More block constification
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An array whose type is that of ARR_TYPE (an array type), with
3177 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3178 less than LOW, then LOW-1 is used. */
3179
3180 static struct value *
3181 empty_array (struct type *arr_type, int low, int high)
3182 {
3183 struct type *arr_type0 = ada_check_typedef (arr_type);
3184 struct type *index_type
3185 = create_static_range_type
3186 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3187 high < low ? low - 1 : high);
3188 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3189
3190 return allocate_value (create_array_type (NULL, elt_type, index_type));
3191 }
3192 \f
3193
3194 /* Name resolution */
3195
3196 /* The "decoded" name for the user-definable Ada operator corresponding
3197 to OP. */
3198
3199 static const char *
3200 ada_decoded_op_name (enum exp_opcode op)
3201 {
3202 int i;
3203
3204 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3205 {
3206 if (ada_opname_table[i].op == op)
3207 return ada_opname_table[i].decoded;
3208 }
3209 error (_("Could not find operator name for opcode"));
3210 }
3211
3212
3213 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3214 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3215 undefined namespace) and converts operators that are
3216 user-defined into appropriate function calls. If CONTEXT_TYPE is
3217 non-null, it provides a preferred result type [at the moment, only
3218 type void has any effect---causing procedures to be preferred over
3219 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3220 return type is preferred. May change (expand) *EXP. */
3221
3222 static void
3223 resolve (expression_up *expp, int void_context_p)
3224 {
3225 struct type *context_type = NULL;
3226 int pc = 0;
3227
3228 if (void_context_p)
3229 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3230
3231 resolve_subexp (expp, &pc, 1, context_type);
3232 }
3233
3234 /* Resolve the operator of the subexpression beginning at
3235 position *POS of *EXPP. "Resolving" consists of replacing
3236 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3237 with their resolutions, replacing built-in operators with
3238 function calls to user-defined operators, where appropriate, and,
3239 when DEPROCEDURE_P is non-zero, converting function-valued variables
3240 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3241 are as in ada_resolve, above. */
3242
3243 static struct value *
3244 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3245 struct type *context_type)
3246 {
3247 int pc = *pos;
3248 int i;
3249 struct expression *exp; /* Convenience: == *expp. */
3250 enum exp_opcode op = (*expp)->elts[pc].opcode;
3251 struct value **argvec; /* Vector of operand types (alloca'ed). */
3252 int nargs; /* Number of operands. */
3253 int oplen;
3254
3255 argvec = NULL;
3256 nargs = 0;
3257 exp = expp->get ();
3258
3259 /* Pass one: resolve operands, saving their types and updating *pos,
3260 if needed. */
3261 switch (op)
3262 {
3263 case OP_FUNCALL:
3264 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3265 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3266 *pos += 7;
3267 else
3268 {
3269 *pos += 3;
3270 resolve_subexp (expp, pos, 0, NULL);
3271 }
3272 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3273 break;
3274
3275 case UNOP_ADDR:
3276 *pos += 1;
3277 resolve_subexp (expp, pos, 0, NULL);
3278 break;
3279
3280 case UNOP_QUAL:
3281 *pos += 3;
3282 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3283 break;
3284
3285 case OP_ATR_MODULUS:
3286 case OP_ATR_SIZE:
3287 case OP_ATR_TAG:
3288 case OP_ATR_FIRST:
3289 case OP_ATR_LAST:
3290 case OP_ATR_LENGTH:
3291 case OP_ATR_POS:
3292 case OP_ATR_VAL:
3293 case OP_ATR_MIN:
3294 case OP_ATR_MAX:
3295 case TERNOP_IN_RANGE:
3296 case BINOP_IN_BOUNDS:
3297 case UNOP_IN_RANGE:
3298 case OP_AGGREGATE:
3299 case OP_OTHERS:
3300 case OP_CHOICES:
3301 case OP_POSITIONAL:
3302 case OP_DISCRETE_RANGE:
3303 case OP_NAME:
3304 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3305 *pos += oplen;
3306 break;
3307
3308 case BINOP_ASSIGN:
3309 {
3310 struct value *arg1;
3311
3312 *pos += 1;
3313 arg1 = resolve_subexp (expp, pos, 0, NULL);
3314 if (arg1 == NULL)
3315 resolve_subexp (expp, pos, 1, NULL);
3316 else
3317 resolve_subexp (expp, pos, 1, value_type (arg1));
3318 break;
3319 }
3320
3321 case UNOP_CAST:
3322 *pos += 3;
3323 nargs = 1;
3324 break;
3325
3326 case BINOP_ADD:
3327 case BINOP_SUB:
3328 case BINOP_MUL:
3329 case BINOP_DIV:
3330 case BINOP_REM:
3331 case BINOP_MOD:
3332 case BINOP_EXP:
3333 case BINOP_CONCAT:
3334 case BINOP_LOGICAL_AND:
3335 case BINOP_LOGICAL_OR:
3336 case BINOP_BITWISE_AND:
3337 case BINOP_BITWISE_IOR:
3338 case BINOP_BITWISE_XOR:
3339
3340 case BINOP_EQUAL:
3341 case BINOP_NOTEQUAL:
3342 case BINOP_LESS:
3343 case BINOP_GTR:
3344 case BINOP_LEQ:
3345 case BINOP_GEQ:
3346
3347 case BINOP_REPEAT:
3348 case BINOP_SUBSCRIPT:
3349 case BINOP_COMMA:
3350 *pos += 1;
3351 nargs = 2;
3352 break;
3353
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 case UNOP_IND:
3359 *pos += 1;
3360 nargs = 1;
3361 break;
3362
3363 case OP_LONG:
3364 case OP_FLOAT:
3365 case OP_VAR_VALUE:
3366 case OP_VAR_MSYM_VALUE:
3367 *pos += 4;
3368 break;
3369
3370 case OP_TYPE:
3371 case OP_BOOL:
3372 case OP_LAST:
3373 case OP_INTERNALVAR:
3374 *pos += 3;
3375 break;
3376
3377 case UNOP_MEMVAL:
3378 *pos += 3;
3379 nargs = 1;
3380 break;
3381
3382 case OP_REGISTER:
3383 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3384 break;
3385
3386 case STRUCTOP_STRUCT:
3387 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3388 nargs = 1;
3389 break;
3390
3391 case TERNOP_SLICE:
3392 *pos += 1;
3393 nargs = 3;
3394 break;
3395
3396 case OP_STRING:
3397 break;
3398
3399 default:
3400 error (_("Unexpected operator during name resolution"));
3401 }
3402
3403 argvec = XALLOCAVEC (struct value *, nargs + 1);
3404 for (i = 0; i < nargs; i += 1)
3405 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3406 argvec[i] = NULL;
3407 exp = expp->get ();
3408
3409 /* Pass two: perform any resolution on principal operator. */
3410 switch (op)
3411 {
3412 default:
3413 break;
3414
3415 case OP_VAR_VALUE:
3416 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3417 {
3418 std::vector<struct block_symbol> candidates;
3419 int n_candidates;
3420
3421 n_candidates =
3422 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3423 (exp->elts[pc + 2].symbol),
3424 exp->elts[pc + 1].block, VAR_DOMAIN,
3425 &candidates);
3426
3427 if (n_candidates > 1)
3428 {
3429 /* Types tend to get re-introduced locally, so if there
3430 are any local symbols that are not types, first filter
3431 out all types. */
3432 int j;
3433 for (j = 0; j < n_candidates; j += 1)
3434 switch (SYMBOL_CLASS (candidates[j].symbol))
3435 {
3436 case LOC_REGISTER:
3437 case LOC_ARG:
3438 case LOC_REF_ARG:
3439 case LOC_REGPARM_ADDR:
3440 case LOC_LOCAL:
3441 case LOC_COMPUTED:
3442 goto FoundNonType;
3443 default:
3444 break;
3445 }
3446 FoundNonType:
3447 if (j < n_candidates)
3448 {
3449 j = 0;
3450 while (j < n_candidates)
3451 {
3452 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3453 {
3454 candidates[j] = candidates[n_candidates - 1];
3455 n_candidates -= 1;
3456 }
3457 else
3458 j += 1;
3459 }
3460 }
3461 }
3462
3463 if (n_candidates == 0)
3464 error (_("No definition found for %s"),
3465 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3466 else if (n_candidates == 1)
3467 i = 0;
3468 else if (deprocedure_p
3469 && !is_nonfunction (candidates.data (), n_candidates))
3470 {
3471 i = ada_resolve_function
3472 (candidates.data (), n_candidates, NULL, 0,
3473 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3474 context_type);
3475 if (i < 0)
3476 error (_("Could not find a match for %s"),
3477 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3478 }
3479 else
3480 {
3481 printf_filtered (_("Multiple matches for %s\n"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 user_select_syms (candidates.data (), n_candidates, 1);
3484 i = 0;
3485 }
3486
3487 exp->elts[pc + 1].block = candidates[i].block;
3488 exp->elts[pc + 2].symbol = candidates[i].symbol;
3489 innermost_block.update (candidates[i]);
3490 }
3491
3492 if (deprocedure_p
3493 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3494 == TYPE_CODE_FUNC))
3495 {
3496 replace_operator_with_call (expp, pc, 0, 4,
3497 exp->elts[pc + 2].symbol,
3498 exp->elts[pc + 1].block);
3499 exp = expp->get ();
3500 }
3501 break;
3502
3503 case OP_FUNCALL:
3504 {
3505 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3506 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3507 {
3508 std::vector<struct block_symbol> candidates;
3509 int n_candidates;
3510
3511 n_candidates =
3512 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3513 (exp->elts[pc + 5].symbol),
3514 exp->elts[pc + 4].block, VAR_DOMAIN,
3515 &candidates);
3516
3517 if (n_candidates == 1)
3518 i = 0;
3519 else
3520 {
3521 i = ada_resolve_function
3522 (candidates.data (), n_candidates,
3523 argvec, nargs,
3524 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3525 context_type);
3526 if (i < 0)
3527 error (_("Could not find a match for %s"),
3528 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3529 }
3530
3531 exp->elts[pc + 4].block = candidates[i].block;
3532 exp->elts[pc + 5].symbol = candidates[i].symbol;
3533 innermost_block.update (candidates[i]);
3534 }
3535 }
3536 break;
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
3541 case BINOP_REM:
3542 case BINOP_MOD:
3543 case BINOP_CONCAT:
3544 case BINOP_BITWISE_AND:
3545 case BINOP_BITWISE_IOR:
3546 case BINOP_BITWISE_XOR:
3547 case BINOP_EQUAL:
3548 case BINOP_NOTEQUAL:
3549 case BINOP_LESS:
3550 case BINOP_GTR:
3551 case BINOP_LEQ:
3552 case BINOP_GEQ:
3553 case BINOP_EXP:
3554 case UNOP_NEG:
3555 case UNOP_PLUS:
3556 case UNOP_LOGICAL_NOT:
3557 case UNOP_ABS:
3558 if (possible_user_operator_p (op, argvec))
3559 {
3560 std::vector<struct block_symbol> candidates;
3561 int n_candidates;
3562
3563 n_candidates =
3564 ada_lookup_symbol_list (ada_decoded_op_name (op),
3565 NULL, VAR_DOMAIN,
3566 &candidates);
3567
3568 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3569 nargs, ada_decoded_op_name (op), NULL);
3570 if (i < 0)
3571 break;
3572
3573 replace_operator_with_call (expp, pc, nargs, 1,
3574 candidates[i].symbol,
3575 candidates[i].block);
3576 exp = expp->get ();
3577 }
3578 break;
3579
3580 case OP_TYPE:
3581 case OP_REGISTER:
3582 return NULL;
3583 }
3584
3585 *pos = pc;
3586 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3587 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3588 exp->elts[pc + 1].objfile,
3589 exp->elts[pc + 2].msymbol);
3590 else
3591 return evaluate_subexp_type (exp, pos);
3592 }
3593
3594 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3595 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3596 a non-pointer. */
3597 /* The term "match" here is rather loose. The match is heuristic and
3598 liberal. */
3599
3600 static int
3601 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3602 {
3603 ftype = ada_check_typedef (ftype);
3604 atype = ada_check_typedef (atype);
3605
3606 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3607 ftype = TYPE_TARGET_TYPE (ftype);
3608 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3609 atype = TYPE_TARGET_TYPE (atype);
3610
3611 switch (TYPE_CODE (ftype))
3612 {
3613 default:
3614 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3615 case TYPE_CODE_PTR:
3616 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3617 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3618 TYPE_TARGET_TYPE (atype), 0);
3619 else
3620 return (may_deref
3621 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3622 case TYPE_CODE_INT:
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 switch (TYPE_CODE (atype))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_ENUM:
3629 case TYPE_CODE_RANGE:
3630 return 1;
3631 default:
3632 return 0;
3633 }
3634
3635 case TYPE_CODE_ARRAY:
3636 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3637 || ada_is_array_descriptor_type (atype));
3638
3639 case TYPE_CODE_STRUCT:
3640 if (ada_is_array_descriptor_type (ftype))
3641 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3642 || ada_is_array_descriptor_type (atype));
3643 else
3644 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3645 && !ada_is_array_descriptor_type (atype));
3646
3647 case TYPE_CODE_UNION:
3648 case TYPE_CODE_FLT:
3649 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3650 }
3651 }
3652
3653 /* Return non-zero if the formals of FUNC "sufficiently match" the
3654 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3655 may also be an enumeral, in which case it is treated as a 0-
3656 argument function. */
3657
3658 static int
3659 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3660 {
3661 int i;
3662 struct type *func_type = SYMBOL_TYPE (func);
3663
3664 if (SYMBOL_CLASS (func) == LOC_CONST
3665 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3666 return (n_actuals == 0);
3667 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3668 return 0;
3669
3670 if (TYPE_NFIELDS (func_type) != n_actuals)
3671 return 0;
3672
3673 for (i = 0; i < n_actuals; i += 1)
3674 {
3675 if (actuals[i] == NULL)
3676 return 0;
3677 else
3678 {
3679 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3680 i));
3681 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3682
3683 if (!ada_type_match (ftype, atype, 1))
3684 return 0;
3685 }
3686 }
3687 return 1;
3688 }
3689
3690 /* False iff function type FUNC_TYPE definitely does not produce a value
3691 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3692 FUNC_TYPE is not a valid function type with a non-null return type
3693 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3694
3695 static int
3696 return_match (struct type *func_type, struct type *context_type)
3697 {
3698 struct type *return_type;
3699
3700 if (func_type == NULL)
3701 return 1;
3702
3703 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3704 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3705 else
3706 return_type = get_base_type (func_type);
3707 if (return_type == NULL)
3708 return 1;
3709
3710 context_type = get_base_type (context_type);
3711
3712 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3713 return context_type == NULL || return_type == context_type;
3714 else if (context_type == NULL)
3715 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3716 else
3717 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3718 }
3719
3720
3721 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3722 function (if any) that matches the types of the NARGS arguments in
3723 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3724 that returns that type, then eliminate matches that don't. If
3725 CONTEXT_TYPE is void and there is at least one match that does not
3726 return void, eliminate all matches that do.
3727
3728 Asks the user if there is more than one match remaining. Returns -1
3729 if there is no such symbol or none is selected. NAME is used
3730 solely for messages. May re-arrange and modify SYMS in
3731 the process; the index returned is for the modified vector. */
3732
3733 static int
3734 ada_resolve_function (struct block_symbol syms[],
3735 int nsyms, struct value **args, int nargs,
3736 const char *name, struct type *context_type)
3737 {
3738 int fallback;
3739 int k;
3740 int m; /* Number of hits */
3741
3742 m = 0;
3743 /* In the first pass of the loop, we only accept functions matching
3744 context_type. If none are found, we add a second pass of the loop
3745 where every function is accepted. */
3746 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3747 {
3748 for (k = 0; k < nsyms; k += 1)
3749 {
3750 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3751
3752 if (ada_args_match (syms[k].symbol, args, nargs)
3753 && (fallback || return_match (type, context_type)))
3754 {
3755 syms[m] = syms[k];
3756 m += 1;
3757 }
3758 }
3759 }
3760
3761 /* If we got multiple matches, ask the user which one to use. Don't do this
3762 interactive thing during completion, though, as the purpose of the
3763 completion is providing a list of all possible matches. Prompting the
3764 user to filter it down would be completely unexpected in this case. */
3765 if (m == 0)
3766 return -1;
3767 else if (m > 1 && !parse_completion)
3768 {
3769 printf_filtered (_("Multiple matches for %s\n"), name);
3770 user_select_syms (syms, m, 1);
3771 return 0;
3772 }
3773 return 0;
3774 }
3775
3776 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3777 in a listing of choices during disambiguation (see sort_choices, below).
3778 The idea is that overloadings of a subprogram name from the
3779 same package should sort in their source order. We settle for ordering
3780 such symbols by their trailing number (__N or $N). */
3781
3782 static int
3783 encoded_ordered_before (const char *N0, const char *N1)
3784 {
3785 if (N1 == NULL)
3786 return 0;
3787 else if (N0 == NULL)
3788 return 1;
3789 else
3790 {
3791 int k0, k1;
3792
3793 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3794 ;
3795 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3796 ;
3797 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3798 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3799 {
3800 int n0, n1;
3801
3802 n0 = k0;
3803 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3804 n0 -= 1;
3805 n1 = k1;
3806 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3807 n1 -= 1;
3808 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3809 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3810 }
3811 return (strcmp (N0, N1) < 0);
3812 }
3813 }
3814
3815 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3816 encoded names. */
3817
3818 static void
3819 sort_choices (struct block_symbol syms[], int nsyms)
3820 {
3821 int i;
3822
3823 for (i = 1; i < nsyms; i += 1)
3824 {
3825 struct block_symbol sym = syms[i];
3826 int j;
3827
3828 for (j = i - 1; j >= 0; j -= 1)
3829 {
3830 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3831 SYMBOL_LINKAGE_NAME (sym.symbol)))
3832 break;
3833 syms[j + 1] = syms[j];
3834 }
3835 syms[j + 1] = sym;
3836 }
3837 }
3838
3839 /* Whether GDB should display formals and return types for functions in the
3840 overloads selection menu. */
3841 static int print_signatures = 1;
3842
3843 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3844 all but functions, the signature is just the name of the symbol. For
3845 functions, this is the name of the function, the list of types for formals
3846 and the return type (if any). */
3847
3848 static void
3849 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3850 const struct type_print_options *flags)
3851 {
3852 struct type *type = SYMBOL_TYPE (sym);
3853
3854 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3855 if (!print_signatures
3856 || type == NULL
3857 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3858 return;
3859
3860 if (TYPE_NFIELDS (type) > 0)
3861 {
3862 int i;
3863
3864 fprintf_filtered (stream, " (");
3865 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3866 {
3867 if (i > 0)
3868 fprintf_filtered (stream, "; ");
3869 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3870 flags);
3871 }
3872 fprintf_filtered (stream, ")");
3873 }
3874 if (TYPE_TARGET_TYPE (type) != NULL
3875 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3876 {
3877 fprintf_filtered (stream, " return ");
3878 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3879 }
3880 }
3881
3882 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3883 by asking the user (if necessary), returning the number selected,
3884 and setting the first elements of SYMS items. Error if no symbols
3885 selected. */
3886
3887 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3888 to be re-integrated one of these days. */
3889
3890 int
3891 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3892 {
3893 int i;
3894 int *chosen = XALLOCAVEC (int , nsyms);
3895 int n_chosen;
3896 int first_choice = (max_results == 1) ? 1 : 2;
3897 const char *select_mode = multiple_symbols_select_mode ();
3898
3899 if (max_results < 1)
3900 error (_("Request to select 0 symbols!"));
3901 if (nsyms <= 1)
3902 return nsyms;
3903
3904 if (select_mode == multiple_symbols_cancel)
3905 error (_("\
3906 canceled because the command is ambiguous\n\
3907 See set/show multiple-symbol."));
3908
3909 /* If select_mode is "all", then return all possible symbols.
3910 Only do that if more than one symbol can be selected, of course.
3911 Otherwise, display the menu as usual. */
3912 if (select_mode == multiple_symbols_all && max_results > 1)
3913 return nsyms;
3914
3915 printf_filtered (_("[0] cancel\n"));
3916 if (max_results > 1)
3917 printf_filtered (_("[1] all\n"));
3918
3919 sort_choices (syms, nsyms);
3920
3921 for (i = 0; i < nsyms; i += 1)
3922 {
3923 if (syms[i].symbol == NULL)
3924 continue;
3925
3926 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3927 {
3928 struct symtab_and_line sal =
3929 find_function_start_sal (syms[i].symbol, 1);
3930
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934 if (sal.symtab == NULL)
3935 printf_filtered (_(" at <no source file available>:%d\n"),
3936 sal.line);
3937 else
3938 printf_filtered (_(" at %s:%d\n"),
3939 symtab_to_filename_for_display (sal.symtab),
3940 sal.line);
3941 continue;
3942 }
3943 else
3944 {
3945 int is_enumeral =
3946 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3947 && SYMBOL_TYPE (syms[i].symbol) != NULL
3948 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3949 struct symtab *symtab = NULL;
3950
3951 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3952 symtab = symbol_symtab (syms[i].symbol);
3953
3954 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3955 {
3956 printf_filtered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 printf_filtered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (symtab),
3961 SYMBOL_LINE (syms[i].symbol));
3962 }
3963 else if (is_enumeral
3964 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3965 {
3966 printf_filtered (("[%d] "), i + first_choice);
3967 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3968 gdb_stdout, -1, 0, &type_print_raw_options);
3969 printf_filtered (_("'(%s) (enumeral)\n"),
3970 SYMBOL_PRINT_NAME (syms[i].symbol));
3971 }
3972 else
3973 {
3974 printf_filtered ("[%d] ", i + first_choice);
3975 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3976 &type_print_raw_options);
3977
3978 if (symtab != NULL)
3979 printf_filtered (is_enumeral
3980 ? _(" in %s (enumeral)\n")
3981 : _(" at %s:?\n"),
3982 symtab_to_filename_for_display (symtab));
3983 else
3984 printf_filtered (is_enumeral
3985 ? _(" (enumeral)\n")
3986 : _(" at ?\n"));
3987 }
3988 }
3989 }
3990
3991 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3992 "overload-choice");
3993
3994 for (i = 0; i < n_chosen; i += 1)
3995 syms[i] = syms[chosen[i]];
3996
3997 return n_chosen;
3998 }
3999
4000 /* Read and validate a set of numeric choices from the user in the
4001 range 0 .. N_CHOICES-1. Place the results in increasing
4002 order in CHOICES[0 .. N-1], and return N.
4003
4004 The user types choices as a sequence of numbers on one line
4005 separated by blanks, encoding them as follows:
4006
4007 + A choice of 0 means to cancel the selection, throwing an error.
4008 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4009 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4010
4011 The user is not allowed to choose more than MAX_RESULTS values.
4012
4013 ANNOTATION_SUFFIX, if present, is used to annotate the input
4014 prompts (for use with the -f switch). */
4015
4016 int
4017 get_selections (int *choices, int n_choices, int max_results,
4018 int is_all_choice, const char *annotation_suffix)
4019 {
4020 char *args;
4021 const char *prompt;
4022 int n_chosen;
4023 int first_choice = is_all_choice ? 2 : 1;
4024
4025 prompt = getenv ("PS2");
4026 if (prompt == NULL)
4027 prompt = "> ";
4028
4029 args = command_line_input (prompt, annotation_suffix);
4030
4031 if (args == NULL)
4032 error_no_arg (_("one or more choice numbers"));
4033
4034 n_chosen = 0;
4035
4036 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4037 order, as given in args. Choices are validated. */
4038 while (1)
4039 {
4040 char *args2;
4041 int choice, j;
4042
4043 args = skip_spaces (args);
4044 if (*args == '\0' && n_chosen == 0)
4045 error_no_arg (_("one or more choice numbers"));
4046 else if (*args == '\0')
4047 break;
4048
4049 choice = strtol (args, &args2, 10);
4050 if (args == args2 || choice < 0
4051 || choice > n_choices + first_choice - 1)
4052 error (_("Argument must be choice number"));
4053 args = args2;
4054
4055 if (choice == 0)
4056 error (_("cancelled"));
4057
4058 if (choice < first_choice)
4059 {
4060 n_chosen = n_choices;
4061 for (j = 0; j < n_choices; j += 1)
4062 choices[j] = j;
4063 break;
4064 }
4065 choice -= first_choice;
4066
4067 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4068 {
4069 }
4070
4071 if (j < 0 || choice != choices[j])
4072 {
4073 int k;
4074
4075 for (k = n_chosen - 1; k > j; k -= 1)
4076 choices[k + 1] = choices[k];
4077 choices[j + 1] = choice;
4078 n_chosen += 1;
4079 }
4080 }
4081
4082 if (n_chosen > max_results)
4083 error (_("Select no more than %d of the above"), max_results);
4084
4085 return n_chosen;
4086 }
4087
4088 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4089 on the function identified by SYM and BLOCK, and taking NARGS
4090 arguments. Update *EXPP as needed to hold more space. */
4091
4092 static void
4093 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4094 int oplen, struct symbol *sym,
4095 const struct block *block)
4096 {
4097 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4098 symbol, -oplen for operator being replaced). */
4099 struct expression *newexp = (struct expression *)
4100 xzalloc (sizeof (struct expression)
4101 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4102 struct expression *exp = expp->get ();
4103
4104 newexp->nelts = exp->nelts + 7 - oplen;
4105 newexp->language_defn = exp->language_defn;
4106 newexp->gdbarch = exp->gdbarch;
4107 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4108 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4109 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4110
4111 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4112 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4113
4114 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4115 newexp->elts[pc + 4].block = block;
4116 newexp->elts[pc + 5].symbol = sym;
4117
4118 expp->reset (newexp);
4119 }
4120
4121 /* Type-class predicates */
4122
4123 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4124 or FLOAT). */
4125
4126 static int
4127 numeric_type_p (struct type *type)
4128 {
4129 if (type == NULL)
4130 return 0;
4131 else
4132 {
4133 switch (TYPE_CODE (type))
4134 {
4135 case TYPE_CODE_INT:
4136 case TYPE_CODE_FLT:
4137 return 1;
4138 case TYPE_CODE_RANGE:
4139 return (type == TYPE_TARGET_TYPE (type)
4140 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4141 default:
4142 return 0;
4143 }
4144 }
4145 }
4146
4147 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4148
4149 static int
4150 integer_type_p (struct type *type)
4151 {
4152 if (type == NULL)
4153 return 0;
4154 else
4155 {
4156 switch (TYPE_CODE (type))
4157 {
4158 case TYPE_CODE_INT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || integer_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
4166 }
4167 }
4168
4169 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4170
4171 static int
4172 scalar_type_p (struct type *type)
4173 {
4174 if (type == NULL)
4175 return 0;
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4179 {
4180 case TYPE_CODE_INT:
4181 case TYPE_CODE_RANGE:
4182 case TYPE_CODE_ENUM:
4183 case TYPE_CODE_FLT:
4184 return 1;
4185 default:
4186 return 0;
4187 }
4188 }
4189 }
4190
4191 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4192
4193 static int
4194 discrete_type_p (struct type *type)
4195 {
4196 if (type == NULL)
4197 return 0;
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_BOOL:
4206 return 1;
4207 default:
4208 return 0;
4209 }
4210 }
4211 }
4212
4213 /* Returns non-zero if OP with operands in the vector ARGS could be
4214 a user-defined function. Errs on the side of pre-defined operators
4215 (i.e., result 0). */
4216
4217 static int
4218 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4219 {
4220 struct type *type0 =
4221 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4222 struct type *type1 =
4223 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4224
4225 if (type0 == NULL)
4226 return 0;
4227
4228 switch (op)
4229 {
4230 default:
4231 return 0;
4232
4233 case BINOP_ADD:
4234 case BINOP_SUB:
4235 case BINOP_MUL:
4236 case BINOP_DIV:
4237 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4238
4239 case BINOP_REM:
4240 case BINOP_MOD:
4241 case BINOP_BITWISE_AND:
4242 case BINOP_BITWISE_IOR:
4243 case BINOP_BITWISE_XOR:
4244 return (!(integer_type_p (type0) && integer_type_p (type1)));
4245
4246 case BINOP_EQUAL:
4247 case BINOP_NOTEQUAL:
4248 case BINOP_LESS:
4249 case BINOP_GTR:
4250 case BINOP_LEQ:
4251 case BINOP_GEQ:
4252 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4253
4254 case BINOP_CONCAT:
4255 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4256
4257 case BINOP_EXP:
4258 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4259
4260 case UNOP_NEG:
4261 case UNOP_PLUS:
4262 case UNOP_LOGICAL_NOT:
4263 case UNOP_ABS:
4264 return (!numeric_type_p (type0));
4265
4266 }
4267 }
4268 \f
4269 /* Renaming */
4270
4271 /* NOTES:
4272
4273 1. In the following, we assume that a renaming type's name may
4274 have an ___XD suffix. It would be nice if this went away at some
4275 point.
4276 2. We handle both the (old) purely type-based representation of
4277 renamings and the (new) variable-based encoding. At some point,
4278 it is devoutly to be hoped that the former goes away
4279 (FIXME: hilfinger-2007-07-09).
4280 3. Subprogram renamings are not implemented, although the XRS
4281 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4282
4283 /* If SYM encodes a renaming,
4284
4285 <renaming> renames <renamed entity>,
4286
4287 sets *LEN to the length of the renamed entity's name,
4288 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4289 the string describing the subcomponent selected from the renamed
4290 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4291 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4292 are undefined). Otherwise, returns a value indicating the category
4293 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4294 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4295 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4296 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4297 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4298 may be NULL, in which case they are not assigned.
4299
4300 [Currently, however, GCC does not generate subprogram renamings.] */
4301
4302 enum ada_renaming_category
4303 ada_parse_renaming (struct symbol *sym,
4304 const char **renamed_entity, int *len,
4305 const char **renaming_expr)
4306 {
4307 enum ada_renaming_category kind;
4308 const char *info;
4309 const char *suffix;
4310
4311 if (sym == NULL)
4312 return ADA_NOT_RENAMING;
4313 switch (SYMBOL_CLASS (sym))
4314 {
4315 default:
4316 return ADA_NOT_RENAMING;
4317 case LOC_TYPEDEF:
4318 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4319 renamed_entity, len, renaming_expr);
4320 case LOC_LOCAL:
4321 case LOC_STATIC:
4322 case LOC_COMPUTED:
4323 case LOC_OPTIMIZED_OUT:
4324 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4325 if (info == NULL)
4326 return ADA_NOT_RENAMING;
4327 switch (info[5])
4328 {
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 info += 6;
4332 break;
4333 case 'E':
4334 kind = ADA_EXCEPTION_RENAMING;
4335 info += 7;
4336 break;
4337 case 'P':
4338 kind = ADA_PACKAGE_RENAMING;
4339 info += 7;
4340 break;
4341 case 'S':
4342 kind = ADA_SUBPROGRAM_RENAMING;
4343 info += 7;
4344 break;
4345 default:
4346 return ADA_NOT_RENAMING;
4347 }
4348 }
4349
4350 if (renamed_entity != NULL)
4351 *renamed_entity = info;
4352 suffix = strstr (info, "___XE");
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = strlen (info) - strlen (suffix);
4357 suffix += 5;
4358 if (renaming_expr != NULL)
4359 *renaming_expr = suffix;
4360 return kind;
4361 }
4362
4363 /* Assuming TYPE encodes a renaming according to the old encoding in
4364 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4365 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4366 ADA_NOT_RENAMING otherwise. */
4367 static enum ada_renaming_category
4368 parse_old_style_renaming (struct type *type,
4369 const char **renamed_entity, int *len,
4370 const char **renaming_expr)
4371 {
4372 enum ada_renaming_category kind;
4373 const char *name;
4374 const char *info;
4375 const char *suffix;
4376
4377 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4378 || TYPE_NFIELDS (type) != 1)
4379 return ADA_NOT_RENAMING;
4380
4381 name = TYPE_NAME (type);
4382 if (name == NULL)
4383 return ADA_NOT_RENAMING;
4384
4385 name = strstr (name, "___XR");
4386 if (name == NULL)
4387 return ADA_NOT_RENAMING;
4388 switch (name[5])
4389 {
4390 case '\0':
4391 case '_':
4392 kind = ADA_OBJECT_RENAMING;
4393 break;
4394 case 'E':
4395 kind = ADA_EXCEPTION_RENAMING;
4396 break;
4397 case 'P':
4398 kind = ADA_PACKAGE_RENAMING;
4399 break;
4400 case 'S':
4401 kind = ADA_SUBPROGRAM_RENAMING;
4402 break;
4403 default:
4404 return ADA_NOT_RENAMING;
4405 }
4406
4407 info = TYPE_FIELD_NAME (type, 0);
4408 if (info == NULL)
4409 return ADA_NOT_RENAMING;
4410 if (renamed_entity != NULL)
4411 *renamed_entity = info;
4412 suffix = strstr (info, "___XE");
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix + 5;
4415 if (suffix == NULL || suffix == info)
4416 return ADA_NOT_RENAMING;
4417 if (len != NULL)
4418 *len = suffix - info;
4419 return kind;
4420 }
4421
4422 /* Compute the value of the given RENAMING_SYM, which is expected to
4423 be a symbol encoding a renaming expression. BLOCK is the block
4424 used to evaluate the renaming. */
4425
4426 static struct value *
4427 ada_read_renaming_var_value (struct symbol *renaming_sym,
4428 const struct block *block)
4429 {
4430 const char *sym_name;
4431
4432 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4433 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4434 return evaluate_expression (expr.get ());
4435 }
4436 \f
4437
4438 /* Evaluation: Function Calls */
4439
4440 /* Return an lvalue containing the value VAL. This is the identity on
4441 lvalues, and otherwise has the side-effect of allocating memory
4442 in the inferior where a copy of the value contents is copied. */
4443
4444 static struct value *
4445 ensure_lval (struct value *val)
4446 {
4447 if (VALUE_LVAL (val) == not_lval
4448 || VALUE_LVAL (val) == lval_internalvar)
4449 {
4450 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4451 const CORE_ADDR addr =
4452 value_as_long (value_allocate_space_in_inferior (len));
4453
4454 VALUE_LVAL (val) = lval_memory;
4455 set_value_address (val, addr);
4456 write_memory (addr, value_contents (val), len);
4457 }
4458
4459 return val;
4460 }
4461
4462 /* Return the value ACTUAL, converted to be an appropriate value for a
4463 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4464 allocating any necessary descriptors (fat pointers), or copies of
4465 values not residing in memory, updating it as needed. */
4466
4467 struct value *
4468 ada_convert_actual (struct value *actual, struct type *formal_type0)
4469 {
4470 struct type *actual_type = ada_check_typedef (value_type (actual));
4471 struct type *formal_type = ada_check_typedef (formal_type0);
4472 struct type *formal_target =
4473 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4474 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4475 struct type *actual_target =
4476 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4477 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4478
4479 if (ada_is_array_descriptor_type (formal_target)
4480 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4481 return make_array_descriptor (formal_type, actual);
4482 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4483 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4484 {
4485 struct value *result;
4486
4487 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4488 && ada_is_array_descriptor_type (actual_target))
4489 result = desc_data (actual);
4490 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4491 {
4492 if (VALUE_LVAL (actual) != lval_memory)
4493 {
4494 struct value *val;
4495
4496 actual_type = ada_check_typedef (value_type (actual));
4497 val = allocate_value (actual_type);
4498 memcpy ((char *) value_contents_raw (val),
4499 (char *) value_contents (actual),
4500 TYPE_LENGTH (actual_type));
4501 actual = ensure_lval (val);
4502 }
4503 result = value_addr (actual);
4504 }
4505 else
4506 return actual;
4507 return value_cast_pointers (formal_type, result, 0);
4508 }
4509 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4510 return ada_value_ind (actual);
4511 else if (ada_is_aligner_type (formal_type))
4512 {
4513 /* We need to turn this parameter into an aligner type
4514 as well. */
4515 struct value *aligner = allocate_value (formal_type);
4516 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4517
4518 value_assign_to_component (aligner, component, actual);
4519 return aligner;
4520 }
4521
4522 return actual;
4523 }
4524
4525 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4526 type TYPE. This is usually an inefficient no-op except on some targets
4527 (such as AVR) where the representation of a pointer and an address
4528 differs. */
4529
4530 static CORE_ADDR
4531 value_pointer (struct value *value, struct type *type)
4532 {
4533 struct gdbarch *gdbarch = get_type_arch (type);
4534 unsigned len = TYPE_LENGTH (type);
4535 gdb_byte *buf = (gdb_byte *) alloca (len);
4536 CORE_ADDR addr;
4537
4538 addr = value_address (value);
4539 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4540 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4541 return addr;
4542 }
4543
4544
4545 /* Push a descriptor of type TYPE for array value ARR on the stack at
4546 *SP, updating *SP to reflect the new descriptor. Return either
4547 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4548 to-descriptor type rather than a descriptor type), a struct value *
4549 representing a pointer to this descriptor. */
4550
4551 static struct value *
4552 make_array_descriptor (struct type *type, struct value *arr)
4553 {
4554 struct type *bounds_type = desc_bounds_type (type);
4555 struct type *desc_type = desc_base_type (type);
4556 struct value *descriptor = allocate_value (desc_type);
4557 struct value *bounds = allocate_value (bounds_type);
4558 int i;
4559
4560 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4561 i > 0; i -= 1)
4562 {
4563 modify_field (value_type (bounds), value_contents_writeable (bounds),
4564 ada_array_bound (arr, i, 0),
4565 desc_bound_bitpos (bounds_type, i, 0),
4566 desc_bound_bitsize (bounds_type, i, 0));
4567 modify_field (value_type (bounds), value_contents_writeable (bounds),
4568 ada_array_bound (arr, i, 1),
4569 desc_bound_bitpos (bounds_type, i, 1),
4570 desc_bound_bitsize (bounds_type, i, 1));
4571 }
4572
4573 bounds = ensure_lval (bounds);
4574
4575 modify_field (value_type (descriptor),
4576 value_contents_writeable (descriptor),
4577 value_pointer (ensure_lval (arr),
4578 TYPE_FIELD_TYPE (desc_type, 0)),
4579 fat_pntr_data_bitpos (desc_type),
4580 fat_pntr_data_bitsize (desc_type));
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (bounds,
4585 TYPE_FIELD_TYPE (desc_type, 1)),
4586 fat_pntr_bounds_bitpos (desc_type),
4587 fat_pntr_bounds_bitsize (desc_type));
4588
4589 descriptor = ensure_lval (descriptor);
4590
4591 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4592 return value_addr (descriptor);
4593 else
4594 return descriptor;
4595 }
4596 \f
4597 /* Symbol Cache Module */
4598
4599 /* Performance measurements made as of 2010-01-15 indicate that
4600 this cache does bring some noticeable improvements. Depending
4601 on the type of entity being printed, the cache can make it as much
4602 as an order of magnitude faster than without it.
4603
4604 The descriptive type DWARF extension has significantly reduced
4605 the need for this cache, at least when DWARF is being used. However,
4606 even in this case, some expensive name-based symbol searches are still
4607 sometimes necessary - to find an XVZ variable, mostly. */
4608
4609 /* Initialize the contents of SYM_CACHE. */
4610
4611 static void
4612 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4613 {
4614 obstack_init (&sym_cache->cache_space);
4615 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4616 }
4617
4618 /* Free the memory used by SYM_CACHE. */
4619
4620 static void
4621 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4622 {
4623 obstack_free (&sym_cache->cache_space, NULL);
4624 xfree (sym_cache);
4625 }
4626
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4629
4630 static struct ada_symbol_cache *
4631 ada_get_symbol_cache (struct program_space *pspace)
4632 {
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4634
4635 if (pspace_data->sym_cache == NULL)
4636 {
4637 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4638 ada_init_symbol_cache (pspace_data->sym_cache);
4639 }
4640
4641 return pspace_data->sym_cache;
4642 }
4643
4644 /* Clear all entries from the symbol cache. */
4645
4646 static void
4647 ada_clear_symbol_cache (void)
4648 {
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 ada_init_symbol_cache (sym_cache);
4654 }
4655
4656 /* Search our cache for an entry matching NAME and DOMAIN.
4657 Return it if found, or NULL otherwise. */
4658
4659 static struct cache_entry **
4660 find_entry (const char *name, domain_enum domain)
4661 {
4662 struct ada_symbol_cache *sym_cache
4663 = ada_get_symbol_cache (current_program_space);
4664 int h = msymbol_hash (name) % HASH_SIZE;
4665 struct cache_entry **e;
4666
4667 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4668 {
4669 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4670 return e;
4671 }
4672 return NULL;
4673 }
4674
4675 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4676 Return 1 if found, 0 otherwise.
4677
4678 If an entry was found and SYM is not NULL, set *SYM to the entry's
4679 SYM. Same principle for BLOCK if not NULL. */
4680
4681 static int
4682 lookup_cached_symbol (const char *name, domain_enum domain,
4683 struct symbol **sym, const struct block **block)
4684 {
4685 struct cache_entry **e = find_entry (name, domain);
4686
4687 if (e == NULL)
4688 return 0;
4689 if (sym != NULL)
4690 *sym = (*e)->sym;
4691 if (block != NULL)
4692 *block = (*e)->block;
4693 return 1;
4694 }
4695
4696 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4697 in domain DOMAIN, save this result in our symbol cache. */
4698
4699 static void
4700 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4701 const struct block *block)
4702 {
4703 struct ada_symbol_cache *sym_cache
4704 = ada_get_symbol_cache (current_program_space);
4705 int h;
4706 char *copy;
4707 struct cache_entry *e;
4708
4709 /* Symbols for builtin types don't have a block.
