10875 low_bound_val = coerce_ref (low_bound_val);
10876 high_bound_val = coerce_ref (high_bound_val);
10877 low_bound = value_as_long (low_bound_val);
10878 high_bound = value_as_long (high_bound_val);
10879
10880 if (noside == EVAL_SKIP)
10881 goto nosideret;
10882
10883 /* If this is a reference to an aligner type, then remove all
10884 the aligners. */
10885 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10886 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10887 TYPE_TARGET_TYPE (value_type (array)) =
10888 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10889
10890 if (ada_is_constrained_packed_array_type (value_type (array)))
10891 error (_("cannot slice a packed array"));
10892
10893 /* If this is a reference to an array or an array lvalue,
10894 convert to a pointer. */
10895 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10896 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10897 && VALUE_LVAL (array) == lval_memory))
10898 array = value_addr (array);
10899
10900 if (noside == EVAL_AVOID_SIDE_EFFECTS
10901 && ada_is_array_descriptor_type (ada_check_typedef
10902 (value_type (array))))
10903 return empty_array (ada_type_of_array (array, 0), low_bound,
10904 high_bound);
10905
10906 array = ada_coerce_to_simple_array_ptr (array);
10907
10908 /* If we have more than one level of pointer indirection,
10909 dereference the value until we get only one level. */
10910 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10911 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10912 == TYPE_CODE_PTR))
10913 array = value_ind (array);
10914
10915 /* Make sure we really do have an array type before going further,
10916 to avoid a SEGV when trying to get the index type or the target
10917 type later down the road if the debug info generated by
10918 the compiler is incorrect or incomplete. */
10919 if (!ada_is_simple_array_type (value_type (array)))
10920 error (_("cannot take slice of non-array"));
10921
10922 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10923 == TYPE_CODE_PTR)
10924 {
10925 struct type *type0 = ada_check_typedef (value_type (array));
10926
10927 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10928 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10929 else
10930 {
10931 struct type *arr_type0 =
10932 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10933
10934 return ada_value_slice_from_ptr (array, arr_type0,
10935 longest_to_int (low_bound),
10936 longest_to_int (high_bound));
10937 }
10938 }
10939 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10940 return array;
10941 else if (high_bound < low_bound)
10942 return empty_array (value_type (array), low_bound, high_bound);
10943 else
10944 return ada_value_slice (array, longest_to_int (low_bound),
10945 longest_to_int (high_bound));
10946 }
10947
10948 case UNOP_IN_RANGE:
10949 (*pos) += 2;
10950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951 type = check_typedef (exp->elts[pc + 1].type);
10952
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955
10956 switch (TYPE_CODE (type))
10957 {
10958 default:
10959 lim_warning (_("Membership test incompletely implemented; "
10960 "always returns true"));
10961 type = language_bool_type (exp->language_defn, exp->gdbarch);
10962 return value_from_longest (type, (LONGEST) 1);
10963
10964 case TYPE_CODE_RANGE:
10965 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10966 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10967 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10968 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10969 type = language_bool_type (exp->language_defn, exp->gdbarch);
10970 return
10971 value_from_longest (type,
10972 (value_less (arg1, arg3)
10973 || value_equal (arg1, arg3))
10974 && (value_less (arg2, arg1)
10975 || value_equal (arg2, arg1)));
10976 }
10977
10978 case BINOP_IN_BOUNDS:
10979 (*pos) += 2;
10980 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982
10983 if (noside == EVAL_SKIP)
10984 goto nosideret;
10985
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 {
10988 type = language_bool_type (exp->language_defn, exp->gdbarch);
10989 return value_zero (type, not_lval);
10990 }
10991
10992 tem = longest_to_int (exp->elts[pc + 1].longconst);
10993
10994 type = ada_index_type (value_type (arg2), tem, "range");
10995 if (!type)
10996 type = value_type (arg1);
10997
10998 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10999 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11000
11001 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11002 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11003 type = language_bool_type (exp->language_defn, exp->gdbarch);
11004 return
11005 value_from_longest (type,
11006 (value_less (arg1, arg3)
11007 || value_equal (arg1, arg3))
11008 && (value_less (arg2, arg1)
11009 || value_equal (arg2, arg1)));
11010
11011 case TERNOP_IN_RANGE:
11012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018
11019 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11020 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11021 type = language_bool_type (exp->language_defn, exp->gdbarch);
11022 return
11023 value_from_longest (type,
11024 (value_less (arg1, arg3)
11025 || value_equal (arg1, arg3))
11026 && (value_less (arg2, arg1)
11027 || value_equal (arg2, arg1)));
11028
11029 case OP_ATR_FIRST:
11030 case OP_ATR_LAST:
11031 case OP_ATR_LENGTH:
11032 {
11033 struct type *type_arg;
11034
11035 if (exp->elts[*pos].opcode == OP_TYPE)
11036 {
11037 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11038 arg1 = NULL;
11039 type_arg = check_typedef (exp->elts[pc + 2].type);
11040 }
11041 else
11042 {
11043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11044 type_arg = NULL;
11045 }
11046
11047 if (exp->elts[*pos].opcode != OP_LONG)
11048 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11049 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11050 *pos += 4;
11051
11052 if (noside == EVAL_SKIP)
11053 goto nosideret;
11054 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11055 {
11056 if (type_arg == NULL)
11057 type_arg = value_type (arg1);
11058
11059 if (ada_is_constrained_packed_array_type (type_arg))
11060 type_arg = decode_constrained_packed_array_type (type_arg);
11061
11062 if (!discrete_type_p (type_arg))
11063 {
11064 switch (op)
11065 {
11066 default: /* Should never happen. */
11067 error (_("unexpected attribute encountered"));
11068 case OP_ATR_FIRST:
11069 case OP_ATR_LAST:
11070 type_arg = ada_index_type (type_arg, tem,
11071 ada_attribute_name (op));
11072 break;
11073 case OP_ATR_LENGTH:
11074 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11075 break;
11076 }
11077 }
11078
11079 return value_zero (type_arg, not_lval);
11080 }
11081 else if (type_arg == NULL)
11082 {
11083 arg1 = ada_coerce_ref (arg1);
11084
11085 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11086 arg1 = ada_coerce_to_simple_array (arg1);
11087
11088 if (op == OP_ATR_LENGTH)
11089 type = builtin_type (exp->gdbarch)->builtin_int;
11090 else
11091 {
11092 type = ada_index_type (value_type (arg1), tem,
11093 ada_attribute_name (op));
11094 if (type == NULL)
11095 type = builtin_type (exp->gdbarch)->builtin_int;
11096 }
11097
11098 switch (op)
11099 {
11100 default: /* Should never happen. */
11101 error (_("unexpected attribute encountered"));
11102 case OP_ATR_FIRST:
11103 return value_from_longest
11104 (type, ada_array_bound (arg1, tem, 0));
11105 case OP_ATR_LAST:
11106 return value_from_longest
11107 (type, ada_array_bound (arg1, tem, 1));
11108 case OP_ATR_LENGTH:
11109 return value_from_longest
11110 (type, ada_array_length (arg1, tem));
11111 }
11112 }
11113 else if (discrete_type_p (type_arg))
11114 {
11115 struct type *range_type;
11116 const char *name = ada_type_name (type_arg);
11117
11118 range_type = NULL;
11119 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11120 range_type = to_fixed_range_type (type_arg, NULL);
11121 if (range_type == NULL)
11122 range_type = type_arg;
11123 switch (op)
11124 {
11125 default:
11126 error (_("unexpected attribute encountered"));
11127 case OP_ATR_FIRST:
11128 return value_from_longest
11129 (range_type, ada_discrete_type_low_bound (range_type));
11130 case OP_ATR_LAST:
11131 return value_from_longest
11132 (range_type, ada_discrete_type_high_bound (range_type));
11133 case OP_ATR_LENGTH:
11134 error (_("the 'length attribute applies only to array types"));
11135 }
11136 }
11137 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11138 error (_("unimplemented type attribute"));
11139 else
11140 {
11141 LONGEST low, high;
11142
11143 if (ada_is_constrained_packed_array_type (type_arg))
11144 type_arg = decode_constrained_packed_array_type (type_arg);
11145
11146 if (op == OP_ATR_LENGTH)
11147 type = builtin_type (exp->gdbarch)->builtin_int;
11148 else
11149 {
11150 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11151 if (type == NULL)
11152 type = builtin_type (exp->gdbarch)->builtin_int;
11153 }
11154
11155 switch (op)
11156 {
11157 default:
11158 error (_("unexpected attribute encountered"));
11159 case OP_ATR_FIRST:
11160 low = ada_array_bound_from_type (type_arg, tem, 0);
11161 return value_from_longest (type, low);
11162 case OP_ATR_LAST:
11163 high = ada_array_bound_from_type (type_arg, tem, 1);
11164 return value_from_longest (type, high);
11165 case OP_ATR_LENGTH:
11166 low = ada_array_bound_from_type (type_arg, tem, 0);
11167 high = ada_array_bound_from_type (type_arg, tem, 1);
11168 return value_from_longest (type, high - low + 1);
11169 }
11170 }
11171 }
11172
11173 case OP_ATR_TAG:
11174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177
11178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11179 return value_zero (ada_tag_type (arg1), not_lval);
11180
11181 return ada_value_tag (arg1);
11182
11183 case OP_ATR_MIN:
11184 case OP_ATR_MAX:
11185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11187 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
11190 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11191 return value_zero (value_type (arg1), not_lval);
11192 else
11193 {
11194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11195 return value_binop (arg1, arg2,
11196 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11197 }
11198
11199 case OP_ATR_MODULUS:
11200 {
11201 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11202
11203 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206
11207 if (!ada_is_modular_type (type_arg))
11208 error (_("'modulus must be applied to modular type"));
11209
11210 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11211 ada_modulus (type_arg));
11212 }
11213
11214
11215 case OP_ATR_POS:
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 if (noside == EVAL_SKIP)
11219 goto nosideret;
11220 type = builtin_type (exp->gdbarch)->builtin_int;
11221 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11222 return value_zero (type, not_lval);
11223 else
11224 return value_pos_atr (type, arg1);
11225
11226 case OP_ATR_SIZE:
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 type = value_type (arg1);
11229
11230 /* If the argument is a reference, then dereference its type, since
11231 the user is really asking for the size of the actual object,
11232 not the size of the pointer. */
11233 if (TYPE_CODE (type) == TYPE_CODE_REF)
11234 type = TYPE_TARGET_TYPE (type);
11235
11236 if (noside == EVAL_SKIP)
11237 goto nosideret;
11238 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11239 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11240 else
11241 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11242 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11243
11244 case OP_ATR_VAL:
11245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 type = exp->elts[pc + 2].type;
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (type, not_lval);
11252 else
11253 return value_val_atr (type, arg1);
11254
11255 case BINOP_EXP:
11256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11257 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11258 if (noside == EVAL_SKIP)
11259 goto nosideret;
11260 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11261 return value_zero (value_type (arg1), not_lval);
11262 else
11263 {
11264 /* For integer exponentiation operations,
11265 only promote the first argument. */
11266 if (is_integral_type (value_type (arg2)))
11267 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11268 else
11269 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11270
11271 return value_binop (arg1, arg2, op);
11272 }
11273
11274 case UNOP_PLUS:
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 if (noside == EVAL_SKIP)
11277 goto nosideret;
11278 else
11279 return arg1;
11280
11281 case UNOP_ABS:
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11284 goto nosideret;
11285 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11286 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11287 return value_neg (arg1);
11288 else
11289 return arg1;
11290
11291 case UNOP_IND:
11292 preeval_pos = *pos;
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
11295 goto nosideret;
11296 type = ada_check_typedef (value_type (arg1));
11297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11298 {
11299 if (ada_is_array_descriptor_type (type))
11300 /* GDB allows dereferencing GNAT array descriptors. */
11301 {
11302 struct type *arrType = ada_type_of_array (arg1, 0);
11303
11304 if (arrType == NULL)
11305 error (_("Attempt to dereference null array pointer."));
11306 return value_at_lazy (arrType, 0);
11307 }
11308 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11309 || TYPE_CODE (type) == TYPE_CODE_REF
11310 /* In C you can dereference an array to get the 1st elt. */
11311 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11312 {
11313 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11314 only be determined by inspecting the object's tag.
11315 This means that we need to evaluate completely the
11316 expression in order to get its type. */
11317
11318 if ((TYPE_CODE (type) == TYPE_CODE_REF
11319 || TYPE_CODE (type) == TYPE_CODE_PTR)
11320 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11321 {
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11323 EVAL_NORMAL);
11324 type = value_type (ada_value_ind (arg1));
11325 }
11326 else
11327 {
11328 type = to_static_fixed_type
11329 (ada_aligned_type
11330 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11331 }
11332 ada_ensure_varsize_limit (type);
11333 return value_zero (type, lval_memory);
11334 }
11335 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11336 {
11337 /* GDB allows dereferencing an int. */
11338 if (expect_type == NULL)
11339 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11340 lval_memory);
11341 else
11342 {
11343 expect_type =
11344 to_static_fixed_type (ada_aligned_type (expect_type));
11345 return value_zero (expect_type, lval_memory);
11346 }
11347 }
11348 else
11349 error (_("Attempt to take contents of a non-pointer value."));
11350 }
11351 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11352 type = ada_check_typedef (value_type (arg1));
11353
11354 if (TYPE_CODE (type) == TYPE_CODE_INT)
11355 /* GDB allows dereferencing an int. If we were given
11356 the expect_type, then use that as the target type.
