Constify command_line_input
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
210 static int find_struct_field (const char *, struct type *, int,
211 struct type **, int *, int *, int *, int *);
212
213 static int ada_resolve_function (struct block_symbol *, int,
214 struct value **, int, const char *,
215 struct type *, int);
216
217 static int ada_is_direct_array_type (struct type *);
218
219 static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
221
222 static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225 static struct value *assign_aggregate (struct value *, struct value *,
226 struct expression *,
227 int *, enum noside);
228
229 static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234 static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240 static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251 static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
253
254 static struct type *ada_find_any_type (const char *name);
255
256 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
259 \f
260
261 /* The result of a symbol lookup to be stored in our symbol cache. */
262
263 struct cache_entry
264 {
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
268 domain_enum domain;
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277 };
278
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288 #define HASH_SIZE 1009
289
290 struct ada_symbol_cache
291 {
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297 };
298
299 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
300
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit;
303
304 static const char ada_completer_word_break_characters[] =
305 #ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307 #else
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
309 #endif
310
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
313 = "__gnat_ada_main_program_name";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Maintenance-related settings for this module. */
331
332 static struct cmd_list_element *maint_set_ada_cmdlist;
333 static struct cmd_list_element *maint_show_ada_cmdlist;
334
335 /* Implement the "maintenance set ada" (prefix) command. */
336
337 static void
338 maint_set_ada_cmd (const char *args, int from_tty)
339 {
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
342 }
343
344 /* Implement the "maintenance show ada" (prefix) command. */
345
346 static void
347 maint_show_ada_cmd (const char *args, int from_tty)
348 {
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350 }
351
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
353
354 static bool ada_ignore_descriptive_types_p = false;
355
356 /* Inferior-specific data. */
357
358 /* Per-inferior data for this module. */
359
360 struct ada_inferior_data
361 {
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type *tsd_type = nullptr;
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
371 const struct exception_support_info *exception_info = nullptr;
372 };
373
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
376
377 /* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385 static struct ada_inferior_data *
386 get_ada_inferior_data (struct inferior *inf)
387 {
388 struct ada_inferior_data *data;
389
390 data = ada_inferior_data.get (inf);
391 if (data == NULL)
392 data = ada_inferior_data.emplace (inf);
393
394 return data;
395 }
396
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400 static void
401 ada_inferior_exit (struct inferior *inf)
402 {
403 ada_inferior_data.clear (inf);
404 }
405
406
407 /* program-space-specific data. */
408
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
411 {
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache *sym_cache = nullptr;
420 };
421
422 /* Key to our per-program-space data. */
423 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
424
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430 static struct ada_pspace_data *
431 get_ada_pspace_data (struct program_space *pspace)
432 {
433 struct ada_pspace_data *data;
434
435 data = ada_pspace_data_handle.get (pspace);
436 if (data == NULL)
437 data = ada_pspace_data_handle.emplace (pspace);
438
439 return data;
440 }
441
442 /* Utilities */
443
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471 static struct type *
472 ada_typedef_target_type (struct type *type)
473 {
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477 }
478
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483 static const char *
484 ada_unqualified_name (const char *decoded_name)
485 {
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502 }
503
504 /* Return a string starting with '<', followed by STR, and '>'. */
505
506 static std::string
507 add_angle_brackets (const char *str)
508 {
509 return string_printf ("<%s>", str);
510 }
511
512 static const char *
513 ada_get_gdb_completer_word_break_characters (void)
514 {
515 return ada_completer_word_break_characters;
516 }
517
518 /* Print an array element index using the Ada syntax. */
519
520 static void
521 ada_print_array_index (struct value *index_value, struct ui_file *stream,
522 const struct value_print_options *options)
523 {
524 LA_VALUE_PRINT (index_value, stream, options);
525 fprintf_filtered (stream, " => ");
526 }
527
528 /* la_watch_location_expression for Ada. */
529
530 static gdb::unique_xmalloc_ptr<char>
531 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532 {
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537 }
538
539 /* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542 #define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
545 /* Assuming VECT points to an array of *SIZE objects of size
546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
547 updating *SIZE as necessary and returning the (new) array. */
548
549 static void *
550 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
551 {
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
556 *size = min_size;
557 vect = xrealloc (vect, *size * element_size);
558 }
559 return vect;
560 }
561
562 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
563 suffix of FIELD_NAME beginning "___". */
564
565 static int
566 field_name_match (const char *field_name, const char *target)
567 {
568 int len = strlen (target);
569
570 return
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
573 || (startswith (field_name + len, "___")
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
576 }
577
578
579 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
586
587 int
588 ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590 {
591 int fieldno;
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
596 return fieldno;
597
598 if (!maybe_missing)
599 error (_("Unable to find field %s in struct %s. Aborting"),
600 field_name, TYPE_NAME (struct_type));
601
602 return -1;
603 }
604
605 /* The length of the prefix of NAME prior to any "___" suffix. */
606
607 int
608 ada_name_prefix_len (const char *name)
609 {
610 if (name == NULL)
611 return 0;
612 else
613 {
614 const char *p = strstr (name, "___");
615
616 if (p == NULL)
617 return strlen (name);
618 else
619 return p - name;
620 }
621 }
622
623 /* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
626 static int
627 is_suffix (const char *str, const char *suffix)
628 {
629 int len1, len2;
630
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
636 }
637
638 /* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
640
641 static struct value *
642 coerce_unspec_val_to_type (struct value *val, struct type *type)
643 {
644 type = ada_check_typedef (type);
645 if (value_type (val) == type)
646 return val;
647 else
648 {
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
653 ada_ensure_varsize_limit (type);
654
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
662 }
663 set_value_component_location (result, val);
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
668 return result;
669 }
670 }
671
672 static const gdb_byte *
673 cond_offset_host (const gdb_byte *valaddr, long offset)
674 {
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679 }
680
681 static CORE_ADDR
682 cond_offset_target (CORE_ADDR address, long offset)
683 {
684 if (address == 0)
685 return 0;
686 else
687 return address + offset;
688 }
689
690 /* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
694
695 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
697 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
698
699 static void
700 lim_warning (const char *format, ...)
701 {
702 va_list args;
703
704 va_start (args, format);
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
707 vwarning (format, args);
708
709 va_end (args);
710 }
711
712 /* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
716 void
717 ada_ensure_varsize_limit (const struct type *type)
718 {
719 if (TYPE_LENGTH (type) > varsize_limit)
720 error (_("object size is larger than varsize-limit"));
721 }
722
723 /* Maximum value of a SIZE-byte signed integer type. */
724 static LONGEST
725 max_of_size (int size)
726 {
727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
728
729 return top_bit | (top_bit - 1);
730 }
731
732 /* Minimum value of a SIZE-byte signed integer type. */
733 static LONGEST
734 min_of_size (int size)
735 {
736 return -max_of_size (size) - 1;
737 }
738
739 /* Maximum value of a SIZE-byte unsigned integer type. */
740 static ULONGEST
741 umax_of_size (int size)
742 {
743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
744
745 return top_bit | (top_bit - 1);
746 }
747
748 /* Maximum value of integral type T, as a signed quantity. */
749 static LONGEST
750 max_of_type (struct type *t)
751 {
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756 }
757
758 /* Minimum value of integral type T, as a signed quantity. */
759 static LONGEST
760 min_of_type (struct type *t)
761 {
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
766 }
767
768 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
769 LONGEST
770 ada_discrete_type_high_bound (struct type *type)
771 {
772 type = resolve_dynamic_type (type, NULL, 0);
773 switch (TYPE_CODE (type))
774 {
775 case TYPE_CODE_RANGE:
776 return TYPE_HIGH_BOUND (type);
777 case TYPE_CODE_ENUM:
778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
782 case TYPE_CODE_INT:
783 return max_of_type (type);
784 default:
785 error (_("Unexpected type in ada_discrete_type_high_bound."));
786 }
787 }
788
789 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
790 LONGEST
791 ada_discrete_type_low_bound (struct type *type)
792 {
793 type = resolve_dynamic_type (type, NULL, 0);
794 switch (TYPE_CODE (type))
795 {
796 case TYPE_CODE_RANGE:
797 return TYPE_LOW_BOUND (type);
798 case TYPE_CODE_ENUM:
799 return TYPE_FIELD_ENUMVAL (type, 0);
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
803 case TYPE_CODE_INT:
804 return min_of_type (type);
805 default:
806 error (_("Unexpected type in ada_discrete_type_low_bound."));
807 }
808 }
809
810 /* The identity on non-range types. For range types, the underlying
811 non-range scalar type. */
812
813 static struct type *
814 get_base_type (struct type *type)
815 {
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
823 }
824
825 /* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
827 encodings, making the resulting type a static but standard description
828 of the initial type. */
829
830 struct value *
831 ada_get_decoded_value (struct value *value)
832 {
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848 }
849
850 /* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855 struct type *
856 ada_get_decoded_type (struct type *type)
857 {
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862 }
863
864 \f
865
866 /* Language Selection */
867
868 /* If the main program is in Ada, return language_ada, otherwise return LANG
869 (the main program is in Ada iif the adainit symbol is found). */
870
871 static enum language
872 ada_update_initial_language (enum language lang)
873 {
874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
875 return language_ada;
876
877 return lang;
878 }
879
880 /* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884 char *
885 ada_main_name (void)
886 {
887 struct bound_minimal_symbol msym;
888 static gdb::unique_xmalloc_ptr<char> main_program_name;
889
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
897 if (msym.minsym != NULL)
898 {
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
903 if (main_program_name_addr == 0)
904 error (_("Invalid address for Ada main program name."));
905
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
911 return main_program_name.get ();
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916 }
917 \f
918 /* Symbols */
919
920 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
922
923 const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
946 };
947
948 /* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
952
953 static char *
954 ada_encode_1 (const char *decoded, bool throw_errors)
955 {
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
958 const char *p;
959 int k;
960
961 if (decoded == NULL)
962 return NULL;
963
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
966
967 k = 0;
968 for (p = decoded; *p != '\0'; p += 1)
969 {
970 if (*p == '.')
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
975 else if (*p == '"')
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
980 mapping->encoded != NULL
981 && !startswith (p, mapping->decoded); mapping += 1)
982 ;
983 if (mapping->encoded == NULL)
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
994 else
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
999 }
1000
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
1003 }
1004
1005 /* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008 char *
1009 ada_encode (const char *decoded)
1010 {
1011 return ada_encode_1 (decoded, true);
1012 }
1013
1014 /* Return NAME folded to lower case, or, if surrounded by single
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
1018 static char *
1019 ada_fold_name (const char *name)
1020 {
1021 static char *fold_buffer = NULL;
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1026
1027 if (name[0] == '\'')
1028 {
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
1031 }
1032 else
1033 {
1034 int i;
1035
1036 for (i = 0; i <= len; i += 1)
1037 fold_buffer[i] = tolower (name[i]);
1038 }
1039
1040 return fold_buffer;
1041 }
1042
1043 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045 static int
1046 is_lower_alphanum (const char c)
1047 {
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049 }
1050
1051 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
1058
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063 static void
1064 ada_remove_trailing_digits (const char *encoded, int *len)
1065 {
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
1069
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1077 *len = i - 2;
1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1079 *len = i - 1;
1080 }
1081 }
1082
1083 /* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086 static void
1087 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088 {
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
1094 the 'P' suffix. The second calls the first one after handling
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103 }
1104
1105 /* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1107 replaced by ENCODED. */
1108
1109 std::string
1110 ada_decode (const char *encoded)
1111 {
1112 int i, j;
1113 int len0;
1114 const char *p;
1115 int at_start_name;
1116 std::string decoded;
1117
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
1126 if (startswith (encoded, "_ada_"))
1127 encoded += 5;
1128
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
1132 if (encoded[0] == '_' || encoded[0] == '<')
1133 goto Suppress;
1134
1135 len0 = strlen (encoded);
1136
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
1139
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
1146 {
1147 if (p[3] == 'X')
1148 len0 = p - encoded;
1149 else
1150 goto Suppress;
1151 }
1152
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1158 len0 -= 3;
1159
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1165 len0 -= 2;
1166
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1171 len0 -= 1;
1172
1173 /* Make decoded big enough for possible expansion by operator name. */
1174
1175 decoded.resize (2 * len0 + 1, 'X');
1176
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1180 {
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
1189 }
1190
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
1200 /* Is this a symbol function? */
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
1204
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
1211 {
1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
1222 at_start_name = 0;
1223
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1228 i += 2;
1229
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
1252 of subprograms created by the compiler for each entry. The first
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1317 {
1318 /* Replace '__' by '.'. */
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
1324 else
1325 {
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
1332 }
1333 decoded.resize (j);
1334
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
1338 for (i = 0; i < decoded.length(); ++i)
1339 if (isupper (decoded[i]) || decoded[i] == ' ')
1340 goto Suppress;
1341
1342 return decoded;
1343
1344 Suppress:
1345 if (encoded[0] == '<')
1346 decoded = encoded;
1347 else
1348 decoded = '<' + std::string(encoded) + '>';
1349 return decoded;
1350
1351 }
1352
1353 /* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358 static struct htab *decoded_names_store;
1359
1360 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
1365 GSYMBOL).
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
1368 when a decoded name is cached in it. */
1369
1370 const char *
1371 ada_decode_symbol (const struct general_symbol_info *arg)
1372 {
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
1375 &gsymbol->language_specific.demangled_name;
1376
1377 if (!gsymbol->ada_mangled)
1378 {
1379 std::string decoded = ada_decode (gsymbol->name);
1380 struct obstack *obstack = gsymbol->language_specific.obstack;
1381
1382 gsymbol->ada_mangled = 1;
1383
1384 if (obstack != NULL)
1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
1386 else
1387 {
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
1393 char **slot = (char **) htab_find_slot (decoded_names_store,
1394 decoded.c_str (), INSERT);
1395
1396 if (*slot == NULL)
1397 *slot = xstrdup (decoded.c_str ());
1398 *resultp = *slot;
1399 }
1400 }
1401
1402 return *resultp;
1403 }
1404
1405 static char *
1406 ada_la_decode (const char *encoded, int options)
1407 {
1408 return xstrdup (ada_decode (encoded).c_str ());
1409 }
1410
1411 /* Implement la_sniff_from_mangled_name for Ada. */
1412
1413 static int
1414 ada_sniff_from_mangled_name (const char *mangled, char **out)
1415 {
1416 std::string demangled = ada_decode (mangled);
1417
1418 *out = NULL;
1419
1420 if (demangled != mangled && demangled[0] != '<')
