Remove "repeat" argument from command_line_input
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269
3270 argvec = NULL;
3271 nargs = 0;
3272 exp = expp->get ();
3273
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3275 if needed. */
3276 switch (op)
3277 {
3278 case OP_FUNCALL:
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3281 *pos += 7;
3282 else
3283 {
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 0, NULL);
3286 }
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3288 break;
3289
3290 case UNOP_ADDR:
3291 *pos += 1;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 break;
3294
3295 case UNOP_QUAL:
3296 *pos += 3;
3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3298 break;
3299
3300 case OP_ATR_MODULUS:
3301 case OP_ATR_SIZE:
3302 case OP_ATR_TAG:
3303 case OP_ATR_FIRST:
3304 case OP_ATR_LAST:
3305 case OP_ATR_LENGTH:
3306 case OP_ATR_POS:
3307 case OP_ATR_VAL:
3308 case OP_ATR_MIN:
3309 case OP_ATR_MAX:
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3312 case UNOP_IN_RANGE:
3313 case OP_AGGREGATE:
3314 case OP_OTHERS:
3315 case OP_CHOICES:
3316 case OP_POSITIONAL:
3317 case OP_DISCRETE_RANGE:
3318 case OP_NAME:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3320 *pos += oplen;
3321 break;
3322
3323 case BINOP_ASSIGN:
3324 {
3325 struct value *arg1;
3326
3327 *pos += 1;
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3329 if (arg1 == NULL)
3330 resolve_subexp (expp, pos, 1, NULL);
3331 else
3332 resolve_subexp (expp, pos, 1, value_type (arg1));
3333 break;
3334 }
3335
3336 case UNOP_CAST:
3337 *pos += 3;
3338 nargs = 1;
3339 break;
3340
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_EXP:
3348 case BINOP_CONCAT:
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
3354
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361
3362 case BINOP_REPEAT:
3363 case BINOP_SUBSCRIPT:
3364 case BINOP_COMMA:
3365 *pos += 1;
3366 nargs = 2;
3367 break;
3368
3369 case UNOP_NEG:
3370 case UNOP_PLUS:
3371 case UNOP_LOGICAL_NOT:
3372 case UNOP_ABS:
3373 case UNOP_IND:
3374 *pos += 1;
3375 nargs = 1;
3376 break;
3377
3378 case OP_LONG:
3379 case OP_FLOAT:
3380 case OP_VAR_VALUE:
3381 case OP_VAR_MSYM_VALUE:
3382 *pos += 4;
3383 break;
3384
3385 case OP_TYPE:
3386 case OP_BOOL:
3387 case OP_LAST:
3388 case OP_INTERNALVAR:
3389 *pos += 3;
3390 break;
3391
3392 case UNOP_MEMVAL:
3393 *pos += 3;
3394 nargs = 1;
3395 break;
3396
3397 case OP_REGISTER:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3399 break;
3400
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3403 nargs = 1;
3404 break;
3405
3406 case TERNOP_SLICE:
3407 *pos += 1;
3408 nargs = 3;
3409 break;
3410
3411 case OP_STRING:
3412 break;
3413
3414 default:
3415 error (_("Unexpected operator during name resolution"));
3416 }
3417
3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3421 argvec[i] = NULL;
3422 exp = expp->get ();
3423
3424 /* Pass two: perform any resolution on principal operator. */
3425 switch (op)
3426 {
3427 default:
3428 break;
3429
3430 case OP_VAR_VALUE:
3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3432 {
3433 std::vector<struct block_symbol> candidates;
3434 int n_candidates;
3435
3436 n_candidates =
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
3440 &candidates);
3441
3442 if (n_candidates > 1)
3443 {
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3446 out all types. */
3447 int j;
3448 for (j = 0; j < n_candidates; j += 1)
3449 switch (SYMBOL_CLASS (candidates[j].symbol))
3450 {
3451 case LOC_REGISTER:
3452 case LOC_ARG:
3453 case LOC_REF_ARG:
3454 case LOC_REGPARM_ADDR:
3455 case LOC_LOCAL:
3456 case LOC_COMPUTED:
3457 goto FoundNonType;
3458 default:
3459 break;
3460 }
3461 FoundNonType:
3462 if (j < n_candidates)
3463 {
3464 j = 0;
3465 while (j < n_candidates)
3466 {
3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3468 {
3469 candidates[j] = candidates[n_candidates - 1];
3470 n_candidates -= 1;
3471 }
3472 else
3473 j += 1;
3474 }
3475 }
3476 }
3477
3478 if (n_candidates == 0)
3479 error (_("No definition found for %s"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3482 i = 0;
3483 else if (deprocedure_p
3484 && !is_nonfunction (candidates.data (), n_candidates))
3485 {
3486 i = ada_resolve_function
3487 (candidates.data (), n_candidates, NULL, 0,
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3489 context_type);
3490 if (i < 0)
3491 error (_("Could not find a match for %s"),
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 }
3494 else
3495 {
3496 printf_filtered (_("Multiple matches for %s\n"),
3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 user_select_syms (candidates.data (), n_candidates, 1);
3499 i = 0;
3500 }
3501
3502 exp->elts[pc + 1].block = candidates[i].block;
3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
3504 innermost_block.update (candidates[i]);
3505 }
3506
3507 if (deprocedure_p
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3509 == TYPE_CODE_FUNC))
3510 {
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
3514 exp = expp->get ();
3515 }
3516 break;
3517
3518 case OP_FUNCALL:
3519 {
3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3522 {
3523 std::vector<struct block_symbol> candidates;
3524 int n_candidates;
3525
3526 n_candidates =
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
3530 &candidates);
3531
3532 if (n_candidates == 1)
3533 i = 0;
3534 else
3535 {
3536 i = ada_resolve_function
3537 (candidates.data (), n_candidates,
3538 argvec, nargs,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3540 context_type);
3541 if (i < 0)
3542 error (_("Could not find a match for %s"),
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3544 }
3545
3546 exp->elts[pc + 4].block = candidates[i].block;
3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
3548 innermost_block.update (candidates[i]);
3549 }
3550 }
3551 break;
3552 case BINOP_ADD:
3553 case BINOP_SUB:
3554 case BINOP_MUL:
3555 case BINOP_DIV:
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_CONCAT:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562 case BINOP_EQUAL:
3563 case BINOP_NOTEQUAL:
3564 case BINOP_LESS:
3565 case BINOP_GTR:
3566 case BINOP_LEQ:
3567 case BINOP_GEQ:
3568 case BINOP_EXP:
3569 case UNOP_NEG:
3570 case UNOP_PLUS:
3571 case UNOP_LOGICAL_NOT:
3572 case UNOP_ABS:
3573 if (possible_user_operator_p (op, argvec))
3574 {
3575 std::vector<struct block_symbol> candidates;
3576 int n_candidates;
3577
3578 n_candidates =
3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
3580 (struct block *) NULL, VAR_DOMAIN,
3581 &candidates);
3582
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
3585 if (i < 0)
3586 break;
3587
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
3591 exp = expp->get ();
3592 }
3593 break;
3594
3595 case OP_TYPE:
3596 case OP_REGISTER:
3597 return NULL;
3598 }
3599
3600 *pos = pc;
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3605 else
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = expp->get ();
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 expp->reset (newexp);
4134 }
4135
4136 /* Type-class predicates */
4137
4138 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4139 or FLOAT). */
4140
4141 static int
4142 numeric_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_FLT:
4152 return 1;
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4156 default:
4157 return 0;
4158 }
4159 }
4160 }
4161
4162 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4163
4164 static int
4165 integer_type_p (struct type *type)
4166 {
4167 if (type == NULL)
4168 return 0;
4169 else
4170 {
4171 switch (TYPE_CODE (type))
4172 {
4173 case TYPE_CODE_INT:
4174 return 1;
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4178 default:
4179 return 0;
4180 }
4181 }
4182 }
4183
4184 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4185
4186 static int
4187 scalar_type_p (struct type *type)
4188 {
4189 if (type == NULL)
4190 return 0;
4191 else
4192 {
4193 switch (TYPE_CODE (type))
4194 {
4195 case TYPE_CODE_INT:
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4198 case TYPE_CODE_FLT:
4199 return 1;
4200 default:
4201 return 0;
4202 }
4203 }
4204 }
4205
4206 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4207
4208 static int
4209 discrete_type_p (struct type *type)
4210 {
4211 if (type == NULL)
4212 return 0;
4213 else
4214 {
4215 switch (TYPE_CODE (type))
4216 {
4217 case TYPE_CODE_INT:
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
4220 case TYPE_CODE_BOOL:
4221 return 1;
4222 default:
4223 return 0;
4224 }
4225 }
4226 }
4227
4228 /* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
4231
4232 static int
4233 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4234 {
4235 struct type *type0 =
4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4237 struct type *type1 =
4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4239
4240 if (type0 == NULL)
4241 return 0;
4242
4243 switch (op)
4244 {
4245 default:
4246 return 0;
4247
4248 case BINOP_ADD:
4249 case BINOP_SUB:
4250 case BINOP_MUL:
4251 case BINOP_DIV:
4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4253
4254 case BINOP_REM:
4255 case BINOP_MOD:
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
4260
4261 case BINOP_EQUAL:
4262 case BINOP_NOTEQUAL:
4263 case BINOP_LESS:
4264 case BINOP_GTR:
4265 case BINOP_LEQ:
4266 case BINOP_GEQ:
4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4268
4269 case BINOP_CONCAT:
4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4271
4272 case BINOP_EXP:
4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4274
4275 case UNOP_NEG:
4276 case UNOP_PLUS:
4277 case UNOP_LOGICAL_NOT:
4278 case UNOP_ABS:
4279 return (!numeric_type_p (type0));
4280
4281 }
4282 }
4283 \f
4284 /* Renaming */
4285
4286 /* NOTES:
4287
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4290 point.
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4297
4298 /* If SYM encodes a renaming,
4299
4300 <renaming> renames <renamed entity>,
4301
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4314
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4316
4317 enum ada_renaming_category
4318 ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4321 {
4322 enum ada_renaming_category kind;
4323 const char *info;
4324 const char *suffix;
4325
4326 if (sym == NULL)
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
4329 {
4330 default:
4331 return ADA_NOT_RENAMING;
4332 case LOC_TYPEDEF:
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4335 case LOC_LOCAL:
4336 case LOC_STATIC:
4337 case LOC_COMPUTED:
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4340 if (info == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (info[5])
4343 {
4344 case '_':
4345 kind = ADA_OBJECT_RENAMING;
4346 info += 6;
4347 break;
4348 case 'E':
4349 kind = ADA_EXCEPTION_RENAMING;
4350 info += 7;
4351 break;
4352 case 'P':
4353 kind = ADA_PACKAGE_RENAMING;
4354 info += 7;
4355 break;
4356 case 'S':
4357 kind = ADA_SUBPROGRAM_RENAMING;
4358 info += 7;
4359 break;
4360 default:
4361 return ADA_NOT_RENAMING;
4362 }
4363 }
4364
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4370 if (len != NULL)
4371 *len = strlen (info) - strlen (suffix);
4372 suffix += 5;
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4375 return kind;
4376 }
4377
4378 /* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382 static enum ada_renaming_category
4383 parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4386 {
4387 enum ada_renaming_category kind;
4388 const char *name;
4389 const char *info;
4390 const char *suffix;
4391
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
4395
4396 name = TYPE_NAME (type);
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399
4400 name = strstr (name, "___XR");
4401 if (name == NULL)
4402 return ADA_NOT_RENAMING;
4403 switch (name[5])
4404 {
4405 case '\0':
4406 case '_':
4407 kind = ADA_OBJECT_RENAMING;
4408 break;
4409 case 'E':
4410 kind = ADA_EXCEPTION_RENAMING;
4411 break;
4412 case 'P':
4413 kind = ADA_PACKAGE_RENAMING;
4414 break;
4415 case 'S':
4416 kind = ADA_SUBPROGRAM_RENAMING;
4417 break;
4418 default:
4419 return ADA_NOT_RENAMING;
4420 }
4421
4422 info = TYPE_FIELD_NAME (type, 0);
4423 if (info == NULL)
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4432 if (len != NULL)
4433 *len = suffix - info;
4434 return kind;
4435 }
4436
4437 /* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
4440
4441 static struct value *
4442 ada_read_renaming_var_value (struct symbol *renaming_sym,
4443 const struct block *block)
4444 {
4445 const char *sym_name;
4446
4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
4450 }
4451 \f
4452
4453 /* Evaluation: Function Calls */
4454
4455 /* Return an lvalue containing the value VAL. This is the identity on
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
4458
4459 static struct value *
4460 ensure_lval (struct value *val)
4461 {
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
4464 {
4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
4468
4469 VALUE_LVAL (val) = lval_memory;
4470 set_value_address (val, addr);
4471 write_memory (addr, value_contents (val), len);
4472 }
4473
4474 return val;
4475 }
4476
4477 /* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4480 values not residing in memory, updating it as needed. */
4481
4482 struct value *
4483 ada_convert_actual (struct value *actual, struct type *formal_type0)
4484 {
4485 struct type *actual_type = ada_check_typedef (value_type (actual));
4486 struct type *formal_type = ada_check_typedef (formal_type0);
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4493
4494 if (ada_is_array_descriptor_type (formal_target)
4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4496 return make_array_descriptor (formal_type, actual);
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4499 {
4500 struct value *result;
4501
4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4503 && ada_is_array_descriptor_type (actual_target))
4504 result = desc_data (actual);
4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4506 {
4507 if (VALUE_LVAL (actual) != lval_memory)
4508 {
4509 struct value *val;
4510
4511 actual_type = ada_check_typedef (value_type (actual));
4512 val = allocate_value (actual_type);
4513 memcpy ((char *) value_contents_raw (val),
4514 (char *) value_contents (actual),
4515 TYPE_LENGTH (actual_type));
4516 actual = ensure_lval (val);
4517 }
4518 result = value_addr (actual);
4519 }
4520 else
4521 return actual;
4522 return value_cast_pointers (formal_type, result, 0);
4523 }
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
4526 else if (ada_is_aligner_type (formal_type))
4527 {
4528 /* We need to turn this parameter into an aligner type
4529 as well. */
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4532
4533 value_assign_to_component (aligner, component, actual);
4534 return aligner;
4535 }
4536
4537 return actual;
4538 }
4539
4540 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4543 differs. */
4544
4545 static CORE_ADDR
4546 value_pointer (struct value *value, struct type *type)
4547 {
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
4550 gdb_byte *buf = (gdb_byte *) alloca (len);
4551 CORE_ADDR addr;
4552
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4556 return addr;
4557 }
4558
4559
4560 /* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
4565
4566 static struct value *
4567 make_array_descriptor (struct type *type, struct value *arr)
4568 {
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
4573 int i;
4574
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4576 i > 0; i -= 1)
4577 {
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
4586 }
4587
4588 bounds = ensure_lval (bounds);
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
4603
4604 descriptor = ensure_lval (descriptor);
4605
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4608 else
4609 return descriptor;
4610 }
4611 \f
4612 /* Symbol Cache Module */
4613
4614 /* Performance measurements made as of 2010-01-15 indicate that
4615 this cache does bring some noticeable improvements. Depending
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4618
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4623
4624 /* Initialize the contents of SYM_CACHE. */
4625
4626 static void
4627 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4628 {
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4631 }
4632
4633 /* Free the memory used by SYM_CACHE. */
4634
4635 static void
4636 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4637 {
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 xfree (sym_cache);
4640 }
4641
4642 /* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
4644
4645 static struct ada_symbol_cache *
4646 ada_get_symbol_cache (struct program_space *pspace)
4647 {
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4649
4650 if (pspace_data->sym_cache == NULL)
4651 {
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
4654 }
4655
4656 return pspace_data->sym_cache;
4657 }
4658
4659 /* Clear all entries from the symbol cache. */
4660
4661 static void
4662 ada_clear_symbol_cache (void)
4663 {
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4666
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
4669 }
4670
4671 /* Search our cache for an entry matching NAME and DOMAIN.
4672 Return it if found, or NULL otherwise. */
4673
4674 static struct cache_entry **
4675 find_entry (const char *name, domain_enum domain)
4676 {
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4681
4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4683 {
4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4685 return e;
4686 }
4687 return NULL;
4688 }
4689
4690 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4691 Return 1 if found, 0 otherwise.
4692
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
4695
4696 static int
4697 lookup_cached_symbol (const char *name, domain_enum domain,
4698 struct symbol **sym, const struct block **block)
4699 {
4700 struct cache_entry **e = find_entry (name, domain);
4701
4702 if (e == NULL)
4703 return 0;
4704 if (sym != NULL)
4705 *sym = (*e)->sym;
4706 if (block != NULL)
4707 *block = (*e)->block;
4708 return 1;
4709 }
4710
4711 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4712 in domain DOMAIN, save this result in our symbol cache. */
4713
4714 static void
4715 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4716 const struct block *block)
4717 {
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
4720 int h;
4721 char *copy;
4722 struct cache_entry *e;
4723
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4727 return;
4728
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4733 if (sym
4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4735 GLOBAL_BLOCK) != block
4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4737 STATIC_BLOCK) != block)
4738 return;
4739
4740 h = msymbol_hash (name) % HASH_SIZE;
4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
4744 e->name = copy
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4746 strcpy (copy, name);
4747 e->sym = sym;
4748 e->domain = domain;
4749 e->block = block;
4750 }
4751 \f
4752 /* Symbol Lookup */
4753
4754 /* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
4756
4757 LOOKUP_NAME is expected to be a symbol name after transformation
4758 for Ada lookups. */
4759
4760 static symbol_name_match_type
4761 name_match_type_from_name (const char *lookup_name)
4762 {
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
4766 }
4767
4768 /* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4770
4771 static struct symbol *
4772 standard_lookup (const char *name, const struct block *block,
4773 domain_enum domain)
4774 {
4775 /* Initialize it just to avoid a GCC false warning. */
4776 struct block_symbol sym = {NULL, NULL};
4777
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4779 return sym.symbol;
4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4782 return sym.symbol;
4783 }
4784
4785
4786 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4789 static int
4790 is_nonfunction (struct block_symbol syms[], int n)
4791 {
4792 int i;
4793
4794 for (i = 0; i < n; i += 1)
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4798 return 1;
4799
4800 return 0;
4801 }
4802
4803 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4804 struct types. Otherwise, they may not. */
4805
4806 static int
4807 equiv_types (struct type *type0, struct type *type1)
4808 {
4809 if (type0 == type1)
4810 return 1;
4811 if (type0 == NULL || type1 == NULL
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4813 return 0;
4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4818 return 1;
4819
4820 return 0;
4821 }
4822
4823 /* True iff SYM0 represents the same entity as SYM1, or one that is
4824 no more defined than that of SYM1. */
4825
4826 static int
4827 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4828 {
4829 if (sym0 == sym1)
4830 return 1;
4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4833 return 0;
4834
4835 switch (SYMBOL_CLASS (sym0))
4836 {
4837 case LOC_UNDEF:
4838 return 1;
4839 case LOC_TYPEDEF:
4840 {
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4845 int len0 = strlen (name0);
4846
4847 return
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4851 && startswith (name1 + len0, "___XV")));
4852 }
4853 case LOC_CONST:
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4856 default:
4857 return 0;
4858 }
4859 }
4860
4861 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4863
4864 static void
4865 add_defn_to_vec (struct obstack *obstackp,
4866 struct symbol *sym,
4867 const struct block *block)
4868 {
4869 int i;
4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4871
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4880
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4882 {
4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4884 return;
4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4886 {
4887 prevDefns[i].symbol = sym;
4888 prevDefns[i].block = block;
4889 return;
4890 }
4891 }
4892
4893 {
4894 struct block_symbol info;
4895
4896 info.symbol = sym;
4897 info.block = block;
4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4899 }
4900 }
4901
4902 /* Number of block_symbol structures currently collected in current vector in
4903 OBSTACKP. */
4904
4905 static int
4906 num_defns_collected (struct obstack *obstackp)
4907 {
4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4909 }
4910
4911 /* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4913
4914 static struct block_symbol *
4915 defns_collected (struct obstack *obstackp, int finish)
4916 {
4917 if (finish)
4918 return (struct block_symbol *) obstack_finish (obstackp);
4919 else
4920 return (struct block_symbol *) obstack_base (obstackp);
4921 }
4922
4923 /* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4928
4929 struct bound_minimal_symbol
4930 ada_lookup_simple_minsym (const char *name)
4931 {
4932 struct bound_minimal_symbol result;
4933 struct objfile *objfile;
4934 struct minimal_symbol *msymbol;
4935
4936 memset (&result, 0, sizeof (result));
4937
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4940
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4943
4944 ALL_MSYMBOLS (objfile, msymbol)
4945 {
4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4948 {
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4951 break;
4952 }
4953 }
4954
4955 return result;
4956 }
4957
4958 /* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4963
4964 static void
4965 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4966 const lookup_name_info &lookup_name,
4967 domain_enum domain)
4968 {
4969 }
4970
4971 /* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
4973
4974 static int
4975 is_nondebugging_type (struct type *type)
4976 {
4977 const char *name = ada_type_name (type);
4978
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4980 }
4981
4982 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4984
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4988
4989 static int
4990 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4991 {
4992 int i;
4993
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4998
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5002 return 0;
5003
5004 /* All enumerals should also have the same name (modulo any numerical
5005 suffix). */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 {
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5012
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5015 if (len_1 != len_2
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5018 len_1) != 0)
5019 return 0;
5020 }
5021
5022 return 1;
5023 }
5024
5025 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5029
5030 For instance, consider the following code:
5031
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5034
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5044
5045 static int
5046 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5047 {
5048 int i;
5049
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5056
5057 /* Quick check: All symbols should have an enum type. */
5058 for (i = 0; i < syms.size (); i++)
5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5060 return 0;
5061
5062 /* Quick check: They should all have the same value. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5065 return 0;
5066
5067 /* Quick check: They should all have the same number of enumerals. */
5068 for (i = 1; i < syms.size (); i++)
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5071 return 0;
5072
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
5076 for (i = 1; i < syms.size (); i++)
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
5079 return 0;
5080
5081 return 1;
5082 }
5083
5084 /* Remove any non-debugging symbols in SYMS that definitely
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
5090
5091 static int
5092 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5093 {
5094 int i, j;
5095
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
5099 if (syms->size () < 2)
5100 return syms->size ();
5101
5102 i = 0;
5103 while (i < syms->size ())
5104 {
5105 int remove_p = 0;
5106
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5109
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5112 {
5113 for (j = 0; j < syms->size (); j++)
5114 {
5115 if (j != i
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5120 remove_p = 1;
5121 }
5122 }
5123
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5126
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5130 {
5131 for (j = 0; j < syms->size (); j += 1)
5132 {
5133 if (i != j
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5141 remove_p = 1;
5142 }
5143 }
5144
5145 if (remove_p)
5146 syms->erase (syms->begin () + i);
5147
5148 i += 1;
5149 }
5150
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5153
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
5163 if (symbols_are_identical_enums (*syms))
5164 syms->resize (1);
5165
5166 return syms->size ();
5167 }
5168
5169 /* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
5172 defined. */
5173
5174 static std::string
5175 xget_renaming_scope (struct type *renaming_type)
5176 {
5177 /* The renaming types adhere to the following convention:
5178 <scope>__<rename>___<XR extension>.
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
5181
5182 const char *name = TYPE_NAME (renaming_type);
5183 const char *suffix = strstr (name, "___XR");
5184 const char *last;
5185
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
5188
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5191 break;
5192
5193 /* Make a copy of scope and return it. */
5194 return std::string (name, last);
5195 }
5196
5197 /* Return nonzero if NAME corresponds to a package name. */
5198
5199 static int
5200 is_package_name (const char *name)
5201 {
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
5207
5208 /* If it is a function that has not been defined at library level,
5209 then we should be able to look it up in the symbols. */
5210 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5211 return 0;
5212
5213 /* Library-level function names start with "_ada_". See if function
5214 "_ada_" followed by NAME can be found. */
5215
5216 /* Do a quick check that NAME does not contain "__", since library-level
5217 functions names cannot contain "__" in them. */
5218 if (strstr (name, "__") != NULL)
5219 return 0;
5220
5221 std::string fun_name = string_printf ("_ada_%s", name);
5222
5223 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5224 }
5225
5226 /* Return nonzero if SYM corresponds to a renaming entity that is
5227 not visible from FUNCTION_NAME. */
5228
5229 static int
5230 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5231 {
5232 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5233 return 0;
5234
5235 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5236
5237 /* If the rename has been defined in a package, then it is visible. */
5238 if (is_package_name (scope.c_str ()))
5239 return 0;
5240
5241 /* Check that the rename is in the current function scope by checking
5242 that its name starts with SCOPE. */
5243
5244 /* If the function name starts with "_ada_", it means that it is
5245 a library-level function. Strip this prefix before doing the
5246 comparison, as the encoding for the renaming does not contain
5247 this prefix. */
5248 if (startswith (function_name, "_ada_"))
5249 function_name += 5;
5250
5251 return !startswith (function_name, scope.c_str ());
5252 }
5253
5254 /* Remove entries from SYMS that corresponds to a renaming entity that
5255 is not visible from the function associated with CURRENT_BLOCK or
5256 that is superfluous due to the presence of more specific renaming
5257 information. Places surviving symbols in the initial entries of
5258 SYMS and returns the number of surviving symbols.
5259
5260 Rationale:
5261 First, in cases where an object renaming is implemented as a
5262 reference variable, GNAT may produce both the actual reference
5263 variable and the renaming encoding. In this case, we discard the
5264 latter.
5265
5266 Second, GNAT emits a type following a specified encoding for each renaming
5267 entity. Unfortunately, STABS currently does not support the definition
5268 of types that are local to a given lexical block, so all renamings types
5269 are emitted at library level. As a consequence, if an application
5270 contains two renaming entities using the same name, and a user tries to
5271 print the value of one of these entities, the result of the ada symbol
5272 lookup will also contain the wrong renaming type.
5273
5274 This function partially covers for this limitation by attempting to
5275 remove from the SYMS list renaming symbols that should be visible
5276 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5277 method with the current information available. The implementation
5278 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5279
5280 - When the user tries to print a rename in a function while there
5281 is another rename entity defined in a package: Normally, the
5282 rename in the function has precedence over the rename in the
5283 package, so the latter should be removed from the list. This is
5284 currently not the case.
5285
5286 - This function will incorrectly remove valid renames if
5287 the CURRENT_BLOCK corresponds to a function which symbol name
5288 has been changed by an "Export" pragma. As a consequence,
5289 the user will be unable to print such rename entities. */
5290
5291 static int
5292 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5293 const struct block *current_block)
5294 {
5295 struct symbol *current_function;
5296 const char *current_function_name;
5297 int i;
5298 int is_new_style_renaming;
5299
5300 /* If there is both a renaming foo___XR... encoded as a variable and
5301 a simple variable foo in the same block, discard the latter.
5302 First, zero out such symbols, then compress. */
5303 is_new_style_renaming = 0;
5304 for (i = 0; i < syms->size (); i += 1)
5305 {
5306 struct symbol *sym = (*syms)[i].symbol;
5307 const struct block *block = (*syms)[i].block;
5308 const char *name;
5309 const char *suffix;
5310
5311 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5312 continue;
5313 name = SYMBOL_LINKAGE_NAME (sym);
5314 suffix = strstr (name, "___XR");
5315
5316 if (suffix != NULL)
5317 {
5318 int name_len = suffix - name;
5319 int j;
5320
5321 is_new_style_renaming = 1;
5322 for (j = 0; j < syms->size (); j += 1)
5323 if (i != j && (*syms)[j].symbol != NULL
5324 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5325 name_len) == 0
5326 && block == (*syms)[j].block)
5327 (*syms)[j].symbol = NULL;
5328 }
5329 }
5330 if (is_new_style_renaming)
5331 {
5332 int j, k;
5333
5334 for (j = k = 0; j < syms->size (); j += 1)
5335 if ((*syms)[j].symbol != NULL)
5336 {
5337 (*syms)[k] = (*syms)[j];
5338 k += 1;
5339 }
5340 return k;
5341 }
5342
5343 /* Extract the function name associated to CURRENT_BLOCK.
5344 Abort if unable to do so. */
5345
5346 if (current_block == NULL)
5347 return syms->size ();
5348
5349 current_function = block_linkage_function (current_block);
5350 if (current_function == NULL)
5351 return syms->size ();
5352
5353 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5354 if (current_function_name == NULL)
5355 return syms->size ();
5356
5357 /* Check each of the symbols, and remove it from the list if it is
5358 a type corresponding to a renaming that is out of the scope of
5359 the current block. */
5360
5361 i = 0;
5362 while (i < syms->size ())
5363 {
5364 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5365 == ADA_OBJECT_RENAMING
5366 && old_renaming_is_invisible ((*syms)[i].symbol,
5367 current_function_name))
5368 syms->erase (syms->begin () + i);
5369 else
5370 i += 1;
5371 }
5372
5373 return syms->size ();
5374 }
5375
5376 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5377 whose name and domain match NAME and DOMAIN respectively.
5378 If no match was found, then extend the search to "enclosing"
5379 routines (in other words, if we're inside a nested function,
5380 search the symbols defined inside the enclosing functions).
5381 If WILD_MATCH_P is nonzero, perform the naming matching in
5382 "wild" mode (see function "wild_match" for more info).
5383
5384 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5385
5386 static void
5387 ada_add_local_symbols (struct obstack *obstackp,
5388 const lookup_name_info &lookup_name,
5389 const struct block *block, domain_enum domain)
5390 {
5391 int block_depth = 0;
5392
5393 while (block != NULL)
5394 {
5395 block_depth += 1;
5396 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5397
5398 /* If we found a non-function match, assume that's the one. */
5399 if (is_nonfunction (defns_collected (obstackp, 0),
5400 num_defns_collected (obstackp)))
5401 return;
5402
5403 block = BLOCK_SUPERBLOCK (block);
5404 }
5405
5406 /* If no luck so far, try to find NAME as a local symbol in some lexically
5407 enclosing subprogram. */
5408 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5409 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5410 }
5411
5412 /* An object of this type is used as the user_data argument when
5413 calling the map_matching_symbols method. */
5414
5415 struct match_data
5416 {
5417 struct objfile *objfile;
5418 struct obstack *obstackp;
5419 struct symbol *arg_sym;
5420 int found_sym;
5421 };
5422
5423 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5424 to a list of symbols. DATA0 is a pointer to a struct match_data *
5425 containing the obstack that collects the symbol list, the file that SYM
5426 must come from, a flag indicating whether a non-argument symbol has
5427 been found in the current block, and the last argument symbol
5428 passed in SYM within the current block (if any). When SYM is null,
5429 marking the end of a block, the argument symbol is added if no
5430 other has been found. */
5431
5432 static int
5433 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5434 {
5435 struct match_data *data = (struct match_data *) data0;
5436
5437 if (sym == NULL)
5438 {
5439 if (!data->found_sym && data->arg_sym != NULL)
5440 add_defn_to_vec (data->obstackp,
5441 fixup_symbol_section (data->arg_sym, data->objfile),
5442 block);
5443 data->found_sym = 0;
5444 data->arg_sym = NULL;
5445 }
5446 else
5447 {
5448 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5449 return 0;
5450 else if (SYMBOL_IS_ARGUMENT (sym))
5451 data->arg_sym = sym;
5452 else
5453 {
5454 data->found_sym = 1;
5455 add_defn_to_vec (data->obstackp,
5456 fixup_symbol_section (sym, data->objfile),
5457 block);
5458 }
5459 }
5460 return 0;
5461 }
5462
5463 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5464 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5465 symbols to OBSTACKP. Return whether we found such symbols. */
5466
5467 static int
5468 ada_add_block_renamings (struct obstack *obstackp,
5469 const struct block *block,
5470 const lookup_name_info &lookup_name,
5471 domain_enum domain)
5472 {
5473 struct using_direct *renaming;
5474 int defns_mark = num_defns_collected (obstackp);
5475
5476 symbol_name_matcher_ftype *name_match
5477 = ada_get_symbol_name_matcher (lookup_name);
5478
5479 for (renaming = block_using (block);
5480 renaming != NULL;
5481 renaming = renaming->next)
5482 {
5483 const char *r_name;
5484
5485 /* Avoid infinite recursions: skip this renaming if we are actually
5486 already traversing it.
5487
5488 Currently, symbol lookup in Ada don't use the namespace machinery from
5489 C++/Fortran support: skip namespace imports that use them. */
5490 if (renaming->searched
5491 || (renaming->import_src != NULL
5492 && renaming->import_src[0] != '\0')
5493 || (renaming->import_dest != NULL
5494 && renaming->import_dest[0] != '\0'))
5495 continue;
5496 renaming->searched = 1;
5497
5498 /* TODO: here, we perform another name-based symbol lookup, which can
5499 pull its own multiple overloads. In theory, we should be able to do
5500 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5501 not a simple name. But in order to do this, we would need to enhance
5502 the DWARF reader to associate a symbol to this renaming, instead of a
5503 name. So, for now, we do something simpler: re-use the C++/Fortran
5504 namespace machinery. */
5505 r_name = (renaming->alias != NULL
5506 ? renaming->alias
5507 : renaming->declaration);
5508 if (name_match (r_name, lookup_name, NULL))
5509 {
5510 lookup_name_info decl_lookup_name (renaming->declaration,
5511 lookup_name.match_type ());
5512 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5513 1, NULL);
5514 }
5515 renaming->searched = 0;
5516 }
5517 return num_defns_collected (obstackp) != defns_mark;
5518 }
5519
5520 /* Implements compare_names, but only applying the comparision using
5521 the given CASING. */
5522
5523 static int
5524 compare_names_with_case (const char *string1, const char *string2,
5525 enum case_sensitivity casing)
5526 {
5527 while (*string1 != '\0' && *string2 != '\0')
5528 {
5529 char c1, c2;
5530
5531 if (isspace (*string1) || isspace (*string2))
5532 return strcmp_iw_ordered (string1, string2);
5533
5534 if (casing == case_sensitive_off)
5535 {
5536 c1 = tolower (*string1);
5537 c2 = tolower (*string2);
5538 }
5539 else
5540 {
5541 c1 = *string1;
5542 c2 = *string2;
5543 }
5544 if (c1 != c2)
5545 break;
5546
5547 string1 += 1;
5548 string2 += 1;
5549 }
5550
5551 switch (*string1)
5552 {
5553 case '(':
5554 return strcmp_iw_ordered (string1, string2);
5555 case '_':
5556 if (*string2 == '\0')
5557 {
5558 if (is_name_suffix (string1))
5559 return 0;
5560 else
5561 return 1;
5562 }
5563 /* FALLTHROUGH */
5564 default:
5565 if (*string2 == '(')
5566 return strcmp_iw_ordered (string1, string2);
5567 else
5568 {
5569 if (casing == case_sensitive_off)
5570 return tolower (*string1) - tolower (*string2);
5571 else
5572 return *string1 - *string2;
5573 }
5574 }
5575 }
5576
5577 /* Compare STRING1 to STRING2, with results as for strcmp.
5578 Compatible with strcmp_iw_ordered in that...
5579
5580 strcmp_iw_ordered (STRING1, STRING2) <= 0
5581
5582 ... implies...
5583
5584 compare_names (STRING1, STRING2) <= 0
5585
5586 (they may differ as to what symbols compare equal). */
5587
5588 static int
5589 compare_names (const char *string1, const char *string2)
5590 {
5591 int result;
5592
5593 /* Similar to what strcmp_iw_ordered does, we need to perform
5594 a case-insensitive comparison first, and only resort to
5595 a second, case-sensitive, comparison if the first one was
5596 not sufficient to differentiate the two strings. */
5597
5598 result = compare_names_with_case (string1, string2, case_sensitive_off);
5599 if (result == 0)
5600 result = compare_names_with_case (string1, string2, case_sensitive_on);
5601
5602 return result;
5603 }
5604
5605 /* Convenience function to get at the Ada encoded lookup name for
5606 LOOKUP_NAME, as a C string. */
5607
5608 static const char *
5609 ada_lookup_name (const lookup_name_info &lookup_name)
5610 {
5611 return lookup_name.ada ().lookup_name ().c_str ();
5612 }
5613
5614 /* Add to OBSTACKP all non-local symbols whose name and domain match
5615 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5616 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5617 symbols otherwise. */
5618
5619 static void
5620 add_nonlocal_symbols (struct obstack *obstackp,
5621 const lookup_name_info &lookup_name,
5622 domain_enum domain, int global)
5623 {
5624 struct objfile *objfile;
5625 struct compunit_symtab *cu;
5626 struct match_data data;
5627
5628 memset (&data, 0, sizeof data);
5629 data.obstackp = obstackp;
5630
5631 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5632
5633 ALL_OBJFILES (objfile)
5634 {
5635 data.objfile = objfile;
5636
5637 if (is_wild_match)
5638 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5639 domain, global,
5640 aux_add_nonlocal_symbols, &data,
5641 symbol_name_match_type::WILD,
5642 NULL);
5643 else
5644 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5645 domain, global,
5646 aux_add_nonlocal_symbols, &data,
5647 symbol_name_match_type::FULL,
5648 compare_names);
5649
5650 ALL_OBJFILE_COMPUNITS (objfile, cu)
5651 {
5652 const struct block *global_block
5653 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5654
5655 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5656 domain))
5657 data.found_sym = 1;
5658 }
5659 }
5660
5661 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5662 {
5663 const char *name = ada_lookup_name (lookup_name);
5664 std::string name1 = std::string ("<_ada_") + name + '>';
5665
5666 ALL_OBJFILES (objfile)
5667 {
5668 data.objfile = objfile;
5669 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5670 domain, global,
5671 aux_add_nonlocal_symbols,
5672 &data,
5673 symbol_name_match_type::FULL,
5674 compare_names);
5675 }
5676 }
5677 }
5678
5679 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5680 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5681 returning the number of matches. Add these to OBSTACKP.