11357 Otherwise, assume that the target type is an int. */
11358 {
11359 if (expect_type != NULL)
11360 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11361 arg1));
11362 else
11363 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11364 (CORE_ADDR) value_as_address (arg1));
11365 }
11366
11367 if (ada_is_array_descriptor_type (type))
11368 /* GDB allows dereferencing GNAT array descriptors. */
11369 return ada_coerce_to_simple_array (arg1);
11370 else
11371 return ada_value_ind (arg1);
11372
11373 case STRUCTOP_STRUCT:
11374 tem = longest_to_int (exp->elts[pc + 1].longconst);
11375 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11376 preeval_pos = *pos;
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 if (noside == EVAL_SKIP)
11379 goto nosideret;
11380 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11381 {
11382 struct type *type1 = value_type (arg1);
11383
11384 if (ada_is_tagged_type (type1, 1))
11385 {
11386 type = ada_lookup_struct_elt_type (type1,
11387 &exp->elts[pc + 2].string,
11388 1, 1);
11389
11390 /* If the field is not found, check if it exists in the
11391 extension of this object's type. This means that we
11392 need to evaluate completely the expression. */
11393
11394 if (type == NULL)
11395 {
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11397 EVAL_NORMAL);
11398 arg1 = ada_value_struct_elt (arg1,
11399 &exp->elts[pc + 2].string,
11400 0);
11401 arg1 = unwrap_value (arg1);
11402 type = value_type (ada_to_fixed_value (arg1));
11403 }
11404 }
11405 else
11406 type =
11407 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11408 0);
11409
11410 return value_zero (ada_aligned_type (type), lval_memory);
11411 }
11412 else
11413 {
11414 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11415 arg1 = unwrap_value (arg1);
11416 return ada_to_fixed_value (arg1);
11417 }
11418
11419 case OP_TYPE:
11420 /* The value is not supposed to be used. This is here to make it
11421 easier to accommodate expressions that contain types. */
11422 (*pos) += 2;
11423 if (noside == EVAL_SKIP)
11424 goto nosideret;
11425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11426 return allocate_value (exp->elts[pc + 1].type);
11427 else
11428 error (_("Attempt to use a type name as an expression"));
11429
11430 case OP_AGGREGATE:
11431 case OP_CHOICES:
11432 case OP_OTHERS:
11433 case OP_DISCRETE_RANGE:
11434 case OP_POSITIONAL:
11435 case OP_NAME:
11436 if (noside == EVAL_NORMAL)
11437 switch (op)
11438 {
11439 case OP_NAME:
11440 error (_("Undefined name, ambiguous name, or renaming used in "
11441 "component association: %s."), &exp->elts[pc+2].string);
11442 case OP_AGGREGATE:
11443 error (_("Aggregates only allowed on the right of an assignment"));
11444 default:
11445 internal_error (__FILE__, __LINE__,
11446 _("aggregate apparently mangled"));
11447 }
11448
11449 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11450 *pos += oplen - 1;
11451 for (tem = 0; tem < nargs; tem += 1)
11452 ada_evaluate_subexp (NULL, exp, pos, noside);
11453 goto nosideret;
11454 }
11455
11456 nosideret:
11457 return eval_skip_value (exp);
11458 }
11459 \f
11460
11461 /* Fixed point */
11462
11463 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11464 type name that encodes the 'small and 'delta information.
11465 Otherwise, return NULL. */
11466
11467 static const char *
11468 fixed_type_info (struct type *type)
11469 {
11470 const char *name = ada_type_name (type);
11471 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11472
11473 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11474 {
11475 const char *tail = strstr (name, "___XF_");
11476
11477 if (tail == NULL)
11478 return NULL;
11479 else
11480 return tail + 5;
11481 }
11482 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11483 return fixed_type_info (TYPE_TARGET_TYPE (type));
11484 else
11485 return NULL;
11486 }
11487
11488 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11489
11490 int
11491 ada_is_fixed_point_type (struct type *type)
11492 {
11493 return fixed_type_info (type) != NULL;
11494 }
11495
11496 /* Return non-zero iff TYPE represents a System.Address type. */
11497
11498 int
11499 ada_is_system_address_type (struct type *type)
11500 {
11501 return (TYPE_NAME (type)
11502 && strcmp (TYPE_NAME (type), "system__address") == 0);
11503 }
11504
11505 /* Assuming that TYPE is the representation of an Ada fixed-point
11506 type, return the target floating-point type to be used to represent
11507 of this type during internal computation. */
11508
11509 static struct type *
11510 ada_scaling_type (struct type *type)
11511 {
11512 return builtin_type (get_type_arch (type))->builtin_long_double;
11513 }
11514
11515 /* Assuming that TYPE is the representation of an Ada fixed-point
11516 type, return its delta, or NULL if the type is malformed and the
11517 delta cannot be determined. */
11518
11519 struct value *
11520 ada_delta (struct type *type)
11521 {
11522 const char *encoding = fixed_type_info (type);
11523 struct type *scale_type = ada_scaling_type (type);
11524
11525 long long num, den;
11526
11527 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11528 return nullptr;
11529 else
11530 return value_binop (value_from_longest (scale_type, num),
11531 value_from_longest (scale_type, den), BINOP_DIV);
11532 }
11533
11534 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11535 factor ('SMALL value) associated with the type. */
11536
11537 struct value *
11538 ada_scaling_factor (struct type *type)
11539 {
11540 const char *encoding = fixed_type_info (type);
11541 struct type *scale_type = ada_scaling_type (type);
11542
11543 long long num0, den0, num1, den1;
11544 int n;
11545
11546 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11547 &num0, &den0, &num1, &den1);
11548
11549 if (n < 2)
11550 return value_from_longest (scale_type, 1);
11551 else if (n == 4)
11552 return value_binop (value_from_longest (scale_type, num1),
11553 value_from_longest (scale_type, den1), BINOP_DIV);
11554 else
11555 return value_binop (value_from_longest (scale_type, num0),
11556 value_from_longest (scale_type, den0), BINOP_DIV);
11557 }
11558
11559 \f
11560
11561 /* Range types */
11562
11563 /* Scan STR beginning at position K for a discriminant name, and
11564 return the value of that discriminant field of DVAL in *PX. If
11565 PNEW_K is not null, put the position of the character beyond the
11566 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11567 not alter *PX and *PNEW_K if unsuccessful. */
11568
11569 static int
11570 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11571 int *pnew_k)
11572 {
11573 static char *bound_buffer = NULL;
11574 static size_t bound_buffer_len = 0;
11575 const char *pstart, *pend, *bound;
11576 struct value *bound_val;
11577
11578 if (dval == NULL || str == NULL || str[k] == '\0')
11579 return 0;
11580
11581 pstart = str + k;
11582 pend = strstr (pstart, "__");
11583 if (pend == NULL)
11584 {
11585 bound = pstart;
11586 k += strlen (bound);
11587 }
11588 else
11589 {
11590 int len = pend - pstart;
11591
11592 /* Strip __ and beyond. */
11593 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11594 strncpy (bound_buffer, pstart, len);
11595 bound_buffer[len] = '\0';
11596
11597 bound = bound_buffer;
11598 k = pend - str;
11599 }
11600
11601 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11602 if (bound_val == NULL)
11603 return 0;
11604
11605 *px = value_as_long (bound_val);
11606 if (pnew_k != NULL)
11607 *pnew_k = k;
11608 return 1;
11609 }
11610
11611 /* Value of variable named NAME in the current environment. If
11612 no such variable found, then if ERR_MSG is null, returns 0, and
11613 otherwise causes an error with message ERR_MSG. */
11614
11615 static struct value *
11616 get_var_value (const char *name, const char *err_msg)
11617 {
11618 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11619
11620 std::vector<struct block_symbol> syms;
11621 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11622 get_selected_block (0),
11623 VAR_DOMAIN, &syms, 1);
11624
11625 if (nsyms != 1)
11626 {
11627 if (err_msg == NULL)
11628 return 0;
11629 else
11630 error (("%s"), err_msg);
11631 }
11632
11633 return value_of_variable (syms[0].symbol, syms[0].block);
11634 }
11635
11636 /* Value of integer variable named NAME in the current environment.
11637 If no such variable is found, returns false. Otherwise, sets VALUE
11638 to the variable's value and returns true. */
11639
11640 bool
11641 get_int_var_value (const char *name, LONGEST &value)
11642 {
11643 struct value *var_val = get_var_value (name, 0);
11644
11645 if (var_val == 0)
11646 return false;
11647
11648 value = value_as_long (var_val);
11649 return true;
11650 }
11651
11652
11653 /* Return a range type whose base type is that of the range type named
11654 NAME in the current environment, and whose bounds are calculated
11655 from NAME according to the GNAT range encoding conventions.
11656 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11657 corresponding range type from debug information; fall back to using it
11658 if symbol lookup fails. If a new type must be created, allocate it
11659 like ORIG_TYPE was. The bounds information, in general, is encoded
11660 in NAME, the base type given in the named range type. */
11661
11662 static struct type *
11663 to_fixed_range_type (struct type *raw_type, struct value *dval)
11664 {
11665 const char *name;
11666 struct type *base_type;
11667 const char *subtype_info;
11668
11669 gdb_assert (raw_type != NULL);
11670 gdb_assert (TYPE_NAME (raw_type) != NULL);
11671
11672 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11673 base_type = TYPE_TARGET_TYPE (raw_type);
11674 else
11675 base_type = raw_type;
11676
11677 name = TYPE_NAME (raw_type);
11678 subtype_info = strstr (name, "___XD");
11679 if (subtype_info == NULL)
11680 {
11681 LONGEST L = ada_discrete_type_low_bound (raw_type);
11682 LONGEST U = ada_discrete_type_high_bound (raw_type);
11683
11684 if (L < INT_MIN || U > INT_MAX)
11685 return raw_type;
11686 else
11687 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11688 L, U);
11689 }
11690 else
11691 {
11692 static char *name_buf = NULL;
11693 static size_t name_len = 0;
11694 int prefix_len = subtype_info - name;
11695 LONGEST L, U;
11696 struct type *type;
11697 const char *bounds_str;
11698 int n;
11699
11700 GROW_VECT (name_buf, name_len, prefix_len + 5);
11701 strncpy (name_buf, name, prefix_len);
11702 name_buf[prefix_len] = '\0';
11703
11704 subtype_info += 5;
11705 bounds_str = strchr (subtype_info, '_');
11706 n = 1;
11707
11708 if (*subtype_info == 'L')
11709 {
11710 if (!ada_scan_number (bounds_str, n, &L, &n)
11711 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11712 return raw_type;
11713 if (bounds_str[n] == '_')
11714 n += 2;
11715 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11716 n += 1;
11717 subtype_info += 1;
11718 }
11719 else
11720 {
11721 strcpy (name_buf + prefix_len, "___L");
11722 if (!get_int_var_value (name_buf, L))
11723 {
11724 lim_warning (_("Unknown lower bound, using 1."));
11725 L = 1;
11726 }
11727 }
11728
11729 if (*subtype_info == 'U')
11730 {
11731 if (!ada_scan_number (bounds_str, n, &U, &n)
11732 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11733 return raw_type;
11734 }
11735 else
11736 {
11737 strcpy (name_buf + prefix_len, "___U");
11738 if (!get_int_var_value (name_buf, U))
11739 {
11740 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11741 U = L;
11742 }
11743 }
11744
11745 type = create_static_range_type (alloc_type_copy (raw_type),
11746 base_type, L, U);
11747 /* create_static_range_type alters the resulting type's length
11748 to match the size of the base_type, which is not what we want.
11749 Set it back to the original range type's length. */
11750 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11751 TYPE_NAME (type) = name;
11752 return type;
11753 }
11754 }
11755
11756 /* True iff NAME is the name of a range type. */
11757
11758 int
11759 ada_is_range_type_name (const char *name)
11760 {
11761 return (name != NULL && strstr (name, "___XD"));
11762 }
11763 \f
11764
11765 /* Modular types */
11766
11767 /* True iff TYPE is an Ada modular type. */
11768
11769 int
11770 ada_is_modular_type (struct type *type)
11771 {
11772 struct type *subranged_type = get_base_type (type);
11773
11774 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11775 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11776 && TYPE_UNSIGNED (subranged_type));
11777 }
11778
11779 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11780
11781 ULONGEST
11782 ada_modulus (struct type *type)
11783 {
11784 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11785 }
11786 \f
11787
11788 /* Ada exception catchpoint support:
11789 ---------------------------------
11790
11791 We support 3 kinds of exception catchpoints:
11792 . catchpoints on Ada exceptions
11793 . catchpoints on unhandled Ada exceptions
11794 . catchpoints on failed assertions
11795
11796 Exceptions raised during failed assertions, or unhandled exceptions
11797 could perfectly be caught with the general catchpoint on Ada exceptions.
11798 However, we can easily differentiate these two special cases, and having
11799 the option to distinguish these two cases from the rest can be useful
11800 to zero-in on certain situations.
11801
11802 Exception catchpoints are a specialized form of breakpoint,
11803 since they rely on inserting breakpoints inside known routines
11804 of the GNAT runtime. The implementation therefore uses a standard
11805 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11806 of breakpoint_ops.
11807
11808 Support in the runtime for exception catchpoints have been changed
11809 a few times already, and these changes affect the implementation
11810 of these catchpoints. In order to be able to support several
11811 variants of the runtime, we use a sniffer that will determine
11812 the runtime variant used by the program being debugged. */
11813
11814 /* Ada's standard exceptions.
11815
11816 The Ada 83 standard also defined Numeric_Error. But there so many
11817 situations where it was unclear from the Ada 83 Reference Manual
11818 (RM) whether Constraint_Error or Numeric_Error should be raised,
11819 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11820 Interpretation saying that anytime the RM says that Numeric_Error
11821 should be raised, the implementation may raise Constraint_Error.