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 \f
1451
1452 /* Arrays */
1453
1454 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
1461 The GNAT encoding used to describe the array index type evolved a bit.
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477 void
1478 ada_fixup_array_indexes_type (struct type *index_desc_type)
1479 {
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507 }
1508
1509 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1510
1511 static const char *bound_name[] = {
1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514 };
1515
1516 /* Maximum number of array dimensions we are prepared to handle. */
1517
1518 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1519
1520
1521 /* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
1523
1524 /* The descriptor or array type, if any, indicated by TYPE; removes
1525 level of indirection, if needed. */
1526
1527 static struct type *
1528 desc_base_type (struct type *type)
1529 {
1530 if (type == NULL)
1531 return NULL;
1532 type = ada_check_typedef (type);
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1540 else
1541 return type;
1542 }
1543
1544 /* True iff TYPE indicates a "thin" array pointer type. */
1545
1546 static int
1547 is_thin_pntr (struct type *type)
1548 {
1549 return
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552 }
1553
1554 /* The descriptor type for thin pointer type TYPE. */
1555
1556 static struct type *
1557 thin_descriptor_type (struct type *type)
1558 {
1559 struct type *base_type = desc_base_type (type);
1560
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
1565 else
1566 {
1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1568
1569 if (alt_type == NULL)
1570 return base_type;
1571 else
1572 return alt_type;
1573 }
1574 }
1575
1576 /* A pointer to the array data for thin-pointer value VAL. */
1577
1578 static struct value *
1579 thin_data_pntr (struct value *val)
1580 {
1581 struct type *type = ada_check_typedef (value_type (val));
1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1583
1584 data_type = lookup_pointer_type (data_type);
1585
1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1587 return value_cast (data_type, value_copy (val));
1588 else
1589 return value_from_longest (data_type, value_address (val));
1590 }
1591
1592 /* True iff TYPE indicates a "thick" array pointer type. */
1593
1594 static int
1595 is_thick_pntr (struct type *type)
1596 {
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1600 }
1601
1602 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
1604
1605 static struct type *
1606 desc_bounds_type (struct type *type)
1607 {
1608 struct type *r;
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
1618 return NULL;
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
1621 return ada_check_typedef (r);
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1628 }
1629 return NULL;
1630 }
1631
1632 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
1635 static struct value *
1636 desc_bounds (struct value *arr)
1637 {
1638 struct type *type = ada_check_typedef (value_type (arr));
1639
1640 if (is_thin_pntr (type))
1641 {
1642 struct type *bounds_type =
1643 desc_bounds_type (thin_descriptor_type (type));
1644 LONGEST addr;
1645
1646 if (bounds_type == NULL)
1647 error (_("Bad GNAT array descriptor"));
1648
1649 /* NOTE: The following calculation is not really kosher, but
1650 since desc_type is an XVE-encoded type (and shouldn't be),
1651 the correct calculation is a real pain. FIXME (and fix GCC). */
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 addr = value_as_long (arr);
1654 else
1655 addr = value_address (arr);
1656
1657 return
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
1660 }
1661
1662 else if (is_thick_pntr (type))
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
1683 else
1684 return NULL;
1685 }
1686
1687 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
1690 static int
1691 fat_pntr_bounds_bitpos (struct type *type)
1692 {
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694 }
1695
1696 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1697 size of the field containing the address of the bounds data. */
1698
1699 static int
1700 fat_pntr_bounds_bitsize (struct type *type)
1701 {
1702 type = desc_base_type (type);
1703
1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1708 }
1709
1710 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
1714
1715 static struct type *
1716 desc_data_target_type (struct type *type)
1717 {
1718 type = desc_base_type (type);
1719
1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
1721 if (is_thin_pntr (type))
1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1723 else if (is_thick_pntr (type))
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1730 }
1731
1732 return NULL;
1733 }
1734
1735 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
1737
1738 static struct value *
1739 desc_data (struct value *arr)
1740 {
1741 struct type *type = value_type (arr);
1742
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1747 _("Bad GNAT array descriptor"));
1748 else
1749 return NULL;
1750 }
1751
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the data. */
1755
1756 static int
1757 fat_pntr_data_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the data. */
1764
1765 static int
1766 fat_pntr_data_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
1772 else
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774 }
1775
1776 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
1780 static struct value *
1781 desc_one_bound (struct value *bounds, int i, int which)
1782 {
1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1784 _("Bad GNAT array descriptor bounds"));
1785 }
1786
1787 /* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
1791 static int
1792 desc_bound_bitpos (struct type *type, int i, int which)
1793 {
1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1795 }
1796
1797 /* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
1801 static int
1802 desc_bound_bitsize (struct type *type, int i, int which)
1803 {
1804 type = desc_base_type (type);
1805
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1810 }
1811
1812 /* If TYPE is the type of an array-bounds structure, the type of its
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
1815 static struct type *
1816 desc_index_type (struct type *type, int i)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
1823 return NULL;
1824 }
1825
1826 /* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
1829 static int
1830 desc_arity (struct type *type)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837 }
1838
1839 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
1843 static int
1844 ada_is_direct_array_type (struct type *type)
1845 {
1846 if (type == NULL)
1847 return 0;
1848 type = ada_check_typedef (type);
1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1850 || ada_is_array_descriptor_type (type));
1851 }
1852
1853 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1854 * to one. */
1855
1856 static int
1857 ada_is_array_type (struct type *type)
1858 {
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864 }
1865
1866 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1867
1868 int
1869 ada_is_simple_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
1878 }
1879
1880 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
1882 int
1883 ada_is_array_descriptor_type (struct type *type)
1884 {
1885 struct type *data_type = desc_data_target_type (type);
1886
1887 if (type == NULL)
1888 return 0;
1889 type = ada_check_typedef (type);
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
1893 }
1894
1895 /* Non-zero iff type is a partially mal-formed GNAT array
1896 descriptor. FIXME: This is to compensate for some problems with
1897 debugging output from GNAT. Re-examine periodically to see if it
1898 is still needed. */
1899
1900 int
1901 ada_is_bogus_array_descriptor (struct type *type)
1902 {
1903 return
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
1909 }
1910
1911
1912 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1913 (fat pointer) returns the type of the array data described---specifically,
1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1915 in from the descriptor; otherwise, they are left unspecified. If
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
1918 a descriptor. */
1919
1920 static struct type *
1921 ada_type_of_array (struct value *arr, int bounds)
1922 {
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
1925
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
1928
1929 if (!bounds)
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
1940 else
1941 {
1942 struct type *elt_type;
1943 int arity;
1944 struct value *descriptor;
1945
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
1948
1949 if (elt_type == NULL || arity == 0)
1950 return ada_check_typedef (value_type (arr));
1951
1952 descriptor = desc_bounds (arr);
1953 if (value_as_long (descriptor) == 0)
1954 return NULL;
1955 while (arity > 0)
1956 {
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
1961
1962 arity -= 1;
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
1966 elt_type = create_array_type (array_type, elt_type, range_type);
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
1988 }
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992 }
1993
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
1999 struct value *
2000 ada_coerce_to_simple_array_ptr (struct value *arr)
2001 {
2002 if (ada_is_array_descriptor_type (value_type (arr)))
2003 {
2004 struct type *arrType = ada_type_of_array (arr, 1);
2005
2006 if (arrType == NULL)
2007 return NULL;
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
2012 else
2013 return arr;
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2019
2020 struct value *
2021 ada_coerce_to_simple_array (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2026
2027 if (arrVal == NULL)
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2030 return value_ind (arrVal);
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2041
2042 struct type *
2043 ada_coerce_to_simple_array_type (struct type *type)
2044 {
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
2047
2048 if (ada_is_array_descriptor_type (type))
2049 return ada_check_typedef (desc_data_target_type (type));
2050
2051 return type;
2052 }
2053
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
2056 static int
2057 ada_is_packed_array_type (struct type *type)
2058 {
2059 if (type == NULL)
2060 return 0;
2061 type = desc_base_type (type);
2062 type = ada_check_typedef (type);
2063 return
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066 }
2067
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071 int
2072 ada_is_constrained_packed_array_type (struct type *type)
2073 {
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076 }
2077
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081 static int
2082 ada_is_unconstrained_packed_array_type (struct type *type)
2083 {
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086 }
2087
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091 static long
2092 decode_packed_array_bitsize (struct type *type)
2093 {
2094 const char *raw_name;
2095 const char *tail;
2096 long bits;
2097
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
2112 gdb_assert (tail != NULL);
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122 }
2123
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2140
2141 static struct type *
2142 constrained_packed_array_type (struct type *type, long *elt_bits)
2143 {
2144 struct type *new_elt_type;
2145 struct type *new_type;
2146 struct type *index_type_desc;
2147 struct type *index_type;
2148 LONGEST low_bound, high_bound;
2149
2150 type = ada_check_typedef (type);
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
2161 new_type = alloc_type_copy (type);
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
2165 create_array_type (new_type, new_elt_type, index_type);
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
2175 else
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
2178 TYPE_LENGTH (new_type) =
2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2180 }
2181
2182 TYPE_FIXED_INSTANCE (new_type) = 1;
2183 return new_type;
2184 }
2185
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2188
2189 static struct type *
2190 decode_constrained_packed_array_type (struct type *type)
2191 {
2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
2193 char *name;
2194 const char *tail;
2195 struct type *shadow_type;
2196 long bits;
2197
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
2206 type = desc_base_type (type);
2207
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
2214 {
2215 lim_warning (_("could not find bounds information on packed array"));
2216 return NULL;
2217 }
2218 shadow_type = check_typedef (shadow_type);
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2224 return NULL;
2225 }
2226
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
2229 }
2230
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2236
2237 static struct value *
2238 decode_constrained_packed_array (struct value *arr)
2239 {
2240 struct type *type;
2241
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2251 arr = value_ind (arr);
2252
2253 type = decode_constrained_packed_array_type (value_type (arr));
2254 if (type == NULL)
2255 {
2256 error (_("can't unpack array"));
2257 return NULL;
2258 }
2259
2260 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2261 && ada_is_modular_type (value_type (arr)))
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
2270 mod = ada_modulus (value_type (arr)) - 1;
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
2285 return coerce_unspec_val_to_type (arr, type);
2286 }
2287
2288
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2291
2292 static struct value *
2293 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2294 {
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
2298 struct type *elt_type;
2299 struct value *v;
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
2303 elt_type = ada_check_typedef (value_type (arr));
2304 for (i = 0; i < arity; i += 1)
2305 {
2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2311 else
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound = upperbound = 0;
2321 }
2322
2323 idx = pos_atr (ind[i]);
2324 if (idx < lowerbound || idx > upperbound)
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2330 }
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2336 bits, elt_type);
2337 return v;
2338 }
2339
2340 /* Non-zero iff TYPE includes negative integer values. */
2341
2342 static int
2343 has_negatives (struct type *type)
2344 {
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2353 }
2354 }
2355
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2359
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
2365
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2367
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370 static void
2371 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375 {
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
2386 unsigned long accum; /* Staging area for bits being transferred */
2387 int accumSize; /* Number of meaningful bits in accum */
2388 unsigned char sign;
2389
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta = is_big_endian ? -1 : 1;
2393
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
2400 srcBitsLeft = bit_size;
2401 src_bytes_left = src_len;
2402 unpacked_bytes_left = unpacked_len;
2403 sign = 0;
2404
2405 if (is_big_endian)
2406 {
2407 src_idx = src_len - 1;
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2410 sign = ~0;
2411
2412 unusedLS =
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
2415
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
2430 }
2431 }
2432 else
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
2436 src_idx = unpacked_idx = 0;
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2441 sign = ~0;
2442 }
2443
2444 accum = 0;
2445 while (src_bytes_left > 0)
2446 {
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask =
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask = sign & ~unusedMSMask;
2454
2455 accum |=
2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2457 accumSize += HOST_CHAR_BIT - unusedLS;
2458 if (accumSize >= HOST_CHAR_BIT)
2459 {
2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
2465 }
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
2468 src_bytes_left -= 1;
2469 src_idx += delta;
2470 }
2471 while (unpacked_bytes_left > 0)
2472 {
2473 accum |= sign << accumSize;
2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2475 accumSize -= HOST_CHAR_BIT;
2476 if (accumSize < 0)
2477 accumSize = 0;
2478 accum >>= HOST_CHAR_BIT;
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
2481 }
2482 }
2483
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493 struct value *
2494 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497 {
2498 struct value *v;
2499 const gdb_byte *src; /* First byte containing data to unpack */
2500 gdb_byte *unpacked;
2501 const int is_scalar = is_scalar_type (type);
2502 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2503 gdb::byte_vector staging;
2504
2505 type = ada_check_typedef (type);
2506
2507 if (obj == NULL)
2508 src = valaddr + offset;
2509 else
2510 src = value_contents (obj) + offset;
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 staging.data (), staging.size (),
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
2528 type = resolve_dynamic_type (type, staging.data (), 0);
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
2540 }
2541
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
2545 src = valaddr + offset;
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2550 gdb_byte *buf;
2551
2552 v = value_at (type, value_address (obj) + offset);
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
2560 src = value_contents (obj) + offset;
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
2583 unpacked = value_contents_writeable (v);
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
2591 if (staging.size () == TYPE_LENGTH (type))
2592 {
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked, staging.data (), staging.size ());
2597 }
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
2602
2603 return v;
2604 }
2605
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2610
2611 static struct value *
2612 ada_value_assign (struct value *toval, struct value *fromval)
2613 {
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
2616
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
2625 if (!deprecated_value_modifiable (toval))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2627
2628 if (VALUE_LVAL (toval) == lval_memory
2629 && bits > 0
2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2632 {
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2635 int from_size;
2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
2637 struct value *val;
2638 CORE_ADDR to_addr = value_address (toval);
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2641 fromval = value_cast (type, fromval);
2642
2643 read_memory (to_addr, buffer, len);
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2647
2648 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
2655 write_memory_with_notification (to_addr, buffer, len);
2656
2657 val = value_copy (toval);
2658 memcpy (value_contents_raw (val), value_contents (fromval),
2659 TYPE_LENGTH (type));
2660 deprecated_set_value_type (val, type);
2661
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666 }
2667
2668
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
2680 static void
2681 value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683 {
2684 LONGEST offset_in_container =
2685 (LONGEST) (value_address (component) - value_address (container));
2686 int bit_offset_in_container =
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
2689