4710 For now don't cache such symbols. */
4711 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4712 return;
4713
4714 /* If the symbol is a local symbol, then do not cache it, as a search
4715 for that symbol depends on the context. To determine whether
4716 the symbol is local or not, we check the block where we found it
4717 against the global and static blocks of its associated symtab. */
4718 if (sym
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 GLOBAL_BLOCK) != block
4721 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4722 STATIC_BLOCK) != block)
4723 return;
4724
4725 h = msymbol_hash (name) % HASH_SIZE;
4726 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4727 e->next = sym_cache->root[h];
4728 sym_cache->root[h] = e;
4729 e->name = copy
4730 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4731 strcpy (copy, name);
4732 e->sym = sym;
4733 e->domain = domain;
4734 e->block = block;
4735 }
4736 \f
4737 /* Symbol Lookup */
4738
4739 /* Return the symbol name match type that should be used used when
4740 searching for all symbols matching LOOKUP_NAME.
4741
4742 LOOKUP_NAME is expected to be a symbol name after transformation
4743 for Ada lookups. */
4744
4745 static symbol_name_match_type
4746 name_match_type_from_name (const char *lookup_name)
4747 {
4748 return (strstr (lookup_name, "__") == NULL
4749 ? symbol_name_match_type::WILD
4750 : symbol_name_match_type::FULL);
4751 }
4752
4753 /* Return the result of a standard (literal, C-like) lookup of NAME in
4754 given DOMAIN, visible from lexical block BLOCK. */
4755
4756 static struct symbol *
4757 standard_lookup (const char *name, const struct block *block,
4758 domain_enum domain)
4759 {
4760 /* Initialize it just to avoid a GCC false warning. */
4761 struct block_symbol sym = {NULL, NULL};
4762
4763 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4764 return sym.symbol;
4765 ada_lookup_encoded_symbol (name, block, domain, &sym);
4766 cache_symbol (name, domain, sym.symbol, sym.block);
4767 return sym.symbol;
4768 }
4769
4770
4771 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4772 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4773 since they contend in overloading in the same way. */
4774 static int
4775 is_nonfunction (struct block_symbol syms[], int n)
4776 {
4777 int i;
4778
4779 for (i = 0; i < n; i += 1)
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4781 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4782 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4783 return 1;
4784
4785 return 0;
4786 }
4787
4788 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4789 struct types. Otherwise, they may not. */
4790
4791 static int
4792 equiv_types (struct type *type0, struct type *type1)
4793 {
4794 if (type0 == type1)
4795 return 1;
4796 if (type0 == NULL || type1 == NULL
4797 || TYPE_CODE (type0) != TYPE_CODE (type1))
4798 return 0;
4799 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4800 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4801 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4802 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4803 return 1;
4804
4805 return 0;
4806 }
4807
4808 /* True iff SYM0 represents the same entity as SYM1, or one that is
4809 no more defined than that of SYM1. */
4810
4811 static int
4812 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4813 {
4814 if (sym0 == sym1)
4815 return 1;
4816 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4817 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4818 return 0;
4819
4820 switch (SYMBOL_CLASS (sym0))
4821 {
4822 case LOC_UNDEF:
4823 return 1;
4824 case LOC_TYPEDEF:
4825 {
4826 struct type *type0 = SYMBOL_TYPE (sym0);
4827 struct type *type1 = SYMBOL_TYPE (sym1);
4828 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4829 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4830 int len0 = strlen (name0);
4831
4832 return
4833 TYPE_CODE (type0) == TYPE_CODE (type1)
4834 && (equiv_types (type0, type1)
4835 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4836 && startswith (name1 + len0, "___XV")));
4837 }
4838 case LOC_CONST:
4839 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4840 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4841 default:
4842 return 0;
4843 }
4844 }
4845
4846 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4847 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4848
4849 static void
4850 add_defn_to_vec (struct obstack *obstackp,
4851 struct symbol *sym,
4852 const struct block *block)
4853 {
4854 int i;
4855 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4856
4857 /* Do not try to complete stub types, as the debugger is probably
4858 already scanning all symbols matching a certain name at the
4859 time when this function is called. Trying to replace the stub
4860 type by its associated full type will cause us to restart a scan
4861 which may lead to an infinite recursion. Instead, the client
4862 collecting the matching symbols will end up collecting several
4863 matches, with at least one of them complete. It can then filter
4864 out the stub ones if needed. */
4865
4866 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4867 {
4868 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4869 return;
4870 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4871 {
4872 prevDefns[i].symbol = sym;
4873 prevDefns[i].block = block;
4874 return;
4875 }
4876 }
4877
4878 {
4879 struct block_symbol info;
4880
4881 info.symbol = sym;
4882 info.block = block;
4883 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4884 }
4885 }
4886
4887 /* Number of block_symbol structures currently collected in current vector in
4888 OBSTACKP. */
4889
4890 static int
4891 num_defns_collected (struct obstack *obstackp)
4892 {
4893 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4894 }
4895
4896 /* Vector of block_symbol structures currently collected in current vector in
4897 OBSTACKP. If FINISH, close off the vector and return its final address. */
4898
4899 static struct block_symbol *
4900 defns_collected (struct obstack *obstackp, int finish)
4901 {
4902 if (finish)
4903 return (struct block_symbol *) obstack_finish (obstackp);
4904 else
4905 return (struct block_symbol *) obstack_base (obstackp);
4906 }
4907
4908 /* Return a bound minimal symbol matching NAME according to Ada
4909 decoding rules. Returns an invalid symbol if there is no such
4910 minimal symbol. Names prefixed with "standard__" are handled
4911 specially: "standard__" is first stripped off, and only static and
4912 global symbols are searched. */
4913
4914 struct bound_minimal_symbol
4915 ada_lookup_simple_minsym (const char *name)
4916 {
4917 struct bound_minimal_symbol result;
4918
4919 memset (&result, 0, sizeof (result));
4920
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4926
4927 for (objfile *objfile : current_program_space->objfiles ())
4928 {
4929 for (minimal_symbol *msymbol : objfile->msymbols ())
4930 {
4931 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4932 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4933 {
4934 result.minsym = msymbol;
4935 result.objfile = objfile;
4936 break;
4937 }
4938 }
4939 }
4940
4941 return result;
4942 }
4943
4944 /* For all subprograms that statically enclose the subprogram of the
4945 selected frame, add symbols matching identifier NAME in DOMAIN
4946 and their blocks to the list of data in OBSTACKP, as for
4947 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4948 with a wildcard prefix. */
4949
4950 static void
4951 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4952 const lookup_name_info &lookup_name,
4953 domain_enum domain)
4954 {
4955 }
4956
4957 /* True if TYPE is definitely an artificial type supplied to a symbol
4958 for which no debugging information was given in the symbol file. */
4959
4960 static int
4961 is_nondebugging_type (struct type *type)
4962 {
4963 const char *name = ada_type_name (type);
4964
4965 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4966 }
4967
4968 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4969 that are deemed "identical" for practical purposes.
4970
4971 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4972 types and that their number of enumerals is identical (in other
4973 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4974
4975 static int
4976 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977 {
4978 int i;
4979
4980 /* The heuristic we use here is fairly conservative. We consider
4981 that 2 enumerate types are identical if they have the same
4982 number of enumerals and that all enumerals have the same
4983 underlying value and name. */
4984
4985 /* All enums in the type should have an identical underlying value. */
4986 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4987 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4988 return 0;
4989
4990 /* All enumerals should also have the same name (modulo any numerical
4991 suffix). */
4992 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4993 {
4994 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4995 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4996 int len_1 = strlen (name_1);
4997 int len_2 = strlen (name_2);
4998
4999 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5001 if (len_1 != len_2
5002 || strncmp (TYPE_FIELD_NAME (type1, i),
5003 TYPE_FIELD_NAME (type2, i),
5004 len_1) != 0)
5005 return 0;
5006 }
5007
5008 return 1;
5009 }
5010
5011 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5012 that are deemed "identical" for practical purposes. Sometimes,
5013 enumerals are not strictly identical, but their types are so similar
5014 that they can be considered identical.
5015
5016 For instance, consider the following code:
5017
5018 type Color is (Black, Red, Green, Blue, White);
5019 type RGB_Color is new Color range Red .. Blue;
5020
5021 Type RGB_Color is a subrange of an implicit type which is a copy
5022 of type Color. If we call that implicit type RGB_ColorB ("B" is
5023 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5024 As a result, when an expression references any of the enumeral
5025 by name (Eg. "print green"), the expression is technically
5026 ambiguous and the user should be asked to disambiguate. But
5027 doing so would only hinder the user, since it wouldn't matter
5028 what choice he makes, the outcome would always be the same.
5029 So, for practical purposes, we consider them as the same. */
5030
5031 static int
5032 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5033 {
5034 int i;
5035
5036 /* Before performing a thorough comparison check of each type,
5037 we perform a series of inexpensive checks. We expect that these
5038 checks will quickly fail in the vast majority of cases, and thus
5039 help prevent the unnecessary use of a more expensive comparison.
5040 Said comparison also expects us to make some of these checks
5041 (see ada_identical_enum_types_p). */
5042
5043 /* Quick check: All symbols should have an enum type. */
5044 for (i = 0; i < syms.size (); i++)
5045 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5046 return 0;
5047
5048 /* Quick check: They should all have the same value. */
5049 for (i = 1; i < syms.size (); i++)
5050 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5051 return 0;
5052
5053 /* Quick check: They should all have the same number of enumerals. */
5054 for (i = 1; i < syms.size (); i++)
5055 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5056 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5057 return 0;
5058
5059 /* All the sanity checks passed, so we might have a set of
5060 identical enumeration types. Perform a more complete
5061 comparison of the type of each symbol. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5064 SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 return 1;
5068 }
5069
5070 /* Remove any non-debugging symbols in SYMS that definitely
5071 duplicate other symbols in the list (The only case I know of where
5072 this happens is when object files containing stabs-in-ecoff are
5073 linked with files containing ordinary ecoff debugging symbols (or no
5074 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5075 Returns the number of items in the modified list. */
5076
5077 static int
5078 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5079 {
5080 int i, j;
5081
5082 /* We should never be called with less than 2 symbols, as there
5083 cannot be any extra symbol in that case. But it's easy to
5084 handle, since we have nothing to do in that case. */
5085 if (syms->size () < 2)
5086 return syms->size ();
5087
5088 i = 0;
5089 while (i < syms->size ())
5090 {
5091 int remove_p = 0;
5092
5093 /* If two symbols have the same name and one of them is a stub type,
5094 the get rid of the stub. */
5095
5096 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5097 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5098 {
5099 for (j = 0; j < syms->size (); j++)
5100 {
5101 if (j != i
5102 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5103 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5104 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5105 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5106 remove_p = 1;
5107 }
5108 }
5109
5110 /* Two symbols with the same name, same class and same address
5111 should be identical. */
5112
5113 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5114 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5115 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5116 {
5117 for (j = 0; j < syms->size (); j += 1)
5118 {
5119 if (i != j
5120 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5121 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5122 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5123 && SYMBOL_CLASS ((*syms)[i].symbol)
5124 == SYMBOL_CLASS ((*syms)[j].symbol)
5125 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5126 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5127 remove_p = 1;
5128 }
5129 }
5130
5131 if (remove_p)
5132 syms->erase (syms->begin () + i);
5133
5134 i += 1;
5135 }
5136
5137 /* If all the remaining symbols are identical enumerals, then
5138 just keep the first one and discard the rest.
5139
5140 Unlike what we did previously, we do not discard any entry
5141 unless they are ALL identical. This is because the symbol
5142 comparison is not a strict comparison, but rather a practical
5143 comparison. If all symbols are considered identical, then
5144 we can just go ahead and use the first one and discard the rest.
5145 But if we cannot reduce the list to a single element, we have
5146 to ask the user to disambiguate anyways. And if we have to
5147 present a multiple-choice menu, it's less confusing if the list
5148 isn't missing some choices that were identical and yet distinct. */
5149 if (symbols_are_identical_enums (*syms))
5150 syms->resize (1);
5151
5152 return syms->size ();
5153 }
5154
5155 /* Given a type that corresponds to a renaming entity, use the type name
5156 to extract the scope (package name or function name, fully qualified,
5157 and following the GNAT encoding convention) where this renaming has been
5158 defined. */
5159
5160 static std::string
5161 xget_renaming_scope (struct type *renaming_type)
5162 {
5163 /* The renaming types adhere to the following convention:
5164 <scope>__<rename>___<XR extension>.
5165 So, to extract the scope, we search for the "___XR" extension,
5166 and then backtrack until we find the first "__". */
5167
5168 const char *name = TYPE_NAME (renaming_type);
5169 const char *suffix = strstr (name, "___XR");
5170 const char *last;
5171
5172 /* Now, backtrack a bit until we find the first "__". Start looking
5173 at suffix - 3, as the <rename> part is at least one character long. */
5174
5175 for (last = suffix - 3; last > name; last--)
5176 if (last[0] == '_' && last[1] == '_')
5177 break;
5178
5179 /* Make a copy of scope and return it. */
5180 return std::string (name, last);
5181 }
5182
5183 /* Return nonzero if NAME corresponds to a package name. */
5184
5185 static int
5186 is_package_name (const char *name)
5187 {
5188 /* Here, We take advantage of the fact that no symbols are generated
5189 for packages, while symbols are generated for each function.
5190 So the condition for NAME represent a package becomes equivalent
5191 to NAME not existing in our list of symbols. There is only one
5192 small complication with library-level functions (see below). */
5193
5194 /* If it is a function that has not been defined at library level,
5195 then we should be able to look it up in the symbols. */
5196 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5197 return 0;
5198
5199 /* Library-level function names start with "_ada_". See if function
5200 "_ada_" followed by NAME can be found. */
5201
5202 /* Do a quick check that NAME does not contain "__", since library-level
5203 functions names cannot contain "__" in them. */
5204 if (strstr (name, "__") != NULL)
5205 return 0;
5206
5207 std::string fun_name = string_printf ("_ada_%s", name);
5208
5209 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5210 }
5211
5212 /* Return nonzero if SYM corresponds to a renaming entity that is
5213 not visible from FUNCTION_NAME. */
5214
5215 static int
5216 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5217 {
5218 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5219 return 0;
5220
5221 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5222
5223 /* If the rename has been defined in a package, then it is visible. */
5224 if (is_package_name (scope.c_str ()))
5225 return 0;
5226
5227 /* Check that the rename is in the current function scope by checking
5228 that its name starts with SCOPE. */
5229
5230 /* If the function name starts with "_ada_", it means that it is
5231 a library-level function. Strip this prefix before doing the
5232 comparison, as the encoding for the renaming does not contain
5233 this prefix. */
5234 if (startswith (function_name, "_ada_"))
5235 function_name += 5;
5236
5237 return !startswith (function_name, scope.c_str ());
5238 }
5239
5240 /* Remove entries from SYMS that corresponds to a renaming entity that
5241 is not visible from the function associated with CURRENT_BLOCK or
5242 that is superfluous due to the presence of more specific renaming
5243 information. Places surviving symbols in the initial entries of
5244 SYMS and returns the number of surviving symbols.
5245
5246 Rationale:
5247 First, in cases where an object renaming is implemented as a
5248 reference variable, GNAT may produce both the actual reference
5249 variable and the renaming encoding. In this case, we discard the
5250 latter.
5251
5252 Second, GNAT emits a type following a specified encoding for each renaming
5253 entity. Unfortunately, STABS currently does not support the definition
5254 of types that are local to a given lexical block, so all renamings types
5255 are emitted at library level. As a consequence, if an application
5256 contains two renaming entities using the same name, and a user tries to
5257 print the value of one of these entities, the result of the ada symbol
5258 lookup will also contain the wrong renaming type.
5259
5260 This function partially covers for this limitation by attempting to
5261 remove from the SYMS list renaming symbols that should be visible
5262 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5263 method with the current information available. The implementation
5264 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5265
5266 - When the user tries to print a rename in a function while there
5267 is another rename entity defined in a package: Normally, the
5268 rename in the function has precedence over the rename in the
5269 package, so the latter should be removed from the list. This is
5270 currently not the case.
5271
5272 - This function will incorrectly remove valid renames if
5273 the CURRENT_BLOCK corresponds to a function which symbol name
5274 has been changed by an "Export" pragma. As a consequence,
5275 the user will be unable to print such rename entities. */
5276
5277 static int
5278 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5279 const struct block *current_block)
5280 {
5281 struct symbol *current_function;
5282 const char *current_function_name;
5283 int i;
5284 int is_new_style_renaming;
5285
5286 /* If there is both a renaming foo___XR... encoded as a variable and
5287 a simple variable foo in the same block, discard the latter.
5288 First, zero out such symbols, then compress. */
5289 is_new_style_renaming = 0;
5290 for (i = 0; i < syms->size (); i += 1)
5291 {
5292 struct symbol *sym = (*syms)[i].symbol;
5293 const struct block *block = (*syms)[i].block;
5294 const char *name;
5295 const char *suffix;
5296
5297 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5298 continue;
5299 name = SYMBOL_LINKAGE_NAME (sym);
5300 suffix = strstr (name, "___XR");
5301
5302 if (suffix != NULL)
5303 {
5304 int name_len = suffix - name;
5305 int j;
5306
5307 is_new_style_renaming = 1;
5308 for (j = 0; j < syms->size (); j += 1)
5309 if (i != j && (*syms)[j].symbol != NULL
5310 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5311 name_len) == 0
5312 && block == (*syms)[j].block)
5313 (*syms)[j].symbol = NULL;
5314 }
5315 }
5316 if (is_new_style_renaming)
5317 {
5318 int j, k;
5319
5320 for (j = k = 0; j < syms->size (); j += 1)
5321 if ((*syms)[j].symbol != NULL)
5322 {
5323 (*syms)[k] = (*syms)[j];
5324 k += 1;
5325 }
5326 return k;
5327 }
5328
5329 /* Extract the function name associated to CURRENT_BLOCK.
5330 Abort if unable to do so. */
5331
5332 if (current_block == NULL)
5333 return syms->size ();
5334
5335 current_function = block_linkage_function (current_block);
5336 if (current_function == NULL)
5337 return syms->size ();
5338
5339 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5340 if (current_function_name == NULL)
5341 return syms->size ();
5342
5343 /* Check each of the symbols, and remove it from the list if it is
5344 a type corresponding to a renaming that is out of the scope of
5345 the current block. */
5346
5347 i = 0;
5348 while (i < syms->size ())
5349 {
5350 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5351 == ADA_OBJECT_RENAMING
5352 && old_renaming_is_invisible ((*syms)[i].symbol,
5353 current_function_name))
5354 syms->erase (syms->begin () + i);
5355 else
5356 i += 1;
5357 }
5358
5359 return syms->size ();
5360 }
5361
5362 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5363 whose name and domain match NAME and DOMAIN respectively.
5364 If no match was found, then extend the search to "enclosing"
5365 routines (in other words, if we're inside a nested function,
5366 search the symbols defined inside the enclosing functions).
5367 If WILD_MATCH_P is nonzero, perform the naming matching in
5368 "wild" mode (see function "wild_match" for more info).
5369
5370 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5371
5372 static void
5373 ada_add_local_symbols (struct obstack *obstackp,
5374 const lookup_name_info &lookup_name,
5375 const struct block *block, domain_enum domain)
5376 {
5377 int block_depth = 0;
5378
5379 while (block != NULL)
5380 {
5381 block_depth += 1;
5382 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5383
5384 /* If we found a non-function match, assume that's the one. */
5385 if (is_nonfunction (defns_collected (obstackp, 0),
5386 num_defns_collected (obstackp)))
5387 return;
5388
5389 block = BLOCK_SUPERBLOCK (block);
5390 }
5391
5392 /* If no luck so far, try to find NAME as a local symbol in some lexically
5393 enclosing subprogram. */
5394 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5395 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5396 }
5397
5398 /* An object of this type is used as the user_data argument when
5399 calling the map_matching_symbols method. */
5400
5401 struct match_data
5402 {
5403 struct objfile *objfile;
5404 struct obstack *obstackp;
5405 struct symbol *arg_sym;
5406 int found_sym;
5407 };
5408
5409 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5410 to a list of symbols. DATA0 is a pointer to a struct match_data *
5411 containing the obstack that collects the symbol list, the file that SYM
5412 must come from, a flag indicating whether a non-argument symbol has
5413 been found in the current block, and the last argument symbol
5414 passed in SYM within the current block (if any). When SYM is null,
5415 marking the end of a block, the argument symbol is added if no
5416 other has been found. */
5417
5418 static int
5419 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5420 void *data0)
5421 {
5422 struct match_data *data = (struct match_data *) data0;
5423
5424 if (sym == NULL)
5425 {
5426 if (!data->found_sym && data->arg_sym != NULL)
5427 add_defn_to_vec (data->obstackp,
5428 fixup_symbol_section (data->arg_sym, data->objfile),
5429 block);
5430 data->found_sym = 0;
5431 data->arg_sym = NULL;
5432 }
5433 else
5434 {
5435 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5436 return 0;
5437 else if (SYMBOL_IS_ARGUMENT (sym))
5438 data->arg_sym = sym;
5439 else
5440 {
5441 data->found_sym = 1;
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (sym, data->objfile),
5444 block);
5445 }
5446 }
5447 return 0;
5448 }
5449
5450 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5451 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5452 symbols to OBSTACKP. Return whether we found such symbols. */
5453
5454 static int
5455 ada_add_block_renamings (struct obstack *obstackp,
5456 const struct block *block,
5457 const lookup_name_info &lookup_name,
5458 domain_enum domain)
5459 {
5460 struct using_direct *renaming;
5461 int defns_mark = num_defns_collected (obstackp);
5462
5463 symbol_name_matcher_ftype *name_match
5464 = ada_get_symbol_name_matcher (lookup_name);
5465
5466 for (renaming = block_using (block);
5467 renaming != NULL;
5468 renaming = renaming->next)
5469 {
5470 const char *r_name;
5471
5472 /* Avoid infinite recursions: skip this renaming if we are actually
5473 already traversing it.
5474
5475 Currently, symbol lookup in Ada don't use the namespace machinery from
5476 C++/Fortran support: skip namespace imports that use them. */
5477 if (renaming->searched
5478 || (renaming->import_src != NULL
5479 && renaming->import_src[0] != '\0')
5480 || (renaming->import_dest != NULL
5481 && renaming->import_dest[0] != '\0'))
5482 continue;
5483 renaming->searched = 1;
5484
5485 /* TODO: here, we perform another name-based symbol lookup, which can
5486 pull its own multiple overloads. In theory, we should be able to do
5487 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5488 not a simple name. But in order to do this, we would need to enhance
5489 the DWARF reader to associate a symbol to this renaming, instead of a
5490 name. So, for now, we do something simpler: re-use the C++/Fortran
5491 namespace machinery. */
5492 r_name = (renaming->alias != NULL
5493 ? renaming->alias
5494 : renaming->declaration);
5495 if (name_match (r_name, lookup_name, NULL))
5496 {
5497 lookup_name_info decl_lookup_name (renaming->declaration,
5498 lookup_name.match_type ());
5499 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5500 1, NULL);
5501 }
5502 renaming->searched = 0;
5503 }
5504 return num_defns_collected (obstackp) != defns_mark;
5505 }
5506
5507 /* Implements compare_names, but only applying the comparision using
5508 the given CASING. */
5509
5510 static int
5511 compare_names_with_case (const char *string1, const char *string2,
5512 enum case_sensitivity casing)
5513 {
5514 while (*string1 != '\0' && *string2 != '\0')
5515 {
5516 char c1, c2;
5517
5518 if (isspace (*string1) || isspace (*string2))
5519 return strcmp_iw_ordered (string1, string2);
5520
5521 if (casing == case_sensitive_off)
5522 {
5523 c1 = tolower (*string1);
5524 c2 = tolower (*string2);
5525 }
5526 else
5527 {
5528 c1 = *string1;
5529 c2 = *string2;
5530 }
5531 if (c1 != c2)
5532 break;
5533
5534 string1 += 1;
5535 string2 += 1;
5536 }
5537
5538 switch (*string1)
5539 {
5540 case '(':
5541 return strcmp_iw_ordered (string1, string2);
5542 case '_':
5543 if (*string2 == '\0')
5544 {
5545 if (is_name_suffix (string1))
5546 return 0;
5547 else
5548 return 1;
5549 }
5550 /* FALLTHROUGH */
5551 default:
5552 if (*string2 == '(')
5553 return strcmp_iw_ordered (string1, string2);
5554 else
5555 {
5556 if (casing == case_sensitive_off)
5557 return tolower (*string1) - tolower (*string2);
5558 else
5559 return *string1 - *string2;
5560 }
5561 }
5562 }
5563
5564 /* Compare STRING1 to STRING2, with results as for strcmp.
5565 Compatible with strcmp_iw_ordered in that...
5566
5567 strcmp_iw_ordered (STRING1, STRING2) <= 0
5568
5569 ... implies...
5570
5571 compare_names (STRING1, STRING2) <= 0
5572
5573 (they may differ as to what symbols compare equal). */
5574
5575 static int
5576 compare_names (const char *string1, const char *string2)
5577 {
5578 int result;
5579
5580 /* Similar to what strcmp_iw_ordered does, we need to perform
5581 a case-insensitive comparison first, and only resort to
5582 a second, case-sensitive, comparison if the first one was
5583 not sufficient to differentiate the two strings. */
5584
5585 result = compare_names_with_case (string1, string2, case_sensitive_off);
5586 if (result == 0)
5587 result = compare_names_with_case (string1, string2, case_sensitive_on);
5588
5589 return result;
5590 }
5591
5592 /* Convenience function to get at the Ada encoded lookup name for
5593 LOOKUP_NAME, as a C string. */
5594
5595 static const char *
5596 ada_lookup_name (const lookup_name_info &lookup_name)
5597 {
5598 return lookup_name.ada ().lookup_name ().c_str ();
5599 }
5600
5601 /* Add to OBSTACKP all non-local symbols whose name and domain match
5602 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5603 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5604 symbols otherwise. */
5605
5606 static void
5607 add_nonlocal_symbols (struct obstack *obstackp,
5608 const lookup_name_info &lookup_name,
5609 domain_enum domain, int global)
5610 {
5611 struct match_data data;
5612
5613 memset (&data, 0, sizeof data);
5614 data.obstackp = obstackp;
5615
5616 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5617
5618 for (objfile *objfile : current_program_space->objfiles ())
5619 {
5620 data.objfile = objfile;
5621
5622 if (is_wild_match)
5623 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5624 domain, global,
5625 aux_add_nonlocal_symbols, &data,
5626 symbol_name_match_type::WILD,
5627 NULL);
5628 else
5629 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5630 domain, global,
5631 aux_add_nonlocal_symbols, &data,
5632 symbol_name_match_type::FULL,
5633 compare_names);
5634
5635 for (compunit_symtab *cu : objfile->compunits ())
5636 {
5637 const struct block *global_block
5638 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5639
5640 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5641 domain))
5642 data.found_sym = 1;
5643 }
5644 }
5645
5646 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5647 {
5648 const char *name = ada_lookup_name (lookup_name);
5649 std::string name1 = std::string ("<_ada_") + name + '>';
5650
5651 for (objfile *objfile : current_program_space->objfiles ())
5652 {
5653 data.objfile = objfile;
5654 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5655 domain, global,
5656 aux_add_nonlocal_symbols,
5657 &data,
5658 symbol_name_match_type::FULL,
5659 compare_names);
5660 }
5661 }
5662 }
5663
5664 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5665 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5666 returning the number of matches. Add these to OBSTACKP.
5667
5668 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5669 symbol match within the nest of blocks whose innermost member is BLOCK,
5670 is the one match returned (no other matches in that or
5671 enclosing blocks is returned). If there are any matches in or
5672 surrounding BLOCK, then these alone are returned.
5673
5674 Names prefixed with "standard__" are handled specially:
5675 "standard__" is first stripped off (by the lookup_name
5676 constructor), and only static and global symbols are searched.
5677
5678 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5679 to lookup global symbols. */
5680
5681 static void
5682 ada_add_all_symbols (struct obstack *obstackp,
5683 const struct block *block,
5684 const lookup_name_info &lookup_name,
5685 domain_enum domain,
5686 int full_search,
5687 int *made_global_lookup_p)
5688 {
5689 struct symbol *sym;
5690
5691 if (made_global_lookup_p)
5692 *made_global_lookup_p = 0;
5693
5694 /* Special case: If the user specifies a symbol name inside package
5695 Standard, do a non-wild matching of the symbol name without
5696 the "standard__" prefix. This was primarily introduced in order
5697 to allow the user to specifically access the standard exceptions
5698 using, for instance, Standard.Constraint_Error when Constraint_Error
5699 is ambiguous (due to the user defining its own Constraint_Error
5700 entity inside its program). */
5701 if (lookup_name.ada ().standard_p ())
5702 block = NULL;
5703
5704 /* Check the non-global symbols. If we have ANY match, then we're done. */
5705
5706 if (block != NULL)
5707 {
5708 if (full_search)
5709 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5710 else
5711 {
5712 /* In the !full_search case we're are being called by
5713 ada_iterate_over_symbols, and we don't want to search
5714 superblocks. */
5715 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5716 }
5717 if (num_defns_collected (obstackp) > 0 || !full_search)
5718 return;
5719 }
5720
5721 /* No non-global symbols found. Check our cache to see if we have
5722 already performed this search before. If we have, then return
5723 the same result. */
5724
5725 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5726 domain, &sym, &block))
5727 {
5728 if (sym != NULL)
5729 add_defn_to_vec (obstackp, sym, block);
5730 return;
5731 }
5732
5733 if (made_global_lookup_p)
5734 *made_global_lookup_p = 1;
5735
5736 /* Search symbols from all global blocks. */
5737
5738 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5739
5740 /* Now add symbols from all per-file blocks if we've gotten no hits
5741 (not strictly correct, but perhaps better than an error). */
5742
5743 if (num_defns_collected (obstackp) == 0)
5744 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5745 }
5746
5747 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5748 is non-zero, enclosing scope and in global scopes, returning the number of
5749 matches.
5750 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5751 found and the blocks and symbol tables (if any) in which they were
5752 found.
5753
5754 When full_search is non-zero, any non-function/non-enumeral
5755 symbol match within the nest of blocks whose innermost member is BLOCK,
5756 is the one match returned (no other matches in that or
5757 enclosing blocks is returned). If there are any matches in or
5758 surrounding BLOCK, then these alone are returned.
5759
5760 Names prefixed with "standard__" are handled specially: "standard__"
5761 is first stripped off, and only static and global symbols are searched. */
5762
5763 static int
5764 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5765 const struct block *block,
5766 domain_enum domain,
5767 std::vector<struct block_symbol> *results,
5768 int full_search)
5769 {
5770 int syms_from_global_search;
5771 int ndefns;
5772 auto_obstack obstack;
5773
5774 ada_add_all_symbols (&obstack, block, lookup_name,
5775 domain, full_search, &syms_from_global_search);
5776
5777 ndefns = num_defns_collected (&obstack);
5778
5779 struct block_symbol *base = defns_collected (&obstack, 1);
5780 for (int i = 0; i < ndefns; ++i)
5781 results->push_back (base[i]);
5782
5783 ndefns = remove_extra_symbols (results);
5784
5785 if (ndefns == 0 && full_search && syms_from_global_search)
5786 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5787
5788 if (ndefns == 1 && full_search && syms_from_global_search)
5789 cache_symbol (ada_lookup_name (lookup_name), domain,
5790 (*results)[0].symbol, (*results)[0].block);
5791
5792 ndefns = remove_irrelevant_renamings (results, block);
5793
5794 return ndefns;
5795 }
5796
5797 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5798 in global scopes, returning the number of matches, and filling *RESULTS
5799 with (SYM,BLOCK) tuples.
5800
5801 See ada_lookup_symbol_list_worker for further details. */
5802
5803 int
5804 ada_lookup_symbol_list (const char *name, const struct block *block,
5805 domain_enum domain,
5806 std::vector<struct block_symbol> *results)
5807 {
5808 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5809 lookup_name_info lookup_name (name, name_match_type);
5810
5811 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5812 }
5813
5814 /* Implementation of the la_iterate_over_symbols method. */
5815
5816 static void
5817 ada_iterate_over_symbols
5818 (const struct block *block, const lookup_name_info &name,
5819 domain_enum domain,
5820 gdb::function_view<symbol_found_callback_ftype> callback)
5821 {
5822 int ndefs, i;
5823 std::vector<struct block_symbol> results;
5824
5825 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5826
5827 for (i = 0; i < ndefs; ++i)
5828 {
5829 if (!callback (&results[i]))
5830 break;
5831 }
5832 }
5833
5834 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5835 to 1, but choosing the first symbol found if there are multiple
5836 choices.
5837
5838 The result is stored in *INFO, which must be non-NULL.
5839 If no match is found, INFO->SYM is set to NULL. */
5840
5841 void
5842 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5843 domain_enum domain,
5844 struct block_symbol *info)
5845 {
5846 /* Since we already have an encoded name, wrap it in '<>' to force a
5847 verbatim match. Otherwise, if the name happens to not look like
5848 an encoded name (because it doesn't include a "__"),
5849 ada_lookup_name_info would re-encode/fold it again, and that
5850 would e.g., incorrectly lowercase object renaming names like
5851 "R28b" -> "r28b". */
5852 std::string verbatim = std::string ("<") + name + '>';
5853
5854 gdb_assert (info != NULL);
5855 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5856 }
5857
5858 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5859 scope and in global scopes, or NULL if none. NAME is folded and
5860 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5861 choosing the first symbol if there are multiple choices.
5862 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5863
5864 struct block_symbol
5865 ada_lookup_symbol (const char *name, const struct block *block0,
5866 domain_enum domain, int *is_a_field_of_this)
5867 {
5868 if (is_a_field_of_this != NULL)
5869 *is_a_field_of_this = 0;
5870
5871 std::vector<struct block_symbol> candidates;
5872 int n_candidates;
5873
5874 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5875
5876 if (n_candidates == 0)
5877 return {};
5878
5879 block_symbol info = candidates[0];
5880 info.symbol = fixup_symbol_section (info.symbol, NULL);
5881 return info;
5882 }
5883
5884 static struct block_symbol
5885 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5886 const char *name,
5887 const struct block *block,
5888 const domain_enum domain)
5889 {
5890 struct block_symbol sym;
5891
5892 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5893 if (sym.symbol != NULL)
5894 return sym;
5895
5896 /* If we haven't found a match at this point, try the primitive
5897 types. In other languages, this search is performed before
5898 searching for global symbols in order to short-circuit that
5899 global-symbol search if it happens that the name corresponds
5900 to a primitive type. But we cannot do the same in Ada, because
5901 it is perfectly legitimate for a program to declare a type which
5902 has the same name as a standard type. If looking up a type in
5903 that situation, we have traditionally ignored the primitive type
5904 in favor of user-defined types. This is why, unlike most other
5905 languages, we search the primitive types this late and only after
5906 having searched the global symbols without success. */
5907
5908 if (domain == VAR_DOMAIN)
5909 {
5910 struct gdbarch *gdbarch;
5911
5912 if (block == NULL)
5913 gdbarch = target_gdbarch ();
5914 else
5915 gdbarch = block_gdbarch (block);
5916 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5917 if (sym.symbol != NULL)
5918 return sym;
5919 }
5920
5921 return (struct block_symbol) {NULL, NULL};
5922 }
5923
5924
5925 /* True iff STR is a possible encoded suffix of a normal Ada name
5926 that is to be ignored for matching purposes. Suffixes of parallel
5927 names (e.g., XVE) are not included here. Currently, the possible suffixes
5928 are given by any of the regular expressions:
5929
5930 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5931 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5932 TKB [subprogram suffix for task bodies]
5933 _E[0-9]+[bs]$ [protected object entry suffixes]
5934 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5935
5936 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5937 match is performed. This sequence is used to differentiate homonyms,
5938 is an optional part of a valid name suffix. */
5939
5940 static int
5941 is_name_suffix (const char *str)
5942 {
5943 int k;
5944 const char *matching;
5945 const int len = strlen (str);
5946
5947 /* Skip optional leading __[0-9]+. */
5948
5949 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5950 {
5951 str += 3;
5952 while (isdigit (str[0]))
5953 str += 1;
5954 }
5955
5956 /* [.$][0-9]+ */
5957
5958 if (str[0] == '.' || str[0] == '$')
5959 {
5960 matching = str + 1;
5961 while (isdigit (matching[0]))
5962 matching += 1;
5963 if (matching[0] == '\0')
5964 return 1;
5965 }
5966
5967 /* ___[0-9]+ */
5968
5969 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5970 {
5971 matching = str + 3;
5972 while (isdigit (matching[0]))
5973 matching += 1;
5974 if (matching[0] == '\0')
5975 return 1;
5976 }
5977
5978 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5979
5980 if (strcmp (str, "TKB") == 0)
5981 return 1;
5982
5983 #if 0
5984 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5985 with a N at the end. Unfortunately, the compiler uses the same
5986 convention for other internal types it creates. So treating
5987 all entity names that end with an "N" as a name suffix causes
5988 some regressions. For instance, consider the case of an enumerated
5989 type. To support the 'Image attribute, it creates an array whose
5990 name ends with N.
5991 Having a single character like this as a suffix carrying some
5992 information is a bit risky. Perhaps we should change the encoding
5993 to be something like "_N" instead. In the meantime, do not do
5994 the following check. */
5995 /* Protected Object Subprograms */
5996 if (len == 1 && str [0] == 'N')
5997 return 1;
5998 #endif
5999
6000 /* _E[0-9]+[bs]$ */
6001 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6002 {
6003 matching = str + 3;
6004 while (isdigit (matching[0]))
6005 matching += 1;
6006 if ((matching[0] == 'b' || matching[0] == 's')
6007 && matching [1] == '\0')
6008 return 1;
6009 }
6010
6011 /* ??? We should not modify STR directly, as we are doing below. This
6012 is fine in this case, but may become problematic later if we find
6013 that this alternative did not work, and want to try matching
6014 another one from the begining of STR. Since we modified it, we
6015 won't be able to find the begining of the string anymore! */
6016 if (str[0] == 'X')
6017 {
6018 str += 1;
6019 while (str[0] != '_' && str[0] != '\0')
6020 {
6021 if (str[0] != 'n' && str[0] != 'b')
6022 return 0;
6023 str += 1;
6024 }
6025 }
6026
6027 if (str[0] == '\000')
6028 return 1;
6029
6030 if (str[0] == '_')
6031 {
6032 if (str[1] != '_' || str[2] == '\000')
6033 return 0;
6034 if (str[2] == '_')
6035 {
6036 if (strcmp (str + 3, "JM") == 0)
6037 return 1;
6038 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6039 the LJM suffix in favor of the JM one. But we will
6040 still accept LJM as a valid suffix for a reasonable
6041 amount of time, just to allow ourselves to debug programs
6042 compiled using an older version of GNAT. */
6043 if (strcmp (str + 3, "LJM") == 0)
6044 return 1;
6045 if (str[3] != 'X')
6046 return 0;
6047 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6048 || str[4] == 'U' || str[4] == 'P')
6049 return 1;
6050 if (str[4] == 'R' && str[5] != 'T')
6051 return 1;
6052 return 0;
6053 }
6054 if (!isdigit (str[2]))
6055 return 0;
6056 for (k = 3; str[k] != '\0'; k += 1)
6057 if (!isdigit (str[k]) && str[k] != '_')
6058 return 0;
6059 return 1;
6060 }
6061 if (str[0] == '$' && isdigit (str[1]))
6062 {
6063 for (k = 2; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6065 return 0;
6066 return 1;
6067 }
6068 return 0;
6069 }
6070
6071 /* Return non-zero if the string starting at NAME and ending before
6072 NAME_END contains no capital letters. */
6073
6074 static int
6075 is_valid_name_for_wild_match (const char *name0)
6076 {
6077 const char *decoded_name = ada_decode (name0);
6078 int i;
6079
6080 /* If the decoded name starts with an angle bracket, it means that
6081 NAME0 does not follow the GNAT encoding format. It should then
6082 not be allowed as a possible wild match. */
6083 if (decoded_name[0] == '<')
6084 return 0;
6085
6086 for (i=0; decoded_name[i] != '\0'; i++)
6087 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6088 return 0;
6089
6090 return 1;
6091 }
6092
6093 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6094 that could start a simple name. Assumes that *NAMEP points into
6095 the string beginning at NAME0. */
6096
6097 static int
6098 advance_wild_match (const char **namep, const char *name0, int target0)
6099 {
6100 const char *name = *namep;
6101
6102 while (1)
6103 {
6104 int t0, t1;
6105
6106 t0 = *name;
6107 if (t0 == '_')
6108 {
6109 t1 = name[1];
6110 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6111 {
6112 name += 1;
6113 if (name == name0 + 5 && startswith (name0, "_ada"))
6114 break;
6115 else
6116 name += 1;
6117 }
6118 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6119 || name[2] == target0))
6120 {
6121 name += 2;
6122 break;
6123 }
6124 else
6125 return 0;
6126 }
6127 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6128 name += 1;
6129 else
6130 return 0;
6131 }
6132
6133 *namep = name;
6134 return 1;
6135 }
6136
6137 /* Return true iff NAME encodes a name of the form prefix.PATN.