5682
5683 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5684 symbol match within the nest of blocks whose innermost member is BLOCK,
5685 is the one match returned (no other matches in that or
5686 enclosing blocks is returned). If there are any matches in or
5687 surrounding BLOCK, then these alone are returned.
5688
5689 Names prefixed with "standard__" are handled specially:
5690 "standard__" is first stripped off (by the lookup_name
5691 constructor), and only static and global symbols are searched.
5692
5693 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5694 to lookup global symbols. */
5695
5696 static void
5697 ada_add_all_symbols (struct obstack *obstackp,
5698 const struct block *block,
5699 const lookup_name_info &lookup_name,
5700 domain_enum domain,
5701 int full_search,
5702 int *made_global_lookup_p)
5703 {
5704 struct symbol *sym;
5705
5706 if (made_global_lookup_p)
5707 *made_global_lookup_p = 0;
5708
5709 /* Special case: If the user specifies a symbol name inside package
5710 Standard, do a non-wild matching of the symbol name without
5711 the "standard__" prefix. This was primarily introduced in order
5712 to allow the user to specifically access the standard exceptions
5713 using, for instance, Standard.Constraint_Error when Constraint_Error
5714 is ambiguous (due to the user defining its own Constraint_Error
5715 entity inside its program). */
5716 if (lookup_name.ada ().standard_p ())
5717 block = NULL;
5718
5719 /* Check the non-global symbols. If we have ANY match, then we're done. */
5720
5721 if (block != NULL)
5722 {
5723 if (full_search)
5724 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5725 else
5726 {
5727 /* In the !full_search case we're are being called by
5728 ada_iterate_over_symbols, and we don't want to search
5729 superblocks. */
5730 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5731 }
5732 if (num_defns_collected (obstackp) > 0 || !full_search)
5733 return;
5734 }
5735
5736 /* No non-global symbols found. Check our cache to see if we have
5737 already performed this search before. If we have, then return
5738 the same result. */
5739
5740 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5741 domain, &sym, &block))
5742 {
5743 if (sym != NULL)
5744 add_defn_to_vec (obstackp, sym, block);
5745 return;
5746 }
5747
5748 if (made_global_lookup_p)
5749 *made_global_lookup_p = 1;
5750
5751 /* Search symbols from all global blocks. */
5752
5753 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5754
5755 /* Now add symbols from all per-file blocks if we've gotten no hits
5756 (not strictly correct, but perhaps better than an error). */
5757
5758 if (num_defns_collected (obstackp) == 0)
5759 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5760 }
5761
5762 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5763 is non-zero, enclosing scope and in global scopes, returning the number of
5764 matches.
5765 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5766 found and the blocks and symbol tables (if any) in which they were
5767 found.
5768
5769 When full_search is non-zero, any non-function/non-enumeral
5770 symbol match within the nest of blocks whose innermost member is BLOCK,
5771 is the one match returned (no other matches in that or
5772 enclosing blocks is returned). If there are any matches in or
5773 surrounding BLOCK, then these alone are returned.
5774
5775 Names prefixed with "standard__" are handled specially: "standard__"
5776 is first stripped off, and only static and global symbols are searched. */
5777
5778 static int
5779 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5780 const struct block *block,
5781 domain_enum domain,
5782 std::vector<struct block_symbol> *results,
5783 int full_search)
5784 {
5785 int syms_from_global_search;
5786 int ndefns;
5787 auto_obstack obstack;
5788
5789 ada_add_all_symbols (&obstack, block, lookup_name,
5790 domain, full_search, &syms_from_global_search);
5791
5792 ndefns = num_defns_collected (&obstack);
5793
5794 struct block_symbol *base = defns_collected (&obstack, 1);
5795 for (int i = 0; i < ndefns; ++i)
5796 results->push_back (base[i]);
5797
5798 ndefns = remove_extra_symbols (results);
5799
5800 if (ndefns == 0 && full_search && syms_from_global_search)
5801 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5802
5803 if (ndefns == 1 && full_search && syms_from_global_search)
5804 cache_symbol (ada_lookup_name (lookup_name), domain,
5805 (*results)[0].symbol, (*results)[0].block);
5806
5807 ndefns = remove_irrelevant_renamings (results, block);
5808
5809 return ndefns;
5810 }
5811
5812 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5813 in global scopes, returning the number of matches, and filling *RESULTS
5814 with (SYM,BLOCK) tuples.
5815
5816 See ada_lookup_symbol_list_worker for further details. */
5817
5818 int
5819 ada_lookup_symbol_list (const char *name, const struct block *block,
5820 domain_enum domain,
5821 std::vector<struct block_symbol> *results)
5822 {
5823 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5824 lookup_name_info lookup_name (name, name_match_type);
5825
5826 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5827 }
5828
5829 /* Implementation of the la_iterate_over_symbols method. */
5830
5831 static void
5832 ada_iterate_over_symbols
5833 (const struct block *block, const lookup_name_info &name,
5834 domain_enum domain,
5835 gdb::function_view<symbol_found_callback_ftype> callback)
5836 {
5837 int ndefs, i;
5838 std::vector<struct block_symbol> results;
5839
5840 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5841
5842 for (i = 0; i < ndefs; ++i)
5843 {
5844 if (!callback (results[i].symbol))
5845 break;
5846 }
5847 }
5848
5849 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5850 to 1, but choosing the first symbol found if there are multiple
5851 choices.
5852
5853 The result is stored in *INFO, which must be non-NULL.
5854 If no match is found, INFO->SYM is set to NULL. */
5855
5856 void
5857 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5858 domain_enum domain,
5859 struct block_symbol *info)
5860 {
5861 /* Since we already have an encoded name, wrap it in '<>' to force a
5862 verbatim match. Otherwise, if the name happens to not look like
5863 an encoded name (because it doesn't include a "__"),
5864 ada_lookup_name_info would re-encode/fold it again, and that
5865 would e.g., incorrectly lowercase object renaming names like
5866 "R28b" -> "r28b". */
5867 std::string verbatim = std::string ("<") + name + '>';
5868
5869 gdb_assert (info != NULL);
5870 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5871 }
5872
5873 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5874 scope and in global scopes, or NULL if none. NAME is folded and
5875 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5876 choosing the first symbol if there are multiple choices.
5877 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5878
5879 struct block_symbol
5880 ada_lookup_symbol (const char *name, const struct block *block0,
5881 domain_enum domain, int *is_a_field_of_this)
5882 {
5883 if (is_a_field_of_this != NULL)
5884 *is_a_field_of_this = 0;
5885
5886 std::vector<struct block_symbol> candidates;
5887 int n_candidates;
5888
5889 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5890
5891 if (n_candidates == 0)
5892 return {};
5893
5894 block_symbol info = candidates[0];
5895 info.symbol = fixup_symbol_section (info.symbol, NULL);
5896 return info;
5897 }
5898
5899 static struct block_symbol
5900 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5901 const char *name,
5902 const struct block *block,
5903 const domain_enum domain)
5904 {
5905 struct block_symbol sym;
5906
5907 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5908 if (sym.symbol != NULL)
5909 return sym;
5910
5911 /* If we haven't found a match at this point, try the primitive
5912 types. In other languages, this search is performed before
5913 searching for global symbols in order to short-circuit that
5914 global-symbol search if it happens that the name corresponds
5915 to a primitive type. But we cannot do the same in Ada, because
5916 it is perfectly legitimate for a program to declare a type which
5917 has the same name as a standard type. If looking up a type in
5918 that situation, we have traditionally ignored the primitive type
5919 in favor of user-defined types. This is why, unlike most other
5920 languages, we search the primitive types this late and only after
5921 having searched the global symbols without success. */
5922
5923 if (domain == VAR_DOMAIN)
5924 {
5925 struct gdbarch *gdbarch;
5926
5927 if (block == NULL)
5928 gdbarch = target_gdbarch ();
5929 else
5930 gdbarch = block_gdbarch (block);
5931 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5932 if (sym.symbol != NULL)
5933 return sym;
5934 }
5935
5936 return (struct block_symbol) {NULL, NULL};
5937 }
5938
5939
5940 /* True iff STR is a possible encoded suffix of a normal Ada name
5941 that is to be ignored for matching purposes. Suffixes of parallel
5942 names (e.g., XVE) are not included here. Currently, the possible suffixes
5943 are given by any of the regular expressions:
5944
5945 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5946 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5947 TKB [subprogram suffix for task bodies]
5948 _E[0-9]+[bs]$ [protected object entry suffixes]
5949 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5950
5951 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5952 match is performed. This sequence is used to differentiate homonyms,
5953 is an optional part of a valid name suffix. */
5954
5955 static int
5956 is_name_suffix (const char *str)
5957 {
5958 int k;
5959 const char *matching;
5960 const int len = strlen (str);
5961
5962 /* Skip optional leading __[0-9]+. */
5963
5964 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5965 {
5966 str += 3;
5967 while (isdigit (str[0]))
5968 str += 1;
5969 }
5970
5971 /* [.$][0-9]+ */
5972
5973 if (str[0] == '.' || str[0] == '$')
5974 {
5975 matching = str + 1;
5976 while (isdigit (matching[0]))
5977 matching += 1;
5978 if (matching[0] == '\0')
5979 return 1;
5980 }
5981
5982 /* ___[0-9]+ */
5983
5984 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5985 {
5986 matching = str + 3;
5987 while (isdigit (matching[0]))
5988 matching += 1;
5989 if (matching[0] == '\0')
5990 return 1;
5991 }
5992
5993 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5994
5995 if (strcmp (str, "TKB") == 0)
5996 return 1;
5997
5998 #if 0
5999 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6000 with a N at the end. Unfortunately, the compiler uses the same
6001 convention for other internal types it creates. So treating
6002 all entity names that end with an "N" as a name suffix causes
6003 some regressions. For instance, consider the case of an enumerated
6004 type. To support the 'Image attribute, it creates an array whose
6005 name ends with N.
6006 Having a single character like this as a suffix carrying some
6007 information is a bit risky. Perhaps we should change the encoding
6008 to be something like "_N" instead. In the meantime, do not do
6009 the following check. */
6010 /* Protected Object Subprograms */
6011 if (len == 1 && str [0] == 'N')
6012 return 1;
6013 #endif
6014
6015 /* _E[0-9]+[bs]$ */
6016 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if ((matching[0] == 'b' || matching[0] == 's')
6022 && matching [1] == '\0')
6023 return 1;
6024 }
6025
6026 /* ??? We should not modify STR directly, as we are doing below. This
6027 is fine in this case, but may become problematic later if we find
6028 that this alternative did not work, and want to try matching
6029 another one from the begining of STR. Since we modified it, we
6030 won't be able to find the begining of the string anymore! */
6031 if (str[0] == 'X')
6032 {
6033 str += 1;
6034 while (str[0] != '_' && str[0] != '\0')
6035 {
6036 if (str[0] != 'n' && str[0] != 'b')
6037 return 0;
6038 str += 1;
6039 }
6040 }
6041
6042 if (str[0] == '\000')
6043 return 1;
6044
6045 if (str[0] == '_')
6046 {
6047 if (str[1] != '_' || str[2] == '\000')
6048 return 0;
6049 if (str[2] == '_')
6050 {
6051 if (strcmp (str + 3, "JM") == 0)
6052 return 1;
6053 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6054 the LJM suffix in favor of the JM one. But we will
6055 still accept LJM as a valid suffix for a reasonable
6056 amount of time, just to allow ourselves to debug programs
6057 compiled using an older version of GNAT. */
6058 if (strcmp (str + 3, "LJM") == 0)
6059 return 1;
6060 if (str[3] != 'X')
6061 return 0;
6062 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6063 || str[4] == 'U' || str[4] == 'P')
6064 return 1;
6065 if (str[4] == 'R' && str[5] != 'T')
6066 return 1;
6067 return 0;
6068 }
6069 if (!isdigit (str[2]))
6070 return 0;
6071 for (k = 3; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
6074 return 1;
6075 }
6076 if (str[0] == '$' && isdigit (str[1]))
6077 {
6078 for (k = 2; str[k] != '\0'; k += 1)
6079 if (!isdigit (str[k]) && str[k] != '_')
6080 return 0;
6081 return 1;
6082 }
6083 return 0;
6084 }
6085
6086 /* Return non-zero if the string starting at NAME and ending before
6087 NAME_END contains no capital letters. */
6088
6089 static int
6090 is_valid_name_for_wild_match (const char *name0)
6091 {
6092 const char *decoded_name = ada_decode (name0);
6093 int i;
6094
6095 /* If the decoded name starts with an angle bracket, it means that
6096 NAME0 does not follow the GNAT encoding format. It should then
6097 not be allowed as a possible wild match. */
6098 if (decoded_name[0] == '<')
6099 return 0;
6100
6101 for (i=0; decoded_name[i] != '\0'; i++)
6102 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6103 return 0;
6104
6105 return 1;
6106 }
6107
6108 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6109 that could start a simple name. Assumes that *NAMEP points into
6110 the string beginning at NAME0. */
6111
6112 static int
6113 advance_wild_match (const char **namep, const char *name0, int target0)
6114 {
6115 const char *name = *namep;
6116
6117 while (1)
6118 {
6119 int t0, t1;
6120
6121 t0 = *name;
6122 if (t0 == '_')
6123 {
6124 t1 = name[1];
6125 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6126 {
6127 name += 1;
6128 if (name == name0 + 5 && startswith (name0, "_ada"))
6129 break;
6130 else
6131 name += 1;
6132 }
6133 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6134 || name[2] == target0))
6135 {
6136 name += 2;
6137 break;
6138 }
6139 else
6140 return 0;
6141 }
6142 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6143 name += 1;
6144 else
6145 return 0;
6146 }
6147
6148 *namep = name;
6149 return 1;
6150 }
6151
6152 /* Return true iff NAME encodes a name of the form prefix.PATN.
6153 Ignores any informational suffixes of NAME (i.e., for which
6154 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6155 simple name. */
6156
6157 static bool
6158 wild_match (const char *name, const char *patn)
6159 {
6160 const char *p;
6161 const char *name0 = name;
6162
6163 while (1)
6164 {
6165 const char *match = name;
6166
6167 if (*name == *patn)
6168 {
6169 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6170 if (*p != *name)
6171 break;
6172 if (*p == '\0' && is_name_suffix (name))
6173 return match == name0 || is_valid_name_for_wild_match (name0);
6174
6175 if (name[-1] == '_')
6176 name -= 1;
6177 }
6178 if (!advance_wild_match (&name, name0, *patn))
6179 return false;
6180 }
6181 }
6182
6183 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6184 any trailing suffixes that encode debugging information or leading
6185 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6186 information that is ignored). */
6187
6188 static bool
6189 full_match (const char *sym_name, const char *search_name)
6190 {
6191 size_t search_name_len = strlen (search_name);
6192
6193 if (strncmp (sym_name, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len))
6195 return true;
6196
6197 if (startswith (sym_name, "_ada_")
6198 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6199 && is_name_suffix (sym_name + search_name_len + 5))
6200 return true;
6201
6202 return false;
6203 }
6204
6205 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6206 *defn_symbols, updating the list of symbols in OBSTACKP (if
6207 necessary). OBJFILE is the section containing BLOCK. */
6208
6209 static void
6210 ada_add_block_symbols (struct obstack *obstackp,
6211 const struct block *block,
6212 const lookup_name_info &lookup_name,
6213 domain_enum domain, struct objfile *objfile)
6214 {
6215 struct block_iterator iter;
6216 /* A matching argument symbol, if any. */
6217 struct symbol *arg_sym;
6218 /* Set true when we find a matching non-argument symbol. */
6219 int found_sym;
6220 struct symbol *sym;
6221
6222 arg_sym = NULL;
6223 found_sym = 0;
6224 for (sym = block_iter_match_first (block, lookup_name, &iter);
6225 sym != NULL;
6226 sym = block_iter_match_next (lookup_name, &iter))
6227 {
6228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6229 SYMBOL_DOMAIN (sym), domain))
6230 {
6231 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6232 {
6233 if (SYMBOL_IS_ARGUMENT (sym))
6234 arg_sym = sym;
6235 else
6236 {
6237 found_sym = 1;
6238 add_defn_to_vec (obstackp,
6239 fixup_symbol_section (sym, objfile),
6240 block);
6241 }
6242 }
6243 }
6244 }
6245
6246 /* Handle renamings. */
6247
6248 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6249 found_sym = 1;
6250
6251 if (!found_sym && arg_sym != NULL)
6252 {
6253 add_defn_to_vec (obstackp,
6254 fixup_symbol_section (arg_sym, objfile),
6255 block);
6256 }
6257
6258 if (!lookup_name.ada ().wild_match_p ())
6259 {
6260 arg_sym = NULL;
6261 found_sym = 0;
6262 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6263 const char *name = ada_lookup_name.c_str ();
6264 size_t name_len = ada_lookup_name.size ();
6265
6266 ALL_BLOCK_SYMBOLS (block, iter, sym)
6267 {
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
6270 {
6271 int cmp;
6272
6273 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6274 if (cmp == 0)
6275 {
6276 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6277 if (cmp == 0)
6278 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6279 name_len);
6280 }
6281
6282 if (cmp == 0
6283 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6284 {
6285 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6286 {
6287 if (SYMBOL_IS_ARGUMENT (sym))
6288 arg_sym = sym;
6289 else
6290 {
6291 found_sym = 1;
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (sym, objfile),
6294 block);
6295 }
6296 }
6297 }
6298 }
6299 }
6300
6301 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6302 They aren't parameters, right? */
6303 if (!found_sym && arg_sym != NULL)
6304 {
6305 add_defn_to_vec (obstackp,
6306 fixup_symbol_section (arg_sym, objfile),
6307 block);
6308 }
6309 }
6310 }
6311 \f
6312
6313 /* Symbol Completion */
6314
6315 /* See symtab.h. */
6316
6317 bool
6318 ada_lookup_name_info::matches
6319 (const char *sym_name,
6320 symbol_name_match_type match_type,
6321 completion_match_result *comp_match_res) const
6322 {
6323 bool match = false;
6324 const char *text = m_encoded_name.c_str ();
6325 size_t text_len = m_encoded_name.size ();
6326
6327 /* First, test against the fully qualified name of the symbol. */
6328
6329 if (strncmp (sym_name, text, text_len) == 0)
6330 match = true;
6331
6332 if (match && !m_encoded_p)
6333 {
6334 /* One needed check before declaring a positive match is to verify
6335 that iff we are doing a verbatim match, the decoded version
6336 of the symbol name starts with '<'. Otherwise, this symbol name
6337 is not a suitable completion. */
6338 const char *sym_name_copy = sym_name;
6339 bool has_angle_bracket;
6340
6341 sym_name = ada_decode (sym_name);
6342 has_angle_bracket = (sym_name[0] == '<');
6343 match = (has_angle_bracket == m_verbatim_p);
6344 sym_name = sym_name_copy;
6345 }
6346
6347 if (match && !m_verbatim_p)
6348 {
6349 /* When doing non-verbatim match, another check that needs to
6350 be done is to verify that the potentially matching symbol name
6351 does not include capital letters, because the ada-mode would
6352 not be able to understand these symbol names without the
6353 angle bracket notation. */
6354 const char *tmp;
6355
6356 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6357 if (*tmp != '\0')
6358 match = false;
6359 }
6360
6361 /* Second: Try wild matching... */
6362
6363 if (!match && m_wild_match_p)
6364 {
6365 /* Since we are doing wild matching, this means that TEXT
6366 may represent an unqualified symbol name. We therefore must
6367 also compare TEXT against the unqualified name of the symbol. */
6368 sym_name = ada_unqualified_name (ada_decode (sym_name));
6369
6370 if (strncmp (sym_name, text, text_len) == 0)
6371 match = true;
6372 }
6373
6374 /* Finally: If we found a match, prepare the result to return. */
6375
6376 if (!match)
6377 return false;
6378
6379 if (comp_match_res != NULL)
6380 {
6381 std::string &match_str = comp_match_res->match.storage ();
6382
6383 if (!m_encoded_p)
6384 match_str = ada_decode (sym_name);
6385 else
6386 {
6387 if (m_verbatim_p)
6388 match_str = add_angle_brackets (sym_name);
6389 else
6390 match_str = sym_name;
6391
6392 }
6393
6394 comp_match_res->set_match (match_str.c_str ());
6395 }
6396
6397 return true;
6398 }
6399
6400 /* Add the list of possible symbol names completing TEXT to TRACKER.
6401 WORD is the entire command on which completion is made. */
6402
6403 static void
6404 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6405 complete_symbol_mode mode,
6406 symbol_name_match_type name_match_type,
6407 const char *text, const char *word,
6408 enum type_code code)
6409 {
6410 struct symbol *sym;
6411 struct compunit_symtab *s;
6412 struct minimal_symbol *msymbol;
6413 struct objfile *objfile;
6414 const struct block *b, *surrounding_static_block = 0;
6415 struct block_iterator iter;
6416
6417 gdb_assert (code == TYPE_CODE_UNDEF);
6418
6419 lookup_name_info lookup_name (text, name_match_type, true);
6420
6421 /* First, look at the partial symtab symbols. */
6422 expand_symtabs_matching (NULL,
6423 lookup_name,
6424 NULL,
6425 NULL,
6426 ALL_DOMAIN);
6427
6428 /* At this point scan through the misc symbol vectors and add each
6429 symbol you find to the list. Eventually we want to ignore
6430 anything that isn't a text symbol (everything else will be
6431 handled by the psymtab code above). */
6432
6433 ALL_MSYMBOLS (objfile, msymbol)
6434 {
6435 QUIT;
6436
6437 if (completion_skip_symbol (mode, msymbol))
6438 continue;
6439
6440 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6441
6442 /* Ada minimal symbols won't have their language set to Ada. If
6443 we let completion_list_add_name compare using the
6444 default/C-like matcher, then when completing e.g., symbols in a
6445 package named "pck", we'd match internal Ada symbols like
6446 "pckS", which are invalid in an Ada expression, unless you wrap
6447 them in '<' '>' to request a verbatim match.
6448
6449 Unfortunately, some Ada encoded names successfully demangle as
6450 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6451 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6452 with the wrong language set. Paper over that issue here. */
6453 if (symbol_language == language_auto
6454 || symbol_language == language_cplus)
6455 symbol_language = language_ada;
6456
6457 completion_list_add_name (tracker,
6458 symbol_language,
6459 MSYMBOL_LINKAGE_NAME (msymbol),
6460 lookup_name, text, word);
6461 }
6462
6463 /* Search upwards from currently selected frame (so that we can
6464 complete on local vars. */
6465
6466 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6467 {
6468 if (!BLOCK_SUPERBLOCK (b))
6469 surrounding_static_block = b; /* For elmin of dups */
6470
6471 ALL_BLOCK_SYMBOLS (b, iter, sym)
6472 {
6473 if (completion_skip_symbol (mode, sym))
6474 continue;
6475
6476 completion_list_add_name (tracker,
6477 SYMBOL_LANGUAGE (sym),
6478 SYMBOL_LINKAGE_NAME (sym),
6479 lookup_name, text, word);
6480 }
6481 }
6482
6483 /* Go through the symtabs and check the externs and statics for
6484 symbols which match. */
6485
6486 ALL_COMPUNITS (objfile, s)
6487 {
6488 QUIT;
6489 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6490 ALL_BLOCK_SYMBOLS (b, iter, sym)
6491 {
6492 if (completion_skip_symbol (mode, sym))
6493 continue;
6494
6495 completion_list_add_name (tracker,
6496 SYMBOL_LANGUAGE (sym),
6497 SYMBOL_LINKAGE_NAME (sym),
6498 lookup_name, text, word);
6499 }
6500 }
6501
6502 ALL_COMPUNITS (objfile, s)
6503 {
6504 QUIT;
6505 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6506 /* Don't do this block twice. */
6507 if (b == surrounding_static_block)
6508 continue;
6509 ALL_BLOCK_SYMBOLS (b, iter, sym)
6510 {
6511 if (completion_skip_symbol (mode, sym))
6512 continue;
6513
6514 completion_list_add_name (tracker,
6515 SYMBOL_LANGUAGE (sym),
6516 SYMBOL_LINKAGE_NAME (sym),
6517 lookup_name, text, word);
6518 }
6519 }
6520 }
6521
6522 /* Field Access */
6523
6524 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6525 for tagged types. */
6526
6527 static int
6528 ada_is_dispatch_table_ptr_type (struct type *type)
6529 {
6530 const char *name;
6531
6532 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6533 return 0;
6534
6535 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6536 if (name == NULL)
6537 return 0;
6538
6539 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6540 }
6541
6542 /* Return non-zero if TYPE is an interface tag. */
6543
6544 static int
6545 ada_is_interface_tag (struct type *type)
6546 {
6547 const char *name = TYPE_NAME (type);
6548
6549 if (name == NULL)
6550 return 0;
6551
6552 return (strcmp (name, "ada__tags__interface_tag") == 0);
6553 }
6554
6555 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6556 to be invisible to users. */
6557
6558 int
6559 ada_is_ignored_field (struct type *type, int field_num)
6560 {
6561 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6562 return 1;
6563
6564 /* Check the name of that field. */
6565 {
6566 const char *name = TYPE_FIELD_NAME (type, field_num);
6567
6568 /* Anonymous field names should not be printed.
6569 brobecker/2007-02-20: I don't think this can actually happen
6570 but we don't want to print the value of annonymous fields anyway. */
6571 if (name == NULL)
6572 return 1;
6573
6574 /* Normally, fields whose name start with an underscore ("_")
6575 are fields that have been internally generated by the compiler,
6576 and thus should not be printed. The "_parent" field is special,
6577 however: This is a field internally generated by the compiler
6578 for tagged types, and it contains the components inherited from
6579 the parent type. This field should not be printed as is, but
6580 should not be ignored either. */
6581 if (name[0] == '_' && !startswith (name, "_parent"))
6582 return 1;
6583 }
6584
6585 /* If this is the dispatch table of a tagged type or an interface tag,
6586 then ignore. */
6587 if (ada_is_tagged_type (type, 1)
6588 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6589 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6590 return 1;
6591
6592 /* Not a special field, so it should not be ignored. */
6593 return 0;
6594 }
6595
6596 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6597 pointer or reference type whose ultimate target has a tag field. */
6598
6599 int
6600 ada_is_tagged_type (struct type *type, int refok)
6601 {
6602 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6603 }
6604
6605 /* True iff TYPE represents the type of X'Tag */
6606
6607 int
6608 ada_is_tag_type (struct type *type)
6609 {
6610 type = ada_check_typedef (type);
6611
6612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6613 return 0;
6614 else
6615 {
6616 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6617
6618 return (name != NULL
6619 && strcmp (name, "ada__tags__dispatch_table") == 0);
6620 }
6621 }
6622
6623 /* The type of the tag on VAL. */
6624
6625 struct type *
6626 ada_tag_type (struct value *val)
6627 {
6628 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6629 }
6630
6631 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6632 retired at Ada 05). */
6633
6634 static int
6635 is_ada95_tag (struct value *tag)
6636 {
6637 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6638 }
6639
6640 /* The value of the tag on VAL. */
6641
6642 struct value *
6643 ada_value_tag (struct value *val)
6644 {
6645 return ada_value_struct_elt (val, "_tag", 0);
6646 }
6647
6648 /* The value of the tag on the object of type TYPE whose contents are
6649 saved at VALADDR, if it is non-null, or is at memory address
6650 ADDRESS. */
6651
6652 static struct value *
6653 value_tag_from_contents_and_address (struct type *type,
6654 const gdb_byte *valaddr,
6655 CORE_ADDR address)
6656 {
6657 int tag_byte_offset;
6658 struct type *tag_type;
6659
6660 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6661 NULL, NULL, NULL))
6662 {
6663 const gdb_byte *valaddr1 = ((valaddr == NULL)
6664 ? NULL
6665 : valaddr + tag_byte_offset);
6666 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6667
6668 return value_from_contents_and_address (tag_type, valaddr1, address1);
6669 }
6670 return NULL;
6671 }
6672
6673 static struct type *
6674 type_from_tag (struct value *tag)
6675 {
6676 const char *type_name = ada_tag_name (tag);
6677
6678 if (type_name != NULL)
6679 return ada_find_any_type (ada_encode (type_name));
6680 return NULL;
6681 }
6682
6683 /* Given a value OBJ of a tagged type, return a value of this
6684 type at the base address of the object. The base address, as
6685 defined in Ada.Tags, it is the address of the primary tag of
6686 the object, and therefore where the field values of its full
6687 view can be fetched. */
6688
6689 struct value *
6690 ada_tag_value_at_base_address (struct value *obj)
6691 {
6692 struct value *val;
6693 LONGEST offset_to_top = 0;
6694 struct type *ptr_type, *obj_type;
6695 struct value *tag;
6696 CORE_ADDR base_address;
6697
6698 obj_type = value_type (obj);
6699
6700 /* It is the responsability of the caller to deref pointers. */
6701
6702 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6703 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6704 return obj;
6705
6706 tag = ada_value_tag (obj);
6707 if (!tag)
6708 return obj;
6709
6710 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6711
6712 if (is_ada95_tag (tag))
6713 return obj;
6714
6715 ptr_type = language_lookup_primitive_type
6716 (language_def (language_ada), target_gdbarch(), "storage_offset");
6717 ptr_type = lookup_pointer_type (ptr_type);
6718 val = value_cast (ptr_type, tag);
6719 if (!val)
6720 return obj;
6721
6722 /* It is perfectly possible that an exception be raised while
6723 trying to determine the base address, just like for the tag;
6724 see ada_tag_name for more details. We do not print the error
6725 message for the same reason. */
6726
6727 TRY
6728 {
6729 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6730 }
6731
6732 CATCH (e, RETURN_MASK_ERROR)
6733 {
6734 return obj;
6735 }
6736 END_CATCH
6737
6738 /* If offset is null, nothing to do. */
6739
6740 if (offset_to_top == 0)
6741 return obj;
6742
6743 /* -1 is a special case in Ada.Tags; however, what should be done
6744 is not quite clear from the documentation. So do nothing for
6745 now. */
6746
6747 if (offset_to_top == -1)
6748 return obj;
6749
6750 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6751 from the base address. This was however incompatible with
6752 C++ dispatch table: C++ uses a *negative* value to *add*
6753 to the base address. Ada's convention has therefore been
6754 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6755 use the same convention. Here, we support both cases by
6756 checking the sign of OFFSET_TO_TOP. */
6757
6758 if (offset_to_top > 0)
6759 offset_to_top = -offset_to_top;
6760
6761 base_address = value_address (obj) + offset_to_top;
6762 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6763
6764 /* Make sure that we have a proper tag at the new address.
6765 Otherwise, offset_to_top is bogus (which can happen when
6766 the object is not initialized yet). */
6767
6768 if (!tag)
6769 return obj;
6770
6771 obj_type = type_from_tag (tag);
6772
6773 if (!obj_type)
6774 return obj;
6775
6776 return value_from_contents_and_address (obj_type, NULL, base_address);
6777 }
6778
6779 /* Return the "ada__tags__type_specific_data" type. */
6780
6781 static struct type *
6782 ada_get_tsd_type (struct inferior *inf)
6783 {
6784 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6785
6786 if (data->tsd_type == 0)
6787 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6788 return data->tsd_type;
6789 }
6790
6791 /* Return the TSD (type-specific data) associated to the given TAG.
6792 TAG is assumed to be the tag of a tagged-type entity.
6793
6794 May return NULL if we are unable to get the TSD. */
6795
6796 static struct value *
6797 ada_get_tsd_from_tag (struct value *tag)
6798 {
6799 struct value *val;
6800 struct type *type;
6801
6802 /* First option: The TSD is simply stored as a field of our TAG.
6803 Only older versions of GNAT would use this format, but we have
6804 to test it first, because there are no visible markers for
6805 the current approach except the absence of that field. */
6806
6807 val = ada_value_struct_elt (tag, "tsd", 1);
6808 if (val)
6809 return val;
6810
6811 /* Try the second representation for the dispatch table (in which
6812 there is no explicit 'tsd' field in the referent of the tag pointer,
6813 and instead the tsd pointer is stored just before the dispatch
6814 table. */
6815
6816 type = ada_get_tsd_type (current_inferior());
6817 if (type == NULL)
6818 return NULL;
6819 type = lookup_pointer_type (lookup_pointer_type (type));
6820 val = value_cast (type, tag);
6821 if (val == NULL)
6822 return NULL;
6823 return value_ind (value_ptradd (val, -1));
6824 }
6825
6826 /* Given the TSD of a tag (type-specific data), return a string
6827 containing the name of the associated type.
6828
6829 The returned value is good until the next call. May return NULL
6830 if we are unable to determine the tag name. */
6831
6832 static char *
6833 ada_tag_name_from_tsd (struct value *tsd)
6834 {
6835 static char name[1024];
6836 char *p;
6837 struct value *val;
6838
6839 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6840 if (val == NULL)
6841 return NULL;
6842 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6843 for (p = name; *p != '\0'; p += 1)
6844 if (isalpha (*p))
6845 *p = tolower (*p);
6846 return name;
6847 }
6848
6849 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6850 a C string.
6851
6852 Return NULL if the TAG is not an Ada tag, or if we were unable to
6853 determine the name of that tag. The result is good until the next
6854 call. */
6855
6856 const char *
6857 ada_tag_name (struct value *tag)
6858 {
6859 char *name = NULL;
6860
6861 if (!ada_is_tag_type (value_type (tag)))
6862 return NULL;
6863
6864 /* It is perfectly possible that an exception be raised while trying
6865 to determine the TAG's name, even under normal circumstances:
6866 The associated variable may be uninitialized or corrupted, for
6867 instance. We do not let any exception propagate past this point.
6868 instead we return NULL.
6869
6870 We also do not print the error message either (which often is very
6871 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6872 the caller print a more meaningful message if necessary. */
6873 TRY
6874 {
6875 struct value *tsd = ada_get_tsd_from_tag (tag);
6876
6877 if (tsd != NULL)
6878 name = ada_tag_name_from_tsd (tsd);
6879 }
6880 CATCH (e, RETURN_MASK_ERROR)
6881 {
6882 }
6883 END_CATCH
6884
6885 return name;
6886 }
6887
6888 /* The parent type of TYPE, or NULL if none. */
6889
6890 struct type *
6891 ada_parent_type (struct type *type)
6892 {
6893 int i;
6894
6895 type = ada_check_typedef (type);
6896
6897 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6898 return NULL;
6899
6900 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6901 if (ada_is_parent_field (type, i))
6902 {
6903 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6904
6905 /* If the _parent field is a pointer, then dereference it. */
6906 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6907 parent_type = TYPE_TARGET_TYPE (parent_type);
6908 /* If there is a parallel XVS type, get the actual base type. */
6909 parent_type = ada_get_base_type (parent_type);
6910
6911 return ada_check_typedef (parent_type);
6912 }
6913
6914 return NULL;
6915 }
6916
6917 /* True iff field number FIELD_NUM of structure type TYPE contains the
6918 parent-type (inherited) fields of a derived type. Assumes TYPE is
6919 a structure type with at least FIELD_NUM+1 fields. */
6920
6921 int
6922 ada_is_parent_field (struct type *type, int field_num)
6923 {
6924 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6925
6926 return (name != NULL
6927 && (startswith (name, "PARENT")
6928 || startswith (name, "_parent")));
6929 }
6930
6931 /* True iff field number FIELD_NUM of structure type TYPE is a
6932 transparent wrapper field (which should be silently traversed when doing
6933 field selection and flattened when printing). Assumes TYPE is a
6934 structure type with at least FIELD_NUM+1 fields. Such fields are always
6935 structures. */
6936
6937 int
6938 ada_is_wrapper_field (struct type *type, int field_num)
6939 {
6940 const char *name = TYPE_FIELD_NAME (type, field_num);
6941
6942 if (name != NULL && strcmp (name, "RETVAL") == 0)
6943 {
6944 /* This happens in functions with "out" or "in out" parameters
6945 which are passed by copy. For such functions, GNAT describes
6946 the function's return type as being a struct where the return
6947 value is in a field called RETVAL, and where the other "out"
6948 or "in out" parameters are fields of that struct. This is not
6949 a wrapper. */
6950 return 0;
6951 }
6952
6953 return (name != NULL
6954 && (startswith (name, "PARENT")
6955 || strcmp (name, "REP") == 0
6956 || startswith (name, "_parent")
6957 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6958 }
6959
6960 /* True iff field number FIELD_NUM of structure or union type TYPE
6961 is a variant wrapper. Assumes TYPE is a structure type with at least
6962 FIELD_NUM+1 fields. */
6963
6964 int
6965 ada_is_variant_part (struct type *type, int field_num)
6966 {
6967 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6968
6969 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6970 || (is_dynamic_field (type, field_num)
6971 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6972 == TYPE_CODE_UNION)));
6973 }
6974
6975 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6976 whose discriminants are contained in the record type OUTER_TYPE,
6977 returns the type of the controlling discriminant for the variant.
6978 May return NULL if the type could not be found. */
6979
6980 struct type *
6981 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6982 {
6983 const char *name = ada_variant_discrim_name (var_type);
6984
6985 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6986 }
6987
6988 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6989 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6990 represents a 'when others' clause; otherwise 0. */
6991
6992 int
6993 ada_is_others_clause (struct type *type, int field_num)
6994 {
6995 const char *name = TYPE_FIELD_NAME (type, field_num);
6996
6997 return (name != NULL && name[0] == 'O');
6998 }
6999
7000 /* Assuming that TYPE0 is the type of the variant part of a record,
7001 returns the name of the discriminant controlling the variant.