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
2697 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2709 }
2710 else
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* Determine if TYPE is an access to an unconstrained array. */
2717
2718 bool
2719 ada_is_access_to_unconstrained_array (struct type *type)
2720 {
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723 }
2724
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2727 thereto. */
2728
2729 struct value *
2730 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2731 {
2732 int k;
2733 struct value *elt;
2734 struct type *elt_type;
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
2738 elt_type = ada_check_typedef (value_type (elt));
2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749
2750 elt = value_subscript (elt, pos_atr (ind[k]));
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
2771 }
2772
2773 return elt;
2774 }
2775
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2787
2788 static struct value *
2789 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2790 {
2791 int k;
2792 struct value *array_ind = ada_value_ind (arr);
2793 struct type *type
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
2803 struct value *lwb_value;
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2806 error (_("too many subscripts (%d expected)"), k);
2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2808 value_copy (arr));
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816 }
2817
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value *
2823 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
2825 {
2826 struct type *type0 = ada_check_typedef (type);
2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2828 struct type *index_type
2829 = create_static_range_type (NULL, base_index_type, low, high);
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
2845
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2849 return value_at_lazy (slice_type, base);
2850 }
2851
2852
2853 static struct value *
2854 ada_value_slice (struct value *array, int low, int high)
2855 {
2856 struct type *type = ada_check_typedef (value_type (array));
2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
2864 LONGEST low_pos, high_pos;
2865
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
2876 }
2877
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2882
2883 int
2884 ada_array_arity (struct type *type)
2885 {
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2895 return desc_arity (desc_bounds_type (type));
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2898 {
2899 arity += 1;
2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2901 }
2902
2903 return arity;
2904 }
2905
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2910
2911 struct type *
2912 ada_array_element_type (struct type *type, int nindices)
2913 {
2914 type = desc_base_type (type);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2917 {
2918 int k;
2919 struct type *p_array_type;
2920
2921 p_array_type = desc_data_target_type (type);
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
2925 return NULL;
2926
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices >= 0 && k > nindices)
2929 k = nindices;
2930 while (k > 0 && p_array_type != NULL)
2931 {
2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2933 k -= 1;
2934 }
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
2944 return type;
2945 }
2946
2947 return NULL;
2948 }
2949
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2955
2956 static struct type *
2957 ada_index_type (struct type *type, int n, const char *name)
2958 {
2959 struct type *result_type;
2960
2961 type = desc_base_type (type);
2962
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
2965
2966 if (ada_is_simple_array_type (type))
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
2971 type = TYPE_TARGET_TYPE (type);
2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
2978 }
2979 else
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
2987 }
2988
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2994
2995 static LONGEST
2996 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2997 {
2998 struct type *type, *index_type_desc, *index_type;
2999 int i;
3000
3001 gdb_assert (which == 0 || which == 1);
3002
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
3005
3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3007 return (LONGEST) - which;
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
3027 if (index_type_desc != NULL)
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
3030 else
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
3039
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
3044 }
3045
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3050
3051 static LONGEST
3052 ada_array_bound (struct value *arr, int n, int which)
3053 {
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
3059
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3062 else if (ada_is_simple_array_type (arr_type))
3063 return ada_array_bound_from_type (arr_type, n, which);
3064 else
3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3066 }
3067
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3073
3074 static LONGEST
3075 ada_array_length (struct value *arr, int n)
3076 {
3077 struct type *arr_type, *index_type;
3078 int low, high;
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
3083
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
3086
3087 if (ada_is_simple_array_type (arr_type))
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
3092 else
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
3098 arr_type = check_typedef (arr_type);
3099 index_type = ada_index_type (arr_type, n, "length");
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
3112 }
3113
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3117
3118 static struct value *
3119 empty_array (struct type *arr_type, int low, int high)
3120 {
3121 struct type *arr_type0 = ada_check_typedef (arr_type);
3122 struct type *index_type
3123 = create_static_range_type
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3127
3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
3129 }
3130 \f
3131
3132 /* Name resolution */
3133
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
3136
3137 static const char *
3138 ada_decoded_op_name (enum exp_opcode op)
3139 {
3140 int i;
3141
3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3143 {
3144 if (ada_opname_table[i].op == op)
3145 return ada_opname_table[i].decoded;
3146 }
3147 error (_("Could not find operator name for opcode"));
3148 }
3149
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
3156 static int
3157 encoded_ordered_before (const char *N0, const char *N1)
3158 {
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
3166
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
3175
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
3187 }
3188
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
3191
3192 static void
3193 sort_choices (struct block_symbol syms[], int nsyms)
3194 {
3195 int i;
3196
3197 for (i = 1; i < nsyms; i += 1)
3198 {
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
3203 {
3204 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3205 SYMBOL_LINKAGE_NAME (sym.symbol)))
3206 break;
3207 syms[j + 1] = syms[j];
3208 }
3209 syms[j + 1] = sym;
3210 }
3211 }
3212
3213 /* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215 static bool print_signatures = true;
3216
3217 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
3221
3222 static void
3223 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225 {
3226 struct type *type = SYMBOL_TYPE (sym);
3227
3228 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
3233
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
3237
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254 }
3255
3256 /* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
3259
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
3262
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3266
3267 The user is not allowed to choose more than MAX_RESULTS values.
3268
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
3271
3272 static int
3273 get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275 {
3276 const char *args;
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
3280
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
3284
3285 args = command_line_input (prompt, annotation_suffix);
3286
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
3289
3290 n_chosen = 0;
3291
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
3295 {
3296 char *args2;
3297 int choice, j;
3298
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
3304
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
3310
3311 if (choice == 0)
3312 error (_("cancelled"));
3313
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
3320 }
3321 choice -= first_choice;
3322
3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3324 {
3325 }
3326
3327 if (j < 0 || choice != choices[j])
3328 {
3329 int k;
3330
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
3335 }
3336 }
3337
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
3342 }
3343
3344 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
3351
3352 static int
3353 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3354 {
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
3360
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
3365
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368 canceled because the command is ambiguous\n\
3369 See set/show multiple-symbol."));
3370
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
3376
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
3380
3381 sort_choices (syms, nsyms);
3382
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
3387
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
3392
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
3407 else
3408 {
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
3414
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
3434 SYMBOL_PRINT_NAME (syms[i].symbol));
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
3452 }
3453 }
3454
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
3457
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
3460
3461 return n_chosen;
3462 }
3463
3464 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
3472
3473 static void
3474 resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476 {
3477 struct type *context_type = NULL;
3478 int pc = 0;
3479
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3482
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484 }
3485
3486 /* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
3494
3495 static struct value *
3496 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
3499 {
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
3507
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
3511
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3524 }
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
3527
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
3656 }
3657
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
3664
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
3667 {
3668 default:
3669 break;
3670
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3673 {
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
3676
3677 n_candidates =
3678 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3679 (exp->elts[pc + 2].symbol),
3680 exp->elts[pc + 1].block, VAR_DOMAIN,
3681 &candidates);
3682
3683 if (n_candidates > 1)
3684 {
3685 /* Types tend to get re-introduced locally, so if there
3686 are any local symbols that are not types, first filter
3687 out all types. */
3688 int j;
3689 for (j = 0; j < n_candidates; j += 1)
3690 switch (SYMBOL_CLASS (candidates[j].symbol))
3691 {
3692 case LOC_REGISTER:
3693 case LOC_ARG:
3694 case LOC_REF_ARG:
3695 case LOC_REGPARM_ADDR:
3696 case LOC_LOCAL:
3697 case LOC_COMPUTED:
3698 goto FoundNonType;
3699 default:
3700 break;
3701 }
3702 FoundNonType:
3703 if (j < n_candidates)
3704 {
3705 j = 0;
3706 while (j < n_candidates)
3707 {
3708 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3709 {
3710 candidates[j] = candidates[n_candidates - 1];
3711 n_candidates -= 1;
3712 }
3713 else
3714 j += 1;
3715 }
3716 }
3717 }
3718
3719 if (n_candidates == 0)
3720 error (_("No definition found for %s"),
3721 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3722 else if (n_candidates == 1)
3723 i = 0;
3724 else if (deprocedure_p
3725 && !is_nonfunction (candidates.data (), n_candidates))
3726 {
3727 i = ada_resolve_function
3728 (candidates.data (), n_candidates, NULL, 0,
3729 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3730 context_type, parse_completion);
3731 if (i < 0)
3732 error (_("Could not find a match for %s"),
3733 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3734 }
3735 else
3736 {
3737 printf_filtered (_("Multiple matches for %s\n"),
3738 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3739 user_select_syms (candidates.data (), n_candidates, 1);
3740 i = 0;
3741 }
3742
3743 exp->elts[pc + 1].block = candidates[i].block;
3744 exp->elts[pc + 2].symbol = candidates[i].symbol;
3745 tracker->update (candidates[i]);
3746 }
3747
3748 if (deprocedure_p
3749 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3750 == TYPE_CODE_FUNC))
3751 {
3752 replace_operator_with_call (expp, pc, 0, 4,
3753 exp->elts[pc + 2].symbol,
3754 exp->elts[pc + 1].block);
3755 exp = expp->get ();
3756 }
3757 break;
3758
3759 case OP_FUNCALL:
3760 {
3761 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3762 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3763 {
3764 std::vector<struct block_symbol> candidates;
3765 int n_candidates;
3766
3767 n_candidates =
3768 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3769 (exp->elts[pc + 5].symbol),
3770 exp->elts[pc + 4].block, VAR_DOMAIN,
3771 &candidates);
3772
3773 if (n_candidates == 1)
3774 i = 0;
3775 else
3776 {
3777 i = ada_resolve_function
3778 (candidates.data (), n_candidates,
3779 argvec, nargs,
3780 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3781 context_type, parse_completion);
3782 if (i < 0)
3783 error (_("Could not find a match for %s"),
3784 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3785 }
3786
3787 exp->elts[pc + 4].block = candidates[i].block;
3788 exp->elts[pc + 5].symbol = candidates[i].symbol;
3789 tracker->update (candidates[i]);
3790 }
3791 }
3792 break;
3793 case BINOP_ADD:
3794 case BINOP_SUB:
3795 case BINOP_MUL:
3796 case BINOP_DIV:
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_CONCAT:
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
3803 case BINOP_EQUAL:
3804 case BINOP_NOTEQUAL:
3805 case BINOP_LESS:
3806 case BINOP_GTR:
3807 case BINOP_LEQ:
3808 case BINOP_GEQ:
3809 case BINOP_EXP:
3810 case UNOP_NEG:
3811 case UNOP_PLUS:
3812 case UNOP_LOGICAL_NOT:
3813 case UNOP_ABS:
3814 if (possible_user_operator_p (op, argvec))
3815 {
3816 std::vector<struct block_symbol> candidates;
3817 int n_candidates;
3818
3819 n_candidates =
3820 ada_lookup_symbol_list (ada_decoded_op_name (op),
3821 NULL, VAR_DOMAIN,
3822 &candidates);
3823
3824 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3825 nargs, ada_decoded_op_name (op), NULL,
3826 parse_completion);
3827 if (i < 0)
3828 break;
3829
3830 replace_operator_with_call (expp, pc, nargs, 1,
3831 candidates[i].symbol,
3832 candidates[i].block);
3833 exp = expp->get ();
3834 }
3835 break;
3836
3837 case OP_TYPE:
3838 case OP_REGISTER:
3839 return NULL;
3840 }
3841
3842 *pos = pc;
3843 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3844 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3845 exp->elts[pc + 1].objfile,
3846 exp->elts[pc + 2].msymbol);
3847 else
3848 return evaluate_subexp_type (exp, pos);
3849 }
3850
3851 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3852 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3853 a non-pointer. */
3854 /* The term "match" here is rather loose. The match is heuristic and
3855 liberal. */
3856
3857 static int
3858 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3859 {
3860 ftype = ada_check_typedef (ftype);
3861 atype = ada_check_typedef (atype);
3862
3863 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3864 ftype = TYPE_TARGET_TYPE (ftype);
3865 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3866 atype = TYPE_TARGET_TYPE (atype);
3867
3868 switch (TYPE_CODE (ftype))
3869 {
3870 default:
3871 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3872 case TYPE_CODE_PTR:
3873 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3874 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3875 TYPE_TARGET_TYPE (atype), 0);
3876 else
3877 return (may_deref
3878 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3879 case TYPE_CODE_INT:
3880 case TYPE_CODE_ENUM:
3881 case TYPE_CODE_RANGE:
3882 switch (TYPE_CODE (atype))
3883 {
3884 case TYPE_CODE_INT:
3885 case TYPE_CODE_ENUM:
3886 case TYPE_CODE_RANGE:
3887 return 1;
3888 default:
3889 return 0;
3890 }
3891
3892 case TYPE_CODE_ARRAY:
3893 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3894 || ada_is_array_descriptor_type (atype));
3895
3896 case TYPE_CODE_STRUCT:
3897 if (ada_is_array_descriptor_type (ftype))
3898 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3899 || ada_is_array_descriptor_type (atype));
3900 else
3901 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3902 && !ada_is_array_descriptor_type (atype));
3903
3904 case TYPE_CODE_UNION:
3905 case TYPE_CODE_FLT:
3906 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3907 }
3908 }
3909
3910 /* Return non-zero if the formals of FUNC "sufficiently match" the
3911 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3912 may also be an enumeral, in which case it is treated as a 0-
3913 argument function. */
3914
3915 static int
3916 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3917 {
3918 int i;
3919 struct type *func_type = SYMBOL_TYPE (func);
3920
3921 if (SYMBOL_CLASS (func) == LOC_CONST
3922 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3923 return (n_actuals == 0);
3924 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3925 return 0;
3926
3927 if (TYPE_NFIELDS (func_type) != n_actuals)
3928 return 0;
3929
3930 for (i = 0; i < n_actuals; i += 1)
3931 {
3932 if (actuals[i] == NULL)
3933 return 0;
3934 else
3935 {
3936 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3937 i));
3938 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3939
3940 if (!ada_type_match (ftype, atype, 1))
3941 return 0;
3942 }
3943 }
3944 return 1;
3945 }
3946
3947 /* False iff function type FUNC_TYPE definitely does not produce a value
3948 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3949 FUNC_TYPE is not a valid function type with a non-null return type
3950 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3951
3952 static int
3953 return_match (struct type *func_type, struct type *context_type)
3954 {
3955 struct type *return_type;
3956
3957 if (func_type == NULL)
3958 return 1;
3959
3960 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3961 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3962 else
3963 return_type = get_base_type (func_type);
3964 if (return_type == NULL)
3965 return 1;
3966
3967 context_type = get_base_type (context_type);
3968
3969 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3970 return context_type == NULL || return_type == context_type;
3971 else if (context_type == NULL)
3972 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3973 else
3974 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3975 }
3976
3977
3978 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3979 function (if any) that matches the types of the NARGS arguments in
3980 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3981 that returns that type, then eliminate matches that don't. If
3982 CONTEXT_TYPE is void and there is at least one match that does not
3983 return void, eliminate all matches that do.