6138 Ignores any informational suffixes of NAME (i.e., for which
6139 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6140 simple name. */
6141
6142 static bool
6143 wild_match (const char *name, const char *patn)
6144 {
6145 const char *p;
6146 const char *name0 = name;
6147
6148 while (1)
6149 {
6150 const char *match = name;
6151
6152 if (*name == *patn)
6153 {
6154 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6155 if (*p != *name)
6156 break;
6157 if (*p == '\0' && is_name_suffix (name))
6158 return match == name0 || is_valid_name_for_wild_match (name0);
6159
6160 if (name[-1] == '_')
6161 name -= 1;
6162 }
6163 if (!advance_wild_match (&name, name0, *patn))
6164 return false;
6165 }
6166 }
6167
6168 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6169 any trailing suffixes that encode debugging information or leading
6170 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6171 information that is ignored). */
6172
6173 static bool
6174 full_match (const char *sym_name, const char *search_name)
6175 {
6176 size_t search_name_len = strlen (search_name);
6177
6178 if (strncmp (sym_name, search_name, search_name_len) == 0
6179 && is_name_suffix (sym_name + search_name_len))
6180 return true;
6181
6182 if (startswith (sym_name, "_ada_")
6183 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6184 && is_name_suffix (sym_name + search_name_len + 5))
6185 return true;
6186
6187 return false;
6188 }
6189
6190 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6191 *defn_symbols, updating the list of symbols in OBSTACKP (if
6192 necessary). OBJFILE is the section containing BLOCK. */
6193
6194 static void
6195 ada_add_block_symbols (struct obstack *obstackp,
6196 const struct block *block,
6197 const lookup_name_info &lookup_name,
6198 domain_enum domain, struct objfile *objfile)
6199 {
6200 struct block_iterator iter;
6201 /* A matching argument symbol, if any. */
6202 struct symbol *arg_sym;
6203 /* Set true when we find a matching non-argument symbol. */
6204 int found_sym;
6205 struct symbol *sym;
6206
6207 arg_sym = NULL;
6208 found_sym = 0;
6209 for (sym = block_iter_match_first (block, lookup_name, &iter);
6210 sym != NULL;
6211 sym = block_iter_match_next (lookup_name, &iter))
6212 {
6213 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6214 SYMBOL_DOMAIN (sym), domain))
6215 {
6216 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6217 {
6218 if (SYMBOL_IS_ARGUMENT (sym))
6219 arg_sym = sym;
6220 else
6221 {
6222 found_sym = 1;
6223 add_defn_to_vec (obstackp,
6224 fixup_symbol_section (sym, objfile),
6225 block);
6226 }
6227 }
6228 }
6229 }
6230
6231 /* Handle renamings. */
6232
6233 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6234 found_sym = 1;
6235
6236 if (!found_sym && arg_sym != NULL)
6237 {
6238 add_defn_to_vec (obstackp,
6239 fixup_symbol_section (arg_sym, objfile),
6240 block);
6241 }
6242
6243 if (!lookup_name.ada ().wild_match_p ())
6244 {
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6248 const char *name = ada_lookup_name.c_str ();
6249 size_t name_len = ada_lookup_name.size ();
6250
6251 ALL_BLOCK_SYMBOLS (block, iter, sym)
6252 {
6253 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6254 SYMBOL_DOMAIN (sym), domain))
6255 {
6256 int cmp;
6257
6258 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6259 if (cmp == 0)
6260 {
6261 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6262 if (cmp == 0)
6263 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6264 name_len);
6265 }
6266
6267 if (cmp == 0
6268 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6269 {
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
6282 }
6283 }
6284 }
6285
6286 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6287 They aren't parameters, right? */
6288 if (!found_sym && arg_sym != NULL)
6289 {
6290 add_defn_to_vec (obstackp,
6291 fixup_symbol_section (arg_sym, objfile),
6292 block);
6293 }
6294 }
6295 }
6296 \f
6297
6298 /* Symbol Completion */
6299
6300 /* See symtab.h. */
6301
6302 bool
6303 ada_lookup_name_info::matches
6304 (const char *sym_name,
6305 symbol_name_match_type match_type,
6306 completion_match_result *comp_match_res) const
6307 {
6308 bool match = false;
6309 const char *text = m_encoded_name.c_str ();
6310 size_t text_len = m_encoded_name.size ();
6311
6312 /* First, test against the fully qualified name of the symbol. */
6313
6314 if (strncmp (sym_name, text, text_len) == 0)
6315 match = true;
6316
6317 if (match && !m_encoded_p)
6318 {
6319 /* One needed check before declaring a positive match is to verify
6320 that iff we are doing a verbatim match, the decoded version
6321 of the symbol name starts with '<'. Otherwise, this symbol name
6322 is not a suitable completion. */
6323 const char *sym_name_copy = sym_name;
6324 bool has_angle_bracket;
6325
6326 sym_name = ada_decode (sym_name);
6327 has_angle_bracket = (sym_name[0] == '<');
6328 match = (has_angle_bracket == m_verbatim_p);
6329 sym_name = sym_name_copy;
6330 }
6331
6332 if (match && !m_verbatim_p)
6333 {
6334 /* When doing non-verbatim match, another check that needs to
6335 be done is to verify that the potentially matching symbol name
6336 does not include capital letters, because the ada-mode would
6337 not be able to understand these symbol names without the
6338 angle bracket notation. */
6339 const char *tmp;
6340
6341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6342 if (*tmp != '\0')
6343 match = false;
6344 }
6345
6346 /* Second: Try wild matching... */
6347
6348 if (!match && m_wild_match_p)
6349 {
6350 /* Since we are doing wild matching, this means that TEXT
6351 may represent an unqualified symbol name. We therefore must
6352 also compare TEXT against the unqualified name of the symbol. */
6353 sym_name = ada_unqualified_name (ada_decode (sym_name));
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
6356 match = true;
6357 }
6358
6359 /* Finally: If we found a match, prepare the result to return. */
6360
6361 if (!match)
6362 return false;
6363
6364 if (comp_match_res != NULL)
6365 {
6366 std::string &match_str = comp_match_res->match.storage ();
6367
6368 if (!m_encoded_p)
6369 match_str = ada_decode (sym_name);
6370 else
6371 {
6372 if (m_verbatim_p)
6373 match_str = add_angle_brackets (sym_name);
6374 else
6375 match_str = sym_name;
6376
6377 }
6378
6379 comp_match_res->set_match (match_str.c_str ());
6380 }
6381
6382 return true;
6383 }
6384
6385 /* Add the list of possible symbol names completing TEXT to TRACKER.
6386 WORD is the entire command on which completion is made. */
6387
6388 static void
6389 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6390 complete_symbol_mode mode,
6391 symbol_name_match_type name_match_type,
6392 const char *text, const char *word,
6393 enum type_code code)
6394 {
6395 struct symbol *sym;
6396 const struct block *b, *surrounding_static_block = 0;
6397 struct block_iterator iter;
6398
6399 gdb_assert (code == TYPE_CODE_UNDEF);
6400
6401 lookup_name_info lookup_name (text, name_match_type, true);
6402
6403 /* First, look at the partial symtab symbols. */
6404 expand_symtabs_matching (NULL,
6405 lookup_name,
6406 NULL,
6407 NULL,
6408 ALL_DOMAIN);
6409
6410 /* At this point scan through the misc symbol vectors and add each
6411 symbol you find to the list. Eventually we want to ignore
6412 anything that isn't a text symbol (everything else will be
6413 handled by the psymtab code above). */
6414
6415 for (objfile *objfile : current_program_space->objfiles ())
6416 {
6417 for (minimal_symbol *msymbol : objfile->msymbols ())
6418 {
6419 QUIT;
6420
6421 if (completion_skip_symbol (mode, msymbol))
6422 continue;
6423
6424 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6425
6426 /* Ada minimal symbols won't have their language set to Ada. If
6427 we let completion_list_add_name compare using the
6428 default/C-like matcher, then when completing e.g., symbols in a
6429 package named "pck", we'd match internal Ada symbols like
6430 "pckS", which are invalid in an Ada expression, unless you wrap
6431 them in '<' '>' to request a verbatim match.
6432
6433 Unfortunately, some Ada encoded names successfully demangle as
6434 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6435 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6436 with the wrong language set. Paper over that issue here. */
6437 if (symbol_language == language_auto
6438 || symbol_language == language_cplus)
6439 symbol_language = language_ada;
6440
6441 completion_list_add_name (tracker,
6442 symbol_language,
6443 MSYMBOL_LINKAGE_NAME (msymbol),
6444 lookup_name, text, word);
6445 }
6446 }
6447
6448 /* Search upwards from currently selected frame (so that we can
6449 complete on local vars. */
6450
6451 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6452 {
6453 if (!BLOCK_SUPERBLOCK (b))
6454 surrounding_static_block = b; /* For elmin of dups */
6455
6456 ALL_BLOCK_SYMBOLS (b, iter, sym)
6457 {
6458 if (completion_skip_symbol (mode, sym))
6459 continue;
6460
6461 completion_list_add_name (tracker,
6462 SYMBOL_LANGUAGE (sym),
6463 SYMBOL_LINKAGE_NAME (sym),
6464 lookup_name, text, word);
6465 }
6466 }
6467
6468 /* Go through the symtabs and check the externs and statics for
6469 symbols which match. */
6470
6471 for (objfile *objfile : current_program_space->objfiles ())
6472 {
6473 for (compunit_symtab *s : objfile->compunits ())
6474 {
6475 QUIT;
6476 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6478 {
6479 if (completion_skip_symbol (mode, sym))
6480 continue;
6481
6482 completion_list_add_name (tracker,
6483 SYMBOL_LANGUAGE (sym),
6484 SYMBOL_LINKAGE_NAME (sym),
6485 lookup_name, text, word);
6486 }
6487 }
6488 }
6489
6490 for (objfile *objfile : current_program_space->objfiles ())
6491 {
6492 for (compunit_symtab *s : objfile->compunits ())
6493 {
6494 QUIT;
6495 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6496 /* Don't do this block twice. */
6497 if (b == surrounding_static_block)
6498 continue;
6499 ALL_BLOCK_SYMBOLS (b, iter, sym)
6500 {
6501 if (completion_skip_symbol (mode, sym))
6502 continue;
6503
6504 completion_list_add_name (tracker,
6505 SYMBOL_LANGUAGE (sym),
6506 SYMBOL_LINKAGE_NAME (sym),
6507 lookup_name, text, word);
6508 }
6509 }
6510 }
6511 }
6512
6513 /* Field Access */
6514
6515 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6516 for tagged types. */
6517
6518 static int
6519 ada_is_dispatch_table_ptr_type (struct type *type)
6520 {
6521 const char *name;
6522
6523 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6524 return 0;
6525
6526 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6527 if (name == NULL)
6528 return 0;
6529
6530 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6531 }
6532
6533 /* Return non-zero if TYPE is an interface tag. */
6534
6535 static int
6536 ada_is_interface_tag (struct type *type)
6537 {
6538 const char *name = TYPE_NAME (type);
6539
6540 if (name == NULL)
6541 return 0;
6542
6543 return (strcmp (name, "ada__tags__interface_tag") == 0);
6544 }
6545
6546 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6547 to be invisible to users. */
6548
6549 int
6550 ada_is_ignored_field (struct type *type, int field_num)
6551 {
6552 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6553 return 1;
6554
6555 /* Check the name of that field. */
6556 {
6557 const char *name = TYPE_FIELD_NAME (type, field_num);
6558
6559 /* Anonymous field names should not be printed.
6560 brobecker/2007-02-20: I don't think this can actually happen
6561 but we don't want to print the value of annonymous fields anyway. */
6562 if (name == NULL)
6563 return 1;
6564
6565 /* Normally, fields whose name start with an underscore ("_")
6566 are fields that have been internally generated by the compiler,
6567 and thus should not be printed. The "_parent" field is special,
6568 however: This is a field internally generated by the compiler
6569 for tagged types, and it contains the components inherited from
6570 the parent type. This field should not be printed as is, but
6571 should not be ignored either. */
6572 if (name[0] == '_' && !startswith (name, "_parent"))
6573 return 1;
6574 }
6575
6576 /* If this is the dispatch table of a tagged type or an interface tag,
6577 then ignore. */
6578 if (ada_is_tagged_type (type, 1)
6579 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6580 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6581 return 1;
6582
6583 /* Not a special field, so it should not be ignored. */
6584 return 0;
6585 }
6586
6587 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6588 pointer or reference type whose ultimate target has a tag field. */
6589
6590 int
6591 ada_is_tagged_type (struct type *type, int refok)
6592 {
6593 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6594 }
6595
6596 /* True iff TYPE represents the type of X'Tag */
6597
6598 int
6599 ada_is_tag_type (struct type *type)
6600 {
6601 type = ada_check_typedef (type);
6602
6603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6604 return 0;
6605 else
6606 {
6607 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6608
6609 return (name != NULL
6610 && strcmp (name, "ada__tags__dispatch_table") == 0);
6611 }
6612 }
6613
6614 /* The type of the tag on VAL. */
6615
6616 struct type *
6617 ada_tag_type (struct value *val)
6618 {
6619 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6620 }
6621
6622 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6623 retired at Ada 05). */
6624
6625 static int
6626 is_ada95_tag (struct value *tag)
6627 {
6628 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6629 }
6630
6631 /* The value of the tag on VAL. */
6632
6633 struct value *
6634 ada_value_tag (struct value *val)
6635 {
6636 return ada_value_struct_elt (val, "_tag", 0);
6637 }
6638
6639 /* The value of the tag on the object of type TYPE whose contents are
6640 saved at VALADDR, if it is non-null, or is at memory address
6641 ADDRESS. */
6642
6643 static struct value *
6644 value_tag_from_contents_and_address (struct type *type,
6645 const gdb_byte *valaddr,
6646 CORE_ADDR address)
6647 {
6648 int tag_byte_offset;
6649 struct type *tag_type;
6650
6651 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6652 NULL, NULL, NULL))
6653 {
6654 const gdb_byte *valaddr1 = ((valaddr == NULL)
6655 ? NULL
6656 : valaddr + tag_byte_offset);
6657 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6658
6659 return value_from_contents_and_address (tag_type, valaddr1, address1);
6660 }
6661 return NULL;
6662 }
6663
6664 static struct type *
6665 type_from_tag (struct value *tag)
6666 {
6667 const char *type_name = ada_tag_name (tag);
6668
6669 if (type_name != NULL)
6670 return ada_find_any_type (ada_encode (type_name));
6671 return NULL;
6672 }
6673
6674 /* Given a value OBJ of a tagged type, return a value of this
6675 type at the base address of the object. The base address, as
6676 defined in Ada.Tags, it is the address of the primary tag of
6677 the object, and therefore where the field values of its full
6678 view can be fetched. */
6679
6680 struct value *
6681 ada_tag_value_at_base_address (struct value *obj)
6682 {
6683 struct value *val;
6684 LONGEST offset_to_top = 0;
6685 struct type *ptr_type, *obj_type;
6686 struct value *tag;
6687 CORE_ADDR base_address;
6688
6689 obj_type = value_type (obj);
6690
6691 /* It is the responsability of the caller to deref pointers. */
6692
6693 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6694 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6695 return obj;
6696
6697 tag = ada_value_tag (obj);
6698 if (!tag)
6699 return obj;
6700
6701 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6702
6703 if (is_ada95_tag (tag))
6704 return obj;
6705
6706 ptr_type = language_lookup_primitive_type
6707 (language_def (language_ada), target_gdbarch(), "storage_offset");
6708 ptr_type = lookup_pointer_type (ptr_type);
6709 val = value_cast (ptr_type, tag);
6710 if (!val)
6711 return obj;
6712
6713 /* It is perfectly possible that an exception be raised while
6714 trying to determine the base address, just like for the tag;
6715 see ada_tag_name for more details. We do not print the error
6716 message for the same reason. */
6717
6718 TRY
6719 {
6720 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6721 }
6722
6723 CATCH (e, RETURN_MASK_ERROR)
6724 {
6725 return obj;
6726 }
6727 END_CATCH
6728
6729 /* If offset is null, nothing to do. */
6730
6731 if (offset_to_top == 0)
6732 return obj;
6733
6734 /* -1 is a special case in Ada.Tags; however, what should be done
6735 is not quite clear from the documentation. So do nothing for
6736 now. */
6737
6738 if (offset_to_top == -1)
6739 return obj;
6740
6741 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6742 from the base address. This was however incompatible with
6743 C++ dispatch table: C++ uses a *negative* value to *add*
6744 to the base address. Ada's convention has therefore been
6745 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6746 use the same convention. Here, we support both cases by
6747 checking the sign of OFFSET_TO_TOP. */
6748
6749 if (offset_to_top > 0)
6750 offset_to_top = -offset_to_top;
6751
6752 base_address = value_address (obj) + offset_to_top;
6753 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6754
6755 /* Make sure that we have a proper tag at the new address.
6756 Otherwise, offset_to_top is bogus (which can happen when
6757 the object is not initialized yet). */
6758
6759 if (!tag)
6760 return obj;
6761
6762 obj_type = type_from_tag (tag);
6763
6764 if (!obj_type)
6765 return obj;
6766
6767 return value_from_contents_and_address (obj_type, NULL, base_address);
6768 }
6769
6770 /* Return the "ada__tags__type_specific_data" type. */
6771
6772 static struct type *
6773 ada_get_tsd_type (struct inferior *inf)
6774 {
6775 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6776
6777 if (data->tsd_type == 0)
6778 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6779 return data->tsd_type;
6780 }
6781
6782 /* Return the TSD (type-specific data) associated to the given TAG.
6783 TAG is assumed to be the tag of a tagged-type entity.
6784
6785 May return NULL if we are unable to get the TSD. */
6786
6787 static struct value *
6788 ada_get_tsd_from_tag (struct value *tag)
6789 {
6790 struct value *val;
6791 struct type *type;
6792
6793 /* First option: The TSD is simply stored as a field of our TAG.
6794 Only older versions of GNAT would use this format, but we have
6795 to test it first, because there are no visible markers for
6796 the current approach except the absence of that field. */
6797
6798 val = ada_value_struct_elt (tag, "tsd", 1);
6799 if (val)
6800 return val;
6801
6802 /* Try the second representation for the dispatch table (in which
6803 there is no explicit 'tsd' field in the referent of the tag pointer,
6804 and instead the tsd pointer is stored just before the dispatch
6805 table. */
6806
6807 type = ada_get_tsd_type (current_inferior());
6808 if (type == NULL)
6809 return NULL;
6810 type = lookup_pointer_type (lookup_pointer_type (type));
6811 val = value_cast (type, tag);
6812 if (val == NULL)
6813 return NULL;
6814 return value_ind (value_ptradd (val, -1));
6815 }
6816
6817 /* Given the TSD of a tag (type-specific data), return a string
6818 containing the name of the associated type.
6819
6820 The returned value is good until the next call. May return NULL
6821 if we are unable to determine the tag name. */
6822
6823 static char *
6824 ada_tag_name_from_tsd (struct value *tsd)
6825 {
6826 static char name[1024];
6827 char *p;
6828 struct value *val;
6829
6830 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6831 if (val == NULL)
6832 return NULL;
6833 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6834 for (p = name; *p != '\0'; p += 1)
6835 if (isalpha (*p))
6836 *p = tolower (*p);
6837 return name;
6838 }
6839
6840 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6841 a C string.
6842
6843 Return NULL if the TAG is not an Ada tag, or if we were unable to
6844 determine the name of that tag. The result is good until the next
6845 call. */
6846
6847 const char *
6848 ada_tag_name (struct value *tag)
6849 {
6850 char *name = NULL;
6851
6852 if (!ada_is_tag_type (value_type (tag)))
6853 return NULL;
6854
6855 /* It is perfectly possible that an exception be raised while trying
6856 to determine the TAG's name, even under normal circumstances:
6857 The associated variable may be uninitialized or corrupted, for
6858 instance. We do not let any exception propagate past this point.
6859 instead we return NULL.
6860
6861 We also do not print the error message either (which often is very
6862 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6863 the caller print a more meaningful message if necessary. */
6864 TRY
6865 {
6866 struct value *tsd = ada_get_tsd_from_tag (tag);
6867
6868 if (tsd != NULL)
6869 name = ada_tag_name_from_tsd (tsd);
6870 }
6871 CATCH (e, RETURN_MASK_ERROR)
6872 {
6873 }
6874 END_CATCH
6875
6876 return name;
6877 }
6878
6879 /* The parent type of TYPE, or NULL if none. */
6880
6881 struct type *
6882 ada_parent_type (struct type *type)
6883 {
6884 int i;
6885
6886 type = ada_check_typedef (type);
6887
6888 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6889 return NULL;
6890
6891 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6892 if (ada_is_parent_field (type, i))
6893 {
6894 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6895
6896 /* If the _parent field is a pointer, then dereference it. */
6897 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6898 parent_type = TYPE_TARGET_TYPE (parent_type);
6899 /* If there is a parallel XVS type, get the actual base type. */
6900 parent_type = ada_get_base_type (parent_type);
6901
6902 return ada_check_typedef (parent_type);
6903 }
6904
6905 return NULL;
6906 }
6907
6908 /* True iff field number FIELD_NUM of structure type TYPE contains the
6909 parent-type (inherited) fields of a derived type. Assumes TYPE is
6910 a structure type with at least FIELD_NUM+1 fields. */
6911
6912 int
6913 ada_is_parent_field (struct type *type, int field_num)
6914 {
6915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6916
6917 return (name != NULL
6918 && (startswith (name, "PARENT")
6919 || startswith (name, "_parent")));
6920 }
6921
6922 /* True iff field number FIELD_NUM of structure type TYPE is a
6923 transparent wrapper field (which should be silently traversed when doing
6924 field selection and flattened when printing). Assumes TYPE is a
6925 structure type with at least FIELD_NUM+1 fields. Such fields are always
6926 structures. */
6927
6928 int
6929 ada_is_wrapper_field (struct type *type, int field_num)
6930 {
6931 const char *name = TYPE_FIELD_NAME (type, field_num);
6932
6933 if (name != NULL && strcmp (name, "RETVAL") == 0)
6934 {
6935 /* This happens in functions with "out" or "in out" parameters
6936 which are passed by copy. For such functions, GNAT describes
6937 the function's return type as being a struct where the return
6938 value is in a field called RETVAL, and where the other "out"
6939 or "in out" parameters are fields of that struct. This is not
6940 a wrapper. */
6941 return 0;
6942 }
6943
6944 return (name != NULL
6945 && (startswith (name, "PARENT")
6946 || strcmp (name, "REP") == 0
6947 || startswith (name, "_parent")
6948 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6949 }
6950
6951 /* True iff field number FIELD_NUM of structure or union type TYPE
6952 is a variant wrapper. Assumes TYPE is a structure type with at least
6953 FIELD_NUM+1 fields. */
6954
6955 int
6956 ada_is_variant_part (struct type *type, int field_num)
6957 {
6958 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6959
6960 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6961 || (is_dynamic_field (type, field_num)
6962 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6963 == TYPE_CODE_UNION)));
6964 }
6965
6966 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6967 whose discriminants are contained in the record type OUTER_TYPE,
6968 returns the type of the controlling discriminant for the variant.
6969 May return NULL if the type could not be found. */
6970
6971 struct type *
6972 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6973 {
6974 const char *name = ada_variant_discrim_name (var_type);
6975
6976 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6977 }
6978
6979 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6980 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6981 represents a 'when others' clause; otherwise 0. */
6982
6983 int
6984 ada_is_others_clause (struct type *type, int field_num)
6985 {
6986 const char *name = TYPE_FIELD_NAME (type, field_num);
6987
6988 return (name != NULL && name[0] == 'O');
6989 }
6990
6991 /* Assuming that TYPE0 is the type of the variant part of a record,
6992 returns the name of the discriminant controlling the variant.
6993 The value is valid until the next call to ada_variant_discrim_name. */
6994
6995 const char *
6996 ada_variant_discrim_name (struct type *type0)
6997 {
6998 static char *result = NULL;
6999 static size_t result_len = 0;
7000 struct type *type;
7001 const char *name;
7002 const char *discrim_end;
7003 const char *discrim_start;
7004
7005 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7006 type = TYPE_TARGET_TYPE (type0);
7007 else
7008 type = type0;
7009
7010 name = ada_type_name (type);
7011
7012 if (name == NULL || name[0] == '\000')
7013 return "";
7014
7015 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7016 discrim_end -= 1)
7017 {
7018 if (startswith (discrim_end, "___XVN"))
7019 break;
7020 }
7021 if (discrim_end == name)
7022 return "";
7023
7024 for (discrim_start = discrim_end; discrim_start != name + 3;
7025 discrim_start -= 1)
7026 {
7027 if (discrim_start == name + 1)
7028 return "";
7029 if ((discrim_start > name + 3
7030 && startswith (discrim_start - 3, "___"))
7031 || discrim_start[-1] == '.')
7032 break;
7033 }
7034
7035 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7036 strncpy (result, discrim_start, discrim_end - discrim_start);
7037 result[discrim_end - discrim_start] = '\0';
7038 return result;
7039 }
7040
7041 /* Scan STR for a subtype-encoded number, beginning at position K.
7042 Put the position of the character just past the number scanned in
7043 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7044 Return 1 if there was a valid number at the given position, and 0
7045 otherwise. A "subtype-encoded" number consists of the absolute value
7046 in decimal, followed by the letter 'm' to indicate a negative number.
7047 Assumes 0m does not occur. */
7048
7049 int
7050 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7051 {
7052 ULONGEST RU;
7053
7054 if (!isdigit (str[k]))
7055 return 0;
7056
7057 /* Do it the hard way so as not to make any assumption about
7058 the relationship of unsigned long (%lu scan format code) and
7059 LONGEST. */
7060 RU = 0;
7061 while (isdigit (str[k]))
7062 {
7063 RU = RU * 10 + (str[k] - '0');
7064 k += 1;
7065 }
7066
7067 if (str[k] == 'm')
7068 {
7069 if (R != NULL)
7070 *R = (-(LONGEST) (RU - 1)) - 1;
7071 k += 1;
7072 }
7073 else if (R != NULL)
7074 *R = (LONGEST) RU;
7075
7076 /* NOTE on the above: Technically, C does not say what the results of
7077 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7078 number representable as a LONGEST (although either would probably work
7079 in most implementations). When RU>0, the locution in the then branch
7080 above is always equivalent to the negative of RU. */
7081
7082 if (new_k != NULL)
7083 *new_k = k;
7084 return 1;
7085 }
7086
7087 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7088 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7089 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7090
7091 int
7092 ada_in_variant (LONGEST val, struct type *type, int field_num)
7093 {
7094 const char *name = TYPE_FIELD_NAME (type, field_num);
7095 int p;
7096
7097 p = 0;
7098 while (1)
7099 {
7100 switch (name[p])
7101 {
7102 case '\0':
7103 return 0;
7104 case 'S':
7105 {
7106 LONGEST W;
7107
7108 if (!ada_scan_number (name, p + 1, &W, &p))
7109 return 0;
7110 if (val == W)
7111 return 1;
7112 break;
7113 }
7114 case 'R':
7115 {
7116 LONGEST L, U;
7117
7118 if (!ada_scan_number (name, p + 1, &L, &p)
7119 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7120 return 0;
7121 if (val >= L && val <= U)
7122 return 1;
7123 break;
7124 }
7125 case 'O':
7126 return 1;
7127 default:
7128 return 0;
7129 }
7130 }
7131 }
7132
7133 /* FIXME: Lots of redundancy below. Try to consolidate. */
7134
7135 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7136 ARG_TYPE, extract and return the value of one of its (non-static)
7137 fields. FIELDNO says which field. Differs from value_primitive_field
7138 only in that it can handle packed values of arbitrary type. */
7139
7140 static struct value *
7141 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7142 struct type *arg_type)
7143 {
7144 struct type *type;
7145
7146 arg_type = ada_check_typedef (arg_type);
7147 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7148
7149 /* Handle packed fields. */
7150
7151 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7152 {
7153 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7154 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7155
7156 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7157 offset + bit_pos / 8,
7158 bit_pos % 8, bit_size, type);
7159 }
7160 else
7161 return value_primitive_field (arg1, offset, fieldno, arg_type);
7162 }
7163
7164 /* Find field with name NAME in object of type TYPE. If found,
7165 set the following for each argument that is non-null:
7166 - *FIELD_TYPE_P to the field's type;
7167 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7168 an object of that type;
7169 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7170 - *BIT_SIZE_P to its size in bits if the field is packed, and
7171 0 otherwise;
7172 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7173 fields up to but not including the desired field, or by the total
7174 number of fields if not found. A NULL value of NAME never
7175 matches; the function just counts visible fields in this case.
7176
7177 Notice that we need to handle when a tagged record hierarchy
7178 has some components with the same name, like in this scenario:
7179
7180 type Top_T is tagged record
7181 N : Integer := 1;
7182 U : Integer := 974;
7183 A : Integer := 48;
7184 end record;
7185
7186 type Middle_T is new Top.Top_T with record
7187 N : Character := 'a';
7188 C : Integer := 3;
7189 end record;
7190
7191 type Bottom_T is new Middle.Middle_T with record
7192 N : Float := 4.0;
7193 C : Character := '5';
7194 X : Integer := 6;
7195 A : Character := 'J';
7196 end record;
7197
7198 Let's say we now have a variable declared and initialized as follow:
7199
7200 TC : Top_A := new Bottom_T;
7201
7202 And then we use this variable to call this function
7203
7204 procedure Assign (Obj: in out Top_T; TV : Integer);
7205
7206 as follow:
7207
7208 Assign (Top_T (B), 12);
7209
7210 Now, we're in the debugger, and we're inside that procedure
7211 then and we want to print the value of obj.c:
7212
7213 Usually, the tagged record or one of the parent type owns the
7214 component to print and there's no issue but in this particular
7215 case, what does it mean to ask for Obj.C? Since the actual
7216 type for object is type Bottom_T, it could mean two things: type
7217 component C from the Middle_T view, but also component C from
7218 Bottom_T. So in that "undefined" case, when the component is
7219 not found in the non-resolved type (which includes all the
7220 components of the parent type), then resolve it and see if we
7221 get better luck once expanded.
7222
7223 In the case of homonyms in the derived tagged type, we don't
7224 guaranty anything, and pick the one that's easiest for us
7225 to program.
7226
7227 Returns 1 if found, 0 otherwise. */
7228
7229 static int
7230 find_struct_field (const char *name, struct type *type, int offset,
7231 struct type **field_type_p,
7232 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7233 int *index_p)
7234 {
7235 int i;
7236 int parent_offset = -1;
7237
7238 type = ada_check_typedef (type);
7239
7240 if (field_type_p != NULL)
7241 *field_type_p = NULL;
7242 if (byte_offset_p != NULL)
7243 *byte_offset_p = 0;
7244 if (bit_offset_p != NULL)
7245 *bit_offset_p = 0;
7246 if (bit_size_p != NULL)
7247 *bit_size_p = 0;
7248
7249 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7250 {
7251 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7252 int fld_offset = offset + bit_pos / 8;
7253 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7254
7255 if (t_field_name == NULL)
7256 continue;
7257
7258 else if (ada_is_parent_field (type, i))
7259 {
7260 /* This is a field pointing us to the parent type of a tagged
7261 type. As hinted in this function's documentation, we give
7262 preference to fields in the current record first, so what
7263 we do here is just record the index of this field before
7264 we skip it. If it turns out we couldn't find our field
7265 in the current record, then we'll get back to it and search
7266 inside it whether the field might exist in the parent. */
7267
7268 parent_offset = i;
7269 continue;
7270 }
7271
7272 else if (name != NULL && field_name_match (t_field_name, name))
7273 {
7274 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7275
7276 if (field_type_p != NULL)
7277 *field_type_p = TYPE_FIELD_TYPE (type, i);
7278 if (byte_offset_p != NULL)
7279 *byte_offset_p = fld_offset;
7280 if (bit_offset_p != NULL)
7281 *bit_offset_p = bit_pos % 8;
7282 if (bit_size_p != NULL)
7283 *bit_size_p = bit_size;
7284 return 1;
7285 }
7286 else if (ada_is_wrapper_field (type, i))
7287 {
7288 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7289 field_type_p, byte_offset_p, bit_offset_p,
7290 bit_size_p, index_p))
7291 return 1;
7292 }
7293 else if (ada_is_variant_part (type, i))
7294 {
7295 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7296 fixed type?? */
7297 int j;
7298 struct type *field_type
7299 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7300
7301 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7302 {
7303 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7304 fld_offset
7305 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7306 field_type_p, byte_offset_p,
7307 bit_offset_p, bit_size_p, index_p))
7308 return 1;
7309 }
7310 }
7311 else if (index_p != NULL)
7312 *index_p += 1;
7313 }
7314
7315 /* Field not found so far. If this is a tagged type which
7316 has a parent, try finding that field in the parent now. */
7317
7318 if (parent_offset != -1)
7319 {
7320 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7321 int fld_offset = offset + bit_pos / 8;
7322
7323 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7324 fld_offset, field_type_p, byte_offset_p,
7325 bit_offset_p, bit_size_p, index_p))
7326 return 1;
7327 }
7328
7329 return 0;
7330 }
7331
7332 /* Number of user-visible fields in record type TYPE. */
7333
7334 static int
7335 num_visible_fields (struct type *type)
7336 {
7337 int n;
7338
7339 n = 0;
7340 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7341 return n;
7342 }
7343
7344 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7345 and search in it assuming it has (class) type TYPE.
7346 If found, return value, else return NULL.
7347
7348 Searches recursively through wrapper fields (e.g., '_parent').
7349
7350 In the case of homonyms in the tagged types, please refer to the
7351 long explanation in find_struct_field's function documentation. */
7352
7353 static struct value *
7354 ada_search_struct_field (const char *name, struct value *arg, int offset,
7355 struct type *type)
7356 {
7357 int i;
7358 int parent_offset = -1;
7359
7360 type = ada_check_typedef (type);
7361 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7362 {
7363 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7364
7365 if (t_field_name == NULL)
7366 continue;
7367
7368 else if (ada_is_parent_field (type, i))
7369 {
7370 /* This is a field pointing us to the parent type of a tagged
7371 type. As hinted in this function's documentation, we give
7372 preference to fields in the current record first, so what
7373 we do here is just record the index of this field before
7374 we skip it. If it turns out we couldn't find our field
7375 in the current record, then we'll get back to it and search
7376 inside it whether the field might exist in the parent. */
7377
7378 parent_offset = i;
7379 continue;
7380 }
7381
7382 else if (field_name_match (t_field_name, name))
7383 return ada_value_primitive_field (arg, offset, i, type);
7384
7385 else if (ada_is_wrapper_field (type, i))
7386 {
7387 struct value *v = /* Do not let indent join lines here. */
7388 ada_search_struct_field (name, arg,
7389 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7390 TYPE_FIELD_TYPE (type, i));
7391
7392 if (v != NULL)
7393 return v;
7394 }
7395
7396 else if (ada_is_variant_part (type, i))
7397 {
7398 /* PNH: Do we ever get here? See find_struct_field. */
7399 int j;
7400 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7401 i));
7402 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7403
7404 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7405 {
7406 struct value *v = ada_search_struct_field /* Force line
7407 break. */
7408 (name, arg,
7409 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7410 TYPE_FIELD_TYPE (field_type, j));
7411
7412 if (v != NULL)
7413 return v;
7414 }
7415 }
7416 }
7417
7418 /* Field not found so far. If this is a tagged type which
7419 has a parent, try finding that field in the parent now. */
7420
7421 if (parent_offset != -1)
7422 {
7423 struct value *v = ada_search_struct_field (
7424 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7425 TYPE_FIELD_TYPE (type, parent_offset));
7426
7427 if (v != NULL)
7428 return v;
7429 }
7430
7431 return NULL;
7432 }
7433
7434 static struct value *ada_index_struct_field_1 (int *, struct value *,
7435 int, struct type *);
7436
7437
7438 /* Return field #INDEX in ARG, where the index is that returned by
7439 * find_struct_field through its INDEX_P argument. Adjust the address
7440 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7441 * If found, return value, else return NULL. */
7442
7443 static struct value *
7444 ada_index_struct_field (int index, struct value *arg, int offset,
7445 struct type *type)
7446 {
7447 return ada_index_struct_field_1 (&index, arg, offset, type);
7448 }
7449
7450
7451 /* Auxiliary function for ada_index_struct_field. Like
7452 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7453 * *INDEX_P. */
7454
7455 static struct value *
7456 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7457 struct type *type)
7458 {
7459 int i;
7460 type = ada_check_typedef (type);
7461
7462 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7463 {
7464 if (TYPE_FIELD_NAME (type, i) == NULL)
7465 continue;
7466 else if (ada_is_wrapper_field (type, i))
7467 {
7468 struct value *v = /* Do not let indent join lines here. */
7469 ada_index_struct_field_1 (index_p, arg,
7470 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7471 TYPE_FIELD_TYPE (type, i));
7472
7473 if (v != NULL)
7474 return v;
7475 }
7476
7477 else if (ada_is_variant_part (type, i))
7478 {
7479 /* PNH: Do we ever get here? See ada_search_struct_field,
7480 find_struct_field. */
7481 error (_("Cannot assign this kind of variant record"));
7482 }
7483 else if (*index_p == 0)
7484 return ada_value_primitive_field (arg, offset, i, type);
7485 else
7486 *index_p -= 1;
7487 }
7488 return NULL;
7489 }
7490
7491 /* Given ARG, a value of type (pointer or reference to a)*
7492 structure/union, extract the component named NAME from the ultimate
7493 target structure/union and return it as a value with its
7494 appropriate type.
7495
7496 The routine searches for NAME among all members of the structure itself
7497 and (recursively) among all members of any wrapper members
7498 (e.g., '_parent').
7499
7500 If NO_ERR, then simply return NULL in case of error, rather than
7501 calling error. */
7502
7503 struct value *
7504 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7505 {
7506 struct type *t, *t1;
7507 struct value *v;
7508 int check_tag;
7509
7510 v = NULL;
7511 t1 = t = ada_check_typedef (value_type (arg));
7512 if (TYPE_CODE (t) == TYPE_CODE_REF)
7513 {
7514 t1 = TYPE_TARGET_TYPE (t);
7515 if (t1 == NULL)
7516 goto BadValue;
7517 t1 = ada_check_typedef (t1);
7518 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7519 {
7520 arg = coerce_ref (arg);
7521 t = t1;
7522 }
7523 }
7524
7525 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7526 {
7527 t1 = TYPE_TARGET_TYPE (t);
7528 if (t1 == NULL)
7529 goto BadValue;
7530 t1 = ada_check_typedef (t1);
7531 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7532 {
7533 arg = value_ind (arg);
7534 t = t1;
7535 }
7536 else
7537 break;
7538 }
7539
7540 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7541 goto BadValue;
7542
7543 if (t1 == t)
7544 v = ada_search_struct_field (name, arg, 0, t);
7545 else
7546 {
7547 int bit_offset, bit_size, byte_offset;
7548 struct type *field_type;
7549 CORE_ADDR address;
7550
7551 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7552 address = value_address (ada_value_ind (arg));
7553 else
7554 address = value_address (ada_coerce_ref (arg));
7555
7556 /* Check to see if this is a tagged type. We also need to handle
7557 the case where the type is a reference to a tagged type, but
7558 we have to be careful to exclude pointers to tagged types.
7559 The latter should be shown as usual (as a pointer), whereas
7560 a reference should mostly be transparent to the user. */
7561
7562 if (ada_is_tagged_type (t1, 0)
7563 || (TYPE_CODE (t1) == TYPE_CODE_REF
7564 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7565 {
7566 /* We first try to find the searched field in the current type.
7567 If not found then let's look in the fixed type. */
7568
7569 if (!find_struct_field (name, t1, 0,
7570 &field_type, &byte_offset, &bit_offset,
7571 &bit_size, NULL))
7572 check_tag = 1;
7573 else
7574 check_tag = 0;
7575 }
7576 else
7577 check_tag = 0;
7578
7579 /* Convert to fixed type in all cases, so that we have proper
7580 offsets to each field in unconstrained record types. */
7581 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7582 address, NULL, check_tag);
7583
7584 if (find_struct_field (name, t1, 0,
7585 &field_type, &byte_offset, &bit_offset,
7586 &bit_size, NULL))
7587 {
7588 if (bit_size != 0)
7589 {
7590 if (TYPE_CODE (t) == TYPE_CODE_REF)
7591 arg = ada_coerce_ref (arg);
7592 else
7593 arg = ada_value_ind (arg);
7594 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7595 bit_offset, bit_size,
7596 field_type);
7597 }
7598 else
7599 v = value_at_lazy (field_type, address + byte_offset);
7600 }
7601 }
7602
7603 if (v != NULL || no_err)
7604 return v;
7605 else
7606 error (_("There is no member named %s."), name);
7607
7608 BadValue:
7609 if (no_err)
7610 return NULL;
7611 else
7612 error (_("Attempt to extract a component of "
7613 "a value that is not a record."));
7614 }
7615
7616 /* Return a string representation of type TYPE. */
7617
7618 static std::string
7619 type_as_string (struct type *type)
7620 {
7621 string_file tmp_stream;
7622
7623 type_print (type, "", &tmp_stream, -1);
7624
7625 return std::move (tmp_stream.string ());
7626 }
7627
7628 /* Given a type TYPE, look up the type of the component of type named NAME.
7629 If DISPP is non-null, add its byte displacement from the beginning of a
7630 structure (pointed to by a value) of type TYPE to *DISPP (does not
7631 work for packed fields).
7632
7633 Matches any field whose name has NAME as a prefix, possibly
7634 followed by "___".
7635
7636 TYPE can be either a struct or union. If REFOK, TYPE may also
7637 be a (pointer or reference)+ to a struct or union, and the
7638 ultimate target type will be searched.