11822 Ada 95 went one step further and pretty much removed Numeric_Error
11823 from the list of standard exceptions (it made it a renaming of
11824 Constraint_Error, to help preserve compatibility when compiling
11825 an Ada83 compiler). As such, we do not include Numeric_Error from
11826 this list of standard exceptions. */
11827
11828 static const char *standard_exc[] = {
11829 "constraint_error",
11830 "program_error",
11831 "storage_error",
11832 "tasking_error"
11833 };
11834
11835 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11836
11837 /* A structure that describes how to support exception catchpoints
11838 for a given executable. */
11839
11840 struct exception_support_info
11841 {
11842 /* The name of the symbol to break on in order to insert
11843 a catchpoint on exceptions. */
11844 const char *catch_exception_sym;
11845
11846 /* The name of the symbol to break on in order to insert
11847 a catchpoint on unhandled exceptions. */
11848 const char *catch_exception_unhandled_sym;
11849
11850 /* The name of the symbol to break on in order to insert
11851 a catchpoint on failed assertions. */
11852 const char *catch_assert_sym;
11853
11854 /* The name of the symbol to break on in order to insert
11855 a catchpoint on exception handling. */
11856 const char *catch_handlers_sym;
11857
11858 /* Assuming that the inferior just triggered an unhandled exception
11859 catchpoint, this function is responsible for returning the address
11860 in inferior memory where the name of that exception is stored.
11861 Return zero if the address could not be computed. */
11862 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11863 };
11864
11865 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11866 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11867
11868 /* The following exception support info structure describes how to
11869 implement exception catchpoints with the latest version of the
11870 Ada runtime (as of 2007-03-06). */
11871
11872 static const struct exception_support_info default_exception_support_info =
11873 {
11874 "__gnat_debug_raise_exception", /* catch_exception_sym */
11875 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11876 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11877 "__gnat_begin_handler", /* catch_handlers_sym */
11878 ada_unhandled_exception_name_addr
11879 };
11880
11881 /* The following exception support info structure describes how to
11882 implement exception catchpoints with a slightly older version
11883 of the Ada runtime. */
11884
11885 static const struct exception_support_info exception_support_info_fallback =
11886 {
11887 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11888 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11889 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11890 "__gnat_begin_handler", /* catch_handlers_sym */
11891 ada_unhandled_exception_name_addr_from_raise
11892 };
11893
11894 /* Return nonzero if we can detect the exception support routines
11895 described in EINFO.
11896
11897 This function errors out if an abnormal situation is detected
11898 (for instance, if we find the exception support routines, but
11899 that support is found to be incomplete). */
11900
11901 static int
11902 ada_has_this_exception_support (const struct exception_support_info *einfo)
11903 {
11904 struct symbol *sym;
11905
11906 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11907 that should be compiled with debugging information. As a result, we
11908 expect to find that symbol in the symtabs. */
11909
11910 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11911 if (sym == NULL)
11912 {
11913 /* Perhaps we did not find our symbol because the Ada runtime was
11914 compiled without debugging info, or simply stripped of it.
11915 It happens on some GNU/Linux distributions for instance, where
11916 users have to install a separate debug package in order to get
11917 the runtime's debugging info. In that situation, let the user
11918 know why we cannot insert an Ada exception catchpoint.
11919
11920 Note: Just for the purpose of inserting our Ada exception
11921 catchpoint, we could rely purely on the associated minimal symbol.
11922 But we would be operating in degraded mode anyway, since we are
11923 still lacking the debugging info needed later on to extract
11924 the name of the exception being raised (this name is printed in
11925 the catchpoint message, and is also used when trying to catch
11926 a specific exception). We do not handle this case for now. */
11927 struct bound_minimal_symbol msym
11928 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11929
11930 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11931 error (_("Your Ada runtime appears to be missing some debugging "
11932 "information.\nCannot insert Ada exception catchpoint "
11933 "in this configuration."));
11934
11935 return 0;
11936 }
11937
11938 /* Make sure that the symbol we found corresponds to a function. */
11939
11940 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11941 error (_("Symbol \"%s\" is not a function (class = %d)"),
11942 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11943
11944 return 1;
11945 }
11946
11947 /* Inspect the Ada runtime and determine which exception info structure
11948 should be used to provide support for exception catchpoints.
11949
11950 This function will always set the per-inferior exception_info,
11951 or raise an error. */
11952
11953 static void
11954 ada_exception_support_info_sniffer (void)
11955 {
11956 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11957
11958 /* If the exception info is already known, then no need to recompute it. */
11959 if (data->exception_info != NULL)
11960 return;
11961
11962 /* Check the latest (default) exception support info. */
11963 if (ada_has_this_exception_support (&default_exception_support_info))
11964 {
11965 data->exception_info = &default_exception_support_info;
11966 return;
11967 }
11968
11969 /* Try our fallback exception suport info. */
11970 if (ada_has_this_exception_support (&exception_support_info_fallback))
11971 {
11972 data->exception_info = &exception_support_info_fallback;
11973 return;
11974 }
11975
11976 /* Sometimes, it is normal for us to not be able to find the routine
11977 we are looking for. This happens when the program is linked with
11978 the shared version of the GNAT runtime, and the program has not been
11979 started yet. Inform the user of these two possible causes if
11980 applicable. */
11981
11982 if (ada_update_initial_language (language_unknown) != language_ada)
11983 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11984
11985 /* If the symbol does not exist, then check that the program is
11986 already started, to make sure that shared libraries have been
11987 loaded. If it is not started, this may mean that the symbol is
11988 in a shared library. */
11989
11990 if (inferior_ptid.pid () == 0)
11991 error (_("Unable to insert catchpoint. Try to start the program first."));
11992
11993 /* At this point, we know that we are debugging an Ada program and
11994 that the inferior has been started, but we still are not able to
11995 find the run-time symbols. That can mean that we are in
11996 configurable run time mode, or that a-except as been optimized
11997 out by the linker... In any case, at this point it is not worth
11998 supporting this feature. */
11999
12000 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12001 }
12002
12003 /* True iff FRAME is very likely to be that of a function that is
12004 part of the runtime system. This is all very heuristic, but is
12005 intended to be used as advice as to what frames are uninteresting
12006 to most users. */
12007
12008 static int
12009 is_known_support_routine (struct frame_info *frame)
12010 {
12011 enum language func_lang;
12012 int i;
12013 const char *fullname;
12014
12015 /* If this code does not have any debugging information (no symtab),
12016 This cannot be any user code. */
12017
12018 symtab_and_line sal = find_frame_sal (frame);
12019 if (sal.symtab == NULL)
12020 return 1;
12021
12022 /* If there is a symtab, but the associated source file cannot be
12023 located, then assume this is not user code: Selecting a frame
12024 for which we cannot display the code would not be very helpful
12025 for the user. This should also take care of case such as VxWorks
12026 where the kernel has some debugging info provided for a few units. */
12027
12028 fullname = symtab_to_fullname (sal.symtab);
12029 if (access (fullname, R_OK) != 0)
12030 return 1;
12031
12032 /* Check the unit filename againt the Ada runtime file naming.
12033 We also check the name of the objfile against the name of some
12034 known system libraries that sometimes come with debugging info
12035 too. */
12036
12037 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12038 {
12039 re_comp (known_runtime_file_name_patterns[i]);
12040 if (re_exec (lbasename (sal.symtab->filename)))
12041 return 1;
12042 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12043 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12044 return 1;
12045 }
12046
12047 /* Check whether the function is a GNAT-generated entity. */
12048
12049 gdb::unique_xmalloc_ptr<char> func_name
12050 = find_frame_funname (frame, &func_lang, NULL);
12051 if (func_name == NULL)
12052 return 1;
12053
12054 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12055 {
12056 re_comp (known_auxiliary_function_name_patterns[i]);
12057 if (re_exec (func_name.get ()))
12058 return 1;
12059 }
12060
12061 return 0;
12062 }
12063
12064 /* Find the first frame that contains debugging information and that is not
12065 part of the Ada run-time, starting from FI and moving upward. */
12066
12067 void
12068 ada_find_printable_frame (struct frame_info *fi)
12069 {
12070 for (; fi != NULL; fi = get_prev_frame (fi))
12071 {
12072 if (!is_known_support_routine (fi))
12073 {
12074 select_frame (fi);
12075 break;
12076 }
12077 }
12078
12079 }
12080
12081 /* Assuming that the inferior just triggered an unhandled exception
12082 catchpoint, return the address in inferior memory where the name
12083 of the exception is stored.
12084
12085 Return zero if the address could not be computed. */
12086
12087 static CORE_ADDR
12088 ada_unhandled_exception_name_addr (void)
12089 {
12090 return parse_and_eval_address ("e.full_name");
12091 }
12092
12093 /* Same as ada_unhandled_exception_name_addr, except that this function
12094 should be used when the inferior uses an older version of the runtime,
12095 where the exception name needs to be extracted from a specific frame
12096 several frames up in the callstack. */
12097
12098 static CORE_ADDR
12099 ada_unhandled_exception_name_addr_from_raise (void)
12100 {
12101 int frame_level;
12102 struct frame_info *fi;
12103 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12104
12105 /* To determine the name of this exception, we need to select
12106 the frame corresponding to RAISE_SYM_NAME. This frame is
12107 at least 3 levels up, so we simply skip the first 3 frames
12108 without checking the name of their associated function. */
12109 fi = get_current_frame ();
12110 for (frame_level = 0; frame_level < 3; frame_level += 1)
12111 if (fi != NULL)
12112 fi = get_prev_frame (fi);
12113
12114 while (fi != NULL)
12115 {
12116 enum language func_lang;
12117
12118 gdb::unique_xmalloc_ptr<char> func_name
12119 = find_frame_funname (fi, &func_lang, NULL);
12120 if (func_name != NULL)
12121 {
12122 if (strcmp (func_name.get (),
12123 data->exception_info->catch_exception_sym) == 0)
12124 break; /* We found the frame we were looking for... */
12125 }
12126 fi = get_prev_frame (fi);
12127 }
12128
12129 if (fi == NULL)
12130 return 0;
12131
12132 select_frame (fi);
12133 return parse_and_eval_address ("id.full_name");
12134 }
12135
12136 /* Assuming the inferior just triggered an Ada exception catchpoint
12137 (of any type), return the address in inferior memory where the name
12138 of the exception is stored, if applicable.
12139
12140 Assumes the selected frame is the current frame.
12141
12142 Return zero if the address could not be computed, or if not relevant. */
12143
12144 static CORE_ADDR
12145 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12146 struct breakpoint *b)
12147 {
12148 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12149
12150 switch (ex)
12151 {
12152 case ada_catch_exception:
12153 return (parse_and_eval_address ("e.full_name"));
12154 break;
12155
12156 case ada_catch_exception_unhandled:
12157 return data->exception_info->unhandled_exception_name_addr ();
12158 break;
12159
12160 case ada_catch_handlers:
12161 return 0; /* The runtimes does not provide access to the exception
12162 name. */
12163 break;
12164
12165 case ada_catch_assert:
12166 return 0; /* Exception name is not relevant in this case. */
12167 break;
12168
12169 default:
12170 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12171 break;
12172 }
12173
12174 return 0; /* Should never be reached. */
12175 }
12176
12177 /* Assuming the inferior is stopped at an exception catchpoint,
12178 return the message which was associated to the exception, if
12179 available. Return NULL if the message could not be retrieved.
12180
12181 Note: The exception message can be associated to an exception
12182 either through the use of the Raise_Exception function, or
12183 more simply (Ada 2005 and later), via:
12184
12185 raise Exception_Name with "exception message";
12186
12187 */
12188
12189 static gdb::unique_xmalloc_ptr<char>
12190 ada_exception_message_1 (void)
12191 {
12192 struct value *e_msg_val;
12193 int e_msg_len;
12194
12195 /* For runtimes that support this feature, the exception message
12196 is passed as an unbounded string argument called "message". */
12197 e_msg_val = parse_and_eval ("message");
12198 if (e_msg_val == NULL)
12199 return NULL; /* Exception message not supported. */
12200
12201 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12202 gdb_assert (e_msg_val != NULL);
12203 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12204
12205 /* If the message string is empty, then treat it as if there was
12206 no exception message. */
12207 if (e_msg_len <= 0)
12208 return NULL;
12209
12210 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12211 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12212 e_msg.get ()[e_msg_len] = '\0';
12213
12214 return e_msg;
12215 }
12216
12217 /* Same as ada_exception_message_1, except that all exceptions are
12218 contained here (returning NULL instead). */
12219
12220 static gdb::unique_xmalloc_ptr<char>
12221 ada_exception_message (void)
12222 {
12223 gdb::unique_xmalloc_ptr<char> e_msg;
12224
12225 try
12226 {
12227 e_msg = ada_exception_message_1 ();
12228 }
12229 catch (const gdb_exception_error &e)
12230 {
12231 e_msg.reset (nullptr);
12232 }
12233
12234 return e_msg;
12235 }
12236
12237 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12238 any error that ada_exception_name_addr_1 might cause to be thrown.
12239 When an error is intercepted, a warning with the error message is printed,
12240 and zero is returned. */
12241
12242 static CORE_ADDR
12243 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12244 struct breakpoint *b)
12245 {
12246 CORE_ADDR result = 0;
12247
12248 try
12249 {
12250 result = ada_exception_name_addr_1 (ex, b);
12251 }
12252
12253 catch (const gdb_exception_error &e)
12254 {
12255 warning (_("failed to get exception name: %s"), e.what ());
12256 return 0;
12257 }
12258
12259 return result;
12260 }
12261
12262 static std::string ada_exception_catchpoint_cond_string
12263 (const char *excep_string,
12264 enum ada_exception_catchpoint_kind ex);
12265
12266 /* Ada catchpoints.
12267
12268 In the case of catchpoints on Ada exceptions, the catchpoint will
12269 stop the target on every exception the program throws. When a user
12270 specifies the name of a specific exception, we translate this
12271 request into a condition expression (in text form), and then parse
12272 it into an expression stored in each of the catchpoint's locations.