3984
3985 Asks the user if there is more than one match remaining. Returns -1
3986 if there is no such symbol or none is selected. NAME is used
3987 solely for messages. May re-arrange and modify SYMS in
3988 the process; the index returned is for the modified vector. */
3989
3990 static int
3991 ada_resolve_function (struct block_symbol syms[],
3992 int nsyms, struct value **args, int nargs,
3993 const char *name, struct type *context_type,
3994 int parse_completion)
3995 {
3996 int fallback;
3997 int k;
3998 int m; /* Number of hits */
3999
4000 m = 0;
4001 /* In the first pass of the loop, we only accept functions matching
4002 context_type. If none are found, we add a second pass of the loop
4003 where every function is accepted. */
4004 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4005 {
4006 for (k = 0; k < nsyms; k += 1)
4007 {
4008 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4009
4010 if (ada_args_match (syms[k].symbol, args, nargs)
4011 && (fallback || return_match (type, context_type)))
4012 {
4013 syms[m] = syms[k];
4014 m += 1;
4015 }
4016 }
4017 }
4018
4019 /* If we got multiple matches, ask the user which one to use. Don't do this
4020 interactive thing during completion, though, as the purpose of the
4021 completion is providing a list of all possible matches. Prompting the
4022 user to filter it down would be completely unexpected in this case. */
4023 if (m == 0)
4024 return -1;
4025 else if (m > 1 && !parse_completion)
4026 {
4027 printf_filtered (_("Multiple matches for %s\n"), name);
4028 user_select_syms (syms, m, 1);
4029 return 0;
4030 }
4031 return 0;
4032 }
4033
4034 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4035 on the function identified by SYM and BLOCK, and taking NARGS
4036 arguments. Update *EXPP as needed to hold more space. */
4037
4038 static void
4039 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4040 int oplen, struct symbol *sym,
4041 const struct block *block)
4042 {
4043 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4044 symbol, -oplen for operator being replaced). */
4045 struct expression *newexp = (struct expression *)
4046 xzalloc (sizeof (struct expression)
4047 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4048 struct expression *exp = expp->get ();
4049
4050 newexp->nelts = exp->nelts + 7 - oplen;
4051 newexp->language_defn = exp->language_defn;
4052 newexp->gdbarch = exp->gdbarch;
4053 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4054 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4055 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4056
4057 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4058 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4059
4060 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4061 newexp->elts[pc + 4].block = block;
4062 newexp->elts[pc + 5].symbol = sym;
4063
4064 expp->reset (newexp);
4065 }
4066
4067 /* Type-class predicates */
4068
4069 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4070 or FLOAT). */
4071
4072 static int
4073 numeric_type_p (struct type *type)
4074 {
4075 if (type == NULL)
4076 return 0;
4077 else
4078 {
4079 switch (TYPE_CODE (type))
4080 {
4081 case TYPE_CODE_INT:
4082 case TYPE_CODE_FLT:
4083 return 1;
4084 case TYPE_CODE_RANGE:
4085 return (type == TYPE_TARGET_TYPE (type)
4086 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4087 default:
4088 return 0;
4089 }
4090 }
4091 }
4092
4093 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4094
4095 static int
4096 integer_type_p (struct type *type)
4097 {
4098 if (type == NULL)
4099 return 0;
4100 else
4101 {
4102 switch (TYPE_CODE (type))
4103 {
4104 case TYPE_CODE_INT:
4105 return 1;
4106 case TYPE_CODE_RANGE:
4107 return (type == TYPE_TARGET_TYPE (type)
4108 || integer_type_p (TYPE_TARGET_TYPE (type)));
4109 default:
4110 return 0;
4111 }
4112 }
4113 }
4114
4115 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4116
4117 static int
4118 scalar_type_p (struct type *type)
4119 {
4120 if (type == NULL)
4121 return 0;
4122 else
4123 {
4124 switch (TYPE_CODE (type))
4125 {
4126 case TYPE_CODE_INT:
4127 case TYPE_CODE_RANGE:
4128 case TYPE_CODE_ENUM:
4129 case TYPE_CODE_FLT:
4130 return 1;
4131 default:
4132 return 0;
4133 }
4134 }
4135 }
4136
4137 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4138
4139 static int
4140 discrete_type_p (struct type *type)
4141 {
4142 if (type == NULL)
4143 return 0;
4144 else
4145 {
4146 switch (TYPE_CODE (type))
4147 {
4148 case TYPE_CODE_INT:
4149 case TYPE_CODE_RANGE:
4150 case TYPE_CODE_ENUM:
4151 case TYPE_CODE_BOOL:
4152 return 1;
4153 default:
4154 return 0;
4155 }
4156 }
4157 }
4158
4159 /* Returns non-zero if OP with operands in the vector ARGS could be
4160 a user-defined function. Errs on the side of pre-defined operators
4161 (i.e., result 0). */
4162
4163 static int
4164 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4165 {
4166 struct type *type0 =
4167 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4168 struct type *type1 =
4169 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4170
4171 if (type0 == NULL)
4172 return 0;
4173
4174 switch (op)
4175 {
4176 default:
4177 return 0;
4178
4179 case BINOP_ADD:
4180 case BINOP_SUB:
4181 case BINOP_MUL:
4182 case BINOP_DIV:
4183 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4184
4185 case BINOP_REM:
4186 case BINOP_MOD:
4187 case BINOP_BITWISE_AND:
4188 case BINOP_BITWISE_IOR:
4189 case BINOP_BITWISE_XOR:
4190 return (!(integer_type_p (type0) && integer_type_p (type1)));
4191
4192 case BINOP_EQUAL:
4193 case BINOP_NOTEQUAL:
4194 case BINOP_LESS:
4195 case BINOP_GTR:
4196 case BINOP_LEQ:
4197 case BINOP_GEQ:
4198 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4199
4200 case BINOP_CONCAT:
4201 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4202
4203 case BINOP_EXP:
4204 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4205
4206 case UNOP_NEG:
4207 case UNOP_PLUS:
4208 case UNOP_LOGICAL_NOT:
4209 case UNOP_ABS:
4210 return (!numeric_type_p (type0));
4211
4212 }
4213 }
4214 \f
4215 /* Renaming */
4216
4217 /* NOTES:
4218
4219 1. In the following, we assume that a renaming type's name may
4220 have an ___XD suffix. It would be nice if this went away at some
4221 point.
4222 2. We handle both the (old) purely type-based representation of
4223 renamings and the (new) variable-based encoding. At some point,
4224 it is devoutly to be hoped that the former goes away
4225 (FIXME: hilfinger-2007-07-09).
4226 3. Subprogram renamings are not implemented, although the XRS
4227 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4228
4229 /* If SYM encodes a renaming,
4230
4231 <renaming> renames <renamed entity>,
4232
4233 sets *LEN to the length of the renamed entity's name,
4234 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4235 the string describing the subcomponent selected from the renamed
4236 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4237 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4238 are undefined). Otherwise, returns a value indicating the category
4239 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4240 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4241 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4242 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4243 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4244 may be NULL, in which case they are not assigned.
4245
4246 [Currently, however, GCC does not generate subprogram renamings.] */
4247
4248 enum ada_renaming_category
4249 ada_parse_renaming (struct symbol *sym,
4250 const char **renamed_entity, int *len,
4251 const char **renaming_expr)
4252 {
4253 enum ada_renaming_category kind;
4254 const char *info;
4255 const char *suffix;
4256
4257 if (sym == NULL)
4258 return ADA_NOT_RENAMING;
4259 switch (SYMBOL_CLASS (sym))
4260 {
4261 default:
4262 return ADA_NOT_RENAMING;
4263 case LOC_LOCAL:
4264 case LOC_STATIC:
4265 case LOC_COMPUTED:
4266 case LOC_OPTIMIZED_OUT:
4267 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4268 if (info == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (info[5])
4271 {
4272 case '_':
4273 kind = ADA_OBJECT_RENAMING;
4274 info += 6;
4275 break;
4276 case 'E':
4277 kind = ADA_EXCEPTION_RENAMING;
4278 info += 7;
4279 break;
4280 case 'P':
4281 kind = ADA_PACKAGE_RENAMING;
4282 info += 7;
4283 break;
4284 case 'S':
4285 kind = ADA_SUBPROGRAM_RENAMING;
4286 info += 7;
4287 break;
4288 default:
4289 return ADA_NOT_RENAMING;
4290 }
4291 }
4292
4293 if (renamed_entity != NULL)
4294 *renamed_entity = info;
4295 suffix = strstr (info, "___XE");
4296 if (suffix == NULL || suffix == info)
4297 return ADA_NOT_RENAMING;
4298 if (len != NULL)
4299 *len = strlen (info) - strlen (suffix);
4300 suffix += 5;
4301 if (renaming_expr != NULL)
4302 *renaming_expr = suffix;
4303 return kind;
4304 }
4305
4306 /* Compute the value of the given RENAMING_SYM, which is expected to
4307 be a symbol encoding a renaming expression. BLOCK is the block
4308 used to evaluate the renaming. */
4309
4310 static struct value *
4311 ada_read_renaming_var_value (struct symbol *renaming_sym,
4312 const struct block *block)
4313 {
4314 const char *sym_name;
4315
4316 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4317 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4318 return evaluate_expression (expr.get ());
4319 }
4320 \f
4321
4322 /* Evaluation: Function Calls */
4323
4324 /* Return an lvalue containing the value VAL. This is the identity on
4325 lvalues, and otherwise has the side-effect of allocating memory
4326 in the inferior where a copy of the value contents is copied. */
4327
4328 static struct value *
4329 ensure_lval (struct value *val)
4330 {
4331 if (VALUE_LVAL (val) == not_lval
4332 || VALUE_LVAL (val) == lval_internalvar)
4333 {
4334 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4335 const CORE_ADDR addr =
4336 value_as_long (value_allocate_space_in_inferior (len));
4337
4338 VALUE_LVAL (val) = lval_memory;
4339 set_value_address (val, addr);
4340 write_memory (addr, value_contents (val), len);
4341 }
4342
4343 return val;
4344 }
4345
4346 /* Given ARG, a value of type (pointer or reference to a)*
4347 structure/union, extract the component named NAME from the ultimate
4348 target structure/union and return it as a value with its
4349 appropriate type.
4350
4351 The routine searches for NAME among all members of the structure itself
4352 and (recursively) among all members of any wrapper members
4353 (e.g., '_parent').
4354
4355 If NO_ERR, then simply return NULL in case of error, rather than
4356 calling error. */
4357
4358 static struct value *
4359 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4360 {
4361 struct type *t, *t1;
4362 struct value *v;
4363 int check_tag;
4364
4365 v = NULL;
4366 t1 = t = ada_check_typedef (value_type (arg));
4367 if (TYPE_CODE (t) == TYPE_CODE_REF)
4368 {
4369 t1 = TYPE_TARGET_TYPE (t);
4370 if (t1 == NULL)
4371 goto BadValue;
4372 t1 = ada_check_typedef (t1);
4373 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4374 {
4375 arg = coerce_ref (arg);
4376 t = t1;
4377 }
4378 }
4379
4380 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4381 {
4382 t1 = TYPE_TARGET_TYPE (t);
4383 if (t1 == NULL)
4384 goto BadValue;
4385 t1 = ada_check_typedef (t1);
4386 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4387 {
4388 arg = value_ind (arg);
4389 t = t1;
4390 }
4391 else
4392 break;
4393 }
4394
4395 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4396 goto BadValue;
4397
4398 if (t1 == t)
4399 v = ada_search_struct_field (name, arg, 0, t);
4400 else
4401 {
4402 int bit_offset, bit_size, byte_offset;
4403 struct type *field_type;
4404 CORE_ADDR address;
4405
4406 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4407 address = value_address (ada_value_ind (arg));
4408 else
4409 address = value_address (ada_coerce_ref (arg));
4410
4411 /* Check to see if this is a tagged type. We also need to handle
4412 the case where the type is a reference to a tagged type, but
4413 we have to be careful to exclude pointers to tagged types.
4414 The latter should be shown as usual (as a pointer), whereas
4415 a reference should mostly be transparent to the user. */
4416
4417 if (ada_is_tagged_type (t1, 0)
4418 || (TYPE_CODE (t1) == TYPE_CODE_REF
4419 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4420 {
4421 /* We first try to find the searched field in the current type.