7002 The value is valid until the next call to ada_variant_discrim_name. */
7003
7004 const char *
7005 ada_variant_discrim_name (struct type *type0)
7006 {
7007 static char *result = NULL;
7008 static size_t result_len = 0;
7009 struct type *type;
7010 const char *name;
7011 const char *discrim_end;
7012 const char *discrim_start;
7013
7014 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7015 type = TYPE_TARGET_TYPE (type0);
7016 else
7017 type = type0;
7018
7019 name = ada_type_name (type);
7020
7021 if (name == NULL || name[0] == '\000')
7022 return "";
7023
7024 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7025 discrim_end -= 1)
7026 {
7027 if (startswith (discrim_end, "___XVN"))
7028 break;
7029 }
7030 if (discrim_end == name)
7031 return "";
7032
7033 for (discrim_start = discrim_end; discrim_start != name + 3;
7034 discrim_start -= 1)
7035 {
7036 if (discrim_start == name + 1)
7037 return "";
7038 if ((discrim_start > name + 3
7039 && startswith (discrim_start - 3, "___"))
7040 || discrim_start[-1] == '.')
7041 break;
7042 }
7043
7044 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7045 strncpy (result, discrim_start, discrim_end - discrim_start);
7046 result[discrim_end - discrim_start] = '\0';
7047 return result;
7048 }
7049
7050 /* Scan STR for a subtype-encoded number, beginning at position K.
7051 Put the position of the character just past the number scanned in
7052 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7053 Return 1 if there was a valid number at the given position, and 0
7054 otherwise. A "subtype-encoded" number consists of the absolute value
7055 in decimal, followed by the letter 'm' to indicate a negative number.
7056 Assumes 0m does not occur. */
7057
7058 int
7059 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7060 {
7061 ULONGEST RU;
7062
7063 if (!isdigit (str[k]))
7064 return 0;
7065
7066 /* Do it the hard way so as not to make any assumption about
7067 the relationship of unsigned long (%lu scan format code) and
7068 LONGEST. */
7069 RU = 0;
7070 while (isdigit (str[k]))
7071 {
7072 RU = RU * 10 + (str[k] - '0');
7073 k += 1;
7074 }
7075
7076 if (str[k] == 'm')
7077 {
7078 if (R != NULL)
7079 *R = (-(LONGEST) (RU - 1)) - 1;
7080 k += 1;
7081 }
7082 else if (R != NULL)
7083 *R = (LONGEST) RU;
7084
7085 /* NOTE on the above: Technically, C does not say what the results of
7086 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7087 number representable as a LONGEST (although either would probably work
7088 in most implementations). When RU>0, the locution in the then branch
7089 above is always equivalent to the negative of RU. */
7090
7091 if (new_k != NULL)
7092 *new_k = k;
7093 return 1;
7094 }
7095
7096 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7097 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7098 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7099
7100 int
7101 ada_in_variant (LONGEST val, struct type *type, int field_num)
7102 {
7103 const char *name = TYPE_FIELD_NAME (type, field_num);
7104 int p;
7105
7106 p = 0;
7107 while (1)
7108 {
7109 switch (name[p])
7110 {
7111 case '\0':
7112 return 0;
7113 case 'S':
7114 {
7115 LONGEST W;
7116
7117 if (!ada_scan_number (name, p + 1, &W, &p))
7118 return 0;
7119 if (val == W)
7120 return 1;
7121 break;
7122 }
7123 case 'R':
7124 {
7125 LONGEST L, U;
7126
7127 if (!ada_scan_number (name, p + 1, &L, &p)
7128 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7129 return 0;
7130 if (val >= L && val <= U)
7131 return 1;
7132 break;
7133 }
7134 case 'O':
7135 return 1;
7136 default:
7137 return 0;
7138 }
7139 }
7140 }
7141
7142 /* FIXME: Lots of redundancy below. Try to consolidate. */
7143
7144 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7145 ARG_TYPE, extract and return the value of one of its (non-static)
7146 fields. FIELDNO says which field. Differs from value_primitive_field
7147 only in that it can handle packed values of arbitrary type. */
7148
7149 static struct value *
7150 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7151 struct type *arg_type)
7152 {
7153 struct type *type;
7154
7155 arg_type = ada_check_typedef (arg_type);
7156 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7157
7158 /* Handle packed fields. */
7159
7160 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7161 {
7162 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7163 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7164
7165 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7166 offset + bit_pos / 8,
7167 bit_pos % 8, bit_size, type);
7168 }
7169 else
7170 return value_primitive_field (arg1, offset, fieldno, arg_type);
7171 }
7172
7173 /* Find field with name NAME in object of type TYPE. If found,
7174 set the following for each argument that is non-null:
7175 - *FIELD_TYPE_P to the field's type;
7176 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7177 an object of that type;
7178 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7179 - *BIT_SIZE_P to its size in bits if the field is packed, and
7180 0 otherwise;
7181 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7182 fields up to but not including the desired field, or by the total
7183 number of fields if not found. A NULL value of NAME never
7184 matches; the function just counts visible fields in this case.
7185
7186 Notice that we need to handle when a tagged record hierarchy
7187 has some components with the same name, like in this scenario:
7188
7189 type Top_T is tagged record
7190 N : Integer := 1;
7191 U : Integer := 974;
7192 A : Integer := 48;
7193 end record;
7194
7195 type Middle_T is new Top.Top_T with record
7196 N : Character := 'a';
7197 C : Integer := 3;
7198 end record;
7199
7200 type Bottom_T is new Middle.Middle_T with record
7201 N : Float := 4.0;
7202 C : Character := '5';
7203 X : Integer := 6;
7204 A : Character := 'J';
7205 end record;
7206
7207 Let's say we now have a variable declared and initialized as follow:
7208
7209 TC : Top_A := new Bottom_T;
7210
7211 And then we use this variable to call this function
7212
7213 procedure Assign (Obj: in out Top_T; TV : Integer);
7214
7215 as follow:
7216
7217 Assign (Top_T (B), 12);
7218
7219 Now, we're in the debugger, and we're inside that procedure
7220 then and we want to print the value of obj.c:
7221
7222 Usually, the tagged record or one of the parent type owns the
7223 component to print and there's no issue but in this particular
7224 case, what does it mean to ask for Obj.C? Since the actual
7225 type for object is type Bottom_T, it could mean two things: type
7226 component C from the Middle_T view, but also component C from
7227 Bottom_T. So in that "undefined" case, when the component is
7228 not found in the non-resolved type (which includes all the
7229 components of the parent type), then resolve it and see if we
7230 get better luck once expanded.
7231
7232 In the case of homonyms in the derived tagged type, we don't
7233 guaranty anything, and pick the one that's easiest for us
7234 to program.
7235
7236 Returns 1 if found, 0 otherwise. */
7237
7238 static int
7239 find_struct_field (const char *name, struct type *type, int offset,
7240 struct type **field_type_p,
7241 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7242 int *index_p)
7243 {
7244 int i;
7245 int parent_offset = -1;
7246
7247 type = ada_check_typedef (type);
7248
7249 if (field_type_p != NULL)
7250 *field_type_p = NULL;
7251 if (byte_offset_p != NULL)
7252 *byte_offset_p = 0;
7253 if (bit_offset_p != NULL)
7254 *bit_offset_p = 0;
7255 if (bit_size_p != NULL)
7256 *bit_size_p = 0;
7257
7258 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7259 {
7260 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7261 int fld_offset = offset + bit_pos / 8;
7262 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7263
7264 if (t_field_name == NULL)
7265 continue;
7266
7267 else if (ada_is_parent_field (type, i))
7268 {
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7276
7277 parent_offset = i;
7278 continue;
7279 }
7280
7281 else if (name != NULL && field_name_match (t_field_name, name))
7282 {
7283 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7284
7285 if (field_type_p != NULL)
7286 *field_type_p = TYPE_FIELD_TYPE (type, i);
7287 if (byte_offset_p != NULL)
7288 *byte_offset_p = fld_offset;
7289 if (bit_offset_p != NULL)
7290 *bit_offset_p = bit_pos % 8;
7291 if (bit_size_p != NULL)
7292 *bit_size_p = bit_size;
7293 return 1;
7294 }
7295 else if (ada_is_wrapper_field (type, i))
7296 {
7297 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7298 field_type_p, byte_offset_p, bit_offset_p,
7299 bit_size_p, index_p))
7300 return 1;
7301 }
7302 else if (ada_is_variant_part (type, i))
7303 {
7304 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7305 fixed type?? */
7306 int j;
7307 struct type *field_type
7308 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7309
7310 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7311 {
7312 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7313 fld_offset
7314 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7315 field_type_p, byte_offset_p,
7316 bit_offset_p, bit_size_p, index_p))
7317 return 1;
7318 }
7319 }
7320 else if (index_p != NULL)
7321 *index_p += 1;
7322 }
7323
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7326
7327 if (parent_offset != -1)
7328 {
7329 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7330 int fld_offset = offset + bit_pos / 8;
7331
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7333 fld_offset, field_type_p, byte_offset_p,
7334 bit_offset_p, bit_size_p, index_p))
7335 return 1;
7336 }
7337
7338 return 0;
7339 }
7340
7341 /* Number of user-visible fields in record type TYPE. */
7342
7343 static int
7344 num_visible_fields (struct type *type)
7345 {
7346 int n;
7347
7348 n = 0;
7349 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7350 return n;
7351 }
7352
7353 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7354 and search in it assuming it has (class) type TYPE.
7355 If found, return value, else return NULL.
7356
7357 Searches recursively through wrapper fields (e.g., '_parent').
7358
7359 In the case of homonyms in the tagged types, please refer to the
7360 long explanation in find_struct_field's function documentation. */
7361
7362 static struct value *
7363 ada_search_struct_field (const char *name, struct value *arg, int offset,
7364 struct type *type)
7365 {
7366 int i;
7367 int parent_offset = -1;
7368
7369 type = ada_check_typedef (type);
7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7371 {
7372 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7373
7374 if (t_field_name == NULL)
7375 continue;
7376
7377 else if (ada_is_parent_field (type, i))
7378 {
7379 /* This is a field pointing us to the parent type of a tagged
7380 type. As hinted in this function's documentation, we give
7381 preference to fields in the current record first, so what
7382 we do here is just record the index of this field before
7383 we skip it. If it turns out we couldn't find our field
7384 in the current record, then we'll get back to it and search
7385 inside it whether the field might exist in the parent. */
7386
7387 parent_offset = i;
7388 continue;
7389 }
7390
7391 else if (field_name_match (t_field_name, name))
7392 return ada_value_primitive_field (arg, offset, i, type);
7393
7394 else if (ada_is_wrapper_field (type, i))
7395 {
7396 struct value *v = /* Do not let indent join lines here. */
7397 ada_search_struct_field (name, arg,
7398 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7399 TYPE_FIELD_TYPE (type, i));
7400
7401 if (v != NULL)
7402 return v;
7403 }
7404
7405 else if (ada_is_variant_part (type, i))
7406 {
7407 /* PNH: Do we ever get here? See find_struct_field. */
7408 int j;
7409 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7410 i));
7411 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7412
7413 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7414 {
7415 struct value *v = ada_search_struct_field /* Force line
7416 break. */
7417 (name, arg,
7418 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7419 TYPE_FIELD_TYPE (field_type, j));
7420
7421 if (v != NULL)
7422 return v;
7423 }
7424 }
7425 }
7426
7427 /* Field not found so far. If this is a tagged type which
7428 has a parent, try finding that field in the parent now. */
7429
7430 if (parent_offset != -1)
7431 {
7432 struct value *v = ada_search_struct_field (
7433 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7434 TYPE_FIELD_TYPE (type, parent_offset));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
7440 return NULL;
7441 }
7442
7443 static struct value *ada_index_struct_field_1 (int *, struct value *,
7444 int, struct type *);
7445
7446
7447 /* Return field #INDEX in ARG, where the index is that returned by
7448 * find_struct_field through its INDEX_P argument. Adjust the address
7449 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7450 * If found, return value, else return NULL. */
7451
7452 static struct value *
7453 ada_index_struct_field (int index, struct value *arg, int offset,
7454 struct type *type)
7455 {
7456 return ada_index_struct_field_1 (&index, arg, offset, type);
7457 }
7458
7459
7460 /* Auxiliary function for ada_index_struct_field. Like
7461 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7462 * *INDEX_P. */
7463
7464 static struct value *
7465 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7466 struct type *type)
7467 {
7468 int i;
7469 type = ada_check_typedef (type);
7470
7471 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7472 {
7473 if (TYPE_FIELD_NAME (type, i) == NULL)
7474 continue;
7475 else if (ada_is_wrapper_field (type, i))
7476 {
7477 struct value *v = /* Do not let indent join lines here. */
7478 ada_index_struct_field_1 (index_p, arg,
7479 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7480 TYPE_FIELD_TYPE (type, i));
7481
7482 if (v != NULL)
7483 return v;
7484 }
7485
7486 else if (ada_is_variant_part (type, i))
7487 {
7488 /* PNH: Do we ever get here? See ada_search_struct_field,
7489 find_struct_field. */
7490 error (_("Cannot assign this kind of variant record"));
7491 }
7492 else if (*index_p == 0)
7493 return ada_value_primitive_field (arg, offset, i, type);
7494 else
7495 *index_p -= 1;
7496 }
7497 return NULL;
7498 }
7499
7500 /* Given ARG, a value of type (pointer or reference to a)*
7501 structure/union, extract the component named NAME from the ultimate
7502 target structure/union and return it as a value with its
7503 appropriate type.
7504
7505 The routine searches for NAME among all members of the structure itself
7506 and (recursively) among all members of any wrapper members
7507 (e.g., '_parent').
7508
7509 If NO_ERR, then simply return NULL in case of error, rather than
7510 calling error. */
7511
7512 struct value *
7513 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7514 {
7515 struct type *t, *t1;
7516 struct value *v;
7517
7518 v = NULL;
7519 t1 = t = ada_check_typedef (value_type (arg));
7520 if (TYPE_CODE (t) == TYPE_CODE_REF)
7521 {
7522 t1 = TYPE_TARGET_TYPE (t);
7523 if (t1 == NULL)
7524 goto BadValue;
7525 t1 = ada_check_typedef (t1);
7526 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7527 {
7528 arg = coerce_ref (arg);
7529 t = t1;
7530 }
7531 }
7532
7533 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 {
7535 t1 = TYPE_TARGET_TYPE (t);
7536 if (t1 == NULL)
7537 goto BadValue;
7538 t1 = ada_check_typedef (t1);
7539 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7540 {
7541 arg = value_ind (arg);
7542 t = t1;
7543 }
7544 else
7545 break;
7546 }
7547
7548 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7549 goto BadValue;
7550
7551 if (t1 == t)
7552 v = ada_search_struct_field (name, arg, 0, t);
7553 else
7554 {
7555 int bit_offset, bit_size, byte_offset;
7556 struct type *field_type;
7557 CORE_ADDR address;
7558
7559 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7560 address = value_address (ada_value_ind (arg));
7561 else
7562 address = value_address (ada_coerce_ref (arg));
7563
7564 /* Check to see if this is a tagged type. We also need to handle
7565 the case where the type is a reference to a tagged type, but
7566 we have to be careful to exclude pointers to tagged types.
7567 The latter should be shown as usual (as a pointer), whereas
7568 a reference should mostly be transparent to the user. */
7569
7570 if (ada_is_tagged_type (t1, 0)
7571 || (TYPE_CODE (t1) == TYPE_CODE_REF
7572 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7573 {
7574 /* We first try to find the searched field in the current type.
7575 If not found then let's look in the fixed type. */
7576
7577 if (!find_struct_field (name, t1, 0,
7578 &field_type, &byte_offset, &bit_offset,
7579 &bit_size, NULL))
7580 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7581 address, NULL, 1);
7582 }
7583 else
7584 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7585 address, NULL, 1);
7586
7587 if (find_struct_field (name, t1, 0,
7588 &field_type, &byte_offset, &bit_offset,
7589 &bit_size, NULL))
7590 {
7591 if (bit_size != 0)
7592 {
7593 if (TYPE_CODE (t) == TYPE_CODE_REF)
7594 arg = ada_coerce_ref (arg);
7595 else
7596 arg = ada_value_ind (arg);
7597 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7598 bit_offset, bit_size,
7599 field_type);
7600 }
7601 else
7602 v = value_at_lazy (field_type, address + byte_offset);
7603 }
7604 }
7605
7606 if (v != NULL || no_err)
7607 return v;
7608 else
7609 error (_("There is no member named %s."), name);
7610
7611 BadValue:
7612 if (no_err)
7613 return NULL;
7614 else
7615 error (_("Attempt to extract a component of "
7616 "a value that is not a record."));
7617 }
7618
7619 /* Return a string representation of type TYPE. */
7620
7621 static std::string
7622 type_as_string (struct type *type)
7623 {
7624 string_file tmp_stream;
7625
7626 type_print (type, "", &tmp_stream, -1);
7627
7628 return std::move (tmp_stream.string ());
7629 }
7630
7631 /* Given a type TYPE, look up the type of the component of type named NAME.
7632 If DISPP is non-null, add its byte displacement from the beginning of a
7633 structure (pointed to by a value) of type TYPE to *DISPP (does not
7634 work for packed fields).
7635
7636 Matches any field whose name has NAME as a prefix, possibly
7637 followed by "___".
7638
7639 TYPE can be either a struct or union. If REFOK, TYPE may also
7640 be a (pointer or reference)+ to a struct or union, and the
7641 ultimate target type will be searched.
7642
7643 Looks recursively into variant clauses and parent types.
7644
7645 In the case of homonyms in the tagged types, please refer to the
7646 long explanation in find_struct_field's function documentation.
7647
7648 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7649 TYPE is not a type of the right kind. */
7650
7651 static struct type *
7652 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7653 int noerr)
7654 {
7655 int i;
7656 int parent_offset = -1;
7657
7658 if (name == NULL)
7659 goto BadName;
7660
7661 if (refok && type != NULL)
7662 while (1)
7663 {
7664 type = ada_check_typedef (type);
7665 if (TYPE_CODE (type) != TYPE_CODE_PTR
7666 && TYPE_CODE (type) != TYPE_CODE_REF)
7667 break;
7668 type = TYPE_TARGET_TYPE (type);
7669 }
7670
7671 if (type == NULL
7672 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7673 && TYPE_CODE (type) != TYPE_CODE_UNION))
7674 {
7675 if (noerr)
7676 return NULL;
7677
7678 error (_("Type %s is not a structure or union type"),
7679 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7680 }
7681
7682 type = to_static_fixed_type (type);
7683
7684 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7685 {
7686 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7687 struct type *t;
7688
7689 if (t_field_name == NULL)
7690 continue;
7691
7692 else if (ada_is_parent_field (type, i))
7693 {
7694 /* This is a field pointing us to the parent type of a tagged
7695 type. As hinted in this function's documentation, we give
7696 preference to fields in the current record first, so what
7697 we do here is just record the index of this field before
7698 we skip it. If it turns out we couldn't find our field
7699 in the current record, then we'll get back to it and search
7700 inside it whether the field might exist in the parent. */
7701
7702 parent_offset = i;
7703 continue;
7704 }
7705
7706 else if (field_name_match (t_field_name, name))
7707 return TYPE_FIELD_TYPE (type, i);
7708
7709 else if (ada_is_wrapper_field (type, i))
7710 {
7711 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7712 0, 1);
7713 if (t != NULL)
7714 return t;
7715 }
7716
7717 else if (ada_is_variant_part (type, i))
7718 {
7719 int j;
7720 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7721 i));
7722
7723 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7724 {
7725 /* FIXME pnh 2008/01/26: We check for a field that is
7726 NOT wrapped in a struct, since the compiler sometimes
7727 generates these for unchecked variant types. Revisit
7728 if the compiler changes this practice. */
7729 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7730
7731 if (v_field_name != NULL
7732 && field_name_match (v_field_name, name))
7733 t = TYPE_FIELD_TYPE (field_type, j);
7734 else
7735 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7736 j),
7737 name, 0, 1);
7738
7739 if (t != NULL)
7740 return t;
7741 }
7742 }
7743
7744 }
7745
7746 /* Field not found so far. If this is a tagged type which
7747 has a parent, try finding that field in the parent now. */
7748
7749 if (parent_offset != -1)
7750 {
7751 struct type *t;
7752
7753 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7754 name, 0, 1);
7755 if (t != NULL)
7756 return t;
7757 }
7758
7759 BadName:
7760 if (!noerr)
7761 {
7762 const char *name_str = name != NULL ? name : _("<null>");
7763
7764 error (_("Type %s has no component named %s"),
7765 type_as_string (type).c_str (), name_str);
7766 }
7767
7768 return NULL;
7769 }
7770
7771 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7772 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7773 represents an unchecked union (that is, the variant part of a
7774 record that is named in an Unchecked_Union pragma). */
7775
7776 static int
7777 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7778 {
7779 const char *discrim_name = ada_variant_discrim_name (var_type);
7780
7781 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7782 }
7783
7784
7785 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7786 within a value of type OUTER_TYPE that is stored in GDB at
7787 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7788 numbering from 0) is applicable. Returns -1 if none are. */
7789
7790 int
7791 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7792 const gdb_byte *outer_valaddr)
7793 {
7794 int others_clause;
7795 int i;
7796 const char *discrim_name = ada_variant_discrim_name (var_type);
7797 struct value *outer;
7798 struct value *discrim;
7799 LONGEST discrim_val;
7800
7801 /* Using plain value_from_contents_and_address here causes problems
7802 because we will end up trying to resolve a type that is currently
7803 being constructed. */
7804 outer = value_from_contents_and_address_unresolved (outer_type,
7805 outer_valaddr, 0);
7806 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7807 if (discrim == NULL)
7808 return -1;
7809 discrim_val = value_as_long (discrim);
7810
7811 others_clause = -1;
7812 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7813 {
7814 if (ada_is_others_clause (var_type, i))
7815 others_clause = i;
7816 else if (ada_in_variant (discrim_val, var_type, i))
7817 return i;
7818 }
7819
7820 return others_clause;
7821 }
7822 \f
7823
7824
7825 /* Dynamic-Sized Records */
7826
7827 /* Strategy: The type ostensibly attached to a value with dynamic size
7828 (i.e., a size that is not statically recorded in the debugging
7829 data) does not accurately reflect the size or layout of the value.
7830 Our strategy is to convert these values to values with accurate,
7831 conventional types that are constructed on the fly. */
7832
7833 /* There is a subtle and tricky problem here. In general, we cannot
7834 determine the size of dynamic records without its data. However,
7835 the 'struct value' data structure, which GDB uses to represent
7836 quantities in the inferior process (the target), requires the size
7837 of the type at the time of its allocation in order to reserve space
7838 for GDB's internal copy of the data. That's why the
7839 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7840 rather than struct value*s.
7841
7842 However, GDB's internal history variables ($1, $2, etc.) are
7843 struct value*s containing internal copies of the data that are not, in
7844 general, the same as the data at their corresponding addresses in
7845 the target. Fortunately, the types we give to these values are all
7846 conventional, fixed-size types (as per the strategy described
7847 above), so that we don't usually have to perform the
7848 'to_fixed_xxx_type' conversions to look at their values.
7849 Unfortunately, there is one exception: if one of the internal
7850 history variables is an array whose elements are unconstrained
7851 records, then we will need to create distinct fixed types for each
7852 element selected. */
7853
7854 /* The upshot of all of this is that many routines take a (type, host
7855 address, target address) triple as arguments to represent a value.
7856 The host address, if non-null, is supposed to contain an internal
7857 copy of the relevant data; otherwise, the program is to consult the
7858 target at the target address. */
7859
7860 /* Assuming that VAL0 represents a pointer value, the result of
7861 dereferencing it. Differs from value_ind in its treatment of
7862 dynamic-sized types. */
7863
7864 struct value *
7865 ada_value_ind (struct value *val0)
7866 {
7867 struct value *val = value_ind (val0);
7868
7869 if (ada_is_tagged_type (value_type (val), 0))
7870 val = ada_tag_value_at_base_address (val);
7871
7872 return ada_to_fixed_value (val);
7873 }
7874
7875 /* The value resulting from dereferencing any "reference to"
7876 qualifiers on VAL0. */
7877
7878 static struct value *
7879 ada_coerce_ref (struct value *val0)
7880 {
7881 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7882 {
7883 struct value *val = val0;
7884
7885 val = coerce_ref (val);
7886
7887 if (ada_is_tagged_type (value_type (val), 0))
7888 val = ada_tag_value_at_base_address (val);
7889
7890 return ada_to_fixed_value (val);
7891 }
7892 else
7893 return val0;
7894 }
7895
7896 /* Return OFF rounded upward if necessary to a multiple of
7897 ALIGNMENT (a power of 2). */
7898
7899 static unsigned int
7900 align_value (unsigned int off, unsigned int alignment)
7901 {
7902 return (off + alignment - 1) & ~(alignment - 1);
7903 }
7904
7905 /* Return the bit alignment required for field #F of template type TYPE. */
7906
7907 static unsigned int
7908 field_alignment (struct type *type, int f)
7909 {
7910 const char *name = TYPE_FIELD_NAME (type, f);
7911 int len;
7912 int align_offset;
7913
7914 /* The field name should never be null, unless the debugging information
7915 is somehow malformed. In this case, we assume the field does not
7916 require any alignment. */
7917 if (name == NULL)
7918 return 1;
7919
7920 len = strlen (name);
7921
7922 if (!isdigit (name[len - 1]))
7923 return 1;
7924
7925 if (isdigit (name[len - 2]))
7926 align_offset = len - 2;
7927 else
7928 align_offset = len - 1;
7929
7930 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7931 return TARGET_CHAR_BIT;
7932
7933 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7934 }
7935
7936 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7937
7938 static struct symbol *
7939 ada_find_any_type_symbol (const char *name)
7940 {
7941 struct symbol *sym;
7942
7943 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7944 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7945 return sym;
7946
7947 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7948 return sym;
7949 }
7950
7951 /* Find a type named NAME. Ignores ambiguity. This routine will look
7952 solely for types defined by debug info, it will not search the GDB
7953 primitive types. */
7954
7955 static struct type *
7956 ada_find_any_type (const char *name)
7957 {
7958 struct symbol *sym = ada_find_any_type_symbol (name);
7959
7960 if (sym != NULL)
7961 return SYMBOL_TYPE (sym);
7962
7963 return NULL;
7964 }
7965
7966 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7967 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7968 symbol, in which case it is returned. Otherwise, this looks for
7969 symbols whose name is that of NAME_SYM suffixed with "___XR".
7970 Return symbol if found, and NULL otherwise. */
7971
7972 struct symbol *
7973 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7974 {
7975 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7976 struct symbol *sym;
7977
7978 if (strstr (name, "___XR") != NULL)
7979 return name_sym;
7980
7981 sym = find_old_style_renaming_symbol (name, block);
7982
7983 if (sym != NULL)
7984 return sym;
7985
7986 /* Not right yet. FIXME pnh 7/20/2007. */
7987 sym = ada_find_any_type_symbol (name);
7988 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7989 return sym;
7990 else
7991 return NULL;
7992 }
7993
7994 static struct symbol *
7995 find_old_style_renaming_symbol (const char *name, const struct block *block)
7996 {
7997 const struct symbol *function_sym = block_linkage_function (block);
7998 char *rename;
7999
8000 if (function_sym != NULL)
8001 {
8002 /* If the symbol is defined inside a function, NAME is not fully
8003 qualified. This means we need to prepend the function name
8004 as well as adding the ``___XR'' suffix to build the name of
8005 the associated renaming symbol. */
8006 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8007 /* Function names sometimes contain suffixes used
8008 for instance to qualify nested subprograms. When building
8009 the XR type name, we need to make sure that this suffix is
8010 not included. So do not include any suffix in the function
8011 name length below. */
8012 int function_name_len = ada_name_prefix_len (function_name);
8013 const int rename_len = function_name_len + 2 /* "__" */
8014 + strlen (name) + 6 /* "___XR\0" */ ;
8015
8016 /* Strip the suffix if necessary. */
8017 ada_remove_trailing_digits (function_name, &function_name_len);
8018 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8019 ada_remove_Xbn_suffix (function_name, &function_name_len);
8020
8021 /* Library-level functions are a special case, as GNAT adds
8022 a ``_ada_'' prefix to the function name to avoid namespace
8023 pollution. However, the renaming symbols themselves do not
8024 have this prefix, so we need to skip this prefix if present. */
8025 if (function_name_len > 5 /* "_ada_" */
8026 && strstr (function_name, "_ada_") == function_name)
8027 {
8028 function_name += 5;
8029 function_name_len -= 5;
8030 }
8031
8032 rename = (char *) alloca (rename_len * sizeof (char));
8033 strncpy (rename, function_name, function_name_len);
8034 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8035 "__%s___XR", name);
8036 }
8037 else
8038 {
8039 const int rename_len = strlen (name) + 6;
8040
8041 rename = (char *) alloca (rename_len * sizeof (char));
8042 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8043 }
8044
8045 return ada_find_any_type_symbol (rename);
8046 }
8047
8048 /* Because of GNAT encoding conventions, several GDB symbols may match a
8049 given type name. If the type denoted by TYPE0 is to be preferred to
8050 that of TYPE1 for purposes of type printing, return non-zero;
8051 otherwise return 0. */
8052
8053 int
8054 ada_prefer_type (struct type *type0, struct type *type1)
8055 {
8056 if (type1 == NULL)
8057 return 1;
8058 else if (type0 == NULL)
8059 return 0;
8060 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8061 return 1;
8062 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8063 return 0;
8064 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8065 return 1;
8066 else if (ada_is_constrained_packed_array_type (type0))
8067 return 1;
8068 else if (ada_is_array_descriptor_type (type0)
8069 && !ada_is_array_descriptor_type (type1))
8070 return 1;
8071 else
8072 {
8073 const char *type0_name = TYPE_NAME (type0);
8074 const char *type1_name = TYPE_NAME (type1);
8075
8076 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8077 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8078 return 1;
8079 }
8080 return 0;
8081 }
8082
8083 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8084 null. */
8085
8086 const char *
8087 ada_type_name (struct type *type)
8088 {
8089 if (type == NULL)
8090 return NULL;
8091 return TYPE_NAME (type);
8092 }
8093
8094 /* Search the list of "descriptive" types associated to TYPE for a type
8095 whose name is NAME. */
8096
8097 static struct type *
8098 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8099 {
8100 struct type *result, *tmp;
8101
8102 if (ada_ignore_descriptive_types_p)
8103 return NULL;
8104
8105 /* If there no descriptive-type info, then there is no parallel type
8106 to be found. */
8107 if (!HAVE_GNAT_AUX_INFO (type))
8108 return NULL;
8109
8110 result = TYPE_DESCRIPTIVE_TYPE (type);
8111 while (result != NULL)
8112 {
8113 const char *result_name = ada_type_name (result);
8114
8115 if (result_name == NULL)
8116 {
8117 warning (_("unexpected null name on descriptive type"));
8118 return NULL;
8119 }
8120
8121 /* If the names match, stop. */
8122 if (strcmp (result_name, name) == 0)
8123 break;
8124
8125 /* Otherwise, look at the next item on the list, if any. */
8126 if (HAVE_GNAT_AUX_INFO (result))
8127 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8128 else
8129 tmp = NULL;
8130
8131 /* If not found either, try after having resolved the typedef. */
8132 if (tmp != NULL)
8133 result = tmp;
8134 else
8135 {
8136 result = check_typedef (result);
8137 if (HAVE_GNAT_AUX_INFO (result))
8138 result = TYPE_DESCRIPTIVE_TYPE (result);
8139 else
8140 result = NULL;
8141 }
8142 }
8143
8144 /* If we didn't find a match, see whether this is a packed array. With
8145 older compilers, the descriptive type information is either absent or
8146 irrelevant when it comes to packed arrays so the above lookup fails.
8147 Fall back to using a parallel lookup by name in this case. */
8148 if (result == NULL && ada_is_constrained_packed_array_type (type))
8149 return ada_find_any_type (name);
8150
8151 return result;
8152 }
8153
8154 /* Find a parallel type to TYPE with the specified NAME, using the
8155 descriptive type taken from the debugging information, if available,
8156 and otherwise using the (slower) name-based method. */
8157
8158 static struct type *
8159 ada_find_parallel_type_with_name (struct type *type, const char *name)
8160 {
8161 struct type *result = NULL;
8162
8163 if (HAVE_GNAT_AUX_INFO (type))
8164 result = find_parallel_type_by_descriptive_type (type, name);
8165 else
8166 result = ada_find_any_type (name);
8167
8168 return result;
8169 }
8170
8171 /* Same as above, but specify the name of the parallel type by appending
8172 SUFFIX to the name of TYPE. */
8173
8174 struct type *
8175 ada_find_parallel_type (struct type *type, const char *suffix)
8176 {
8177 char *name;
8178 const char *type_name = ada_type_name (type);
8179 int len;
8180
8181 if (type_name == NULL)
8182 return NULL;
8183
8184 len = strlen (type_name);
8185
8186 name = (char *) alloca (len + strlen (suffix) + 1);
8187
8188 strcpy (name, type_name);
8189 strcpy (name + len, suffix);
8190
8191 return ada_find_parallel_type_with_name (type, name);
8192 }
8193
8194 /* If TYPE is a variable-size record type, return the corresponding template
8195 type describing its fields. Otherwise, return NULL. */
8196
8197 static struct type *
8198 dynamic_template_type (struct type *type)
8199 {
8200 type = ada_check_typedef (type);
8201
8202 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8203 || ada_type_name (type) == NULL)
8204 return NULL;
8205 else
8206 {
8207 int len = strlen (ada_type_name (type));
8208
8209 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8210 return type;
8211 else
8212 return ada_find_parallel_type (type, "___XVE");
8213 }
8214 }
8215
8216 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8217 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8218
8219 static int
8220 is_dynamic_field (struct type *templ_type, int field_num)
8221 {
8222 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8223
8224 return name != NULL
8225 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8226 && strstr (name, "___XVL") != NULL;
8227 }
8228
8229 /* The index of the variant field of TYPE, or -1 if TYPE does not
8230 represent a variant record type. */
8231
8232 static int
8233 variant_field_index (struct type *type)
8234 {
8235 int f;
8236
8237 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8238 return -1;
8239
8240 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8241 {
8242 if (ada_is_variant_part (type, f))
8243 return f;
8244 }
8245 return -1;
8246 }
8247
8248 /* A record type with no fields. */
8249
8250 static struct type *
8251 empty_record (struct type *templ)
8252 {
8253 struct type *type = alloc_type_copy (templ);
8254
8255 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8256 TYPE_NFIELDS (type) = 0;
8257 TYPE_FIELDS (type) = NULL;
8258 INIT_CPLUS_SPECIFIC (type);
8259 TYPE_NAME (type) = "<empty>";
8260 TYPE_LENGTH (type) = 0;
8261 return type;
8262 }
8263
8264 /* An ordinary record type (with fixed-length fields) that describes
8265 the value of type TYPE at VALADDR or ADDRESS (see comments at
8266 the beginning of this section) VAL according to GNAT conventions.
8267 DVAL0 should describe the (portion of a) record that contains any
8268 necessary discriminants. It should be NULL if value_type (VAL) is
8269 an outer-level type (i.e., as opposed to a branch of a variant.) A
8270 variant field (unless unchecked) is replaced by a particular branch
8271 of the variant.
8272
8273 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8274 length are not statically known are discarded. As a consequence,
8275 VALADDR, ADDRESS and DVAL0 are ignored.
8276
8277 NOTE: Limitations: For now, we assume that dynamic fields and
8278 variants occupy whole numbers of bytes. However, they need not be
8279 byte-aligned. */
8280
8281 struct type *
8282 ada_template_to_fixed_record_type_1 (struct type *type,
8283 const gdb_byte *valaddr,
8284 CORE_ADDR address, struct value *dval0,
8285 int keep_dynamic_fields)
8286 {
8287 struct value *mark = value_mark ();
8288 struct value *dval;
8289 struct type *rtype;
8290 int nfields, bit_len;
8291 int variant_field;
8292 long off;
8293 int fld_bit_len;
8294 int f;
8295
8296 /* Compute the number of fields in this record type that are going
8297 to be processed: unless keep_dynamic_fields, this includes only
8298 fields whose position and length are static will be processed. */
8299 if (keep_dynamic_fields)
8300 nfields = TYPE_NFIELDS (type);
8301 else
8302 {
8303 nfields = 0;
8304 while (nfields < TYPE_NFIELDS (type)
8305 && !ada_is_variant_part (type, nfields)
8306 && !is_dynamic_field (type, nfields))
8307 nfields++;
8308 }
8309
8310 rtype = alloc_type_copy (type);
8311 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8312 INIT_CPLUS_SPECIFIC (rtype);
8313 TYPE_NFIELDS (rtype) = nfields;
8314 TYPE_FIELDS (rtype) = (struct field *)
8315 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8316 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8317 TYPE_NAME (rtype) = ada_type_name (type);
8318 TYPE_FIXED_INSTANCE (rtype) = 1;
8319
8320 off = 0;
8321 bit_len = 0;
8322 variant_field = -1;
8323
8324 for (f = 0; f < nfields; f += 1)
8325 {
8326 off = align_value (off, field_alignment (type, f))
8327 + TYPE_FIELD_BITPOS (type, f);
8328 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8329 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8330
8331 if (ada_is_variant_part (type, f))
8332 {
8333 variant_field = f;
8334 fld_bit_len = 0;
8335 }
8336 else if (is_dynamic_field (type, f))
8337 {
8338 const gdb_byte *field_valaddr = valaddr;
8339 CORE_ADDR field_address = address;
8340 struct type *field_type =
8341 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8342
8343 if (dval0 == NULL)
8344 {
8345 /* rtype's length is computed based on the run-time
8346 value of discriminants. If the discriminants are not
8347 initialized, the type size may be completely bogus and
8348 GDB may fail to allocate a value for it. So check the
8349 size first before creating the value. */
8350 ada_ensure_varsize_limit (rtype);
8351 /* Using plain value_from_contents_and_address here
8352 causes problems because we will end up trying to
8353 resolve a type that is currently being
8354 constructed. */
8355 dval = value_from_contents_and_address_unresolved (rtype,
8356 valaddr,
8357 address);
8358 rtype = value_type (dval);
8359 }
8360 else
8361 dval = dval0;
8362
8363 /* If the type referenced by this field is an aligner type, we need
8364 to unwrap that aligner type, because its size might not be set.