7639
7640 Looks recursively into variant clauses and parent types.
7641
7642 In the case of homonyms in the tagged types, please refer to the
7643 long explanation in find_struct_field's function documentation.
7644
7645 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7646 TYPE is not a type of the right kind. */
7647
7648 static struct type *
7649 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7650 int noerr)
7651 {
7652 int i;
7653 int parent_offset = -1;
7654
7655 if (name == NULL)
7656 goto BadName;
7657
7658 if (refok && type != NULL)
7659 while (1)
7660 {
7661 type = ada_check_typedef (type);
7662 if (TYPE_CODE (type) != TYPE_CODE_PTR
7663 && TYPE_CODE (type) != TYPE_CODE_REF)
7664 break;
7665 type = TYPE_TARGET_TYPE (type);
7666 }
7667
7668 if (type == NULL
7669 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7670 && TYPE_CODE (type) != TYPE_CODE_UNION))
7671 {
7672 if (noerr)
7673 return NULL;
7674
7675 error (_("Type %s is not a structure or union type"),
7676 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7677 }
7678
7679 type = to_static_fixed_type (type);
7680
7681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7682 {
7683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7684 struct type *t;
7685
7686 if (t_field_name == NULL)
7687 continue;
7688
7689 else if (ada_is_parent_field (type, i))
7690 {
7691 /* This is a field pointing us to the parent type of a tagged
7692 type. As hinted in this function's documentation, we give
7693 preference to fields in the current record first, so what
7694 we do here is just record the index of this field before
7695 we skip it. If it turns out we couldn't find our field
7696 in the current record, then we'll get back to it and search
7697 inside it whether the field might exist in the parent. */
7698
7699 parent_offset = i;
7700 continue;
7701 }
7702
7703 else if (field_name_match (t_field_name, name))
7704 return TYPE_FIELD_TYPE (type, i);
7705
7706 else if (ada_is_wrapper_field (type, i))
7707 {
7708 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7709 0, 1);
7710 if (t != NULL)
7711 return t;
7712 }
7713
7714 else if (ada_is_variant_part (type, i))
7715 {
7716 int j;
7717 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7718 i));
7719
7720 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7721 {
7722 /* FIXME pnh 2008/01/26: We check for a field that is
7723 NOT wrapped in a struct, since the compiler sometimes
7724 generates these for unchecked variant types. Revisit
7725 if the compiler changes this practice. */
7726 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7727
7728 if (v_field_name != NULL
7729 && field_name_match (v_field_name, name))
7730 t = TYPE_FIELD_TYPE (field_type, j);
7731 else
7732 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7733 j),
7734 name, 0, 1);
7735
7736 if (t != NULL)
7737 return t;
7738 }
7739 }
7740
7741 }
7742
7743 /* Field not found so far. If this is a tagged type which
7744 has a parent, try finding that field in the parent now. */
7745
7746 if (parent_offset != -1)
7747 {
7748 struct type *t;
7749
7750 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7751 name, 0, 1);
7752 if (t != NULL)
7753 return t;
7754 }
7755
7756 BadName:
7757 if (!noerr)
7758 {
7759 const char *name_str = name != NULL ? name : _("<null>");
7760
7761 error (_("Type %s has no component named %s"),
7762 type_as_string (type).c_str (), name_str);
7763 }
7764
7765 return NULL;
7766 }
7767
7768 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7769 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7770 represents an unchecked union (that is, the variant part of a
7771 record that is named in an Unchecked_Union pragma). */
7772
7773 static int
7774 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7775 {
7776 const char *discrim_name = ada_variant_discrim_name (var_type);
7777
7778 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7779 }
7780
7781
7782 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7783 within a value of type OUTER_TYPE that is stored in GDB at
7784 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7785 numbering from 0) is applicable. Returns -1 if none are. */
7786
7787 int
7788 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7789 const gdb_byte *outer_valaddr)
7790 {
7791 int others_clause;
7792 int i;
7793 const char *discrim_name = ada_variant_discrim_name (var_type);
7794 struct value *outer;
7795 struct value *discrim;
7796 LONGEST discrim_val;
7797
7798 /* Using plain value_from_contents_and_address here causes problems
7799 because we will end up trying to resolve a type that is currently
7800 being constructed. */
7801 outer = value_from_contents_and_address_unresolved (outer_type,
7802 outer_valaddr, 0);
7803 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7804 if (discrim == NULL)
7805 return -1;
7806 discrim_val = value_as_long (discrim);
7807
7808 others_clause = -1;
7809 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7810 {
7811 if (ada_is_others_clause (var_type, i))
7812 others_clause = i;
7813 else if (ada_in_variant (discrim_val, var_type, i))
7814 return i;
7815 }
7816
7817 return others_clause;
7818 }
7819 \f
7820
7821
7822 /* Dynamic-Sized Records */
7823
7824 /* Strategy: The type ostensibly attached to a value with dynamic size
7825 (i.e., a size that is not statically recorded in the debugging
7826 data) does not accurately reflect the size or layout of the value.
7827 Our strategy is to convert these values to values with accurate,
7828 conventional types that are constructed on the fly. */
7829
7830 /* There is a subtle and tricky problem here. In general, we cannot
7831 determine the size of dynamic records without its data. However,
7832 the 'struct value' data structure, which GDB uses to represent
7833 quantities in the inferior process (the target), requires the size
7834 of the type at the time of its allocation in order to reserve space
7835 for GDB's internal copy of the data. That's why the
7836 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7837 rather than struct value*s.
7838
7839 However, GDB's internal history variables ($1, $2, etc.) are
7840 struct value*s containing internal copies of the data that are not, in
7841 general, the same as the data at their corresponding addresses in
7842 the target. Fortunately, the types we give to these values are all
7843 conventional, fixed-size types (as per the strategy described
7844 above), so that we don't usually have to perform the
7845 'to_fixed_xxx_type' conversions to look at their values.
7846 Unfortunately, there is one exception: if one of the internal
7847 history variables is an array whose elements are unconstrained
7848 records, then we will need to create distinct fixed types for each
7849 element selected. */
7850
7851 /* The upshot of all of this is that many routines take a (type, host
7852 address, target address) triple as arguments to represent a value.
7853 The host address, if non-null, is supposed to contain an internal
7854 copy of the relevant data; otherwise, the program is to consult the
7855 target at the target address. */
7856
7857 /* Assuming that VAL0 represents a pointer value, the result of
7858 dereferencing it. Differs from value_ind in its treatment of
7859 dynamic-sized types. */
7860
7861 struct value *
7862 ada_value_ind (struct value *val0)
7863 {
7864 struct value *val = value_ind (val0);
7865
7866 if (ada_is_tagged_type (value_type (val), 0))
7867 val = ada_tag_value_at_base_address (val);
7868
7869 return ada_to_fixed_value (val);
7870 }
7871
7872 /* The value resulting from dereferencing any "reference to"
7873 qualifiers on VAL0. */
7874
7875 static struct value *
7876 ada_coerce_ref (struct value *val0)
7877 {
7878 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7879 {
7880 struct value *val = val0;
7881
7882 val = coerce_ref (val);
7883
7884 if (ada_is_tagged_type (value_type (val), 0))
7885 val = ada_tag_value_at_base_address (val);
7886
7887 return ada_to_fixed_value (val);
7888 }
7889 else
7890 return val0;
7891 }
7892
7893 /* Return OFF rounded upward if necessary to a multiple of
7894 ALIGNMENT (a power of 2). */
7895
7896 static unsigned int
7897 align_value (unsigned int off, unsigned int alignment)
7898 {
7899 return (off + alignment - 1) & ~(alignment - 1);
7900 }
7901
7902 /* Return the bit alignment required for field #F of template type TYPE. */
7903
7904 static unsigned int
7905 field_alignment (struct type *type, int f)
7906 {
7907 const char *name = TYPE_FIELD_NAME (type, f);
7908 int len;
7909 int align_offset;
7910
7911 /* The field name should never be null, unless the debugging information
7912 is somehow malformed. In this case, we assume the field does not
7913 require any alignment. */
7914 if (name == NULL)
7915 return 1;
7916
7917 len = strlen (name);
7918
7919 if (!isdigit (name[len - 1]))
7920 return 1;
7921
7922 if (isdigit (name[len - 2]))
7923 align_offset = len - 2;
7924 else
7925 align_offset = len - 1;
7926
7927 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7928 return TARGET_CHAR_BIT;
7929
7930 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7931 }
7932
7933 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7934
7935 static struct symbol *
7936 ada_find_any_type_symbol (const char *name)
7937 {
7938 struct symbol *sym;
7939
7940 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7941 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7942 return sym;
7943
7944 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7945 return sym;
7946 }
7947
7948 /* Find a type named NAME. Ignores ambiguity. This routine will look
7949 solely for types defined by debug info, it will not search the GDB
7950 primitive types. */
7951
7952 static struct type *
7953 ada_find_any_type (const char *name)
7954 {
7955 struct symbol *sym = ada_find_any_type_symbol (name);
7956
7957 if (sym != NULL)
7958 return SYMBOL_TYPE (sym);
7959
7960 return NULL;
7961 }
7962
7963 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7964 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7965 symbol, in which case it is returned. Otherwise, this looks for
7966 symbols whose name is that of NAME_SYM suffixed with "___XR".
7967 Return symbol if found, and NULL otherwise. */
7968
7969 struct symbol *
7970 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7971 {
7972 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7973 struct symbol *sym;
7974
7975 if (strstr (name, "___XR") != NULL)
7976 return name_sym;
7977
7978 sym = find_old_style_renaming_symbol (name, block);
7979
7980 if (sym != NULL)
7981 return sym;
7982
7983 /* Not right yet. FIXME pnh 7/20/2007. */
7984 sym = ada_find_any_type_symbol (name);
7985 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7986 return sym;
7987 else
7988 return NULL;
7989 }
7990
7991 static struct symbol *
7992 find_old_style_renaming_symbol (const char *name, const struct block *block)
7993 {
7994 const struct symbol *function_sym = block_linkage_function (block);
7995 char *rename;
7996
7997 if (function_sym != NULL)
7998 {
7999 /* If the symbol is defined inside a function, NAME is not fully
8000 qualified. This means we need to prepend the function name
8001 as well as adding the ``___XR'' suffix to build the name of
8002 the associated renaming symbol. */
8003 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8004 /* Function names sometimes contain suffixes used
8005 for instance to qualify nested subprograms. When building
8006 the XR type name, we need to make sure that this suffix is
8007 not included. So do not include any suffix in the function
8008 name length below. */
8009 int function_name_len = ada_name_prefix_len (function_name);
8010 const int rename_len = function_name_len + 2 /* "__" */
8011 + strlen (name) + 6 /* "___XR\0" */ ;
8012
8013 /* Strip the suffix if necessary. */
8014 ada_remove_trailing_digits (function_name, &function_name_len);
8015 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8016 ada_remove_Xbn_suffix (function_name, &function_name_len);
8017
8018 /* Library-level functions are a special case, as GNAT adds
8019 a ``_ada_'' prefix to the function name to avoid namespace
8020 pollution. However, the renaming symbols themselves do not
8021 have this prefix, so we need to skip this prefix if present. */
8022 if (function_name_len > 5 /* "_ada_" */
8023 && strstr (function_name, "_ada_") == function_name)
8024 {
8025 function_name += 5;
8026 function_name_len -= 5;
8027 }
8028
8029 rename = (char *) alloca (rename_len * sizeof (char));
8030 strncpy (rename, function_name, function_name_len);
8031 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8032 "__%s___XR", name);
8033 }
8034 else
8035 {
8036 const int rename_len = strlen (name) + 6;
8037
8038 rename = (char *) alloca (rename_len * sizeof (char));
8039 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8040 }
8041
8042 return ada_find_any_type_symbol (rename);
8043 }
8044
8045 /* Because of GNAT encoding conventions, several GDB symbols may match a
8046 given type name. If the type denoted by TYPE0 is to be preferred to
8047 that of TYPE1 for purposes of type printing, return non-zero;
8048 otherwise return 0. */
8049
8050 int
8051 ada_prefer_type (struct type *type0, struct type *type1)
8052 {
8053 if (type1 == NULL)
8054 return 1;
8055 else if (type0 == NULL)
8056 return 0;
8057 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8058 return 1;
8059 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8060 return 0;
8061 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8062 return 1;
8063 else if (ada_is_constrained_packed_array_type (type0))
8064 return 1;
8065 else if (ada_is_array_descriptor_type (type0)
8066 && !ada_is_array_descriptor_type (type1))
8067 return 1;
8068 else
8069 {
8070 const char *type0_name = TYPE_NAME (type0);
8071 const char *type1_name = TYPE_NAME (type1);
8072
8073 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8074 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8075 return 1;
8076 }
8077 return 0;
8078 }
8079
8080 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8081 null. */
8082
8083 const char *
8084 ada_type_name (struct type *type)
8085 {
8086 if (type == NULL)
8087 return NULL;
8088 return TYPE_NAME (type);
8089 }
8090
8091 /* Search the list of "descriptive" types associated to TYPE for a type
8092 whose name is NAME. */
8093
8094 static struct type *
8095 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8096 {
8097 struct type *result, *tmp;
8098
8099 if (ada_ignore_descriptive_types_p)
8100 return NULL;
8101
8102 /* If there no descriptive-type info, then there is no parallel type
8103 to be found. */
8104 if (!HAVE_GNAT_AUX_INFO (type))
8105 return NULL;
8106
8107 result = TYPE_DESCRIPTIVE_TYPE (type);
8108 while (result != NULL)
8109 {
8110 const char *result_name = ada_type_name (result);
8111
8112 if (result_name == NULL)
8113 {
8114 warning (_("unexpected null name on descriptive type"));
8115 return NULL;
8116 }
8117
8118 /* If the names match, stop. */
8119 if (strcmp (result_name, name) == 0)
8120 break;
8121
8122 /* Otherwise, look at the next item on the list, if any. */
8123 if (HAVE_GNAT_AUX_INFO (result))
8124 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8125 else
8126 tmp = NULL;
8127
8128 /* If not found either, try after having resolved the typedef. */
8129 if (tmp != NULL)
8130 result = tmp;
8131 else
8132 {
8133 result = check_typedef (result);
8134 if (HAVE_GNAT_AUX_INFO (result))
8135 result = TYPE_DESCRIPTIVE_TYPE (result);
8136 else
8137 result = NULL;
8138 }
8139 }
8140
8141 /* If we didn't find a match, see whether this is a packed array. With
8142 older compilers, the descriptive type information is either absent or
8143 irrelevant when it comes to packed arrays so the above lookup fails.
8144 Fall back to using a parallel lookup by name in this case. */
8145 if (result == NULL && ada_is_constrained_packed_array_type (type))
8146 return ada_find_any_type (name);
8147
8148 return result;
8149 }
8150
8151 /* Find a parallel type to TYPE with the specified NAME, using the
8152 descriptive type taken from the debugging information, if available,
8153 and otherwise using the (slower) name-based method. */
8154
8155 static struct type *
8156 ada_find_parallel_type_with_name (struct type *type, const char *name)
8157 {
8158 struct type *result = NULL;
8159
8160 if (HAVE_GNAT_AUX_INFO (type))
8161 result = find_parallel_type_by_descriptive_type (type, name);
8162 else
8163 result = ada_find_any_type (name);
8164
8165 return result;
8166 }
8167
8168 /* Same as above, but specify the name of the parallel type by appending
8169 SUFFIX to the name of TYPE. */
8170
8171 struct type *
8172 ada_find_parallel_type (struct type *type, const char *suffix)
8173 {
8174 char *name;
8175 const char *type_name = ada_type_name (type);
8176 int len;
8177
8178 if (type_name == NULL)
8179 return NULL;
8180
8181 len = strlen (type_name);
8182
8183 name = (char *) alloca (len + strlen (suffix) + 1);
8184
8185 strcpy (name, type_name);
8186 strcpy (name + len, suffix);
8187
8188 return ada_find_parallel_type_with_name (type, name);
8189 }
8190
8191 /* If TYPE is a variable-size record type, return the corresponding template
8192 type describing its fields. Otherwise, return NULL. */
8193
8194 static struct type *
8195 dynamic_template_type (struct type *type)
8196 {
8197 type = ada_check_typedef (type);
8198
8199 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8200 || ada_type_name (type) == NULL)
8201 return NULL;
8202 else
8203 {
8204 int len = strlen (ada_type_name (type));
8205
8206 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8207 return type;
8208 else
8209 return ada_find_parallel_type (type, "___XVE");
8210 }
8211 }
8212
8213 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8214 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8215
8216 static int
8217 is_dynamic_field (struct type *templ_type, int field_num)
8218 {
8219 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8220
8221 return name != NULL
8222 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8223 && strstr (name, "___XVL") != NULL;
8224 }
8225
8226 /* The index of the variant field of TYPE, or -1 if TYPE does not
8227 represent a variant record type. */
8228
8229 static int
8230 variant_field_index (struct type *type)
8231 {
8232 int f;
8233
8234 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8235 return -1;
8236
8237 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8238 {
8239 if (ada_is_variant_part (type, f))
8240 return f;
8241 }
8242 return -1;
8243 }
8244
8245 /* A record type with no fields. */
8246
8247 static struct type *
8248 empty_record (struct type *templ)
8249 {
8250 struct type *type = alloc_type_copy (templ);
8251
8252 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8253 TYPE_NFIELDS (type) = 0;
8254 TYPE_FIELDS (type) = NULL;
8255 INIT_CPLUS_SPECIFIC (type);
8256 TYPE_NAME (type) = "<empty>";
8257 TYPE_LENGTH (type) = 0;
8258 return type;
8259 }
8260
8261 /* An ordinary record type (with fixed-length fields) that describes
8262 the value of type TYPE at VALADDR or ADDRESS (see comments at
8263 the beginning of this section) VAL according to GNAT conventions.
8264 DVAL0 should describe the (portion of a) record that contains any
8265 necessary discriminants. It should be NULL if value_type (VAL) is
8266 an outer-level type (i.e., as opposed to a branch of a variant.) A
8267 variant field (unless unchecked) is replaced by a particular branch
8268 of the variant.
8269
8270 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8271 length are not statically known are discarded. As a consequence,
8272 VALADDR, ADDRESS and DVAL0 are ignored.
8273
8274 NOTE: Limitations: For now, we assume that dynamic fields and
8275 variants occupy whole numbers of bytes. However, they need not be
8276 byte-aligned. */
8277
8278 struct type *
8279 ada_template_to_fixed_record_type_1 (struct type *type,
8280 const gdb_byte *valaddr,
8281 CORE_ADDR address, struct value *dval0,
8282 int keep_dynamic_fields)
8283 {
8284 struct value *mark = value_mark ();
8285 struct value *dval;
8286 struct type *rtype;
8287 int nfields, bit_len;
8288 int variant_field;
8289 long off;
8290 int fld_bit_len;
8291 int f;
8292
8293 /* Compute the number of fields in this record type that are going
8294 to be processed: unless keep_dynamic_fields, this includes only
8295 fields whose position and length are static will be processed. */
8296 if (keep_dynamic_fields)
8297 nfields = TYPE_NFIELDS (type);
8298 else
8299 {
8300 nfields = 0;
8301 while (nfields < TYPE_NFIELDS (type)
8302 && !ada_is_variant_part (type, nfields)
8303 && !is_dynamic_field (type, nfields))
8304 nfields++;
8305 }
8306
8307 rtype = alloc_type_copy (type);
8308 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8309 INIT_CPLUS_SPECIFIC (rtype);
8310 TYPE_NFIELDS (rtype) = nfields;
8311 TYPE_FIELDS (rtype) = (struct field *)
8312 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8313 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8314 TYPE_NAME (rtype) = ada_type_name (type);
8315 TYPE_FIXED_INSTANCE (rtype) = 1;
8316
8317 off = 0;
8318 bit_len = 0;
8319 variant_field = -1;
8320
8321 for (f = 0; f < nfields; f += 1)
8322 {
8323 off = align_value (off, field_alignment (type, f))
8324 + TYPE_FIELD_BITPOS (type, f);
8325 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8326 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8327
8328 if (ada_is_variant_part (type, f))
8329 {
8330 variant_field = f;
8331 fld_bit_len = 0;
8332 }
8333 else if (is_dynamic_field (type, f))
8334 {
8335 const gdb_byte *field_valaddr = valaddr;
8336 CORE_ADDR field_address = address;
8337 struct type *field_type =
8338 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8339
8340 if (dval0 == NULL)
8341 {
8342 /* rtype's length is computed based on the run-time
8343 value of discriminants. If the discriminants are not
8344 initialized, the type size may be completely bogus and
8345 GDB may fail to allocate a value for it. So check the
8346 size first before creating the value. */
8347 ada_ensure_varsize_limit (rtype);
8348 /* Using plain value_from_contents_and_address here
8349 causes problems because we will end up trying to
8350 resolve a type that is currently being
8351 constructed. */
8352 dval = value_from_contents_and_address_unresolved (rtype,
8353 valaddr,
8354 address);
8355 rtype = value_type (dval);
8356 }
8357 else
8358 dval = dval0;
8359
8360 /* If the type referenced by this field is an aligner type, we need
8361 to unwrap that aligner type, because its size might not be set.
8362 Keeping the aligner type would cause us to compute the wrong
8363 size for this field, impacting the offset of the all the fields
8364 that follow this one. */
8365 if (ada_is_aligner_type (field_type))
8366 {
8367 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8368
8369 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8370 field_address = cond_offset_target (field_address, field_offset);
8371 field_type = ada_aligned_type (field_type);
8372 }
8373
8374 field_valaddr = cond_offset_host (field_valaddr,
8375 off / TARGET_CHAR_BIT);
8376 field_address = cond_offset_target (field_address,
8377 off / TARGET_CHAR_BIT);
8378
8379 /* Get the fixed type of the field. Note that, in this case,
8380 we do not want to get the real type out of the tag: if
8381 the current field is the parent part of a tagged record,
8382 we will get the tag of the object. Clearly wrong: the real
8383 type of the parent is not the real type of the child. We
8384 would end up in an infinite loop. */
8385 field_type = ada_get_base_type (field_type);
8386 field_type = ada_to_fixed_type (field_type, field_valaddr,
8387 field_address, dval, 0);
8388 /* If the field size is already larger than the maximum
8389 object size, then the record itself will necessarily
8390 be larger than the maximum object size. We need to make
8391 this check now, because the size might be so ridiculously
8392 large (due to an uninitialized variable in the inferior)
8393 that it would cause an overflow when adding it to the
8394 record size. */
8395 ada_ensure_varsize_limit (field_type);
8396
8397 TYPE_FIELD_TYPE (rtype, f) = field_type;
8398 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8399 /* The multiplication can potentially overflow. But because
8400 the field length has been size-checked just above, and
8401 assuming that the maximum size is a reasonable value,
8402 an overflow should not happen in practice. So rather than
8403 adding overflow recovery code to this already complex code,
8404 we just assume that it's not going to happen. */
8405 fld_bit_len =
8406 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8407 }
8408 else
8409 {
8410 /* Note: If this field's type is a typedef, it is important
8411 to preserve the typedef layer.
8412
8413 Otherwise, we might be transforming a typedef to a fat
8414 pointer (encoding a pointer to an unconstrained array),
8415 into a basic fat pointer (encoding an unconstrained
8416 array). As both types are implemented using the same
8417 structure, the typedef is the only clue which allows us
8418 to distinguish between the two options. Stripping it
8419 would prevent us from printing this field appropriately. */
8420 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8421 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8422 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8423 fld_bit_len =
8424 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8425 else
8426 {
8427 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8428
8429 /* We need to be careful of typedefs when computing
8430 the length of our field. If this is a typedef,
8431 get the length of the target type, not the length
8432 of the typedef. */
8433 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8434 field_type = ada_typedef_target_type (field_type);
8435
8436 fld_bit_len =
8437 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8438 }
8439 }
8440 if (off + fld_bit_len > bit_len)
8441 bit_len = off + fld_bit_len;
8442 off += fld_bit_len;
8443 TYPE_LENGTH (rtype) =
8444 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8445 }
8446
8447 /* We handle the variant part, if any, at the end because of certain
8448 odd cases in which it is re-ordered so as NOT to be the last field of
8449 the record. This can happen in the presence of representation
8450 clauses. */
8451 if (variant_field >= 0)
8452 {
8453 struct type *branch_type;
8454
8455 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8456
8457 if (dval0 == NULL)
8458 {
8459 /* Using plain value_from_contents_and_address here causes
8460 problems because we will end up trying to resolve a type
8461 that is currently being constructed. */
8462 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8463 address);
8464 rtype = value_type (dval);
8465 }
8466 else
8467 dval = dval0;
8468
8469 branch_type =
8470 to_fixed_variant_branch_type
8471 (TYPE_FIELD_TYPE (type, variant_field),
8472 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8473 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8474 if (branch_type == NULL)
8475 {
8476 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8477 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8478 TYPE_NFIELDS (rtype) -= 1;
8479 }
8480 else
8481 {
8482 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8483 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8484 fld_bit_len =
8485 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8486 TARGET_CHAR_BIT;
8487 if (off + fld_bit_len > bit_len)
8488 bit_len = off + fld_bit_len;
8489 TYPE_LENGTH (rtype) =
8490 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8491 }
8492 }
8493
8494 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8495 should contain the alignment of that record, which should be a strictly
8496 positive value. If null or negative, then something is wrong, most
8497 probably in the debug info. In that case, we don't round up the size
8498 of the resulting type. If this record is not part of another structure,
8499 the current RTYPE length might be good enough for our purposes. */
8500 if (TYPE_LENGTH (type) <= 0)
8501 {
8502 if (TYPE_NAME (rtype))
8503 warning (_("Invalid type size for `%s' detected: %d."),
8504 TYPE_NAME (rtype), TYPE_LENGTH (type));
8505 else
8506 warning (_("Invalid type size for <unnamed> detected: %d."),
8507 TYPE_LENGTH (type));
8508 }
8509 else
8510 {
8511 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8512 TYPE_LENGTH (type));
8513 }
8514
8515 value_free_to_mark (mark);
8516 if (TYPE_LENGTH (rtype) > varsize_limit)
8517 error (_("record type with dynamic size is larger than varsize-limit"));
8518 return rtype;
8519 }
8520
8521 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8522 of 1. */
8523
8524 static struct type *
8525 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8526 CORE_ADDR address, struct value *dval0)
8527 {
8528 return ada_template_to_fixed_record_type_1 (type, valaddr,
8529 address, dval0, 1);
8530 }
8531
8532 /* An ordinary record type in which ___XVL-convention fields and
8533 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8534 static approximations, containing all possible fields. Uses
8535 no runtime values. Useless for use in values, but that's OK,
8536 since the results are used only for type determinations. Works on both
8537 structs and unions. Representation note: to save space, we memorize
8538 the result of this function in the TYPE_TARGET_TYPE of the
8539 template type. */
8540
8541 static struct type *
8542 template_to_static_fixed_type (struct type *type0)
8543 {
8544 struct type *type;
8545 int nfields;
8546 int f;
8547
8548 /* No need no do anything if the input type is already fixed. */
8549 if (TYPE_FIXED_INSTANCE (type0))
8550 return type0;
8551
8552 /* Likewise if we already have computed the static approximation. */
8553 if (TYPE_TARGET_TYPE (type0) != NULL)
8554 return TYPE_TARGET_TYPE (type0);
8555
8556 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8557 type = type0;
8558 nfields = TYPE_NFIELDS (type0);
8559
8560 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8561 recompute all over next time. */
8562 TYPE_TARGET_TYPE (type0) = type;
8563
8564 for (f = 0; f < nfields; f += 1)
8565 {
8566 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8567 struct type *new_type;
8568
8569 if (is_dynamic_field (type0, f))
8570 {
8571 field_type = ada_check_typedef (field_type);
8572 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8573 }
8574 else
8575 new_type = static_unwrap_type (field_type);
8576
8577 if (new_type != field_type)
8578 {
8579 /* Clone TYPE0 only the first time we get a new field type. */
8580 if (type == type0)
8581 {
8582 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8583 TYPE_CODE (type) = TYPE_CODE (type0);
8584 INIT_CPLUS_SPECIFIC (type);
8585 TYPE_NFIELDS (type) = nfields;
8586 TYPE_FIELDS (type) = (struct field *)
8587 TYPE_ALLOC (type, nfields * sizeof (struct field));
8588 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8589 sizeof (struct field) * nfields);
8590 TYPE_NAME (type) = ada_type_name (type0);
8591 TYPE_FIXED_INSTANCE (type) = 1;
8592 TYPE_LENGTH (type) = 0;
8593 }
8594 TYPE_FIELD_TYPE (type, f) = new_type;
8595 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8596 }
8597 }
8598
8599 return type;
8600 }
8601
8602 /* Given an object of type TYPE whose contents are at VALADDR and
8603 whose address in memory is ADDRESS, returns a revision of TYPE,
8604 which should be a non-dynamic-sized record, in which the variant
8605 part, if any, is replaced with the appropriate branch. Looks
8606 for discriminant values in DVAL0, which can be NULL if the record
8607 contains the necessary discriminant values. */
8608
8609 static struct type *
8610 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8611 CORE_ADDR address, struct value *dval0)
8612 {
8613 struct value *mark = value_mark ();
8614 struct value *dval;
8615 struct type *rtype;
8616 struct type *branch_type;
8617 int nfields = TYPE_NFIELDS (type);
8618 int variant_field = variant_field_index (type);
8619
8620 if (variant_field == -1)
8621 return type;
8622
8623 if (dval0 == NULL)
8624 {
8625 dval = value_from_contents_and_address (type, valaddr, address);
8626 type = value_type (dval);
8627 }
8628 else
8629 dval = dval0;
8630
8631 rtype = alloc_type_copy (type);
8632 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8633 INIT_CPLUS_SPECIFIC (rtype);
8634 TYPE_NFIELDS (rtype) = nfields;
8635 TYPE_FIELDS (rtype) =
8636 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8637 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8638 sizeof (struct field) * nfields);
8639 TYPE_NAME (rtype) = ada_type_name (type);
8640 TYPE_FIXED_INSTANCE (rtype) = 1;
8641 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8642
8643 branch_type = to_fixed_variant_branch_type
8644 (TYPE_FIELD_TYPE (type, variant_field),
8645 cond_offset_host (valaddr,
8646 TYPE_FIELD_BITPOS (type, variant_field)
8647 / TARGET_CHAR_BIT),
8648 cond_offset_target (address,
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT), dval);
8651 if (branch_type == NULL)
8652 {
8653 int f;
8654
8655 for (f = variant_field + 1; f < nfields; f += 1)
8656 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8657 TYPE_NFIELDS (rtype) -= 1;
8658 }
8659 else
8660 {
8661 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8662 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8663 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8664 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8665 }
8666 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8667
8668 value_free_to_mark (mark);
8669 return rtype;
8670 }
8671
8672 /* An ordinary record type (with fixed-length fields) that describes
8673 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8674 beginning of this section]. Any necessary discriminants' values
8675 should be in DVAL, a record value; it may be NULL if the object
8676 at ADDR itself contains any necessary discriminant values.
8677 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8678 values from the record are needed. Except in the case that DVAL,
8679 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8680 unchecked) is replaced by a particular branch of the variant.
8681
8682 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8683 is questionable and may be removed. It can arise during the
8684 processing of an unconstrained-array-of-record type where all the
8685 variant branches have exactly the same size. This is because in
8686 such cases, the compiler does not bother to use the XVS convention
8687 when encoding the record. I am currently dubious of this
8688 shortcut and suspect the compiler should be altered. FIXME. */
8689
8690 static struct type *
8691 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8692 CORE_ADDR address, struct value *dval)
8693 {
8694 struct type *templ_type;
8695
8696 if (TYPE_FIXED_INSTANCE (type0))
8697 return type0;
8698
8699 templ_type = dynamic_template_type (type0);
8700
8701 if (templ_type != NULL)
8702 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8703 else if (variant_field_index (type0) >= 0)
8704 {
8705 if (dval == NULL && valaddr == NULL && address == 0)
8706 return type0;
8707 return to_record_with_fixed_variant_part (type0, valaddr, address,
8708 dval);
8709 }
8710 else
8711 {
8712 TYPE_FIXED_INSTANCE (type0) = 1;
8713 return type0;
8714 }
8715
8716 }
8717
8718 /* An ordinary record type (with fixed-length fields) that describes
8719 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8720 union type. Any necessary discriminants' values should be in DVAL,
8721 a record value. That is, this routine selects the appropriate
8722 branch of the union at ADDR according to the discriminant value
8723 indicated in the union's type name. Returns VAR_TYPE0 itself if
8724 it represents a variant subject to a pragma Unchecked_Union. */
8725
8726 static struct type *
8727 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8728 CORE_ADDR address, struct value *dval)
8729 {
8730 int which;
8731 struct type *templ_type;
8732 struct type *var_type;
8733
8734 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8735 var_type = TYPE_TARGET_TYPE (var_type0);
8736 else
8737 var_type = var_type0;
8738
8739 templ_type = ada_find_parallel_type (var_type, "___XVU");
8740
8741 if (templ_type != NULL)
8742 var_type = templ_type;
8743
8744 if (is_unchecked_variant (var_type, value_type (dval)))
8745 return var_type0;
8746 which =
8747 ada_which_variant_applies (var_type,
8748 value_type (dval), value_contents (dval));
8749
8750 if (which < 0)
8751 return empty_record (var_type);
8752 else if (is_dynamic_field (var_type, which))
8753 return to_fixed_record_type
8754 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8755 valaddr, address, dval);
8756 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8757 return
8758 to_fixed_record_type
8759 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8760 else
8761 return TYPE_FIELD_TYPE (var_type, which);
8762 }
8763
8764 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8765 ENCODING_TYPE, a type following the GNAT conventions for discrete
8766 type encodings, only carries redundant information. */
8767
8768 static int
8769 ada_is_redundant_range_encoding (struct type *range_type,
8770 struct type *encoding_type)
8771 {
8772 const char *bounds_str;
8773 int n;
8774 LONGEST lo, hi;
8775
8776 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8777
8778 if (TYPE_CODE (get_base_type (range_type))
8779 != TYPE_CODE (get_base_type (encoding_type)))
8780 {
8781 /* The compiler probably used a simple base type to describe
8782 the range type instead of the range's actual base type,
8783 expecting us to get the real base type from the encoding
8784 anyway. In this situation, the encoding cannot be ignored
8785 as redundant. */
8786 return 0;
8787 }
8788
8789 if (is_dynamic_type (range_type))
8790 return 0;
8791
8792 if (TYPE_NAME (encoding_type) == NULL)
8793 return 0;
8794
8795 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8796 if (bounds_str == NULL)
8797 return 0;
8798
8799 n = 8; /* Skip "___XDLU_". */
8800 if (!ada_scan_number (bounds_str, n, &lo, &n))
8801 return 0;
8802 if (TYPE_LOW_BOUND (range_type) != lo)
8803 return 0;
8804
8805 n += 2; /* Skip the "__" separator between the two bounds. */
8806 if (!ada_scan_number (bounds_str, n, &hi, &n))
8807 return 0;
8808 if (TYPE_HIGH_BOUND (range_type) != hi)
8809 return 0;
8810
8811 return 1;
8812 }
8813
8814 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8815 a type following the GNAT encoding for describing array type
8816 indices, only carries redundant information. */
8817
8818 static int
8819 ada_is_redundant_index_type_desc (struct type *array_type,
8820 struct type *desc_type)
8821 {
8822 struct type *this_layer = check_typedef (array_type);
8823 int i;
8824
8825 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8826 {
8827 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8828 TYPE_FIELD_TYPE (desc_type, i)))
8829 return 0;
8830 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8831 }
8832
8833 return 1;
8834 }
8835
8836 /* Assuming that TYPE0 is an array type describing the type of a value
8837 at ADDR, and that DVAL describes a record containing any
8838 discriminants used in TYPE0, returns a type for the value that
8839 contains no dynamic components (that is, no components whose sizes
8840 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8841 true, gives an error message if the resulting type's size is over
8842 varsize_limit. */
8843
8844 static struct type *
8845 to_fixed_array_type (struct type *type0, struct value *dval,
8846 int ignore_too_big)
8847 {
8848 struct type *index_type_desc;
8849 struct type *result;
8850 int constrained_packed_array_p;
8851 static const char *xa_suffix = "___XA";
8852
8853 type0 = ada_check_typedef (type0);
8854 if (TYPE_FIXED_INSTANCE (type0))
8855 return type0;
8856
8857 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8858 if (constrained_packed_array_p)
8859 type0 = decode_constrained_packed_array_type (type0);
8860
8861 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8862
8863 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8864 encoding suffixed with 'P' may still be generated. If so,
8865 it should be used to find the XA type. */
8866
8867 if (index_type_desc == NULL)
8868 {
8869 const char *type_name = ada_type_name (type0);
8870
8871 if (type_name != NULL)
8872 {
8873 const int len = strlen (type_name);
8874 char *name = (char *) alloca (len + strlen (xa_suffix));
8875
8876 if (type_name[len - 1] == 'P')
8877 {
8878 strcpy (name, type_name);
8879 strcpy (name + len - 1, xa_suffix);
8880 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8881 }
8882 }
8883 }
8884
8885 ada_fixup_array_indexes_type (index_type_desc);
8886 if (index_type_desc != NULL
8887 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8888 {
8889 /* Ignore this ___XA parallel type, as it does not bring any
8890 useful information. This allows us to avoid creating fixed
8891 versions of the array's index types, which would be identical
8892 to the original ones. This, in turn, can also help avoid
8893 the creation of fixed versions of the array itself. */
8894 index_type_desc = NULL;
8895 }
8896
8897 if (index_type_desc == NULL)
8898 {
8899 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8900
8901 /* NOTE: elt_type---the fixed version of elt_type0---should never
8902 depend on the contents of the array in properly constructed
8903 debugging data. */
8904 /* Create a fixed version of the array element type.
8905 We're not providing the address of an element here,
8906 and thus the actual object value cannot be inspected to do
8907 the conversion. This should not be a problem, since arrays of
8908 unconstrained objects are not allowed. In particular, all
8909 the elements of an array of a tagged type should all be of
8910 the same type specified in the debugging info. No need to
8911 consult the object tag. */
8912 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8913
8914 /* Make sure we always create a new array type when dealing with
8915 packed array types, since we're going to fix-up the array
8916 type length and element bitsize a little further down. */
8917 if (elt_type0 == elt_type && !constrained_packed_array_p)
8918 result = type0;
8919 else
8920 result = create_array_type (alloc_type_copy (type0),
8921 elt_type, TYPE_INDEX_TYPE (type0));
8922 }
8923 else
8924 {
8925 int i;
8926 struct type *elt_type0;
8927
8928 elt_type0 = type0;
8929 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8930 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8931
8932 /* NOTE: result---the fixed version of elt_type0---should never
8933 depend on the contents of the array in properly constructed
8934 debugging data. */
8935 /* Create a fixed version of the array element type.
8936 We're not providing the address of an element here,
8937 and thus the actual object value cannot be inspected to do
8938 the conversion. This should not be a problem, since arrays of
8939 unconstrained objects are not allowed. In particular, all
8940 the elements of an array of a tagged type should all be of
8941 the same type specified in the debugging info. No need to
8942 consult the object tag. */
8943 result =
8944 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8945
8946 elt_type0 = type0;
8947 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8948 {
8949 struct type *range_type =
8950 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8951
8952 result = create_array_type (alloc_type_copy (elt_type0),
8953 result, range_type);
8954 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8955 }
8956 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8957 error (_("array type with dynamic size is larger than varsize-limit"));
8958 }
8959
8960 /* We want to preserve the type name. This can be useful when
8961 trying to get the type name of a value that has already been
8962 printed (for instance, if the user did "print VAR; whatis $". */
8963 TYPE_NAME (result) = TYPE_NAME (type0);
8964
8965 if (constrained_packed_array_p)
8966 {
8967 /* So far, the resulting type has been created as if the original
8968 type was a regular (non-packed) array type. As a result, the
8969 bitsize of the array elements needs to be set again, and the array
8970 length needs to be recomputed based on that bitsize. */
8971 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8972 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8973
8974 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8975 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8976 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8977 TYPE_LENGTH (result)++;
8978 }
8979
8980 TYPE_FIXED_INSTANCE (result) = 1;
8981 return result;
8982 }
8983
8984
8985 /* A standard type (containing no dynamically sized components)
8986 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8987 DVAL describes a record containing any discriminants used in TYPE0,
8988 and may be NULL if there are none, or if the object of type TYPE at
8989 ADDRESS or in VALADDR contains these discriminants.
8990
8991 If CHECK_TAG is not null, in the case of tagged types, this function
8992 attempts to locate the object's tag and use it to compute the actual
8993 type. However, when ADDRESS is null, we cannot use it to determine the
8994 location of the tag, and therefore compute the tagged type's actual type.
8995 So we return the tagged type without consulting the tag. */
8996
8997 static struct type *
8998 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8999 CORE_ADDR address, struct value *dval, int check_tag)
9000 {
9001 type = ada_check_typedef (type);
9002 switch (TYPE_CODE (type))
9003 {
9004 default:
9005 return type;
9006 case TYPE_CODE_STRUCT:
9007 {
9008 struct type *static_type = to_static_fixed_type (type);
9009 struct type *fixed_record_type =
9010 to_fixed_record_type (type, valaddr, address, NULL);
9011
9012 /* If STATIC_TYPE is a tagged type and we know the object's address,
9013 then we can determine its tag, and compute the object's actual
9014 type from there. Note that we have to use the fixed record
9015 type (the parent part of the record may have dynamic fields
9016 and the way the location of _tag is expressed may depend on
9017 them). */
9018
9019 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9020 {
9021 struct value *tag =
9022 value_tag_from_contents_and_address
9023 (fixed_record_type,
9024 valaddr,
9025 address);
9026 struct type *real_type = type_from_tag (tag);
9027 struct value *obj =
9028 value_from_contents_and_address (fixed_record_type,
9029 valaddr,
9030 address);
9031 fixed_record_type = value_type (obj);
9032 if (real_type != NULL)
9033 return to_fixed_record_type
9034 (real_type, NULL,
9035 value_address (ada_tag_value_at_base_address (obj)), NULL);
9036 }
9037
9038 /* Check to see if there is a parallel ___XVZ variable.