4422 If not found then let's look in the fixed type. */
4423
4424 if (!find_struct_field (name, t1, 0,
4425 &field_type, &byte_offset, &bit_offset,
4426 &bit_size, NULL))
4427 check_tag = 1;
4428 else
4429 check_tag = 0;
4430 }
4431 else
4432 check_tag = 0;
4433
4434 /* Convert to fixed type in all cases, so that we have proper
4435 offsets to each field in unconstrained record types. */
4436 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4437 address, NULL, check_tag);
4438
4439 if (find_struct_field (name, t1, 0,
4440 &field_type, &byte_offset, &bit_offset,
4441 &bit_size, NULL))
4442 {
4443 if (bit_size != 0)
4444 {
4445 if (TYPE_CODE (t) == TYPE_CODE_REF)
4446 arg = ada_coerce_ref (arg);
4447 else
4448 arg = ada_value_ind (arg);
4449 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4450 bit_offset, bit_size,
4451 field_type);
4452 }
4453 else
4454 v = value_at_lazy (field_type, address + byte_offset);
4455 }
4456 }
4457
4458 if (v != NULL || no_err)
4459 return v;
4460 else
4461 error (_("There is no member named %s."), name);
4462
4463 BadValue:
4464 if (no_err)
4465 return NULL;
4466 else
4467 error (_("Attempt to extract a component of "
4468 "a value that is not a record."));
4469 }
4470
4471 /* Return the value ACTUAL, converted to be an appropriate value for a
4472 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4473 allocating any necessary descriptors (fat pointers), or copies of
4474 values not residing in memory, updating it as needed. */
4475
4476 struct value *
4477 ada_convert_actual (struct value *actual, struct type *formal_type0)
4478 {
4479 struct type *actual_type = ada_check_typedef (value_type (actual));
4480 struct type *formal_type = ada_check_typedef (formal_type0);
4481 struct type *formal_target =
4482 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4483 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4484 struct type *actual_target =
4485 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4486 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4487
4488 if (ada_is_array_descriptor_type (formal_target)
4489 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4490 return make_array_descriptor (formal_type, actual);
4491 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4492 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4493 {
4494 struct value *result;
4495
4496 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4497 && ada_is_array_descriptor_type (actual_target))
4498 result = desc_data (actual);
4499 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4500 {
4501 if (VALUE_LVAL (actual) != lval_memory)
4502 {
4503 struct value *val;
4504
4505 actual_type = ada_check_typedef (value_type (actual));
4506 val = allocate_value (actual_type);
4507 memcpy ((char *) value_contents_raw (val),
4508 (char *) value_contents (actual),
4509 TYPE_LENGTH (actual_type));
4510 actual = ensure_lval (val);
4511 }
4512 result = value_addr (actual);
4513 }
4514 else
4515 return actual;
4516 return value_cast_pointers (formal_type, result, 0);
4517 }
4518 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4519 return ada_value_ind (actual);
4520 else if (ada_is_aligner_type (formal_type))
4521 {
4522 /* We need to turn this parameter into an aligner type
4523 as well. */
4524 struct value *aligner = allocate_value (formal_type);
4525 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4526
4527 value_assign_to_component (aligner, component, actual);
4528 return aligner;
4529 }
4530
4531 return actual;
4532 }
4533
4534 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4535 type TYPE. This is usually an inefficient no-op except on some targets
4536 (such as AVR) where the representation of a pointer and an address
4537 differs. */
4538
4539 static CORE_ADDR
4540 value_pointer (struct value *value, struct type *type)
4541 {
4542 struct gdbarch *gdbarch = get_type_arch (type);
4543 unsigned len = TYPE_LENGTH (type);
4544 gdb_byte *buf = (gdb_byte *) alloca (len);
4545 CORE_ADDR addr;
4546
4547 addr = value_address (value);
4548 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4549 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4550 return addr;
4551 }
4552
4553
4554 /* Push a descriptor of type TYPE for array value ARR on the stack at
4555 *SP, updating *SP to reflect the new descriptor. Return either
4556 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4557 to-descriptor type rather than a descriptor type), a struct value *
4558 representing a pointer to this descriptor. */
4559
4560 static struct value *
4561 make_array_descriptor (struct type *type, struct value *arr)
4562 {
4563 struct type *bounds_type = desc_bounds_type (type);
4564 struct type *desc_type = desc_base_type (type);
4565 struct value *descriptor = allocate_value (desc_type);
4566 struct value *bounds = allocate_value (bounds_type);
4567 int i;
4568
4569 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4570 i > 0; i -= 1)
4571 {
4572 modify_field (value_type (bounds), value_contents_writeable (bounds),
4573 ada_array_bound (arr, i, 0),
4574 desc_bound_bitpos (bounds_type, i, 0),
4575 desc_bound_bitsize (bounds_type, i, 0));
4576 modify_field (value_type (bounds), value_contents_writeable (bounds),
4577 ada_array_bound (arr, i, 1),
4578 desc_bound_bitpos (bounds_type, i, 1),
4579 desc_bound_bitsize (bounds_type, i, 1));
4580 }
4581
4582 bounds = ensure_lval (bounds);
4583
4584 modify_field (value_type (descriptor),
4585 value_contents_writeable (descriptor),
4586 value_pointer (ensure_lval (arr),
4587 TYPE_FIELD_TYPE (desc_type, 0)),
4588 fat_pntr_data_bitpos (desc_type),
4589 fat_pntr_data_bitsize (desc_type));
4590
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (bounds,
4594 TYPE_FIELD_TYPE (desc_type, 1)),
4595 fat_pntr_bounds_bitpos (desc_type),
4596 fat_pntr_bounds_bitsize (desc_type));
4597
4598 descriptor = ensure_lval (descriptor);
4599
4600 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4601 return value_addr (descriptor);
4602 else
4603 return descriptor;
4604 }
4605 \f
4606 /* Symbol Cache Module */
4607
4608 /* Performance measurements made as of 2010-01-15 indicate that
4609 this cache does bring some noticeable improvements. Depending
4610 on the type of entity being printed, the cache can make it as much
4611 as an order of magnitude faster than without it.
4612
4613 The descriptive type DWARF extension has significantly reduced
4614 the need for this cache, at least when DWARF is being used. However,
4615 even in this case, some expensive name-based symbol searches are still
4616 sometimes necessary - to find an XVZ variable, mostly. */
4617
4618 /* Initialize the contents of SYM_CACHE. */
4619
4620 static void
4621 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4622 {
4623 obstack_init (&sym_cache->cache_space);
4624 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4625 }
4626
4627 /* Free the memory used by SYM_CACHE. */
4628
4629 static void
4630 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4631 {
4632 obstack_free (&sym_cache->cache_space, NULL);
4633 xfree (sym_cache);
4634 }
4635
4636 /* Return the symbol cache associated to the given program space PSPACE.
4637 If not allocated for this PSPACE yet, allocate and initialize one. */
4638
4639 static struct ada_symbol_cache *
4640 ada_get_symbol_cache (struct program_space *pspace)
4641 {
4642 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4643
4644 if (pspace_data->sym_cache == NULL)
4645 {
4646 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4647 ada_init_symbol_cache (pspace_data->sym_cache);
4648 }
4649
4650 return pspace_data->sym_cache;
4651 }
4652
4653 /* Clear all entries from the symbol cache. */
4654
4655 static void
4656 ada_clear_symbol_cache (void)
4657 {
4658 struct ada_symbol_cache *sym_cache
4659 = ada_get_symbol_cache (current_program_space);
4660
4661 obstack_free (&sym_cache->cache_space, NULL);
4662 ada_init_symbol_cache (sym_cache);
4663 }
4664
4665 /* Search our cache for an entry matching NAME and DOMAIN.
4666 Return it if found, or NULL otherwise. */
4667
4668 static struct cache_entry **
4669 find_entry (const char *name, domain_enum domain)
4670 {
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673 int h = msymbol_hash (name) % HASH_SIZE;
4674 struct cache_entry **e;
4675
4676 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4677 {
4678 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4679 return e;
4680 }
4681 return NULL;
4682 }
4683
4684 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4685 Return 1 if found, 0 otherwise.
4686
4687 If an entry was found and SYM is not NULL, set *SYM to the entry's
4688 SYM. Same principle for BLOCK if not NULL. */
4689
4690 static int
4691 lookup_cached_symbol (const char *name, domain_enum domain,
4692 struct symbol **sym, const struct block **block)
4693 {
4694 struct cache_entry **e = find_entry (name, domain);
4695
4696 if (e == NULL)
4697 return 0;
4698 if (sym != NULL)
4699 *sym = (*e)->sym;
4700 if (block != NULL)
4701 *block = (*e)->block;
4702 return 1;
4703 }
4704
4705 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4706 in domain DOMAIN, save this result in our symbol cache. */
4707
4708 static void
4709 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4710 const struct block *block)
4711 {
4712 struct ada_symbol_cache *sym_cache
4713 = ada_get_symbol_cache (current_program_space);
4714 int h;
4715 char *copy;
4716 struct cache_entry *e;
4717
4718 /* Symbols for builtin types don't have a block.
4719 For now don't cache such symbols. */
4720 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4721 return;
4722
4723 /* If the symbol is a local symbol, then do not cache it, as a search
4724 for that symbol depends on the context. To determine whether
4725 the symbol is local or not, we check the block where we found it
4726 against the global and static blocks of its associated symtab. */
4727 if (sym
4728 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4729 GLOBAL_BLOCK) != block
4730 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4731 STATIC_BLOCK) != block)
4732 return;
4733
4734 h = msymbol_hash (name) % HASH_SIZE;
4735 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4736 e->next = sym_cache->root[h];
4737 sym_cache->root[h] = e;
4738 e->name = copy
4739 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4740 strcpy (copy, name);
4741 e->sym = sym;
4742 e->domain = domain;
4743 e->block = block;
4744 }
4745 \f
4746 /* Symbol Lookup */
4747
4748 /* Return the symbol name match type that should be used used when
4749 searching for all symbols matching LOOKUP_NAME.
4750
4751 LOOKUP_NAME is expected to be a symbol name after transformation
4752 for Ada lookups. */
4753
4754 static symbol_name_match_type
4755 name_match_type_from_name (const char *lookup_name)
4756 {
4757 return (strstr (lookup_name, "__") == NULL
4758 ? symbol_name_match_type::WILD
4759 : symbol_name_match_type::FULL);
4760 }
4761
4762 /* Return the result of a standard (literal, C-like) lookup of NAME in
4763 given DOMAIN, visible from lexical block BLOCK. */
4764
4765 static struct symbol *
4766 standard_lookup (const char *name, const struct block *block,
4767 domain_enum domain)
4768 {
4769 /* Initialize it just to avoid a GCC false warning. */
4770 struct block_symbol sym = {};
4771
4772 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4773 return sym.symbol;
4774 ada_lookup_encoded_symbol (name, block, domain, &sym);
4775 cache_symbol (name, domain, sym.symbol, sym.block);
4776 return sym.symbol;
4777 }
4778
4779
4780 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4781 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4782 since they contend in overloading in the same way. */
4783 static int
4784 is_nonfunction (struct block_symbol syms[], int n)
4785 {
4786 int i;
4787
4788 for (i = 0; i < n; i += 1)
4789 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4790 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4791 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4792 return 1;
4793
4794 return 0;
4795 }
4796
4797 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4798 struct types. Otherwise, they may not. */
4799
4800 static int
4801 equiv_types (struct type *type0, struct type *type1)
4802 {
4803 if (type0 == type1)
4804 return 1;
4805 if (type0 == NULL || type1 == NULL
4806 || TYPE_CODE (type0) != TYPE_CODE (type1))
4807 return 0;
4808 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4809 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4810 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4811 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4812 return 1;
4813
4814 return 0;
4815 }
4816
4817 /* True iff SYM0 represents the same entity as SYM1, or one that is
4818 no more defined than that of SYM1. */
4819
4820 static int
4821 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4822 {
4823 if (sym0 == sym1)
4824 return 1;
4825 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4826 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4827 return 0;
4828
4829 switch (SYMBOL_CLASS (sym0))
4830 {
4831 case LOC_UNDEF:
4832 return 1;
4833 case LOC_TYPEDEF:
4834 {
4835 struct type *type0 = SYMBOL_TYPE (sym0);
4836 struct type *type1 = SYMBOL_TYPE (sym1);
4837 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4838 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4839 int len0 = strlen (name0);
4840
4841 return
4842 TYPE_CODE (type0) == TYPE_CODE (type1)
4843 && (equiv_types (type0, type1)
4844 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4845 && startswith (name1 + len0, "___XV")));
4846 }
4847 case LOC_CONST:
4848 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4849 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4850
4851 case LOC_STATIC:
4852 {
4853 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4854 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4855 return (strcmp (name0, name1) == 0
4856 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4857 }
4858
4859 default:
4860 return 0;
4861 }
4862 }
4863
4864 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4865 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4866
4867 static void
4868 add_defn_to_vec (struct obstack *obstackp,
4869 struct symbol *sym,
4870 const struct block *block)
4871 {
4872 int i;
4873 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4874
4875 /* Do not try to complete stub types, as the debugger is probably
4876 already scanning all symbols matching a certain name at the
4877 time when this function is called. Trying to replace the stub
4878 type by its associated full type will cause us to restart a scan
4879 which may lead to an infinite recursion. Instead, the client
4880 collecting the matching symbols will end up collecting several
4881 matches, with at least one of them complete. It can then filter
4882 out the stub ones if needed. */
4883
4884 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4885 {
4886 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4887 return;
4888 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4889 {
4890 prevDefns[i].symbol = sym;
4891 prevDefns[i].block = block;
4892 return;
4893 }
4894 }
4895
4896 {
4897 struct block_symbol info;
4898
4899 info.symbol = sym;
4900 info.block = block;
4901 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4902 }
4903 }
4904
4905 /* Number of block_symbol structures currently collected in current vector in
4906 OBSTACKP. */
4907
4908 static int
4909 num_defns_collected (struct obstack *obstackp)
4910 {
4911 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4912 }
4913
4914 /* Vector of block_symbol structures currently collected in current vector in
4915 OBSTACKP. If FINISH, close off the vector and return its final address. */
4916
4917 static struct block_symbol *
4918 defns_collected (struct obstack *obstackp, int finish)
4919 {
4920 if (finish)
4921 return (struct block_symbol *) obstack_finish (obstackp);
4922 else
4923 return (struct block_symbol *) obstack_base (obstackp);
4924 }
4925
4926 /* Return a bound minimal symbol matching NAME according to Ada
4927 decoding rules. Returns an invalid symbol if there is no such
4928 minimal symbol. Names prefixed with "standard__" are handled
4929 specially: "standard__" is first stripped off, and only static and
4930 global symbols are searched. */
4931
4932 struct bound_minimal_symbol
4933 ada_lookup_simple_minsym (const char *name)
4934 {
4935 struct bound_minimal_symbol result;
4936
4937 memset (&result, 0, sizeof (result));
4938
4939 symbol_name_match_type match_type = name_match_type_from_name (name);
4940 lookup_name_info lookup_name (name, match_type);
4941
4942 symbol_name_matcher_ftype *match_name
4943 = ada_get_symbol_name_matcher (lookup_name);
4944
4945 for (objfile *objfile : current_program_space->objfiles ())
4946 {
4947 for (minimal_symbol *msymbol : objfile->msymbols ())
4948 {
4949 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4950 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4951 {
4952 result.minsym = msymbol;
4953 result.objfile = objfile;
4954 break;
4955 }
4956 }
4957 }
4958
4959 return result;
4960 }
4961
4962 /* For all subprograms that statically enclose the subprogram of the
4963 selected frame, add symbols matching identifier NAME in DOMAIN
4964 and their blocks to the list of data in OBSTACKP, as for
4965 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4966 with a wildcard prefix. */
4967
4968 static void
4969 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4970 const lookup_name_info &lookup_name,
4971 domain_enum domain)
4972 {
4973 }
4974
4975 /* True if TYPE is definitely an artificial type supplied to a symbol
4976 for which no debugging information was given in the symbol file. */
4977
4978 static int
4979 is_nondebugging_type (struct type *type)
4980 {
4981 const char *name = ada_type_name (type);
4982
4983 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4984 }
4985
4986 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4987 that are deemed "identical" for practical purposes.