12273 We then use this condition to check whether the exception that was
12274 raised is the one the user is interested in. If not, then the
12275 target is resumed again. We store the name of the requested
12276 exception, in order to be able to re-set the condition expression
12277 when symbols change. */
12278
12279 /* An instance of this type is used to represent an Ada catchpoint
12280 breakpoint location. */
12281
12282 class ada_catchpoint_location : public bp_location
12283 {
12284 public:
12285 ada_catchpoint_location (breakpoint *owner)
12286 : bp_location (owner, bp_loc_software_breakpoint)
12287 {}
12288
12289 /* The condition that checks whether the exception that was raised
12290 is the specific exception the user specified on catchpoint
12291 creation. */
12292 expression_up excep_cond_expr;
12293 };
12294
12295 /* An instance of this type is used to represent an Ada catchpoint. */
12296
12297 struct ada_catchpoint : public breakpoint
12298 {
12299 /* The name of the specific exception the user specified. */
12300 std::string excep_string;
12301 };
12302
12303 /* Parse the exception condition string in the context of each of the
12304 catchpoint's locations, and store them for later evaluation. */
12305
12306 static void
12307 create_excep_cond_exprs (struct ada_catchpoint *c,
12308 enum ada_exception_catchpoint_kind ex)
12309 {
12310 /* Nothing to do if there's no specific exception to catch. */
12311 if (c->excep_string.empty ())
12312 return;
12313
12314 /* Same if there are no locations... */
12315 if (c->loc == NULL)
12316 return;
12317
12318 /* We have to compute the expression once for each program space,
12319 because the expression may hold the addresses of multiple symbols
12320 in some cases. */
12321 std::multimap<program_space *, struct bp_location *> loc_map;
12322 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12323 loc_map.emplace (bl->pspace, bl);
12324
12325 scoped_restore_current_program_space save_pspace;
12326
12327 std::string cond_string;
12328 program_space *last_ps = nullptr;
12329 for (auto iter : loc_map)
12330 {
12331 struct ada_catchpoint_location *ada_loc
12332 = (struct ada_catchpoint_location *) iter.second;
12333
12334 if (ada_loc->pspace != last_ps)
12335 {
12336 last_ps = ada_loc->pspace;
12337 set_current_program_space (last_ps);
12338
12339 /* Compute the condition expression in text form, from the
12340 specific expection we want to catch. */
12341 cond_string
12342 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12343 ex);
12344 }
12345
12346 expression_up exp;
12347
12348 if (!ada_loc->shlib_disabled)
12349 {
12350 const char *s;
12351
12352 s = cond_string.c_str ();
12353 try
12354 {
12355 exp = parse_exp_1 (&s, ada_loc->address,
12356 block_for_pc (ada_loc->address),
12357 0);
12358 }
12359 catch (const gdb_exception_error &e)
12360 {
12361 warning (_("failed to reevaluate internal exception condition "
12362 "for catchpoint %d: %s"),
12363 c->number, e.what ());
12364 }
12365 }
12366
12367 ada_loc->excep_cond_expr = std::move (exp);
12368 }
12369 }
12370
12371 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12372 structure for all exception catchpoint kinds. */
12373
12374 static struct bp_location *
12375 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12376 struct breakpoint *self)
12377 {
12378 return new ada_catchpoint_location (self);
12379 }
12380
12381 /* Implement the RE_SET method in the breakpoint_ops structure for all
12382 exception catchpoint kinds. */
12383
12384 static void
12385 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12386 {
12387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12388
12389 /* Call the base class's method. This updates the catchpoint's
12390 locations. */
12391 bkpt_breakpoint_ops.re_set (b);
12392
12393 /* Reparse the exception conditional expressions. One for each
12394 location. */
12395 create_excep_cond_exprs (c, ex);
12396 }
12397
12398 /* Returns true if we should stop for this breakpoint hit. If the
12399 user specified a specific exception, we only want to cause a stop
12400 if the program thrown that exception. */
12401
12402 static int
12403 should_stop_exception (const struct bp_location *bl)
12404 {
12405 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12406 const struct ada_catchpoint_location *ada_loc
12407 = (const struct ada_catchpoint_location *) bl;
12408 int stop;
12409
12410 /* With no specific exception, should always stop. */
12411 if (c->excep_string.empty ())
12412 return 1;
12413
12414 if (ada_loc->excep_cond_expr == NULL)
12415 {
12416 /* We will have a NULL expression if back when we were creating
12417 the expressions, this location's had failed to parse. */
12418 return 1;
12419 }
12420
12421 stop = 1;
12422 try
12423 {
12424 struct value *mark;
12425
12426 mark = value_mark ();
12427 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12428 value_free_to_mark (mark);
12429 }
12430 catch (const gdb_exception &ex)
12431 {
12432 exception_fprintf (gdb_stderr, ex,
12433 _("Error in testing exception condition:\n"));
12434 }
12435
12436 return stop;
12437 }
12438
12439 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12440 for all exception catchpoint kinds. */
12441
12442 static void
12443 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12444 {
12445 bs->stop = should_stop_exception (bs->bp_location_at);
12446 }
12447
12448 /* Implement the PRINT_IT method in the breakpoint_ops structure
12449 for all exception catchpoint kinds. */
12450
12451 static enum print_stop_action
12452 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12453 {
12454 struct ui_out *uiout = current_uiout;
12455 struct breakpoint *b = bs->breakpoint_at;
12456
12457 annotate_catchpoint (b->number);
12458
12459 if (uiout->is_mi_like_p ())
12460 {
12461 uiout->field_string ("reason",
12462 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12463 uiout->field_string ("disp", bpdisp_text (b->disposition));
12464 }
12465
12466 uiout->text (b->disposition == disp_del
12467 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12468 uiout->field_signed ("bkptno", b->number);
12469 uiout->text (", ");
12470
12471 /* ada_exception_name_addr relies on the selected frame being the
12472 current frame. Need to do this here because this function may be
12473 called more than once when printing a stop, and below, we'll
12474 select the first frame past the Ada run-time (see
12475 ada_find_printable_frame). */
12476 select_frame (get_current_frame ());
12477
12478 switch (ex)
12479 {
12480 case ada_catch_exception:
12481 case ada_catch_exception_unhandled:
12482 case ada_catch_handlers:
12483 {
12484 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12485 char exception_name[256];
12486
12487 if (addr != 0)
12488 {
12489 read_memory (addr, (gdb_byte *) exception_name,
12490 sizeof (exception_name) - 1);
12491 exception_name [sizeof (exception_name) - 1] = '\0';
12492 }
12493 else
12494 {
12495 /* For some reason, we were unable to read the exception
12496 name. This could happen if the Runtime was compiled
12497 without debugging info, for instance. In that case,
12498 just replace the exception name by the generic string
12499 "exception" - it will read as "an exception" in the
12500 notification we are about to print. */
12501 memcpy (exception_name, "exception", sizeof ("exception"));
12502 }
12503 /* In the case of unhandled exception breakpoints, we print
12504 the exception name as "unhandled EXCEPTION_NAME", to make
12505 it clearer to the user which kind of catchpoint just got
12506 hit. We used ui_out_text to make sure that this extra
12507 info does not pollute the exception name in the MI case. */
12508 if (ex == ada_catch_exception_unhandled)
12509 uiout->text ("unhandled ");
12510 uiout->field_string ("exception-name", exception_name);
12511 }
12512 break;
12513 case ada_catch_assert:
12514 /* In this case, the name of the exception is not really
12515 important. Just print "failed assertion" to make it clearer
12516 that his program just hit an assertion-failure catchpoint.
12517 We used ui_out_text because this info does not belong in
12518 the MI output. */
12519 uiout->text ("failed assertion");
12520 break;
12521 }
12522
12523 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12524 if (exception_message != NULL)
12525 {
12526 uiout->text (" (");
12527 uiout->field_string ("exception-message", exception_message.get ());
12528 uiout->text (")");
12529 }
12530
12531 uiout->text (" at ");
12532 ada_find_printable_frame (get_current_frame ());
12533
12534 return PRINT_SRC_AND_LOC;
12535 }
12536
12537 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12538 for all exception catchpoint kinds. */
12539
12540 static void
12541 print_one_exception (enum ada_exception_catchpoint_kind ex,
12542 struct breakpoint *b, struct bp_location **last_loc)
12543 {
12544 struct ui_out *uiout = current_uiout;
12545 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12546 struct value_print_options opts;
12547
12548 get_user_print_options (&opts);
12549
12550 if (opts.addressprint)
12551 uiout->field_skip ("addr");
12552
12553 annotate_field (5);
12554 switch (ex)
12555 {
12556 case ada_catch_exception:
12557 if (!c->excep_string.empty ())
12558 {
12559 std::string msg = string_printf (_("`%s' Ada exception"),
12560 c->excep_string.c_str ());
12561
12562 uiout->field_string ("what", msg);
12563 }
12564 else
12565 uiout->field_string ("what", "all Ada exceptions");
12566
12567 break;
12568
12569 case ada_catch_exception_unhandled:
12570 uiout->field_string ("what", "unhandled Ada exceptions");
12571 break;
12572
12573 case ada_catch_handlers:
12574 if (!c->excep_string.empty ())
12575 {
12576 uiout->field_fmt ("what",
12577 _("`%s' Ada exception handlers"),
12578 c->excep_string.c_str ());
12579 }
12580 else
12581 uiout->field_string ("what", "all Ada exceptions handlers");
12582 break;
12583
12584 case ada_catch_assert:
12585 uiout->field_string ("what", "failed Ada assertions");
12586 break;
12587
12588 default:
12589 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12590 break;
12591 }
12592 }
12593
12594 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12595 for all exception catchpoint kinds. */
12596
12597 static void
12598 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12599 struct breakpoint *b)
12600 {
12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12602 struct ui_out *uiout = current_uiout;
12603
12604 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12605 : _("Catchpoint "));
12606 uiout->field_signed ("bkptno", b->number);
12607 uiout->text (": ");
12608
12609 switch (ex)
12610 {
12611 case ada_catch_exception:
12612 if (!c->excep_string.empty ())
12613 {
12614 std::string info = string_printf (_("`%s' Ada exception"),
12615 c->excep_string.c_str ());
12616 uiout->text (info.c_str ());
12617 }
12618 else
12619 uiout->text (_("all Ada exceptions"));
12620 break;
12621
12622 case ada_catch_exception_unhandled:
12623 uiout->text (_("unhandled Ada exceptions"));
12624 break;
12625
12626 case ada_catch_handlers:
12627 if (!c->excep_string.empty ())
12628 {
12629 std::string info
12630 = string_printf (_("`%s' Ada exception handlers"),
12631 c->excep_string.c_str ());
12632 uiout->text (info.c_str ());
12633 }
12634 else
12635 uiout->text (_("all Ada exceptions handlers"));
12636 break;
12637
12638 case ada_catch_assert:
12639 uiout->text (_("failed Ada assertions"));
12640 break;
12641
12642 default:
12643 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12644 break;
12645 }
12646 }
12647
12648 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12649 for all exception catchpoint kinds. */
12650
12651 static void
12652 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12653 struct breakpoint *b, struct ui_file *fp)
12654 {
12655 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12656
12657 switch (ex)
12658 {
12659 case ada_catch_exception:
12660 fprintf_filtered (fp, "catch exception");
12661 if (!c->excep_string.empty ())
12662 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12663 break;
12664
12665 case ada_catch_exception_unhandled:
12666 fprintf_filtered (fp, "catch exception unhandled");
12667 break;
12668
12669 case ada_catch_handlers:
12670 fprintf_filtered (fp, "catch handlers");
12671 break;
12672
12673 case ada_catch_assert:
12674 fprintf_filtered (fp, "catch assert");
12675 break;
12676
12677 default:
12678 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12679 }
12680 print_recreate_thread (b, fp);
12681 }
12682
12683 /* Virtual table for "catch exception" breakpoints. */
12684
12685 static struct bp_location *
12686 allocate_location_catch_exception (struct breakpoint *self)
12687 {
12688 return allocate_location_exception (ada_catch_exception, self);
12689 }
12690
12691 static void
12692 re_set_catch_exception (struct breakpoint *b)
12693 {
12694 re_set_exception (ada_catch_exception, b);
12695 }
12696
12697 static void
12698 check_status_catch_exception (bpstat bs)
12699 {
12700 check_status_exception (ada_catch_exception, bs);
12701 }
12702
12703 static enum print_stop_action
12704 print_it_catch_exception (bpstat bs)
12705 {
12706 return print_it_exception (ada_catch_exception, bs);
12707 }
12708
12709 static void
12710 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12711 {
12712 print_one_exception (ada_catch_exception, b, last_loc);
12713 }
12714
12715 static void
12716 print_mention_catch_exception (struct breakpoint *b)
12717 {
12718 print_mention_exception (ada_catch_exception, b);
12719 }
12720
12721 static void
12722 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12723 {
12724 print_recreate_exception (ada_catch_exception, b, fp);
12725 }
12726
12727 static struct breakpoint_ops catch_exception_breakpoint_ops;
12728
12729 /* Virtual table for "catch exception unhandled" breakpoints. */
12730
12731 static struct bp_location *
12732 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12733 {
12734 return allocate_location_exception (ada_catch_exception_unhandled, self);
12735 }
12736
12737 static void
12738 re_set_catch_exception_unhandled (struct breakpoint *b)
12739 {
12740 re_set_exception (ada_catch_exception_unhandled, b);
12741 }
12742
12743 static void
12744 check_status_catch_exception_unhandled (bpstat bs)
12745 {
12746 check_status_exception (ada_catch_exception_unhandled, bs);
12747 }
12748
12749 static enum print_stop_action
12750 print_it_catch_exception_unhandled (bpstat bs)
12751 {
12752 return print_it_exception (ada_catch_exception_unhandled, bs);
12753 }
12754
12755 static void
12756 print_one_catch_exception_unhandled (struct breakpoint *b,
12757 struct bp_location **last_loc)
12758 {
12759 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12760 }
12761
12762 static void
12763 print_mention_catch_exception_unhandled (struct breakpoint *b)
12764 {
12765 print_mention_exception (ada_catch_exception_unhandled, b);
12766 }
12767
12768 static void
12769 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12770 struct ui_file *fp)
12771 {
12772 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12773 }
12774
12775 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12776
12777 /* Virtual table for "catch assert" breakpoints. */
12778
12779 static struct bp_location *
12780 allocate_location_catch_assert (struct breakpoint *self)
12781 {
12782 return allocate_location_exception (ada_catch_assert, self);
12783 }
12784
12785 static void
12786 re_set_catch_assert (struct breakpoint *b)
12787 {
12788 re_set_exception (ada_catch_assert, b);
12789 }
12790
12791 static void
12792 check_status_catch_assert (bpstat bs)
12793 {
12794 check_status_exception (ada_catch_assert, bs);
12795 }
12796
12797 static enum print_stop_action
12798 print_it_catch_assert (bpstat bs)
12799 {
12800 return print_it_exception (ada_catch_assert, bs);
12801 }
12802
12803 static void
12804 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12805 {
12806 print_one_exception (ada_catch_assert, b, last_loc);
12807 }
12808
12809 static void
12810 print_mention_catch_assert (struct breakpoint *b)
12811 {
12812 print_mention_exception (ada_catch_assert, b);
12813 }
12814
12815 static void
12816 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12817 {
12818 print_recreate_exception (ada_catch_assert, b, fp);
12819 }
12820
12821 static struct breakpoint_ops catch_assert_breakpoint_ops;
12822
12823 /* Virtual table for "catch handlers" breakpoints. */
12824
12825 static struct bp_location *
12826 allocate_location_catch_handlers (struct breakpoint *self)
12827 {
12828 return allocate_location_exception (ada_catch_handlers, self);
12829 }
12830
12831 static void
12832 re_set_catch_handlers (struct breakpoint *b)
12833 {
12834 re_set_exception (ada_catch_handlers, b);
12835 }
12836
12837 static void
12838 check_status_catch_handlers (bpstat bs)
12839 {
12840 check_status_exception (ada_catch_handlers, bs);
12841 }
12842
12843 static enum print_stop_action
12844 print_it_catch_handlers (bpstat bs)
12845 {
12846 return print_it_exception (ada_catch_handlers, bs);
12847 }
12848
12849 static void
12850 print_one_catch_handlers (struct breakpoint *b,
12851 struct bp_location **last_loc)
12852 {
12853 print_one_exception (ada_catch_handlers, b, last_loc);
12854 }
12855
12856 static void
12857 print_mention_catch_handlers (struct breakpoint *b)
12858 {
12859 print_mention_exception (ada_catch_handlers, b);
12860 }
12861
12862 static void
12863 print_recreate_catch_handlers (struct breakpoint *b,
12864 struct ui_file *fp)
12865 {
12866 print_recreate_exception (ada_catch_handlers, b, fp);
12867 }
12868
12869 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12870
12871 /* See ada-lang.h. */
12872
12873 bool
12874 is_ada_exception_catchpoint (breakpoint *bp)
12875 {
12876 return (bp->ops == &catch_exception_breakpoint_ops
12877 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12878 || bp->ops == &catch_assert_breakpoint_ops
12879 || bp->ops == &catch_handlers_breakpoint_ops);
12880 }
12881
12882 /* Split the arguments specified in a "catch exception" command.