9039 If there is, then it provides the actual size of our type. */
9040 else if (ada_type_name (fixed_record_type) != NULL)
9041 {
9042 const char *name = ada_type_name (fixed_record_type);
9043 char *xvz_name
9044 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9045 bool xvz_found = false;
9046 LONGEST size;
9047
9048 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9049 TRY
9050 {
9051 xvz_found = get_int_var_value (xvz_name, size);
9052 }
9053 CATCH (except, RETURN_MASK_ERROR)
9054 {
9055 /* We found the variable, but somehow failed to read
9056 its value. Rethrow the same error, but with a little
9057 bit more information, to help the user understand
9058 what went wrong (Eg: the variable might have been
9059 optimized out). */
9060 throw_error (except.error,
9061 _("unable to read value of %s (%s)"),
9062 xvz_name, except.message);
9063 }
9064 END_CATCH
9065
9066 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9067 {
9068 fixed_record_type = copy_type (fixed_record_type);
9069 TYPE_LENGTH (fixed_record_type) = size;
9070
9071 /* The FIXED_RECORD_TYPE may have be a stub. We have
9072 observed this when the debugging info is STABS, and
9073 apparently it is something that is hard to fix.
9074
9075 In practice, we don't need the actual type definition
9076 at all, because the presence of the XVZ variable allows us
9077 to assume that there must be a XVS type as well, which we
9078 should be able to use later, when we need the actual type
9079 definition.
9080
9081 In the meantime, pretend that the "fixed" type we are
9082 returning is NOT a stub, because this can cause trouble
9083 when using this type to create new types targeting it.
9084 Indeed, the associated creation routines often check
9085 whether the target type is a stub and will try to replace
9086 it, thus using a type with the wrong size. This, in turn,
9087 might cause the new type to have the wrong size too.
9088 Consider the case of an array, for instance, where the size
9089 of the array is computed from the number of elements in
9090 our array multiplied by the size of its element. */
9091 TYPE_STUB (fixed_record_type) = 0;
9092 }
9093 }
9094 return fixed_record_type;
9095 }
9096 case TYPE_CODE_ARRAY:
9097 return to_fixed_array_type (type, dval, 1);
9098 case TYPE_CODE_UNION:
9099 if (dval == NULL)
9100 return type;
9101 else
9102 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9103 }
9104 }
9105
9106 /* The same as ada_to_fixed_type_1, except that it preserves the type
9107 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9108
9109 The typedef layer needs be preserved in order to differentiate between
9110 arrays and array pointers when both types are implemented using the same
9111 fat pointer. In the array pointer case, the pointer is encoded as
9112 a typedef of the pointer type. For instance, considering:
9113
9114 type String_Access is access String;
9115 S1 : String_Access := null;
9116
9117 To the debugger, S1 is defined as a typedef of type String. But
9118 to the user, it is a pointer. So if the user tries to print S1,
9119 we should not dereference the array, but print the array address
9120 instead.
9121
9122 If we didn't preserve the typedef layer, we would lose the fact that
9123 the type is to be presented as a pointer (needs de-reference before
9124 being printed). And we would also use the source-level type name. */
9125
9126 struct type *
9127 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9128 CORE_ADDR address, struct value *dval, int check_tag)
9129
9130 {
9131 struct type *fixed_type =
9132 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9133
9134 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9135 then preserve the typedef layer.
9136
9137 Implementation note: We can only check the main-type portion of
9138 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9139 from TYPE now returns a type that has the same instance flags
9140 as TYPE. For instance, if TYPE is a "typedef const", and its
9141 target type is a "struct", then the typedef elimination will return
9142 a "const" version of the target type. See check_typedef for more
9143 details about how the typedef layer elimination is done.
9144
9145 brobecker/2010-11-19: It seems to me that the only case where it is
9146 useful to preserve the typedef layer is when dealing with fat pointers.
9147 Perhaps, we could add a check for that and preserve the typedef layer
9148 only in that situation. But this seems unecessary so far, probably
9149 because we call check_typedef/ada_check_typedef pretty much everywhere.
9150 */
9151 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9152 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9153 == TYPE_MAIN_TYPE (fixed_type)))
9154 return type;
9155
9156 return fixed_type;
9157 }
9158
9159 /* A standard (static-sized) type corresponding as well as possible to
9160 TYPE0, but based on no runtime data. */
9161
9162 static struct type *
9163 to_static_fixed_type (struct type *type0)
9164 {
9165 struct type *type;
9166
9167 if (type0 == NULL)
9168 return NULL;
9169
9170 if (TYPE_FIXED_INSTANCE (type0))
9171 return type0;
9172
9173 type0 = ada_check_typedef (type0);
9174
9175 switch (TYPE_CODE (type0))
9176 {
9177 default:
9178 return type0;
9179 case TYPE_CODE_STRUCT:
9180 type = dynamic_template_type (type0);
9181 if (type != NULL)
9182 return template_to_static_fixed_type (type);
9183 else
9184 return template_to_static_fixed_type (type0);
9185 case TYPE_CODE_UNION:
9186 type = ada_find_parallel_type (type0, "___XVU");
9187 if (type != NULL)
9188 return template_to_static_fixed_type (type);
9189 else
9190 return template_to_static_fixed_type (type0);
9191 }
9192 }
9193
9194 /* A static approximation of TYPE with all type wrappers removed. */
9195
9196 static struct type *
9197 static_unwrap_type (struct type *type)
9198 {
9199 if (ada_is_aligner_type (type))
9200 {
9201 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9202 if (ada_type_name (type1) == NULL)
9203 TYPE_NAME (type1) = ada_type_name (type);
9204
9205 return static_unwrap_type (type1);
9206 }
9207 else
9208 {
9209 struct type *raw_real_type = ada_get_base_type (type);
9210
9211 if (raw_real_type == type)
9212 return type;
9213 else
9214 return to_static_fixed_type (raw_real_type);
9215 }
9216 }
9217
9218 /* In some cases, incomplete and private types require
9219 cross-references that are not resolved as records (for example,
9220 type Foo;
9221 type FooP is access Foo;
9222 V: FooP;
9223 type Foo is array ...;
9224 ). In these cases, since there is no mechanism for producing
9225 cross-references to such types, we instead substitute for FooP a
9226 stub enumeration type that is nowhere resolved, and whose tag is
9227 the name of the actual type. Call these types "non-record stubs". */
9228
9229 /* A type equivalent to TYPE that is not a non-record stub, if one
9230 exists, otherwise TYPE. */
9231
9232 struct type *
9233 ada_check_typedef (struct type *type)
9234 {
9235 if (type == NULL)
9236 return NULL;
9237
9238 /* If our type is an access to an unconstrained array, which is encoded
9239 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9240 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9241 what allows us to distinguish between fat pointers that represent
9242 array types, and fat pointers that represent array access types
9243 (in both cases, the compiler implements them as fat pointers). */
9244 if (ada_is_access_to_unconstrained_array (type))
9245 return type;
9246
9247 type = check_typedef (type);
9248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9249 || !TYPE_STUB (type)
9250 || TYPE_NAME (type) == NULL)
9251 return type;
9252 else
9253 {
9254 const char *name = TYPE_NAME (type);
9255 struct type *type1 = ada_find_any_type (name);
9256
9257 if (type1 == NULL)
9258 return type;
9259
9260 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9261 stubs pointing to arrays, as we don't create symbols for array
9262 types, only for the typedef-to-array types). If that's the case,
9263 strip the typedef layer. */
9264 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9265 type1 = ada_check_typedef (type1);
9266
9267 return type1;
9268 }
9269 }
9270
9271 /* A value representing the data at VALADDR/ADDRESS as described by
9272 type TYPE0, but with a standard (static-sized) type that correctly
9273 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9274 type, then return VAL0 [this feature is simply to avoid redundant
9275 creation of struct values]. */
9276
9277 static struct value *
9278 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9279 struct value *val0)
9280 {
9281 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9282
9283 if (type == type0 && val0 != NULL)
9284 return val0;
9285
9286 if (VALUE_LVAL (val0) != lval_memory)
9287 {
9288 /* Our value does not live in memory; it could be a convenience
9289 variable, for instance. Create a not_lval value using val0's
9290 contents. */
9291 return value_from_contents (type, value_contents (val0));
9292 }
9293
9294 return value_from_contents_and_address (type, 0, address);
9295 }
9296
9297 /* A value representing VAL, but with a standard (static-sized) type
9298 that correctly describes it. Does not necessarily create a new
9299 value. */
9300
9301 struct value *
9302 ada_to_fixed_value (struct value *val)
9303 {
9304 val = unwrap_value (val);
9305 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9306 return val;
9307 }
9308 \f
9309
9310 /* Attributes */
9311
9312 /* Table mapping attribute numbers to names.
9313 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9314
9315 static const char *attribute_names[] = {
9316 "<?>",
9317
9318 "first",
9319 "last",
9320 "length",
9321 "image",
9322 "max",
9323 "min",
9324 "modulus",
9325 "pos",
9326 "size",
9327 "tag",
9328 "val",
9329 0
9330 };
9331
9332 const char *
9333 ada_attribute_name (enum exp_opcode n)
9334 {
9335 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9336 return attribute_names[n - OP_ATR_FIRST + 1];
9337 else
9338 return attribute_names[0];
9339 }
9340
9341 /* Evaluate the 'POS attribute applied to ARG. */
9342
9343 static LONGEST
9344 pos_atr (struct value *arg)
9345 {
9346 struct value *val = coerce_ref (arg);
9347 struct type *type = value_type (val);
9348 LONGEST result;
9349
9350 if (!discrete_type_p (type))
9351 error (_("'POS only defined on discrete types"));
9352
9353 if (!discrete_position (type, value_as_long (val), &result))
9354 error (_("enumeration value is invalid: can't find 'POS"));
9355
9356 return result;
9357 }
9358
9359 static struct value *
9360 value_pos_atr (struct type *type, struct value *arg)
9361 {
9362 return value_from_longest (type, pos_atr (arg));
9363 }
9364
9365 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9366
9367 static struct value *
9368 value_val_atr (struct type *type, struct value *arg)
9369 {
9370 if (!discrete_type_p (type))
9371 error (_("'VAL only defined on discrete types"));
9372 if (!integer_type_p (value_type (arg)))
9373 error (_("'VAL requires integral argument"));
9374
9375 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9376 {
9377 long pos = value_as_long (arg);
9378
9379 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9380 error (_("argument to 'VAL out of range"));
9381 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9382 }
9383 else
9384 return value_from_longest (type, value_as_long (arg));
9385 }
9386 \f
9387
9388 /* Evaluation */
9389
9390 /* True if TYPE appears to be an Ada character type.
9391 [At the moment, this is true only for Character and Wide_Character;
9392 It is a heuristic test that could stand improvement]. */
9393
9394 int
9395 ada_is_character_type (struct type *type)
9396 {
9397 const char *name;
9398
9399 /* If the type code says it's a character, then assume it really is,
9400 and don't check any further. */
9401 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9402 return 1;
9403
9404 /* Otherwise, assume it's a character type iff it is a discrete type
9405 with a known character type name. */
9406 name = ada_type_name (type);
9407 return (name != NULL
9408 && (TYPE_CODE (type) == TYPE_CODE_INT
9409 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9410 && (strcmp (name, "character") == 0
9411 || strcmp (name, "wide_character") == 0
9412 || strcmp (name, "wide_wide_character") == 0
9413 || strcmp (name, "unsigned char") == 0));
9414 }
9415
9416 /* True if TYPE appears to be an Ada string type. */
9417
9418 int
9419 ada_is_string_type (struct type *type)
9420 {
9421 type = ada_check_typedef (type);
9422 if (type != NULL
9423 && TYPE_CODE (type) != TYPE_CODE_PTR
9424 && (ada_is_simple_array_type (type)
9425 || ada_is_array_descriptor_type (type))
9426 && ada_array_arity (type) == 1)
9427 {
9428 struct type *elttype = ada_array_element_type (type, 1);
9429
9430 return ada_is_character_type (elttype);
9431 }
9432 else
9433 return 0;
9434 }
9435
9436 /* The compiler sometimes provides a parallel XVS type for a given
9437 PAD type. Normally, it is safe to follow the PAD type directly,
9438 but older versions of the compiler have a bug that causes the offset
9439 of its "F" field to be wrong. Following that field in that case
9440 would lead to incorrect results, but this can be worked around
9441 by ignoring the PAD type and using the associated XVS type instead.
9442
9443 Set to True if the debugger should trust the contents of PAD types.
9444 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9445 static int trust_pad_over_xvs = 1;
9446
9447 /* True if TYPE is a struct type introduced by the compiler to force the
9448 alignment of a value. Such types have a single field with a
9449 distinctive name. */
9450
9451 int
9452 ada_is_aligner_type (struct type *type)
9453 {
9454 type = ada_check_typedef (type);
9455
9456 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9457 return 0;
9458
9459 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9460 && TYPE_NFIELDS (type) == 1
9461 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9462 }
9463
9464 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9465 the parallel type. */
9466
9467 struct type *
9468 ada_get_base_type (struct type *raw_type)
9469 {
9470 struct type *real_type_namer;
9471 struct type *raw_real_type;
9472
9473 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9474 return raw_type;
9475
9476 if (ada_is_aligner_type (raw_type))
9477 /* The encoding specifies that we should always use the aligner type.
9478 So, even if this aligner type has an associated XVS type, we should
9479 simply ignore it.
9480
9481 According to the compiler gurus, an XVS type parallel to an aligner
9482 type may exist because of a stabs limitation. In stabs, aligner
9483 types are empty because the field has a variable-sized type, and
9484 thus cannot actually be used as an aligner type. As a result,
9485 we need the associated parallel XVS type to decode the type.
9486 Since the policy in the compiler is to not change the internal
9487 representation based on the debugging info format, we sometimes
9488 end up having a redundant XVS type parallel to the aligner type. */
9489 return raw_type;
9490
9491 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9492 if (real_type_namer == NULL
9493 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9494 || TYPE_NFIELDS (real_type_namer) != 1)
9495 return raw_type;
9496
9497 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9498 {
9499 /* This is an older encoding form where the base type needs to be
9500 looked up by name. We prefer the newer enconding because it is
9501 more efficient. */
9502 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9503 if (raw_real_type == NULL)
9504 return raw_type;
9505 else
9506 return raw_real_type;
9507 }
9508
9509 /* The field in our XVS type is a reference to the base type. */
9510 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9511 }
9512
9513 /* The type of value designated by TYPE, with all aligners removed. */
9514
9515 struct type *
9516 ada_aligned_type (struct type *type)
9517 {
9518 if (ada_is_aligner_type (type))
9519 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9520 else
9521 return ada_get_base_type (type);
9522 }
9523
9524
9525 /* The address of the aligned value in an object at address VALADDR
9526 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9527
9528 const gdb_byte *
9529 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9530 {
9531 if (ada_is_aligner_type (type))
9532 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9533 valaddr +
9534 TYPE_FIELD_BITPOS (type,
9535 0) / TARGET_CHAR_BIT);
9536 else
9537 return valaddr;
9538 }
9539
9540
9541
9542 /* The printed representation of an enumeration literal with encoded
9543 name NAME. The value is good to the next call of ada_enum_name. */
9544 const char *
9545 ada_enum_name (const char *name)
9546 {
9547 static char *result;
9548 static size_t result_len = 0;
9549 const char *tmp;
9550
9551 /* First, unqualify the enumeration name:
9552 1. Search for the last '.' character. If we find one, then skip
9553 all the preceding characters, the unqualified name starts
9554 right after that dot.
9555 2. Otherwise, we may be debugging on a target where the compiler
9556 translates dots into "__". Search forward for double underscores,
9557 but stop searching when we hit an overloading suffix, which is
9558 of the form "__" followed by digits. */
9559
9560 tmp = strrchr (name, '.');
9561 if (tmp != NULL)
9562 name = tmp + 1;
9563 else
9564 {
9565 while ((tmp = strstr (name, "__")) != NULL)
9566 {
9567 if (isdigit (tmp[2]))
9568 break;
9569 else
9570 name = tmp + 2;
9571 }
9572 }
9573
9574 if (name[0] == 'Q')
9575 {
9576 int v;
9577
9578 if (name[1] == 'U' || name[1] == 'W')
9579 {
9580 if (sscanf (name + 2, "%x", &v) != 1)
9581 return name;
9582 }
9583 else
9584 return name;
9585
9586 GROW_VECT (result, result_len, 16);
9587 if (isascii (v) && isprint (v))
9588 xsnprintf (result, result_len, "'%c'", v);
9589 else if (name[1] == 'U')
9590 xsnprintf (result, result_len, "[\"%02x\"]", v);
9591 else
9592 xsnprintf (result, result_len, "[\"%04x\"]", v);
9593
9594 return result;
9595 }
9596 else
9597 {
9598 tmp = strstr (name, "__");
9599 if (tmp == NULL)
9600 tmp = strstr (name, "$");
9601 if (tmp != NULL)
9602 {
9603 GROW_VECT (result, result_len, tmp - name + 1);
9604 strncpy (result, name, tmp - name);
9605 result[tmp - name] = '\0';
9606 return result;
9607 }
9608
9609 return name;
9610 }
9611 }
9612
9613 /* Evaluate the subexpression of EXP starting at *POS as for
9614 evaluate_type, updating *POS to point just past the evaluated
9615 expression. */
9616
9617 static struct value *
9618 evaluate_subexp_type (struct expression *exp, int *pos)
9619 {
9620 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9621 }
9622
9623 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9624 value it wraps. */
9625
9626 static struct value *
9627 unwrap_value (struct value *val)
9628 {
9629 struct type *type = ada_check_typedef (value_type (val));
9630
9631 if (ada_is_aligner_type (type))
9632 {
9633 struct value *v = ada_value_struct_elt (val, "F", 0);
9634 struct type *val_type = ada_check_typedef (value_type (v));
9635
9636 if (ada_type_name (val_type) == NULL)
9637 TYPE_NAME (val_type) = ada_type_name (type);
9638
9639 return unwrap_value (v);
9640 }
9641 else
9642 {
9643 struct type *raw_real_type =
9644 ada_check_typedef (ada_get_base_type (type));
9645
9646 /* If there is no parallel XVS or XVE type, then the value is
9647 already unwrapped. Return it without further modification. */
9648 if ((type == raw_real_type)
9649 && ada_find_parallel_type (type, "___XVE") == NULL)
9650 return val;
9651
9652 return
9653 coerce_unspec_val_to_type
9654 (val, ada_to_fixed_type (raw_real_type, 0,
9655 value_address (val),
9656 NULL, 1));
9657 }
9658 }
9659
9660 static struct value *
9661 cast_from_fixed (struct type *type, struct value *arg)
9662 {
9663 struct value *scale = ada_scaling_factor (value_type (arg));
9664 arg = value_cast (value_type (scale), arg);
9665
9666 arg = value_binop (arg, scale, BINOP_MUL);
9667 return value_cast (type, arg);
9668 }
9669
9670 static struct value *
9671 cast_to_fixed (struct type *type, struct value *arg)
9672 {
9673 if (type == value_type (arg))
9674 return arg;
9675
9676 struct value *scale = ada_scaling_factor (type);
9677 if (ada_is_fixed_point_type (value_type (arg)))
9678 arg = cast_from_fixed (value_type (scale), arg);
9679 else
9680 arg = value_cast (value_type (scale), arg);
9681
9682 arg = value_binop (arg, scale, BINOP_DIV);
9683 return value_cast (type, arg);
9684 }
9685
9686 /* Given two array types T1 and T2, return nonzero iff both arrays
9687 contain the same number of elements. */
9688
9689 static int
9690 ada_same_array_size_p (struct type *t1, struct type *t2)
9691 {
9692 LONGEST lo1, hi1, lo2, hi2;
9693
9694 /* Get the array bounds in order to verify that the size of
9695 the two arrays match. */
9696 if (!get_array_bounds (t1, &lo1, &hi1)
9697 || !get_array_bounds (t2, &lo2, &hi2))
9698 error (_("unable to determine array bounds"));
9699
9700 /* To make things easier for size comparison, normalize a bit
9701 the case of empty arrays by making sure that the difference
9702 between upper bound and lower bound is always -1. */
9703 if (lo1 > hi1)
9704 hi1 = lo1 - 1;
9705 if (lo2 > hi2)
9706 hi2 = lo2 - 1;
9707
9708 return (hi1 - lo1 == hi2 - lo2);
9709 }
9710
9711 /* Assuming that VAL is an array of integrals, and TYPE represents
9712 an array with the same number of elements, but with wider integral
9713 elements, return an array "casted" to TYPE. In practice, this
9714 means that the returned array is built by casting each element
9715 of the original array into TYPE's (wider) element type. */
9716
9717 static struct value *
9718 ada_promote_array_of_integrals (struct type *type, struct value *val)
9719 {
9720 struct type *elt_type = TYPE_TARGET_TYPE (type);
9721 LONGEST lo, hi;
9722 struct value *res;
9723 LONGEST i;
9724
9725 /* Verify that both val and type are arrays of scalars, and
9726 that the size of val's elements is smaller than the size
9727 of type's element. */
9728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9729 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9730 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9731 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9732 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9733 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9734
9735 if (!get_array_bounds (type, &lo, &hi))
9736 error (_("unable to determine array bounds"));
9737
9738 res = allocate_value (type);
9739
9740 /* Promote each array element. */
9741 for (i = 0; i < hi - lo + 1; i++)
9742 {
9743 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9744
9745 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9746 value_contents_all (elt), TYPE_LENGTH (elt_type));
9747 }
9748
9749 return res;
9750 }
9751
9752 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9753 return the converted value. */
9754
9755 static struct value *
9756 coerce_for_assign (struct type *type, struct value *val)
9757 {
9758 struct type *type2 = value_type (val);
9759
9760 if (type == type2)
9761 return val;
9762
9763 type2 = ada_check_typedef (type2);
9764 type = ada_check_typedef (type);
9765
9766 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9767 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9768 {
9769 val = ada_value_ind (val);
9770 type2 = value_type (val);
9771 }
9772
9773 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9774 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9775 {
9776 if (!ada_same_array_size_p (type, type2))
9777 error (_("cannot assign arrays of different length"));
9778
9779 if (is_integral_type (TYPE_TARGET_TYPE (type))
9780 && is_integral_type (TYPE_TARGET_TYPE (type2))
9781 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9783 {
9784 /* Allow implicit promotion of the array elements to
9785 a wider type. */
9786 return ada_promote_array_of_integrals (type, val);
9787 }
9788
9789 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 error (_("Incompatible types in assignment"));
9792 deprecated_set_value_type (val, type);
9793 }
9794 return val;
9795 }
9796
9797 static struct value *
9798 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9799 {
9800 struct value *val;
9801 struct type *type1, *type2;
9802 LONGEST v, v1, v2;
9803
9804 arg1 = coerce_ref (arg1);
9805 arg2 = coerce_ref (arg2);
9806 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9807 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9808
9809 if (TYPE_CODE (type1) != TYPE_CODE_INT
9810 || TYPE_CODE (type2) != TYPE_CODE_INT)
9811 return value_binop (arg1, arg2, op);
9812
9813 switch (op)
9814 {
9815 case BINOP_MOD:
9816 case BINOP_DIV:
9817 case BINOP_REM:
9818 break;
9819 default:
9820 return value_binop (arg1, arg2, op);
9821 }
9822
9823 v2 = value_as_long (arg2);
9824 if (v2 == 0)
9825 error (_("second operand of %s must not be zero."), op_string (op));
9826
9827 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9828 return value_binop (arg1, arg2, op);
9829
9830 v1 = value_as_long (arg1);
9831 switch (op)
9832 {
9833 case BINOP_DIV:
9834 v = v1 / v2;
9835 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9836 v += v > 0 ? -1 : 1;
9837 break;
9838 case BINOP_REM:
9839 v = v1 % v2;
9840 if (v * v1 < 0)
9841 v -= v2;
9842 break;
9843 default:
9844 /* Should not reach this point. */
9845 v = 0;
9846 }
9847
9848 val = allocate_value (type1);
9849 store_unsigned_integer (value_contents_raw (val),
9850 TYPE_LENGTH (value_type (val)),
9851 gdbarch_byte_order (get_type_arch (type1)), v);
9852 return val;
9853 }
9854
9855 static int
9856 ada_value_equal (struct value *arg1, struct value *arg2)
9857 {
9858 if (ada_is_direct_array_type (value_type (arg1))
9859 || ada_is_direct_array_type (value_type (arg2)))
9860 {
9861 struct type *arg1_type, *arg2_type;
9862
9863 /* Automatically dereference any array reference before
9864 we attempt to perform the comparison. */
9865 arg1 = ada_coerce_ref (arg1);
9866 arg2 = ada_coerce_ref (arg2);
9867
9868 arg1 = ada_coerce_to_simple_array (arg1);
9869 arg2 = ada_coerce_to_simple_array (arg2);
9870
9871 arg1_type = ada_check_typedef (value_type (arg1));
9872 arg2_type = ada_check_typedef (value_type (arg2));
9873
9874 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9875 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9876 error (_("Attempt to compare array with non-array"));
9877 /* FIXME: The following works only for types whose
9878 representations use all bits (no padding or undefined bits)
9879 and do not have user-defined equality. */
9880 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9881 && memcmp (value_contents (arg1), value_contents (arg2),
9882 TYPE_LENGTH (arg1_type)) == 0);
9883 }
9884 return value_equal (arg1, arg2);
9885 }
9886
9887 /* Total number of component associations in the aggregate starting at
9888 index PC in EXP. Assumes that index PC is the start of an
9889 OP_AGGREGATE. */
9890
9891 static int
9892 num_component_specs (struct expression *exp, int pc)
9893 {
9894 int n, m, i;
9895
9896 m = exp->elts[pc + 1].longconst;
9897 pc += 3;
9898 n = 0;
9899 for (i = 0; i < m; i += 1)
9900 {
9901 switch (exp->elts[pc].opcode)
9902 {
9903 default:
9904 n += 1;
9905 break;
9906 case OP_CHOICES:
9907 n += exp->elts[pc + 1].longconst;
9908 break;
9909 }
9910 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9911 }
9912 return n;
9913 }
9914
9915 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9916 component of LHS (a simple array or a record), updating *POS past
9917 the expression, assuming that LHS is contained in CONTAINER. Does
9918 not modify the inferior's memory, nor does it modify LHS (unless
9919 LHS == CONTAINER). */
9920
9921 static void
9922 assign_component (struct value *container, struct value *lhs, LONGEST index,
9923 struct expression *exp, int *pos)
9924 {
9925 struct value *mark = value_mark ();
9926 struct value *elt;
9927 struct type *lhs_type = check_typedef (value_type (lhs));
9928
9929 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9930 {
9931 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9932 struct value *index_val = value_from_longest (index_type, index);
9933
9934 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9935 }
9936 else
9937 {
9938 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9939 elt = ada_to_fixed_value (elt);
9940 }
9941
9942 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9943 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9944 else
9945 value_assign_to_component (container, elt,
9946 ada_evaluate_subexp (NULL, exp, pos,
9947 EVAL_NORMAL));
9948
9949 value_free_to_mark (mark);
9950 }
9951
9952 /* Assuming that LHS represents an lvalue having a record or array
9953 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9954 of that aggregate's value to LHS, advancing *POS past the
9955 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9956 lvalue containing LHS (possibly LHS itself). Does not modify
9957 the inferior's memory, nor does it modify the contents of
9958 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9959
9960 static struct value *
9961 assign_aggregate (struct value *container,
9962 struct value *lhs, struct expression *exp,
9963 int *pos, enum noside noside)
9964 {
9965 struct type *lhs_type;
9966 int n = exp->elts[*pos+1].longconst;
9967 LONGEST low_index, high_index;
9968 int num_specs;
9969 LONGEST *indices;
9970 int max_indices, num_indices;
9971 int i;
9972
9973 *pos += 3;
9974 if (noside != EVAL_NORMAL)
9975 {
9976 for (i = 0; i < n; i += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, noside);
9978 return container;
9979 }
9980
9981 container = ada_coerce_ref (container);
9982 if (ada_is_direct_array_type (value_type (container)))
9983 container = ada_coerce_to_simple_array (container);
9984 lhs = ada_coerce_ref (lhs);
9985 if (!deprecated_value_modifiable (lhs))
9986 error (_("Left operand of assignment is not a modifiable lvalue."));
9987
9988 lhs_type = check_typedef (value_type (lhs));
9989 if (ada_is_direct_array_type (lhs_type))
9990 {
9991 lhs = ada_coerce_to_simple_array (lhs);
9992 lhs_type = check_typedef (value_type (lhs));
9993 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9994 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9995 }
9996 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9997 {
9998 low_index = 0;
9999 high_index = num_visible_fields (lhs_type) - 1;
10000 }
10001 else
10002 error (_("Left-hand side must be array or record."));
10003
10004 num_specs = num_component_specs (exp, *pos - 3);
10005 max_indices = 4 * num_specs + 4;
10006 indices = XALLOCAVEC (LONGEST, max_indices);
10007 indices[0] = indices[1] = low_index - 1;
10008 indices[2] = indices[3] = high_index + 1;
10009 num_indices = 4;
10010
10011 for (i = 0; i < n; i += 1)
10012 {
10013 switch (exp->elts[*pos].opcode)
10014 {
10015 case OP_CHOICES:
10016 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10017 &num_indices, max_indices,
10018 low_index, high_index);
10019 break;
10020 case OP_POSITIONAL:
10021 aggregate_assign_positional (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_OTHERS:
10026 if (i != n-1)
10027 error (_("Misplaced 'others' clause"));
10028 aggregate_assign_others (container, lhs, exp, pos, indices,
10029 num_indices, low_index, high_index);
10030 break;
10031 default:
10032 error (_("Internal error: bad aggregate clause"));
10033 }
10034 }
10035
10036 return container;
10037 }
10038
10039 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10040 construct at *POS, updating *POS past the construct, given that
10041 the positions are relative to lower bound LOW, where HIGH is the
10042 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10043 updating *NUM_INDICES as needed. CONTAINER is as for
10044 assign_aggregate. */
10045 static void
10046 aggregate_assign_positional (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int *num_indices,
10049 int max_indices, LONGEST low, LONGEST high)
10050 {
10051 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10052
10053 if (ind - 1 == high)
10054 warning (_("Extra components in aggregate ignored."));
10055 if (ind <= high)
10056 {
10057 add_component_interval (ind, ind, indices, num_indices, max_indices);
10058 *pos += 3;
10059 assign_component (container, lhs, ind, exp, pos);
10060 }
10061 else
10062 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10063 }
10064
10065 /* Assign into the components of LHS indexed by the OP_CHOICES
10066 construct at *POS, updating *POS past the construct, given that
10067 the allowable indices are LOW..HIGH. Record the indices assigned
10068 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10069 needed. CONTAINER is as for assign_aggregate. */
10070 static void
10071 aggregate_assign_from_choices (struct value *container,
10072 struct value *lhs, struct expression *exp,
10073 int *pos, LONGEST *indices, int *num_indices,
10074 int max_indices, LONGEST low, LONGEST high)
10075 {
10076 int j;
10077 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10078 int choice_pos, expr_pc;
10079 int is_array = ada_is_direct_array_type (value_type (lhs));
10080
10081 choice_pos = *pos += 3;
10082
10083 for (j = 0; j < n_choices; j += 1)
10084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10085 expr_pc = *pos;
10086 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 {
10090 LONGEST lower, upper;
10091 enum exp_opcode op = exp->elts[choice_pos].opcode;
10092
10093 if (op == OP_DISCRETE_RANGE)
10094 {
10095 choice_pos += 1;
10096 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10097 EVAL_NORMAL));
10098 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10099 EVAL_NORMAL));
10100 }
10101 else if (is_array)
10102 {
10103 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10104 EVAL_NORMAL));
10105 upper = lower;
10106 }
10107 else
10108 {
10109 int ind;
10110 const char *name;
10111
10112 switch (op)
10113 {
10114 case OP_NAME:
10115 name = &exp->elts[choice_pos + 2].string;
10116 break;
10117 case OP_VAR_VALUE:
10118 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10119 break;
10120 default:
10121 error (_("Invalid record component association."));
10122 }
10123 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10124 ind = 0;
10125 if (! find_struct_field (name, value_type (lhs), 0,
10126 NULL, NULL, NULL, NULL, &ind))
10127 error (_("Unknown component name: %s."), name);
10128 lower = upper = ind;
10129 }
10130
10131 if (lower <= upper && (lower < low || upper > high))
10132 error (_("Index in component association out of bounds."));
10133
10134 add_component_interval (lower, upper, indices, num_indices,
10135 max_indices);
10136 while (lower <= upper)
10137 {
10138 int pos1;
10139
10140 pos1 = expr_pc;
10141 assign_component (container, lhs, lower, exp, &pos1);
10142 lower += 1;
10143 }
10144 }
10145 }
10146
10147 /* Assign the value of the expression in the OP_OTHERS construct in
10148 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10149 have not been previously assigned. The index intervals already assigned
10150 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10151 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10152 static void
10153 aggregate_assign_others (struct value *container,
10154 struct value *lhs, struct expression *exp,
10155 int *pos, LONGEST *indices, int num_indices,
10156 LONGEST low, LONGEST high)
10157 {
10158 int i;
10159 int expr_pc = *pos + 1;
10160
10161 for (i = 0; i < num_indices - 2; i += 2)
10162 {
10163 LONGEST ind;
10164
10165 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10166 {
10167 int localpos;
10168
10169 localpos = expr_pc;
10170 assign_component (container, lhs, ind, exp, &localpos);
10171 }
10172 }
10173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10174 }
10175
10176 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10177 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10178 modifying *SIZE as needed. It is an error if *SIZE exceeds
10179 MAX_SIZE. The resulting intervals do not overlap. */
10180 static void
10181 add_component_interval (LONGEST low, LONGEST high,
10182 LONGEST* indices, int *size, int max_size)
10183 {
10184 int i, j;
10185
10186 for (i = 0; i < *size; i += 2) {
10187 if (high >= indices[i] && low <= indices[i + 1])
10188 {
10189 int kh;
10190
10191 for (kh = i + 2; kh < *size; kh += 2)
10192 if (high < indices[kh])
10193 break;
10194 if (low < indices[i])
10195 indices[i] = low;
10196 indices[i + 1] = indices[kh - 1];
10197 if (high > indices[i + 1])
10198 indices[i + 1] = high;
10199 memcpy (indices + i + 2, indices + kh, *size - kh);
10200 *size -= kh - i - 2;
10201 return;
10202 }
10203 else if (high < indices[i])
10204 break;
10205 }
10206
10207 if (*size == max_size)
10208 error (_("Internal error: miscounted aggregate components."));
10209 *size += 2;
10210 for (j = *size-1; j >= i+2; j -= 1)
10211 indices[j] = indices[j - 2];
10212 indices[i] = low;
10213 indices[i + 1] = high;
10214 }
10215
10216 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10217 is different. */
10218
10219 static struct value *
10220 ada_value_cast (struct type *type, struct value *arg2)
10221 {
10222 if (type == ada_check_typedef (value_type (arg2)))
10223 return arg2;
10224
10225 if (ada_is_fixed_point_type (type))
10226 return cast_to_fixed (type, arg2);
10227
10228 if (ada_is_fixed_point_type (value_type (arg2)))
10229 return cast_from_fixed (type, arg2);
10230
10231 return value_cast (type, arg2);
10232 }
10233
10234 /* Evaluating Ada expressions, and printing their result.
10235 ------------------------------------------------------
10236
10237 1. Introduction:
10238 ----------------
10239
10240 We usually evaluate an Ada expression in order to print its value.
10241 We also evaluate an expression in order to print its type, which
10242 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10243 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10244 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10245 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10246 similar.
10247
10248 Evaluating expressions is a little more complicated for Ada entities
10249 than it is for entities in languages such as C. The main reason for
10250 this is that Ada provides types whose definition might be dynamic.
10251 One example of such types is variant records. Or another example
10252 would be an array whose bounds can only be known at run time.
10253
10254 The following description is a general guide as to what should be
10255 done (and what should NOT be done) in order to evaluate an expression
10256 involving such types, and when. This does not cover how the semantic
10257 information is encoded by GNAT as this is covered separatly. For the
10258 document used as the reference for the GNAT encoding, see exp_dbug.ads
10259 in the GNAT sources.
10260
10261 Ideally, we should embed each part of this description next to its
10262 associated code. Unfortunately, the amount of code is so vast right
10263 now that it's hard to see whether the code handling a particular
10264 situation might be duplicated or not. One day, when the code is
10265 cleaned up, this guide might become redundant with the comments
10266 inserted in the code, and we might want to remove it.
10267
10268 2. ``Fixing'' an Entity, the Simple Case:
10269 -----------------------------------------
10270
10271 When evaluating Ada expressions, the tricky issue is that they may
10272 reference entities whose type contents and size are not statically
10273 known. Consider for instance a variant record:
10274
10275 type Rec (Empty : Boolean := True) is record
10276 case Empty is
10277 when True => null;
10278 when False => Value : Integer;
10279 end case;
10280 end record;
10281 Yes : Rec := (Empty => False, Value => 1);
10282 No : Rec := (empty => True);
10283
10284 The size and contents of that record depends on the value of the
10285 descriminant (Rec.Empty). At this point, neither the debugging
10286 information nor the associated type structure in GDB are able to
10287 express such dynamic types. So what the debugger does is to create
10288 "fixed" versions of the type that applies to the specific object.
10289 We also informally refer to this opperation as "fixing" an object,
10290 which means creating its associated fixed type.
10291
10292 Example: when printing the value of variable "Yes" above, its fixed
10293 type would look like this:
10294
10295 type Rec is record
10296 Empty : Boolean;
10297 Value : Integer;
10298 end record;
10299
10300 On the other hand, if we printed the value of "No", its fixed type
10301 would become:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 end record;
10306
10307 Things become a little more complicated when trying to fix an entity
10308 with a dynamic type that directly contains another dynamic type,
10309 such as an array of variant records, for instance. There are
10310 two possible cases: Arrays, and records.
10311
10312 3. ``Fixing'' Arrays:
10313 ---------------------
10314
10315 The type structure in GDB describes an array in terms of its bounds,
10316 and the type of its elements. By design, all elements in the array
10317 have the same type and we cannot represent an array of variant elements
10318 using the current type structure in GDB. When fixing an array,
10319 we cannot fix the array element, as we would potentially need one
10320 fixed type per element of the array. As a result, the best we can do
10321 when fixing an array is to produce an array whose bounds and size
10322 are correct (allowing us to read it from memory), but without having
10323 touched its element type. Fixing each element will be done later,
10324 when (if) necessary.
10325
10326 Arrays are a little simpler to handle than records, because the same
10327 amount of memory is allocated for each element of the array, even if
10328 the amount of space actually used by each element differs from element
10329 to element. Consider for instance the following array of type Rec:
10330
10331 type Rec_Array is array (1 .. 2) of Rec;
10332
10333 The actual amount of memory occupied by each element might be different
10334 from element to element, depending on the value of their discriminant.
10335 But the amount of space reserved for each element in the array remains
10336 fixed regardless. So we simply need to compute that size using
10337 the debugging information available, from which we can then determine
10338 the array size (we multiply the number of elements of the array by
10339 the size of each element).
10340
10341 The simplest case is when we have an array of a constrained element
10342 type. For instance, consider the following type declarations:
10343
10344 type Bounded_String (Max_Size : Integer) is
10345 Length : Integer;
10346 Buffer : String (1 .. Max_Size);
10347 end record;
10348 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10349
10350 In this case, the compiler describes the array as an array of
10351 variable-size elements (identified by its XVS suffix) for which
10352 the size can be read in the parallel XVZ variable.
10353
10354 In the case of an array of an unconstrained element type, the compiler
10355 wraps the array element inside a private PAD type. This type should not
10356 be shown to the user, and must be "unwrap"'ed before printing. Note
10357 that we also use the adjective "aligner" in our code to designate
10358 these wrapper types.
10359
10360 In some cases, the size allocated for each element is statically
10361 known. In that case, the PAD type already has the correct size,
10362 and the array element should remain unfixed.
10363
10364 But there are cases when this size is not statically known.
10365 For instance, assuming that "Five" is an integer variable:
10366
10367 type Dynamic is array (1 .. Five) of Integer;
10368 type Wrapper (Has_Length : Boolean := False) is record
10369 Data : Dynamic;
10370 case Has_Length is
10371 when True => Length : Integer;
10372 when False => null;
10373 end case;
10374 end record;
10375 type Wrapper_Array is array (1 .. 2) of Wrapper;
10376
10377 Hello : Wrapper_Array := (others => (Has_Length => True,
10378 Data => (others => 17),
10379 Length => 1));
10380
10381
10382 The debugging info would describe variable Hello as being an
10383 array of a PAD type. The size of that PAD type is not statically
10384 known, but can be determined using a parallel XVZ variable.
10385 In that case, a copy of the PAD type with the correct size should
10386 be used for the fixed array.