8365 Keeping the aligner type would cause us to compute the wrong
8366 size for this field, impacting the offset of the all the fields
8367 that follow this one. */
8368 if (ada_is_aligner_type (field_type))
8369 {
8370 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8371
8372 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8373 field_address = cond_offset_target (field_address, field_offset);
8374 field_type = ada_aligned_type (field_type);
8375 }
8376
8377 field_valaddr = cond_offset_host (field_valaddr,
8378 off / TARGET_CHAR_BIT);
8379 field_address = cond_offset_target (field_address,
8380 off / TARGET_CHAR_BIT);
8381
8382 /* Get the fixed type of the field. Note that, in this case,
8383 we do not want to get the real type out of the tag: if
8384 the current field is the parent part of a tagged record,
8385 we will get the tag of the object. Clearly wrong: the real
8386 type of the parent is not the real type of the child. We
8387 would end up in an infinite loop. */
8388 field_type = ada_get_base_type (field_type);
8389 field_type = ada_to_fixed_type (field_type, field_valaddr,
8390 field_address, dval, 0);
8391 /* If the field size is already larger than the maximum
8392 object size, then the record itself will necessarily
8393 be larger than the maximum object size. We need to make
8394 this check now, because the size might be so ridiculously
8395 large (due to an uninitialized variable in the inferior)
8396 that it would cause an overflow when adding it to the
8397 record size. */
8398 ada_ensure_varsize_limit (field_type);
8399
8400 TYPE_FIELD_TYPE (rtype, f) = field_type;
8401 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8402 /* The multiplication can potentially overflow. But because
8403 the field length has been size-checked just above, and
8404 assuming that the maximum size is a reasonable value,
8405 an overflow should not happen in practice. So rather than
8406 adding overflow recovery code to this already complex code,
8407 we just assume that it's not going to happen. */
8408 fld_bit_len =
8409 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8410 }
8411 else
8412 {
8413 /* Note: If this field's type is a typedef, it is important
8414 to preserve the typedef layer.
8415
8416 Otherwise, we might be transforming a typedef to a fat
8417 pointer (encoding a pointer to an unconstrained array),
8418 into a basic fat pointer (encoding an unconstrained
8419 array). As both types are implemented using the same
8420 structure, the typedef is the only clue which allows us
8421 to distinguish between the two options. Stripping it
8422 would prevent us from printing this field appropriately. */
8423 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8424 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8425 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8426 fld_bit_len =
8427 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8428 else
8429 {
8430 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8431
8432 /* We need to be careful of typedefs when computing
8433 the length of our field. If this is a typedef,
8434 get the length of the target type, not the length
8435 of the typedef. */
8436 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8437 field_type = ada_typedef_target_type (field_type);
8438
8439 fld_bit_len =
8440 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8441 }
8442 }
8443 if (off + fld_bit_len > bit_len)
8444 bit_len = off + fld_bit_len;
8445 off += fld_bit_len;
8446 TYPE_LENGTH (rtype) =
8447 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8448 }
8449
8450 /* We handle the variant part, if any, at the end because of certain
8451 odd cases in which it is re-ordered so as NOT to be the last field of
8452 the record. This can happen in the presence of representation
8453 clauses. */
8454 if (variant_field >= 0)
8455 {
8456 struct type *branch_type;
8457
8458 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8459
8460 if (dval0 == NULL)
8461 {
8462 /* Using plain value_from_contents_and_address here causes
8463 problems because we will end up trying to resolve a type
8464 that is currently being constructed. */
8465 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8466 address);
8467 rtype = value_type (dval);
8468 }
8469 else
8470 dval = dval0;
8471
8472 branch_type =
8473 to_fixed_variant_branch_type
8474 (TYPE_FIELD_TYPE (type, variant_field),
8475 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8476 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8477 if (branch_type == NULL)
8478 {
8479 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8480 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8481 TYPE_NFIELDS (rtype) -= 1;
8482 }
8483 else
8484 {
8485 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8486 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8487 fld_bit_len =
8488 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8489 TARGET_CHAR_BIT;
8490 if (off + fld_bit_len > bit_len)
8491 bit_len = off + fld_bit_len;
8492 TYPE_LENGTH (rtype) =
8493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8494 }
8495 }
8496
8497 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8498 should contain the alignment of that record, which should be a strictly
8499 positive value. If null or negative, then something is wrong, most
8500 probably in the debug info. In that case, we don't round up the size
8501 of the resulting type. If this record is not part of another structure,
8502 the current RTYPE length might be good enough for our purposes. */
8503 if (TYPE_LENGTH (type) <= 0)
8504 {
8505 if (TYPE_NAME (rtype))
8506 warning (_("Invalid type size for `%s' detected: %d."),
8507 TYPE_NAME (rtype), TYPE_LENGTH (type));
8508 else
8509 warning (_("Invalid type size for <unnamed> detected: %d."),
8510 TYPE_LENGTH (type));
8511 }
8512 else
8513 {
8514 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8515 TYPE_LENGTH (type));
8516 }
8517
8518 value_free_to_mark (mark);
8519 if (TYPE_LENGTH (rtype) > varsize_limit)
8520 error (_("record type with dynamic size is larger than varsize-limit"));
8521 return rtype;
8522 }
8523
8524 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8525 of 1. */
8526
8527 static struct type *
8528 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8529 CORE_ADDR address, struct value *dval0)
8530 {
8531 return ada_template_to_fixed_record_type_1 (type, valaddr,
8532 address, dval0, 1);
8533 }
8534
8535 /* An ordinary record type in which ___XVL-convention fields and
8536 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8537 static approximations, containing all possible fields. Uses
8538 no runtime values. Useless for use in values, but that's OK,
8539 since the results are used only for type determinations. Works on both
8540 structs and unions. Representation note: to save space, we memorize
8541 the result of this function in the TYPE_TARGET_TYPE of the
8542 template type. */
8543
8544 static struct type *
8545 template_to_static_fixed_type (struct type *type0)
8546 {
8547 struct type *type;
8548 int nfields;
8549 int f;
8550
8551 /* No need no do anything if the input type is already fixed. */
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 /* Likewise if we already have computed the static approximation. */
8556 if (TYPE_TARGET_TYPE (type0) != NULL)
8557 return TYPE_TARGET_TYPE (type0);
8558
8559 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8560 type = type0;
8561 nfields = TYPE_NFIELDS (type0);
8562
8563 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8564 recompute all over next time. */
8565 TYPE_TARGET_TYPE (type0) = type;
8566
8567 for (f = 0; f < nfields; f += 1)
8568 {
8569 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8570 struct type *new_type;
8571
8572 if (is_dynamic_field (type0, f))
8573 {
8574 field_type = ada_check_typedef (field_type);
8575 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8576 }
8577 else
8578 new_type = static_unwrap_type (field_type);
8579
8580 if (new_type != field_type)
8581 {
8582 /* Clone TYPE0 only the first time we get a new field type. */
8583 if (type == type0)
8584 {
8585 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8586 TYPE_CODE (type) = TYPE_CODE (type0);
8587 INIT_CPLUS_SPECIFIC (type);
8588 TYPE_NFIELDS (type) = nfields;
8589 TYPE_FIELDS (type) = (struct field *)
8590 TYPE_ALLOC (type, nfields * sizeof (struct field));
8591 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8592 sizeof (struct field) * nfields);
8593 TYPE_NAME (type) = ada_type_name (type0);
8594 TYPE_FIXED_INSTANCE (type) = 1;
8595 TYPE_LENGTH (type) = 0;
8596 }
8597 TYPE_FIELD_TYPE (type, f) = new_type;
8598 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8599 }
8600 }
8601
8602 return type;
8603 }
8604
8605 /* Given an object of type TYPE whose contents are at VALADDR and
8606 whose address in memory is ADDRESS, returns a revision of TYPE,
8607 which should be a non-dynamic-sized record, in which the variant
8608 part, if any, is replaced with the appropriate branch. Looks
8609 for discriminant values in DVAL0, which can be NULL if the record
8610 contains the necessary discriminant values. */
8611
8612 static struct type *
8613 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8614 CORE_ADDR address, struct value *dval0)
8615 {
8616 struct value *mark = value_mark ();
8617 struct value *dval;
8618 struct type *rtype;
8619 struct type *branch_type;
8620 int nfields = TYPE_NFIELDS (type);
8621 int variant_field = variant_field_index (type);
8622
8623 if (variant_field == -1)
8624 return type;
8625
8626 if (dval0 == NULL)
8627 {
8628 dval = value_from_contents_and_address (type, valaddr, address);
8629 type = value_type (dval);
8630 }
8631 else
8632 dval = dval0;
8633
8634 rtype = alloc_type_copy (type);
8635 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8636 INIT_CPLUS_SPECIFIC (rtype);
8637 TYPE_NFIELDS (rtype) = nfields;
8638 TYPE_FIELDS (rtype) =
8639 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8640 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8641 sizeof (struct field) * nfields);
8642 TYPE_NAME (rtype) = ada_type_name (type);
8643 TYPE_FIXED_INSTANCE (rtype) = 1;
8644 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8645
8646 branch_type = to_fixed_variant_branch_type
8647 (TYPE_FIELD_TYPE (type, variant_field),
8648 cond_offset_host (valaddr,
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT),
8651 cond_offset_target (address,
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT), dval);
8654 if (branch_type == NULL)
8655 {
8656 int f;
8657
8658 for (f = variant_field + 1; f < nfields; f += 1)
8659 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8660 TYPE_NFIELDS (rtype) -= 1;
8661 }
8662 else
8663 {
8664 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8665 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8666 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8667 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8668 }
8669 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8670
8671 value_free_to_mark (mark);
8672 return rtype;
8673 }
8674
8675 /* An ordinary record type (with fixed-length fields) that describes
8676 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8677 beginning of this section]. Any necessary discriminants' values
8678 should be in DVAL, a record value; it may be NULL if the object
8679 at ADDR itself contains any necessary discriminant values.
8680 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8681 values from the record are needed. Except in the case that DVAL,
8682 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8683 unchecked) is replaced by a particular branch of the variant.
8684
8685 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8686 is questionable and may be removed. It can arise during the
8687 processing of an unconstrained-array-of-record type where all the
8688 variant branches have exactly the same size. This is because in
8689 such cases, the compiler does not bother to use the XVS convention
8690 when encoding the record. I am currently dubious of this
8691 shortcut and suspect the compiler should be altered. FIXME. */
8692
8693 static struct type *
8694 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8695 CORE_ADDR address, struct value *dval)
8696 {
8697 struct type *templ_type;
8698
8699 if (TYPE_FIXED_INSTANCE (type0))
8700 return type0;
8701
8702 templ_type = dynamic_template_type (type0);
8703
8704 if (templ_type != NULL)
8705 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8706 else if (variant_field_index (type0) >= 0)
8707 {
8708 if (dval == NULL && valaddr == NULL && address == 0)
8709 return type0;
8710 return to_record_with_fixed_variant_part (type0, valaddr, address,
8711 dval);
8712 }
8713 else
8714 {
8715 TYPE_FIXED_INSTANCE (type0) = 1;
8716 return type0;
8717 }
8718
8719 }
8720
8721 /* An ordinary record type (with fixed-length fields) that describes
8722 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8723 union type. Any necessary discriminants' values should be in DVAL,
8724 a record value. That is, this routine selects the appropriate
8725 branch of the union at ADDR according to the discriminant value
8726 indicated in the union's type name. Returns VAR_TYPE0 itself if
8727 it represents a variant subject to a pragma Unchecked_Union. */
8728
8729 static struct type *
8730 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8731 CORE_ADDR address, struct value *dval)
8732 {
8733 int which;
8734 struct type *templ_type;
8735 struct type *var_type;
8736
8737 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8738 var_type = TYPE_TARGET_TYPE (var_type0);
8739 else
8740 var_type = var_type0;
8741
8742 templ_type = ada_find_parallel_type (var_type, "___XVU");
8743
8744 if (templ_type != NULL)
8745 var_type = templ_type;
8746
8747 if (is_unchecked_variant (var_type, value_type (dval)))
8748 return var_type0;
8749 which =
8750 ada_which_variant_applies (var_type,
8751 value_type (dval), value_contents (dval));
8752
8753 if (which < 0)
8754 return empty_record (var_type);
8755 else if (is_dynamic_field (var_type, which))
8756 return to_fixed_record_type
8757 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8758 valaddr, address, dval);
8759 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8760 return
8761 to_fixed_record_type
8762 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8763 else
8764 return TYPE_FIELD_TYPE (var_type, which);
8765 }
8766
8767 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8768 ENCODING_TYPE, a type following the GNAT conventions for discrete
8769 type encodings, only carries redundant information. */
8770
8771 static int
8772 ada_is_redundant_range_encoding (struct type *range_type,
8773 struct type *encoding_type)
8774 {
8775 const char *bounds_str;
8776 int n;
8777 LONGEST lo, hi;
8778
8779 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8780
8781 if (TYPE_CODE (get_base_type (range_type))
8782 != TYPE_CODE (get_base_type (encoding_type)))
8783 {
8784 /* The compiler probably used a simple base type to describe
8785 the range type instead of the range's actual base type,
8786 expecting us to get the real base type from the encoding
8787 anyway. In this situation, the encoding cannot be ignored
8788 as redundant. */
8789 return 0;
8790 }
8791
8792 if (is_dynamic_type (range_type))
8793 return 0;
8794
8795 if (TYPE_NAME (encoding_type) == NULL)
8796 return 0;
8797
8798 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8799 if (bounds_str == NULL)
8800 return 0;
8801
8802 n = 8; /* Skip "___XDLU_". */
8803 if (!ada_scan_number (bounds_str, n, &lo, &n))
8804 return 0;
8805 if (TYPE_LOW_BOUND (range_type) != lo)
8806 return 0;
8807
8808 n += 2; /* Skip the "__" separator between the two bounds. */
8809 if (!ada_scan_number (bounds_str, n, &hi, &n))
8810 return 0;
8811 if (TYPE_HIGH_BOUND (range_type) != hi)
8812 return 0;
8813
8814 return 1;
8815 }
8816
8817 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8818 a type following the GNAT encoding for describing array type
8819 indices, only carries redundant information. */
8820
8821 static int
8822 ada_is_redundant_index_type_desc (struct type *array_type,
8823 struct type *desc_type)
8824 {
8825 struct type *this_layer = check_typedef (array_type);
8826 int i;
8827
8828 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8829 {
8830 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8831 TYPE_FIELD_TYPE (desc_type, i)))
8832 return 0;
8833 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8834 }
8835
8836 return 1;
8837 }
8838
8839 /* Assuming that TYPE0 is an array type describing the type of a value
8840 at ADDR, and that DVAL describes a record containing any
8841 discriminants used in TYPE0, returns a type for the value that
8842 contains no dynamic components (that is, no components whose sizes
8843 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8844 true, gives an error message if the resulting type's size is over
8845 varsize_limit. */
8846
8847 static struct type *
8848 to_fixed_array_type (struct type *type0, struct value *dval,
8849 int ignore_too_big)
8850 {
8851 struct type *index_type_desc;
8852 struct type *result;
8853 int constrained_packed_array_p;
8854 static const char *xa_suffix = "___XA";
8855
8856 type0 = ada_check_typedef (type0);
8857 if (TYPE_FIXED_INSTANCE (type0))
8858 return type0;
8859
8860 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8861 if (constrained_packed_array_p)
8862 type0 = decode_constrained_packed_array_type (type0);
8863
8864 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8865
8866 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8867 encoding suffixed with 'P' may still be generated. If so,
8868 it should be used to find the XA type. */
8869
8870 if (index_type_desc == NULL)
8871 {
8872 const char *type_name = ada_type_name (type0);
8873
8874 if (type_name != NULL)
8875 {
8876 const int len = strlen (type_name);
8877 char *name = (char *) alloca (len + strlen (xa_suffix));
8878
8879 if (type_name[len - 1] == 'P')
8880 {
8881 strcpy (name, type_name);
8882 strcpy (name + len - 1, xa_suffix);
8883 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8884 }
8885 }
8886 }
8887
8888 ada_fixup_array_indexes_type (index_type_desc);
8889 if (index_type_desc != NULL
8890 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8891 {
8892 /* Ignore this ___XA parallel type, as it does not bring any
8893 useful information. This allows us to avoid creating fixed
8894 versions of the array's index types, which would be identical
8895 to the original ones. This, in turn, can also help avoid
8896 the creation of fixed versions of the array itself. */
8897 index_type_desc = NULL;
8898 }
8899
8900 if (index_type_desc == NULL)
8901 {
8902 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8903
8904 /* NOTE: elt_type---the fixed version of elt_type0---should never
8905 depend on the contents of the array in properly constructed
8906 debugging data. */
8907 /* Create a fixed version of the array element type.
8908 We're not providing the address of an element here,
8909 and thus the actual object value cannot be inspected to do
8910 the conversion. This should not be a problem, since arrays of
8911 unconstrained objects are not allowed. In particular, all
8912 the elements of an array of a tagged type should all be of
8913 the same type specified in the debugging info. No need to
8914 consult the object tag. */
8915 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8916
8917 /* Make sure we always create a new array type when dealing with
8918 packed array types, since we're going to fix-up the array
8919 type length and element bitsize a little further down. */
8920 if (elt_type0 == elt_type && !constrained_packed_array_p)
8921 result = type0;
8922 else
8923 result = create_array_type (alloc_type_copy (type0),
8924 elt_type, TYPE_INDEX_TYPE (type0));
8925 }
8926 else
8927 {
8928 int i;
8929 struct type *elt_type0;
8930
8931 elt_type0 = type0;
8932 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8933 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8934
8935 /* NOTE: result---the fixed version of elt_type0---should never
8936 depend on the contents of the array in properly constructed
8937 debugging data. */
8938 /* Create a fixed version of the array element type.
8939 We're not providing the address of an element here,
8940 and thus the actual object value cannot be inspected to do
8941 the conversion. This should not be a problem, since arrays of
8942 unconstrained objects are not allowed. In particular, all
8943 the elements of an array of a tagged type should all be of
8944 the same type specified in the debugging info. No need to
8945 consult the object tag. */
8946 result =
8947 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8948
8949 elt_type0 = type0;
8950 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8951 {
8952 struct type *range_type =
8953 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8954
8955 result = create_array_type (alloc_type_copy (elt_type0),
8956 result, range_type);
8957 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8958 }
8959 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8960 error (_("array type with dynamic size is larger than varsize-limit"));
8961 }
8962
8963 /* We want to preserve the type name. This can be useful when
8964 trying to get the type name of a value that has already been
8965 printed (for instance, if the user did "print VAR; whatis $". */
8966 TYPE_NAME (result) = TYPE_NAME (type0);
8967
8968 if (constrained_packed_array_p)
8969 {
8970 /* So far, the resulting type has been created as if the original
8971 type was a regular (non-packed) array type. As a result, the
8972 bitsize of the array elements needs to be set again, and the array
8973 length needs to be recomputed based on that bitsize. */
8974 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8975 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8976
8977 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8978 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8979 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8980 TYPE_LENGTH (result)++;
8981 }
8982
8983 TYPE_FIXED_INSTANCE (result) = 1;
8984 return result;
8985 }
8986
8987
8988 /* A standard type (containing no dynamically sized components)
8989 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8990 DVAL describes a record containing any discriminants used in TYPE0,
8991 and may be NULL if there are none, or if the object of type TYPE at
8992 ADDRESS or in VALADDR contains these discriminants.
8993
8994 If CHECK_TAG is not null, in the case of tagged types, this function
8995 attempts to locate the object's tag and use it to compute the actual
8996 type. However, when ADDRESS is null, we cannot use it to determine the
8997 location of the tag, and therefore compute the tagged type's actual type.
8998 So we return the tagged type without consulting the tag. */
8999
9000 static struct type *
9001 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9002 CORE_ADDR address, struct value *dval, int check_tag)
9003 {
9004 type = ada_check_typedef (type);
9005 switch (TYPE_CODE (type))
9006 {
9007 default:
9008 return type;
9009 case TYPE_CODE_STRUCT:
9010 {
9011 struct type *static_type = to_static_fixed_type (type);
9012 struct type *fixed_record_type =
9013 to_fixed_record_type (type, valaddr, address, NULL);
9014
9015 /* If STATIC_TYPE is a tagged type and we know the object's address,
9016 then we can determine its tag, and compute the object's actual
9017 type from there. Note that we have to use the fixed record
9018 type (the parent part of the record may have dynamic fields
9019 and the way the location of _tag is expressed may depend on
9020 them). */
9021
9022 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9023 {
9024 struct value *tag =
9025 value_tag_from_contents_and_address
9026 (fixed_record_type,
9027 valaddr,
9028 address);
9029 struct type *real_type = type_from_tag (tag);
9030 struct value *obj =
9031 value_from_contents_and_address (fixed_record_type,
9032 valaddr,
9033 address);
9034 fixed_record_type = value_type (obj);
9035 if (real_type != NULL)
9036 return to_fixed_record_type
9037 (real_type, NULL,
9038 value_address (ada_tag_value_at_base_address (obj)), NULL);
9039 }
9040
9041 /* Check to see if there is a parallel ___XVZ variable.
9042 If there is, then it provides the actual size of our type. */
9043 else if (ada_type_name (fixed_record_type) != NULL)
9044 {
9045 const char *name = ada_type_name (fixed_record_type);
9046 char *xvz_name
9047 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9048 bool xvz_found = false;
9049 LONGEST size;
9050
9051 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9052 TRY
9053 {
9054 xvz_found = get_int_var_value (xvz_name, size);
9055 }
9056 CATCH (except, RETURN_MASK_ERROR)
9057 {
9058 /* We found the variable, but somehow failed to read
9059 its value. Rethrow the same error, but with a little
9060 bit more information, to help the user understand
9061 what went wrong (Eg: the variable might have been
9062 optimized out). */
9063 throw_error (except.error,
9064 _("unable to read value of %s (%s)"),
9065 xvz_name, except.message);
9066 }
9067 END_CATCH
9068
9069 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9070 {
9071 fixed_record_type = copy_type (fixed_record_type);
9072 TYPE_LENGTH (fixed_record_type) = size;
9073
9074 /* The FIXED_RECORD_TYPE may have be a stub. We have
9075 observed this when the debugging info is STABS, and
9076 apparently it is something that is hard to fix.
9077
9078 In practice, we don't need the actual type definition
9079 at all, because the presence of the XVZ variable allows us
9080 to assume that there must be a XVS type as well, which we
9081 should be able to use later, when we need the actual type
9082 definition.
9083
9084 In the meantime, pretend that the "fixed" type we are
9085 returning is NOT a stub, because this can cause trouble
9086 when using this type to create new types targeting it.
9087 Indeed, the associated creation routines often check
9088 whether the target type is a stub and will try to replace
9089 it, thus using a type with the wrong size. This, in turn,
9090 might cause the new type to have the wrong size too.
9091 Consider the case of an array, for instance, where the size
9092 of the array is computed from the number of elements in
9093 our array multiplied by the size of its element. */
9094 TYPE_STUB (fixed_record_type) = 0;
9095 }
9096 }
9097 return fixed_record_type;
9098 }
9099 case TYPE_CODE_ARRAY:
9100 return to_fixed_array_type (type, dval, 1);
9101 case TYPE_CODE_UNION:
9102 if (dval == NULL)
9103 return type;
9104 else
9105 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9106 }
9107 }
9108
9109 /* The same as ada_to_fixed_type_1, except that it preserves the type
9110 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9111
9112 The typedef layer needs be preserved in order to differentiate between
9113 arrays and array pointers when both types are implemented using the same
9114 fat pointer. In the array pointer case, the pointer is encoded as
9115 a typedef of the pointer type. For instance, considering:
9116
9117 type String_Access is access String;
9118 S1 : String_Access := null;
9119
9120 To the debugger, S1 is defined as a typedef of type String. But
9121 to the user, it is a pointer. So if the user tries to print S1,
9122 we should not dereference the array, but print the array address
9123 instead.
9124
9125 If we didn't preserve the typedef layer, we would lose the fact that
9126 the type is to be presented as a pointer (needs de-reference before
9127 being printed). And we would also use the source-level type name. */
9128
9129 struct type *
9130 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9131 CORE_ADDR address, struct value *dval, int check_tag)
9132
9133 {
9134 struct type *fixed_type =
9135 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9136
9137 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9138 then preserve the typedef layer.
9139
9140 Implementation note: We can only check the main-type portion of
9141 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9142 from TYPE now returns a type that has the same instance flags
9143 as TYPE. For instance, if TYPE is a "typedef const", and its
9144 target type is a "struct", then the typedef elimination will return
9145 a "const" version of the target type. See check_typedef for more
9146 details about how the typedef layer elimination is done.
9147
9148 brobecker/2010-11-19: It seems to me that the only case where it is
9149 useful to preserve the typedef layer is when dealing with fat pointers.
9150 Perhaps, we could add a check for that and preserve the typedef layer
9151 only in that situation. But this seems unecessary so far, probably
9152 because we call check_typedef/ada_check_typedef pretty much everywhere.
9153 */
9154 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9155 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9156 == TYPE_MAIN_TYPE (fixed_type)))
9157 return type;
9158
9159 return fixed_type;
9160 }
9161
9162 /* A standard (static-sized) type corresponding as well as possible to
9163 TYPE0, but based on no runtime data. */
9164
9165 static struct type *
9166 to_static_fixed_type (struct type *type0)
9167 {
9168 struct type *type;
9169
9170 if (type0 == NULL)
9171 return NULL;
9172
9173 if (TYPE_FIXED_INSTANCE (type0))
9174 return type0;
9175
9176 type0 = ada_check_typedef (type0);
9177
9178 switch (TYPE_CODE (type0))
9179 {
9180 default:
9181 return type0;
9182 case TYPE_CODE_STRUCT:
9183 type = dynamic_template_type (type0);
9184 if (type != NULL)
9185 return template_to_static_fixed_type (type);
9186 else
9187 return template_to_static_fixed_type (type0);
9188 case TYPE_CODE_UNION:
9189 type = ada_find_parallel_type (type0, "___XVU");
9190 if (type != NULL)
9191 return template_to_static_fixed_type (type);
9192 else
9193 return template_to_static_fixed_type (type0);
9194 }
9195 }
9196
9197 /* A static approximation of TYPE with all type wrappers removed. */
9198
9199 static struct type *
9200 static_unwrap_type (struct type *type)
9201 {
9202 if (ada_is_aligner_type (type))
9203 {
9204 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9205 if (ada_type_name (type1) == NULL)
9206 TYPE_NAME (type1) = ada_type_name (type);
9207
9208 return static_unwrap_type (type1);
9209 }
9210 else
9211 {
9212 struct type *raw_real_type = ada_get_base_type (type);
9213
9214 if (raw_real_type == type)
9215 return type;
9216 else
9217 return to_static_fixed_type (raw_real_type);
9218 }
9219 }
9220
9221 /* In some cases, incomplete and private types require
9222 cross-references that are not resolved as records (for example,
9223 type Foo;
9224 type FooP is access Foo;
9225 V: FooP;
9226 type Foo is array ...;
9227 ). In these cases, since there is no mechanism for producing
9228 cross-references to such types, we instead substitute for FooP a
9229 stub enumeration type that is nowhere resolved, and whose tag is
9230 the name of the actual type. Call these types "non-record stubs". */
9231
9232 /* A type equivalent to TYPE that is not a non-record stub, if one
9233 exists, otherwise TYPE. */
9234
9235 struct type *
9236 ada_check_typedef (struct type *type)
9237 {
9238 if (type == NULL)
9239 return NULL;
9240
9241 /* If our type is a typedef type of a fat pointer, then we're done.
9242 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9243 what allows us to distinguish between fat pointers that represent
9244 array types, and fat pointers that represent array access types
9245 (in both cases, the compiler implements them as fat pointers). */
9246 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9247 && is_thick_pntr (ada_typedef_target_type (type)))
9248 return type;
9249
9250 type = check_typedef (type);
9251 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9252 || !TYPE_STUB (type)
9253 || TYPE_NAME (type) == NULL)
9254 return type;
9255 else
9256 {
9257 const char *name = TYPE_NAME (type);
9258 struct type *type1 = ada_find_any_type (name);
9259
9260 if (type1 == NULL)
9261 return type;
9262
9263 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9264 stubs pointing to arrays, as we don't create symbols for array
9265 types, only for the typedef-to-array types). If that's the case,
9266 strip the typedef layer. */
9267 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9268 type1 = ada_check_typedef (type1);
9269
9270 return type1;
9271 }
9272 }
9273
9274 /* A value representing the data at VALADDR/ADDRESS as described by
9275 type TYPE0, but with a standard (static-sized) type that correctly
9276 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9277 type, then return VAL0 [this feature is simply to avoid redundant
9278 creation of struct values]. */
9279
9280 static struct value *
9281 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9282 struct value *val0)
9283 {
9284 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9285
9286 if (type == type0 && val0 != NULL)
9287 return val0;
9288
9289 if (VALUE_LVAL (val0) != lval_memory)
9290 {
9291 /* Our value does not live in memory; it could be a convenience
9292 variable, for instance. Create a not_lval value using val0's
9293 contents. */
9294 return value_from_contents (type, value_contents (val0));
9295 }
9296
9297 return value_from_contents_and_address (type, 0, address);
9298 }
9299
9300 /* A value representing VAL, but with a standard (static-sized) type
9301 that correctly describes it. Does not necessarily create a new
9302 value. */
9303
9304 struct value *
9305 ada_to_fixed_value (struct value *val)
9306 {
9307 val = unwrap_value (val);
9308 val = ada_to_fixed_value_create (value_type (val),
9309 value_address (val),
9310 val);
9311 return val;
9312 }
9313 \f
9314
9315 /* Attributes */
9316
9317 /* Table mapping attribute numbers to names.
9318 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9319
9320 static const char *attribute_names[] = {
9321 "<?>",
9322
9323 "first",
9324 "last",
9325 "length",
9326 "image",
9327 "max",
9328 "min",
9329 "modulus",
9330 "pos",
9331 "size",
9332 "tag",
9333 "val",
9334 0
9335 };
9336
9337 const char *
9338 ada_attribute_name (enum exp_opcode n)
9339 {
9340 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9341 return attribute_names[n - OP_ATR_FIRST + 1];
9342 else
9343 return attribute_names[0];
9344 }
9345
9346 /* Evaluate the 'POS attribute applied to ARG. */
9347
9348 static LONGEST
9349 pos_atr (struct value *arg)
9350 {
9351 struct value *val = coerce_ref (arg);
9352 struct type *type = value_type (val);
9353 LONGEST result;
9354
9355 if (!discrete_type_p (type))
9356 error (_("'POS only defined on discrete types"));
9357
9358 if (!discrete_position (type, value_as_long (val), &result))
9359 error (_("enumeration value is invalid: can't find 'POS"));
9360
9361 return result;
9362 }
9363
9364 static struct value *
9365 value_pos_atr (struct type *type, struct value *arg)
9366 {
9367 return value_from_longest (type, pos_atr (arg));
9368 }
9369
9370 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9371
9372 static struct value *
9373 value_val_atr (struct type *type, struct value *arg)
9374 {
9375 if (!discrete_type_p (type))
9376 error (_("'VAL only defined on discrete types"));
9377 if (!integer_type_p (value_type (arg)))
9378 error (_("'VAL requires integral argument"));
9379
9380 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9381 {
9382 long pos = value_as_long (arg);
9383
9384 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9385 error (_("argument to 'VAL out of range"));
9386 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9387 }
9388 else
9389 return value_from_longest (type, value_as_long (arg));
9390 }
9391 \f
9392
9393 /* Evaluation */
9394
9395 /* True if TYPE appears to be an Ada character type.
9396 [At the moment, this is true only for Character and Wide_Character;
9397 It is a heuristic test that could stand improvement]. */
9398
9399 int
9400 ada_is_character_type (struct type *type)
9401 {
9402 const char *name;
9403
9404 /* If the type code says it's a character, then assume it really is,
9405 and don't check any further. */
9406 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9407 return 1;
9408
9409 /* Otherwise, assume it's a character type iff it is a discrete type
9410 with a known character type name. */
9411 name = ada_type_name (type);
9412 return (name != NULL
9413 && (TYPE_CODE (type) == TYPE_CODE_INT
9414 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9415 && (strcmp (name, "character") == 0
9416 || strcmp (name, "wide_character") == 0
9417 || strcmp (name, "wide_wide_character") == 0
9418 || strcmp (name, "unsigned char") == 0));
9419 }
9420
9421 /* True if TYPE appears to be an Ada string type. */
9422
9423 int
9424 ada_is_string_type (struct type *type)
9425 {
9426 type = ada_check_typedef (type);
9427 if (type != NULL
9428 && TYPE_CODE (type) != TYPE_CODE_PTR
9429 && (ada_is_simple_array_type (type)
9430 || ada_is_array_descriptor_type (type))
9431 && ada_array_arity (type) == 1)
9432 {
9433 struct type *elttype = ada_array_element_type (type, 1);
9434
9435 return ada_is_character_type (elttype);
9436 }
9437 else
9438 return 0;
9439 }
9440
9441 /* The compiler sometimes provides a parallel XVS type for a given
9442 PAD type. Normally, it is safe to follow the PAD type directly,
9443 but older versions of the compiler have a bug that causes the offset
9444 of its "F" field to be wrong. Following that field in that case
9445 would lead to incorrect results, but this can be worked around
9446 by ignoring the PAD type and using the associated XVS type instead.
9447
9448 Set to True if the debugger should trust the contents of PAD types.
9449 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9450 static int trust_pad_over_xvs = 1;
9451
9452 /* True if TYPE is a struct type introduced by the compiler to force the
9453 alignment of a value. Such types have a single field with a
9454 distinctive name. */
9455
9456 int
9457 ada_is_aligner_type (struct type *type)
9458 {
9459 type = ada_check_typedef (type);
9460
9461 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9462 return 0;
9463
9464 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9465 && TYPE_NFIELDS (type) == 1
9466 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9467 }
9468
9469 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9470 the parallel type. */
9471
9472 struct type *
9473 ada_get_base_type (struct type *raw_type)
9474 {
9475 struct type *real_type_namer;
9476 struct type *raw_real_type;
9477
9478 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9479 return raw_type;
9480
9481 if (ada_is_aligner_type (raw_type))
9482 /* The encoding specifies that we should always use the aligner type.
9483 So, even if this aligner type has an associated XVS type, we should
9484 simply ignore it.
9485
9486 According to the compiler gurus, an XVS type parallel to an aligner
9487 type may exist because of a stabs limitation. In stabs, aligner
9488 types are empty because the field has a variable-sized type, and
9489 thus cannot actually be used as an aligner type. As a result,
9490 we need the associated parallel XVS type to decode the type.
9491 Since the policy in the compiler is to not change the internal
9492 representation based on the debugging info format, we sometimes
9493 end up having a redundant XVS type parallel to the aligner type. */
9494 return raw_type;
9495
9496 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9497 if (real_type_namer == NULL
9498 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9499 || TYPE_NFIELDS (real_type_namer) != 1)
9500 return raw_type;
9501
9502 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9503 {
9504 /* This is an older encoding form where the base type needs to be
9505 looked up by name. We prefer the newer enconding because it is
9506 more efficient. */
9507 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9508 if (raw_real_type == NULL)
9509 return raw_type;
9510 else
9511 return raw_real_type;
9512 }
9513
9514 /* The field in our XVS type is a reference to the base type. */
9515 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9516 }
9517
9518 /* The type of value designated by TYPE, with all aligners removed. */
9519
9520 struct type *
9521 ada_aligned_type (struct type *type)
9522 {
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9525 else
9526 return ada_get_base_type (type);
9527 }
9528
9529
9530 /* The address of the aligned value in an object at address VALADDR
9531 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9532
9533 const gdb_byte *
9534 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9535 {
9536 if (ada_is_aligner_type (type))
9537 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9538 valaddr +
9539 TYPE_FIELD_BITPOS (type,
9540 0) / TARGET_CHAR_BIT);
9541 else
9542 return valaddr;
9543 }
9544
9545
9546
9547 /* The printed representation of an enumeration literal with encoded
9548 name NAME. The value is good to the next call of ada_enum_name. */
9549 const char *
9550 ada_enum_name (const char *name)
9551 {
9552 static char *result;
9553 static size_t result_len = 0;
9554 const char *tmp;
9555
9556 /* First, unqualify the enumeration name:
9557 1. Search for the last '.' character. If we find one, then skip
9558 all the preceding characters, the unqualified name starts
9559 right after that dot.