12883 Set EX to the appropriate catchpoint type.
12884 Set EXCEP_STRING to the name of the specific exception if
12885 specified by the user.
12886 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12887 "catch handlers" command. False otherwise.
12888 If a condition is found at the end of the arguments, the condition
12889 expression is stored in COND_STRING (memory must be deallocated
12890 after use). Otherwise COND_STRING is set to NULL. */
12891
12892 static void
12893 catch_ada_exception_command_split (const char *args,
12894 bool is_catch_handlers_cmd,
12895 enum ada_exception_catchpoint_kind *ex,
12896 std::string *excep_string,
12897 std::string *cond_string)
12898 {
12899 std::string exception_name;
12900
12901 exception_name = extract_arg (&args);
12902 if (exception_name == "if")
12903 {
12904 /* This is not an exception name; this is the start of a condition
12905 expression for a catchpoint on all exceptions. So, "un-get"
12906 this token, and set exception_name to NULL. */
12907 exception_name.clear ();
12908 args -= 2;
12909 }
12910
12911 /* Check to see if we have a condition. */
12912
12913 args = skip_spaces (args);
12914 if (startswith (args, "if")
12915 && (isspace (args[2]) || args[2] == '\0'))
12916 {
12917 args += 2;
12918 args = skip_spaces (args);
12919
12920 if (args[0] == '\0')
12921 error (_("Condition missing after `if' keyword"));
12922 *cond_string = args;
12923
12924 args += strlen (args);
12925 }
12926
12927 /* Check that we do not have any more arguments. Anything else
12928 is unexpected. */
12929
12930 if (args[0] != '\0')
12931 error (_("Junk at end of expression"));
12932
12933 if (is_catch_handlers_cmd)
12934 {
12935 /* Catch handling of exceptions. */
12936 *ex = ada_catch_handlers;
12937 *excep_string = exception_name;
12938 }
12939 else if (exception_name.empty ())
12940 {
12941 /* Catch all exceptions. */
12942 *ex = ada_catch_exception;
12943 excep_string->clear ();
12944 }
12945 else if (exception_name == "unhandled")
12946 {
12947 /* Catch unhandled exceptions. */
12948 *ex = ada_catch_exception_unhandled;
12949 excep_string->clear ();
12950 }
12951 else
12952 {
12953 /* Catch a specific exception. */
12954 *ex = ada_catch_exception;
12955 *excep_string = exception_name;
12956 }
12957 }
12958
12959 /* Return the name of the symbol on which we should break in order to
12960 implement a catchpoint of the EX kind. */
12961
12962 static const char *
12963 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12964 {
12965 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12966
12967 gdb_assert (data->exception_info != NULL);
12968
12969 switch (ex)
12970 {
12971 case ada_catch_exception:
12972 return (data->exception_info->catch_exception_sym);
12973 break;
12974 case ada_catch_exception_unhandled:
12975 return (data->exception_info->catch_exception_unhandled_sym);
12976 break;
12977 case ada_catch_assert:
12978 return (data->exception_info->catch_assert_sym);
12979 break;
12980 case ada_catch_handlers:
12981 return (data->exception_info->catch_handlers_sym);
12982 break;
12983 default:
12984 internal_error (__FILE__, __LINE__,
12985 _("unexpected catchpoint kind (%d)"), ex);
12986 }
12987 }
12988
12989 /* Return the breakpoint ops "virtual table" used for catchpoints
12990 of the EX kind. */
12991
12992 static const struct breakpoint_ops *
12993 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12994 {
12995 switch (ex)
12996 {
12997 case ada_catch_exception:
12998 return (&catch_exception_breakpoint_ops);
12999 break;
13000 case ada_catch_exception_unhandled:
13001 return (&catch_exception_unhandled_breakpoint_ops);
13002 break;
13003 case ada_catch_assert:
13004 return (&catch_assert_breakpoint_ops);
13005 break;
13006 case ada_catch_handlers:
13007 return (&catch_handlers_breakpoint_ops);
13008 break;
13009 default:
13010 internal_error (__FILE__, __LINE__,
13011 _("unexpected catchpoint kind (%d)"), ex);
13012 }
13013 }
13014
13015 /* Return the condition that will be used to match the current exception
13016 being raised with the exception that the user wants to catch. This
13017 assumes that this condition is used when the inferior just triggered
13018 an exception catchpoint.
13019 EX: the type of catchpoints used for catching Ada exceptions. */
13020
13021 static std::string
13022 ada_exception_catchpoint_cond_string (const char *excep_string,
13023 enum ada_exception_catchpoint_kind ex)
13024 {
13025 int i;
13026 std::string result;
13027 const char *name;
13028
13029 if (ex == ada_catch_handlers)
13030 {
13031 /* For exception handlers catchpoints, the condition string does
13032 not use the same parameter as for the other exceptions. */
13033 name = ("long_integer (GNAT_GCC_exception_Access"
13034 "(gcc_exception).all.occurrence.id)");
13035 }
13036 else
13037 name = "long_integer (e)";
13038
13039 /* The standard exceptions are a special case. They are defined in
13040 runtime units that have been compiled without debugging info; if
13041 EXCEP_STRING is the not-fully-qualified name of a standard
13042 exception (e.g. "constraint_error") then, during the evaluation
13043 of the condition expression, the symbol lookup on this name would
13044 *not* return this standard exception. The catchpoint condition
13045 may then be set only on user-defined exceptions which have the
13046 same not-fully-qualified name (e.g. my_package.constraint_error).
13047
13048 To avoid this unexcepted behavior, these standard exceptions are
13049 systematically prefixed by "standard". This means that "catch
13050 exception constraint_error" is rewritten into "catch exception
13051 standard.constraint_error".
13052
13053 If an exception named contraint_error is defined in another package of
13054 the inferior program, then the only way to specify this exception as a
13055 breakpoint condition is to use its fully-qualified named:
13056 e.g. my_package.constraint_error.
13057
13058 Furthermore, in some situations a standard exception's symbol may
13059 be present in more than one objfile, because the compiler may
13060 choose to emit copy relocations for them. So, we have to compare
13061 against all the possible addresses. */
13062
13063 /* Storage for a rewritten symbol name. */
13064 std::string std_name;
13065 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13066 {
13067 if (strcmp (standard_exc [i], excep_string) == 0)
13068 {
13069 std_name = std::string ("standard.") + excep_string;
13070 excep_string = std_name.c_str ();
13071 break;
13072 }
13073 }
13074
13075 excep_string = ada_encode (excep_string);
13076 std::vector<struct bound_minimal_symbol> symbols
13077 = ada_lookup_simple_minsyms (excep_string);
13078 for (const bound_minimal_symbol &msym : symbols)
13079 {
13080 if (!result.empty ())
13081 result += " or ";
13082 string_appendf (result, "%s = %s", name,
13083 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13084 }
13085
13086 return result;
13087 }
13088
13089 /* Return the symtab_and_line that should be used to insert an exception
13090 catchpoint of the TYPE kind.
13091
13092 ADDR_STRING returns the name of the function where the real
13093 breakpoint that implements the catchpoints is set, depending on the
13094 type of catchpoint we need to create. */
13095
13096 static struct symtab_and_line
13097 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13098 std::string *addr_string, const struct breakpoint_ops **ops)
13099 {
13100 const char *sym_name;
13101 struct symbol *sym;
13102
13103 /* First, find out which exception support info to use. */
13104 ada_exception_support_info_sniffer ();
13105
13106 /* Then lookup the function on which we will break in order to catch
13107 the Ada exceptions requested by the user. */
13108 sym_name = ada_exception_sym_name (ex);
13109 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13110
13111 if (sym == NULL)
13112 error (_("Catchpoint symbol not found: %s"), sym_name);
13113
13114 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13115 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13116
13117 /* Set ADDR_STRING. */
13118 *addr_string = sym_name;
13119
13120 /* Set OPS. */
13121 *ops = ada_exception_breakpoint_ops (ex);
13122
13123 return find_function_start_sal (sym, 1);
13124 }
13125
13126 /* Create an Ada exception catchpoint.
13127
13128 EX_KIND is the kind of exception catchpoint to be created.
13129
13130 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13131 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13132 of the exception to which this catchpoint applies.
13133
13134 COND_STRING, if not empty, is the catchpoint condition.
13135
13136 TEMPFLAG, if nonzero, means that the underlying breakpoint
13137 should be temporary.
13138
13139 FROM_TTY is the usual argument passed to all commands implementations. */
13140
13141 void
13142 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13143 enum ada_exception_catchpoint_kind ex_kind,
13144 const std::string &excep_string,
13145 const std::string &cond_string,
13146 int tempflag,
13147 int disabled,
13148 int from_tty)
13149 {
13150 std::string addr_string;
13151 const struct breakpoint_ops *ops = NULL;
13152 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13153
13154 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13155 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13156 ops, tempflag, disabled, from_tty);
13157 c->excep_string = excep_string;
13158 create_excep_cond_exprs (c.get (), ex_kind);
13159 if (!cond_string.empty ())
13160 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13161 install_breakpoint (0, std::move (c), 1);
13162 }
13163
13164 /* Implement the "catch exception" command. */
13165
13166 static void
13167 catch_ada_exception_command (const char *arg_entry, int from_tty,
13168 struct cmd_list_element *command)
13169 {
13170 const char *arg = arg_entry;
13171 struct gdbarch *gdbarch = get_current_arch ();
13172 int tempflag;
13173 enum ada_exception_catchpoint_kind ex_kind;
13174 std::string excep_string;
13175 std::string cond_string;
13176
13177 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13178
13179 if (!arg)
13180 arg = "";
13181 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13182 &cond_string);
13183 create_ada_exception_catchpoint (gdbarch, ex_kind,
13184 excep_string, cond_string,
13185 tempflag, 1 /* enabled */,
13186 from_tty);
13187 }
13188
13189 /* Implement the "catch handlers" command. */
13190
13191 static void
13192 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13193 struct cmd_list_element *command)
13194 {
13195 const char *arg = arg_entry;
13196 struct gdbarch *gdbarch = get_current_arch ();
13197 int tempflag;
13198 enum ada_exception_catchpoint_kind ex_kind;
13199 std::string excep_string;
13200 std::string cond_string;
13201
13202 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13203
13204 if (!arg)
13205 arg = "";
13206 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13207 &cond_string);
13208 create_ada_exception_catchpoint (gdbarch, ex_kind,
13209 excep_string, cond_string,
13210 tempflag, 1 /* enabled */,
13211 from_tty);
13212 }
13213
13214 /* Completion function for the Ada "catch" commands. */
13215
13216 static void
13217 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13218 const char *text, const char *word)
13219 {
13220 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13221
13222 for (const ada_exc_info &info : exceptions)
13223 {
13224 if (startswith (info.name, word))
13225 tracker.add_completion (make_unique_xstrdup (info.name));
13226 }
13227 }
13228
13229 /* Split the arguments specified in a "catch assert" command.