10387
10388 3. ``Fixing'' record type objects:
10389 ----------------------------------
10390
10391 Things are slightly different from arrays in the case of dynamic
10392 record types. In this case, in order to compute the associated
10393 fixed type, we need to determine the size and offset of each of
10394 its components. This, in turn, requires us to compute the fixed
10395 type of each of these components.
10396
10397 Consider for instance the example:
10398
10399 type Bounded_String (Max_Size : Natural) is record
10400 Str : String (1 .. Max_Size);
10401 Length : Natural;
10402 end record;
10403 My_String : Bounded_String (Max_Size => 10);
10404
10405 In that case, the position of field "Length" depends on the size
10406 of field Str, which itself depends on the value of the Max_Size
10407 discriminant. In order to fix the type of variable My_String,
10408 we need to fix the type of field Str. Therefore, fixing a variant
10409 record requires us to fix each of its components.
10410
10411 However, if a component does not have a dynamic size, the component
10412 should not be fixed. In particular, fields that use a PAD type
10413 should not fixed. Here is an example where this might happen
10414 (assuming type Rec above):
10415
10416 type Container (Big : Boolean) is record
10417 First : Rec;
10418 After : Integer;
10419 case Big is
10420 when True => Another : Integer;
10421 when False => null;
10422 end case;
10423 end record;
10424 My_Container : Container := (Big => False,
10425 First => (Empty => True),
10426 After => 42);
10427
10428 In that example, the compiler creates a PAD type for component First,
10429 whose size is constant, and then positions the component After just
10430 right after it. The offset of component After is therefore constant
10431 in this case.
10432
10433 The debugger computes the position of each field based on an algorithm
10434 that uses, among other things, the actual position and size of the field
10435 preceding it. Let's now imagine that the user is trying to print
10436 the value of My_Container. If the type fixing was recursive, we would
10437 end up computing the offset of field After based on the size of the
10438 fixed version of field First. And since in our example First has
10439 only one actual field, the size of the fixed type is actually smaller
10440 than the amount of space allocated to that field, and thus we would
10441 compute the wrong offset of field After.
10442
10443 To make things more complicated, we need to watch out for dynamic
10444 components of variant records (identified by the ___XVL suffix in
10445 the component name). Even if the target type is a PAD type, the size
10446 of that type might not be statically known. So the PAD type needs
10447 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10448 we might end up with the wrong size for our component. This can be
10449 observed with the following type declarations:
10450
10451 type Octal is new Integer range 0 .. 7;
10452 type Octal_Array is array (Positive range <>) of Octal;
10453 pragma Pack (Octal_Array);
10454
10455 type Octal_Buffer (Size : Positive) is record
10456 Buffer : Octal_Array (1 .. Size);
10457 Length : Integer;
10458 end record;
10459
10460 In that case, Buffer is a PAD type whose size is unset and needs
10461 to be computed by fixing the unwrapped type.
10462
10463 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10464 ----------------------------------------------------------
10465
10466 Lastly, when should the sub-elements of an entity that remained unfixed
10467 thus far, be actually fixed?
10468
10469 The answer is: Only when referencing that element. For instance
10470 when selecting one component of a record, this specific component
10471 should be fixed at that point in time. Or when printing the value
10472 of a record, each component should be fixed before its value gets
10473 printed. Similarly for arrays, the element of the array should be
10474 fixed when printing each element of the array, or when extracting
10475 one element out of that array. On the other hand, fixing should
10476 not be performed on the elements when taking a slice of an array!
10477
10478 Note that one of the side effects of miscomputing the offset and
10479 size of each field is that we end up also miscomputing the size
10480 of the containing type. This can have adverse results when computing
10481 the value of an entity. GDB fetches the value of an entity based
10482 on the size of its type, and thus a wrong size causes GDB to fetch
10483 the wrong amount of memory. In the case where the computed size is
10484 too small, GDB fetches too little data to print the value of our
10485 entity. Results in this case are unpredictable, as we usually read
10486 past the buffer containing the data =:-o. */
10487
10488 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10489 for that subexpression cast to TO_TYPE. Advance *POS over the
10490 subexpression. */
10491
10492 static value *
10493 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10494 enum noside noside, struct type *to_type)
10495 {
10496 int pc = *pos;
10497
10498 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10499 || exp->elts[pc].opcode == OP_VAR_VALUE)
10500 {
10501 (*pos) += 4;
10502
10503 value *val;
10504 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10505 {
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (to_type, not_lval);
10508
10509 val = evaluate_var_msym_value (noside,
10510 exp->elts[pc + 1].objfile,
10511 exp->elts[pc + 2].msymbol);
10512 }
10513 else
10514 val = evaluate_var_value (noside,
10515 exp->elts[pc + 1].block,
10516 exp->elts[pc + 2].symbol);
10517
10518 if (noside == EVAL_SKIP)
10519 return eval_skip_value (exp);
10520
10521 val = ada_value_cast (to_type, val);
10522
10523 /* Follow the Ada language semantics that do not allow taking
10524 an address of the result of a cast (view conversion in Ada). */
10525 if (VALUE_LVAL (val) == lval_memory)
10526 {
10527 if (value_lazy (val))
10528 value_fetch_lazy (val);
10529 VALUE_LVAL (val) = not_lval;
10530 }
10531 return val;
10532 }
10533
10534 value *val = evaluate_subexp (to_type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 return eval_skip_value (exp);
10537 return ada_value_cast (to_type, val);
10538 }
10539
10540 /* Implement the evaluate_exp routine in the exp_descriptor structure
10541 for the Ada language. */
10542
10543 static struct value *
10544 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10545 int *pos, enum noside noside)
10546 {
10547 enum exp_opcode op;
10548 int tem;
10549 int pc;
10550 int preeval_pos;
10551 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10552 struct type *type;
10553 int nargs, oplen;
10554 struct value **argvec;
10555
10556 pc = *pos;
10557 *pos += 1;
10558 op = exp->elts[pc].opcode;
10559
10560 switch (op)
10561 {
10562 default:
10563 *pos -= 1;
10564 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10565
10566 if (noside == EVAL_NORMAL)
10567 arg1 = unwrap_value (arg1);
10568
10569 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10570 then we need to perform the conversion manually, because
10571 evaluate_subexp_standard doesn't do it. This conversion is
10572 necessary in Ada because the different kinds of float/fixed
10573 types in Ada have different representations.
10574
10575 Similarly, we need to perform the conversion from OP_LONG
10576 ourselves. */
10577 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10578 arg1 = ada_value_cast (expect_type, arg1);
10579
10580 return arg1;
10581
10582 case OP_STRING:
10583 {
10584 struct value *result;
10585
10586 *pos -= 1;
10587 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10588 /* The result type will have code OP_STRING, bashed there from
10589 OP_ARRAY. Bash it back. */
10590 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10591 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10592 return result;
10593 }
10594
10595 case UNOP_CAST:
10596 (*pos) += 2;
10597 type = exp->elts[pc + 1].type;
10598 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10599
10600 case UNOP_QUAL:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp (type, exp, pos, noside);
10604
10605 case BINOP_ASSIGN:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10608 {
10609 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10610 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10611 return arg1;
10612 return ada_value_assign (arg1, arg1);
10613 }
10614 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10615 except if the lhs of our assignment is a convenience variable.
10616 In the case of assigning to a convenience variable, the lhs
10617 should be exactly the result of the evaluation of the rhs. */
10618 type = value_type (arg1);
10619 if (VALUE_LVAL (arg1) == lval_internalvar)
10620 type = NULL;
10621 arg2 = evaluate_subexp (type, exp, pos, noside);
10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10623 return arg1;
10624 if (ada_is_fixed_point_type (value_type (arg1)))
10625 arg2 = cast_to_fixed (value_type (arg1), arg2);
10626 else if (ada_is_fixed_point_type (value_type (arg2)))
10627 error
10628 (_("Fixed-point values must be assigned to fixed-point variables"));
10629 else
10630 arg2 = coerce_for_assign (value_type (arg1), arg2);
10631 return ada_value_assign (arg1, arg2);
10632
10633 case BINOP_ADD:
10634 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10635 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10636 if (noside == EVAL_SKIP)
10637 goto nosideret;
10638 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10639 return (value_from_longest
10640 (value_type (arg1),
10641 value_as_long (arg1) + value_as_long (arg2)));
10642 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10643 return (value_from_longest
10644 (value_type (arg2),
10645 value_as_long (arg1) + value_as_long (arg2)));
10646 if ((ada_is_fixed_point_type (value_type (arg1))
10647 || ada_is_fixed_point_type (value_type (arg2)))
10648 && value_type (arg1) != value_type (arg2))
10649 error (_("Operands of fixed-point addition must have the same type"));
10650 /* Do the addition, and cast the result to the type of the first
10651 argument. We cannot cast the result to a reference type, so if
10652 ARG1 is a reference type, find its underlying type. */
10653 type = value_type (arg1);
10654 while (TYPE_CODE (type) == TYPE_CODE_REF)
10655 type = TYPE_TARGET_TYPE (type);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10657 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10658
10659 case BINOP_SUB:
10660 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10661 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10665 return (value_from_longest
10666 (value_type (arg1),
10667 value_as_long (arg1) - value_as_long (arg2)));
10668 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10669 return (value_from_longest
10670 (value_type (arg2),
10671 value_as_long (arg1) - value_as_long (arg2)));
10672 if ((ada_is_fixed_point_type (value_type (arg1))
10673 || ada_is_fixed_point_type (value_type (arg2)))
10674 && value_type (arg1) != value_type (arg2))
10675 error (_("Operands of fixed-point subtraction "
10676 "must have the same type"));
10677 /* Do the substraction, and cast the result to the type of the first
10678 argument. We cannot cast the result to a reference type, so if
10679 ARG1 is a reference type, find its underlying type. */
10680 type = value_type (arg1);
10681 while (TYPE_CODE (type) == TYPE_CODE_REF)
10682 type = TYPE_TARGET_TYPE (type);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10684 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10685
10686 case BINOP_MUL:
10687 case BINOP_DIV:
10688 case BINOP_REM:
10689 case BINOP_MOD:
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 if (noside == EVAL_SKIP)
10693 goto nosideret;
10694 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10695 {
10696 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10697 return value_zero (value_type (arg1), not_lval);
10698 }
10699 else
10700 {
10701 type = builtin_type (exp->gdbarch)->builtin_double;
10702 if (ada_is_fixed_point_type (value_type (arg1)))
10703 arg1 = cast_from_fixed (type, arg1);
10704 if (ada_is_fixed_point_type (value_type (arg2)))
10705 arg2 = cast_from_fixed (type, arg2);
10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10707 return ada_value_binop (arg1, arg2, op);
10708 }
10709
10710 case BINOP_EQUAL:
10711 case BINOP_NOTEQUAL:
10712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10713 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10714 if (noside == EVAL_SKIP)
10715 goto nosideret;
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 tem = 0;
10718 else
10719 {
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 tem = ada_value_equal (arg1, arg2);
10722 }
10723 if (op == BINOP_NOTEQUAL)
10724 tem = !tem;
10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
10726 return value_from_longest (type, (LONGEST) tem);
10727
10728 case UNOP_NEG:
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 else if (ada_is_fixed_point_type (value_type (arg1)))
10733 return value_cast (value_type (arg1), value_neg (arg1));
10734 else
10735 {
10736 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10737 return value_neg (arg1);
10738 }
10739
10740 case BINOP_LOGICAL_AND:
10741 case BINOP_LOGICAL_OR:
10742 case UNOP_LOGICAL_NOT:
10743 {
10744 struct value *val;
10745
10746 *pos -= 1;
10747 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10748 type = language_bool_type (exp->language_defn, exp->gdbarch);
10749 return value_cast (type, val);
10750 }
10751
10752 case BINOP_BITWISE_AND:
10753 case BINOP_BITWISE_IOR:
10754 case BINOP_BITWISE_XOR:
10755 {
10756 struct value *val;
10757
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10759 *pos = pc;
10760 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10761
10762 return value_cast (value_type (arg1), val);
10763 }
10764
10765 case OP_VAR_VALUE:
10766 *pos -= 1;
10767
10768 if (noside == EVAL_SKIP)
10769 {
10770 *pos += 4;
10771 goto nosideret;
10772 }
10773
10774 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10775 /* Only encountered when an unresolved symbol occurs in a
10776 context other than a function call, in which case, it is
10777 invalid. */
10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10779 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10780
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10782 {
10783 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10784 /* Check to see if this is a tagged type. We also need to handle
10785 the case where the type is a reference to a tagged type, but
10786 we have to be careful to exclude pointers to tagged types.
10787 The latter should be shown as usual (as a pointer), whereas
10788 a reference should mostly be transparent to the user. */
10789 if (ada_is_tagged_type (type, 0)
10790 || (TYPE_CODE (type) == TYPE_CODE_REF
10791 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10792 {
10793 /* Tagged types are a little special in the fact that the real
10794 type is dynamic and can only be determined by inspecting the
10795 object's tag. This means that we need to get the object's
10796 value first (EVAL_NORMAL) and then extract the actual object
10797 type from its tag.
10798
10799 Note that we cannot skip the final step where we extract
10800 the object type from its tag, because the EVAL_NORMAL phase
10801 results in dynamic components being resolved into fixed ones.
10802 This can cause problems when trying to print the type
10803 description of tagged types whose parent has a dynamic size:
10804 We use the type name of the "_parent" component in order
10805 to print the name of the ancestor type in the type description.
10806 If that component had a dynamic size, the resolution into
10807 a fixed type would result in the loss of that type name,
10808 thus preventing us from printing the name of the ancestor
10809 type in the type description. */
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10811
10812 if (TYPE_CODE (type) != TYPE_CODE_REF)
10813 {
10814 struct type *actual_type;
10815
10816 actual_type = type_from_tag (ada_value_tag (arg1));
10817 if (actual_type == NULL)
10818 /* If, for some reason, we were unable to determine
10819 the actual type from the tag, then use the static
10820 approximation that we just computed as a fallback.
10821 This can happen if the debugging information is
10822 incomplete, for instance. */
10823 actual_type = type;
10824 return value_zero (actual_type, not_lval);
10825 }
10826 else
10827 {
10828 /* In the case of a ref, ada_coerce_ref takes care
10829 of determining the actual type. But the evaluation
10830 should return a ref as it should be valid to ask
10831 for its address; so rebuild a ref after coerce. */
10832 arg1 = ada_coerce_ref (arg1);
10833 return value_ref (arg1, TYPE_CODE_REF);
10834 }
10835 }
10836
10837 /* Records and unions for which GNAT encodings have been
10838 generated need to be statically fixed as well.
10839 Otherwise, non-static fixing produces a type where
10840 all dynamic properties are removed, which prevents "ptype"
10841 from being able to completely describe the type.
10842 For instance, a case statement in a variant record would be
10843 replaced by the relevant components based on the actual
10844 value of the discriminants. */
10845 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10846 && dynamic_template_type (type) != NULL)
10847 || (TYPE_CODE (type) == TYPE_CODE_UNION
10848 && ada_find_parallel_type (type, "___XVU") != NULL))
10849 {
10850 *pos += 4;
10851 return value_zero (to_static_fixed_type (type), not_lval);
10852 }
10853 }
10854
10855 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10856 return ada_to_fixed_value (arg1);
10857
10858 case OP_FUNCALL:
10859 (*pos) += 2;
10860
10861 /* Allocate arg vector, including space for the function to be
10862 called in argvec[0] and a terminating NULL. */
10863 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10864 argvec = XALLOCAVEC (struct value *, nargs + 2);
10865
10866 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10868 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10869 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10870 else
10871 {
10872 for (tem = 0; tem <= nargs; tem += 1)
10873 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 argvec[tem] = 0;
10875
10876 if (noside == EVAL_SKIP)
10877 goto nosideret;
10878 }
10879
10880 if (ada_is_constrained_packed_array_type
10881 (desc_base_type (value_type (argvec[0]))))
10882 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10884 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10885 /* This is a packed array that has already been fixed, and
10886 therefore already coerced to a simple array. Nothing further
10887 to do. */
10888 ;
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10890 {
10891 /* Make sure we dereference references so that all the code below
10892 feels like it's really handling the referenced value. Wrapping
10893 types (for alignment) may be there, so make sure we strip them as
10894 well. */
10895 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10896 }
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && VALUE_LVAL (argvec[0]) == lval_memory)
10899 argvec[0] = value_addr (argvec[0]);
10900
10901 type = ada_check_typedef (value_type (argvec[0]));
10902
10903 /* Ada allows us to implicitly dereference arrays when subscripting
10904 them. So, if this is an array typedef (encoding use for array
10905 access types encoded as fat pointers), strip it now. */
10906 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10907 type = ada_typedef_target_type (type);
10908
10909 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10910 {
10911 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10912 {
10913 case TYPE_CODE_FUNC:
10914 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10915 break;
10916 case TYPE_CODE_ARRAY:
10917 break;
10918 case TYPE_CODE_STRUCT:
10919 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10920 argvec[0] = ada_value_ind (argvec[0]);
10921 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10922 break;
10923 default:
10924 error (_("cannot subscript or call something of type `%s'"),
10925 ada_type_name (value_type (argvec[0])));
10926 break;
10927 }
10928 }
10929
10930 switch (TYPE_CODE (type))
10931 {
10932 case TYPE_CODE_FUNC:
10933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10934 {
10935 if (TYPE_TARGET_TYPE (type) == NULL)
10936 error_call_unknown_return_type (NULL);
10937 return allocate_value (TYPE_TARGET_TYPE (type));
10938 }
10939 return call_function_by_hand (argvec[0], NULL,
10940 gdb::make_array_view (argvec + 1,
10941 nargs));
10942 case TYPE_CODE_INTERNAL_FUNCTION:
10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 /* We don't know anything about what the internal
10945 function might return, but we have to return
10946 something. */
10947 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10948 not_lval);
10949 else
10950 return call_internal_function (exp->gdbarch, exp->language_defn,
10951 argvec[0], nargs, argvec + 1);
10952
10953 case TYPE_CODE_STRUCT:
10954 {
10955 int arity;
10956
10957 arity = ada_array_arity (type);
10958 type = ada_array_element_type (type, nargs);
10959 if (type == NULL)
10960 error (_("cannot subscript or call a record"));
10961 if (arity != nargs)
10962 error (_("wrong number of subscripts; expecting %d"), arity);
10963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10964 return value_zero (ada_aligned_type (type), lval_memory);
10965 return
10966 unwrap_value (ada_value_subscript
10967 (argvec[0], nargs, argvec + 1));
10968 }
10969 case TYPE_CODE_ARRAY:
10970 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10971 {
10972 type = ada_array_element_type (type, nargs);
10973 if (type == NULL)
10974 error (_("element type of array unknown"));
10975 else
10976 return value_zero (ada_aligned_type (type), lval_memory);
10977 }
10978 return
10979 unwrap_value (ada_value_subscript
10980 (ada_coerce_to_simple_array (argvec[0]),
10981 nargs, argvec + 1));
10982 case TYPE_CODE_PTR: /* Pointer to array */
10983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10984 {
10985 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10986 type = ada_array_element_type (type, nargs);
10987 if (type == NULL)
10988 error (_("element type of array unknown"));
10989 else
10990 return value_zero (ada_aligned_type (type), lval_memory);
10991 }
10992 return
10993 unwrap_value (ada_value_ptr_subscript (argvec[0],
10994 nargs, argvec + 1));
10995
10996 default:
10997 error (_("Attempt to index or call something other than an "
10998 "array or function"));
10999 }
11000
11001 case TERNOP_SLICE:
11002 {
11003 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 struct value *low_bound_val =
11005 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 struct value *high_bound_val =
11007 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 LONGEST low_bound;
11009 LONGEST high_bound;
11010
11011 low_bound_val = coerce_ref (low_bound_val);
11012 high_bound_val = coerce_ref (high_bound_val);
11013 low_bound = value_as_long (low_bound_val);
11014 high_bound = value_as_long (high_bound_val);
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018
11019 /* If this is a reference to an aligner type, then remove all
11020 the aligners. */
11021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11022 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11023 TYPE_TARGET_TYPE (value_type (array)) =
11024 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11025
11026 if (ada_is_constrained_packed_array_type (value_type (array)))
11027 error (_("cannot slice a packed array"));
11028
11029 /* If this is a reference to an array or an array lvalue,
11030 convert to a pointer. */
11031 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11032 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11033 && VALUE_LVAL (array) == lval_memory))
11034 array = value_addr (array);
11035
11036 if (noside == EVAL_AVOID_SIDE_EFFECTS
11037 && ada_is_array_descriptor_type (ada_check_typedef
11038 (value_type (array))))
11039 return empty_array (ada_type_of_array (array, 0), low_bound,
11040 high_bound);
11041
11042 array = ada_coerce_to_simple_array_ptr (array);
11043
11044 /* If we have more than one level of pointer indirection,
11045 dereference the value until we get only one level. */
11046 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11047 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11048 == TYPE_CODE_PTR))
11049 array = value_ind (array);
11050
11051 /* Make sure we really do have an array type before going further,
11052 to avoid a SEGV when trying to get the index type or the target
11053 type later down the road if the debug info generated by
11054 the compiler is incorrect or incomplete. */
11055 if (!ada_is_simple_array_type (value_type (array)))
11056 error (_("cannot take slice of non-array"));
11057
11058 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11059 == TYPE_CODE_PTR)
11060 {
11061 struct type *type0 = ada_check_typedef (value_type (array));
11062
11063 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11064 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11065 else
11066 {
11067 struct type *arr_type0 =
11068 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11069
11070 return ada_value_slice_from_ptr (array, arr_type0,
11071 longest_to_int (low_bound),
11072 longest_to_int (high_bound));
11073 }
11074 }
11075 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11076 return array;
11077 else if (high_bound < low_bound)
11078 return empty_array (value_type (array), low_bound, high_bound);
11079 else
11080 return ada_value_slice (array, longest_to_int (low_bound),
11081 longest_to_int (high_bound));
11082 }
11083
11084 case UNOP_IN_RANGE:
11085 (*pos) += 2;
11086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11087 type = check_typedef (exp->elts[pc + 1].type);
11088
11089 if (noside == EVAL_SKIP)
11090 goto nosideret;
11091
11092 switch (TYPE_CODE (type))
11093 {
11094 default:
11095 lim_warning (_("Membership test incompletely implemented; "
11096 "always returns true"));
11097 type = language_bool_type (exp->language_defn, exp->gdbarch);
11098 return value_from_longest (type, (LONGEST) 1);
11099
11100 case TYPE_CODE_RANGE:
11101 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11102 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11103 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11105 type = language_bool_type (exp->language_defn, exp->gdbarch);
11106 return
11107 value_from_longest (type,
11108 (value_less (arg1, arg3)
11109 || value_equal (arg1, arg3))
11110 && (value_less (arg2, arg1)
11111 || value_equal (arg2, arg1)));
11112 }
11113
11114 case BINOP_IN_BOUNDS:
11115 (*pos) += 2;
11116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11117 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11118
11119 if (noside == EVAL_SKIP)
11120 goto nosideret;
11121
11122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11123 {
11124 type = language_bool_type (exp->language_defn, exp->gdbarch);
11125 return value_zero (type, not_lval);
11126 }
11127
11128 tem = longest_to_int (exp->elts[pc + 1].longconst);
11129
11130 type = ada_index_type (value_type (arg2), tem, "range");
11131 if (!type)
11132 type = value_type (arg1);
11133
11134 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11135 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11136
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11139 type = language_bool_type (exp->language_defn, exp->gdbarch);
11140 return
11141 value_from_longest (type,
11142 (value_less (arg1, arg3)
11143 || value_equal (arg1, arg3))
11144 && (value_less (arg2, arg1)
11145 || value_equal (arg2, arg1)));
11146
11147 case TERNOP_IN_RANGE:
11148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11149 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154
11155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
11158 return
11159 value_from_longest (type,
11160 (value_less (arg1, arg3)
11161 || value_equal (arg1, arg3))
11162 && (value_less (arg2, arg1)
11163 || value_equal (arg2, arg1)));
11164
11165 case OP_ATR_FIRST:
11166 case OP_ATR_LAST:
11167 case OP_ATR_LENGTH:
11168 {
11169 struct type *type_arg;
11170
11171 if (exp->elts[*pos].opcode == OP_TYPE)
11172 {
11173 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11174 arg1 = NULL;
11175 type_arg = check_typedef (exp->elts[pc + 2].type);
11176 }
11177 else
11178 {
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 type_arg = NULL;
11181 }
11182
11183 if (exp->elts[*pos].opcode != OP_LONG)
11184 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11185 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11186 *pos += 4;
11187
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
11190
11191 if (type_arg == NULL)
11192 {
11193 arg1 = ada_coerce_ref (arg1);
11194
11195 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11196 arg1 = ada_coerce_to_simple_array (arg1);
11197
11198 if (op == OP_ATR_LENGTH)
11199 type = builtin_type (exp->gdbarch)->builtin_int;
11200 else
11201 {
11202 type = ada_index_type (value_type (arg1), tem,
11203 ada_attribute_name (op));
11204 if (type == NULL)
11205 type = builtin_type (exp->gdbarch)->builtin_int;
11206 }
11207
11208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11209 return allocate_value (type);
11210
11211 switch (op)
11212 {
11213 default: /* Should never happen. */
11214 error (_("unexpected attribute encountered"));
11215 case OP_ATR_FIRST:
11216 return value_from_longest
11217 (type, ada_array_bound (arg1, tem, 0));
11218 case OP_ATR_LAST:
11219 return value_from_longest
11220 (type, ada_array_bound (arg1, tem, 1));
11221 case OP_ATR_LENGTH:
11222 return value_from_longest
11223 (type, ada_array_length (arg1, tem));
11224 }
11225 }
11226 else if (discrete_type_p (type_arg))
11227 {
11228 struct type *range_type;
11229 const char *name = ada_type_name (type_arg);
11230
11231 range_type = NULL;
11232 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11233 range_type = to_fixed_range_type (type_arg, NULL);
11234 if (range_type == NULL)
11235 range_type = type_arg;
11236 switch (op)
11237 {
11238 default:
11239 error (_("unexpected attribute encountered"));
11240 case OP_ATR_FIRST:
11241 return value_from_longest
11242 (range_type, ada_discrete_type_low_bound (range_type));
11243 case OP_ATR_LAST:
11244 return value_from_longest
11245 (range_type, ada_discrete_type_high_bound (range_type));
11246 case OP_ATR_LENGTH:
11247 error (_("the 'length attribute applies only to array types"));
11248 }
11249 }
11250 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11251 error (_("unimplemented type attribute"));
11252 else
11253 {
11254 LONGEST low, high;
11255
11256 if (ada_is_constrained_packed_array_type (type_arg))
11257 type_arg = decode_constrained_packed_array_type (type_arg);
11258
11259 if (op == OP_ATR_LENGTH)
11260 type = builtin_type (exp->gdbarch)->builtin_int;
11261 else
11262 {
11263 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11264 if (type == NULL)
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11266 }
11267
11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11269 return allocate_value (type);
11270
11271 switch (op)
11272 {
11273 default:
11274 error (_("unexpected attribute encountered"));
11275 case OP_ATR_FIRST:
11276 low = ada_array_bound_from_type (type_arg, tem, 0);
11277 return value_from_longest (type, low);
11278 case OP_ATR_LAST:
11279 high = ada_array_bound_from_type (type_arg, tem, 1);
11280 return value_from_longest (type, high);
11281 case OP_ATR_LENGTH:
11282 low = ada_array_bound_from_type (type_arg, tem, 0);
11283 high = ada_array_bound_from_type (type_arg, tem, 1);
11284 return value_from_longest (type, high - low + 1);
11285 }
11286 }
11287 }
11288
11289 case OP_ATR_TAG:
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11291 if (noside == EVAL_SKIP)
11292 goto nosideret;
11293
11294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11295 return value_zero (ada_tag_type (arg1), not_lval);
11296
11297 return ada_value_tag (arg1);
11298
11299 case OP_ATR_MIN:
11300 case OP_ATR_MAX:
11301 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11304 if (noside == EVAL_SKIP)
11305 goto nosideret;
11306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11307 return value_zero (value_type (arg1), not_lval);
11308 else
11309 {
11310 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11311 return value_binop (arg1, arg2,
11312 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11313 }
11314
11315 case OP_ATR_MODULUS:
11316 {
11317 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11318
11319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11320 if (noside == EVAL_SKIP)
11321 goto nosideret;
11322
11323 if (!ada_is_modular_type (type_arg))
11324 error (_("'modulus must be applied to modular type"));
11325
11326 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11327 ada_modulus (type_arg));
11328 }
11329
11330
11331 case OP_ATR_POS:
11332 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 if (noside == EVAL_SKIP)
11335 goto nosideret;
11336 type = builtin_type (exp->gdbarch)->builtin_int;
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return value_zero (type, not_lval);
11339 else
11340 return value_pos_atr (type, arg1);
11341
11342 case OP_ATR_SIZE:
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 type = value_type (arg1);
11345
11346 /* If the argument is a reference, then dereference its type, since
11347 the user is really asking for the size of the actual object,
11348 not the size of the pointer. */
11349 if (TYPE_CODE (type) == TYPE_CODE_REF)
11350 type = TYPE_TARGET_TYPE (type);
11351
11352 if (noside == EVAL_SKIP)
11353 goto nosideret;
11354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11355 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11356 else
11357 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11358 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11359
11360 case OP_ATR_VAL:
11361 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11363 type = exp->elts[pc + 2].type;
11364 if (noside == EVAL_SKIP)
11365 goto nosideret;
11366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11367 return value_zero (type, not_lval);
11368 else
11369 return value_val_atr (type, arg1);
11370
11371 case BINOP_EXP:
11372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
11375 goto nosideret;
11376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11377 return value_zero (value_type (arg1), not_lval);
11378 else
11379 {
11380 /* For integer exponentiation operations,
11381 only promote the first argument. */
11382 if (is_integral_type (value_type (arg2)))
11383 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11384 else
11385 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11386
11387 return value_binop (arg1, arg2, op);
11388 }
11389
11390 case UNOP_PLUS:
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11392 if (noside == EVAL_SKIP)
11393 goto nosideret;
11394 else
11395 return arg1;
11396
11397 case UNOP_ABS:
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11399 if (noside == EVAL_SKIP)
11400 goto nosideret;
11401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11402 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11403 return value_neg (arg1);
11404 else
11405 return arg1;
11406
11407 case UNOP_IND:
11408 preeval_pos = *pos;
11409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11410 if (noside == EVAL_SKIP)
11411 goto nosideret;
11412 type = ada_check_typedef (value_type (arg1));
11413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11414 {
11415 if (ada_is_array_descriptor_type (type))
11416 /* GDB allows dereferencing GNAT array descriptors. */
11417 {
11418 struct type *arrType = ada_type_of_array (arg1, 0);
11419
11420 if (arrType == NULL)
11421 error (_("Attempt to dereference null array pointer."));
11422 return value_at_lazy (arrType, 0);
11423 }
11424 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11425 || TYPE_CODE (type) == TYPE_CODE_REF
11426 /* In C you can dereference an array to get the 1st elt. */
11427 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11428 {
11429 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11430 only be determined by inspecting the object's tag.
11431 This means that we need to evaluate completely the
11432 expression in order to get its type. */
11433
11434 if ((TYPE_CODE (type) == TYPE_CODE_REF
11435 || TYPE_CODE (type) == TYPE_CODE_PTR)
11436 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11437 {
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11439 EVAL_NORMAL);
11440 type = value_type (ada_value_ind (arg1));
11441 }
11442 else
11443 {
11444 type = to_static_fixed_type
11445 (ada_aligned_type
11446 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11447 }
11448 ada_ensure_varsize_limit (type);
11449 return value_zero (type, lval_memory);
11450 }
11451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11452 {
11453 /* GDB allows dereferencing an int. */
11454 if (expect_type == NULL)
11455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11456 lval_memory);
11457 else
11458 {
11459 expect_type =
11460 to_static_fixed_type (ada_aligned_type (expect_type));
11461 return value_zero (expect_type, lval_memory);
11462 }
11463 }
11464 else
11465 error (_("Attempt to take contents of a non-pointer value."));
11466 }
11467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11468 type = ada_check_typedef (value_type (arg1));
11469
11470 if (TYPE_CODE (type) == TYPE_CODE_INT)
11471 /* GDB allows dereferencing an int. If we were given
11472 the expect_type, then use that as the target type.
11473 Otherwise, assume that the target type is an int. */
11474 {
11475 if (expect_type != NULL)
11476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11477 arg1));
11478 else
11479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11480 (CORE_ADDR) value_as_address (arg1));
11481 }
11482
11483 if (ada_is_array_descriptor_type (type))
11484 /* GDB allows dereferencing GNAT array descriptors. */
11485 return ada_coerce_to_simple_array (arg1);
11486 else
11487 return ada_value_ind (arg1);
11488
11489 case STRUCTOP_STRUCT:
11490 tem = longest_to_int (exp->elts[pc + 1].longconst);
11491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11492 preeval_pos = *pos;
11493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11494 if (noside == EVAL_SKIP)
11495 goto nosideret;
11496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11497 {
11498 struct type *type1 = value_type (arg1);
11499
11500 if (ada_is_tagged_type (type1, 1))
11501 {
11502 type = ada_lookup_struct_elt_type (type1,
11503 &exp->elts[pc + 2].string,
11504 1, 1);
11505
11506 /* If the field is not found, check if it exists in the
11507 extension of this object's type. This means that we
11508 need to evaluate completely the expression. */
11509
11510 if (type == NULL)
11511 {
11512 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11513 EVAL_NORMAL);
11514 arg1 = ada_value_struct_elt (arg1,
11515 &exp->elts[pc + 2].string,
11516 0);
11517 arg1 = unwrap_value (arg1);
11518 type = value_type (ada_to_fixed_value (arg1));
11519 }
11520 }
11521 else
11522 type =
11523 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11524 0);
11525
11526 return value_zero (ada_aligned_type (type), lval_memory);
11527 }
11528 else
11529 {
11530 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11531 arg1 = unwrap_value (arg1);
11532 return ada_to_fixed_value (arg1);
11533 }
11534
11535 case OP_TYPE:
11536 /* The value is not supposed to be used. This is here to make it
11537 easier to accommodate expressions that contain types. */
11538 (*pos) += 2;
11539 if (noside == EVAL_SKIP)
11540 goto nosideret;
11541 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11542 return allocate_value (exp->elts[pc + 1].type);
11543 else
11544 error (_("Attempt to use a type name as an expression"));
11545
11546 case OP_AGGREGATE:
11547 case OP_CHOICES:
11548 case OP_OTHERS:
11549 case OP_DISCRETE_RANGE:
11550 case OP_POSITIONAL:
11551 case OP_NAME:
11552 if (noside == EVAL_NORMAL)
11553 switch (op)
11554 {
11555 case OP_NAME:
11556 error (_("Undefined name, ambiguous name, or renaming used in "
11557 "component association: %s."), &exp->elts[pc+2].string);
11558 case OP_AGGREGATE:
11559 error (_("Aggregates only allowed on the right of an assignment"));
11560 default:
11561 internal_error (__FILE__, __LINE__,
11562 _("aggregate apparently mangled"));
11563 }
11564
11565 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11566 *pos += oplen - 1;
11567 for (tem = 0; tem < nargs; tem += 1)
11568 ada_evaluate_subexp (NULL, exp, pos, noside);
11569 goto nosideret;
11570 }
11571
11572 nosideret:
11573 return eval_skip_value (exp);
11574 }
11575 \f
11576
11577 /* Fixed point */
11578
11579 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11580 type name that encodes the 'small and 'delta information.
11581 Otherwise, return NULL. */
11582
11583 static const char *
11584 fixed_type_info (struct type *type)
11585 {
11586 const char *name = ada_type_name (type);
11587 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11588
11589 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11590 {
11591 const char *tail = strstr (name, "___XF_");
11592
11593 if (tail == NULL)
11594 return NULL;
11595 else
11596 return tail + 5;
11597 }
11598 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11599 return fixed_type_info (TYPE_TARGET_TYPE (type));
11600 else
11601 return NULL;
11602 }
11603
11604 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11605
11606 int
11607 ada_is_fixed_point_type (struct type *type)
11608 {
11609 return fixed_type_info (type) != NULL;
11610 }
11611
11612 /* Return non-zero iff TYPE represents a System.Address type. */
11613
11614 int
11615 ada_is_system_address_type (struct type *type)
11616 {
11617 return (TYPE_NAME (type)
11618 && strcmp (TYPE_NAME (type), "system__address") == 0);
11619 }
11620
11621 /* Assuming that TYPE is the representation of an Ada fixed-point
11622 type, return the target floating-point type to be used to represent
11623 of this type during internal computation. */
11624
11625 static struct type *
11626 ada_scaling_type (struct type *type)
11627 {
11628 return builtin_type (get_type_arch (type))->builtin_long_double;
11629 }
11630
11631 /* Assuming that TYPE is the representation of an Ada fixed-point
11632 type, return its delta, or NULL if the type is malformed and the
11633 delta cannot be determined. */
11634
11635 struct value *
11636 ada_delta (struct type *type)
11637 {
11638 const char *encoding = fixed_type_info (type);
11639 struct type *scale_type = ada_scaling_type (type);
11640
11641 long long num, den;
11642
11643 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11644 return nullptr;
11645 else
11646 return value_binop (value_from_longest (scale_type, num),
11647 value_from_longest (scale_type, den), BINOP_DIV);
11648 }
11649
11650 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11651 factor ('SMALL value) associated with the type. */
11652
11653 struct value *
11654 ada_scaling_factor (struct type *type)
11655 {
11656 const char *encoding = fixed_type_info (type);
11657 struct type *scale_type = ada_scaling_type (type);
11658
11659 long long num0, den0, num1, den1;
11660 int n;
11661
11662 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11663 &num0, &den0, &num1, &den1);
11664
11665 if (n < 2)
11666 return value_from_longest (scale_type, 1);
11667 else if (n == 4)
11668 return value_binop (value_from_longest (scale_type, num1),
11669 value_from_longest (scale_type, den1), BINOP_DIV);
11670 else
11671 return value_binop (value_from_longest (scale_type, num0),
11672 value_from_longest (scale_type, den0), BINOP_DIV);
11673 }
11674
11675 \f
11676
11677 /* Range types */
11678
11679 /* Scan STR beginning at position K for a discriminant name, and
11680 return the value of that discriminant field of DVAL in *PX. If
11681 PNEW_K is not null, put the position of the character beyond the
11682 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11683 not alter *PX and *PNEW_K if unsuccessful. */
11684
11685 static int
11686 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11687 int *pnew_k)
11688 {
11689 static char *bound_buffer = NULL;
11690 static size_t bound_buffer_len = 0;
11691 const char *pstart, *pend, *bound;
11692 struct value *bound_val;
11693
11694 if (dval == NULL || str == NULL || str[k] == '\0')
11695 return 0;
11696
11697 pstart = str + k;
11698 pend = strstr (pstart, "__");
11699 if (pend == NULL)
11700 {
11701 bound = pstart;
11702 k += strlen (bound);
11703 }
11704 else
11705 {
11706 int len = pend - pstart;
11707
11708 /* Strip __ and beyond. */
11709 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11710 strncpy (bound_buffer, pstart, len);
11711 bound_buffer[len] = '\0';
11712
11713 bound = bound_buffer;
11714 k = pend - str;
11715 }
11716
11717 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11718 if (bound_val == NULL)
11719 return 0;
11720
11721 *px = value_as_long (bound_val);
11722 if (pnew_k != NULL)
11723 *pnew_k = k;
11724 return 1;
11725 }
11726
11727 /* Value of variable named NAME in the current environment. If
11728 no such variable found, then if ERR_MSG is null, returns 0, and
11729 otherwise causes an error with message ERR_MSG. */
11730
11731 static struct value *
11732 get_var_value (const char *name, const char *err_msg)
11733 {
11734 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11735
11736 std::vector<struct block_symbol> syms;
11737 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11738 get_selected_block (0),
11739 VAR_DOMAIN, &syms, 1);
11740
11741 if (nsyms != 1)
11742 {
11743 if (err_msg == NULL)
11744 return 0;
11745 else
11746 error (("%s"), err_msg);
11747 }
11748
11749 return value_of_variable (syms[0].symbol, syms[0].block);
11750 }
11751
11752 /* Value of integer variable named NAME in the current environment.
11753 If no such variable is found, returns false. Otherwise, sets VALUE
11754 to the variable's value and returns true. */
11755
11756 bool
11757 get_int_var_value (const char *name, LONGEST &value)
11758 {
11759 struct value *var_val = get_var_value (name, 0);
11760
11761 if (var_val == 0)
11762 return false;
11763
11764 value = value_as_long (var_val);
11765 return true;
11766 }
11767
11768
11769 /* Return a range type whose base type is that of the range type named
11770 NAME in the current environment, and whose bounds are calculated
11771 from NAME according to the GNAT range encoding conventions.