4988
4989 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4990 types and that their number of enumerals is identical (in other
4991 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4992
4993 static int
4994 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4995 {
4996 int i;
4997
4998 /* The heuristic we use here is fairly conservative. We consider
4999 that 2 enumerate types are identical if they have the same
5000 number of enumerals and that all enumerals have the same
5001 underlying value and name. */
5002
5003 /* All enums in the type should have an identical underlying value. */
5004 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5005 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5006 return 0;
5007
5008 /* All enumerals should also have the same name (modulo any numerical
5009 suffix). */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 {
5012 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5013 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5014 int len_1 = strlen (name_1);
5015 int len_2 = strlen (name_2);
5016
5017 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5018 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5019 if (len_1 != len_2
5020 || strncmp (TYPE_FIELD_NAME (type1, i),
5021 TYPE_FIELD_NAME (type2, i),
5022 len_1) != 0)
5023 return 0;
5024 }
5025
5026 return 1;
5027 }
5028
5029 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5030 that are deemed "identical" for practical purposes. Sometimes,
5031 enumerals are not strictly identical, but their types are so similar
5032 that they can be considered identical.
5033
5034 For instance, consider the following code:
5035
5036 type Color is (Black, Red, Green, Blue, White);
5037 type RGB_Color is new Color range Red .. Blue;
5038
5039 Type RGB_Color is a subrange of an implicit type which is a copy
5040 of type Color. If we call that implicit type RGB_ColorB ("B" is
5041 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5042 As a result, when an expression references any of the enumeral
5043 by name (Eg. "print green"), the expression is technically
5044 ambiguous and the user should be asked to disambiguate. But
5045 doing so would only hinder the user, since it wouldn't matter
5046 what choice he makes, the outcome would always be the same.
5047 So, for practical purposes, we consider them as the same. */
5048
5049 static int
5050 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5051 {
5052 int i;
5053
5054 /* Before performing a thorough comparison check of each type,
5055 we perform a series of inexpensive checks. We expect that these
5056 checks will quickly fail in the vast majority of cases, and thus
5057 help prevent the unnecessary use of a more expensive comparison.
5058 Said comparison also expects us to make some of these checks
5059 (see ada_identical_enum_types_p). */
5060
5061 /* Quick check: All symbols should have an enum type. */
5062 for (i = 0; i < syms.size (); i++)
5063 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5064 return 0;
5065
5066 /* Quick check: They should all have the same value. */
5067 for (i = 1; i < syms.size (); i++)
5068 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5069 return 0;
5070
5071 /* Quick check: They should all have the same number of enumerals. */
5072 for (i = 1; i < syms.size (); i++)
5073 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5074 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5075 return 0;
5076
5077 /* All the sanity checks passed, so we might have a set of
5078 identical enumeration types. Perform a more complete
5079 comparison of the type of each symbol. */
5080 for (i = 1; i < syms.size (); i++)
5081 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5082 SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 return 1;
5086 }
5087
5088 /* Remove any non-debugging symbols in SYMS that definitely
5089 duplicate other symbols in the list (The only case I know of where
5090 this happens is when object files containing stabs-in-ecoff are
5091 linked with files containing ordinary ecoff debugging symbols (or no
5092 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5093 Returns the number of items in the modified list. */
5094
5095 static int
5096 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5097 {
5098 int i, j;
5099
5100 /* We should never be called with less than 2 symbols, as there
5101 cannot be any extra symbol in that case. But it's easy to
5102 handle, since we have nothing to do in that case. */
5103 if (syms->size () < 2)
5104 return syms->size ();
5105
5106 i = 0;
5107 while (i < syms->size ())
5108 {
5109 int remove_p = 0;
5110
5111 /* If two symbols have the same name and one of them is a stub type,
5112 the get rid of the stub. */
5113
5114 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5115 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5116 {
5117 for (j = 0; j < syms->size (); j++)
5118 {
5119 if (j != i
5120 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5121 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5122 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5123 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5124 remove_p = 1;
5125 }
5126 }
5127
5128 /* Two symbols with the same name, same class and same address
5129 should be identical. */
5130
5131 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5132 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5133 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5134 {
5135 for (j = 0; j < syms->size (); j += 1)
5136 {
5137 if (i != j
5138 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5139 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5140 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5141 && SYMBOL_CLASS ((*syms)[i].symbol)
5142 == SYMBOL_CLASS ((*syms)[j].symbol)
5143 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5144 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5145 remove_p = 1;
5146 }
5147 }
5148
5149 if (remove_p)
5150 syms->erase (syms->begin () + i);
5151
5152 i += 1;
5153 }
5154
5155 /* If all the remaining symbols are identical enumerals, then
5156 just keep the first one and discard the rest.
5157
5158 Unlike what we did previously, we do not discard any entry
5159 unless they are ALL identical. This is because the symbol
5160 comparison is not a strict comparison, but rather a practical
5161 comparison. If all symbols are considered identical, then
5162 we can just go ahead and use the first one and discard the rest.
5163 But if we cannot reduce the list to a single element, we have
5164 to ask the user to disambiguate anyways. And if we have to
5165 present a multiple-choice menu, it's less confusing if the list
5166 isn't missing some choices that were identical and yet distinct. */
5167 if (symbols_are_identical_enums (*syms))
5168 syms->resize (1);
5169
5170 return syms->size ();
5171 }
5172
5173 /* Given a type that corresponds to a renaming entity, use the type name
5174 to extract the scope (package name or function name, fully qualified,
5175 and following the GNAT encoding convention) where this renaming has been
5176 defined. */
5177
5178 static std::string
5179 xget_renaming_scope (struct type *renaming_type)
5180 {
5181 /* The renaming types adhere to the following convention:
5182 <scope>__<rename>___<XR extension>.
5183 So, to extract the scope, we search for the "___XR" extension,
5184 and then backtrack until we find the first "__". */
5185
5186 const char *name = TYPE_NAME (renaming_type);
5187 const char *suffix = strstr (name, "___XR");
5188 const char *last;
5189
5190 /* Now, backtrack a bit until we find the first "__". Start looking
5191 at suffix - 3, as the <rename> part is at least one character long. */
5192
5193 for (last = suffix - 3; last > name; last--)
5194 if (last[0] == '_' && last[1] == '_')
5195 break;
5196
5197 /* Make a copy of scope and return it. */
5198 return std::string (name, last);
5199 }
5200
5201 /* Return nonzero if NAME corresponds to a package name. */
5202
5203 static int
5204 is_package_name (const char *name)
5205 {
5206 /* Here, We take advantage of the fact that no symbols are generated
5207 for packages, while symbols are generated for each function.
5208 So the condition for NAME represent a package becomes equivalent
5209 to NAME not existing in our list of symbols. There is only one
5210 small complication with library-level functions (see below). */
5211
5212 /* If it is a function that has not been defined at library level,
5213 then we should be able to look it up in the symbols. */
5214 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5215 return 0;
5216
5217 /* Library-level function names start with "_ada_". See if function
5218 "_ada_" followed by NAME can be found. */
5219
5220 /* Do a quick check that NAME does not contain "__", since library-level
5221 functions names cannot contain "__" in them. */
5222 if (strstr (name, "__") != NULL)
5223 return 0;
5224
5225 std::string fun_name = string_printf ("_ada_%s", name);
5226
5227 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5228 }
5229
5230 /* Return nonzero if SYM corresponds to a renaming entity that is
5231 not visible from FUNCTION_NAME. */
5232
5233 static int
5234 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5235 {
5236 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5237 return 0;
5238
5239 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5240
5241 /* If the rename has been defined in a package, then it is visible. */
5242 if (is_package_name (scope.c_str ()))
5243 return 0;
5244
5245 /* Check that the rename is in the current function scope by checking
5246 that its name starts with SCOPE. */
5247
5248 /* If the function name starts with "_ada_", it means that it is
5249 a library-level function. Strip this prefix before doing the
5250 comparison, as the encoding for the renaming does not contain
5251 this prefix. */
5252 if (startswith (function_name, "_ada_"))
5253 function_name += 5;
5254
5255 return !startswith (function_name, scope.c_str ());
5256 }
5257
5258 /* Remove entries from SYMS that corresponds to a renaming entity that
5259 is not visible from the function associated with CURRENT_BLOCK or
5260 that is superfluous due to the presence of more specific renaming
5261 information. Places surviving symbols in the initial entries of
5262 SYMS and returns the number of surviving symbols.
5263
5264 Rationale:
5265 First, in cases where an object renaming is implemented as a
5266 reference variable, GNAT may produce both the actual reference
5267 variable and the renaming encoding. In this case, we discard the
5268 latter.
5269
5270 Second, GNAT emits a type following a specified encoding for each renaming
5271 entity. Unfortunately, STABS currently does not support the definition
5272 of types that are local to a given lexical block, so all renamings types
5273 are emitted at library level. As a consequence, if an application
5274 contains two renaming entities using the same name, and a user tries to
5275 print the value of one of these entities, the result of the ada symbol
5276 lookup will also contain the wrong renaming type.
5277
5278 This function partially covers for this limitation by attempting to
5279 remove from the SYMS list renaming symbols that should be visible
5280 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5281 method with the current information available. The implementation
5282 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5283
5284 - When the user tries to print a rename in a function while there
5285 is another rename entity defined in a package: Normally, the
5286 rename in the function has precedence over the rename in the
5287 package, so the latter should be removed from the list. This is
5288 currently not the case.
5289
5290 - This function will incorrectly remove valid renames if
5291 the CURRENT_BLOCK corresponds to a function which symbol name
5292 has been changed by an "Export" pragma. As a consequence,
5293 the user will be unable to print such rename entities. */
5294
5295 static int
5296 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5297 const struct block *current_block)
5298 {
5299 struct symbol *current_function;
5300 const char *current_function_name;
5301 int i;
5302 int is_new_style_renaming;
5303
5304 /* If there is both a renaming foo___XR... encoded as a variable and
5305 a simple variable foo in the same block, discard the latter.
5306 First, zero out such symbols, then compress. */
5307 is_new_style_renaming = 0;
5308 for (i = 0; i < syms->size (); i += 1)
5309 {
5310 struct symbol *sym = (*syms)[i].symbol;
5311 const struct block *block = (*syms)[i].block;
5312 const char *name;
5313 const char *suffix;
5314
5315 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5316 continue;
5317 name = SYMBOL_LINKAGE_NAME (sym);
5318 suffix = strstr (name, "___XR");
5319
5320 if (suffix != NULL)
5321 {
5322 int name_len = suffix - name;
5323 int j;
5324
5325 is_new_style_renaming = 1;
5326 for (j = 0; j < syms->size (); j += 1)
5327 if (i != j && (*syms)[j].symbol != NULL
5328 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5329 name_len) == 0
5330 && block == (*syms)[j].block)
5331 (*syms)[j].symbol = NULL;
5332 }
5333 }
5334 if (is_new_style_renaming)
5335 {
5336 int j, k;
5337
5338 for (j = k = 0; j < syms->size (); j += 1)
5339 if ((*syms)[j].symbol != NULL)
5340 {
5341 (*syms)[k] = (*syms)[j];
5342 k += 1;
5343 }
5344 return k;
5345 }
5346
5347 /* Extract the function name associated to CURRENT_BLOCK.
5348 Abort if unable to do so. */
5349
5350 if (current_block == NULL)
5351 return syms->size ();
5352
5353 current_function = block_linkage_function (current_block);
5354 if (current_function == NULL)
5355 return syms->size ();
5356
5357 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5358 if (current_function_name == NULL)
5359 return syms->size ();
5360
5361 /* Check each of the symbols, and remove it from the list if it is
5362 a type corresponding to a renaming that is out of the scope of
5363 the current block. */
5364
5365 i = 0;
5366 while (i < syms->size ())
5367 {
5368 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5369 == ADA_OBJECT_RENAMING
5370 && old_renaming_is_invisible ((*syms)[i].symbol,
5371 current_function_name))
5372 syms->erase (syms->begin () + i);
5373 else
5374 i += 1;
5375 }
5376
5377 return syms->size ();
5378 }
5379
5380 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5381 whose name and domain match NAME and DOMAIN respectively.
5382 If no match was found, then extend the search to "enclosing"
5383 routines (in other words, if we're inside a nested function,
5384 search the symbols defined inside the enclosing functions).
5385 If WILD_MATCH_P is nonzero, perform the naming matching in
5386 "wild" mode (see function "wild_match" for more info).