13230
13231 ARGS contains the command's arguments (or the empty string if
13232 no arguments were passed).
13233
13234 If ARGS contains a condition, set COND_STRING to that condition
13235 (the memory needs to be deallocated after use). */
13236
13237 static void
13238 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13239 {
13240 args = skip_spaces (args);
13241
13242 /* Check whether a condition was provided. */
13243 if (startswith (args, "if")
13244 && (isspace (args[2]) || args[2] == '\0'))
13245 {
13246 args += 2;
13247 args = skip_spaces (args);
13248 if (args[0] == '\0')
13249 error (_("condition missing after `if' keyword"));
13250 cond_string.assign (args);
13251 }
13252
13253 /* Otherwise, there should be no other argument at the end of
13254 the command. */
13255 else if (args[0] != '\0')
13256 error (_("Junk at end of arguments."));
13257 }
13258
13259 /* Implement the "catch assert" command. */
13260
13261 static void
13262 catch_assert_command (const char *arg_entry, int from_tty,
13263 struct cmd_list_element *command)
13264 {
13265 const char *arg = arg_entry;
13266 struct gdbarch *gdbarch = get_current_arch ();
13267 int tempflag;
13268 std::string cond_string;
13269
13270 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13271
13272 if (!arg)
13273 arg = "";
13274 catch_ada_assert_command_split (arg, cond_string);
13275 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13276 "", cond_string,
13277 tempflag, 1 /* enabled */,
13278 from_tty);
13279 }
13280
13281 /* Return non-zero if the symbol SYM is an Ada exception object. */
13282
13283 static int
13284 ada_is_exception_sym (struct symbol *sym)
13285 {
13286 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13287
13288 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13289 && SYMBOL_CLASS (sym) != LOC_BLOCK
13290 && SYMBOL_CLASS (sym) != LOC_CONST
13291 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13292 && type_name != NULL && strcmp (type_name, "exception") == 0);
13293 }
13294
13295 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13296 Ada exception object. This matches all exceptions except the ones
13297 defined by the Ada language. */
13298
13299 static int
13300 ada_is_non_standard_exception_sym (struct symbol *sym)
13301 {
13302 int i;
13303
13304 if (!ada_is_exception_sym (sym))
13305 return 0;
13306
13307 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13308 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13309 return 0; /* A standard exception. */
13310
13311 /* Numeric_Error is also a standard exception, so exclude it.
13312 See the STANDARD_EXC description for more details as to why
13313 this exception is not listed in that array. */
13314 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13315 return 0;
13316
13317 return 1;
13318 }
13319
13320 /* A helper function for std::sort, comparing two struct ada_exc_info
13321 objects.
13322
13323 The comparison is determined first by exception name, and then
13324 by exception address. */
13325
13326 bool
13327 ada_exc_info::operator< (const ada_exc_info &other) const
13328 {
13329 int result;
13330
13331 result = strcmp (name, other.name);
13332 if (result < 0)
13333 return true;
13334 if (result == 0 && addr < other.addr)
13335 return true;
13336 return false;
13337 }
13338
13339 bool
13340 ada_exc_info::operator== (const ada_exc_info &other) const
13341 {
13342 return addr == other.addr && strcmp (name, other.name) == 0;
13343 }
13344
13345 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13346 routine, but keeping the first SKIP elements untouched.
13347
13348 All duplicates are also removed. */
13349
13350 static void
13351 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13352 int skip)
13353 {
13354 std::sort (exceptions->begin () + skip, exceptions->end ());
13355 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13356 exceptions->end ());
13357 }
13358
13359 /* Add all exceptions defined by the Ada standard whose name match
13360 a regular expression.
13361
13362 If PREG is not NULL, then this regexp_t object is used to
13363 perform the symbol name matching. Otherwise, no name-based
13364 filtering is performed.
13365
13366 EXCEPTIONS is a vector of exceptions to which matching exceptions
13367 gets pushed. */
13368
13369 static void
13370 ada_add_standard_exceptions (compiled_regex *preg,
13371 std::vector<ada_exc_info> *exceptions)
13372 {
13373 int i;
13374
13375 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13376 {
13377 if (preg == NULL
13378 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13379 {
13380 struct bound_minimal_symbol msymbol
13381 = ada_lookup_simple_minsym (standard_exc[i]);
13382
13383 if (msymbol.minsym != NULL)
13384 {
13385 struct ada_exc_info info
13386 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13387
13388 exceptions->push_back (info);
13389 }
13390 }
13391 }
13392 }
13393
13394 /* Add all Ada exceptions defined locally and accessible from the given
13395 FRAME.
13396
13397 If PREG is not NULL, then this regexp_t object is used to
13398 perform the symbol name matching. Otherwise, no name-based
13399 filtering is performed.
13400
13401 EXCEPTIONS is a vector of exceptions to which matching exceptions
13402 gets pushed. */
13403
13404 static void
13405 ada_add_exceptions_from_frame (compiled_regex *preg,
13406 struct frame_info *frame,
13407 std::vector<ada_exc_info> *exceptions)
13408 {
13409 const struct block *block = get_frame_block (frame, 0);
13410
13411 while (block != 0)
13412 {
13413 struct block_iterator iter;
13414 struct symbol *sym;
13415
13416 ALL_BLOCK_SYMBOLS (block, iter, sym)
13417 {
13418 switch (SYMBOL_CLASS (sym))
13419 {
13420 case LOC_TYPEDEF:
13421 case LOC_BLOCK:
13422 case LOC_CONST:
13423 break;
13424 default:
13425 if (ada_is_exception_sym (sym))
13426 {
13427 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13428 SYMBOL_VALUE_ADDRESS (sym)};
13429
13430 exceptions->push_back (info);
13431 }
13432 }
13433 }
13434 if (BLOCK_FUNCTION (block) != NULL)
13435 break;
13436 block = BLOCK_SUPERBLOCK (block);
13437 }
13438 }
13439
13440 /* Return true if NAME matches PREG or if PREG is NULL. */
13441
13442 static bool
13443 name_matches_regex (const char *name, compiled_regex *preg)
13444 {
13445 return (preg == NULL
13446 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13447 }
13448
13449 /* Add all exceptions defined globally whose name name match
13450 a regular expression, excluding standard exceptions.
13451
13452 The reason we exclude standard exceptions is that they need
13453 to be handled separately: Standard exceptions are defined inside
13454 a runtime unit which is normally not compiled with debugging info,
13455 and thus usually do not show up in our symbol search. However,
13456 if the unit was in fact built with debugging info, we need to
13457 exclude them because they would duplicate the entry we found
13458 during the special loop that specifically searches for those
13459 standard exceptions.
13460
13461 If PREG is not NULL, then this regexp_t object is used to
13462 perform the symbol name matching. Otherwise, no name-based
13463 filtering is performed.
13464
13465 EXCEPTIONS is a vector of exceptions to which matching exceptions
13466 gets pushed. */
13467
13468 static void
13469 ada_add_global_exceptions (compiled_regex *preg,
13470 std::vector<ada_exc_info> *exceptions)
13471 {
13472 /* In Ada, the symbol "search name" is a linkage name, whereas the
13473 regular expression used to do the matching refers to the natural
13474 name. So match against the decoded name. */
13475 expand_symtabs_matching (NULL,
13476 lookup_name_info::match_any (),
13477 [&] (const char *search_name)
13478 {
13479 const char *decoded = ada_decode (search_name);
13480 return name_matches_regex (decoded, preg);
13481 },
13482 NULL,
13483 VARIABLES_DOMAIN);
13484
13485 for (objfile *objfile : current_program_space->objfiles ())
13486 {
13487 for (compunit_symtab *s : objfile->compunits ())
13488 {
13489 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13490 int i;
13491
13492 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13493 {
13494 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13495 struct block_iterator iter;
13496 struct symbol *sym;
13497
13498 ALL_BLOCK_SYMBOLS (b, iter, sym)
13499 if (ada_is_non_standard_exception_sym (sym)
13500 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13501 {
13502 struct ada_exc_info info
13503 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13504
13505 exceptions->push_back (info);
13506 }
13507 }
13508 }
13509 }
13510 }
13511
13512 /* Implements ada_exceptions_list with the regular expression passed
13513 as a regex_t, rather than a string.
13514
13515 If not NULL, PREG is used to filter out exceptions whose names
13516 do not match. Otherwise, all exceptions are listed. */
13517
13518 static std::vector<ada_exc_info>
13519 ada_exceptions_list_1 (compiled_regex *preg)
13520 {
13521 std::vector<ada_exc_info> result;
13522 int prev_len;
13523
13524 /* First, list the known standard exceptions. These exceptions
13525 need to be handled separately, as they are usually defined in
13526 runtime units that have been compiled without debugging info. */
13527
13528 ada_add_standard_exceptions (preg, &result);
13529
13530 /* Next, find all exceptions whose scope is local and accessible
13531 from the currently selected frame. */
13532
13533 if (has_stack_frames ())
13534 {
13535 prev_len = result.size ();
13536 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13537 &result);
13538 if (result.size () > prev_len)
13539 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13540 }
13541
13542 /* Add all exceptions whose scope is global. */
13543
13544 prev_len = result.size ();
13545 ada_add_global_exceptions (preg, &result);
13546 if (result.size () > prev_len)
13547 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13548
13549 return result;
13550 }
13551
13552 /* Return a vector of ada_exc_info.
13553
13554 If REGEXP is NULL, all exceptions are included in the result.
13555 Otherwise, it should contain a valid regular expression,
13556 and only the exceptions whose names match that regular expression
13557 are included in the result.