11772 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11773 corresponding range type from debug information; fall back to using it
11774 if symbol lookup fails. If a new type must be created, allocate it
11775 like ORIG_TYPE was. The bounds information, in general, is encoded
11776 in NAME, the base type given in the named range type. */
11777
11778 static struct type *
11779 to_fixed_range_type (struct type *raw_type, struct value *dval)
11780 {
11781 const char *name;
11782 struct type *base_type;
11783 const char *subtype_info;
11784
11785 gdb_assert (raw_type != NULL);
11786 gdb_assert (TYPE_NAME (raw_type) != NULL);
11787
11788 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11789 base_type = TYPE_TARGET_TYPE (raw_type);
11790 else
11791 base_type = raw_type;
11792
11793 name = TYPE_NAME (raw_type);
11794 subtype_info = strstr (name, "___XD");
11795 if (subtype_info == NULL)
11796 {
11797 LONGEST L = ada_discrete_type_low_bound (raw_type);
11798 LONGEST U = ada_discrete_type_high_bound (raw_type);
11799
11800 if (L < INT_MIN || U > INT_MAX)
11801 return raw_type;
11802 else
11803 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11804 L, U);
11805 }
11806 else
11807 {
11808 static char *name_buf = NULL;
11809 static size_t name_len = 0;
11810 int prefix_len = subtype_info - name;
11811 LONGEST L, U;
11812 struct type *type;
11813 const char *bounds_str;
11814 int n;
11815
11816 GROW_VECT (name_buf, name_len, prefix_len + 5);
11817 strncpy (name_buf, name, prefix_len);
11818 name_buf[prefix_len] = '\0';
11819
11820 subtype_info += 5;
11821 bounds_str = strchr (subtype_info, '_');
11822 n = 1;
11823
11824 if (*subtype_info == 'L')
11825 {
11826 if (!ada_scan_number (bounds_str, n, &L, &n)
11827 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11828 return raw_type;
11829 if (bounds_str[n] == '_')
11830 n += 2;
11831 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11832 n += 1;
11833 subtype_info += 1;
11834 }
11835 else
11836 {
11837 strcpy (name_buf + prefix_len, "___L");
11838 if (!get_int_var_value (name_buf, L))
11839 {
11840 lim_warning (_("Unknown lower bound, using 1."));
11841 L = 1;
11842 }
11843 }
11844
11845 if (*subtype_info == 'U')
11846 {
11847 if (!ada_scan_number (bounds_str, n, &U, &n)
11848 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11849 return raw_type;
11850 }
11851 else
11852 {
11853 strcpy (name_buf + prefix_len, "___U");
11854 if (!get_int_var_value (name_buf, U))
11855 {
11856 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11857 U = L;
11858 }
11859 }
11860
11861 type = create_static_range_type (alloc_type_copy (raw_type),
11862 base_type, L, U);
11863 /* create_static_range_type alters the resulting type's length
11864 to match the size of the base_type, which is not what we want.
11865 Set it back to the original range type's length. */
11866 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11867 TYPE_NAME (type) = name;
11868 return type;
11869 }
11870 }
11871
11872 /* True iff NAME is the name of a range type. */
11873
11874 int
11875 ada_is_range_type_name (const char *name)
11876 {
11877 return (name != NULL && strstr (name, "___XD"));
11878 }
11879 \f
11880
11881 /* Modular types */
11882
11883 /* True iff TYPE is an Ada modular type. */
11884
11885 int
11886 ada_is_modular_type (struct type *type)
11887 {
11888 struct type *subranged_type = get_base_type (type);
11889
11890 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11891 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11892 && TYPE_UNSIGNED (subranged_type));
11893 }
11894
11895 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11896
11897 ULONGEST
11898 ada_modulus (struct type *type)
11899 {
11900 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11901 }
11902 \f
11903
11904 /* Ada exception catchpoint support:
11905 ---------------------------------
11906
11907 We support 3 kinds of exception catchpoints:
11908 . catchpoints on Ada exceptions
11909 . catchpoints on unhandled Ada exceptions
11910 . catchpoints on failed assertions
11911
11912 Exceptions raised during failed assertions, or unhandled exceptions
11913 could perfectly be caught with the general catchpoint on Ada exceptions.
11914 However, we can easily differentiate these two special cases, and having
11915 the option to distinguish these two cases from the rest can be useful
11916 to zero-in on certain situations.
11917
11918 Exception catchpoints are a specialized form of breakpoint,
11919 since they rely on inserting breakpoints inside known routines
11920 of the GNAT runtime. The implementation therefore uses a standard
11921 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11922 of breakpoint_ops.
11923
11924 Support in the runtime for exception catchpoints have been changed
11925 a few times already, and these changes affect the implementation
11926 of these catchpoints. In order to be able to support several
11927 variants of the runtime, we use a sniffer that will determine
11928 the runtime variant used by the program being debugged. */
11929
11930 /* Ada's standard exceptions.
11931
11932 The Ada 83 standard also defined Numeric_Error. But there so many
11933 situations where it was unclear from the Ada 83 Reference Manual
11934 (RM) whether Constraint_Error or Numeric_Error should be raised,
11935 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11936 Interpretation saying that anytime the RM says that Numeric_Error
11937 should be raised, the implementation may raise Constraint_Error.
11938 Ada 95 went one step further and pretty much removed Numeric_Error
11939 from the list of standard exceptions (it made it a renaming of
11940 Constraint_Error, to help preserve compatibility when compiling
11941 an Ada83 compiler). As such, we do not include Numeric_Error from
11942 this list of standard exceptions. */
11943
11944 static const char *standard_exc[] = {
11945 "constraint_error",
11946 "program_error",
11947 "storage_error",
11948 "tasking_error"
11949 };
11950
11951 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11952
11953 /* A structure that describes how to support exception catchpoints
11954 for a given executable. */
11955
11956 struct exception_support_info
11957 {
11958 /* The name of the symbol to break on in order to insert
11959 a catchpoint on exceptions. */
11960 const char *catch_exception_sym;
11961
11962 /* The name of the symbol to break on in order to insert
11963 a catchpoint on unhandled exceptions. */
11964 const char *catch_exception_unhandled_sym;
11965
11966 /* The name of the symbol to break on in order to insert
11967 a catchpoint on failed assertions. */
11968 const char *catch_assert_sym;
11969
11970 /* The name of the symbol to break on in order to insert
11971 a catchpoint on exception handling. */
11972 const char *catch_handlers_sym;
11973
11974 /* Assuming that the inferior just triggered an unhandled exception
11975 catchpoint, this function is responsible for returning the address
11976 in inferior memory where the name of that exception is stored.
11977 Return zero if the address could not be computed. */
11978 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11979 };
11980
11981 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11982 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11983
11984 /* The following exception support info structure describes how to
11985 implement exception catchpoints with the latest version of the
11986 Ada runtime (as of 2007-03-06). */
11987
11988 static const struct exception_support_info default_exception_support_info =
11989 {
11990 "__gnat_debug_raise_exception", /* catch_exception_sym */
11991 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11992 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11993 "__gnat_begin_handler", /* catch_handlers_sym */
11994 ada_unhandled_exception_name_addr
11995 };
11996
11997 /* The following exception support info structure describes how to
11998 implement exception catchpoints with a slightly older version
11999 of the Ada runtime. */
12000
12001 static const struct exception_support_info exception_support_info_fallback =
12002 {
12003 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12004 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12005 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12006 "__gnat_begin_handler", /* catch_handlers_sym */
12007 ada_unhandled_exception_name_addr_from_raise
12008 };
12009
12010 /* Return nonzero if we can detect the exception support routines
12011 described in EINFO.
12012
12013 This function errors out if an abnormal situation is detected
12014 (for instance, if we find the exception support routines, but
12015 that support is found to be incomplete). */
12016
12017 static int
12018 ada_has_this_exception_support (const struct exception_support_info *einfo)
12019 {
12020 struct symbol *sym;
12021
12022 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12023 that should be compiled with debugging information. As a result, we
12024 expect to find that symbol in the symtabs. */
12025
12026 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12027 if (sym == NULL)
12028 {
12029 /* Perhaps we did not find our symbol because the Ada runtime was
12030 compiled without debugging info, or simply stripped of it.
12031 It happens on some GNU/Linux distributions for instance, where
12032 users have to install a separate debug package in order to get
12033 the runtime's debugging info. In that situation, let the user
12034 know why we cannot insert an Ada exception catchpoint.
12035
12036 Note: Just for the purpose of inserting our Ada exception
12037 catchpoint, we could rely purely on the associated minimal symbol.
12038 But we would be operating in degraded mode anyway, since we are
12039 still lacking the debugging info needed later on to extract
12040 the name of the exception being raised (this name is printed in
12041 the catchpoint message, and is also used when trying to catch
12042 a specific exception). We do not handle this case for now. */
12043 struct bound_minimal_symbol msym
12044 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12045
12046 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12047 error (_("Your Ada runtime appears to be missing some debugging "
12048 "information.\nCannot insert Ada exception catchpoint "
12049 "in this configuration."));
12050
12051 return 0;
12052 }
12053
12054 /* Make sure that the symbol we found corresponds to a function. */
12055
12056 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12057 error (_("Symbol \"%s\" is not a function (class = %d)"),
12058 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12059
12060 return 1;
12061 }
12062
12063 /* Inspect the Ada runtime and determine which exception info structure
12064 should be used to provide support for exception catchpoints.
12065
12066 This function will always set the per-inferior exception_info,
12067 or raise an error. */
12068
12069 static void
12070 ada_exception_support_info_sniffer (void)
12071 {
12072 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12073
12074 /* If the exception info is already known, then no need to recompute it. */
12075 if (data->exception_info != NULL)
12076 return;
12077
12078 /* Check the latest (default) exception support info. */
12079 if (ada_has_this_exception_support (&default_exception_support_info))
12080 {
12081 data->exception_info = &default_exception_support_info;
12082 return;
12083 }
12084
12085 /* Try our fallback exception suport info. */
12086 if (ada_has_this_exception_support (&exception_support_info_fallback))
12087 {
12088 data->exception_info = &exception_support_info_fallback;
12089 return;
12090 }
12091
12092 /* Sometimes, it is normal for us to not be able to find the routine
12093 we are looking for. This happens when the program is linked with
12094 the shared version of the GNAT runtime, and the program has not been
12095 started yet. Inform the user of these two possible causes if
12096 applicable. */
12097
12098 if (ada_update_initial_language (language_unknown) != language_ada)
12099 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12100
12101 /* If the symbol does not exist, then check that the program is
12102 already started, to make sure that shared libraries have been
12103 loaded. If it is not started, this may mean that the symbol is
12104 in a shared library. */
12105
12106 if (inferior_ptid.pid () == 0)
12107 error (_("Unable to insert catchpoint. Try to start the program first."));
12108
12109 /* At this point, we know that we are debugging an Ada program and
12110 that the inferior has been started, but we still are not able to
12111 find the run-time symbols. That can mean that we are in
12112 configurable run time mode, or that a-except as been optimized
12113 out by the linker... In any case, at this point it is not worth
12114 supporting this feature. */
12115
12116 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12117 }
12118
12119 /* True iff FRAME is very likely to be that of a function that is
12120 part of the runtime system. This is all very heuristic, but is
12121 intended to be used as advice as to what frames are uninteresting
12122 to most users. */
12123
12124 static int
12125 is_known_support_routine (struct frame_info *frame)
12126 {
12127 enum language func_lang;
12128 int i;
12129 const char *fullname;
12130
12131 /* If this code does not have any debugging information (no symtab),
12132 This cannot be any user code. */
12133
12134 symtab_and_line sal = find_frame_sal (frame);
12135 if (sal.symtab == NULL)
12136 return 1;
12137
12138 /* If there is a symtab, but the associated source file cannot be
12139 located, then assume this is not user code: Selecting a frame
12140 for which we cannot display the code would not be very helpful
12141 for the user. This should also take care of case such as VxWorks
12142 where the kernel has some debugging info provided for a few units. */
12143
12144 fullname = symtab_to_fullname (sal.symtab);
12145 if (access (fullname, R_OK) != 0)
12146 return 1;
12147
12148 /* Check the unit filename againt the Ada runtime file naming.
12149 We also check the name of the objfile against the name of some
12150 known system libraries that sometimes come with debugging info
12151 too. */
12152
12153 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12154 {
12155 re_comp (known_runtime_file_name_patterns[i]);
12156 if (re_exec (lbasename (sal.symtab->filename)))
12157 return 1;
12158 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12159 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12160 return 1;
12161 }
12162
12163 /* Check whether the function is a GNAT-generated entity. */
12164
12165 gdb::unique_xmalloc_ptr<char> func_name
12166 = find_frame_funname (frame, &func_lang, NULL);
12167 if (func_name == NULL)
12168 return 1;
12169
12170 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12171 {
12172 re_comp (known_auxiliary_function_name_patterns[i]);
12173 if (re_exec (func_name.get ()))
12174 return 1;
12175 }
12176
12177 return 0;
12178 }
12179
12180 /* Find the first frame that contains debugging information and that is not
12181 part of the Ada run-time, starting from FI and moving upward. */
12182
12183 void
12184 ada_find_printable_frame (struct frame_info *fi)
12185 {
12186 for (; fi != NULL; fi = get_prev_frame (fi))
12187 {
12188 if (!is_known_support_routine (fi))
12189 {
12190 select_frame (fi);
12191 break;
12192 }
12193 }
12194
12195 }
12196
12197 /* Assuming that the inferior just triggered an unhandled exception
12198 catchpoint, return the address in inferior memory where the name
12199 of the exception is stored.
12200
12201 Return zero if the address could not be computed. */
12202
12203 static CORE_ADDR
12204 ada_unhandled_exception_name_addr (void)
12205 {
12206 return parse_and_eval_address ("e.full_name");
12207 }
12208
12209 /* Same as ada_unhandled_exception_name_addr, except that this function
12210 should be used when the inferior uses an older version of the runtime,
12211 where the exception name needs to be extracted from a specific frame
12212 several frames up in the callstack. */
12213
12214 static CORE_ADDR
12215 ada_unhandled_exception_name_addr_from_raise (void)
12216 {
12217 int frame_level;
12218 struct frame_info *fi;
12219 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12220
12221 /* To determine the name of this exception, we need to select
12222 the frame corresponding to RAISE_SYM_NAME. This frame is
12223 at least 3 levels up, so we simply skip the first 3 frames
12224 without checking the name of their associated function. */
12225 fi = get_current_frame ();
12226 for (frame_level = 0; frame_level < 3; frame_level += 1)
12227 if (fi != NULL)
12228 fi = get_prev_frame (fi);
12229
12230 while (fi != NULL)
12231 {
12232 enum language func_lang;
12233
12234 gdb::unique_xmalloc_ptr<char> func_name
12235 = find_frame_funname (fi, &func_lang, NULL);
12236 if (func_name != NULL)
12237 {
12238 if (strcmp (func_name.get (),
12239 data->exception_info->catch_exception_sym) == 0)
12240 break; /* We found the frame we were looking for... */
12241 }
12242 fi = get_prev_frame (fi);
12243 }
12244
12245 if (fi == NULL)
12246 return 0;
12247
12248 select_frame (fi);
12249 return parse_and_eval_address ("id.full_name");
12250 }
12251
12252 /* Assuming the inferior just triggered an Ada exception catchpoint
12253 (of any type), return the address in inferior memory where the name
12254 of the exception is stored, if applicable.
12255
12256 Assumes the selected frame is the current frame.
12257
12258 Return zero if the address could not be computed, or if not relevant. */
12259
12260 static CORE_ADDR
12261 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12262 struct breakpoint *b)
12263 {
12264 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12265
12266 switch (ex)
12267 {
12268 case ada_catch_exception:
12269 return (parse_and_eval_address ("e.full_name"));
12270 break;
12271
12272 case ada_catch_exception_unhandled:
12273 return data->exception_info->unhandled_exception_name_addr ();
12274 break;
12275
12276 case ada_catch_handlers:
12277 return 0; /* The runtimes does not provide access to the exception
12278 name. */
12279 break;
12280
12281 case ada_catch_assert:
12282 return 0; /* Exception name is not relevant in this case. */
12283 break;
12284
12285 default:
12286 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12287 break;
12288 }
12289
12290 return 0; /* Should never be reached. */
12291 }
12292
12293 /* Assuming the inferior is stopped at an exception catchpoint,
12294 return the message which was associated to the exception, if
12295 available. Return NULL if the message could not be retrieved.
12296
12297 Note: The exception message can be associated to an exception
12298 either through the use of the Raise_Exception function, or
12299 more simply (Ada 2005 and later), via:
12300
12301 raise Exception_Name with "exception message";
12302
12303 */
12304
12305 static gdb::unique_xmalloc_ptr<char>
12306 ada_exception_message_1 (void)
12307 {
12308 struct value *e_msg_val;
12309 int e_msg_len;
12310
12311 /* For runtimes that support this feature, the exception message
12312 is passed as an unbounded string argument called "message". */
12313 e_msg_val = parse_and_eval ("message");
12314 if (e_msg_val == NULL)
12315 return NULL; /* Exception message not supported. */
12316
12317 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12318 gdb_assert (e_msg_val != NULL);
12319 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12320
12321 /* If the message string is empty, then treat it as if there was
12322 no exception message. */
12323 if (e_msg_len <= 0)
12324 return NULL;
12325
12326 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12327 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12328 e_msg.get ()[e_msg_len] = '\0';
12329
12330 return e_msg;
12331 }
12332
12333 /* Same as ada_exception_message_1, except that all exceptions are
12334 contained here (returning NULL instead). */
12335
12336 static gdb::unique_xmalloc_ptr<char>
12337 ada_exception_message (void)
12338 {
12339 gdb::unique_xmalloc_ptr<char> e_msg;
12340
12341 TRY
12342 {
12343 e_msg = ada_exception_message_1 ();
12344 }
12345 CATCH (e, RETURN_MASK_ERROR)
12346 {
12347 e_msg.reset (nullptr);
12348 }
12349 END_CATCH
12350
12351 return e_msg;
12352 }
12353
12354 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12355 any error that ada_exception_name_addr_1 might cause to be thrown.
12356 When an error is intercepted, a warning with the error message is printed,
12357 and zero is returned. */
12358
12359 static CORE_ADDR
12360 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12361 struct breakpoint *b)
12362 {
12363 CORE_ADDR result = 0;
12364
12365 TRY
12366 {
12367 result = ada_exception_name_addr_1 (ex, b);
12368 }
12369
12370 CATCH (e, RETURN_MASK_ERROR)
12371 {
12372 warning (_("failed to get exception name: %s"), e.message);
12373 return 0;
12374 }
12375 END_CATCH
12376
12377 return result;
12378 }
12379
12380 static std::string ada_exception_catchpoint_cond_string
12381 (const char *excep_string,
12382 enum ada_exception_catchpoint_kind ex);
12383
12384 /* Ada catchpoints.
12385
12386 In the case of catchpoints on Ada exceptions, the catchpoint will
12387 stop the target on every exception the program throws. When a user
12388 specifies the name of a specific exception, we translate this
12389 request into a condition expression (in text form), and then parse
12390 it into an expression stored in each of the catchpoint's locations.
12391 We then use this condition to check whether the exception that was
12392 raised is the one the user is interested in. If not, then the
12393 target is resumed again. We store the name of the requested
12394 exception, in order to be able to re-set the condition expression
12395 when symbols change. */
12396
12397 /* An instance of this type is used to represent an Ada catchpoint
12398 breakpoint location. */
12399
12400 class ada_catchpoint_location : public bp_location
12401 {
12402 public:
12403 ada_catchpoint_location (breakpoint *owner)
12404 : bp_location (owner)
12405 {}
12406
12407 /* The condition that checks whether the exception that was raised
12408 is the specific exception the user specified on catchpoint
12409 creation. */
12410 expression_up excep_cond_expr;
12411 };
12412
12413 /* An instance of this type is used to represent an Ada catchpoint. */
12414
12415 struct ada_catchpoint : public breakpoint
12416 {
12417 /* The name of the specific exception the user specified. */
12418 std::string excep_string;
12419 };
12420
12421 /* Parse the exception condition string in the context of each of the
12422 catchpoint's locations, and store them for later evaluation. */
12423
12424 static void
12425 create_excep_cond_exprs (struct ada_catchpoint *c,
12426 enum ada_exception_catchpoint_kind ex)
12427 {
12428 struct bp_location *bl;
12429
12430 /* Nothing to do if there's no specific exception to catch. */
12431 if (c->excep_string.empty ())
12432 return;
12433
12434 /* Same if there are no locations... */
12435 if (c->loc == NULL)
12436 return;
12437
12438 /* Compute the condition expression in text form, from the specific
12439 expection we want to catch. */
12440 std::string cond_string
12441 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12442
12443 /* Iterate over all the catchpoint's locations, and parse an
12444 expression for each. */
12445 for (bl = c->loc; bl != NULL; bl = bl->next)
12446 {
12447 struct ada_catchpoint_location *ada_loc
12448 = (struct ada_catchpoint_location *) bl;
12449 expression_up exp;
12450
12451 if (!bl->shlib_disabled)
12452 {
12453 const char *s;
12454
12455 s = cond_string.c_str ();
12456 TRY
12457 {
12458 exp = parse_exp_1 (&s, bl->address,
12459 block_for_pc (bl->address),
12460 0);
12461 }
12462 CATCH (e, RETURN_MASK_ERROR)
12463 {
12464 warning (_("failed to reevaluate internal exception condition "
12465 "for catchpoint %d: %s"),
12466 c->number, e.message);
12467 }
12468 END_CATCH
12469 }
12470
12471 ada_loc->excep_cond_expr = std::move (exp);
12472 }
12473 }
12474
12475 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12476 structure for all exception catchpoint kinds. */
12477
12478 static struct bp_location *
12479 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12480 struct breakpoint *self)
12481 {
12482 return new ada_catchpoint_location (self);
12483 }
12484
12485 /* Implement the RE_SET method in the breakpoint_ops structure for all
12486 exception catchpoint kinds. */
12487
12488 static void
12489 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12490 {
12491 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12492
12493 /* Call the base class's method. This updates the catchpoint's
12494 locations. */
12495 bkpt_breakpoint_ops.re_set (b);
12496
12497 /* Reparse the exception conditional expressions. One for each
12498 location. */
12499 create_excep_cond_exprs (c, ex);
12500 }
12501
12502 /* Returns true if we should stop for this breakpoint hit. If the
12503 user specified a specific exception, we only want to cause a stop
12504 if the program thrown that exception. */
12505
12506 static int
12507 should_stop_exception (const struct bp_location *bl)
12508 {
12509 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12510 const struct ada_catchpoint_location *ada_loc
12511 = (const struct ada_catchpoint_location *) bl;
12512 int stop;
12513
12514 /* With no specific exception, should always stop. */
12515 if (c->excep_string.empty ())
12516 return 1;
12517
12518 if (ada_loc->excep_cond_expr == NULL)
12519 {
12520 /* We will have a NULL expression if back when we were creating
12521 the expressions, this location's had failed to parse. */
12522 return 1;
12523 }
12524
12525 stop = 1;
12526 TRY
12527 {
12528 struct value *mark;
12529
12530 mark = value_mark ();
12531 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12532 value_free_to_mark (mark);
12533 }
12534 CATCH (ex, RETURN_MASK_ALL)
12535 {
12536 exception_fprintf (gdb_stderr, ex,
12537 _("Error in testing exception condition:\n"));
12538 }
12539 END_CATCH
12540
12541 return stop;
12542 }
12543
12544 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12545 for all exception catchpoint kinds. */
12546
12547 static void
12548 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12549 {
12550 bs->stop = should_stop_exception (bs->bp_location_at);
12551 }
12552
12553 /* Implement the PRINT_IT method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12555
12556 static enum print_stop_action
12557 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12558 {
12559 struct ui_out *uiout = current_uiout;
12560 struct breakpoint *b = bs->breakpoint_at;
12561
12562 annotate_catchpoint (b->number);
12563
12564 if (uiout->is_mi_like_p ())
12565 {
12566 uiout->field_string ("reason",
12567 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12568 uiout->field_string ("disp", bpdisp_text (b->disposition));
12569 }
12570
12571 uiout->text (b->disposition == disp_del
12572 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12573 uiout->field_int ("bkptno", b->number);
12574 uiout->text (", ");
12575
12576 /* ada_exception_name_addr relies on the selected frame being the
12577 current frame. Need to do this here because this function may be
12578 called more than once when printing a stop, and below, we'll
12579 select the first frame past the Ada run-time (see
12580 ada_find_printable_frame). */
12581 select_frame (get_current_frame ());
12582
12583 switch (ex)
12584 {
12585 case ada_catch_exception:
12586 case ada_catch_exception_unhandled:
12587 case ada_catch_handlers:
12588 {
12589 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12590 char exception_name[256];
12591
12592 if (addr != 0)
12593 {
12594 read_memory (addr, (gdb_byte *) exception_name,
12595 sizeof (exception_name) - 1);
12596 exception_name [sizeof (exception_name) - 1] = '\0';
12597 }
12598 else
12599 {
12600 /* For some reason, we were unable to read the exception
12601 name. This could happen if the Runtime was compiled
12602 without debugging info, for instance. In that case,
12603 just replace the exception name by the generic string
12604 "exception" - it will read as "an exception" in the
12605 notification we are about to print. */
12606 memcpy (exception_name, "exception", sizeof ("exception"));
12607 }
12608 /* In the case of unhandled exception breakpoints, we print
12609 the exception name as "unhandled EXCEPTION_NAME", to make
12610 it clearer to the user which kind of catchpoint just got
12611 hit. We used ui_out_text to make sure that this extra
12612 info does not pollute the exception name in the MI case. */
12613 if (ex == ada_catch_exception_unhandled)
12614 uiout->text ("unhandled ");
12615 uiout->field_string ("exception-name", exception_name);
12616 }
12617 break;
12618 case ada_catch_assert:
12619 /* In this case, the name of the exception is not really
12620 important. Just print "failed assertion" to make it clearer
12621 that his program just hit an assertion-failure catchpoint.
12622 We used ui_out_text because this info does not belong in
12623 the MI output. */
12624 uiout->text ("failed assertion");
12625 break;
12626 }
12627
12628 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12629 if (exception_message != NULL)
12630 {
12631 uiout->text (" (");
12632 uiout->field_string ("exception-message", exception_message.get ());
12633 uiout->text (")");
12634 }
12635
12636 uiout->text (" at ");
12637 ada_find_printable_frame (get_current_frame ());
12638
12639 return PRINT_SRC_AND_LOC;
12640 }
12641
12642 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12643 for all exception catchpoint kinds. */
12644
12645 static void
12646 print_one_exception (enum ada_exception_catchpoint_kind ex,
12647 struct breakpoint *b, struct bp_location **last_loc)
12648 {
12649 struct ui_out *uiout = current_uiout;
12650 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12651 struct value_print_options opts;
12652
12653 get_user_print_options (&opts);
12654 if (opts.addressprint)
12655 {
12656 annotate_field (4);
12657 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12658 }
12659
12660 annotate_field (5);
12661 *last_loc = b->loc;
12662 switch (ex)
12663 {
12664 case ada_catch_exception:
12665 if (!c->excep_string.empty ())
12666 {
12667 std::string msg = string_printf (_("`%s' Ada exception"),
12668 c->excep_string.c_str ());
12669
12670 uiout->field_string ("what", msg);
12671 }
12672 else
12673 uiout->field_string ("what", "all Ada exceptions");
12674
12675 break;
12676
12677 case ada_catch_exception_unhandled:
12678 uiout->field_string ("what", "unhandled Ada exceptions");
12679 break;
12680
12681 case ada_catch_handlers:
12682 if (!c->excep_string.empty ())
12683 {
12684 uiout->field_fmt ("what",
12685 _("`%s' Ada exception handlers"),
12686 c->excep_string.c_str ());
12687 }
12688 else
12689 uiout->field_string ("what", "all Ada exceptions handlers");
12690 break;
12691
12692 case ada_catch_assert:
12693 uiout->field_string ("what", "failed Ada assertions");
12694 break;
12695
12696 default:
12697 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12698 break;
12699 }
12700 }
12701
12702 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12703 for all exception catchpoint kinds. */
12704
12705 static void
12706 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12707 struct breakpoint *b)
12708 {
12709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12710 struct ui_out *uiout = current_uiout;
12711
12712 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12713 : _("Catchpoint "));
12714 uiout->field_int ("bkptno", b->number);
12715 uiout->text (": ");
12716
12717 switch (ex)
12718 {
12719 case ada_catch_exception:
12720 if (!c->excep_string.empty ())
12721 {
12722 std::string info = string_printf (_("`%s' Ada exception"),
12723 c->excep_string.c_str ());
12724 uiout->text (info.c_str ());
12725 }
12726 else
12727 uiout->text (_("all Ada exceptions"));
12728 break;
12729
12730 case ada_catch_exception_unhandled:
12731 uiout->text (_("unhandled Ada exceptions"));
12732 break;
12733
12734 case ada_catch_handlers:
12735 if (!c->excep_string.empty ())
12736 {
12737 std::string info
12738 = string_printf (_("`%s' Ada exception handlers"),
12739 c->excep_string.c_str ());
12740 uiout->text (info.c_str ());
12741 }
12742 else
12743 uiout->text (_("all Ada exceptions handlers"));
12744 break;
12745
12746 case ada_catch_assert:
12747 uiout->text (_("failed Ada assertions"));
12748 break;
12749
12750 default:
12751 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12752 break;
12753 }
12754 }
12755
12756 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12757 for all exception catchpoint kinds. */
12758
12759 static void
12760 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12761 struct breakpoint *b, struct ui_file *fp)
12762 {
12763 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12764
12765 switch (ex)
12766 {
12767 case ada_catch_exception:
12768 fprintf_filtered (fp, "catch exception");
12769 if (!c->excep_string.empty ())
12770 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12771 break;
12772
12773 case ada_catch_exception_unhandled:
12774 fprintf_filtered (fp, "catch exception unhandled");
12775 break;
12776
12777 case ada_catch_handlers:
12778 fprintf_filtered (fp, "catch handlers");
12779 break;
12780
12781 case ada_catch_assert:
12782 fprintf_filtered (fp, "catch assert");
12783 break;
12784
12785 default:
12786 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12787 }
12788 print_recreate_thread (b, fp);
12789 }
12790
12791 /* Virtual table for "catch exception" breakpoints. */
12792
12793 static struct bp_location *
12794 allocate_location_catch_exception (struct breakpoint *self)
12795 {
12796 return allocate_location_exception (ada_catch_exception, self);
12797 }
12798
12799 static void
12800 re_set_catch_exception (struct breakpoint *b)
12801 {
12802 re_set_exception (ada_catch_exception, b);
12803 }
12804
12805 static void
12806 check_status_catch_exception (bpstat bs)
12807 {
12808 check_status_exception (ada_catch_exception, bs);
12809 }
12810
12811 static enum print_stop_action
12812 print_it_catch_exception (bpstat bs)
12813 {
12814 return print_it_exception (ada_catch_exception, bs);
12815 }
12816
12817 static void
12818 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12819 {
12820 print_one_exception (ada_catch_exception, b, last_loc);
12821 }
12822
12823 static void
12824 print_mention_catch_exception (struct breakpoint *b)
12825 {
12826 print_mention_exception (ada_catch_exception, b);
12827 }
12828
12829 static void
12830 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12831 {
12832 print_recreate_exception (ada_catch_exception, b, fp);
12833 }
12834
12835 static struct breakpoint_ops catch_exception_breakpoint_ops;
12836
12837 /* Virtual table for "catch exception unhandled" breakpoints. */
12838
12839 static struct bp_location *
12840 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12841 {
12842 return allocate_location_exception (ada_catch_exception_unhandled, self);
12843 }
12844
12845 static void
12846 re_set_catch_exception_unhandled (struct breakpoint *b)
12847 {
12848 re_set_exception (ada_catch_exception_unhandled, b);
12849 }
12850
12851 static void
12852 check_status_catch_exception_unhandled (bpstat bs)
12853 {
12854 check_status_exception (ada_catch_exception_unhandled, bs);
12855 }
12856
12857 static enum print_stop_action
12858 print_it_catch_exception_unhandled (bpstat bs)
12859 {
12860 return print_it_exception (ada_catch_exception_unhandled, bs);
12861 }
12862
12863 static void
12864 print_one_catch_exception_unhandled (struct breakpoint *b,
12865 struct bp_location **last_loc)
12866 {
12867 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12868 }
12869
12870 static void
12871 print_mention_catch_exception_unhandled (struct breakpoint *b)
12872 {
12873 print_mention_exception (ada_catch_exception_unhandled, b);
12874 }
12875
12876 static void
12877 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12878 struct ui_file *fp)
12879 {
12880 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12881 }
12882
12883 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12884
12885 /* Virtual table for "catch assert" breakpoints. */
12886
12887 static struct bp_location *
12888 allocate_location_catch_assert (struct breakpoint *self)
12889 {
12890 return allocate_location_exception (ada_catch_assert, self);
12891 }
12892
12893 static void
12894 re_set_catch_assert (struct breakpoint *b)
12895 {
12896 re_set_exception (ada_catch_assert, b);
12897 }
12898
12899 static void
12900 check_status_catch_assert (bpstat bs)
12901 {
12902 check_status_exception (ada_catch_assert, bs);
12903 }
12904
12905 static enum print_stop_action
12906 print_it_catch_assert (bpstat bs)
12907 {
12908 return print_it_exception (ada_catch_assert, bs);
12909 }
12910
12911 static void
12912 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12913 {
12914 print_one_exception (ada_catch_assert, b, last_loc);
12915 }
12916
12917 static void
12918 print_mention_catch_assert (struct breakpoint *b)
12919 {
12920 print_mention_exception (ada_catch_assert, b);
12921 }
12922
12923 static void
12924 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12925 {
12926 print_recreate_exception (ada_catch_assert, b, fp);
12927 }
12928
12929 static struct breakpoint_ops catch_assert_breakpoint_ops;
12930
12931 /* Virtual table for "catch handlers" breakpoints. */
12932
12933 static struct bp_location *
12934 allocate_location_catch_handlers (struct breakpoint *self)
12935 {
12936 return allocate_location_exception (ada_catch_handlers, self);
12937 }
12938
12939 static void
12940 re_set_catch_handlers (struct breakpoint *b)
12941 {
12942 re_set_exception (ada_catch_handlers, b);
12943 }
12944
12945 static void
12946 check_status_catch_handlers (bpstat bs)
12947 {
12948 check_status_exception (ada_catch_handlers, bs);
12949 }
12950
12951 static enum print_stop_action
12952 print_it_catch_handlers (bpstat bs)
12953 {
12954 return print_it_exception (ada_catch_handlers, bs);
12955 }
12956
12957 static void
12958 print_one_catch_handlers (struct breakpoint *b,
12959 struct bp_location **last_loc)
12960 {
12961 print_one_exception (ada_catch_handlers, b, last_loc);
12962 }
12963
12964 static void
12965 print_mention_catch_handlers (struct breakpoint *b)
12966 {
12967 print_mention_exception (ada_catch_handlers, b);
12968 }
12969
12970 static void
12971 print_recreate_catch_handlers (struct breakpoint *b,
12972 struct ui_file *fp)
12973 {
12974 print_recreate_exception (ada_catch_handlers, b, fp);
12975 }
12976
12977 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12978
12979 /* Split the arguments specified in a "catch exception" command.
12980 Set EX to the appropriate catchpoint type.
12981 Set EXCEP_STRING to the name of the specific exception if
12982 specified by the user.
12983 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12984 "catch handlers" command. False otherwise.
12985 If a condition is found at the end of the arguments, the condition
12986 expression is stored in COND_STRING (memory must be deallocated
12987 after use). Otherwise COND_STRING is set to NULL. */
12988
12989 static void
12990 catch_ada_exception_command_split (const char *args,
12991 bool is_catch_handlers_cmd,
12992 enum ada_exception_catchpoint_kind *ex,
12993 std::string *excep_string,
12994 std::string *cond_string)
12995 {
12996 std::string exception_name;
12997
12998 exception_name = extract_arg (&args);
12999 if (exception_name == "if")
13000 {
13001 /* This is not an exception name; this is the start of a condition
13002 expression for a catchpoint on all exceptions. So, "un-get"
13003 this token, and set exception_name to NULL. */
13004 exception_name.clear ();
13005 args -= 2;
13006 }
13007
13008 /* Check to see if we have a condition. */
13009
13010 args = skip_spaces (args);
13011 if (startswith (args, "if")
13012 && (isspace (args[2]) || args[2] == '\0'))
13013 {
13014 args += 2;
13015 args = skip_spaces (args);
13016
13017 if (args[0] == '\0')
13018 error (_("Condition missing after `if' keyword"));
13019 *cond_string = args;
13020
13021 args += strlen (args);
13022 }
13023
13024 /* Check that we do not have any more arguments. Anything else
13025 is unexpected. */
13026
13027 if (args[0] != '\0')
13028 error (_("Junk at end of expression"));
13029
13030 if (is_catch_handlers_cmd)
13031 {
13032 /* Catch handling of exceptions. */
13033 *ex = ada_catch_handlers;
13034 *excep_string = exception_name;
13035 }
13036 else if (exception_name.empty ())
13037 {
13038 /* Catch all exceptions. */
13039 *ex = ada_catch_exception;
13040 excep_string->clear ();
13041 }
13042 else if (exception_name == "unhandled")
13043 {
13044 /* Catch unhandled exceptions. */
13045 *ex = ada_catch_exception_unhandled;
13046 excep_string->clear ();
13047 }
13048 else
13049 {
13050 /* Catch a specific exception. */
13051 *ex = ada_catch_exception;
13052 *excep_string = exception_name;
13053 }
13054 }
13055
13056 /* Return the name of the symbol on which we should break in order to
13057 implement a catchpoint of the EX kind. */
13058
13059 static const char *
13060 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13061 {
13062 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13063
13064 gdb_assert (data->exception_info != NULL);
13065
13066 switch (ex)
13067 {
13068 case ada_catch_exception:
13069 return (data->exception_info->catch_exception_sym);
13070 break;
13071 case ada_catch_exception_unhandled:
13072 return (data->exception_info->catch_exception_unhandled_sym);
13073 break;
13074 case ada_catch_assert:
13075 return (data->exception_info->catch_assert_sym);
13076 break;
13077 case ada_catch_handlers:
13078 return (data->exception_info->catch_handlers_sym);
13079 break;
13080 default:
13081 internal_error (__FILE__, __LINE__,
13082 _("unexpected catchpoint kind (%d)"), ex);
13083 }
13084 }
13085
13086 /* Return the breakpoint ops "virtual table" used for catchpoints
13087 of the EX kind. */
13088
13089 static const struct breakpoint_ops *
13090 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13091 {
13092 switch (ex)
13093 {
13094 case ada_catch_exception:
13095 return (&catch_exception_breakpoint_ops);
13096 break;
13097 case ada_catch_exception_unhandled:
13098 return (&catch_exception_unhandled_breakpoint_ops);
13099 break;
13100 case ada_catch_assert:
13101 return (&catch_assert_breakpoint_ops);
13102 break;
13103 case ada_catch_handlers:
13104 return (&catch_handlers_breakpoint_ops);
13105 break;
13106 default:
13107 internal_error (__FILE__, __LINE__,
13108 _("unexpected catchpoint kind (%d)"), ex);
13109 }
13110 }
13111
13112 /* Return the condition that will be used to match the current exception
13113 being raised with the exception that the user wants to catch. This
13114 assumes that this condition is used when the inferior just triggered
13115 an exception catchpoint.
13116 EX: the type of catchpoints used for catching Ada exceptions. */
13117
13118 static std::string
13119 ada_exception_catchpoint_cond_string (const char *excep_string,
13120 enum ada_exception_catchpoint_kind ex)
13121 {
13122 int i;
13123 bool is_standard_exc = false;
13124 std::string result;
13125
13126 if (ex == ada_catch_handlers)
13127 {
13128 /* For exception handlers catchpoints, the condition string does
13129 not use the same parameter as for the other exceptions. */
13130 result = ("long_integer (GNAT_GCC_exception_Access"
13131 "(gcc_exception).all.occurrence.id)");
13132 }
13133 else
13134 result = "long_integer (e)";
13135
13136 /* The standard exceptions are a special case. They are defined in
13137 runtime units that have been compiled without debugging info; if
13138 EXCEP_STRING is the not-fully-qualified name of a standard
13139 exception (e.g. "constraint_error") then, during the evaluation
13140 of the condition expression, the symbol lookup on this name would
13141 *not* return this standard exception. The catchpoint condition
13142 may then be set only on user-defined exceptions which have the
13143 same not-fully-qualified name (e.g. my_package.constraint_error).
13144
13145 To avoid this unexcepted behavior, these standard exceptions are
13146 systematically prefixed by "standard". This means that "catch
13147 exception constraint_error" is rewritten into "catch exception
13148 standard.constraint_error".
13149
13150 If an exception named contraint_error is defined in another package of
13151 the inferior program, then the only way to specify this exception as a
13152 breakpoint condition is to use its fully-qualified named:
13153 e.g. my_package.constraint_error. */
13154
13155 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13156 {
13157 if (strcmp (standard_exc [i], excep_string) == 0)
13158 {
13159 is_standard_exc = true;
13160 break;
13161 }
13162 }
13163
13164 result += " = ";
13165
13166 if (is_standard_exc)
13167 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13168 else
13169 string_appendf (result, "long_integer (&%s)", excep_string);
13170
13171 return result;
13172 }
13173
13174 /* Return the symtab_and_line that should be used to insert an exception
13175 catchpoint of the TYPE kind.
13176
13177 ADDR_STRING returns the name of the function where the real
13178 breakpoint that implements the catchpoints is set, depending on the
13179 type of catchpoint we need to create. */
13180
13181 static struct symtab_and_line
13182 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13183 std::string *addr_string, const struct breakpoint_ops **ops)
13184 {
13185 const char *sym_name;
13186 struct symbol *sym;
13187
13188 /* First, find out which exception support info to use. */
13189 ada_exception_support_info_sniffer ();
13190
13191 /* Then lookup the function on which we will break in order to catch
13192 the Ada exceptions requested by the user. */
13193 sym_name = ada_exception_sym_name (ex);
13194 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13195
13196 if (sym == NULL)
13197 error (_("Catchpoint symbol not found: %s"), sym_name);
13198
13199 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13200 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13201
13202 /* Set ADDR_STRING. */
13203 *addr_string = sym_name;
13204
13205 /* Set OPS. */
13206 *ops = ada_exception_breakpoint_ops (ex);
13207
13208 return find_function_start_sal (sym, 1);
13209 }
13210
13211 /* Create an Ada exception catchpoint.