9560 2. Otherwise, we may be debugging on a target where the compiler
9561 translates dots into "__". Search forward for double underscores,
9562 but stop searching when we hit an overloading suffix, which is
9563 of the form "__" followed by digits. */
9564
9565 tmp = strrchr (name, '.');
9566 if (tmp != NULL)
9567 name = tmp + 1;
9568 else
9569 {
9570 while ((tmp = strstr (name, "__")) != NULL)
9571 {
9572 if (isdigit (tmp[2]))
9573 break;
9574 else
9575 name = tmp + 2;
9576 }
9577 }
9578
9579 if (name[0] == 'Q')
9580 {
9581 int v;
9582
9583 if (name[1] == 'U' || name[1] == 'W')
9584 {
9585 if (sscanf (name + 2, "%x", &v) != 1)
9586 return name;
9587 }
9588 else
9589 return name;
9590
9591 GROW_VECT (result, result_len, 16);
9592 if (isascii (v) && isprint (v))
9593 xsnprintf (result, result_len, "'%c'", v);
9594 else if (name[1] == 'U')
9595 xsnprintf (result, result_len, "[\"%02x\"]", v);
9596 else
9597 xsnprintf (result, result_len, "[\"%04x\"]", v);
9598
9599 return result;
9600 }
9601 else
9602 {
9603 tmp = strstr (name, "__");
9604 if (tmp == NULL)
9605 tmp = strstr (name, "$");
9606 if (tmp != NULL)
9607 {
9608 GROW_VECT (result, result_len, tmp - name + 1);
9609 strncpy (result, name, tmp - name);
9610 result[tmp - name] = '\0';
9611 return result;
9612 }
9613
9614 return name;
9615 }
9616 }
9617
9618 /* Evaluate the subexpression of EXP starting at *POS as for
9619 evaluate_type, updating *POS to point just past the evaluated
9620 expression. */
9621
9622 static struct value *
9623 evaluate_subexp_type (struct expression *exp, int *pos)
9624 {
9625 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9626 }
9627
9628 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9629 value it wraps. */
9630
9631 static struct value *
9632 unwrap_value (struct value *val)
9633 {
9634 struct type *type = ada_check_typedef (value_type (val));
9635
9636 if (ada_is_aligner_type (type))
9637 {
9638 struct value *v = ada_value_struct_elt (val, "F", 0);
9639 struct type *val_type = ada_check_typedef (value_type (v));
9640
9641 if (ada_type_name (val_type) == NULL)
9642 TYPE_NAME (val_type) = ada_type_name (type);
9643
9644 return unwrap_value (v);
9645 }
9646 else
9647 {
9648 struct type *raw_real_type =
9649 ada_check_typedef (ada_get_base_type (type));
9650
9651 /* If there is no parallel XVS or XVE type, then the value is
9652 already unwrapped. Return it without further modification. */
9653 if ((type == raw_real_type)
9654 && ada_find_parallel_type (type, "___XVE") == NULL)
9655 return val;
9656
9657 return
9658 coerce_unspec_val_to_type
9659 (val, ada_to_fixed_type (raw_real_type, 0,
9660 value_address (val),
9661 NULL, 1));
9662 }
9663 }
9664
9665 static struct value *
9666 cast_from_fixed (struct type *type, struct value *arg)
9667 {
9668 struct value *scale = ada_scaling_factor (value_type (arg));
9669 arg = value_cast (value_type (scale), arg);
9670
9671 arg = value_binop (arg, scale, BINOP_MUL);
9672 return value_cast (type, arg);
9673 }
9674
9675 static struct value *
9676 cast_to_fixed (struct type *type, struct value *arg)
9677 {
9678 if (type == value_type (arg))
9679 return arg;
9680
9681 struct value *scale = ada_scaling_factor (type);
9682 if (ada_is_fixed_point_type (value_type (arg)))
9683 arg = cast_from_fixed (value_type (scale), arg);
9684 else
9685 arg = value_cast (value_type (scale), arg);
9686
9687 arg = value_binop (arg, scale, BINOP_DIV);
9688 return value_cast (type, arg);
9689 }
9690
9691 /* Given two array types T1 and T2, return nonzero iff both arrays
9692 contain the same number of elements. */
9693
9694 static int
9695 ada_same_array_size_p (struct type *t1, struct type *t2)
9696 {
9697 LONGEST lo1, hi1, lo2, hi2;
9698
9699 /* Get the array bounds in order to verify that the size of
9700 the two arrays match. */
9701 if (!get_array_bounds (t1, &lo1, &hi1)
9702 || !get_array_bounds (t2, &lo2, &hi2))
9703 error (_("unable to determine array bounds"));
9704
9705 /* To make things easier for size comparison, normalize a bit
9706 the case of empty arrays by making sure that the difference
9707 between upper bound and lower bound is always -1. */
9708 if (lo1 > hi1)
9709 hi1 = lo1 - 1;
9710 if (lo2 > hi2)
9711 hi2 = lo2 - 1;
9712
9713 return (hi1 - lo1 == hi2 - lo2);
9714 }
9715
9716 /* Assuming that VAL is an array of integrals, and TYPE represents
9717 an array with the same number of elements, but with wider integral
9718 elements, return an array "casted" to TYPE. In practice, this
9719 means that the returned array is built by casting each element
9720 of the original array into TYPE's (wider) element type. */
9721
9722 static struct value *
9723 ada_promote_array_of_integrals (struct type *type, struct value *val)
9724 {
9725 struct type *elt_type = TYPE_TARGET_TYPE (type);
9726 LONGEST lo, hi;
9727 struct value *res;
9728 LONGEST i;
9729
9730 /* Verify that both val and type are arrays of scalars, and
9731 that the size of val's elements is smaller than the size
9732 of type's element. */
9733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9735 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9737 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9738 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9739
9740 if (!get_array_bounds (type, &lo, &hi))
9741 error (_("unable to determine array bounds"));
9742
9743 res = allocate_value (type);
9744
9745 /* Promote each array element. */
9746 for (i = 0; i < hi - lo + 1; i++)
9747 {
9748 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9749
9750 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9751 value_contents_all (elt), TYPE_LENGTH (elt_type));
9752 }
9753
9754 return res;
9755 }
9756
9757 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9758 return the converted value. */
9759
9760 static struct value *
9761 coerce_for_assign (struct type *type, struct value *val)
9762 {
9763 struct type *type2 = value_type (val);
9764
9765 if (type == type2)
9766 return val;
9767
9768 type2 = ada_check_typedef (type2);
9769 type = ada_check_typedef (type);
9770
9771 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9772 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9773 {
9774 val = ada_value_ind (val);
9775 type2 = value_type (val);
9776 }
9777
9778 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9780 {
9781 if (!ada_same_array_size_p (type, type2))
9782 error (_("cannot assign arrays of different length"));
9783
9784 if (is_integral_type (TYPE_TARGET_TYPE (type))
9785 && is_integral_type (TYPE_TARGET_TYPE (type2))
9786 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9787 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9788 {
9789 /* Allow implicit promotion of the array elements to
9790 a wider type. */
9791 return ada_promote_array_of_integrals (type, val);
9792 }
9793
9794 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9795 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9796 error (_("Incompatible types in assignment"));
9797 deprecated_set_value_type (val, type);
9798 }
9799 return val;
9800 }
9801
9802 static struct value *
9803 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9804 {
9805 struct value *val;
9806 struct type *type1, *type2;
9807 LONGEST v, v1, v2;
9808
9809 arg1 = coerce_ref (arg1);
9810 arg2 = coerce_ref (arg2);
9811 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9812 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9813
9814 if (TYPE_CODE (type1) != TYPE_CODE_INT
9815 || TYPE_CODE (type2) != TYPE_CODE_INT)
9816 return value_binop (arg1, arg2, op);
9817
9818 switch (op)
9819 {
9820 case BINOP_MOD:
9821 case BINOP_DIV:
9822 case BINOP_REM:
9823 break;
9824 default:
9825 return value_binop (arg1, arg2, op);
9826 }
9827
9828 v2 = value_as_long (arg2);
9829 if (v2 == 0)
9830 error (_("second operand of %s must not be zero."), op_string (op));
9831
9832 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9833 return value_binop (arg1, arg2, op);
9834
9835 v1 = value_as_long (arg1);
9836 switch (op)
9837 {
9838 case BINOP_DIV:
9839 v = v1 / v2;
9840 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9841 v += v > 0 ? -1 : 1;
9842 break;
9843 case BINOP_REM:
9844 v = v1 % v2;
9845 if (v * v1 < 0)
9846 v -= v2;
9847 break;
9848 default:
9849 /* Should not reach this point. */
9850 v = 0;
9851 }
9852
9853 val = allocate_value (type1);
9854 store_unsigned_integer (value_contents_raw (val),
9855 TYPE_LENGTH (value_type (val)),
9856 gdbarch_byte_order (get_type_arch (type1)), v);
9857 return val;
9858 }
9859
9860 static int
9861 ada_value_equal (struct value *arg1, struct value *arg2)
9862 {
9863 if (ada_is_direct_array_type (value_type (arg1))
9864 || ada_is_direct_array_type (value_type (arg2)))
9865 {
9866 struct type *arg1_type, *arg2_type;
9867
9868 /* Automatically dereference any array reference before
9869 we attempt to perform the comparison. */
9870 arg1 = ada_coerce_ref (arg1);
9871 arg2 = ada_coerce_ref (arg2);
9872
9873 arg1 = ada_coerce_to_simple_array (arg1);
9874 arg2 = ada_coerce_to_simple_array (arg2);
9875
9876 arg1_type = ada_check_typedef (value_type (arg1));
9877 arg2_type = ada_check_typedef (value_type (arg2));
9878
9879 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9880 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9881 error (_("Attempt to compare array with non-array"));
9882 /* FIXME: The following works only for types whose
9883 representations use all bits (no padding or undefined bits)
9884 and do not have user-defined equality. */
9885 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9886 && memcmp (value_contents (arg1), value_contents (arg2),
9887 TYPE_LENGTH (arg1_type)) == 0);
9888 }
9889 return value_equal (arg1, arg2);
9890 }
9891
9892 /* Total number of component associations in the aggregate starting at
9893 index PC in EXP. Assumes that index PC is the start of an
9894 OP_AGGREGATE. */
9895
9896 static int
9897 num_component_specs (struct expression *exp, int pc)
9898 {
9899 int n, m, i;
9900
9901 m = exp->elts[pc + 1].longconst;
9902 pc += 3;
9903 n = 0;
9904 for (i = 0; i < m; i += 1)
9905 {
9906 switch (exp->elts[pc].opcode)
9907 {
9908 default:
9909 n += 1;
9910 break;
9911 case OP_CHOICES:
9912 n += exp->elts[pc + 1].longconst;
9913 break;
9914 }
9915 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9916 }
9917 return n;
9918 }
9919
9920 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9921 component of LHS (a simple array or a record), updating *POS past
9922 the expression, assuming that LHS is contained in CONTAINER. Does
9923 not modify the inferior's memory, nor does it modify LHS (unless
9924 LHS == CONTAINER). */
9925
9926 static void
9927 assign_component (struct value *container, struct value *lhs, LONGEST index,
9928 struct expression *exp, int *pos)
9929 {
9930 struct value *mark = value_mark ();
9931 struct value *elt;
9932 struct type *lhs_type = check_typedef (value_type (lhs));
9933
9934 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9935 {
9936 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9937 struct value *index_val = value_from_longest (index_type, index);
9938
9939 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9940 }
9941 else
9942 {
9943 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9944 elt = ada_to_fixed_value (elt);
9945 }
9946
9947 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9948 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9949 else
9950 value_assign_to_component (container, elt,
9951 ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953
9954 value_free_to_mark (mark);
9955 }
9956
9957 /* Assuming that LHS represents an lvalue having a record or array
9958 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9959 of that aggregate's value to LHS, advancing *POS past the
9960 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9961 lvalue containing LHS (possibly LHS itself). Does not modify
9962 the inferior's memory, nor does it modify the contents of
9963 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9964
9965 static struct value *
9966 assign_aggregate (struct value *container,
9967 struct value *lhs, struct expression *exp,
9968 int *pos, enum noside noside)
9969 {
9970 struct type *lhs_type;
9971 int n = exp->elts[*pos+1].longconst;
9972 LONGEST low_index, high_index;
9973 int num_specs;
9974 LONGEST *indices;
9975 int max_indices, num_indices;
9976 int i;
9977
9978 *pos += 3;
9979 if (noside != EVAL_NORMAL)
9980 {
9981 for (i = 0; i < n; i += 1)
9982 ada_evaluate_subexp (NULL, exp, pos, noside);
9983 return container;
9984 }
9985
9986 container = ada_coerce_ref (container);
9987 if (ada_is_direct_array_type (value_type (container)))
9988 container = ada_coerce_to_simple_array (container);
9989 lhs = ada_coerce_ref (lhs);
9990 if (!deprecated_value_modifiable (lhs))
9991 error (_("Left operand of assignment is not a modifiable lvalue."));
9992
9993 lhs_type = check_typedef (value_type (lhs));
9994 if (ada_is_direct_array_type (lhs_type))
9995 {
9996 lhs = ada_coerce_to_simple_array (lhs);
9997 lhs_type = check_typedef (value_type (lhs));
9998 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9999 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10000 }
10001 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10002 {
10003 low_index = 0;
10004 high_index = num_visible_fields (lhs_type) - 1;
10005 }
10006 else
10007 error (_("Left-hand side must be array or record."));
10008
10009 num_specs = num_component_specs (exp, *pos - 3);
10010 max_indices = 4 * num_specs + 4;
10011 indices = XALLOCAVEC (LONGEST, max_indices);
10012 indices[0] = indices[1] = low_index - 1;
10013 indices[2] = indices[3] = high_index + 1;
10014 num_indices = 4;
10015
10016 for (i = 0; i < n; i += 1)
10017 {
10018 switch (exp->elts[*pos].opcode)
10019 {
10020 case OP_CHOICES:
10021 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_POSITIONAL:
10026 aggregate_assign_positional (container, lhs, exp, pos, indices,
10027 &num_indices, max_indices,
10028 low_index, high_index);
10029 break;
10030 case OP_OTHERS:
10031 if (i != n-1)
10032 error (_("Misplaced 'others' clause"));
10033 aggregate_assign_others (container, lhs, exp, pos, indices,
10034 num_indices, low_index, high_index);
10035 break;
10036 default:
10037 error (_("Internal error: bad aggregate clause"));
10038 }
10039 }
10040
10041 return container;
10042 }
10043
10044 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10045 construct at *POS, updating *POS past the construct, given that
10046 the positions are relative to lower bound LOW, where HIGH is the
10047 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10048 updating *NUM_INDICES as needed. CONTAINER is as for
10049 assign_aggregate. */
10050 static void
10051 aggregate_assign_positional (struct value *container,
10052 struct value *lhs, struct expression *exp,
10053 int *pos, LONGEST *indices, int *num_indices,
10054 int max_indices, LONGEST low, LONGEST high)
10055 {
10056 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10057
10058 if (ind - 1 == high)
10059 warning (_("Extra components in aggregate ignored."));
10060 if (ind <= high)
10061 {
10062 add_component_interval (ind, ind, indices, num_indices, max_indices);
10063 *pos += 3;
10064 assign_component (container, lhs, ind, exp, pos);
10065 }
10066 else
10067 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10068 }
10069
10070 /* Assign into the components of LHS indexed by the OP_CHOICES
10071 construct at *POS, updating *POS past the construct, given that
10072 the allowable indices are LOW..HIGH. Record the indices assigned
10073 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10074 needed. CONTAINER is as for assign_aggregate. */
10075 static void
10076 aggregate_assign_from_choices (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int *num_indices,
10079 int max_indices, LONGEST low, LONGEST high)
10080 {
10081 int j;
10082 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10083 int choice_pos, expr_pc;
10084 int is_array = ada_is_direct_array_type (value_type (lhs));
10085
10086 choice_pos = *pos += 3;
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10090 expr_pc = *pos;
10091 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10092
10093 for (j = 0; j < n_choices; j += 1)
10094 {
10095 LONGEST lower, upper;
10096 enum exp_opcode op = exp->elts[choice_pos].opcode;
10097
10098 if (op == OP_DISCRETE_RANGE)
10099 {
10100 choice_pos += 1;
10101 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10102 EVAL_NORMAL));
10103 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10104 EVAL_NORMAL));
10105 }
10106 else if (is_array)
10107 {
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10109 EVAL_NORMAL));
10110 upper = lower;
10111 }
10112 else
10113 {
10114 int ind;
10115 const char *name;
10116
10117 switch (op)
10118 {
10119 case OP_NAME:
10120 name = &exp->elts[choice_pos + 2].string;
10121 break;
10122 case OP_VAR_VALUE:
10123 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10124 break;
10125 default:
10126 error (_("Invalid record component association."));
10127 }
10128 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10129 ind = 0;
10130 if (! find_struct_field (name, value_type (lhs), 0,
10131 NULL, NULL, NULL, NULL, &ind))
10132 error (_("Unknown component name: %s."), name);
10133 lower = upper = ind;
10134 }
10135
10136 if (lower <= upper && (lower < low || upper > high))
10137 error (_("Index in component association out of bounds."));
10138
10139 add_component_interval (lower, upper, indices, num_indices,
10140 max_indices);
10141 while (lower <= upper)
10142 {
10143 int pos1;
10144
10145 pos1 = expr_pc;
10146 assign_component (container, lhs, lower, exp, &pos1);
10147 lower += 1;
10148 }
10149 }
10150 }
10151
10152 /* Assign the value of the expression in the OP_OTHERS construct in
10153 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10154 have not been previously assigned. The index intervals already assigned
10155 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10156 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10157 static void
10158 aggregate_assign_others (struct value *container,
10159 struct value *lhs, struct expression *exp,
10160 int *pos, LONGEST *indices, int num_indices,
10161 LONGEST low, LONGEST high)
10162 {
10163 int i;
10164 int expr_pc = *pos + 1;
10165
10166 for (i = 0; i < num_indices - 2; i += 2)
10167 {
10168 LONGEST ind;
10169
10170 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10171 {
10172 int localpos;
10173
10174 localpos = expr_pc;
10175 assign_component (container, lhs, ind, exp, &localpos);
10176 }
10177 }
10178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10179 }
10180
10181 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10182 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10183 modifying *SIZE as needed. It is an error if *SIZE exceeds
10184 MAX_SIZE. The resulting intervals do not overlap. */
10185 static void
10186 add_component_interval (LONGEST low, LONGEST high,
10187 LONGEST* indices, int *size, int max_size)
10188 {
10189 int i, j;
10190
10191 for (i = 0; i < *size; i += 2) {
10192 if (high >= indices[i] && low <= indices[i + 1])
10193 {
10194 int kh;
10195
10196 for (kh = i + 2; kh < *size; kh += 2)
10197 if (high < indices[kh])
10198 break;
10199 if (low < indices[i])
10200 indices[i] = low;
10201 indices[i + 1] = indices[kh - 1];
10202 if (high > indices[i + 1])
10203 indices[i + 1] = high;
10204 memcpy (indices + i + 2, indices + kh, *size - kh);
10205 *size -= kh - i - 2;
10206 return;
10207 }
10208 else if (high < indices[i])
10209 break;
10210 }
10211
10212 if (*size == max_size)
10213 error (_("Internal error: miscounted aggregate components."));
10214 *size += 2;
10215 for (j = *size-1; j >= i+2; j -= 1)
10216 indices[j] = indices[j - 2];
10217 indices[i] = low;
10218 indices[i + 1] = high;
10219 }
10220
10221 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10222 is different. */
10223
10224 static struct value *
10225 ada_value_cast (struct type *type, struct value *arg2)
10226 {
10227 if (type == ada_check_typedef (value_type (arg2)))
10228 return arg2;
10229
10230 if (ada_is_fixed_point_type (type))
10231 return (cast_to_fixed (type, arg2));
10232
10233 if (ada_is_fixed_point_type (value_type (arg2)))
10234 return cast_from_fixed (type, arg2);
10235
10236 return value_cast (type, arg2);
10237 }
10238
10239 /* Evaluating Ada expressions, and printing their result.
10240 ------------------------------------------------------
10241
10242 1. Introduction:
10243 ----------------
10244
10245 We usually evaluate an Ada expression in order to print its value.
10246 We also evaluate an expression in order to print its type, which
10247 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10248 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10249 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10250 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10251 similar.
10252
10253 Evaluating expressions is a little more complicated for Ada entities
10254 than it is for entities in languages such as C. The main reason for
10255 this is that Ada provides types whose definition might be dynamic.
10256 One example of such types is variant records. Or another example
10257 would be an array whose bounds can only be known at run time.
10258
10259 The following description is a general guide as to what should be
10260 done (and what should NOT be done) in order to evaluate an expression
10261 involving such types, and when. This does not cover how the semantic
10262 information is encoded by GNAT as this is covered separatly. For the
10263 document used as the reference for the GNAT encoding, see exp_dbug.ads
10264 in the GNAT sources.
10265
10266 Ideally, we should embed each part of this description next to its
10267 associated code. Unfortunately, the amount of code is so vast right
10268 now that it's hard to see whether the code handling a particular
10269 situation might be duplicated or not. One day, when the code is
10270 cleaned up, this guide might become redundant with the comments
10271 inserted in the code, and we might want to remove it.
10272
10273 2. ``Fixing'' an Entity, the Simple Case:
10274 -----------------------------------------
10275
10276 When evaluating Ada expressions, the tricky issue is that they may
10277 reference entities whose type contents and size are not statically
10278 known. Consider for instance a variant record:
10279
10280 type Rec (Empty : Boolean := True) is record
10281 case Empty is
10282 when True => null;
10283 when False => Value : Integer;
10284 end case;
10285 end record;
10286 Yes : Rec := (Empty => False, Value => 1);
10287 No : Rec := (empty => True);
10288
10289 The size and contents of that record depends on the value of the
10290 descriminant (Rec.Empty). At this point, neither the debugging
10291 information nor the associated type structure in GDB are able to
10292 express such dynamic types. So what the debugger does is to create
10293 "fixed" versions of the type that applies to the specific object.
10294 We also informally refer to this opperation as "fixing" an object,
10295 which means creating its associated fixed type.
10296
10297 Example: when printing the value of variable "Yes" above, its fixed
10298 type would look like this:
10299
10300 type Rec is record
10301 Empty : Boolean;
10302 Value : Integer;
10303 end record;
10304
10305 On the other hand, if we printed the value of "No", its fixed type
10306 would become:
10307
10308 type Rec is record
10309 Empty : Boolean;
10310 end record;
10311
10312 Things become a little more complicated when trying to fix an entity
10313 with a dynamic type that directly contains another dynamic type,
10314 such as an array of variant records, for instance. There are
10315 two possible cases: Arrays, and records.
10316
10317 3. ``Fixing'' Arrays:
10318 ---------------------
10319
10320 The type structure in GDB describes an array in terms of its bounds,
10321 and the type of its elements. By design, all elements in the array
10322 have the same type and we cannot represent an array of variant elements
10323 using the current type structure in GDB. When fixing an array,
10324 we cannot fix the array element, as we would potentially need one
10325 fixed type per element of the array. As a result, the best we can do
10326 when fixing an array is to produce an array whose bounds and size
10327 are correct (allowing us to read it from memory), but without having
10328 touched its element type. Fixing each element will be done later,
10329 when (if) necessary.
10330
10331 Arrays are a little simpler to handle than records, because the same
10332 amount of memory is allocated for each element of the array, even if
10333 the amount of space actually used by each element differs from element
10334 to element. Consider for instance the following array of type Rec:
10335
10336 type Rec_Array is array (1 .. 2) of Rec;
10337
10338 The actual amount of memory occupied by each element might be different
10339 from element to element, depending on the value of their discriminant.
10340 But the amount of space reserved for each element in the array remains
10341 fixed regardless. So we simply need to compute that size using
10342 the debugging information available, from which we can then determine
10343 the array size (we multiply the number of elements of the array by
10344 the size of each element).
10345
10346 The simplest case is when we have an array of a constrained element
10347 type. For instance, consider the following type declarations:
10348
10349 type Bounded_String (Max_Size : Integer) is
10350 Length : Integer;
10351 Buffer : String (1 .. Max_Size);
10352 end record;
10353 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10354
10355 In this case, the compiler describes the array as an array of
10356 variable-size elements (identified by its XVS suffix) for which
10357 the size can be read in the parallel XVZ variable.
10358
10359 In the case of an array of an unconstrained element type, the compiler
10360 wraps the array element inside a private PAD type. This type should not
10361 be shown to the user, and must be "unwrap"'ed before printing. Note
10362 that we also use the adjective "aligner" in our code to designate
10363 these wrapper types.
10364
10365 In some cases, the size allocated for each element is statically
10366 known. In that case, the PAD type already has the correct size,
10367 and the array element should remain unfixed.
10368
10369 But there are cases when this size is not statically known.
10370 For instance, assuming that "Five" is an integer variable:
10371
10372 type Dynamic is array (1 .. Five) of Integer;
10373 type Wrapper (Has_Length : Boolean := False) is record
10374 Data : Dynamic;
10375 case Has_Length is
10376 when True => Length : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 type Wrapper_Array is array (1 .. 2) of Wrapper;
10381
10382 Hello : Wrapper_Array := (others => (Has_Length => True,
10383 Data => (others => 17),
10384 Length => 1));
10385
10386
10387 The debugging info would describe variable Hello as being an
10388 array of a PAD type. The size of that PAD type is not statically
10389 known, but can be determined using a parallel XVZ variable.
10390 In that case, a copy of the PAD type with the correct size should
10391 be used for the fixed array.
10392
10393 3. ``Fixing'' record type objects:
10394 ----------------------------------
10395
10396 Things are slightly different from arrays in the case of dynamic
10397 record types. In this case, in order to compute the associated
10398 fixed type, we need to determine the size and offset of each of
10399 its components. This, in turn, requires us to compute the fixed
10400 type of each of these components.
10401
10402 Consider for instance the example:
10403
10404 type Bounded_String (Max_Size : Natural) is record
10405 Str : String (1 .. Max_Size);
10406 Length : Natural;
10407 end record;
10408 My_String : Bounded_String (Max_Size => 10);
10409
10410 In that case, the position of field "Length" depends on the size
10411 of field Str, which itself depends on the value of the Max_Size
10412 discriminant. In order to fix the type of variable My_String,
10413 we need to fix the type of field Str. Therefore, fixing a variant
10414 record requires us to fix each of its components.
10415
10416 However, if a component does not have a dynamic size, the component
10417 should not be fixed. In particular, fields that use a PAD type
10418 should not fixed. Here is an example where this might happen
10419 (assuming type Rec above):
10420
10421 type Container (Big : Boolean) is record
10422 First : Rec;
10423 After : Integer;
10424 case Big is
10425 when True => Another : Integer;
10426 when False => null;
10427 end case;
10428 end record;
10429 My_Container : Container := (Big => False,
10430 First => (Empty => True),
10431 After => 42);
10432
10433 In that example, the compiler creates a PAD type for component First,
10434 whose size is constant, and then positions the component After just
10435 right after it. The offset of component After is therefore constant
10436 in this case.
10437
10438 The debugger computes the position of each field based on an algorithm
10439 that uses, among other things, the actual position and size of the field
10440 preceding it. Let's now imagine that the user is trying to print
10441 the value of My_Container. If the type fixing was recursive, we would
10442 end up computing the offset of field After based on the size of the
10443 fixed version of field First. And since in our example First has
10444 only one actual field, the size of the fixed type is actually smaller
10445 than the amount of space allocated to that field, and thus we would
10446 compute the wrong offset of field After.
10447
10448 To make things more complicated, we need to watch out for dynamic
10449 components of variant records (identified by the ___XVL suffix in
10450 the component name). Even if the target type is a PAD type, the size
10451 of that type might not be statically known. So the PAD type needs
10452 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10453 we might end up with the wrong size for our component. This can be
10454 observed with the following type declarations:
10455
10456 type Octal is new Integer range 0 .. 7;
10457 type Octal_Array is array (Positive range <>) of Octal;
10458 pragma Pack (Octal_Array);
10459
10460 type Octal_Buffer (Size : Positive) is record
10461 Buffer : Octal_Array (1 .. Size);
10462 Length : Integer;
10463 end record;
10464
10465 In that case, Buffer is a PAD type whose size is unset and needs
10466 to be computed by fixing the unwrapped type.
10467
10468 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10469 ----------------------------------------------------------
10470
10471 Lastly, when should the sub-elements of an entity that remained unfixed
10472 thus far, be actually fixed?
10473
10474 The answer is: Only when referencing that element. For instance
10475 when selecting one component of a record, this specific component
10476 should be fixed at that point in time. Or when printing the value
10477 of a record, each component should be fixed before its value gets
10478 printed. Similarly for arrays, the element of the array should be
10479 fixed when printing each element of the array, or when extracting
10480 one element out of that array. On the other hand, fixing should
10481 not be performed on the elements when taking a slice of an array!
10482
10483 Note that one of the side effects of miscomputing the offset and
10484 size of each field is that we end up also miscomputing the size
10485 of the containing type. This can have adverse results when computing
10486 the value of an entity. GDB fetches the value of an entity based
10487 on the size of its type, and thus a wrong size causes GDB to fetch
10488 the wrong amount of memory. In the case where the computed size is
10489 too small, GDB fetches too little data to print the value of our
10490 entity. Results in this case are unpredictable, as we usually read
10491 past the buffer containing the data =:-o. */
10492
10493 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10494 for that subexpression cast to TO_TYPE. Advance *POS over the
10495 subexpression. */
10496
10497 static value *
10498 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10499 enum noside noside, struct type *to_type)
10500 {
10501 int pc = *pos;
10502
10503 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10504 || exp->elts[pc].opcode == OP_VAR_VALUE)
10505 {
10506 (*pos) += 4;
10507
10508 value *val;
10509 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10510 {
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 return value_zero (to_type, not_lval);
10513
10514 val = evaluate_var_msym_value (noside,
10515 exp->elts[pc + 1].objfile,
10516 exp->elts[pc + 2].msymbol);
10517 }
10518 else
10519 val = evaluate_var_value (noside,
10520 exp->elts[pc + 1].block,
10521 exp->elts[pc + 2].symbol);
10522
10523 if (noside == EVAL_SKIP)
10524 return eval_skip_value (exp);
10525
10526 val = ada_value_cast (to_type, val);
10527
10528 /* Follow the Ada language semantics that do not allow taking
10529 an address of the result of a cast (view conversion in Ada). */
10530 if (VALUE_LVAL (val) == lval_memory)
10531 {
10532 if (value_lazy (val))
10533 value_fetch_lazy (val);
10534 VALUE_LVAL (val) = not_lval;
10535 }
10536 return val;
10537 }
10538
10539 value *val = evaluate_subexp (to_type, exp, pos, noside);
10540 if (noside == EVAL_SKIP)
10541 return eval_skip_value (exp);
10542 return ada_value_cast (to_type, val);
10543 }
10544
10545 /* Implement the evaluate_exp routine in the exp_descriptor structure
10546 for the Ada language. */
10547
10548 static struct value *
10549 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10550 int *pos, enum noside noside)
10551 {
10552 enum exp_opcode op;
10553 int tem;
10554 int pc;
10555 int preeval_pos;
10556 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10557 struct type *type;
10558 int nargs, oplen;
10559 struct value **argvec;
10560
10561 pc = *pos;
10562 *pos += 1;
10563 op = exp->elts[pc].opcode;
10564
10565 switch (op)
10566 {
10567 default:
10568 *pos -= 1;
10569 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10570
10571 if (noside == EVAL_NORMAL)
10572 arg1 = unwrap_value (arg1);
10573
10574 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10575 then we need to perform the conversion manually, because
10576 evaluate_subexp_standard doesn't do it. This conversion is
10577 necessary in Ada because the different kinds of float/fixed
10578 types in Ada have different representations.
10579
10580 Similarly, we need to perform the conversion from OP_LONG
10581 ourselves. */
10582 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10583 arg1 = ada_value_cast (expect_type, arg1);
10584
10585 return arg1;
10586
10587 case OP_STRING:
10588 {
10589 struct value *result;
10590
10591 *pos -= 1;
10592 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593 /* The result type will have code OP_STRING, bashed there from
10594 OP_ARRAY. Bash it back. */
10595 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10596 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10597 return result;
10598 }
10599
10600 case UNOP_CAST:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10604
10605 case UNOP_QUAL:
10606 (*pos) += 2;
10607 type = exp->elts[pc + 1].type;
10608 return ada_evaluate_subexp (type, exp, pos, noside);
10609
10610 case BINOP_ASSIGN:
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10612 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10613 {
10614 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10615 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10616 return arg1;
10617 return ada_value_assign (arg1, arg1);
10618 }
10619 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10620 except if the lhs of our assignment is a convenience variable.
10621 In the case of assigning to a convenience variable, the lhs
10622 should be exactly the result of the evaluation of the rhs. */
10623 type = value_type (arg1);
10624 if (VALUE_LVAL (arg1) == lval_internalvar)
10625 type = NULL;
10626 arg2 = evaluate_subexp (type, exp, pos, noside);
10627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10628 return arg1;
10629 if (ada_is_fixed_point_type (value_type (arg1)))
10630 arg2 = cast_to_fixed (value_type (arg1), arg2);
10631 else if (ada_is_fixed_point_type (value_type (arg2)))
10632 error
10633 (_("Fixed-point values must be assigned to fixed-point variables"));
10634 else
10635 arg2 = coerce_for_assign (value_type (arg1), arg2);
10636 return ada_value_assign (arg1, arg2);
10637
10638 case BINOP_ADD:
10639 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10640 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10641 if (noside == EVAL_SKIP)
10642 goto nosideret;
10643 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10644 return (value_from_longest
10645 (value_type (arg1),
10646 value_as_long (arg1) + value_as_long (arg2)));
10647 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10648 return (value_from_longest
10649 (value_type (arg2),
10650 value_as_long (arg1) + value_as_long (arg2)));
10651 if ((ada_is_fixed_point_type (value_type (arg1))
10652 || ada_is_fixed_point_type (value_type (arg2)))
10653 && value_type (arg1) != value_type (arg2))
10654 error (_("Operands of fixed-point addition must have the same type"));
10655 /* Do the addition, and cast the result to the type of the first
10656 argument. We cannot cast the result to a reference type, so if
10657 ARG1 is a reference type, find its underlying type. */
10658 type = value_type (arg1);
10659 while (TYPE_CODE (type) == TYPE_CODE_REF)
10660 type = TYPE_TARGET_TYPE (type);
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10663
10664 case BINOP_SUB:
10665 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10666 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10667 if (noside == EVAL_SKIP)
10668 goto nosideret;
10669 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10670 return (value_from_longest
10671 (value_type (arg1),
10672 value_as_long (arg1) - value_as_long (arg2)));
10673 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10674 return (value_from_longest
10675 (value_type (arg2),
10676 value_as_long (arg1) - value_as_long (arg2)));
10677 if ((ada_is_fixed_point_type (value_type (arg1))
10678 || ada_is_fixed_point_type (value_type (arg2)))
10679 && value_type (arg1) != value_type (arg2))
10680 error (_("Operands of fixed-point subtraction "
10681 "must have the same type"));
10682 /* Do the substraction, and cast the result to the type of the first
10683 argument. We cannot cast the result to a reference type, so if
10684 ARG1 is a reference type, find its underlying type. */
10685 type = value_type (arg1);
10686 while (TYPE_CODE (type) == TYPE_CODE_REF)
10687 type = TYPE_TARGET_TYPE (type);
10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10689 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10690
10691 case BINOP_MUL:
10692 case BINOP_DIV:
10693 case BINOP_REM:
10694 case BINOP_MOD:
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 {
10701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10702 return value_zero (value_type (arg1), not_lval);
10703 }
10704 else
10705 {
10706 type = builtin_type (exp->gdbarch)->builtin_double;
10707 if (ada_is_fixed_point_type (value_type (arg1)))
10708 arg1 = cast_from_fixed (type, arg1);
10709 if (ada_is_fixed_point_type (value_type (arg2)))
10710 arg2 = cast_from_fixed (type, arg2);
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 return ada_value_binop (arg1, arg2, op);
10713 }
10714
10715 case BINOP_EQUAL:
10716 case BINOP_NOTEQUAL:
10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10719 if (noside == EVAL_SKIP)
10720 goto nosideret;
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 tem = 0;
10723 else
10724 {
10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10726 tem = ada_value_equal (arg1, arg2);
10727 }
10728 if (op == BINOP_NOTEQUAL)
10729 tem = !tem;
10730 type = language_bool_type (exp->language_defn, exp->gdbarch);
10731 return value_from_longest (type, (LONGEST) tem);
10732
10733 case UNOP_NEG:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
10737 else if (ada_is_fixed_point_type (value_type (arg1)))
10738 return value_cast (value_type (arg1), value_neg (arg1));
10739 else
10740 {
10741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10742 return value_neg (arg1);
10743 }
10744
10745 case BINOP_LOGICAL_AND:
10746 case BINOP_LOGICAL_OR:
10747 case UNOP_LOGICAL_NOT:
10748 {
10749 struct value *val;
10750
10751 *pos -= 1;
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10753 type = language_bool_type (exp->language_defn, exp->gdbarch);
10754 return value_cast (type, val);
10755 }
10756
10757 case BINOP_BITWISE_AND:
10758 case BINOP_BITWISE_IOR:
10759 case BINOP_BITWISE_XOR:
10760 {
10761 struct value *val;
10762
10763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10764 *pos = pc;
10765 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766
10767 return value_cast (value_type (arg1), val);
10768 }
10769
10770 case OP_VAR_VALUE:
10771 *pos -= 1;
10772
10773 if (noside == EVAL_SKIP)
10774 {
10775 *pos += 4;
10776 goto nosideret;
10777 }
10778
10779 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10780 /* Only encountered when an unresolved symbol occurs in a
10781 context other than a function call, in which case, it is
10782 invalid. */
10783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10785
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 {
10788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10789 /* Check to see if this is a tagged type. We also need to handle
10790 the case where the type is a reference to a tagged type, but
10791 we have to be careful to exclude pointers to tagged types.