13558
13559 The exceptions are sorted in the following order:
13560 - Standard exceptions (defined by the Ada language), in
13561 alphabetical order;
13562 - Exceptions only visible from the current frame, in
13563 alphabetical order;
13564 - Exceptions whose scope is global, in alphabetical order. */
13565
13566 std::vector<ada_exc_info>
13567 ada_exceptions_list (const char *regexp)
13568 {
13569 if (regexp == NULL)
13570 return ada_exceptions_list_1 (NULL);
13571
13572 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13573 return ada_exceptions_list_1 (&reg);
13574 }
13575
13576 /* Implement the "info exceptions" command. */
13577
13578 static void
13579 info_exceptions_command (const char *regexp, int from_tty)
13580 {
13581 struct gdbarch *gdbarch = get_current_arch ();
13582
13583 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13584
13585 if (regexp != NULL)
13586 printf_filtered
13587 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13588 else
13589 printf_filtered (_("All defined Ada exceptions:\n"));
13590
13591 for (const ada_exc_info &info : exceptions)
13592 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13593 }
13594
13595 /* Operators */
13596 /* Information about operators given special treatment in functions
13597 below. */
13598 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13599
13600 #define ADA_OPERATORS \
13601 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13602 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13603 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13604 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13605 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13606 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13607 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13608 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13609 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13610 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13611 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13612 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13613 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13614 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13615 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13616 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13617 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13618 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13619 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13620
13621 static void
13622 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13623 int *argsp)
13624 {
13625 switch (exp->elts[pc - 1].opcode)
13626 {
13627 default:
13628 operator_length_standard (exp, pc, oplenp, argsp);
13629 break;
13630
13631 #define OP_DEFN(op, len, args, binop) \
13632 case op: *oplenp = len; *argsp = args; break;
13633 ADA_OPERATORS;
13634 #undef OP_DEFN
13635
13636 case OP_AGGREGATE:
13637 *oplenp = 3;
13638 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13639 break;
13640
13641 case OP_CHOICES:
13642 *oplenp = 3;
13643 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13644 break;
13645 }
13646 }
13647
13648 /* Implementation of the exp_descriptor method operator_check. */
13649
13650 static int
13651 ada_operator_check (struct expression *exp, int pos,
13652 int (*objfile_func) (struct objfile *objfile, void *data),
13653 void *data)
13654 {
13655 const union exp_element *const elts = exp->elts;
13656 struct type *type = NULL;
13657
13658 switch (elts[pos].opcode)
13659 {
13660 case UNOP_IN_RANGE:
13661 case UNOP_QUAL:
13662 type = elts[pos + 1].type;
13663 break;
13664
13665 default:
13666 return operator_check_standard (exp, pos, objfile_func, data);
13667 }
13668
13669 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13670
13671 if (type && TYPE_OBJFILE (type)
13672 && (*objfile_func) (TYPE_OBJFILE (type), data))
13673 return 1;
13674
13675 return 0;
13676 }
13677
13678 static const char *
13679 ada_op_name (enum exp_opcode opcode)
13680 {
13681 switch (opcode)
13682 {
13683 default:
13684 return op_name_standard (opcode);
13685
13686 #define OP_DEFN(op, len, args, binop) case op: return #op;
13687 ADA_OPERATORS;
13688 #undef OP_DEFN
13689
13690 case OP_AGGREGATE:
13691 return "OP_AGGREGATE";
13692 case OP_CHOICES:
13693 return "OP_CHOICES";
13694 case OP_NAME:
13695 return "OP_NAME";
13696 }
13697 }
13698
13699 /* As for operator_length, but assumes PC is pointing at the first
13700 element of the operator, and gives meaningful results only for the
13701 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13702
13703 static void
13704 ada_forward_operator_length (struct expression *exp, int pc,
13705 int *oplenp, int *argsp)
13706 {
13707 switch (exp->elts[pc].opcode)
13708 {
13709 default:
13710 *oplenp = *argsp = 0;
13711 break;
13712
13713 #define OP_DEFN(op, len, args, binop) \
13714 case op: *oplenp = len; *argsp = args; break;
13715 ADA_OPERATORS;
13716 #undef OP_DEFN
13717
13718 case OP_AGGREGATE:
13719 *oplenp = 3;
13720 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13721 break;
13722
13723 case OP_CHOICES:
13724 *oplenp = 3;
13725 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13726 break;
13727
13728 case OP_STRING:
13729 case OP_NAME:
13730 {
13731 int len = longest_to_int (exp->elts[pc + 1].longconst);
13732
13733 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13734 *argsp = 0;
13735 break;
13736 }
13737 }
13738 }
13739
13740 static int
13741 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13742 {
13743 enum exp_opcode op = exp->elts[elt].opcode;
13744 int oplen, nargs;
13745 int pc = elt;
13746 int i;
13747
13748 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13749
13750 switch (op)
13751 {
13752 /* Ada attributes ('Foo). */
13753 case OP_ATR_FIRST:
13754 case OP_ATR_LAST:
13755 case OP_ATR_LENGTH:
13756 case OP_ATR_IMAGE:
13757 case OP_ATR_MAX:
13758 case OP_ATR_MIN:
13759 case OP_ATR_MODULUS:
13760 case OP_ATR_POS:
13761 case OP_ATR_SIZE:
13762 case OP_ATR_TAG:
13763 case OP_ATR_VAL:
13764 break;
13765
13766 case UNOP_IN_RANGE:
13767 case UNOP_QUAL:
13768 /* XXX: gdb_sprint_host_address, type_sprint */
13769 fprintf_filtered (stream, _("Type @"));
13770 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13771 fprintf_filtered (stream, " (");
13772 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13773 fprintf_filtered (stream, ")");
13774 break;
13775 case BINOP_IN_BOUNDS:
13776 fprintf_filtered (stream, " (%d)",
13777 longest_to_int (exp->elts[pc + 2].longconst));
13778 break;
13779 case TERNOP_IN_RANGE:
13780 break;
13781
13782 case OP_AGGREGATE:
13783 case OP_OTHERS:
13784 case OP_DISCRETE_RANGE:
13785 case OP_POSITIONAL:
13786 case OP_CHOICES:
13787 break;
13788
13789 case OP_NAME:
13790 case OP_STRING:
13791 {
13792 char *name = &exp->elts[elt + 2].string;
13793 int len = longest_to_int (exp->elts[elt + 1].longconst);
13794
13795 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13796 break;
13797 }
13798
13799 default:
13800 return dump_subexp_body_standard (exp, stream, elt);
13801 }
13802
13803 elt += oplen;
13804 for (i = 0; i < nargs; i += 1)
13805 elt = dump_subexp (exp, stream, elt);
13806
13807 return elt;
13808 }
13809
13810 /* The Ada extension of print_subexp (q.v.). */
13811
13812 static void
13813 ada_print_subexp (struct expression *exp, int *pos,
13814 struct ui_file *stream, enum precedence prec)
13815 {
13816 int oplen, nargs, i;
13817 int pc = *pos;
13818 enum exp_opcode op = exp->elts[pc].opcode;
13819
13820 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13821
13822 *pos += oplen;
13823 switch (op)
13824 {
13825 default:
13826 *pos -= oplen;
13827 print_subexp_standard (exp, pos, stream, prec);
13828 return;
13829
13830 case OP_VAR_VALUE:
13831 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13832 return;
13833
13834 case BINOP_IN_BOUNDS:
13835 /* XXX: sprint_subexp */
13836 print_subexp (exp, pos, stream, PREC_SUFFIX);
13837 fputs_filtered (" in ", stream);
13838 print_subexp (exp, pos, stream, PREC_SUFFIX);
13839 fputs_filtered ("'range", stream);
13840 if (exp->elts[pc + 1].longconst > 1)
13841 fprintf_filtered (stream, "(%ld)",
13842 (long) exp->elts[pc + 1].longconst);
13843 return;
13844
13845 case TERNOP_IN_RANGE:
13846 if (prec >= PREC_EQUAL)
13847 fputs_filtered ("(", stream);
13848 /* XXX: sprint_subexp */
13849 print_subexp (exp, pos, stream, PREC_SUFFIX);
13850 fputs_filtered (" in ", stream);
13851 print_subexp (exp, pos, stream, PREC_EQUAL);
13852 fputs_filtered (" .. ", stream);
13853 print_subexp (exp, pos, stream, PREC_EQUAL);
13854 if (prec >= PREC_EQUAL)
13855 fputs_filtered (")", stream);
13856 return;
13857
13858 case OP_ATR_FIRST:
13859 case OP_ATR_LAST:
13860 case OP_ATR_LENGTH:
13861 case OP_ATR_IMAGE:
13862 case OP_ATR_MAX:
13863 case OP_ATR_MIN:
13864 case OP_ATR_MODULUS:
13865 case OP_ATR_POS:
13866 case OP_ATR_SIZE:
13867 case OP_ATR_TAG:
13868 case OP_ATR_VAL:
13869 if (exp->elts[*pos].opcode == OP_TYPE)
13870 {
13871 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13872 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13873 &type_print_raw_options);
13874 *pos += 3;
13875 }
13876 else
13877 print_subexp (exp, pos, stream, PREC_SUFFIX);
13878 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13879 if (nargs > 1)
13880 {
13881 int tem;
13882
13883 for (tem = 1; tem < nargs; tem += 1)
13884 {
13885 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13886 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13887 }
13888 fputs_filtered (")", stream);
13889 }
13890 return;
13891
13892 case UNOP_QUAL:
13893 type_print (exp->elts[pc + 1].type, "", stream, 0);
13894 fputs_filtered ("'(", stream);
13895 print_subexp (exp, pos, stream, PREC_PREFIX);
13896 fputs_filtered (")", stream);
13897 return;
13898
13899 case UNOP_IN_RANGE:
13900 /* XXX: sprint_subexp */
13901 print_subexp (exp, pos, stream, PREC_SUFFIX);
13902 fputs_filtered (" in ", stream);
13903 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13904 &type_print_raw_options);
13905 return;
13906
13907 case OP_DISCRETE_RANGE:
13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
13909 fputs_filtered ("..", stream);
13910 print_subexp (exp, pos, stream, PREC_SUFFIX);
13911 return;
13912
13913 case OP_OTHERS:
13914 fputs_filtered ("others => ", stream);
13915 print_subexp (exp, pos, stream, PREC_SUFFIX);
13916 return;
13917
13918 case OP_CHOICES:
13919 for (i = 0; i < nargs-1; i += 1)
13920 {
13921 if (i > 0)
13922 fputs_filtered ("|", stream);
13923 print_subexp (exp, pos, stream, PREC_SUFFIX);
13924 }
13925 fputs_filtered (" => ", stream);
13926 print_subexp (exp, pos, stream, PREC_SUFFIX);
13927 return;
13928
13929 case OP_POSITIONAL:
13930 print_subexp (exp, pos, stream, PREC_SUFFIX);
13931 return;
13932
13933 case OP_AGGREGATE:
13934 fputs_filtered ("(", stream);
13935 for (i = 0; i < nargs; i += 1)
13936 {
13937 if (i > 0)
13938 fputs_filtered (", ", stream);
13939 print_subexp (exp, pos, stream, PREC_SUFFIX);
13940 }
13941 fputs_filtered (")", stream);
13942 return;
13943 }
13944 }
13945
13946 /* Table mapping opcodes into strings for printing operators
13947 and precedences of the operators. */
13948
13949 static const struct op_print ada_op_print_tab[] = {
13950 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13951 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13952 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13953 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13954 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13955 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13956 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13957 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13958 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13959 {">=", BINOP_GEQ, PREC_ORDER, 0},
13960 {">", BINOP_GTR, PREC_ORDER, 0},
13961 {"<", BINOP_LESS, PREC_ORDER, 0},
13962 {">>", BINOP_RSH, PREC_SHIFT, 0},
13963 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13964 {"+", BINOP_ADD, PREC_ADD, 0},
13965 {"-", BINOP_SUB, PREC_ADD, 0},
13966 {"&", BINOP_CONCAT, PREC_ADD, 0},
13967 {"*", BINOP_MUL, PREC_MUL, 0},
13968 {"/", BINOP_DIV, PREC_MUL, 0},
13969 {"rem", BINOP_REM, PREC_MUL, 0},
13970 {"mod", BINOP_MOD, PREC_MUL, 0},
13971 {"**", BINOP_EXP, PREC_REPEAT, 0},
13972 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13973 {"-", UNOP_NEG, PREC_PREFIX, 0},
13974 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13975 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13976 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13977 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13978 {".all", UNOP_IND, PREC_SUFFIX, 1},
13979 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13980 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13981 {NULL, OP_NULL, PREC_SUFFIX, 0}
13982 };
13983 \f
13984 enum ada_primitive_types {
13985 ada_primitive_type_int,
13986 ada_primitive_type_long,
13987 ada_primitive_type_short,
13988 ada_primitive_type_char,
13989 ada_primitive_type_float,
13990 ada_primitive_type_double,
13991 ada_primitive_type_void,
13992 ada_primitive_type_long_long,
13993 ada_primitive_type_long_double,
13994 ada_primitive_type_natural,
13995 ada_primitive_type_positive,
13996 ada_primitive_type_system_address,
13997 ada_primitive_type_storage_offset,
13998 nr_ada_primitive_types
13999 };
14000
14001 static void
14002 ada_language_arch_info (struct gdbarch *gdbarch,
14003 struct language_arch_info *lai)
14004 {
14005 const struct builtin_type *builtin = builtin_type (gdbarch);
14006
14007 lai->primitive_type_vector
14008 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14009 struct type *);
14010
14011 lai->primitive_type_vector [ada_primitive_type_int]
14012 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14013 0, "integer");
14014 lai->primitive_type_vector [ada_primitive_type_long]
14015 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14016 0, "long_integer");
14017 lai->primitive_type_vector [ada_primitive_type_short]
14018 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14019 0, "short_integer");
14020 lai->string_char_type
14021 = lai->primitive_type_vector [ada_primitive_type_char]
14022 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14023 lai->primitive_type_vector [ada_primitive_type_float]
14024 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14025 "float", gdbarch_float_format (gdbarch));
14026 lai->primitive_type_vector [ada_primitive_type_double]
14027 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14028 "long_float", gdbarch_double_format (gdbarch));
14029 lai->primitive_type_vector [ada_primitive_type_long_long]
14030 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14031 0, "long_long_integer");
14032 lai->primitive_type_vector [ada_primitive_type_long_double]
14033 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14034 "long_long_float", gdbarch_long_double_format (gdbarch));
14035 lai->primitive_type_vector [ada_primitive_type_natural]
14036 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14037 0, "natural");
14038 lai->primitive_type_vector [ada_primitive_type_positive]
14039 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14040 0, "positive");
14041 lai->primitive_type_vector [ada_primitive_type_void]
14042 = builtin->builtin_void;
14043
14044 lai->primitive_type_vector [ada_primitive_type_system_address]
14045 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14046 "void"));
14047 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14048 = "system__address";
14049
14050 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14051 type. This is a signed integral type whose size is the same as
14052 the size of addresses. */
14053 {
14054 unsigned int addr_length = TYPE_LENGTH
14055 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14056
14057 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14058 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14059 "storage_offset");
14060 }
14061
14062 lai->bool_type_symbol = NULL;
14063 lai->bool_type_default = builtin->builtin_bool;
14064 }
14065 \f
14066 /* Language vector */
14067