13212
13213 EX_KIND is the kind of exception catchpoint to be created.
13214
13215 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13216 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13217 of the exception to which this catchpoint applies.
13218
13219 COND_STRING, if not empty, is the catchpoint condition.
13220
13221 TEMPFLAG, if nonzero, means that the underlying breakpoint
13222 should be temporary.
13223
13224 FROM_TTY is the usual argument passed to all commands implementations. */
13225
13226 void
13227 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13228 enum ada_exception_catchpoint_kind ex_kind,
13229 const std::string &excep_string,
13230 const std::string &cond_string,
13231 int tempflag,
13232 int disabled,
13233 int from_tty)
13234 {
13235 std::string addr_string;
13236 const struct breakpoint_ops *ops = NULL;
13237 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13238
13239 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13240 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13241 ops, tempflag, disabled, from_tty);
13242 c->excep_string = excep_string;
13243 create_excep_cond_exprs (c.get (), ex_kind);
13244 if (!cond_string.empty ())
13245 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13246 install_breakpoint (0, std::move (c), 1);
13247 }
13248
13249 /* Implement the "catch exception" command. */
13250
13251 static void
13252 catch_ada_exception_command (const char *arg_entry, int from_tty,
13253 struct cmd_list_element *command)
13254 {
13255 const char *arg = arg_entry;
13256 struct gdbarch *gdbarch = get_current_arch ();
13257 int tempflag;
13258 enum ada_exception_catchpoint_kind ex_kind;
13259 std::string excep_string;
13260 std::string cond_string;
13261
13262 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13263
13264 if (!arg)
13265 arg = "";
13266 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13267 &cond_string);
13268 create_ada_exception_catchpoint (gdbarch, ex_kind,
13269 excep_string, cond_string,
13270 tempflag, 1 /* enabled */,
13271 from_tty);
13272 }
13273
13274 /* Implement the "catch handlers" command. */
13275
13276 static void
13277 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13278 struct cmd_list_element *command)
13279 {
13280 const char *arg = arg_entry;
13281 struct gdbarch *gdbarch = get_current_arch ();
13282 int tempflag;
13283 enum ada_exception_catchpoint_kind ex_kind;
13284 std::string excep_string;
13285 std::string cond_string;
13286
13287 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13288
13289 if (!arg)
13290 arg = "";
13291 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13292 &cond_string);
13293 create_ada_exception_catchpoint (gdbarch, ex_kind,
13294 excep_string, cond_string,
13295 tempflag, 1 /* enabled */,
13296 from_tty);
13297 }
13298
13299 /* Split the arguments specified in a "catch assert" command.
13300
13301 ARGS contains the command's arguments (or the empty string if
13302 no arguments were passed).
13303
13304 If ARGS contains a condition, set COND_STRING to that condition
13305 (the memory needs to be deallocated after use). */
13306
13307 static void
13308 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13309 {
13310 args = skip_spaces (args);
13311
13312 /* Check whether a condition was provided. */
13313 if (startswith (args, "if")
13314 && (isspace (args[2]) || args[2] == '\0'))
13315 {
13316 args += 2;
13317 args = skip_spaces (args);
13318 if (args[0] == '\0')
13319 error (_("condition missing after `if' keyword"));
13320 cond_string.assign (args);
13321 }
13322
13323 /* Otherwise, there should be no other argument at the end of
13324 the command. */
13325 else if (args[0] != '\0')
13326 error (_("Junk at end of arguments."));
13327 }
13328
13329 /* Implement the "catch assert" command. */
13330
13331 static void
13332 catch_assert_command (const char *arg_entry, int from_tty,
13333 struct cmd_list_element *command)
13334 {
13335 const char *arg = arg_entry;
13336 struct gdbarch *gdbarch = get_current_arch ();
13337 int tempflag;
13338 std::string cond_string;
13339
13340 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13341
13342 if (!arg)
13343 arg = "";
13344 catch_ada_assert_command_split (arg, cond_string);
13345 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13346 "", cond_string,
13347 tempflag, 1 /* enabled */,
13348 from_tty);
13349 }
13350
13351 /* Return non-zero if the symbol SYM is an Ada exception object. */
13352
13353 static int
13354 ada_is_exception_sym (struct symbol *sym)
13355 {
13356 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13357
13358 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13359 && SYMBOL_CLASS (sym) != LOC_BLOCK
13360 && SYMBOL_CLASS (sym) != LOC_CONST
13361 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13362 && type_name != NULL && strcmp (type_name, "exception") == 0);
13363 }
13364
13365 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13366 Ada exception object. This matches all exceptions except the ones
13367 defined by the Ada language. */
13368
13369 static int
13370 ada_is_non_standard_exception_sym (struct symbol *sym)
13371 {
13372 int i;
13373
13374 if (!ada_is_exception_sym (sym))
13375 return 0;
13376
13377 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13378 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13379 return 0; /* A standard exception. */
13380
13381 /* Numeric_Error is also a standard exception, so exclude it.
13382 See the STANDARD_EXC description for more details as to why
13383 this exception is not listed in that array. */
13384 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13385 return 0;
13386
13387 return 1;
13388 }
13389
13390 /* A helper function for std::sort, comparing two struct ada_exc_info
13391 objects.
13392
13393 The comparison is determined first by exception name, and then
13394 by exception address. */
13395
13396 bool
13397 ada_exc_info::operator< (const ada_exc_info &other) const
13398 {
13399 int result;
13400
13401 result = strcmp (name, other.name);
13402 if (result < 0)
13403 return true;
13404 if (result == 0 && addr < other.addr)
13405 return true;
13406 return false;
13407 }
13408
13409 bool
13410 ada_exc_info::operator== (const ada_exc_info &other) const
13411 {
13412 return addr == other.addr && strcmp (name, other.name) == 0;
13413 }
13414
13415 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13416 routine, but keeping the first SKIP elements untouched.
13417
13418 All duplicates are also removed. */
13419
13420 static void
13421 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13422 int skip)
13423 {
13424 std::sort (exceptions->begin () + skip, exceptions->end ());
13425 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13426 exceptions->end ());
13427 }
13428
13429 /* Add all exceptions defined by the Ada standard whose name match
13430 a regular expression.
13431
13432 If PREG is not NULL, then this regexp_t object is used to
13433 perform the symbol name matching. Otherwise, no name-based
13434 filtering is performed.
13435
13436 EXCEPTIONS is a vector of exceptions to which matching exceptions
13437 gets pushed. */
13438
13439 static void
13440 ada_add_standard_exceptions (compiled_regex *preg,
13441 std::vector<ada_exc_info> *exceptions)
13442 {
13443 int i;
13444
13445 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13446 {
13447 if (preg == NULL
13448 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13449 {
13450 struct bound_minimal_symbol msymbol
13451 = ada_lookup_simple_minsym (standard_exc[i]);
13452
13453 if (msymbol.minsym != NULL)
13454 {
13455 struct ada_exc_info info
13456 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13457
13458 exceptions->push_back (info);
13459 }
13460 }
13461 }
13462 }
13463
13464 /* Add all Ada exceptions defined locally and accessible from the given
13465 FRAME.
13466
13467 If PREG is not NULL, then this regexp_t object is used to
13468 perform the symbol name matching. Otherwise, no name-based
13469 filtering is performed.
13470
13471 EXCEPTIONS is a vector of exceptions to which matching exceptions
13472 gets pushed. */
13473
13474 static void
13475 ada_add_exceptions_from_frame (compiled_regex *preg,
13476 struct frame_info *frame,
13477 std::vector<ada_exc_info> *exceptions)
13478 {
13479 const struct block *block = get_frame_block (frame, 0);
13480
13481 while (block != 0)
13482 {
13483 struct block_iterator iter;
13484 struct symbol *sym;
13485
13486 ALL_BLOCK_SYMBOLS (block, iter, sym)
13487 {
13488 switch (SYMBOL_CLASS (sym))
13489 {
13490 case LOC_TYPEDEF:
13491 case LOC_BLOCK:
13492 case LOC_CONST:
13493 break;
13494 default:
13495 if (ada_is_exception_sym (sym))
13496 {
13497 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13498 SYMBOL_VALUE_ADDRESS (sym)};
13499
13500 exceptions->push_back (info);
13501 }
13502 }
13503 }
13504 if (BLOCK_FUNCTION (block) != NULL)
13505 break;
13506 block = BLOCK_SUPERBLOCK (block);
13507 }
13508 }
13509
13510 /* Return true if NAME matches PREG or if PREG is NULL. */
13511
13512 static bool
13513 name_matches_regex (const char *name, compiled_regex *preg)
13514 {
13515 return (preg == NULL
13516 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13517 }
13518
13519 /* Add all exceptions defined globally whose name name match
13520 a regular expression, excluding standard exceptions.
13521
13522 The reason we exclude standard exceptions is that they need
13523 to be handled separately: Standard exceptions are defined inside
13524 a runtime unit which is normally not compiled with debugging info,
13525 and thus usually do not show up in our symbol search. However,
13526 if the unit was in fact built with debugging info, we need to
13527 exclude them because they would duplicate the entry we found
13528 during the special loop that specifically searches for those
13529 standard exceptions.
13530
13531 If PREG is not NULL, then this regexp_t object is used to
13532 perform the symbol name matching. Otherwise, no name-based
13533 filtering is performed.
13534
13535 EXCEPTIONS is a vector of exceptions to which matching exceptions
13536 gets pushed. */
13537
13538 static void
13539 ada_add_global_exceptions (compiled_regex *preg,
13540 std::vector<ada_exc_info> *exceptions)
13541 {
13542 /* In Ada, the symbol "search name" is a linkage name, whereas the
13543 regular expression used to do the matching refers to the natural
13544 name. So match against the decoded name. */
13545 expand_symtabs_matching (NULL,
13546 lookup_name_info::match_any (),
13547 [&] (const char *search_name)
13548 {
13549 const char *decoded = ada_decode (search_name);
13550 return name_matches_regex (decoded, preg);
13551 },
13552 NULL,
13553 VARIABLES_DOMAIN);
13554
13555 for (objfile *objfile : current_program_space->objfiles ())
13556 {
13557 for (compunit_symtab *s : objfile->compunits ())
13558 {
13559 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13560 int i;
13561
13562 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13563 {
13564 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13565 struct block_iterator iter;
13566 struct symbol *sym;
13567
13568 ALL_BLOCK_SYMBOLS (b, iter, sym)
13569 if (ada_is_non_standard_exception_sym (sym)
13570 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13571 {
13572 struct ada_exc_info info
13573 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13574
13575 exceptions->push_back (info);
13576 }
13577 }
13578 }
13579 }
13580 }
13581
13582 /* Implements ada_exceptions_list with the regular expression passed
13583 as a regex_t, rather than a string.
13584
13585 If not NULL, PREG is used to filter out exceptions whose names
13586 do not match. Otherwise, all exceptions are listed. */
13587
13588 static std::vector<ada_exc_info>
13589 ada_exceptions_list_1 (compiled_regex *preg)
13590 {
13591 std::vector<ada_exc_info> result;
13592 int prev_len;
13593
13594 /* First, list the known standard exceptions. These exceptions
13595 need to be handled separately, as they are usually defined in
13596 runtime units that have been compiled without debugging info. */
13597
13598 ada_add_standard_exceptions (preg, &result);
13599
13600 /* Next, find all exceptions whose scope is local and accessible
13601 from the currently selected frame. */
13602
13603 if (has_stack_frames ())
13604 {
13605 prev_len = result.size ();
13606 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13607 &result);
13608 if (result.size () > prev_len)
13609 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13610 }
13611
13612 /* Add all exceptions whose scope is global. */
13613
13614 prev_len = result.size ();
13615 ada_add_global_exceptions (preg, &result);
13616 if (result.size () > prev_len)
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13618
13619 return result;
13620 }
13621
13622 /* Return a vector of ada_exc_info.
13623
13624 If REGEXP is NULL, all exceptions are included in the result.
13625 Otherwise, it should contain a valid regular expression,
13626 and only the exceptions whose names match that regular expression
13627 are included in the result.
13628
13629 The exceptions are sorted in the following order:
13630 - Standard exceptions (defined by the Ada language), in
13631 alphabetical order;
13632 - Exceptions only visible from the current frame, in
13633 alphabetical order;
13634 - Exceptions whose scope is global, in alphabetical order. */
13635
13636 std::vector<ada_exc_info>
13637 ada_exceptions_list (const char *regexp)
13638 {
13639 if (regexp == NULL)
13640 return ada_exceptions_list_1 (NULL);
13641
13642 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13643 return ada_exceptions_list_1 (&reg);
13644 }
13645
13646 /* Implement the "info exceptions" command. */
13647
13648 static void
13649 info_exceptions_command (const char *regexp, int from_tty)
13650 {
13651 struct gdbarch *gdbarch = get_current_arch ();
13652
13653 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13654
13655 if (regexp != NULL)
13656 printf_filtered
13657 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13658 else
13659 printf_filtered (_("All defined Ada exceptions:\n"));
13660
13661 for (const ada_exc_info &info : exceptions)
13662 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13663 }
13664
13665 /* Operators */
13666 /* Information about operators given special treatment in functions
13667 below. */
13668 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13669
13670 #define ADA_OPERATORS \
13671 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13672 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13673 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13674 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13675 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13679 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13681 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13682 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13685 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13686 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13687 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13688 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13689 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13690
13691 static void
13692 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13693 int *argsp)
13694 {
13695 switch (exp->elts[pc - 1].opcode)
13696 {
13697 default:
13698 operator_length_standard (exp, pc, oplenp, argsp);
13699 break;
13700
13701 #define OP_DEFN(op, len, args, binop) \
13702 case op: *oplenp = len; *argsp = args; break;
13703 ADA_OPERATORS;
13704 #undef OP_DEFN
13705
13706 case OP_AGGREGATE:
13707 *oplenp = 3;
13708 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13709 break;
13710
13711 case OP_CHOICES:
13712 *oplenp = 3;
13713 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13714 break;
13715 }
13716 }
13717
13718 /* Implementation of the exp_descriptor method operator_check. */
13719
13720 static int
13721 ada_operator_check (struct expression *exp, int pos,
13722 int (*objfile_func) (struct objfile *objfile, void *data),
13723 void *data)
13724 {
13725 const union exp_element *const elts = exp->elts;
13726 struct type *type = NULL;
13727
13728 switch (elts[pos].opcode)
13729 {
13730 case UNOP_IN_RANGE:
13731 case UNOP_QUAL:
13732 type = elts[pos + 1].type;
13733 break;
13734
13735 default:
13736 return operator_check_standard (exp, pos, objfile_func, data);
13737 }
13738
13739 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13740
13741 if (type && TYPE_OBJFILE (type)
13742 && (*objfile_func) (TYPE_OBJFILE (type), data))
13743 return 1;
13744
13745 return 0;
13746 }
13747
13748 static const char *
13749 ada_op_name (enum exp_opcode opcode)
13750 {
13751 switch (opcode)
13752 {
13753 default:
13754 return op_name_standard (opcode);
13755
13756 #define OP_DEFN(op, len, args, binop) case op: return #op;
13757 ADA_OPERATORS;
13758 #undef OP_DEFN
13759
13760 case OP_AGGREGATE:
13761 return "OP_AGGREGATE";
13762 case OP_CHOICES:
13763 return "OP_CHOICES";
13764 case OP_NAME:
13765 return "OP_NAME";
13766 }
13767 }
13768
13769 /* As for operator_length, but assumes PC is pointing at the first
13770 element of the operator, and gives meaningful results only for the
13771 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13772
13773 static void
13774 ada_forward_operator_length (struct expression *exp, int pc,
13775 int *oplenp, int *argsp)
13776 {
13777 switch (exp->elts[pc].opcode)
13778 {
13779 default:
13780 *oplenp = *argsp = 0;
13781 break;
13782
13783 #define OP_DEFN(op, len, args, binop) \
13784 case op: *oplenp = len; *argsp = args; break;
13785 ADA_OPERATORS;
13786 #undef OP_DEFN
13787
13788 case OP_AGGREGATE:
13789 *oplenp = 3;
13790 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13791 break;
13792
13793 case OP_CHOICES:
13794 *oplenp = 3;
13795 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13796 break;
13797
13798 case OP_STRING:
13799 case OP_NAME:
13800 {
13801 int len = longest_to_int (exp->elts[pc + 1].longconst);
13802
13803 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13804 *argsp = 0;
13805 break;
13806 }
13807 }
13808 }
13809
13810 static int
13811 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13812 {
13813 enum exp_opcode op = exp->elts[elt].opcode;
13814 int oplen, nargs;
13815 int pc = elt;
13816 int i;
13817
13818 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13819
13820 switch (op)
13821 {
13822 /* Ada attributes ('Foo). */
13823 case OP_ATR_FIRST:
13824 case OP_ATR_LAST:
13825 case OP_ATR_LENGTH:
13826 case OP_ATR_IMAGE:
13827 case OP_ATR_MAX:
13828 case OP_ATR_MIN:
13829 case OP_ATR_MODULUS:
13830 case OP_ATR_POS:
13831 case OP_ATR_SIZE:
13832 case OP_ATR_TAG:
13833 case OP_ATR_VAL:
13834 break;
13835
13836 case UNOP_IN_RANGE:
13837 case UNOP_QUAL:
13838 /* XXX: gdb_sprint_host_address, type_sprint */
13839 fprintf_filtered (stream, _("Type @"));
13840 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13841 fprintf_filtered (stream, " (");
13842 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13843 fprintf_filtered (stream, ")");
13844 break;
13845 case BINOP_IN_BOUNDS:
13846 fprintf_filtered (stream, " (%d)",
13847 longest_to_int (exp->elts[pc + 2].longconst));
13848 break;
13849 case TERNOP_IN_RANGE:
13850 break;
13851
13852 case OP_AGGREGATE:
13853 case OP_OTHERS:
13854 case OP_DISCRETE_RANGE:
13855 case OP_POSITIONAL:
13856 case OP_CHOICES:
13857 break;
13858
13859 case OP_NAME:
13860 case OP_STRING:
13861 {
13862 char *name = &exp->elts[elt + 2].string;
13863 int len = longest_to_int (exp->elts[elt + 1].longconst);
13864
13865 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13866 break;
13867 }
13868
13869 default:
13870 return dump_subexp_body_standard (exp, stream, elt);
13871 }
13872
13873 elt += oplen;
13874 for (i = 0; i < nargs; i += 1)
13875 elt = dump_subexp (exp, stream, elt);
13876
13877 return elt;
13878 }
13879
13880 /* The Ada extension of print_subexp (q.v.). */
13881
13882 static void
13883 ada_print_subexp (struct expression *exp, int *pos,
13884 struct ui_file *stream, enum precedence prec)
13885 {
13886 int oplen, nargs, i;
13887 int pc = *pos;
13888 enum exp_opcode op = exp->elts[pc].opcode;
13889
13890 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13891
13892 *pos += oplen;
13893 switch (op)
13894 {
13895 default:
13896 *pos -= oplen;
13897 print_subexp_standard (exp, pos, stream, prec);
13898 return;
13899
13900 case OP_VAR_VALUE:
13901 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13902 return;
13903
13904 case BINOP_IN_BOUNDS:
13905 /* XXX: sprint_subexp */
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 fputs_filtered (" in ", stream);
13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
13909 fputs_filtered ("'range", stream);
13910 if (exp->elts[pc + 1].longconst > 1)
13911 fprintf_filtered (stream, "(%ld)",
13912 (long) exp->elts[pc + 1].longconst);
13913 return;
13914
13915 case TERNOP_IN_RANGE:
13916 if (prec >= PREC_EQUAL)
13917 fputs_filtered ("(", stream);
13918 /* XXX: sprint_subexp */
13919 print_subexp (exp, pos, stream, PREC_SUFFIX);
13920 fputs_filtered (" in ", stream);
13921 print_subexp (exp, pos, stream, PREC_EQUAL);
13922 fputs_filtered (" .. ", stream);
13923 print_subexp (exp, pos, stream, PREC_EQUAL);
13924 if (prec >= PREC_EQUAL)
13925 fputs_filtered (")", stream);
13926 return;
13927
13928 case OP_ATR_FIRST:
13929 case OP_ATR_LAST:
13930 case OP_ATR_LENGTH:
13931 case OP_ATR_IMAGE:
13932 case OP_ATR_MAX:
13933 case OP_ATR_MIN:
13934 case OP_ATR_MODULUS:
13935 case OP_ATR_POS:
13936 case OP_ATR_SIZE:
13937 case OP_ATR_TAG:
13938 case OP_ATR_VAL:
13939 if (exp->elts[*pos].opcode == OP_TYPE)
13940 {
13941 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13942 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13943 &type_print_raw_options);
13944 *pos += 3;
13945 }
13946 else
13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
13948 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13949 if (nargs > 1)
13950 {
13951 int tem;
13952
13953 for (tem = 1; tem < nargs; tem += 1)
13954 {
13955 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13956 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13957 }
13958 fputs_filtered (")", stream);
13959 }
13960 return;
13961
13962 case UNOP_QUAL:
13963 type_print (exp->elts[pc + 1].type, "", stream, 0);
13964 fputs_filtered ("'(", stream);
13965 print_subexp (exp, pos, stream, PREC_PREFIX);
13966 fputs_filtered (")", stream);
13967 return;
13968
13969 case UNOP_IN_RANGE:
13970 /* XXX: sprint_subexp */
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 fputs_filtered (" in ", stream);
13973 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13974 &type_print_raw_options);
13975 return;
13976
13977 case OP_DISCRETE_RANGE:
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 fputs_filtered ("..", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 return;
13982
13983 case OP_OTHERS:
13984 fputs_filtered ("others => ", stream);
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13986 return;
13987
13988 case OP_CHOICES:
13989 for (i = 0; i < nargs-1; i += 1)
13990 {
13991 if (i > 0)
13992 fputs_filtered ("|", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 }
13995 fputs_filtered (" => ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 return;
13998
13999 case OP_POSITIONAL:
14000 print_subexp (exp, pos, stream, PREC_SUFFIX);
14001 return;
14002
14003 case OP_AGGREGATE:
14004 fputs_filtered ("(", stream);
14005 for (i = 0; i < nargs; i += 1)
14006 {
14007 if (i > 0)
14008 fputs_filtered (", ", stream);
14009 print_subexp (exp, pos, stream, PREC_SUFFIX);
14010 }
14011 fputs_filtered (")", stream);
14012 return;
14013 }
14014 }
14015
14016 /* Table mapping opcodes into strings for printing operators
14017 and precedences of the operators. */
14018
14019 static const struct op_print ada_op_print_tab[] = {
14020 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14021 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14022 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14023 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14024 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14025 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14026 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14027 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14028 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14029 {">=", BINOP_GEQ, PREC_ORDER, 0},
14030 {">", BINOP_GTR, PREC_ORDER, 0},
14031 {"<", BINOP_LESS, PREC_ORDER, 0},
14032 {">>", BINOP_RSH, PREC_SHIFT, 0},
14033 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14034 {"+", BINOP_ADD, PREC_ADD, 0},
14035 {"-", BINOP_SUB, PREC_ADD, 0},
14036 {"&", BINOP_CONCAT, PREC_ADD, 0},
14037 {"*", BINOP_MUL, PREC_MUL, 0},
14038 {"/", BINOP_DIV, PREC_MUL, 0},
14039 {"rem", BINOP_REM, PREC_MUL, 0},
14040 {"mod", BINOP_MOD, PREC_MUL, 0},
14041 {"**", BINOP_EXP, PREC_REPEAT, 0},
14042 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14043 {"-", UNOP_NEG, PREC_PREFIX, 0},
14044 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14045 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14046 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14047 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14048 {".all", UNOP_IND, PREC_SUFFIX, 1},
14049 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14050 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14051 {NULL, OP_NULL, PREC_SUFFIX, 0}
14052 };
14053 \f
14054 enum ada_primitive_types {
14055 ada_primitive_type_int,
14056 ada_primitive_type_long,
14057 ada_primitive_type_short,
14058 ada_primitive_type_char,
14059 ada_primitive_type_float,
14060 ada_primitive_type_double,
14061 ada_primitive_type_void,
14062 ada_primitive_type_long_long,
14063 ada_primitive_type_long_double,
14064 ada_primitive_type_natural,
14065 ada_primitive_type_positive,
14066 ada_primitive_type_system_address,
14067 ada_primitive_type_storage_offset,
14068 nr_ada_primitive_types
14069 };
14070
14071 static void
14072 ada_language_arch_info (struct gdbarch *gdbarch,
14073 struct language_arch_info *lai)
14074 {
14075 const struct builtin_type *builtin = builtin_type (gdbarch);
14076
14077 lai->primitive_type_vector
14078 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14079 struct type *);
14080
14081 lai->primitive_type_vector [ada_primitive_type_int]
14082 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14083 0, "integer");
14084 lai->primitive_type_vector [ada_primitive_type_long]
14085 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14086 0, "long_integer");
14087 lai->primitive_type_vector [ada_primitive_type_short]
14088 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14089 0, "short_integer");
14090 lai->string_char_type
14091 = lai->primitive_type_vector [ada_primitive_type_char]
14092 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14093 lai->primitive_type_vector [ada_primitive_type_float]
14094 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14095 "float", gdbarch_float_format (gdbarch));
14096 lai->primitive_type_vector [ada_primitive_type_double]
14097 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14098 "long_float", gdbarch_double_format (gdbarch));
14099 lai->primitive_type_vector [ada_primitive_type_long_long]
14100 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14101 0, "long_long_integer");
14102 lai->primitive_type_vector [ada_primitive_type_long_double]
14103 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14104 "long_long_float", gdbarch_long_double_format (gdbarch));
14105 lai->primitive_type_vector [ada_primitive_type_natural]
14106 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14107 0, "natural");
14108 lai->primitive_type_vector [ada_primitive_type_positive]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 0, "positive");
14111 lai->primitive_type_vector [ada_primitive_type_void]
14112 = builtin->builtin_void;
14113
14114 lai->primitive_type_vector [ada_primitive_type_system_address]
14115 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14116 "void"));
14117 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14118 = "system__address";
14119
14120 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14121 type. This is a signed integral type whose size is the same as
14122 the size of addresses. */
14123 {
14124 unsigned int addr_length = TYPE_LENGTH
14125 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14126
14127 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14128 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14129 "storage_offset");
14130 }
14131
14132 lai->bool_type_symbol = NULL;
14133 lai->bool_type_default = builtin->builtin_bool;
14134 }
14135 \f
14136 /* Language vector */
14137
14138 /* Not really used, but needed in the ada_language_defn. */
14139
14140 static void
14141 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14142 {
14143 ada_emit_char (c, type, stream, quoter, 1);
14144 }
14145
14146 static int
14147 parse (struct parser_state *ps)
14148 {
14149 warnings_issued = 0;
14150 return ada_parse (ps);
14151 }
14152
14153 static const struct exp_descriptor ada_exp_descriptor = {
14154 ada_print_subexp,
14155 ada_operator_length,
14156 ada_operator_check,
14157 ada_op_name,
14158 ada_dump_subexp_body,
14159 ada_evaluate_subexp
14160 };
14161
14162 /* symbol_name_matcher_ftype adapter for wild_match. */
14163
14164 static bool
14165 do_wild_match (const char *symbol_search_name,
14166 const lookup_name_info &lookup_name,
14167 completion_match_result *comp_match_res)
14168 {
14169 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14170 }
14171
14172 /* symbol_name_matcher_ftype adapter for full_match. */
14173
14174 static bool
14175 do_full_match (const char *symbol_search_name,
14176 const lookup_name_info &lookup_name,
14177 completion_match_result *comp_match_res)
14178 {
14179 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14180 }
14181
14182 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14183
14184 static bool
14185 do_exact_match (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
14187 completion_match_result *comp_match_res)
14188 {
14189 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14190 }
14191
14192 /* Build the Ada lookup name for LOOKUP_NAME. */
14193
14194 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14195 {
14196 const std::string &user_name = lookup_name.name ();
14197
14198 if (user_name[0] == '<')
14199 {
14200 if (user_name.back () == '>')
14201 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14202 else
14203 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14204 m_encoded_p = true;
14205 m_verbatim_p = true;
14206 m_wild_match_p = false;
14207 m_standard_p = false;
14208 }
14209 else
14210 {
14211 m_verbatim_p = false;
14212
14213 m_encoded_p = user_name.find ("__") != std::string::npos;
14214
14215 if (!m_encoded_p)
14216 {
14217 const char *folded = ada_fold_name (user_name.c_str ());
14218 const char *encoded = ada_encode_1 (folded, false);
14219 if (encoded != NULL)
14220 m_encoded_name = encoded;
14221 else
14222 m_encoded_name = user_name;
14223 }
14224 else
14225 m_encoded_name = user_name;
14226
14227 /* Handle the 'package Standard' special case. See description
14228 of m_standard_p. */
14229 if (startswith (m_encoded_name.c_str (), "standard__"))
14230 {
14231 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14232 m_standard_p = true;
14233 }
14234 else
14235 m_standard_p = false;
14236
14237 /* If the name contains a ".", then the user is entering a fully
14238 qualified entity name, and the match must not be done in wild
14239 mode. Similarly, if the user wants to complete what looks
14240 like an encoded name, the match must not be done in wild
14241 mode. Also, in the standard__ special case always do
14242 non-wild matching. */
14243 m_wild_match_p
14244 = (lookup_name.match_type () != symbol_name_match_type::FULL
14245 && !m_encoded_p
14246 && !m_standard_p
14247 && user_name.find ('.') == std::string::npos);
14248 }
14249 }
14250
14251 /* symbol_name_matcher_ftype method for Ada. This only handles
14252 completion mode. */
14253
14254 static bool
14255 ada_symbol_name_matches (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
14257 completion_match_result *comp_match_res)
14258 {
14259 return lookup_name.ada ().matches (symbol_search_name,
14260 lookup_name.match_type (),
14261 comp_match_res);
14262 }
14263
14264 /* A name matcher that matches the symbol name exactly, with
14265 strcmp. */
14266
14267 static bool
14268 literal_symbol_name_matcher (const char *symbol_search_name,
14269 const lookup_name_info &lookup_name,
14270 completion_match_result *comp_match_res)
14271 {
14272 const std::string &name = lookup_name.name ();
14273
14274 int cmp = (lookup_name.completion_mode ()
14275 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14276 : strcmp (symbol_search_name, name.c_str ()));
14277 if (cmp == 0)
14278 {
14279 if (comp_match_res != NULL)
14280 comp_match_res->set_match (symbol_search_name);
14281 return true;
14282 }
14283 else
14284 return false;
14285 }
14286
14287 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14288 Ada. */
14289
14290 static symbol_name_matcher_ftype *
14291 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14292 {
14293 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14294 return literal_symbol_name_matcher;
14295
14296 if (lookup_name.completion_mode ())
14297 return ada_symbol_name_matches;
14298 else
14299 {
14300 if (lookup_name.ada ().wild_match_p ())
14301 return do_wild_match;
14302 else if (lookup_name.ada ().verbatim_p ())
14303 return do_exact_match;
14304 else
14305 return do_full_match;
14306 }
14307 }
14308
14309 /* Implement the "la_read_var_value" language_defn method for Ada. */
14310
14311 static struct value *
14312 ada_read_var_value (struct symbol *var, const struct block *var_block,
14313 struct frame_info *frame)
14314 {
14315 const struct block *frame_block = NULL;
14316 struct symbol *renaming_sym = NULL;
14317
14318 /* The only case where default_read_var_value is not sufficient
14319 is when VAR is a renaming... */
14320 if (frame)
14321 frame_block = get_frame_block (frame, NULL);
14322 if (frame_block)
14323 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14324 if (renaming_sym != NULL)
14325 return ada_read_renaming_var_value (renaming_sym, frame_block);
14326
14327 /* This is a typical case where we expect the default_read_var_value
14328 function to work. */
14329 return default_read_var_value (var, var_block, frame);
14330 }
14331
14332 static const char *ada_extensions[] =
14333 {
14334 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14335 };
14336
14337 extern const struct language_defn ada_language_defn = {
14338 "ada", /* Language name */
14339 "Ada",
14340 language_ada,
14341 range_check_off,
14342 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14343 that's not quite what this means. */
14344 array_row_major,
14345 macro_expansion_no,
14346 ada_extensions,
14347 &ada_exp_descriptor,
14348 parse,
14349 resolve,
14350 ada_printchar, /* Print a character constant */
14351 ada_printstr, /* Function to print string constant */
14352 emit_char, /* Function to print single char (not used) */
14353 ada_print_type, /* Print a type using appropriate syntax */
14354 ada_print_typedef, /* Print a typedef using appropriate syntax */
14355 ada_val_print, /* Print a value using appropriate syntax */
14356 ada_value_print, /* Print a top-level value */
14357 ada_read_var_value, /* la_read_var_value */
14358 NULL, /* Language specific skip_trampoline */
14359 NULL, /* name_of_this */
14360 true, /* la_store_sym_names_in_linkage_form_p */
14361 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14362 basic_lookup_transparent_type, /* lookup_transparent_type */
14363 ada_la_decode, /* Language specific symbol demangler */
14364 ada_sniff_from_mangled_name,
14365 NULL, /* Language specific
14366 class_name_from_physname */
14367 ada_op_print_tab, /* expression operators for printing */
14368 0, /* c-style arrays */
14369 1, /* String lower bound */
14370 ada_get_gdb_completer_word_break_characters,
14371 ada_collect_symbol_completion_matches,
14372 ada_language_arch_info,
14373 ada_print_array_index,
14374 default_pass_by_reference,
14375 c_get_string,
14376 ada_watch_location_expression,
14377 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14378 ada_iterate_over_symbols,
14379 default_search_name_hash,
14380 &ada_varobj_ops,
14381 NULL,
14382 NULL,
14383 LANG_MAGIC
14384 };
14385
14386 /* Command-list for the "set/show ada" prefix command. */
14387 static struct cmd_list_element *set_ada_list;
14388 static struct cmd_list_element *show_ada_list;
14389
14390 /* Implement the "set ada" prefix command. */
14391
14392 static void
14393 set_ada_command (const char *arg, int from_tty)
14394 {
14395 printf_unfiltered (_(\
14396 "\"set ada\" must be followed by the name of a setting.\n"));
14397 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14398 }
14399
14400 /* Implement the "show ada" prefix command. */
14401
14402 static void
14403 show_ada_command (const char *args, int from_tty)
14404 {
14405 cmd_show_list (show_ada_list, from_tty, "");
14406 }
14407
14408 static void
14409 initialize_ada_catchpoint_ops (void)
14410 {
14411 struct breakpoint_ops *ops;
14412
14413 initialize_breakpoint_ops ();
14414
14415 ops = &catch_exception_breakpoint_ops;
14416 *ops = bkpt_breakpoint_ops;
14417 ops->allocate_location = allocate_location_catch_exception;
14418 ops->re_set = re_set_catch_exception;
14419 ops->check_status = check_status_catch_exception;
14420 ops->print_it = print_it_catch_exception;
14421 ops->print_one = print_one_catch_exception;
14422 ops->print_mention = print_mention_catch_exception;
14423 ops->print_recreate = print_recreate_catch_exception;
14424
14425 ops = &catch_exception_unhandled_breakpoint_ops;
14426 *ops = bkpt_breakpoint_ops;
14427 ops->allocate_location = allocate_location_catch_exception_unhandled;
14428 ops->re_set = re_set_catch_exception_unhandled;
14429 ops->check_status = check_status_catch_exception_unhandled;
14430 ops->print_it = print_it_catch_exception_unhandled;
14431 ops->print_one = print_one_catch_exception_unhandled;
14432 ops->print_mention = print_mention_catch_exception_unhandled;
14433 ops->print_recreate = print_recreate_catch_exception_unhandled;
14434
14435 ops = &catch_assert_breakpoint_ops;
14436 *ops = bkpt_breakpoint_ops;
14437 ops->allocate_location = allocate_location_catch_assert;
14438 ops->re_set = re_set_catch_assert;
14439 ops->check_status = check_status_catch_assert;
14440 ops->print_it = print_it_catch_assert;
14441 ops->print_one = print_one_catch_assert;
14442 ops->print_mention = print_mention_catch_assert;
14443 ops->print_recreate = print_recreate_catch_assert;
14444
14445 ops = &catch_handlers_breakpoint_ops;
14446 *ops = bkpt_breakpoint_ops;
14447 ops->allocate_location = allocate_location_catch_handlers;
14448 ops->re_set = re_set_catch_handlers;
14449 ops->check_status = check_status_catch_handlers;
14450 ops->print_it = print_it_catch_handlers;
14451 ops->print_one = print_one_catch_handlers;
14452 ops->print_mention = print_mention_catch_handlers;
14453 ops->print_recreate = print_recreate_catch_handlers;
14454 }
14455
14456 /* This module's 'new_objfile' observer. */
14457
14458 static void
14459 ada_new_objfile_observer (struct objfile *objfile)
14460 {
14461 ada_clear_symbol_cache ();
14462 }
14463
14464 /* This module's 'free_objfile' observer. */
14465
14466 static void
14467 ada_free_objfile_observer (struct objfile *objfile)
14468 {
14469 ada_clear_symbol_cache ();
14470 }
14471
14472 void
14473 _initialize_ada_language (void)
14474 {
14475 initialize_ada_catchpoint_ops ();
14476
14477 add_prefix_cmd ("ada", no_class, set_ada_command,
14478 _("Prefix command for changing Ada-specific settings"),
14479 &set_ada_list, "set ada ", 0, &setlist);
14480
14481 add_prefix_cmd ("ada", no_class, show_ada_command,
14482 _("Generic command for showing Ada-specific settings."),
14483 &show_ada_list, "show ada ", 0, &showlist);
14484
14485 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14486 &trust_pad_over_xvs, _("\
14487 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14488 Show whether an optimization trusting PAD types over XVS types is activated"),
14489 _("\
14490 This is related to the encoding used by the GNAT compiler. The debugger\n\
14491 should normally trust the contents of PAD types, but certain older versions\n\
14492 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14493 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14494 work around this bug. It is always safe to turn this option \"off\", but\n\
14495 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14496 this option to \"off\" unless necessary."),
14497 NULL, NULL, &set_ada_list, &show_ada_list);
14498
14499 add_setshow_boolean_cmd ("print-signatures", class_vars,
14500 &print_signatures, _("\
14501 Enable or disable the output of formal and return types for functions in the \
14502 overloads selection menu"), _("\
14503 Show whether the output of formal and return types for functions in the \
14504 overloads selection menu is activated"),
14505 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14506
14507 add_catch_command ("exception", _("\
14508 Catch Ada exceptions, when raised.\n\
14509 Usage: catch exception [ ARG ]\n\
14510 \n\
14511 Without any argument, stop when any Ada exception is raised.\n\
14512 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14513 being raised does not have a handler (and will therefore lead to the task's\n\
14514 termination).\n\
14515 Otherwise, the catchpoint only stops when the name of the exception being\n\
14516 raised is the same as ARG."),
14517 catch_ada_exception_command,
14518 NULL,
14519 CATCH_PERMANENT,
14520 CATCH_TEMPORARY);
14521
14522 add_catch_command ("handlers", _("\
14523 Catch Ada exceptions, when handled.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_handlers_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
14529 add_catch_command ("assert", _("\
14530 Catch failed Ada assertions, when raised.\n\
14531 With an argument, catch only exceptions with the given name."),
14532 catch_assert_command,
14533 NULL,
14534 CATCH_PERMANENT,
14535 CATCH_TEMPORARY);
14536
14537 varsize_limit = 65536;
14538 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14539 &varsize_limit, _("\
14540 Set the maximum number of bytes allowed in a variable-size object."), _("\
14541 Show the maximum number of bytes allowed in a variable-size object."), _("\
14542 Attempts to access an object whose size is not a compile-time constant\n\
14543 and exceeds this limit will cause an error."),
14544 NULL, NULL, &setlist, &showlist);
14545
14546 add_info ("exceptions", info_exceptions_command,
14547 _("\
14548 List all Ada exception names.\n\
14549 If a regular expression is passed as an argument, only those matching\n\
14550 the regular expression are listed."));
14551
14552 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14553 _("Set Ada maintenance-related variables."),
14554 &maint_set_ada_cmdlist, "maintenance set ada ",
14555 0/*allow-unknown*/, &maintenance_set_cmdlist);
14556
14557 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14558 _("Show Ada maintenance-related variables"),
14559 &maint_show_ada_cmdlist, "maintenance show ada ",
14560 0/*allow-unknown*/, &maintenance_show_cmdlist);
14561
14562 add_setshow_boolean_cmd
14563 ("ignore-descriptive-types", class_maintenance,
14564 &ada_ignore_descriptive_types_p,
14565 _("Set whether descriptive types generated by GNAT should be ignored."),
14566 _("Show whether descriptive types generated by GNAT should be ignored."),
14567 _("\
14568 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14569 DWARF attribute."),
14570 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14571
14572 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14573 NULL, xcalloc, xfree);
14574
14575 /* The ada-lang observers. */
14576 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14577 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14578 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14579
14580 /* Setup various context-specific data. */
14581 ada_inferior_data
14582 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14583 ada_pspace_data_handle
14584 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14585 }
This page took 0.743488 seconds and 5 git commands to generate.