10792 The latter should be shown as usual (as a pointer), whereas
10793 a reference should mostly be transparent to the user. */
10794 if (ada_is_tagged_type (type, 0)
10795 || (TYPE_CODE (type) == TYPE_CODE_REF
10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10797 {
10798 /* Tagged types are a little special in the fact that the real
10799 type is dynamic and can only be determined by inspecting the
10800 object's tag. This means that we need to get the object's
10801 value first (EVAL_NORMAL) and then extract the actual object
10802 type from its tag.
10803
10804 Note that we cannot skip the final step where we extract
10805 the object type from its tag, because the EVAL_NORMAL phase
10806 results in dynamic components being resolved into fixed ones.
10807 This can cause problems when trying to print the type
10808 description of tagged types whose parent has a dynamic size:
10809 We use the type name of the "_parent" component in order
10810 to print the name of the ancestor type in the type description.
10811 If that component had a dynamic size, the resolution into
10812 a fixed type would result in the loss of that type name,
10813 thus preventing us from printing the name of the ancestor
10814 type in the type description. */
10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10816
10817 if (TYPE_CODE (type) != TYPE_CODE_REF)
10818 {
10819 struct type *actual_type;
10820
10821 actual_type = type_from_tag (ada_value_tag (arg1));
10822 if (actual_type == NULL)
10823 /* If, for some reason, we were unable to determine
10824 the actual type from the tag, then use the static
10825 approximation that we just computed as a fallback.
10826 This can happen if the debugging information is
10827 incomplete, for instance. */
10828 actual_type = type;
10829 return value_zero (actual_type, not_lval);
10830 }
10831 else
10832 {
10833 /* In the case of a ref, ada_coerce_ref takes care
10834 of determining the actual type. But the evaluation
10835 should return a ref as it should be valid to ask
10836 for its address; so rebuild a ref after coerce. */
10837 arg1 = ada_coerce_ref (arg1);
10838 return value_ref (arg1, TYPE_CODE_REF);
10839 }
10840 }
10841
10842 /* Records and unions for which GNAT encodings have been
10843 generated need to be statically fixed as well.
10844 Otherwise, non-static fixing produces a type where
10845 all dynamic properties are removed, which prevents "ptype"
10846 from being able to completely describe the type.
10847 For instance, a case statement in a variant record would be
10848 replaced by the relevant components based on the actual
10849 value of the discriminants. */
10850 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10851 && dynamic_template_type (type) != NULL)
10852 || (TYPE_CODE (type) == TYPE_CODE_UNION
10853 && ada_find_parallel_type (type, "___XVU") != NULL))
10854 {
10855 *pos += 4;
10856 return value_zero (to_static_fixed_type (type), not_lval);
10857 }
10858 }
10859
10860 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10861 return ada_to_fixed_value (arg1);
10862
10863 case OP_FUNCALL:
10864 (*pos) += 2;
10865
10866 /* Allocate arg vector, including space for the function to be
10867 called in argvec[0] and a terminating NULL. */
10868 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10869 argvec = XALLOCAVEC (struct value *, nargs + 2);
10870
10871 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10872 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10875 else
10876 {
10877 for (tem = 0; tem <= nargs; tem += 1)
10878 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 argvec[tem] = 0;
10880
10881 if (noside == EVAL_SKIP)
10882 goto nosideret;
10883 }
10884
10885 if (ada_is_constrained_packed_array_type
10886 (desc_base_type (value_type (argvec[0]))))
10887 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10890 /* This is a packed array that has already been fixed, and
10891 therefore already coerced to a simple array. Nothing further
10892 to do. */
10893 ;
10894 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10895 {
10896 /* Make sure we dereference references so that all the code below
10897 feels like it's really handling the referenced value. Wrapping
10898 types (for alignment) may be there, so make sure we strip them as
10899 well. */
10900 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10901 }
10902 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10903 && VALUE_LVAL (argvec[0]) == lval_memory)
10904 argvec[0] = value_addr (argvec[0]);
10905
10906 type = ada_check_typedef (value_type (argvec[0]));
10907
10908 /* Ada allows us to implicitly dereference arrays when subscripting
10909 them. So, if this is an array typedef (encoding use for array
10910 access types encoded as fat pointers), strip it now. */
10911 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10912 type = ada_typedef_target_type (type);
10913
10914 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10915 {
10916 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10917 {
10918 case TYPE_CODE_FUNC:
10919 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10920 break;
10921 case TYPE_CODE_ARRAY:
10922 break;
10923 case TYPE_CODE_STRUCT:
10924 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10925 argvec[0] = ada_value_ind (argvec[0]);
10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10927 break;
10928 default:
10929 error (_("cannot subscript or call something of type `%s'"),
10930 ada_type_name (value_type (argvec[0])));
10931 break;
10932 }
10933 }
10934
10935 switch (TYPE_CODE (type))
10936 {
10937 case TYPE_CODE_FUNC:
10938 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10939 {
10940 if (TYPE_TARGET_TYPE (type) == NULL)
10941 error_call_unknown_return_type (NULL);
10942 return allocate_value (TYPE_TARGET_TYPE (type));
10943 }
10944 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10945 case TYPE_CODE_INTERNAL_FUNCTION:
10946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10947 /* We don't know anything about what the internal
10948 function might return, but we have to return
10949 something. */
10950 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10951 not_lval);
10952 else
10953 return call_internal_function (exp->gdbarch, exp->language_defn,
10954 argvec[0], nargs, argvec + 1);
10955
10956 case TYPE_CODE_STRUCT:
10957 {
10958 int arity;
10959
10960 arity = ada_array_arity (type);
10961 type = ada_array_element_type (type, nargs);
10962 if (type == NULL)
10963 error (_("cannot subscript or call a record"));
10964 if (arity != nargs)
10965 error (_("wrong number of subscripts; expecting %d"), arity);
10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10967 return value_zero (ada_aligned_type (type), lval_memory);
10968 return
10969 unwrap_value (ada_value_subscript
10970 (argvec[0], nargs, argvec + 1));
10971 }
10972 case TYPE_CODE_ARRAY:
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 {
10975 type = ada_array_element_type (type, nargs);
10976 if (type == NULL)
10977 error (_("element type of array unknown"));
10978 else
10979 return value_zero (ada_aligned_type (type), lval_memory);
10980 }
10981 return
10982 unwrap_value (ada_value_subscript
10983 (ada_coerce_to_simple_array (argvec[0]),
10984 nargs, argvec + 1));
10985 case TYPE_CODE_PTR: /* Pointer to array */
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 {
10988 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10989 type = ada_array_element_type (type, nargs);
10990 if (type == NULL)
10991 error (_("element type of array unknown"));
10992 else
10993 return value_zero (ada_aligned_type (type), lval_memory);
10994 }
10995 return
10996 unwrap_value (ada_value_ptr_subscript (argvec[0],
10997 nargs, argvec + 1));
10998
10999 default:
11000 error (_("Attempt to index or call something other than an "
11001 "array or function"));
11002 }
11003
11004 case TERNOP_SLICE:
11005 {
11006 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 struct value *low_bound_val =
11008 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 struct value *high_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 LONGEST low_bound;
11012 LONGEST high_bound;
11013
11014 low_bound_val = coerce_ref (low_bound_val);
11015 high_bound_val = coerce_ref (high_bound_val);
11016 low_bound = value_as_long (low_bound_val);
11017 high_bound = value_as_long (high_bound_val);
11018
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021
11022 /* If this is a reference to an aligner type, then remove all
11023 the aligners. */
11024 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11025 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11026 TYPE_TARGET_TYPE (value_type (array)) =
11027 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11028
11029 if (ada_is_constrained_packed_array_type (value_type (array)))
11030 error (_("cannot slice a packed array"));
11031
11032 /* If this is a reference to an array or an array lvalue,
11033 convert to a pointer. */
11034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11035 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11036 && VALUE_LVAL (array) == lval_memory))
11037 array = value_addr (array);
11038
11039 if (noside == EVAL_AVOID_SIDE_EFFECTS
11040 && ada_is_array_descriptor_type (ada_check_typedef
11041 (value_type (array))))
11042 return empty_array (ada_type_of_array (array, 0), low_bound);
11043
11044 array = ada_coerce_to_simple_array_ptr (array);
11045
11046 /* If we have more than one level of pointer indirection,
11047 dereference the value until we get only one level. */
11048 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11049 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11050 == TYPE_CODE_PTR))
11051 array = value_ind (array);
11052
11053 /* Make sure we really do have an array type before going further,
11054 to avoid a SEGV when trying to get the index type or the target
11055 type later down the road if the debug info generated by
11056 the compiler is incorrect or incomplete. */
11057 if (!ada_is_simple_array_type (value_type (array)))
11058 error (_("cannot take slice of non-array"));
11059
11060 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11061 == TYPE_CODE_PTR)
11062 {
11063 struct type *type0 = ada_check_typedef (value_type (array));
11064
11065 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11066 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11067 else
11068 {
11069 struct type *arr_type0 =
11070 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11071
11072 return ada_value_slice_from_ptr (array, arr_type0,
11073 longest_to_int (low_bound),
11074 longest_to_int (high_bound));
11075 }
11076 }
11077 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11078 return array;
11079 else if (high_bound < low_bound)
11080 return empty_array (value_type (array), low_bound);
11081 else
11082 return ada_value_slice (array, longest_to_int (low_bound),
11083 longest_to_int (high_bound));
11084 }
11085
11086 case UNOP_IN_RANGE:
11087 (*pos) += 2;
11088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11089 type = check_typedef (exp->elts[pc + 1].type);
11090
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093
11094 switch (TYPE_CODE (type))
11095 {
11096 default:
11097 lim_warning (_("Membership test incompletely implemented; "
11098 "always returns true"));
11099 type = language_bool_type (exp->language_defn, exp->gdbarch);
11100 return value_from_longest (type, (LONGEST) 1);
11101
11102 case TYPE_CODE_RANGE:
11103 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11104 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11105 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11107 type = language_bool_type (exp->language_defn, exp->gdbarch);
11108 return
11109 value_from_longest (type,
11110 (value_less (arg1, arg3)
11111 || value_equal (arg1, arg3))
11112 && (value_less (arg2, arg1)
11113 || value_equal (arg2, arg1)));
11114 }
11115
11116 case BINOP_IN_BOUNDS:
11117 (*pos) += 2;
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11120
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
11123
11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 {
11126 type = language_bool_type (exp->language_defn, exp->gdbarch);
11127 return value_zero (type, not_lval);
11128 }
11129
11130 tem = longest_to_int (exp->elts[pc + 1].longconst);
11131
11132 type = ada_index_type (value_type (arg2), tem, "range");
11133 if (!type)
11134 type = value_type (arg1);
11135
11136 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11137 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11138
11139 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11141 type = language_bool_type (exp->language_defn, exp->gdbarch);
11142 return
11143 value_from_longest (type,
11144 (value_less (arg1, arg3)
11145 || value_equal (arg1, arg3))
11146 && (value_less (arg2, arg1)
11147 || value_equal (arg2, arg1)));
11148
11149 case TERNOP_IN_RANGE:
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153
11154 if (noside == EVAL_SKIP)
11155 goto nosideret;
11156
11157 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11159 type = language_bool_type (exp->language_defn, exp->gdbarch);
11160 return
11161 value_from_longest (type,
11162 (value_less (arg1, arg3)
11163 || value_equal (arg1, arg3))
11164 && (value_less (arg2, arg1)
11165 || value_equal (arg2, arg1)));
11166
11167 case OP_ATR_FIRST:
11168 case OP_ATR_LAST:
11169 case OP_ATR_LENGTH:
11170 {
11171 struct type *type_arg;
11172
11173 if (exp->elts[*pos].opcode == OP_TYPE)
11174 {
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 arg1 = NULL;
11177 type_arg = check_typedef (exp->elts[pc + 2].type);
11178 }
11179 else
11180 {
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 type_arg = NULL;
11183 }
11184
11185 if (exp->elts[*pos].opcode != OP_LONG)
11186 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11187 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11188 *pos += 4;
11189
11190 if (noside == EVAL_SKIP)
11191 goto nosideret;
11192
11193 if (type_arg == NULL)
11194 {
11195 arg1 = ada_coerce_ref (arg1);
11196
11197 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11198 arg1 = ada_coerce_to_simple_array (arg1);
11199
11200 if (op == OP_ATR_LENGTH)
11201 type = builtin_type (exp->gdbarch)->builtin_int;
11202 else
11203 {
11204 type = ada_index_type (value_type (arg1), tem,
11205 ada_attribute_name (op));
11206 if (type == NULL)
11207 type = builtin_type (exp->gdbarch)->builtin_int;
11208 }
11209
11210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return allocate_value (type);
11212
11213 switch (op)
11214 {
11215 default: /* Should never happen. */
11216 error (_("unexpected attribute encountered"));
11217 case OP_ATR_FIRST:
11218 return value_from_longest
11219 (type, ada_array_bound (arg1, tem, 0));
11220 case OP_ATR_LAST:
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 1));
11223 case OP_ATR_LENGTH:
11224 return value_from_longest
11225 (type, ada_array_length (arg1, tem));
11226 }
11227 }
11228 else if (discrete_type_p (type_arg))
11229 {
11230 struct type *range_type;
11231 const char *name = ada_type_name (type_arg);
11232
11233 range_type = NULL;
11234 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11235 range_type = to_fixed_range_type (type_arg, NULL);
11236 if (range_type == NULL)
11237 range_type = type_arg;
11238 switch (op)
11239 {
11240 default:
11241 error (_("unexpected attribute encountered"));
11242 case OP_ATR_FIRST:
11243 return value_from_longest
11244 (range_type, ada_discrete_type_low_bound (range_type));
11245 case OP_ATR_LAST:
11246 return value_from_longest
11247 (range_type, ada_discrete_type_high_bound (range_type));
11248 case OP_ATR_LENGTH:
11249 error (_("the 'length attribute applies only to array types"));
11250 }
11251 }
11252 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11253 error (_("unimplemented type attribute"));
11254 else
11255 {
11256 LONGEST low, high;
11257
11258 if (ada_is_constrained_packed_array_type (type_arg))
11259 type_arg = decode_constrained_packed_array_type (type_arg);
11260
11261 if (op == OP_ATR_LENGTH)
11262 type = builtin_type (exp->gdbarch)->builtin_int;
11263 else
11264 {
11265 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11266 if (type == NULL)
11267 type = builtin_type (exp->gdbarch)->builtin_int;
11268 }
11269
11270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11271 return allocate_value (type);
11272
11273 switch (op)
11274 {
11275 default:
11276 error (_("unexpected attribute encountered"));
11277 case OP_ATR_FIRST:
11278 low = ada_array_bound_from_type (type_arg, tem, 0);
11279 return value_from_longest (type, low);
11280 case OP_ATR_LAST:
11281 high = ada_array_bound_from_type (type_arg, tem, 1);
11282 return value_from_longest (type, high);
11283 case OP_ATR_LENGTH:
11284 low = ada_array_bound_from_type (type_arg, tem, 0);
11285 high = ada_array_bound_from_type (type_arg, tem, 1);
11286 return value_from_longest (type, high - low + 1);
11287 }
11288 }
11289 }
11290
11291 case OP_ATR_TAG:
11292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11293 if (noside == EVAL_SKIP)
11294 goto nosideret;
11295
11296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11297 return value_zero (ada_tag_type (arg1), not_lval);
11298
11299 return ada_value_tag (arg1);
11300
11301 case OP_ATR_MIN:
11302 case OP_ATR_MAX:
11303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11306 if (noside == EVAL_SKIP)
11307 goto nosideret;
11308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 return value_zero (value_type (arg1), not_lval);
11310 else
11311 {
11312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11313 return value_binop (arg1, arg2,
11314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11315 }
11316
11317 case OP_ATR_MODULUS:
11318 {
11319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11320
11321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11322 if (noside == EVAL_SKIP)
11323 goto nosideret;
11324
11325 if (!ada_is_modular_type (type_arg))
11326 error (_("'modulus must be applied to modular type"));
11327
11328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11329 ada_modulus (type_arg));
11330 }
11331
11332
11333 case OP_ATR_POS:
11334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 if (noside == EVAL_SKIP)
11337 goto nosideret;
11338 type = builtin_type (exp->gdbarch)->builtin_int;
11339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11340 return value_zero (type, not_lval);
11341 else
11342 return value_pos_atr (type, arg1);
11343
11344 case OP_ATR_SIZE:
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 type = value_type (arg1);
11347
11348 /* If the argument is a reference, then dereference its type, since
11349 the user is really asking for the size of the actual object,
11350 not the size of the pointer. */
11351 if (TYPE_CODE (type) == TYPE_CODE_REF)
11352 type = TYPE_TARGET_TYPE (type);
11353
11354 if (noside == EVAL_SKIP)
11355 goto nosideret;
11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11358 else
11359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11361
11362 case OP_ATR_VAL:
11363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11365 type = exp->elts[pc + 2].type;
11366 if (noside == EVAL_SKIP)
11367 goto nosideret;
11368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11369 return value_zero (type, not_lval);
11370 else
11371 return value_val_atr (type, arg1);
11372
11373 case BINOP_EXP:
11374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11376 if (noside == EVAL_SKIP)
11377 goto nosideret;
11378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11379 return value_zero (value_type (arg1), not_lval);
11380 else
11381 {
11382 /* For integer exponentiation operations,
11383 only promote the first argument. */
11384 if (is_integral_type (value_type (arg2)))
11385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11386 else
11387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11388
11389 return value_binop (arg1, arg2, op);
11390 }
11391
11392 case UNOP_PLUS:
11393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11394 if (noside == EVAL_SKIP)
11395 goto nosideret;
11396 else
11397 return arg1;
11398
11399 case UNOP_ABS:
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
11403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11405 return value_neg (arg1);
11406 else
11407 return arg1;
11408
11409 case UNOP_IND:
11410 preeval_pos = *pos;
11411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11412 if (noside == EVAL_SKIP)
11413 goto nosideret;
11414 type = ada_check_typedef (value_type (arg1));
11415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416 {
11417 if (ada_is_array_descriptor_type (type))
11418 /* GDB allows dereferencing GNAT array descriptors. */
11419 {
11420 struct type *arrType = ada_type_of_array (arg1, 0);
11421
11422 if (arrType == NULL)
11423 error (_("Attempt to dereference null array pointer."));
11424 return value_at_lazy (arrType, 0);
11425 }
11426 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11427 || TYPE_CODE (type) == TYPE_CODE_REF
11428 /* In C you can dereference an array to get the 1st elt. */
11429 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11430 {
11431 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11432 only be determined by inspecting the object's tag.
11433 This means that we need to evaluate completely the
11434 expression in order to get its type. */
11435
11436 if ((TYPE_CODE (type) == TYPE_CODE_REF
11437 || TYPE_CODE (type) == TYPE_CODE_PTR)
11438 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11439 {
11440 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11441 EVAL_NORMAL);
11442 type = value_type (ada_value_ind (arg1));
11443 }
11444 else
11445 {
11446 type = to_static_fixed_type
11447 (ada_aligned_type
11448 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11449 }
11450 ada_ensure_varsize_limit (type);
11451 return value_zero (type, lval_memory);
11452 }
11453 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11454 {
11455 /* GDB allows dereferencing an int. */
11456 if (expect_type == NULL)
11457 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11458 lval_memory);
11459 else
11460 {
11461 expect_type =
11462 to_static_fixed_type (ada_aligned_type (expect_type));
11463 return value_zero (expect_type, lval_memory);
11464 }
11465 }
11466 else
11467 error (_("Attempt to take contents of a non-pointer value."));
11468 }
11469 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11470 type = ada_check_typedef (value_type (arg1));
11471
11472 if (TYPE_CODE (type) == TYPE_CODE_INT)
11473 /* GDB allows dereferencing an int. If we were given
11474 the expect_type, then use that as the target type.
11475 Otherwise, assume that the target type is an int. */
11476 {
11477 if (expect_type != NULL)
11478 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11479 arg1));
11480 else
11481 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11482 (CORE_ADDR) value_as_address (arg1));
11483 }
11484
11485 if (ada_is_array_descriptor_type (type))
11486 /* GDB allows dereferencing GNAT array descriptors. */
11487 return ada_coerce_to_simple_array (arg1);
11488 else
11489 return ada_value_ind (arg1);
11490
11491 case STRUCTOP_STRUCT:
11492 tem = longest_to_int (exp->elts[pc + 1].longconst);
11493 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11494 preeval_pos = *pos;
11495 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11496 if (noside == EVAL_SKIP)
11497 goto nosideret;
11498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11499 {
11500 struct type *type1 = value_type (arg1);
11501
11502 if (ada_is_tagged_type (type1, 1))
11503 {
11504 type = ada_lookup_struct_elt_type (type1,
11505 &exp->elts[pc + 2].string,
11506 1, 1);
11507
11508 /* If the field is not found, check if it exists in the
11509 extension of this object's type. This means that we
11510 need to evaluate completely the expression. */
11511
11512 if (type == NULL)
11513 {
11514 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11515 EVAL_NORMAL);
11516 arg1 = ada_value_struct_elt (arg1,
11517 &exp->elts[pc + 2].string,
11518 0);
11519 arg1 = unwrap_value (arg1);
11520 type = value_type (ada_to_fixed_value (arg1));
11521 }
11522 }
11523 else
11524 type =
11525 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11526 0);
11527
11528 return value_zero (ada_aligned_type (type), lval_memory);
11529 }
11530 else
11531 {
11532 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11533 arg1 = unwrap_value (arg1);
11534 return ada_to_fixed_value (arg1);
11535 }
11536
11537 case OP_TYPE:
11538 /* The value is not supposed to be used. This is here to make it
11539 easier to accommodate expressions that contain types. */
11540 (*pos) += 2;
11541 if (noside == EVAL_SKIP)
11542 goto nosideret;
11543 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11544 return allocate_value (exp->elts[pc + 1].type);
11545 else
11546 error (_("Attempt to use a type name as an expression"));
11547
11548 case OP_AGGREGATE:
11549 case OP_CHOICES:
11550 case OP_OTHERS:
11551 case OP_DISCRETE_RANGE:
11552 case OP_POSITIONAL:
11553 case OP_NAME:
11554 if (noside == EVAL_NORMAL)
11555 switch (op)
11556 {
11557 case OP_NAME:
11558 error (_("Undefined name, ambiguous name, or renaming used in "
11559 "component association: %s."), &exp->elts[pc+2].string);
11560 case OP_AGGREGATE:
11561 error (_("Aggregates only allowed on the right of an assignment"));
11562 default:
11563 internal_error (__FILE__, __LINE__,
11564 _("aggregate apparently mangled"));
11565 }
11566
11567 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11568 *pos += oplen - 1;
11569 for (tem = 0; tem < nargs; tem += 1)
11570 ada_evaluate_subexp (NULL, exp, pos, noside);
11571 goto nosideret;
11572 }
11573
11574 nosideret:
11575 return eval_skip_value (exp);
11576 }
11577 \f
11578
11579 /* Fixed point */
11580
11581 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11582 type name that encodes the 'small and 'delta information.
11583 Otherwise, return NULL. */
11584
11585 static const char *
11586 fixed_type_info (struct type *type)
11587 {
11588 const char *name = ada_type_name (type);
11589 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11590
11591 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11592 {
11593 const char *tail = strstr (name, "___XF_");
11594
11595 if (tail == NULL)
11596 return NULL;
11597 else
11598 return tail + 5;
11599 }
11600 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11601 return fixed_type_info (TYPE_TARGET_TYPE (type));
11602 else
11603 return NULL;
11604 }
11605
11606 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11607
11608 int
11609 ada_is_fixed_point_type (struct type *type)
11610 {
11611 return fixed_type_info (type) != NULL;
11612 }
11613
11614 /* Return non-zero iff TYPE represents a System.Address type. */
11615
11616 int
11617 ada_is_system_address_type (struct type *type)
11618 {
11619 return (TYPE_NAME (type)
11620 && strcmp (TYPE_NAME (type), "system__address") == 0);
11621 }
11622
11623 /* Assuming that TYPE is the representation of an Ada fixed-point
11624 type, return the target floating-point type to be used to represent
11625 of this type during internal computation. */
11626
11627 static struct type *
11628 ada_scaling_type (struct type *type)
11629 {
11630 return builtin_type (get_type_arch (type))->builtin_long_double;
11631 }
11632
11633 /* Assuming that TYPE is the representation of an Ada fixed-point
11634 type, return its delta, or NULL if the type is malformed and the
11635 delta cannot be determined. */
11636
11637 struct value *
11638 ada_delta (struct type *type)
11639 {
11640 const char *encoding = fixed_type_info (type);
11641 struct type *scale_type = ada_scaling_type (type);
11642
11643 long long num, den;
11644
11645 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11646 return nullptr;
11647 else
11648 return value_binop (value_from_longest (scale_type, num),
11649 value_from_longest (scale_type, den), BINOP_DIV);
11650 }
11651
11652 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11653 factor ('SMALL value) associated with the type. */
11654
11655 struct value *
11656 ada_scaling_factor (struct type *type)
11657 {
11658 const char *encoding = fixed_type_info (type);
11659 struct type *scale_type = ada_scaling_type (type);
11660
11661 long long num0, den0, num1, den1;
11662 int n;
11663
11664 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11665 &num0, &den0, &num1, &den1);
11666
11667 if (n < 2)
11668 return value_from_longest (scale_type, 1);
11669 else if (n == 4)
11670 return value_binop (value_from_longest (scale_type, num1),
11671 value_from_longest (scale_type, den1), BINOP_DIV);
11672 else
11673 return value_binop (value_from_longest (scale_type, num0),
11674 value_from_longest (scale_type, den0), BINOP_DIV);
11675 }
11676
11677 \f
11678
11679 /* Range types */
11680
11681 /* Scan STR beginning at position K for a discriminant name, and
11682 return the value of that discriminant field of DVAL in *PX. If
11683 PNEW_K is not null, put the position of the character beyond the
11684 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11685 not alter *PX and *PNEW_K if unsuccessful. */
11686
11687 static int
11688 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11689 int *pnew_k)
11690 {
11691 static char *bound_buffer = NULL;
11692 static size_t bound_buffer_len = 0;
11693 const char *pstart, *pend, *bound;
11694 struct value *bound_val;
11695
11696 if (dval == NULL || str == NULL || str[k] == '\0')
11697 return 0;
11698
11699 pstart = str + k;
11700 pend = strstr (pstart, "__");
11701 if (pend == NULL)
11702 {
11703 bound = pstart;
11704 k += strlen (bound);
11705 }
11706 else
11707 {
11708 int len = pend - pstart;
11709
11710 /* Strip __ and beyond. */
11711 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11712 strncpy (bound_buffer, pstart, len);
11713 bound_buffer[len] = '\0';
11714
11715 bound = bound_buffer;
11716 k = pend - str;
11717 }
11718
11719 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11720 if (bound_val == NULL)
11721 return 0;
11722
11723 *px = value_as_long (bound_val);
11724 if (pnew_k != NULL)
11725 *pnew_k = k;
11726 return 1;
11727 }
11728
11729 /* Value of variable named NAME in the current environment. If
11730 no such variable found, then if ERR_MSG is null, returns 0, and
11731 otherwise causes an error with message ERR_MSG. */
11732
11733 static struct value *
11734 get_var_value (const char *name, const char *err_msg)
11735 {
11736 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11737
11738 std::vector<struct block_symbol> syms;
11739 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11740 get_selected_block (0),
11741 VAR_DOMAIN, &syms, 1);
11742
11743 if (nsyms != 1)
11744 {
11745 if (err_msg == NULL)
11746 return 0;
11747 else
11748 error (("%s"), err_msg);
11749 }
11750
11751 return value_of_variable (syms[0].symbol, syms[0].block);
11752 }
11753
11754 /* Value of integer variable named NAME in the current environment.
11755 If no such variable is found, returns false. Otherwise, sets VALUE
11756 to the variable's value and returns true. */
11757
11758 bool
11759 get_int_var_value (const char *name, LONGEST &value)
11760 {
11761 struct value *var_val = get_var_value (name, 0);
11762
11763 if (var_val == 0)
11764 return false;
11765
11766 value = value_as_long (var_val);
11767 return true;
11768 }
11769
11770
11771 /* Return a range type whose base type is that of the range type named
11772 NAME in the current environment, and whose bounds are calculated
11773 from NAME according to the GNAT range encoding conventions.
11774 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11775 corresponding range type from debug information; fall back to using it
11776 if symbol lookup fails. If a new type must be created, allocate it
11777 like ORIG_TYPE was. The bounds information, in general, is encoded
11778 in NAME, the base type given in the named range type. */
11779
11780 static struct type *
11781 to_fixed_range_type (struct type *raw_type, struct value *dval)
11782 {
11783 const char *name;
11784 struct type *base_type;
11785 const char *subtype_info;
11786
11787 gdb_assert (raw_type != NULL);
11788 gdb_assert (TYPE_NAME (raw_type) != NULL);
11789
11790 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11791 base_type = TYPE_TARGET_TYPE (raw_type);
11792 else
11793 base_type = raw_type;
11794
11795 name = TYPE_NAME (raw_type);
11796 subtype_info = strstr (name, "___XD");
11797 if (subtype_info == NULL)
11798 {
11799 LONGEST L = ada_discrete_type_low_bound (raw_type);
11800 LONGEST U = ada_discrete_type_high_bound (raw_type);
11801
11802 if (L < INT_MIN || U > INT_MAX)
11803 return raw_type;
11804 else
11805 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11806 L, U);
11807 }
11808 else
11809 {
11810 static char *name_buf = NULL;
11811 static size_t name_len = 0;
11812 int prefix_len = subtype_info - name;
11813 LONGEST L, U;
11814 struct type *type;
11815 const char *bounds_str;
11816 int n;
11817
11818 GROW_VECT (name_buf, name_len, prefix_len + 5);
11819 strncpy (name_buf, name, prefix_len);
11820 name_buf[prefix_len] = '\0';
11821
11822 subtype_info += 5;
11823 bounds_str = strchr (subtype_info, '_');
11824 n = 1;
11825
11826 if (*subtype_info == 'L')
11827 {
11828 if (!ada_scan_number (bounds_str, n, &L, &n)
11829 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11830 return raw_type;
11831 if (bounds_str[n] == '_')
11832 n += 2;
11833 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11834 n += 1;
11835 subtype_info += 1;
11836 }
11837 else
11838 {
11839 strcpy (name_buf + prefix_len, "___L");
11840 if (!get_int_var_value (name_buf, L))
11841 {
11842 lim_warning (_("Unknown lower bound, using 1."));
11843 L = 1;
11844 }
11845 }
11846
11847 if (*subtype_info == 'U')
11848 {
11849 if (!ada_scan_number (bounds_str, n, &U, &n)
11850 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11851 return raw_type;
11852 }
11853 else
11854 {
11855 strcpy (name_buf + prefix_len, "___U");
11856 if (!get_int_var_value (name_buf, U))
11857 {
11858 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11859 U = L;
11860 }
11861 }
11862
11863 type = create_static_range_type (alloc_type_copy (raw_type),
11864 base_type, L, U);
11865 /* create_static_range_type alters the resulting type's length
11866 to match the size of the base_type, which is not what we want.
11867 Set it back to the original range type's length. */
11868 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11869 TYPE_NAME (type) = name;
11870 return type;
11871 }
11872 }
11873
11874 /* True iff NAME is the name of a range type. */
11875
11876 int
11877 ada_is_range_type_name (const char *name)
11878 {
11879 return (name != NULL && strstr (name, "___XD"));
11880 }
11881 \f
11882
11883 /* Modular types */
11884
11885 /* True iff TYPE is an Ada modular type. */
11886
11887 int
11888 ada_is_modular_type (struct type *type)
11889 {
11890 struct type *subranged_type = get_base_type (type);
11891
11892 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11893 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11894 && TYPE_UNSIGNED (subranged_type));
11895 }
11896
11897 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11898
11899 ULONGEST
11900 ada_modulus (struct type *type)
11901 {
11902 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11903 }
11904 \f
11905
11906 /* Ada exception catchpoint support:
11907 ---------------------------------
11908
11909 We support 3 kinds of exception catchpoints:
11910 . catchpoints on Ada exceptions
11911 . catchpoints on unhandled Ada exceptions
11912 . catchpoints on failed assertions
11913
11914 Exceptions raised during failed assertions, or unhandled exceptions
11915 could perfectly be caught with the general catchpoint on Ada exceptions.
11916 However, we can easily differentiate these two special cases, and having
11917 the option to distinguish these two cases from the rest can be useful
11918 to zero-in on certain situations.
11919
11920 Exception catchpoints are a specialized form of breakpoint,
11921 since they rely on inserting breakpoints inside known routines
11922 of the GNAT runtime. The implementation therefore uses a standard
11923 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11924 of breakpoint_ops.
11925
11926 Support in the runtime for exception catchpoints have been changed
11927 a few times already, and these changes affect the implementation
11928 of these catchpoints. In order to be able to support several
11929 variants of the runtime, we use a sniffer that will determine
11930 the runtime variant used by the program being debugged. */
11931
11932 /* Ada's standard exceptions.
11933
11934 The Ada 83 standard also defined Numeric_Error. But there so many
11935 situations where it was unclear from the Ada 83 Reference Manual
11936 (RM) whether Constraint_Error or Numeric_Error should be raised,
11937 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11938 Interpretation saying that anytime the RM says that Numeric_Error
11939 should be raised, the implementation may raise Constraint_Error.
11940 Ada 95 went one step further and pretty much removed Numeric_Error
11941 from the list of standard exceptions (it made it a renaming of
11942 Constraint_Error, to help preserve compatibility when compiling
11943 an Ada83 compiler). As such, we do not include Numeric_Error from
11944 this list of standard exceptions. */
11945
11946 static const char *standard_exc[] = {
11947 "constraint_error",
11948 "program_error",
11949 "storage_error",
11950 "tasking_error"
11951 };
11952
11953 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11954
11955 /* A structure that describes how to support exception catchpoints
11956 for a given executable. */
11957
11958 struct exception_support_info
11959 {
11960 /* The name of the symbol to break on in order to insert
11961 a catchpoint on exceptions. */
11962 const char *catch_exception_sym;
11963
11964 /* The name of the symbol to break on in order to insert
11965 a catchpoint on unhandled exceptions. */
11966 const char *catch_exception_unhandled_sym;
11967
11968 /* The name of the symbol to break on in order to insert
11969 a catchpoint on failed assertions. */
11970 const char *catch_assert_sym;
11971
11972 /* The name of the symbol to break on in order to insert
11973 a catchpoint on exception handling. */
11974 const char *catch_handlers_sym;
11975
11976 /* Assuming that the inferior just triggered an unhandled exception
11977 catchpoint, this function is responsible for returning the address
11978 in inferior memory where the name of that exception is stored.
11979 Return zero if the address could not be computed. */
11980 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11981 };
11982
11983 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11984 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11985
11986 /* The following exception support info structure describes how to
11987 implement exception catchpoints with the latest version of the
11988 Ada runtime (as of 2007-03-06). */
11989
11990 static const struct exception_support_info default_exception_support_info =
11991 {
11992 "__gnat_debug_raise_exception", /* catch_exception_sym */
11993 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11994 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11995 "__gnat_begin_handler", /* catch_handlers_sym */
11996 ada_unhandled_exception_name_addr
11997 };
11998
11999 /* The following exception support info structure describes how to
12000 implement exception catchpoints with a slightly older version
12001 of the Ada runtime. */
12002
12003 static const struct exception_support_info exception_support_info_fallback =
12004 {
12005 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12006 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12007 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12008 "__gnat_begin_handler", /* catch_handlers_sym */
12009 ada_unhandled_exception_name_addr_from_raise
12010 };
12011
12012 /* Return nonzero if we can detect the exception support routines
12013 described in EINFO.
12014
12015 This function errors out if an abnormal situation is detected
12016 (for instance, if we find the exception support routines, but
12017 that support is found to be incomplete). */
12018
12019 static int
12020 ada_has_this_exception_support (const struct exception_support_info *einfo)
12021 {
12022 struct symbol *sym;
12023
12024 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12025 that should be compiled with debugging information. As a result, we
12026 expect to find that symbol in the symtabs. */
12027
12028 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12029 if (sym == NULL)
12030 {
12031 /* Perhaps we did not find our symbol because the Ada runtime was
12032 compiled without debugging info, or simply stripped of it.
12033 It happens on some GNU/Linux distributions for instance, where
12034 users have to install a separate debug package in order to get
12035 the runtime's debugging info. In that situation, let the user
12036 know why we cannot insert an Ada exception catchpoint.
12037
12038 Note: Just for the purpose of inserting our Ada exception
12039 catchpoint, we could rely purely on the associated minimal symbol.
12040 But we would be operating in degraded mode anyway, since we are
12041 still lacking the debugging info needed later on to extract
12042 the name of the exception being raised (this name is printed in
12043 the catchpoint message, and is also used when trying to catch
12044 a specific exception). We do not handle this case for now. */
12045 struct bound_minimal_symbol msym
12046 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12047
12048 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12049 error (_("Your Ada runtime appears to be missing some debugging "
12050 "information.\nCannot insert Ada exception catchpoint "
12051 "in this configuration."));
12052
12053 return 0;
12054 }
12055
12056 /* Make sure that the symbol we found corresponds to a function. */
12057
12058 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12059 error (_("Symbol \"%s\" is not a function (class = %d)"),
12060 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12061
12062 return 1;
12063 }
12064
12065 /* Inspect the Ada runtime and determine which exception info structure
12066 should be used to provide support for exception catchpoints.