5387
5388 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5389
5390 static void
5391 ada_add_local_symbols (struct obstack *obstackp,
5392 const lookup_name_info &lookup_name,
5393 const struct block *block, domain_enum domain)
5394 {
5395 int block_depth = 0;
5396
5397 while (block != NULL)
5398 {
5399 block_depth += 1;
5400 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5401
5402 /* If we found a non-function match, assume that's the one. */
5403 if (is_nonfunction (defns_collected (obstackp, 0),
5404 num_defns_collected (obstackp)))
5405 return;
5406
5407 block = BLOCK_SUPERBLOCK (block);
5408 }
5409
5410 /* If no luck so far, try to find NAME as a local symbol in some lexically
5411 enclosing subprogram. */
5412 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5413 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5414 }
5415
5416 /* An object of this type is used as the user_data argument when
5417 calling the map_matching_symbols method. */
5418
5419 struct match_data
5420 {
5421 struct objfile *objfile;
5422 struct obstack *obstackp;
5423 struct symbol *arg_sym;
5424 int found_sym;
5425 };
5426
5427 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5428 to a list of symbols. DATA is a pointer to a struct match_data *
5429 containing the obstack that collects the symbol list, the file that SYM
5430 must come from, a flag indicating whether a non-argument symbol has
5431 been found in the current block, and the last argument symbol
5432 passed in SYM within the current block (if any). When SYM is null,
5433 marking the end of a block, the argument symbol is added if no
5434 other has been found. */
5435
5436 static bool
5437 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5438 struct match_data *data)
5439 {
5440 const struct block *block = bsym->block;
5441 struct symbol *sym = bsym->symbol;
5442
5443 if (sym == NULL)
5444 {
5445 if (!data->found_sym && data->arg_sym != NULL)
5446 add_defn_to_vec (data->obstackp,
5447 fixup_symbol_section (data->arg_sym, data->objfile),
5448 block);
5449 data->found_sym = 0;
5450 data->arg_sym = NULL;
5451 }
5452 else
5453 {
5454 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5455 return true;
5456 else if (SYMBOL_IS_ARGUMENT (sym))
5457 data->arg_sym = sym;
5458 else
5459 {
5460 data->found_sym = 1;
5461 add_defn_to_vec (data->obstackp,
5462 fixup_symbol_section (sym, data->objfile),
5463 block);
5464 }
5465 }
5466 return true;
5467 }
5468
5469 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5470 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5471 symbols to OBSTACKP. Return whether we found such symbols. */
5472
5473 static int
5474 ada_add_block_renamings (struct obstack *obstackp,
5475 const struct block *block,
5476 const lookup_name_info &lookup_name,
5477 domain_enum domain)
5478 {
5479 struct using_direct *renaming;
5480 int defns_mark = num_defns_collected (obstackp);
5481
5482 symbol_name_matcher_ftype *name_match
5483 = ada_get_symbol_name_matcher (lookup_name);
5484
5485 for (renaming = block_using (block);
5486 renaming != NULL;
5487 renaming = renaming->next)
5488 {
5489 const char *r_name;
5490
5491 /* Avoid infinite recursions: skip this renaming if we are actually
5492 already traversing it.
5493
5494 Currently, symbol lookup in Ada don't use the namespace machinery from
5495 C++/Fortran support: skip namespace imports that use them. */
5496 if (renaming->searched
5497 || (renaming->import_src != NULL
5498 && renaming->import_src[0] != '\0')
5499 || (renaming->import_dest != NULL
5500 && renaming->import_dest[0] != '\0'))
5501 continue;
5502 renaming->searched = 1;
5503
5504 /* TODO: here, we perform another name-based symbol lookup, which can
5505 pull its own multiple overloads. In theory, we should be able to do
5506 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5507 not a simple name. But in order to do this, we would need to enhance
5508 the DWARF reader to associate a symbol to this renaming, instead of a
5509 name. So, for now, we do something simpler: re-use the C++/Fortran
5510 namespace machinery. */
5511 r_name = (renaming->alias != NULL
5512 ? renaming->alias
5513 : renaming->declaration);
5514 if (name_match (r_name, lookup_name, NULL))
5515 {
5516 lookup_name_info decl_lookup_name (renaming->declaration,
5517 lookup_name.match_type ());
5518 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5519 1, NULL);
5520 }
5521 renaming->searched = 0;
5522 }
5523 return num_defns_collected (obstackp) != defns_mark;
5524 }
5525
5526 /* Implements compare_names, but only applying the comparision using
5527 the given CASING. */
5528
5529 static int
5530 compare_names_with_case (const char *string1, const char *string2,
5531 enum case_sensitivity casing)
5532 {
5533 while (*string1 != '\0' && *string2 != '\0')
5534 {
5535 char c1, c2;
5536
5537 if (isspace (*string1) || isspace (*string2))
5538 return strcmp_iw_ordered (string1, string2);
5539
5540 if (casing == case_sensitive_off)
5541 {
5542 c1 = tolower (*string1);
5543 c2 = tolower (*string2);
5544 }
5545 else
5546 {
5547 c1 = *string1;
5548 c2 = *string2;
5549 }
5550 if (c1 != c2)
5551 break;
5552
5553 string1 += 1;
5554 string2 += 1;
5555 }
5556
5557 switch (*string1)
5558 {
5559 case '(':
5560 return strcmp_iw_ordered (string1, string2);
5561 case '_':
5562 if (*string2 == '\0')
5563 {
5564 if (is_name_suffix (string1))
5565 return 0;
5566 else
5567 return 1;
5568 }
5569 /* FALLTHROUGH */
5570 default:
5571 if (*string2 == '(')
5572 return strcmp_iw_ordered (string1, string2);
5573 else
5574 {
5575 if (casing == case_sensitive_off)
5576 return tolower (*string1) - tolower (*string2);
5577 else
5578 return *string1 - *string2;
5579 }
5580 }
5581 }
5582
5583 /* Compare STRING1 to STRING2, with results as for strcmp.
5584 Compatible with strcmp_iw_ordered in that...
5585
5586 strcmp_iw_ordered (STRING1, STRING2) <= 0
5587
5588 ... implies...
5589
5590 compare_names (STRING1, STRING2) <= 0
5591
5592 (they may differ as to what symbols compare equal). */
5593
5594 static int
5595 compare_names (const char *string1, const char *string2)
5596 {
5597 int result;
5598
5599 /* Similar to what strcmp_iw_ordered does, we need to perform
5600 a case-insensitive comparison first, and only resort to
5601 a second, case-sensitive, comparison if the first one was
5602 not sufficient to differentiate the two strings. */
5603
5604 result = compare_names_with_case (string1, string2, case_sensitive_off);
5605 if (result == 0)
5606 result = compare_names_with_case (string1, string2, case_sensitive_on);
5607
5608 return result;
5609 }
5610
5611 /* Convenience function to get at the Ada encoded lookup name for
5612 LOOKUP_NAME, as a C string. */
5613
5614 static const char *
5615 ada_lookup_name (const lookup_name_info &lookup_name)
5616 {
5617 return lookup_name.ada ().lookup_name ().c_str ();
5618 }
5619
5620 /* Add to OBSTACKP all non-local symbols whose name and domain match
5621 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5622 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5623 symbols otherwise. */
5624
5625 static void
5626 add_nonlocal_symbols (struct obstack *obstackp,
5627 const lookup_name_info &lookup_name,
5628 domain_enum domain, int global)
5629 {
5630 struct match_data data;
5631
5632 memset (&data, 0, sizeof data);
5633 data.obstackp = obstackp;
5634
5635 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5636
5637 auto callback = [&] (struct block_symbol *bsym)
5638 {
5639 return aux_add_nonlocal_symbols (bsym, &data);
5640 };
5641
5642 for (objfile *objfile : current_program_space->objfiles ())
5643 {
5644 data.objfile = objfile;
5645
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5647 domain, global, callback,
5648 (is_wild_match
5649 ? NULL : compare_names));
5650
5651 for (compunit_symtab *cu : objfile->compunits ())
5652 {
5653 const struct block *global_block
5654 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5655
5656 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5657 domain))
5658 data.found_sym = 1;
5659 }
5660 }
5661
5662 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5663 {
5664 const char *name = ada_lookup_name (lookup_name);
5665 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5666 symbol_name_match_type::FULL);
5667
5668 for (objfile *objfile : current_program_space->objfiles ())
5669 {
5670 data.objfile = objfile;
5671 objfile->sf->qf->map_matching_symbols (objfile, name1,
5672 domain, global, callback,
5673 compare_names);
5674 }
5675 }
5676 }
5677
5678 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5679 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5680 returning the number of matches. Add these to OBSTACKP.
5681
5682 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5683 symbol match within the nest of blocks whose innermost member is BLOCK,
5684 is the one match returned (no other matches in that or
5685 enclosing blocks is returned). If there are any matches in or
5686 surrounding BLOCK, then these alone are returned.
5687
5688 Names prefixed with "standard__" are handled specially:
5689 "standard__" is first stripped off (by the lookup_name
5690 constructor), and only static and global symbols are searched.
5691
5692 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5693 to lookup global symbols. */
5694
5695 static void
5696 ada_add_all_symbols (struct obstack *obstackp,
5697 const struct block *block,
5698 const lookup_name_info &lookup_name,
5699 domain_enum domain,
5700 int full_search,
5701 int *made_global_lookup_p)
5702 {
5703 struct symbol *sym;
5704
5705 if (made_global_lookup_p)
5706 *made_global_lookup_p = 0;
5707
5708 /* Special case: If the user specifies a symbol name inside package
5709 Standard, do a non-wild matching of the symbol name without
5710 the "standard__" prefix. This was primarily introduced in order
5711 to allow the user to specifically access the standard exceptions
5712 using, for instance, Standard.Constraint_Error when Constraint_Error
5713 is ambiguous (due to the user defining its own Constraint_Error
5714 entity inside its program). */
5715 if (lookup_name.ada ().standard_p ())
5716 block = NULL;
5717
5718 /* Check the non-global symbols. If we have ANY match, then we're done. */
5719
5720 if (block != NULL)
5721 {
5722 if (full_search)
5723 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5724 else
5725 {
5726 /* In the !full_search case we're are being called by
5727 ada_iterate_over_symbols, and we don't want to search
5728 superblocks. */
5729 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5730 }
5731 if (num_defns_collected (obstackp) > 0 || !full_search)
5732 return;
5733 }
5734
5735 /* No non-global symbols found. Check our cache to see if we have
5736 already performed this search before. If we have, then return
5737 the same result. */
5738
5739 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5740 domain, &sym, &block))
5741 {
5742 if (sym != NULL)
5743 add_defn_to_vec (obstackp, sym, block);
5744 return;
5745 }
5746
5747 if (made_global_lookup_p)
5748 *made_global_lookup_p = 1;
5749
5750 /* Search symbols from all global blocks. */
5751
5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5753
5754 /* Now add symbols from all per-file blocks if we've gotten no hits
5755 (not strictly correct, but perhaps better than an error). */
5756
5757 if (num_defns_collected (obstackp) == 0)
5758 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5759 }
5760
5761 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5762 is non-zero, enclosing scope and in global scopes, returning the number of
5763 matches.
5764 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5765 found and the blocks and symbol tables (if any) in which they were
5766 found.
5767
5768 When full_search is non-zero, any non-function/non-enumeral
5769 symbol match within the nest of blocks whose innermost member is BLOCK,
5770 is the one match returned (no other matches in that or
5771 enclosing blocks is returned). If there are any matches in or
5772 surrounding BLOCK, then these alone are returned.
5773
5774 Names prefixed with "standard__" are handled specially: "standard__"
5775 is first stripped off, and only static and global symbols are searched. */
5776
5777 static int
5778 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5779 const struct block *block,
5780 domain_enum domain,
5781 std::vector<struct block_symbol> *results,
5782 int full_search)
5783 {
5784 int syms_from_global_search;
5785 int ndefns;
5786 auto_obstack obstack;
5787
5788 ada_add_all_symbols (&obstack, block, lookup_name,
5789 domain, full_search, &syms_from_global_search);
5790
5791 ndefns = num_defns_collected (&obstack);
5792
5793 struct block_symbol *base = defns_collected (&obstack, 1);
5794 for (int i = 0; i < ndefns; ++i)
5795 results->push_back (base[i]);
5796
5797 ndefns = remove_extra_symbols (results);
5798
5799 if (ndefns == 0 && full_search && syms_from_global_search)
5800 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5801
5802 if (ndefns == 1 && full_search && syms_from_global_search)
5803 cache_symbol (ada_lookup_name (lookup_name), domain,
5804 (*results)[0].symbol, (*results)[0].block);
5805
5806 ndefns = remove_irrelevant_renamings (results, block);
5807
5808 return ndefns;
5809 }
5810
5811 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5812 in global scopes, returning the number of matches, and filling *RESULTS
5813 with (SYM,BLOCK) tuples.
5814
5815 See ada_lookup_symbol_list_worker for further details. */
5816
5817 int
5818 ada_lookup_symbol_list (const char *name, const struct block *block,
5819 domain_enum domain,
5820 std::vector<struct block_symbol> *results)
5821 {
5822 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5823 lookup_name_info lookup_name (name, name_match_type);
5824
5825 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5826 }
5827
5828 /* Implementation of the la_iterate_over_symbols method. */
5829
5830 static bool
5831 ada_iterate_over_symbols
5832 (const struct block *block, const lookup_name_info &name,
5833 domain_enum domain,
5834 gdb::function_view<symbol_found_callback_ftype> callback)
5835 {
5836 int ndefs, i;
5837 std::vector<struct block_symbol> results;
5838
5839 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5840
5841 for (i = 0; i < ndefs; ++i)
5842 {
5843 if (!callback (&results[i]))
5844 return false;
5845 }
5846
5847 return true;
5848 }
5849
5850 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5851 to 1, but choosing the first symbol found if there are multiple
5852 choices.