14068 /* Not really used, but needed in the ada_language_defn. */
14069
14070 static void
14071 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14072 {
14073 ada_emit_char (c, type, stream, quoter, 1);
14074 }
14075
14076 static int
14077 parse (struct parser_state *ps)
14078 {
14079 warnings_issued = 0;
14080 return ada_parse (ps);
14081 }
14082
14083 static const struct exp_descriptor ada_exp_descriptor = {
14084 ada_print_subexp,
14085 ada_operator_length,
14086 ada_operator_check,
14087 ada_op_name,
14088 ada_dump_subexp_body,
14089 ada_evaluate_subexp
14090 };
14091
14092 /* symbol_name_matcher_ftype adapter for wild_match. */
14093
14094 static bool
14095 do_wild_match (const char *symbol_search_name,
14096 const lookup_name_info &lookup_name,
14097 completion_match_result *comp_match_res)
14098 {
14099 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14100 }
14101
14102 /* symbol_name_matcher_ftype adapter for full_match. */
14103
14104 static bool
14105 do_full_match (const char *symbol_search_name,
14106 const lookup_name_info &lookup_name,
14107 completion_match_result *comp_match_res)
14108 {
14109 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14110 }
14111
14112 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14113
14114 static bool
14115 do_exact_match (const char *symbol_search_name,
14116 const lookup_name_info &lookup_name,
14117 completion_match_result *comp_match_res)
14118 {
14119 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14120 }
14121
14122 /* Build the Ada lookup name for LOOKUP_NAME. */
14123
14124 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14125 {
14126 const std::string &user_name = lookup_name.name ();
14127
14128 if (user_name[0] == '<')
14129 {
14130 if (user_name.back () == '>')
14131 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14132 else
14133 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14134 m_encoded_p = true;
14135 m_verbatim_p = true;
14136 m_wild_match_p = false;
14137 m_standard_p = false;
14138 }
14139 else
14140 {
14141 m_verbatim_p = false;
14142
14143 m_encoded_p = user_name.find ("__") != std::string::npos;
14144
14145 if (!m_encoded_p)
14146 {
14147 const char *folded = ada_fold_name (user_name.c_str ());
14148 const char *encoded = ada_encode_1 (folded, false);
14149 if (encoded != NULL)
14150 m_encoded_name = encoded;
14151 else
14152 m_encoded_name = user_name;
14153 }
14154 else
14155 m_encoded_name = user_name;
14156
14157 /* Handle the 'package Standard' special case. See description
14158 of m_standard_p. */
14159 if (startswith (m_encoded_name.c_str (), "standard__"))
14160 {
14161 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14162 m_standard_p = true;
14163 }
14164 else
14165 m_standard_p = false;
14166
14167 /* If the name contains a ".", then the user is entering a fully
14168 qualified entity name, and the match must not be done in wild
14169 mode. Similarly, if the user wants to complete what looks
14170 like an encoded name, the match must not be done in wild
14171 mode. Also, in the standard__ special case always do
14172 non-wild matching. */
14173 m_wild_match_p
14174 = (lookup_name.match_type () != symbol_name_match_type::FULL
14175 && !m_encoded_p
14176 && !m_standard_p
14177 && user_name.find ('.') == std::string::npos);
14178 }
14179 }
14180
14181 /* symbol_name_matcher_ftype method for Ada. This only handles
14182 completion mode. */
14183
14184 static bool
14185 ada_symbol_name_matches (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
14187 completion_match_result *comp_match_res)
14188 {
14189 return lookup_name.ada ().matches (symbol_search_name,
14190 lookup_name.match_type (),
14191 comp_match_res);
14192 }
14193
14194 /* A name matcher that matches the symbol name exactly, with
14195 strcmp. */
14196
14197 static bool
14198 literal_symbol_name_matcher (const char *symbol_search_name,
14199 const lookup_name_info &lookup_name,
14200 completion_match_result *comp_match_res)
14201 {
14202 const std::string &name = lookup_name.name ();
14203
14204 int cmp = (lookup_name.completion_mode ()
14205 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14206 : strcmp (symbol_search_name, name.c_str ()));
14207 if (cmp == 0)
14208 {
14209 if (comp_match_res != NULL)
14210 comp_match_res->set_match (symbol_search_name);
14211 return true;
14212 }
14213 else
14214 return false;
14215 }
14216
14217 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14218 Ada. */
14219
14220 static symbol_name_matcher_ftype *
14221 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14222 {
14223 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14224 return literal_symbol_name_matcher;
14225
14226 if (lookup_name.completion_mode ())
14227 return ada_symbol_name_matches;
14228 else
14229 {
14230 if (lookup_name.ada ().wild_match_p ())
14231 return do_wild_match;
14232 else if (lookup_name.ada ().verbatim_p ())
14233 return do_exact_match;
14234 else
14235 return do_full_match;
14236 }
14237 }
14238
14239 /* Implement the "la_read_var_value" language_defn method for Ada. */
14240
14241 static struct value *
14242 ada_read_var_value (struct symbol *var, const struct block *var_block,
14243 struct frame_info *frame)
14244 {
14245 /* The only case where default_read_var_value is not sufficient
14246 is when VAR is a renaming... */
14247 if (frame != nullptr)
14248 {
14249 const struct block *frame_block = get_frame_block (frame, NULL);
14250 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14251 return ada_read_renaming_var_value (var, frame_block);
14252 }
14253
14254 /* This is a typical case where we expect the default_read_var_value
14255 function to work. */
14256 return default_read_var_value (var, var_block, frame);
14257 }
14258
14259 static const char *ada_extensions[] =
14260 {
14261 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14262 };
14263
14264 extern const struct language_defn ada_language_defn = {
14265 "ada", /* Language name */
14266 "Ada",
14267 language_ada,
14268 range_check_off,
14269 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14270 that's not quite what this means. */
14271 array_row_major,
14272 macro_expansion_no,
14273 ada_extensions,
14274 &ada_exp_descriptor,
14275 parse,
14276 resolve,
14277 ada_printchar, /* Print a character constant */
14278 ada_printstr, /* Function to print string constant */
14279 emit_char, /* Function to print single char (not used) */
14280 ada_print_type, /* Print a type using appropriate syntax */
14281 ada_print_typedef, /* Print a typedef using appropriate syntax */
14282 ada_val_print, /* Print a value using appropriate syntax */
14283 ada_value_print, /* Print a top-level value */
14284 ada_read_var_value, /* la_read_var_value */
14285 NULL, /* Language specific skip_trampoline */
14286 NULL, /* name_of_this */
14287 true, /* la_store_sym_names_in_linkage_form_p */
14288 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14289 basic_lookup_transparent_type, /* lookup_transparent_type */
14290 ada_la_decode, /* Language specific symbol demangler */
14291 ada_sniff_from_mangled_name,
14292 NULL, /* Language specific
14293 class_name_from_physname */
14294 ada_op_print_tab, /* expression operators for printing */
14295 0, /* c-style arrays */
14296 1, /* String lower bound */
14297 ada_get_gdb_completer_word_break_characters,
14298 ada_collect_symbol_completion_matches,
14299 ada_language_arch_info,
14300 ada_print_array_index,
14301 default_pass_by_reference,
14302 c_get_string,
14303 ada_watch_location_expression,
14304 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14305 ada_iterate_over_symbols,
14306 default_search_name_hash,
14307 &ada_varobj_ops,
14308 NULL,
14309 NULL,
14310 ada_is_string_type,
14311 "(...)" /* la_struct_too_deep_ellipsis */
14312 };
14313
14314 /* Command-list for the "set/show ada" prefix command. */
14315 static struct cmd_list_element *set_ada_list;
14316 static struct cmd_list_element *show_ada_list;
14317
14318 /* Implement the "set ada" prefix command. */
14319
14320 static void
14321 set_ada_command (const char *arg, int from_tty)
14322 {
14323 printf_unfiltered (_(\
14324 "\"set ada\" must be followed by the name of a setting.\n"));
14325 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14326 }
14327
14328 /* Implement the "show ada" prefix command. */
14329
14330 static void
14331 show_ada_command (const char *args, int from_tty)
14332 {
14333 cmd_show_list (show_ada_list, from_tty, "");
14334 }
14335
14336 static void
14337 initialize_ada_catchpoint_ops (void)
14338 {
14339 struct breakpoint_ops *ops;
14340
14341 initialize_breakpoint_ops ();
14342
14343 ops = &catch_exception_breakpoint_ops;
14344 *ops = bkpt_breakpoint_ops;
14345 ops->allocate_location = allocate_location_catch_exception;
14346 ops->re_set = re_set_catch_exception;
14347 ops->check_status = check_status_catch_exception;
14348 ops->print_it = print_it_catch_exception;
14349 ops->print_one = print_one_catch_exception;
14350 ops->print_mention = print_mention_catch_exception;
14351 ops->print_recreate = print_recreate_catch_exception;
14352
14353 ops = &catch_exception_unhandled_breakpoint_ops;
14354 *ops = bkpt_breakpoint_ops;
14355 ops->allocate_location = allocate_location_catch_exception_unhandled;
14356 ops->re_set = re_set_catch_exception_unhandled;
14357 ops->check_status = check_status_catch_exception_unhandled;
14358 ops->print_it = print_it_catch_exception_unhandled;
14359 ops->print_one = print_one_catch_exception_unhandled;
14360 ops->print_mention = print_mention_catch_exception_unhandled;
14361 ops->print_recreate = print_recreate_catch_exception_unhandled;
14362
14363 ops = &catch_assert_breakpoint_ops;
14364 *ops = bkpt_breakpoint_ops;
14365 ops->allocate_location = allocate_location_catch_assert;
14366 ops->re_set = re_set_catch_assert;
14367 ops->check_status = check_status_catch_assert;
14368 ops->print_it = print_it_catch_assert;
14369 ops->print_one = print_one_catch_assert;
14370 ops->print_mention = print_mention_catch_assert;
14371 ops->print_recreate = print_recreate_catch_assert;
14372
14373 ops = &catch_handlers_breakpoint_ops;
14374 *ops = bkpt_breakpoint_ops;
14375 ops->allocate_location = allocate_location_catch_handlers;
14376 ops->re_set = re_set_catch_handlers;
14377 ops->check_status = check_status_catch_handlers;
14378 ops->print_it = print_it_catch_handlers;
14379 ops->print_one = print_one_catch_handlers;
14380 ops->print_mention = print_mention_catch_handlers;
14381 ops->print_recreate = print_recreate_catch_handlers;
14382 }
14383
14384 /* This module's 'new_objfile' observer. */
14385
14386 static void
14387 ada_new_objfile_observer (struct objfile *objfile)
14388 {
14389 ada_clear_symbol_cache ();
14390 }
14391
14392 /* This module's 'free_objfile' observer. */
14393
14394 static void
14395 ada_free_objfile_observer (struct objfile *objfile)
14396 {
14397 ada_clear_symbol_cache ();
14398 }
14399
14400 void
14401 _initialize_ada_language (void)
14402 {
14403 initialize_ada_catchpoint_ops ();
14404
14405 add_prefix_cmd ("ada", no_class, set_ada_command,
14406 _("Prefix command for changing Ada-specific settings"),
14407 &set_ada_list, "set ada ", 0, &setlist);
14408
14409 add_prefix_cmd ("ada", no_class, show_ada_command,
14410 _("Generic command for showing Ada-specific settings."),
14411 &show_ada_list, "show ada ", 0, &showlist);
14412
14413 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14414 &trust_pad_over_xvs, _("\
14415 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14416 Show whether an optimization trusting PAD types over XVS types is activated"),
14417 _("\
14418 This is related to the encoding used by the GNAT compiler. The debugger\n\
14419 should normally trust the contents of PAD types, but certain older versions\n\
14420 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14421 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14422 work around this bug. It is always safe to turn this option \"off\", but\n\
14423 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14424 this option to \"off\" unless necessary."),
14425 NULL, NULL, &set_ada_list, &show_ada_list);
14426
14427 add_setshow_boolean_cmd ("print-signatures", class_vars,
14428 &print_signatures, _("\
14429 Enable or disable the output of formal and return types for functions in the \
14430 overloads selection menu"), _("\
14431 Show whether the output of formal and return types for functions in the \
14432 overloads selection menu is activated"),
14433 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14434
14435 add_catch_command ("exception", _("\
14436 Catch Ada exceptions, when raised.\n\
14437 Usage: catch exception [ARG] [if CONDITION]\n\
14438 Without any argument, stop when any Ada exception is raised.\n\
14439 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14440 being raised does not have a handler (and will therefore lead to the task's\n\
14441 termination).\n\
14442 Otherwise, the catchpoint only stops when the name of the exception being\n\
14443 raised is the same as ARG.\n\
14444 CONDITION is a boolean expression that is evaluated to see whether the\n\
14445 exception should cause a stop."),
14446 catch_ada_exception_command,
14447 catch_ada_completer,
14448 CATCH_PERMANENT,
14449 CATCH_TEMPORARY);
14450
14451 add_catch_command ("handlers", _("\
14452 Catch Ada exceptions, when handled.\n\
14453 Usage: catch handlers [ARG] [if CONDITION]\n\
14454 Without any argument, stop when any Ada exception is handled.\n\
14455 With an argument, catch only exceptions with the given name.\n\
14456 CONDITION is a boolean expression that is evaluated to see whether the\n\
14457 exception should cause a stop."),
14458 catch_ada_handlers_command,
14459 catch_ada_completer,
14460 CATCH_PERMANENT,
14461 CATCH_TEMPORARY);
14462 add_catch_command ("assert", _("\
14463 Catch failed Ada assertions, when raised.\n\
14464 Usage: catch assert [if CONDITION]\n\
14465 CONDITION is a boolean expression that is evaluated to see whether the\n\
14466 exception should cause a stop."),
14467 catch_assert_command,
14468 NULL,
14469 CATCH_PERMANENT,
14470 CATCH_TEMPORARY);
14471
14472 varsize_limit = 65536;
14473 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14474 &varsize_limit, _("\
14475 Set the maximum number of bytes allowed in a variable-size object."), _("\
14476 Show the maximum number of bytes allowed in a variable-size object."), _("\
14477 Attempts to access an object whose size is not a compile-time constant\n\
14478 and exceeds this limit will cause an error."),
14479 NULL, NULL, &setlist, &showlist);
14480
14481 add_info ("exceptions", info_exceptions_command,
14482 _("\
14483 List all Ada exception names.\n\
14484 Usage: info exceptions [REGEXP]\n\
14485 If a regular expression is passed as an argument, only those matching\n\
14486 the regular expression are listed."));
14487
14488 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14489 _("Set Ada maintenance-related variables."),
14490 &maint_set_ada_cmdlist, "maintenance set ada ",
14491 0/*allow-unknown*/, &maintenance_set_cmdlist);
14492
14493 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14494 _("Show Ada maintenance-related variables"),
14495 &maint_show_ada_cmdlist, "maintenance show ada ",
14496 0/*allow-unknown*/, &maintenance_show_cmdlist);
14497
14498 add_setshow_boolean_cmd
14499 ("ignore-descriptive-types", class_maintenance,
14500 &ada_ignore_descriptive_types_p,
14501 _("Set whether descriptive types generated by GNAT should be ignored."),
14502 _("Show whether descriptive types generated by GNAT should be ignored."),
14503 _("\
14504 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14505 DWARF attribute."),
14506 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14507
14508 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14509 NULL, xcalloc, xfree);
14510
14511 /* The ada-lang observers. */
14512 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14513 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14514 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14515 }
This page took 0.378368 seconds and 5 git commands to generate.