12067
12068 This function will always set the per-inferior exception_info,
12069 or raise an error. */
12070
12071 static void
12072 ada_exception_support_info_sniffer (void)
12073 {
12074 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12075
12076 /* If the exception info is already known, then no need to recompute it. */
12077 if (data->exception_info != NULL)
12078 return;
12079
12080 /* Check the latest (default) exception support info. */
12081 if (ada_has_this_exception_support (&default_exception_support_info))
12082 {
12083 data->exception_info = &default_exception_support_info;
12084 return;
12085 }
12086
12087 /* Try our fallback exception suport info. */
12088 if (ada_has_this_exception_support (&exception_support_info_fallback))
12089 {
12090 data->exception_info = &exception_support_info_fallback;
12091 return;
12092 }
12093
12094 /* Sometimes, it is normal for us to not be able to find the routine
12095 we are looking for. This happens when the program is linked with
12096 the shared version of the GNAT runtime, and the program has not been
12097 started yet. Inform the user of these two possible causes if
12098 applicable. */
12099
12100 if (ada_update_initial_language (language_unknown) != language_ada)
12101 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12102
12103 /* If the symbol does not exist, then check that the program is
12104 already started, to make sure that shared libraries have been
12105 loaded. If it is not started, this may mean that the symbol is
12106 in a shared library. */
12107
12108 if (inferior_ptid.pid () == 0)
12109 error (_("Unable to insert catchpoint. Try to start the program first."));
12110
12111 /* At this point, we know that we are debugging an Ada program and
12112 that the inferior has been started, but we still are not able to
12113 find the run-time symbols. That can mean that we are in
12114 configurable run time mode, or that a-except as been optimized
12115 out by the linker... In any case, at this point it is not worth
12116 supporting this feature. */
12117
12118 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12119 }
12120
12121 /* True iff FRAME is very likely to be that of a function that is
12122 part of the runtime system. This is all very heuristic, but is
12123 intended to be used as advice as to what frames are uninteresting
12124 to most users. */
12125
12126 static int
12127 is_known_support_routine (struct frame_info *frame)
12128 {
12129 enum language func_lang;
12130 int i;
12131 const char *fullname;
12132
12133 /* If this code does not have any debugging information (no symtab),
12134 This cannot be any user code. */
12135
12136 symtab_and_line sal = find_frame_sal (frame);
12137 if (sal.symtab == NULL)
12138 return 1;
12139
12140 /* If there is a symtab, but the associated source file cannot be
12141 located, then assume this is not user code: Selecting a frame
12142 for which we cannot display the code would not be very helpful
12143 for the user. This should also take care of case such as VxWorks
12144 where the kernel has some debugging info provided for a few units. */
12145
12146 fullname = symtab_to_fullname (sal.symtab);
12147 if (access (fullname, R_OK) != 0)
12148 return 1;
12149
12150 /* Check the unit filename againt the Ada runtime file naming.
12151 We also check the name of the objfile against the name of some
12152 known system libraries that sometimes come with debugging info
12153 too. */
12154
12155 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12156 {
12157 re_comp (known_runtime_file_name_patterns[i]);
12158 if (re_exec (lbasename (sal.symtab->filename)))
12159 return 1;
12160 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12161 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12162 return 1;
12163 }
12164
12165 /* Check whether the function is a GNAT-generated entity. */
12166
12167 gdb::unique_xmalloc_ptr<char> func_name
12168 = find_frame_funname (frame, &func_lang, NULL);
12169 if (func_name == NULL)
12170 return 1;
12171
12172 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12173 {
12174 re_comp (known_auxiliary_function_name_patterns[i]);
12175 if (re_exec (func_name.get ()))
12176 return 1;
12177 }
12178
12179 return 0;
12180 }
12181
12182 /* Find the first frame that contains debugging information and that is not
12183 part of the Ada run-time, starting from FI and moving upward. */
12184
12185 void
12186 ada_find_printable_frame (struct frame_info *fi)
12187 {
12188 for (; fi != NULL; fi = get_prev_frame (fi))
12189 {
12190 if (!is_known_support_routine (fi))
12191 {
12192 select_frame (fi);
12193 break;
12194 }
12195 }
12196
12197 }
12198
12199 /* Assuming that the inferior just triggered an unhandled exception
12200 catchpoint, return the address in inferior memory where the name
12201 of the exception is stored.
12202
12203 Return zero if the address could not be computed. */
12204
12205 static CORE_ADDR
12206 ada_unhandled_exception_name_addr (void)
12207 {
12208 return parse_and_eval_address ("e.full_name");
12209 }
12210
12211 /* Same as ada_unhandled_exception_name_addr, except that this function
12212 should be used when the inferior uses an older version of the runtime,
12213 where the exception name needs to be extracted from a specific frame
12214 several frames up in the callstack. */
12215
12216 static CORE_ADDR
12217 ada_unhandled_exception_name_addr_from_raise (void)
12218 {
12219 int frame_level;
12220 struct frame_info *fi;
12221 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12222
12223 /* To determine the name of this exception, we need to select
12224 the frame corresponding to RAISE_SYM_NAME. This frame is
12225 at least 3 levels up, so we simply skip the first 3 frames
12226 without checking the name of their associated function. */
12227 fi = get_current_frame ();
12228 for (frame_level = 0; frame_level < 3; frame_level += 1)
12229 if (fi != NULL)
12230 fi = get_prev_frame (fi);
12231
12232 while (fi != NULL)
12233 {
12234 enum language func_lang;
12235
12236 gdb::unique_xmalloc_ptr<char> func_name
12237 = find_frame_funname (fi, &func_lang, NULL);
12238 if (func_name != NULL)
12239 {
12240 if (strcmp (func_name.get (),
12241 data->exception_info->catch_exception_sym) == 0)
12242 break; /* We found the frame we were looking for... */
12243 fi = get_prev_frame (fi);
12244 }
12245 }
12246
12247 if (fi == NULL)
12248 return 0;
12249
12250 select_frame (fi);
12251 return parse_and_eval_address ("id.full_name");
12252 }
12253
12254 /* Assuming the inferior just triggered an Ada exception catchpoint
12255 (of any type), return the address in inferior memory where the name
12256 of the exception is stored, if applicable.
12257
12258 Assumes the selected frame is the current frame.
12259
12260 Return zero if the address could not be computed, or if not relevant. */
12261
12262 static CORE_ADDR
12263 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12264 struct breakpoint *b)
12265 {
12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12267
12268 switch (ex)
12269 {
12270 case ada_catch_exception:
12271 return (parse_and_eval_address ("e.full_name"));
12272 break;
12273
12274 case ada_catch_exception_unhandled:
12275 return data->exception_info->unhandled_exception_name_addr ();
12276 break;
12277
12278 case ada_catch_handlers:
12279 return 0; /* The runtimes does not provide access to the exception
12280 name. */
12281 break;
12282
12283 case ada_catch_assert:
12284 return 0; /* Exception name is not relevant in this case. */
12285 break;
12286
12287 default:
12288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12289 break;
12290 }
12291
12292 return 0; /* Should never be reached. */
12293 }
12294
12295 /* Assuming the inferior is stopped at an exception catchpoint,
12296 return the message which was associated to the exception, if
12297 available. Return NULL if the message could not be retrieved.
12298
12299 Note: The exception message can be associated to an exception
12300 either through the use of the Raise_Exception function, or
12301 more simply (Ada 2005 and later), via:
12302
12303 raise Exception_Name with "exception message";
12304
12305 */
12306
12307 static gdb::unique_xmalloc_ptr<char>
12308 ada_exception_message_1 (void)
12309 {
12310 struct value *e_msg_val;
12311 int e_msg_len;
12312
12313 /* For runtimes that support this feature, the exception message
12314 is passed as an unbounded string argument called "message". */
12315 e_msg_val = parse_and_eval ("message");
12316 if (e_msg_val == NULL)
12317 return NULL; /* Exception message not supported. */
12318
12319 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12320 gdb_assert (e_msg_val != NULL);
12321 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12322
12323 /* If the message string is empty, then treat it as if there was
12324 no exception message. */
12325 if (e_msg_len <= 0)
12326 return NULL;
12327
12328 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12329 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12330 e_msg.get ()[e_msg_len] = '\0';
12331
12332 return e_msg;
12333 }
12334
12335 /* Same as ada_exception_message_1, except that all exceptions are
12336 contained here (returning NULL instead). */
12337
12338 static gdb::unique_xmalloc_ptr<char>
12339 ada_exception_message (void)
12340 {
12341 gdb::unique_xmalloc_ptr<char> e_msg;
12342
12343 TRY
12344 {
12345 e_msg = ada_exception_message_1 ();
12346 }
12347 CATCH (e, RETURN_MASK_ERROR)
12348 {
12349 e_msg.reset (nullptr);
12350 }
12351 END_CATCH
12352
12353 return e_msg;
12354 }
12355
12356 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12357 any error that ada_exception_name_addr_1 might cause to be thrown.
12358 When an error is intercepted, a warning with the error message is printed,
12359 and zero is returned. */
12360
12361 static CORE_ADDR
12362 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12363 struct breakpoint *b)
12364 {
12365 CORE_ADDR result = 0;
12366
12367 TRY
12368 {
12369 result = ada_exception_name_addr_1 (ex, b);
12370 }
12371
12372 CATCH (e, RETURN_MASK_ERROR)
12373 {
12374 warning (_("failed to get exception name: %s"), e.message);
12375 return 0;
12376 }
12377 END_CATCH
12378
12379 return result;
12380 }
12381
12382 static std::string ada_exception_catchpoint_cond_string
12383 (const char *excep_string,
12384 enum ada_exception_catchpoint_kind ex);
12385
12386 /* Ada catchpoints.
12387
12388 In the case of catchpoints on Ada exceptions, the catchpoint will
12389 stop the target on every exception the program throws. When a user
12390 specifies the name of a specific exception, we translate this
12391 request into a condition expression (in text form), and then parse
12392 it into an expression stored in each of the catchpoint's locations.
12393 We then use this condition to check whether the exception that was
12394 raised is the one the user is interested in. If not, then the
12395 target is resumed again. We store the name of the requested
12396 exception, in order to be able to re-set the condition expression
12397 when symbols change. */
12398
12399 /* An instance of this type is used to represent an Ada catchpoint
12400 breakpoint location. */
12401
12402 class ada_catchpoint_location : public bp_location
12403 {
12404 public:
12405 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12406 : bp_location (ops, owner)
12407 {}
12408
12409 /* The condition that checks whether the exception that was raised
12410 is the specific exception the user specified on catchpoint
12411 creation. */
12412 expression_up excep_cond_expr;
12413 };
12414
12415 /* Implement the DTOR method in the bp_location_ops structure for all
12416 Ada exception catchpoint kinds. */
12417
12418 static void
12419 ada_catchpoint_location_dtor (struct bp_location *bl)
12420 {
12421 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12422
12423 al->excep_cond_expr.reset ();
12424 }
12425
12426 /* The vtable to be used in Ada catchpoint locations. */
12427
12428 static const struct bp_location_ops ada_catchpoint_location_ops =
12429 {
12430 ada_catchpoint_location_dtor
12431 };
12432
12433 /* An instance of this type is used to represent an Ada catchpoint. */
12434
12435 struct ada_catchpoint : public breakpoint
12436 {
12437 /* The name of the specific exception the user specified. */
12438 std::string excep_string;
12439 };
12440
12441 /* Parse the exception condition string in the context of each of the
12442 catchpoint's locations, and store them for later evaluation. */
12443
12444 static void
12445 create_excep_cond_exprs (struct ada_catchpoint *c,
12446 enum ada_exception_catchpoint_kind ex)
12447 {
12448 struct bp_location *bl;
12449
12450 /* Nothing to do if there's no specific exception to catch. */
12451 if (c->excep_string.empty ())
12452 return;
12453
12454 /* Same if there are no locations... */
12455 if (c->loc == NULL)
12456 return;
12457
12458 /* Compute the condition expression in text form, from the specific
12459 expection we want to catch. */
12460 std::string cond_string
12461 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12462
12463 /* Iterate over all the catchpoint's locations, and parse an
12464 expression for each. */
12465 for (bl = c->loc; bl != NULL; bl = bl->next)
12466 {
12467 struct ada_catchpoint_location *ada_loc
12468 = (struct ada_catchpoint_location *) bl;
12469 expression_up exp;
12470
12471 if (!bl->shlib_disabled)
12472 {
12473 const char *s;
12474
12475 s = cond_string.c_str ();
12476 TRY
12477 {
12478 exp = parse_exp_1 (&s, bl->address,
12479 block_for_pc (bl->address),
12480 0);
12481 }
12482 CATCH (e, RETURN_MASK_ERROR)
12483 {
12484 warning (_("failed to reevaluate internal exception condition "
12485 "for catchpoint %d: %s"),
12486 c->number, e.message);
12487 }
12488 END_CATCH
12489 }
12490
12491 ada_loc->excep_cond_expr = std::move (exp);
12492 }
12493 }
12494
12495 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12496 structure for all exception catchpoint kinds. */
12497
12498 static struct bp_location *
12499 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12500 struct breakpoint *self)
12501 {
12502 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12503 }
12504
12505 /* Implement the RE_SET method in the breakpoint_ops structure for all
12506 exception catchpoint kinds. */
12507
12508 static void
12509 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12510 {
12511 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12512
12513 /* Call the base class's method. This updates the catchpoint's
12514 locations. */
12515 bkpt_breakpoint_ops.re_set (b);
12516
12517 /* Reparse the exception conditional expressions. One for each
12518 location. */
12519 create_excep_cond_exprs (c, ex);
12520 }
12521
12522 /* Returns true if we should stop for this breakpoint hit. If the
12523 user specified a specific exception, we only want to cause a stop
12524 if the program thrown that exception. */
12525
12526 static int
12527 should_stop_exception (const struct bp_location *bl)
12528 {
12529 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12530 const struct ada_catchpoint_location *ada_loc
12531 = (const struct ada_catchpoint_location *) bl;
12532 int stop;
12533
12534 /* With no specific exception, should always stop. */
12535 if (c->excep_string.empty ())
12536 return 1;
12537
12538 if (ada_loc->excep_cond_expr == NULL)
12539 {
12540 /* We will have a NULL expression if back when we were creating
12541 the expressions, this location's had failed to parse. */
12542 return 1;
12543 }
12544
12545 stop = 1;
12546 TRY
12547 {
12548 struct value *mark;
12549
12550 mark = value_mark ();
12551 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12552 value_free_to_mark (mark);
12553 }
12554 CATCH (ex, RETURN_MASK_ALL)
12555 {
12556 exception_fprintf (gdb_stderr, ex,
12557 _("Error in testing exception condition:\n"));
12558 }
12559 END_CATCH
12560
12561 return stop;
12562 }
12563
12564 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static void
12568 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12569 {
12570 bs->stop = should_stop_exception (bs->bp_location_at);
12571 }
12572
12573 /* Implement the PRINT_IT method in the breakpoint_ops structure
12574 for all exception catchpoint kinds. */
12575
12576 static enum print_stop_action
12577 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12578 {
12579 struct ui_out *uiout = current_uiout;
12580 struct breakpoint *b = bs->breakpoint_at;
12581
12582 annotate_catchpoint (b->number);
12583
12584 if (uiout->is_mi_like_p ())
12585 {
12586 uiout->field_string ("reason",
12587 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12588 uiout->field_string ("disp", bpdisp_text (b->disposition));
12589 }
12590
12591 uiout->text (b->disposition == disp_del
12592 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12593 uiout->field_int ("bkptno", b->number);
12594 uiout->text (", ");
12595
12596 /* ada_exception_name_addr relies on the selected frame being the
12597 current frame. Need to do this here because this function may be
12598 called more than once when printing a stop, and below, we'll
12599 select the first frame past the Ada run-time (see
12600 ada_find_printable_frame). */
12601 select_frame (get_current_frame ());
12602
12603 switch (ex)
12604 {
12605 case ada_catch_exception:
12606 case ada_catch_exception_unhandled:
12607 case ada_catch_handlers:
12608 {
12609 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12610 char exception_name[256];
12611
12612 if (addr != 0)
12613 {
12614 read_memory (addr, (gdb_byte *) exception_name,
12615 sizeof (exception_name) - 1);
12616 exception_name [sizeof (exception_name) - 1] = '\0';
12617 }
12618 else
12619 {
12620 /* For some reason, we were unable to read the exception
12621 name. This could happen if the Runtime was compiled
12622 without debugging info, for instance. In that case,
12623 just replace the exception name by the generic string
12624 "exception" - it will read as "an exception" in the
12625 notification we are about to print. */
12626 memcpy (exception_name, "exception", sizeof ("exception"));
12627 }
12628 /* In the case of unhandled exception breakpoints, we print
12629 the exception name as "unhandled EXCEPTION_NAME", to make
12630 it clearer to the user which kind of catchpoint just got
12631 hit. We used ui_out_text to make sure that this extra
12632 info does not pollute the exception name in the MI case. */
12633 if (ex == ada_catch_exception_unhandled)
12634 uiout->text ("unhandled ");
12635 uiout->field_string ("exception-name", exception_name);
12636 }
12637 break;
12638 case ada_catch_assert:
12639 /* In this case, the name of the exception is not really
12640 important. Just print "failed assertion" to make it clearer
12641 that his program just hit an assertion-failure catchpoint.
12642 We used ui_out_text because this info does not belong in
12643 the MI output. */
12644 uiout->text ("failed assertion");
12645 break;
12646 }
12647
12648 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12649 if (exception_message != NULL)
12650 {
12651 uiout->text (" (");
12652 uiout->field_string ("exception-message", exception_message.get ());
12653 uiout->text (")");
12654 }
12655
12656 uiout->text (" at ");
12657 ada_find_printable_frame (get_current_frame ());
12658
12659 return PRINT_SRC_AND_LOC;
12660 }
12661
12662 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12663 for all exception catchpoint kinds. */
12664
12665 static void
12666 print_one_exception (enum ada_exception_catchpoint_kind ex,
12667 struct breakpoint *b, struct bp_location **last_loc)
12668 {
12669 struct ui_out *uiout = current_uiout;
12670 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12671 struct value_print_options opts;
12672
12673 get_user_print_options (&opts);
12674 if (opts.addressprint)
12675 {
12676 annotate_field (4);
12677 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12678 }
12679
12680 annotate_field (5);
12681 *last_loc = b->loc;
12682 switch (ex)
12683 {
12684 case ada_catch_exception:
12685 if (!c->excep_string.empty ())
12686 {
12687 std::string msg = string_printf (_("`%s' Ada exception"),
12688 c->excep_string.c_str ());
12689
12690 uiout->field_string ("what", msg);
12691 }
12692 else
12693 uiout->field_string ("what", "all Ada exceptions");
12694
12695 break;
12696
12697 case ada_catch_exception_unhandled:
12698 uiout->field_string ("what", "unhandled Ada exceptions");
12699 break;
12700
12701 case ada_catch_handlers:
12702 if (!c->excep_string.empty ())
12703 {
12704 uiout->field_fmt ("what",
12705 _("`%s' Ada exception handlers"),
12706 c->excep_string.c_str ());
12707 }
12708 else
12709 uiout->field_string ("what", "all Ada exceptions handlers");
12710 break;
12711
12712 case ada_catch_assert:
12713 uiout->field_string ("what", "failed Ada assertions");
12714 break;
12715
12716 default:
12717 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12718 break;
12719 }
12720 }
12721
12722 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12723 for all exception catchpoint kinds. */
12724
12725 static void
12726 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12727 struct breakpoint *b)
12728 {
12729 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12730 struct ui_out *uiout = current_uiout;
12731
12732 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12733 : _("Catchpoint "));
12734 uiout->field_int ("bkptno", b->number);
12735 uiout->text (": ");
12736
12737 switch (ex)
12738 {
12739 case ada_catch_exception:
12740 if (!c->excep_string.empty ())
12741 {
12742 std::string info = string_printf (_("`%s' Ada exception"),
12743 c->excep_string.c_str ());
12744 uiout->text (info.c_str ());
12745 }
12746 else
12747 uiout->text (_("all Ada exceptions"));
12748 break;
12749
12750 case ada_catch_exception_unhandled:
12751 uiout->text (_("unhandled Ada exceptions"));
12752 break;
12753
12754 case ada_catch_handlers:
12755 if (!c->excep_string.empty ())
12756 {
12757 std::string info
12758 = string_printf (_("`%s' Ada exception handlers"),
12759 c->excep_string.c_str ());
12760 uiout->text (info.c_str ());
12761 }
12762 else
12763 uiout->text (_("all Ada exceptions handlers"));
12764 break;
12765
12766 case ada_catch_assert:
12767 uiout->text (_("failed Ada assertions"));
12768 break;
12769
12770 default:
12771 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12772 break;
12773 }
12774 }
12775
12776 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12777 for all exception catchpoint kinds. */
12778
12779 static void
12780 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12781 struct breakpoint *b, struct ui_file *fp)
12782 {
12783 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12784
12785 switch (ex)
12786 {
12787 case ada_catch_exception:
12788 fprintf_filtered (fp, "catch exception");
12789 if (!c->excep_string.empty ())
12790 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12791 break;
12792
12793 case ada_catch_exception_unhandled:
12794 fprintf_filtered (fp, "catch exception unhandled");
12795 break;
12796
12797 case ada_catch_handlers:
12798 fprintf_filtered (fp, "catch handlers");
12799 break;
12800
12801 case ada_catch_assert:
12802 fprintf_filtered (fp, "catch assert");
12803 break;
12804
12805 default:
12806 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12807 }
12808 print_recreate_thread (b, fp);
12809 }
12810
12811 /* Virtual table for "catch exception" breakpoints. */
12812
12813 static struct bp_location *
12814 allocate_location_catch_exception (struct breakpoint *self)
12815 {
12816 return allocate_location_exception (ada_catch_exception, self);
12817 }
12818
12819 static void
12820 re_set_catch_exception (struct breakpoint *b)
12821 {
12822 re_set_exception (ada_catch_exception, b);
12823 }
12824
12825 static void
12826 check_status_catch_exception (bpstat bs)
12827 {
12828 check_status_exception (ada_catch_exception, bs);
12829 }
12830
12831 static enum print_stop_action
12832 print_it_catch_exception (bpstat bs)
12833 {
12834 return print_it_exception (ada_catch_exception, bs);
12835 }
12836
12837 static void
12838 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12839 {
12840 print_one_exception (ada_catch_exception, b, last_loc);
12841 }
12842
12843 static void
12844 print_mention_catch_exception (struct breakpoint *b)
12845 {
12846 print_mention_exception (ada_catch_exception, b);
12847 }
12848
12849 static void
12850 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12851 {
12852 print_recreate_exception (ada_catch_exception, b, fp);
12853 }
12854
12855 static struct breakpoint_ops catch_exception_breakpoint_ops;
12856
12857 /* Virtual table for "catch exception unhandled" breakpoints. */
12858
12859 static struct bp_location *
12860 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12861 {
12862 return allocate_location_exception (ada_catch_exception_unhandled, self);
12863 }
12864
12865 static void
12866 re_set_catch_exception_unhandled (struct breakpoint *b)
12867 {
12868 re_set_exception (ada_catch_exception_unhandled, b);
12869 }
12870
12871 static void
12872 check_status_catch_exception_unhandled (bpstat bs)
12873 {
12874 check_status_exception (ada_catch_exception_unhandled, bs);
12875 }
12876
12877 static enum print_stop_action
12878 print_it_catch_exception_unhandled (bpstat bs)
12879 {
12880 return print_it_exception (ada_catch_exception_unhandled, bs);
12881 }
12882
12883 static void
12884 print_one_catch_exception_unhandled (struct breakpoint *b,
12885 struct bp_location **last_loc)
12886 {
12887 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12888 }
12889
12890 static void
12891 print_mention_catch_exception_unhandled (struct breakpoint *b)
12892 {
12893 print_mention_exception (ada_catch_exception_unhandled, b);
12894 }
12895
12896 static void
12897 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12898 struct ui_file *fp)
12899 {
12900 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12901 }
12902
12903 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12904
12905 /* Virtual table for "catch assert" breakpoints. */
12906
12907 static struct bp_location *
12908 allocate_location_catch_assert (struct breakpoint *self)
12909 {
12910 return allocate_location_exception (ada_catch_assert, self);
12911 }
12912
12913 static void
12914 re_set_catch_assert (struct breakpoint *b)
12915 {
12916 re_set_exception (ada_catch_assert, b);
12917 }
12918
12919 static void
12920 check_status_catch_assert (bpstat bs)
12921 {
12922 check_status_exception (ada_catch_assert, bs);
12923 }
12924
12925 static enum print_stop_action
12926 print_it_catch_assert (bpstat bs)
12927 {
12928 return print_it_exception (ada_catch_assert, bs);
12929 }
12930
12931 static void
12932 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12933 {
12934 print_one_exception (ada_catch_assert, b, last_loc);
12935 }
12936
12937 static void
12938 print_mention_catch_assert (struct breakpoint *b)
12939 {
12940 print_mention_exception (ada_catch_assert, b);
12941 }
12942
12943 static void
12944 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12945 {
12946 print_recreate_exception (ada_catch_assert, b, fp);
12947 }
12948
12949 static struct breakpoint_ops catch_assert_breakpoint_ops;
12950
12951 /* Virtual table for "catch handlers" breakpoints. */
12952
12953 static struct bp_location *
12954 allocate_location_catch_handlers (struct breakpoint *self)
12955 {
12956 return allocate_location_exception (ada_catch_handlers, self);
12957 }
12958
12959 static void
12960 re_set_catch_handlers (struct breakpoint *b)
12961 {
12962 re_set_exception (ada_catch_handlers, b);
12963 }
12964
12965 static void
12966 check_status_catch_handlers (bpstat bs)
12967 {
12968 check_status_exception (ada_catch_handlers, bs);
12969 }
12970
12971 static enum print_stop_action
12972 print_it_catch_handlers (bpstat bs)
12973 {
12974 return print_it_exception (ada_catch_handlers, bs);
12975 }
12976
12977 static void
12978 print_one_catch_handlers (struct breakpoint *b,
12979 struct bp_location **last_loc)
12980 {
12981 print_one_exception (ada_catch_handlers, b, last_loc);
12982 }
12983
12984 static void
12985 print_mention_catch_handlers (struct breakpoint *b)
12986 {
12987 print_mention_exception (ada_catch_handlers, b);
12988 }
12989
12990 static void
12991 print_recreate_catch_handlers (struct breakpoint *b,
12992 struct ui_file *fp)
12993 {
12994 print_recreate_exception (ada_catch_handlers, b, fp);
12995 }
12996
12997 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12998
12999 /* Split the arguments specified in a "catch exception" command.
13000 Set EX to the appropriate catchpoint type.
13001 Set EXCEP_STRING to the name of the specific exception if
13002 specified by the user.
13003 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13004 "catch handlers" command. False otherwise.
13005 If a condition is found at the end of the arguments, the condition
13006 expression is stored in COND_STRING (memory must be deallocated
13007 after use). Otherwise COND_STRING is set to NULL. */
13008
13009 static void
13010 catch_ada_exception_command_split (const char *args,
13011 bool is_catch_handlers_cmd,
13012 enum ada_exception_catchpoint_kind *ex,
13013 std::string *excep_string,
13014 std::string *cond_string)
13015 {
13016 std::string exception_name;
13017
13018 exception_name = extract_arg (&args);
13019 if (exception_name == "if")
13020 {
13021 /* This is not an exception name; this is the start of a condition
13022 expression for a catchpoint on all exceptions. So, "un-get"
13023 this token, and set exception_name to NULL. */
13024 exception_name.clear ();
13025 args -= 2;
13026 }
13027
13028 /* Check to see if we have a condition. */
13029
13030 args = skip_spaces (args);
13031 if (startswith (args, "if")
13032 && (isspace (args[2]) || args[2] == '\0'))
13033 {
13034 args += 2;
13035 args = skip_spaces (args);
13036
13037 if (args[0] == '\0')
13038 error (_("Condition missing after `if' keyword"));
13039 *cond_string = args;
13040
13041 args += strlen (args);
13042 }
13043
13044 /* Check that we do not have any more arguments. Anything else
13045 is unexpected. */
13046
13047 if (args[0] != '\0')
13048 error (_("Junk at end of expression"));
13049
13050 if (is_catch_handlers_cmd)
13051 {
13052 /* Catch handling of exceptions. */
13053 *ex = ada_catch_handlers;
13054 *excep_string = exception_name;
13055 }
13056 else if (exception_name.empty ())
13057 {
13058 /* Catch all exceptions. */
13059 *ex = ada_catch_exception;
13060 excep_string->clear ();
13061 }
13062 else if (exception_name == "unhandled")
13063 {
13064 /* Catch unhandled exceptions. */
13065 *ex = ada_catch_exception_unhandled;
13066 excep_string->clear ();
13067 }
13068 else
13069 {
13070 /* Catch a specific exception. */
13071 *ex = ada_catch_exception;
13072 *excep_string = exception_name;
13073 }
13074 }
13075
13076 /* Return the name of the symbol on which we should break in order to
13077 implement a catchpoint of the EX kind. */
13078
13079 static const char *
13080 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13081 {
13082 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13083
13084 gdb_assert (data->exception_info != NULL);
13085
13086 switch (ex)
13087 {
13088 case ada_catch_exception:
13089 return (data->exception_info->catch_exception_sym);
13090 break;
13091 case ada_catch_exception_unhandled:
13092 return (data->exception_info->catch_exception_unhandled_sym);
13093 break;
13094 case ada_catch_assert:
13095 return (data->exception_info->catch_assert_sym);
13096 break;
13097 case ada_catch_handlers:
13098 return (data->exception_info->catch_handlers_sym);
13099 break;
13100 default:
13101 internal_error (__FILE__, __LINE__,
13102 _("unexpected catchpoint kind (%d)"), ex);
13103 }
13104 }
13105
13106 /* Return the breakpoint ops "virtual table" used for catchpoints
13107 of the EX kind. */
13108
13109 static const struct breakpoint_ops *
13110 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13111 {
13112 switch (ex)
13113 {
13114 case ada_catch_exception:
13115 return (&catch_exception_breakpoint_ops);
13116 break;
13117 case ada_catch_exception_unhandled:
13118 return (&catch_exception_unhandled_breakpoint_ops);
13119 break;
13120 case ada_catch_assert:
13121 return (&catch_assert_breakpoint_ops);
13122 break;
13123 case ada_catch_handlers:
13124 return (&catch_handlers_breakpoint_ops);
13125 break;
13126 default:
13127 internal_error (__FILE__, __LINE__,
13128 _("unexpected catchpoint kind (%d)"), ex);
13129 }
13130 }
13131
13132 /* Return the condition that will be used to match the current exception
13133 being raised with the exception that the user wants to catch. This
13134 assumes that this condition is used when the inferior just triggered
13135 an exception catchpoint.
13136 EX: the type of catchpoints used for catching Ada exceptions. */
13137
13138 static std::string
13139 ada_exception_catchpoint_cond_string (const char *excep_string,
13140 enum ada_exception_catchpoint_kind ex)
13141 {
13142 int i;
13143 bool is_standard_exc = false;
13144 std::string result;
13145
13146 if (ex == ada_catch_handlers)
13147 {
13148 /* For exception handlers catchpoints, the condition string does
13149 not use the same parameter as for the other exceptions. */
13150 result = ("long_integer (GNAT_GCC_exception_Access"
13151 "(gcc_exception).all.occurrence.id)");
13152 }
13153 else
13154 result = "long_integer (e)";
13155
13156 /* The standard exceptions are a special case. They are defined in
13157 runtime units that have been compiled without debugging info; if
13158 EXCEP_STRING is the not-fully-qualified name of a standard
13159 exception (e.g. "constraint_error") then, during the evaluation
13160 of the condition expression, the symbol lookup on this name would
13161 *not* return this standard exception. The catchpoint condition
13162 may then be set only on user-defined exceptions which have the
13163 same not-fully-qualified name (e.g. my_package.constraint_error).
13164
13165 To avoid this unexcepted behavior, these standard exceptions are
13166 systematically prefixed by "standard". This means that "catch
13167 exception constraint_error" is rewritten into "catch exception
13168 standard.constraint_error".
13169
13170 If an exception named contraint_error is defined in another package of
13171 the inferior program, then the only way to specify this exception as a
13172 breakpoint condition is to use its fully-qualified named:
13173 e.g. my_package.constraint_error. */
13174
13175 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13176 {
13177 if (strcmp (standard_exc [i], excep_string) == 0)
13178 {
13179 is_standard_exc = true;
13180 break;
13181 }
13182 }
13183
13184 result += " = ";
13185
13186 if (is_standard_exc)
13187 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13188 else
13189 string_appendf (result, "long_integer (&%s)", excep_string);
13190
13191 return result;
13192 }
13193
13194 /* Return the symtab_and_line that should be used to insert an exception
13195 catchpoint of the TYPE kind.
13196
13197 ADDR_STRING returns the name of the function where the real
13198 breakpoint that implements the catchpoints is set, depending on the
13199 type of catchpoint we need to create. */
13200
13201 static struct symtab_and_line
13202 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13203 const char **addr_string, const struct breakpoint_ops **ops)
13204 {
13205 const char *sym_name;
13206 struct symbol *sym;
13207
13208 /* First, find out which exception support info to use. */
13209 ada_exception_support_info_sniffer ();
13210
13211 /* Then lookup the function on which we will break in order to catch
13212 the Ada exceptions requested by the user. */
13213 sym_name = ada_exception_sym_name (ex);
13214 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13215
13216 /* We can assume that SYM is not NULL at this stage. If the symbol
13217 did not exist, ada_exception_support_info_sniffer would have
13218 raised an exception.
13219
13220 Also, ada_exception_support_info_sniffer should have already
13221 verified that SYM is a function symbol. */
13222 gdb_assert (sym != NULL);
13223 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13224
13225 /* Set ADDR_STRING. */
13226 *addr_string = xstrdup (sym_name);
13227
13228 /* Set OPS. */
13229 *ops = ada_exception_breakpoint_ops (ex);
13230
13231 return find_function_start_sal (sym, 1);
13232 }
13233
13234 /* Create an Ada exception catchpoint.
13235
13236 EX_KIND is the kind of exception catchpoint to be created.
13237
13238 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13239 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13240 of the exception to which this catchpoint applies.
13241
13242 COND_STRING, if not empty, is the catchpoint condition.
13243
13244 TEMPFLAG, if nonzero, means that the underlying breakpoint
13245 should be temporary.
13246
13247 FROM_TTY is the usual argument passed to all commands implementations. */
13248
13249 void
13250 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13251 enum ada_exception_catchpoint_kind ex_kind,
13252 const std::string &excep_string,
13253 const std::string &cond_string,
13254 int tempflag,
13255 int disabled,
13256 int from_tty)
13257 {
13258 const char *addr_string = NULL;
13259 const struct breakpoint_ops *ops = NULL;
13260 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13261
13262 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13263 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13264 ops, tempflag, disabled, from_tty);
13265 c->excep_string = excep_string;
13266 create_excep_cond_exprs (c.get (), ex_kind);
13267 if (!cond_string.empty ())
13268 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13269 install_breakpoint (0, std::move (c), 1);
13270 }
13271
13272 /* Implement the "catch exception" command. */
13273
13274 static void
13275 catch_ada_exception_command (const char *arg_entry, int from_tty,
13276 struct cmd_list_element *command)
13277 {
13278 const char *arg = arg_entry;
13279 struct gdbarch *gdbarch = get_current_arch ();
13280 int tempflag;
13281 enum ada_exception_catchpoint_kind ex_kind;
13282 std::string excep_string;
13283 std::string cond_string;
13284
13285 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13286
13287 if (!arg)
13288 arg = "";
13289 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13290 &cond_string);
13291 create_ada_exception_catchpoint (gdbarch, ex_kind,
13292 excep_string, cond_string,
13293 tempflag, 1 /* enabled */,
13294 from_tty);
13295 }
13296
13297 /* Implement the "catch handlers" command. */
13298
13299 static void
13300 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13301 struct cmd_list_element *command)
13302 {
13303 const char *arg = arg_entry;
13304 struct gdbarch *gdbarch = get_current_arch ();
13305 int tempflag;
13306 enum ada_exception_catchpoint_kind ex_kind;
13307 std::string excep_string;
13308 std::string cond_string;
13309
13310 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13311
13312 if (!arg)
13313 arg = "";
13314 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13315 &cond_string);
13316 create_ada_exception_catchpoint (gdbarch, ex_kind,
13317 excep_string, cond_string,
13318 tempflag, 1 /* enabled */,
13319 from_tty);
13320 }
13321
13322 /* Split the arguments specified in a "catch assert" command.
13323
13324 ARGS contains the command's arguments (or the empty string if
13325 no arguments were passed).
13326
13327 If ARGS contains a condition, set COND_STRING to that condition
13328 (the memory needs to be deallocated after use). */
13329
13330 static void
13331 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13332 {
13333 args = skip_spaces (args);
13334
13335 /* Check whether a condition was provided. */
13336 if (startswith (args, "if")
13337 && (isspace (args[2]) || args[2] == '\0'))
13338 {
13339 args += 2;
13340 args = skip_spaces (args);
13341 if (args[0] == '\0')
13342 error (_("condition missing after `if' keyword"));
13343 cond_string.assign (args);
13344 }
13345
13346 /* Otherwise, there should be no other argument at the end of
13347 the command. */
13348 else if (args[0] != '\0')
13349 error (_("Junk at end of arguments."));
13350 }
13351
13352 /* Implement the "catch assert" command. */
13353
13354 static void
13355 catch_assert_command (const char *arg_entry, int from_tty,
13356 struct cmd_list_element *command)
13357 {
13358 const char *arg = arg_entry;
13359 struct gdbarch *gdbarch = get_current_arch ();
13360 int tempflag;
13361 std::string cond_string;
13362
13363 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13364
13365 if (!arg)
13366 arg = "";
13367 catch_ada_assert_command_split (arg, cond_string);
13368 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13369 "", cond_string,
13370 tempflag, 1 /* enabled */,
13371 from_tty);
13372 }
13373
13374 /* Return non-zero if the symbol SYM is an Ada exception object. */
13375
13376 static int
13377 ada_is_exception_sym (struct symbol *sym)
13378 {
13379 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13380
13381 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13382 && SYMBOL_CLASS (sym) != LOC_BLOCK
13383 && SYMBOL_CLASS (sym) != LOC_CONST
13384 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13385 && type_name != NULL && strcmp (type_name, "exception") == 0);
13386 }
13387
13388 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13389 Ada exception object. This matches all exceptions except the ones
13390 defined by the Ada language. */
13391
13392 static int
13393 ada_is_non_standard_exception_sym (struct symbol *sym)
13394 {
13395 int i;
13396
13397 if (!ada_is_exception_sym (sym))
13398 return 0;
13399
13400 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13401 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13402 return 0; /* A standard exception. */
13403
13404 /* Numeric_Error is also a standard exception, so exclude it.
13405 See the STANDARD_EXC description for more details as to why
13406 this exception is not listed in that array. */
13407 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13408 return 0;
13409
13410 return 1;
13411 }
13412
13413 /* A helper function for std::sort, comparing two struct ada_exc_info
13414 objects.
13415
13416 The comparison is determined first by exception name, and then
13417 by exception address. */
13418
13419 bool
13420 ada_exc_info::operator< (const ada_exc_info &other) const
13421 {
13422 int result;
13423
13424 result = strcmp (name, other.name);
13425 if (result < 0)
13426 return true;
13427 if (result == 0 && addr < other.addr)
13428 return true;
13429 return false;
13430 }
13431
13432 bool
13433 ada_exc_info::operator== (const ada_exc_info &other) const
13434 {
13435 return addr == other.addr && strcmp (name, other.name) == 0;
13436 }
13437
13438 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13439 routine, but keeping the first SKIP elements untouched.
13440
13441 All duplicates are also removed. */
13442
13443 static void
13444 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13445 int skip)
13446 {
13447 std::sort (exceptions->begin () + skip, exceptions->end ());
13448 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13449 exceptions->end ());
13450 }
13451
13452 /* Add all exceptions defined by the Ada standard whose name match
13453 a regular expression.
13454
13455 If PREG is not NULL, then this regexp_t object is used to
13456 perform the symbol name matching. Otherwise, no name-based
13457 filtering is performed.
13458
13459 EXCEPTIONS is a vector of exceptions to which matching exceptions
13460 gets pushed. */
13461
13462 static void
13463 ada_add_standard_exceptions (compiled_regex *preg,
13464 std::vector<ada_exc_info> *exceptions)
13465 {
13466 int i;
13467
13468 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13469 {
13470 if (preg == NULL
13471 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13472 {
13473 struct bound_minimal_symbol msymbol
13474 = ada_lookup_simple_minsym (standard_exc[i]);
13475
13476 if (msymbol.minsym != NULL)
13477 {
13478 struct ada_exc_info info
13479 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13480
13481 exceptions->push_back (info);
13482 }
13483 }
13484 }
13485 }
13486
13487 /* Add all Ada exceptions defined locally and accessible from the given
13488 FRAME.
13489
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13493
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13495 gets pushed. */
13496
13497 static void
13498 ada_add_exceptions_from_frame (compiled_regex *preg,
13499 struct frame_info *frame,
13500 std::vector<ada_exc_info> *exceptions)
13501 {
13502 const struct block *block = get_frame_block (frame, 0);
13503
13504 while (block != 0)
13505 {
13506 struct block_iterator iter;
13507 struct symbol *sym;
13508
13509 ALL_BLOCK_SYMBOLS (block, iter, sym)
13510 {
13511 switch (SYMBOL_CLASS (sym))
13512 {
13513 case LOC_TYPEDEF:
13514 case LOC_BLOCK:
13515 case LOC_CONST:
13516 break;
13517 default:
13518 if (ada_is_exception_sym (sym))
13519 {
13520 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13521 SYMBOL_VALUE_ADDRESS (sym)};
13522
13523 exceptions->push_back (info);
13524 }
13525 }
13526 }
13527 if (BLOCK_FUNCTION (block) != NULL)
13528 break;
13529 block = BLOCK_SUPERBLOCK (block);
13530 }
13531 }
13532
13533 /* Return true if NAME matches PREG or if PREG is NULL. */
13534
13535 static bool
13536 name_matches_regex (const char *name, compiled_regex *preg)
13537 {
13538 return (preg == NULL
13539 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13540 }
13541
13542 /* Add all exceptions defined globally whose name name match
13543 a regular expression, excluding standard exceptions.
13544
13545 The reason we exclude standard exceptions is that they need
13546 to be handled separately: Standard exceptions are defined inside
13547 a runtime unit which is normally not compiled with debugging info,
13548 and thus usually do not show up in our symbol search. However,
13549 if the unit was in fact built with debugging info, we need to
13550 exclude them because they would duplicate the entry we found
13551 during the special loop that specifically searches for those
13552 standard exceptions.
13553
13554 If PREG is not NULL, then this regexp_t object is used to
13555 perform the symbol name matching. Otherwise, no name-based
13556 filtering is performed.
13557
13558 EXCEPTIONS is a vector of exceptions to which matching exceptions
13559 gets pushed. */
13560
13561 static void
13562 ada_add_global_exceptions (compiled_regex *preg,
13563 std::vector<ada_exc_info> *exceptions)
13564 {
13565 struct objfile *objfile;
13566 struct compunit_symtab *s;
13567
13568 /* In Ada, the symbol "search name" is a linkage name, whereas the
13569 regular expression used to do the matching refers to the natural
13570 name. So match against the decoded name. */
13571 expand_symtabs_matching (NULL,
13572 lookup_name_info::match_any (),
13573 [&] (const char *search_name)
13574 {
13575 const char *decoded = ada_decode (search_name);
13576 return name_matches_regex (decoded, preg);
13577 },
13578 NULL,
13579 VARIABLES_DOMAIN);
13580
13581 ALL_COMPUNITS (objfile, s)
13582 {
13583 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13584 int i;
13585
13586 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13587 {
13588 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13589 struct block_iterator iter;
13590 struct symbol *sym;
13591
13592 ALL_BLOCK_SYMBOLS (b, iter, sym)
13593 if (ada_is_non_standard_exception_sym (sym)
13594 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13595 {
13596 struct ada_exc_info info
13597 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13598
13599 exceptions->push_back (info);
13600 }
13601 }
13602 }
13603 }
13604
13605 /* Implements ada_exceptions_list with the regular expression passed
13606 as a regex_t, rather than a string.
13607
13608 If not NULL, PREG is used to filter out exceptions whose names
13609 do not match. Otherwise, all exceptions are listed. */
13610
13611 static std::vector<ada_exc_info>
13612 ada_exceptions_list_1 (compiled_regex *preg)
13613 {
13614 std::vector<ada_exc_info> result;
13615 int prev_len;
13616
13617 /* First, list the known standard exceptions. These exceptions
13618 need to be handled separately, as they are usually defined in
13619 runtime units that have been compiled without debugging info. */
13620
13621 ada_add_standard_exceptions (preg, &result);
13622
13623 /* Next, find all exceptions whose scope is local and accessible
13624 from the currently selected frame. */
13625
13626 if (has_stack_frames ())
13627 {
13628 prev_len = result.size ();
13629 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13630 &result);
13631 if (result.size () > prev_len)
13632 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13633 }
13634
13635 /* Add all exceptions whose scope is global. */
13636
13637 prev_len = result.size ();
13638 ada_add_global_exceptions (preg, &result);
13639 if (result.size () > prev_len)
13640 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13641
13642 return result;
13643 }
13644
13645 /* Return a vector of ada_exc_info.
13646
13647 If REGEXP is NULL, all exceptions are included in the result.
13648 Otherwise, it should contain a valid regular expression,
13649 and only the exceptions whose names match that regular expression
13650 are included in the result.
13651
13652 The exceptions are sorted in the following order:
13653 - Standard exceptions (defined by the Ada language), in
13654 alphabetical order;
13655 - Exceptions only visible from the current frame, in
13656 alphabetical order;
13657 - Exceptions whose scope is global, in alphabetical order. */
13658
13659 std::vector<ada_exc_info>
13660 ada_exceptions_list (const char *regexp)
13661 {
13662 if (regexp == NULL)
13663 return ada_exceptions_list_1 (NULL);
13664
13665 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13666 return ada_exceptions_list_1 (&reg);
13667 }
13668
13669 /* Implement the "info exceptions" command. */
13670
13671 static void
13672 info_exceptions_command (const char *regexp, int from_tty)
13673 {
13674 struct gdbarch *gdbarch = get_current_arch ();
13675
13676 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13677
13678 if (regexp != NULL)
13679 printf_filtered
13680 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13681 else
13682 printf_filtered (_("All defined Ada exceptions:\n"));
13683
13684 for (const ada_exc_info &info : exceptions)
13685 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13686 }
13687
13688 /* Operators */
13689 /* Information about operators given special treatment in functions
13690 below. */
13691 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13692
13693 #define ADA_OPERATORS \
13694 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13695 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13696 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13697 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13698 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13699 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13700 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13702 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13703 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13704 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13705 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13706 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13707 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13708 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13709 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13710 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13711 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13712 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13713
13714 static void
13715 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13716 int *argsp)
13717 {
13718 switch (exp->elts[pc - 1].opcode)
13719 {
13720 default:
13721 operator_length_standard (exp, pc, oplenp, argsp);
13722 break;
13723
13724 #define OP_DEFN(op, len, args, binop) \
13725 case op: *oplenp = len; *argsp = args; break;
13726 ADA_OPERATORS;
13727 #undef OP_DEFN
13728
13729 case OP_AGGREGATE:
13730 *oplenp = 3;
13731 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13732 break;
13733
13734 case OP_CHOICES:
13735 *oplenp = 3;
13736 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13737 break;
13738 }
13739 }
13740
13741 /* Implementation of the exp_descriptor method operator_check. */
13742
13743 static int
13744 ada_operator_check (struct expression *exp, int pos,
13745 int (*objfile_func) (struct objfile *objfile, void *data),
13746 void *data)
13747 {
13748 const union exp_element *const elts = exp->elts;
13749 struct type *type = NULL;
13750
13751 switch (elts[pos].opcode)
13752 {
13753 case UNOP_IN_RANGE:
13754 case UNOP_QUAL:
13755 type = elts[pos + 1].type;
13756 break;
13757
13758 default:
13759 return operator_check_standard (exp, pos, objfile_func, data);
13760 }
13761
13762 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13763
13764 if (type && TYPE_OBJFILE (type)
13765 && (*objfile_func) (TYPE_OBJFILE (type), data))
13766 return 1;
13767
13768 return 0;
13769 }
13770
13771 static const char *
13772 ada_op_name (enum exp_opcode opcode)
13773 {
13774 switch (opcode)
13775 {
13776 default:
13777 return op_name_standard (opcode);
13778
13779 #define OP_DEFN(op, len, args, binop) case op: return #op;
13780 ADA_OPERATORS;
13781 #undef OP_DEFN
13782
13783 case OP_AGGREGATE:
13784 return "OP_AGGREGATE";
13785 case OP_CHOICES:
13786 return "OP_CHOICES";
13787 case OP_NAME:
13788 return "OP_NAME";
13789 }
13790 }
13791
13792 /* As for operator_length, but assumes PC is pointing at the first
13793 element of the operator, and gives meaningful results only for the
13794 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13795
13796 static void
13797 ada_forward_operator_length (struct expression *exp, int pc,
13798 int *oplenp, int *argsp)
13799 {
13800 switch (exp->elts[pc].opcode)
13801 {
13802 default:
13803 *oplenp = *argsp = 0;
13804 break;
13805
13806 #define OP_DEFN(op, len, args, binop) \
13807 case op: *oplenp = len; *argsp = args; break;
13808 ADA_OPERATORS;
13809 #undef OP_DEFN
13810
13811 case OP_AGGREGATE:
13812 *oplenp = 3;
13813 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13814 break;
13815
13816 case OP_CHOICES:
13817 *oplenp = 3;
13818 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13819 break;
13820
13821 case OP_STRING:
13822 case OP_NAME:
13823 {
13824 int len = longest_to_int (exp->elts[pc + 1].longconst);
13825
13826 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13827 *argsp = 0;
13828 break;
13829 }
13830 }
13831 }
13832
13833 static int
13834 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13835 {
13836 enum exp_opcode op = exp->elts[elt].opcode;
13837 int oplen, nargs;
13838 int pc = elt;
13839 int i;
13840
13841 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13842
13843 switch (op)
13844 {
13845 /* Ada attributes ('Foo). */
13846 case OP_ATR_FIRST:
13847 case OP_ATR_LAST:
13848 case OP_ATR_LENGTH:
13849 case OP_ATR_IMAGE:
13850 case OP_ATR_MAX:
13851 case OP_ATR_MIN:
13852 case OP_ATR_MODULUS:
13853 case OP_ATR_POS:
13854 case OP_ATR_SIZE:
13855 case OP_ATR_TAG:
13856 case OP_ATR_VAL:
13857 break;
13858
13859 case UNOP_IN_RANGE:
13860 case UNOP_QUAL:
13861 /* XXX: gdb_sprint_host_address, type_sprint */
13862 fprintf_filtered (stream, _("Type @"));
13863 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13864 fprintf_filtered (stream, " (");
13865 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13866 fprintf_filtered (stream, ")");
13867 break;
13868 case BINOP_IN_BOUNDS:
13869 fprintf_filtered (stream, " (%d)",
13870 longest_to_int (exp->elts[pc + 2].longconst));
13871 break;
13872 case TERNOP_IN_RANGE:
13873 break;
13874
13875 case OP_AGGREGATE:
13876 case OP_OTHERS:
13877 case OP_DISCRETE_RANGE:
13878 case OP_POSITIONAL:
13879 case OP_CHOICES:
13880 break;
13881
13882 case OP_NAME:
13883 case OP_STRING:
13884 {
13885 char *name = &exp->elts[elt + 2].string;
13886 int len = longest_to_int (exp->elts[elt + 1].longconst);
13887
13888 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13889 break;
13890 }
13891
13892 default:
13893 return dump_subexp_body_standard (exp, stream, elt);
13894 }
13895
13896 elt += oplen;
13897 for (i = 0; i < nargs; i += 1)
13898 elt = dump_subexp (exp, stream, elt);
13899
13900 return elt;
13901 }
13902
13903 /* The Ada extension of print_subexp (q.v.). */
13904
13905 static void
13906 ada_print_subexp (struct expression *exp, int *pos,
13907 struct ui_file *stream, enum precedence prec)
13908 {
13909 int oplen, nargs, i;
13910 int pc = *pos;
13911 enum exp_opcode op = exp->elts[pc].opcode;
13912
13913 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13914
13915 *pos += oplen;
13916 switch (op)
13917 {
13918 default:
13919 *pos -= oplen;
13920 print_subexp_standard (exp, pos, stream, prec);
13921 return;
13922
13923 case OP_VAR_VALUE:
13924 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13925 return;
13926
13927 case BINOP_IN_BOUNDS:
13928 /* XXX: sprint_subexp */
13929 print_subexp (exp, pos, stream, PREC_SUFFIX);
13930 fputs_filtered (" in ", stream);
13931 print_subexp (exp, pos, stream, PREC_SUFFIX);
13932 fputs_filtered ("'range", stream);
13933 if (exp->elts[pc + 1].longconst > 1)
13934 fprintf_filtered (stream, "(%ld)",
13935 (long) exp->elts[pc + 1].longconst);
13936 return;
13937
13938 case TERNOP_IN_RANGE:
13939 if (prec >= PREC_EQUAL)
13940 fputs_filtered ("(", stream);
13941 /* XXX: sprint_subexp */
13942 print_subexp (exp, pos, stream, PREC_SUFFIX);
13943 fputs_filtered (" in ", stream);
13944 print_subexp (exp, pos, stream, PREC_EQUAL);
13945 fputs_filtered (" .. ", stream);
13946 print_subexp (exp, pos, stream, PREC_EQUAL);
13947 if (prec >= PREC_EQUAL)
13948 fputs_filtered (")", stream);
13949 return;
13950
13951 case OP_ATR_FIRST:
13952 case OP_ATR_LAST:
13953 case OP_ATR_LENGTH:
13954 case OP_ATR_IMAGE:
13955 case OP_ATR_MAX:
13956 case OP_ATR_MIN:
13957 case OP_ATR_MODULUS:
13958 case OP_ATR_POS:
13959 case OP_ATR_SIZE:
13960 case OP_ATR_TAG:
13961 case OP_ATR_VAL:
13962 if (exp->elts[*pos].opcode == OP_TYPE)
13963 {
13964 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13965 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13966 &type_print_raw_options);
13967 *pos += 3;
13968 }
13969 else
13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
13971 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13972 if (nargs > 1)
13973 {
13974 int tem;
13975
13976 for (tem = 1; tem < nargs; tem += 1)
13977 {
13978 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13979 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13980 }
13981 fputs_filtered (")", stream);
13982 }
13983 return;
13984
13985 case UNOP_QUAL:
13986 type_print (exp->elts[pc + 1].type, "", stream, 0);
13987 fputs_filtered ("'(", stream);
13988 print_subexp (exp, pos, stream, PREC_PREFIX);
13989 fputs_filtered (")", stream);
13990 return;
13991
13992 case UNOP_IN_RANGE:
13993 /* XXX: sprint_subexp */
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 fputs_filtered (" in ", stream);
13996 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13997 &type_print_raw_options);
13998 return;
13999
14000 case OP_DISCRETE_RANGE:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 fputs_filtered ("..", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 return;
14005
14006 case OP_OTHERS:
14007 fputs_filtered ("others => ", stream);
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 return;
14010
14011 case OP_CHOICES:
14012 for (i = 0; i < nargs-1; i += 1)
14013 {
14014 if (i > 0)
14015 fputs_filtered ("|", stream);
14016 print_subexp (exp, pos, stream, PREC_SUFFIX);
14017 }
14018 fputs_filtered (" => ", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 return;
14021
14022 case OP_POSITIONAL:
14023 print_subexp (exp, pos, stream, PREC_SUFFIX);
14024 return;
14025
14026 case OP_AGGREGATE:
14027 fputs_filtered ("(", stream);
14028 for (i = 0; i < nargs; i += 1)
14029 {
14030 if (i > 0)
14031 fputs_filtered (", ", stream);
14032 print_subexp (exp, pos, stream, PREC_SUFFIX);
14033 }
14034 fputs_filtered (")", stream);
14035 return;
14036 }
14037 }
14038
14039 /* Table mapping opcodes into strings for printing operators
14040 and precedences of the operators. */
14041
14042 static const struct op_print ada_op_print_tab[] = {
14043 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14044 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14045 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14046 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14047 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14048 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14049 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14050 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14051 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14052 {">=", BINOP_GEQ, PREC_ORDER, 0},
14053 {">", BINOP_GTR, PREC_ORDER, 0},
14054 {"<", BINOP_LESS, PREC_ORDER, 0},
14055 {">>", BINOP_RSH, PREC_SHIFT, 0},
14056 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14057 {"+", BINOP_ADD, PREC_ADD, 0},
14058 {"-", BINOP_SUB, PREC_ADD, 0},
14059 {"&", BINOP_CONCAT, PREC_ADD, 0},
14060 {"*", BINOP_MUL, PREC_MUL, 0},
14061 {"/", BINOP_DIV, PREC_MUL, 0},
14062 {"rem", BINOP_REM, PREC_MUL, 0},
14063 {"mod", BINOP_MOD, PREC_MUL, 0},
14064 {"**", BINOP_EXP, PREC_REPEAT, 0},
14065 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14066 {"-", UNOP_NEG, PREC_PREFIX, 0},
14067 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14068 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14069 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14070 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14071 {".all", UNOP_IND, PREC_SUFFIX, 1},
14072 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14073 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14074 {NULL, OP_NULL, PREC_SUFFIX, 0}
14075 };
14076 \f
14077 enum ada_primitive_types {
14078 ada_primitive_type_int,
14079 ada_primitive_type_long,
14080 ada_primitive_type_short,
14081 ada_primitive_type_char,
14082 ada_primitive_type_float,
14083 ada_primitive_type_double,
14084 ada_primitive_type_void,
14085 ada_primitive_type_long_long,
14086 ada_primitive_type_long_double,
14087 ada_primitive_type_natural,
14088 ada_primitive_type_positive,
14089 ada_primitive_type_system_address,
14090 ada_primitive_type_storage_offset,
14091 nr_ada_primitive_types
14092 };
14093
14094 static void
14095 ada_language_arch_info (struct gdbarch *gdbarch,
14096 struct language_arch_info *lai)
14097 {
14098 const struct builtin_type *builtin = builtin_type (gdbarch);
14099
14100 lai->primitive_type_vector
14101 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14102 struct type *);
14103
14104 lai->primitive_type_vector [ada_primitive_type_int]
14105 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14106 0, "integer");
14107 lai->primitive_type_vector [ada_primitive_type_long]
14108 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14109 0, "long_integer");
14110 lai->primitive_type_vector [ada_primitive_type_short]
14111 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14112 0, "short_integer");
14113 lai->string_char_type
14114 = lai->primitive_type_vector [ada_primitive_type_char]
14115 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14116 lai->primitive_type_vector [ada_primitive_type_float]
14117 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14118 "float", gdbarch_float_format (gdbarch));
14119 lai->primitive_type_vector [ada_primitive_type_double]
14120 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14121 "long_float", gdbarch_double_format (gdbarch));
14122 lai->primitive_type_vector [ada_primitive_type_long_long]
14123 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14124 0, "long_long_integer");
14125 lai->primitive_type_vector [ada_primitive_type_long_double]
14126 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14127 "long_long_float", gdbarch_long_double_format (gdbarch));
14128 lai->primitive_type_vector [ada_primitive_type_natural]
14129 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14130 0, "natural");
14131 lai->primitive_type_vector [ada_primitive_type_positive]
14132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14133 0, "positive");
14134 lai->primitive_type_vector [ada_primitive_type_void]
14135 = builtin->builtin_void;
14136
14137 lai->primitive_type_vector [ada_primitive_type_system_address]
14138 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14139 "void"));
14140 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14141 = "system__address";
14142
14143 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14144 type. This is a signed integral type whose size is the same as
14145 the size of addresses. */
14146 {
14147 unsigned int addr_length = TYPE_LENGTH
14148 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14149
14150 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14151 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14152 "storage_offset");
14153 }
14154
14155 lai->bool_type_symbol = NULL;
14156 lai->bool_type_default = builtin->builtin_bool;
14157 }
14158 \f
14159 /* Language vector */
14160
14161 /* Not really used, but needed in the ada_language_defn. */
14162
14163 static void
14164 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14165 {
14166 ada_emit_char (c, type, stream, quoter, 1);
14167 }
14168
14169 static int
14170 parse (struct parser_state *ps)
14171 {
14172 warnings_issued = 0;
14173 return ada_parse (ps);
14174 }
14175
14176 static const struct exp_descriptor ada_exp_descriptor = {
14177 ada_print_subexp,
14178 ada_operator_length,
14179 ada_operator_check,
14180 ada_op_name,
14181 ada_dump_subexp_body,
14182 ada_evaluate_subexp
14183 };
14184
14185 /* symbol_name_matcher_ftype adapter for wild_match. */
14186
14187 static bool
14188 do_wild_match (const char *symbol_search_name,
14189 const lookup_name_info &lookup_name,
14190 completion_match_result *comp_match_res)
14191 {
14192 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14193 }
14194
14195 /* symbol_name_matcher_ftype adapter for full_match. */
14196
14197 static bool
14198 do_full_match (const char *symbol_search_name,
14199 const lookup_name_info &lookup_name,
14200 completion_match_result *comp_match_res)
14201 {
14202 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14203 }
14204
14205 /* Build the Ada lookup name for LOOKUP_NAME. */
14206
14207 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14208 {
14209 const std::string &user_name = lookup_name.name ();
14210
14211 if (user_name[0] == '<')
14212 {
14213 if (user_name.back () == '>')
14214 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14215 else
14216 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14217 m_encoded_p = true;
14218 m_verbatim_p = true;
14219 m_wild_match_p = false;
14220 m_standard_p = false;
14221 }
14222 else
14223 {
14224 m_verbatim_p = false;
14225
14226 m_encoded_p = user_name.find ("__") != std::string::npos;
14227
14228 if (!m_encoded_p)
14229 {
14230 const char *folded = ada_fold_name (user_name.c_str ());
14231 const char *encoded = ada_encode_1 (folded, false);
14232 if (encoded != NULL)
14233 m_encoded_name = encoded;
14234 else
14235 m_encoded_name = user_name;
14236 }
14237 else
14238 m_encoded_name = user_name;
14239
14240 /* Handle the 'package Standard' special case. See description
14241 of m_standard_p. */
14242 if (startswith (m_encoded_name.c_str (), "standard__"))
14243 {
14244 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14245 m_standard_p = true;
14246 }
14247 else
14248 m_standard_p = false;
14249
14250 /* If the name contains a ".", then the user is entering a fully
14251 qualified entity name, and the match must not be done in wild
14252 mode. Similarly, if the user wants to complete what looks
14253 like an encoded name, the match must not be done in wild
14254 mode. Also, in the standard__ special case always do
14255 non-wild matching. */
14256 m_wild_match_p
14257 = (lookup_name.match_type () != symbol_name_match_type::FULL
14258 && !m_encoded_p
14259 && !m_standard_p
14260 && user_name.find ('.') == std::string::npos);
14261 }
14262 }
14263
14264 /* symbol_name_matcher_ftype method for Ada. This only handles
14265 completion mode. */
14266
14267 static bool
14268 ada_symbol_name_matches (const char *symbol_search_name,
14269 const lookup_name_info &lookup_name,
14270 completion_match_result *comp_match_res)
14271 {
14272 return lookup_name.ada ().matches (symbol_search_name,
14273 lookup_name.match_type (),
14274 comp_match_res);
14275 }
14276
14277 /* A name matcher that matches the symbol name exactly, with
14278 strcmp. */
14279
14280 static bool
14281 literal_symbol_name_matcher (const char *symbol_search_name,
14282 const lookup_name_info &lookup_name,
14283 completion_match_result *comp_match_res)
14284 {
14285 const std::string &name = lookup_name.name ();
14286
14287 int cmp = (lookup_name.completion_mode ()
14288 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14289 : strcmp (symbol_search_name, name.c_str ()));
14290 if (cmp == 0)
14291 {
14292 if (comp_match_res != NULL)
14293 comp_match_res->set_match (symbol_search_name);
14294 return true;
14295 }
14296 else
14297 return false;
14298 }
14299
14300 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14301 Ada. */
14302
14303 static symbol_name_matcher_ftype *
14304 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14305 {
14306 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14307 return literal_symbol_name_matcher;
14308
14309 if (lookup_name.completion_mode ())
14310 return ada_symbol_name_matches;
14311 else
14312 {
14313 if (lookup_name.ada ().wild_match_p ())
14314 return do_wild_match;
14315 else
14316 return do_full_match;
14317 }
14318 }
14319
14320 /* Implement the "la_read_var_value" language_defn method for Ada. */
14321
14322 static struct value *
14323 ada_read_var_value (struct symbol *var, const struct block *var_block,
14324 struct frame_info *frame)
14325 {
14326 const struct block *frame_block = NULL;
14327 struct symbol *renaming_sym = NULL;
14328
14329 /* The only case where default_read_var_value is not sufficient
14330 is when VAR is a renaming... */
14331 if (frame)
14332 frame_block = get_frame_block (frame, NULL);
14333 if (frame_block)
14334 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14335 if (renaming_sym != NULL)
14336 return ada_read_renaming_var_value (renaming_sym, frame_block);
14337
14338 /* This is a typical case where we expect the default_read_var_value
14339 function to work. */
14340 return default_read_var_value (var, var_block, frame);
14341 }
14342
14343 static const char *ada_extensions[] =
14344 {
14345 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14346 };
14347
14348 extern const struct language_defn ada_language_defn = {
14349 "ada", /* Language name */
14350 "Ada",
14351 language_ada,
14352 range_check_off,
14353 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14354 that's not quite what this means. */
14355 array_row_major,
14356 macro_expansion_no,
14357 ada_extensions,
14358 &ada_exp_descriptor,
14359 parse,
14360 resolve,
14361 ada_printchar, /* Print a character constant */
14362 ada_printstr, /* Function to print string constant */
14363 emit_char, /* Function to print single char (not used) */
14364 ada_print_type, /* Print a type using appropriate syntax */
14365 ada_print_typedef, /* Print a typedef using appropriate syntax */
14366 ada_val_print, /* Print a value using appropriate syntax */
14367 ada_value_print, /* Print a top-level value */
14368 ada_read_var_value, /* la_read_var_value */
14369 NULL, /* Language specific skip_trampoline */
14370 NULL, /* name_of_this */
14371 true, /* la_store_sym_names_in_linkage_form_p */
14372 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14373 basic_lookup_transparent_type, /* lookup_transparent_type */
14374 ada_la_decode, /* Language specific symbol demangler */
14375 ada_sniff_from_mangled_name,
14376 NULL, /* Language specific
14377 class_name_from_physname */
14378 ada_op_print_tab, /* expression operators for printing */
14379 0, /* c-style arrays */
14380 1, /* String lower bound */
14381 ada_get_gdb_completer_word_break_characters,
14382 ada_collect_symbol_completion_matches,
14383 ada_language_arch_info,
14384 ada_print_array_index,
14385 default_pass_by_reference,
14386 c_get_string,
14387 c_watch_location_expression,
14388 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14389 ada_iterate_over_symbols,
14390 default_search_name_hash,
14391 &ada_varobj_ops,
14392 NULL,
14393 NULL,
14394 LANG_MAGIC
14395 };
14396
14397 /* Command-list for the "set/show ada" prefix command. */
14398 static struct cmd_list_element *set_ada_list;
14399 static struct cmd_list_element *show_ada_list;
14400
14401 /* Implement the "set ada" prefix command. */
14402
14403 static void
14404 set_ada_command (const char *arg, int from_tty)
14405 {
14406 printf_unfiltered (_(\
14407 "\"set ada\" must be followed by the name of a setting.\n"));
14408 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14409 }
14410
14411 /* Implement the "show ada" prefix command. */
14412
14413 static void
14414 show_ada_command (const char *args, int from_tty)
14415 {
14416 cmd_show_list (show_ada_list, from_tty, "");
14417 }
14418
14419 static void
14420 initialize_ada_catchpoint_ops (void)
14421 {
14422 struct breakpoint_ops *ops;
14423
14424 initialize_breakpoint_ops ();
14425
14426 ops = &catch_exception_breakpoint_ops;
14427 *ops = bkpt_breakpoint_ops;
14428 ops->allocate_location = allocate_location_catch_exception;
14429 ops->re_set = re_set_catch_exception;
14430 ops->check_status = check_status_catch_exception;
14431 ops->print_it = print_it_catch_exception;
14432 ops->print_one = print_one_catch_exception;
14433 ops->print_mention = print_mention_catch_exception;
14434 ops->print_recreate = print_recreate_catch_exception;
14435
14436 ops = &catch_exception_unhandled_breakpoint_ops;
14437 *ops = bkpt_breakpoint_ops;
14438 ops->allocate_location = allocate_location_catch_exception_unhandled;
14439 ops->re_set = re_set_catch_exception_unhandled;
14440 ops->check_status = check_status_catch_exception_unhandled;
14441 ops->print_it = print_it_catch_exception_unhandled;
14442 ops->print_one = print_one_catch_exception_unhandled;
14443 ops->print_mention = print_mention_catch_exception_unhandled;
14444 ops->print_recreate = print_recreate_catch_exception_unhandled;
14445
14446 ops = &catch_assert_breakpoint_ops;
14447 *ops = bkpt_breakpoint_ops;
14448 ops->allocate_location = allocate_location_catch_assert;
14449 ops->re_set = re_set_catch_assert;
14450 ops->check_status = check_status_catch_assert;
14451 ops->print_it = print_it_catch_assert;
14452 ops->print_one = print_one_catch_assert;
14453 ops->print_mention = print_mention_catch_assert;
14454 ops->print_recreate = print_recreate_catch_assert;
14455
14456 ops = &catch_handlers_breakpoint_ops;
14457 *ops = bkpt_breakpoint_ops;
14458 ops->allocate_location = allocate_location_catch_handlers;
14459 ops->re_set = re_set_catch_handlers;
14460 ops->check_status = check_status_catch_handlers;
14461 ops->print_it = print_it_catch_handlers;
14462 ops->print_one = print_one_catch_handlers;
14463 ops->print_mention = print_mention_catch_handlers;
14464 ops->print_recreate = print_recreate_catch_handlers;
14465 }
14466
14467 /* This module's 'new_objfile' observer. */
14468
14469 static void
14470 ada_new_objfile_observer (struct objfile *objfile)
14471 {
14472 ada_clear_symbol_cache ();
14473 }
14474
14475 /* This module's 'free_objfile' observer. */
14476
14477 static void
14478 ada_free_objfile_observer (struct objfile *objfile)
14479 {
14480 ada_clear_symbol_cache ();
14481 }
14482
14483 void
14484 _initialize_ada_language (void)
14485 {
14486 initialize_ada_catchpoint_ops ();
14487
14488 add_prefix_cmd ("ada", no_class, set_ada_command,
14489 _("Prefix command for changing Ada-specfic settings"),
14490 &set_ada_list, "set ada ", 0, &setlist);
14491
14492 add_prefix_cmd ("ada", no_class, show_ada_command,
14493 _("Generic command for showing Ada-specific settings."),
14494 &show_ada_list, "show ada ", 0, &showlist);
14495
14496 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14497 &trust_pad_over_xvs, _("\
14498 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14499 Show whether an optimization trusting PAD types over XVS types is activated"),
14500 _("\
14501 This is related to the encoding used by the GNAT compiler. The debugger\n\
14502 should normally trust the contents of PAD types, but certain older versions\n\
14503 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14504 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14505 work around this bug. It is always safe to turn this option \"off\", but\n\
14506 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14507 this option to \"off\" unless necessary."),
14508 NULL, NULL, &set_ada_list, &show_ada_list);
14509
14510 add_setshow_boolean_cmd ("print-signatures", class_vars,
14511 &print_signatures, _("\
14512 Enable or disable the output of formal and return types for functions in the \
14513 overloads selection menu"), _("\
14514 Show whether the output of formal and return types for functions in the \
14515 overloads selection menu is activated"),
14516 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14517
14518 add_catch_command ("exception", _("\
14519 Catch Ada exceptions, when raised.\n\
14520 With an argument, catch only exceptions with the given name."),
14521 catch_ada_exception_command,
14522 NULL,
14523 CATCH_PERMANENT,
14524 CATCH_TEMPORARY);
14525
14526 add_catch_command ("handlers", _("\
14527 Catch Ada exceptions, when handled.\n\
14528 With an argument, catch only exceptions with the given name."),
14529 catch_ada_handlers_command,
14530 NULL,
14531 CATCH_PERMANENT,
14532 CATCH_TEMPORARY);
14533 add_catch_command ("assert", _("\
14534 Catch failed Ada assertions, when raised.\n\
14535 With an argument, catch only exceptions with the given name."),
14536 catch_assert_command,
14537 NULL,
14538 CATCH_PERMANENT,
14539 CATCH_TEMPORARY);
14540
14541 varsize_limit = 65536;
14542 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14543 &varsize_limit, _("\
14544 Set the maximum number of bytes allowed in a variable-size object."), _("\
14545 Show the maximum number of bytes allowed in a variable-size object."), _("\
14546 Attempts to access an object whose size is not a compile-time constant\n\
14547 and exceeds this limit will cause an error."),
14548 NULL, NULL, &setlist, &showlist);
14549
14550 add_info ("exceptions", info_exceptions_command,
14551 _("\
14552 List all Ada exception names.\n\
14553 If a regular expression is passed as an argument, only those matching\n\
14554 the regular expression are listed."));
14555
14556 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14557 _("Set Ada maintenance-related variables."),
14558 &maint_set_ada_cmdlist, "maintenance set ada ",
14559 0/*allow-unknown*/, &maintenance_set_cmdlist);
14560
14561 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14562 _("Show Ada maintenance-related variables"),
14563 &maint_show_ada_cmdlist, "maintenance show ada ",
14564 0/*allow-unknown*/, &maintenance_show_cmdlist);
14565
14566 add_setshow_boolean_cmd
14567 ("ignore-descriptive-types", class_maintenance,
14568 &ada_ignore_descriptive_types_p,
14569 _("Set whether descriptive types generated by GNAT should be ignored."),
14570 _("Show whether descriptive types generated by GNAT should be ignored."),
14571 _("\
14572 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14573 DWARF attribute."),
14574 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14575
14576 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14577 NULL, xcalloc, xfree);
14578
14579 /* The ada-lang observers. */
14580 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14581 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14582 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14583
14584 /* Setup various context-specific data. */
14585 ada_inferior_data
14586 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14587 ada_pspace_data_handle
14588 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14589 }
This page took 0.597778 seconds and 5 git commands to generate.