5853
5854 The result is stored in *INFO, which must be non-NULL.
5855 If no match is found, INFO->SYM is set to NULL. */
5856
5857 void
5858 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5859 domain_enum domain,
5860 struct block_symbol *info)
5861 {
5862 /* Since we already have an encoded name, wrap it in '<>' to force a
5863 verbatim match. Otherwise, if the name happens to not look like
5864 an encoded name (because it doesn't include a "__"),
5865 ada_lookup_name_info would re-encode/fold it again, and that
5866 would e.g., incorrectly lowercase object renaming names like
5867 "R28b" -> "r28b". */
5868 std::string verbatim = std::string ("<") + name + '>';
5869
5870 gdb_assert (info != NULL);
5871 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5872 }
5873
5874 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5875 scope and in global scopes, or NULL if none. NAME is folded and
5876 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5877 choosing the first symbol if there are multiple choices. */
5878
5879 struct block_symbol
5880 ada_lookup_symbol (const char *name, const struct block *block0,
5881 domain_enum domain)
5882 {
5883 std::vector<struct block_symbol> candidates;
5884 int n_candidates;
5885
5886 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5887
5888 if (n_candidates == 0)
5889 return {};
5890
5891 block_symbol info = candidates[0];
5892 info.symbol = fixup_symbol_section (info.symbol, NULL);
5893 return info;
5894 }
5895
5896 static struct block_symbol
5897 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5898 const char *name,
5899 const struct block *block,
5900 const domain_enum domain)
5901 {
5902 struct block_symbol sym;
5903
5904 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5905 if (sym.symbol != NULL)
5906 return sym;
5907
5908 /* If we haven't found a match at this point, try the primitive
5909 types. In other languages, this search is performed before
5910 searching for global symbols in order to short-circuit that
5911 global-symbol search if it happens that the name corresponds
5912 to a primitive type. But we cannot do the same in Ada, because
5913 it is perfectly legitimate for a program to declare a type which
5914 has the same name as a standard type. If looking up a type in
5915 that situation, we have traditionally ignored the primitive type
5916 in favor of user-defined types. This is why, unlike most other
5917 languages, we search the primitive types this late and only after
5918 having searched the global symbols without success. */
5919
5920 if (domain == VAR_DOMAIN)
5921 {
5922 struct gdbarch *gdbarch;
5923
5924 if (block == NULL)
5925 gdbarch = target_gdbarch ();
5926 else
5927 gdbarch = block_gdbarch (block);
5928 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5929 if (sym.symbol != NULL)
5930 return sym;
5931 }
5932
5933 return {};
5934 }
5935
5936
5937 /* True iff STR is a possible encoded suffix of a normal Ada name
5938 that is to be ignored for matching purposes. Suffixes of parallel
5939 names (e.g., XVE) are not included here. Currently, the possible suffixes
5940 are given by any of the regular expressions:
5941
5942 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5943 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5944 TKB [subprogram suffix for task bodies]
5945 _E[0-9]+[bs]$ [protected object entry suffixes]
5946 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5947
5948 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5949 match is performed. This sequence is used to differentiate homonyms,
5950 is an optional part of a valid name suffix. */
5951
5952 static int
5953 is_name_suffix (const char *str)
5954 {
5955 int k;
5956 const char *matching;
5957 const int len = strlen (str);
5958
5959 /* Skip optional leading __[0-9]+. */
5960
5961 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5962 {
5963 str += 3;
5964 while (isdigit (str[0]))
5965 str += 1;
5966 }
5967
5968 /* [.$][0-9]+ */
5969
5970 if (str[0] == '.' || str[0] == '$')
5971 {
5972 matching = str + 1;
5973 while (isdigit (matching[0]))
5974 matching += 1;
5975 if (matching[0] == '\0')
5976 return 1;
5977 }
5978
5979 /* ___[0-9]+ */
5980
5981 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5982 {
5983 matching = str + 3;
5984 while (isdigit (matching[0]))
5985 matching += 1;
5986 if (matching[0] == '\0')
5987 return 1;
5988 }
5989
5990 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5991
5992 if (strcmp (str, "TKB") == 0)
5993 return 1;
5994
5995 #if 0
5996 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5997 with a N at the end. Unfortunately, the compiler uses the same
5998 convention for other internal types it creates. So treating
5999 all entity names that end with an "N" as a name suffix causes
6000 some regressions. For instance, consider the case of an enumerated
6001 type. To support the 'Image attribute, it creates an array whose
6002 name ends with N.
6003 Having a single character like this as a suffix carrying some
6004 information is a bit risky. Perhaps we should change the encoding
6005 to be something like "_N" instead. In the meantime, do not do
6006 the following check. */
6007 /* Protected Object Subprograms */
6008 if (len == 1 && str [0] == 'N')
6009 return 1;
6010 #endif
6011
6012 /* _E[0-9]+[bs]$ */
6013 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6014 {
6015 matching = str + 3;
6016 while (isdigit (matching[0]))
6017 matching += 1;
6018 if ((matching[0] == 'b' || matching[0] == 's')
6019 && matching [1] == '\0')
6020 return 1;
6021 }
6022
6023 /* ??? We should not modify STR directly, as we are doing below. This
6024 is fine in this case, but may become problematic later if we find
6025 that this alternative did not work, and want to try matching
6026 another one from the begining of STR. Since we modified it, we
6027 won't be able to find the begining of the string anymore! */
6028 if (str[0] == 'X')
6029 {
6030 str += 1;
6031 while (str[0] != '_' && str[0] != '\0')
6032 {
6033 if (str[0] != 'n' && str[0] != 'b')
6034 return 0;
6035 str += 1;
6036 }
6037 }
6038
6039 if (str[0] == '\000')
6040 return 1;
6041
6042 if (str[0] == '_')
6043 {
6044 if (str[1] != '_' || str[2] == '\000')
6045 return 0;
6046 if (str[2] == '_')
6047 {
6048 if (strcmp (str + 3, "JM") == 0)
6049 return 1;
6050 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6051 the LJM suffix in favor of the JM one. But we will
6052 still accept LJM as a valid suffix for a reasonable
6053 amount of time, just to allow ourselves to debug programs
6054 compiled using an older version of GNAT. */
6055 if (strcmp (str + 3, "LJM") == 0)
6056 return 1;
6057 if (str[3] != 'X')
6058 return 0;
6059 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6060 || str[4] == 'U' || str[4] == 'P')
6061 return 1;
6062 if (str[4] == 'R' && str[5] != 'T')
6063 return 1;
6064 return 0;
6065 }
6066 if (!isdigit (str[2]))
6067 return 0;
6068 for (k = 3; str[k] != '\0'; k += 1)
6069 if (!isdigit (str[k]) && str[k] != '_')
6070 return 0;
6071 return 1;
6072 }
6073 if (str[0] == '$' && isdigit (str[1]))
6074 {
6075 for (k = 2; str[k] != '\0'; k += 1)
6076 if (!isdigit (str[k]) && str[k] != '_')
6077 return 0;
6078 return 1;
6079 }
6080 return 0;
6081 }
6082
6083 /* Return non-zero if the string starting at NAME and ending before
6084 NAME_END contains no capital letters. */
6085
6086 static int
6087 is_valid_name_for_wild_match (const char *name0)
6088 {
6089 std::string decoded_name = ada_decode (name0);
6090 int i;
6091
6092 /* If the decoded name starts with an angle bracket, it means that
6093 NAME0 does not follow the GNAT encoding format. It should then
6094 not be allowed as a possible wild match. */
6095 if (decoded_name[0] == '<')
6096 return 0;
6097
6098 for (i=0; decoded_name[i] != '\0'; i++)
6099 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6100 return 0;
6101
6102 return 1;
6103 }
6104
6105 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6106 that could start a simple name. Assumes that *NAMEP points into
6107 the string beginning at NAME0. */
6108
6109 static int
6110 advance_wild_match (const char **namep, const char *name0, int target0)
6111 {
6112 const char *name = *namep;
6113
6114 while (1)
6115 {
6116 int t0, t1;
6117
6118 t0 = *name;
6119 if (t0 == '_')
6120 {
6121 t1 = name[1];
6122 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6123 {
6124 name += 1;
6125 if (name == name0 + 5 && startswith (name0, "_ada"))
6126 break;
6127 else
6128 name += 1;
6129 }
6130 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6131 || name[2] == target0))
6132 {
6133 name += 2;
6134 break;
6135 }
6136 else
6137 return 0;
6138 }
6139 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6140 name += 1;
6141 else
6142 return 0;
6143 }
6144
6145 *namep = name;
6146 return 1;
6147 }
6148
6149 /* Return true iff NAME encodes a name of the form prefix.PATN.
6150 Ignores any informational suffixes of NAME (i.e., for which
6151 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6152 simple name. */
6153
6154 static bool
6155 wild_match (const char *name, const char *patn)
6156 {
6157 const char *p;
6158 const char *name0 = name;
6159
6160 while (1)
6161 {
6162 const char *match = name;
6163
6164 if (*name == *patn)
6165 {
6166 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6167 if (*p != *name)
6168 break;
6169 if (*p == '\0' && is_name_suffix (name))
6170 return match == name0 || is_valid_name_for_wild_match (name0);
6171
6172 if (name[-1] == '_')
6173 name -= 1;
6174 }
6175 if (!advance_wild_match (&name, name0, *patn))
6176 return false;
6177 }
6178 }
6179
6180 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6181 any trailing suffixes that encode debugging information or leading
6182 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6183 information that is ignored). */
6184
6185 static bool
6186 full_match (const char *sym_name, const char *search_name)
6187 {
6188 size_t search_name_len = strlen (search_name);
6189
6190 if (strncmp (sym_name, search_name, search_name_len) == 0
6191 && is_name_suffix (sym_name + search_name_len))
6192 return true;
6193
6194 if (startswith (sym_name, "_ada_")
6195 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6196 && is_name_suffix (sym_name + search_name_len + 5))
6197 return true;
6198
6199 return false;
6200 }
6201
6202 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6203 *defn_symbols, updating the list of symbols in OBSTACKP (if
6204 necessary). OBJFILE is the section containing BLOCK. */
6205
6206 static void
6207 ada_add_block_symbols (struct obstack *obstackp,
6208 const struct block *block,
6209 const lookup_name_info &lookup_name,
6210 domain_enum domain, struct objfile *objfile)
6211 {
6212 struct block_iterator iter;
6213 /* A matching argument symbol, if any. */
6214 struct symbol *arg_sym;
6215 /* Set true when we find a matching non-argument symbol. */
6216 int found_sym;
6217 struct symbol *sym;
6218
6219 arg_sym = NULL;
6220 found_sym = 0;
6221 for (sym = block_iter_match_first (block, lookup_name, &iter);
6222 sym != NULL;
6223 sym = block_iter_match_next (lookup_name, &iter))
6224 {
6225 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6226 SYMBOL_DOMAIN (sym), domain))
6227 {
6228 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6229 {
6230 if (SYMBOL_IS_ARGUMENT (sym))
6231 arg_sym = sym;
6232 else
6233 {
6234 found_sym = 1;
6235 add_defn_to_vec (obstackp,
6236 fixup_symbol_section (sym, objfile),
6237 block);
6238 }
6239 }
6240 }
6241 }
6242
6243 /* Handle renamings. */
6244
6245 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6246 found_sym = 1;
6247
6248 if (!found_sym && arg_sym != NULL)
6249 {
6250 add_defn_to_vec (obstackp,
6251 fixup_symbol_section (arg_sym, objfile),
6252 block);
6253 }
6254
6255 if (!lookup_name.ada ().wild_match_p ())
6256 {
6257 arg_sym = NULL;
6258 found_sym = 0;
6259 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6260 const char *name = ada_lookup_name.c_str ();
6261 size_t name_len = ada_lookup_name.size ();
6262
6263 ALL_BLOCK_SYMBOLS (block, iter, sym)
6264 {
6265 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6266 SYMBOL_DOMAIN (sym), domain))
6267 {
6268 int cmp;
6269
6270 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6271 if (cmp == 0)
6272 {
6273 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6274 if (cmp == 0)
6275 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6276 name_len);
6277 }
6278
6279 if (cmp == 0
6280 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6281 {
6282 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6283 {
6284 if (SYMBOL_IS_ARGUMENT (sym))
6285 arg_sym = sym;
6286 else
6287 {
6288 found_sym = 1;
6289 add_defn_to_vec (obstackp,
6290 fixup_symbol_section (sym, objfile),
6291 block);
6292 }
6293 }
6294 }
6295 }
6296 }
6297
6298 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6299 They aren't parameters, right? */
6300 if (!found_sym && arg_sym != NULL)
6301 {
6302 add_defn_to_vec (obstackp,
6303 fixup_symbol_section (arg_sym, objfile),
6304 block);
6305 }
6306 }
6307 }
6308 \f
6309
6310 /* Symbol Completion */
6311
6312 /* See symtab.h. */
6313
6314 bool
6315 ada_lookup_name_info::matches
6316 (const char *sym_name,
6317 symbol_name_match_type match_type,
6318 completion_match_result *comp_match_res) const
6319 {
6320 bool match = false;
6321 const char *text = m_encoded_name.c_str ();
6322 size_t text_len = m_encoded_name.size ();
6323
6324 /* First, test against the fully qualified name of the symbol. */
6325
6326 if (strncmp (sym_name, text, text_len) == 0)
6327 match = true;
6328
6329 std::string decoded_name = ada_decode (sym_name);
6330 if (match && !m_encoded_p)
6331 {
6332 /* One needed check before declaring a positive match is to verify
6333 that iff we are doing a verbatim match, the decoded version
6334 of the symbol name starts with '<'. Otherwise, this symbol name
6335 is not a suitable completion. */
6336
6337 bool has_angle_bracket = (decoded_name[0] == '<');
6338 match = (has_angle_bracket == m_verbatim_p);
6339 }
6340
6341 if (match && !m_verbatim_p)
6342 {
6343 /* When doing non-verbatim match, another check that needs to
6344 be done is to verify that the potentially matching symbol name
6345 does not include capital letters, because the ada-mode would
6346 not be able to understand these symbol names without the
6347 angle bracket notation. */
6348 const char *tmp;
6349
6350 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6351 if (*tmp != '\0')
6352 match = false;
6353 }
6354
6355 /* Second: Try wild matching... */
6356
6357 if (!match && m_wild_match_p)
6358 {
6359 /* Since we are doing wild matching, this means that TEXT
6360 may represent an unqualified symbol name. We therefore must
6361 also compare TEXT against the unqualified name of the symbol. */
6362 sym_name = ada_unqualified_name (decoded_name.c_str ());
6363
6364 if (strncmp (sym_name, text, text_len) == 0)
6365 match = true;
6366 }
6367
6368 /* Finally: If we found a match, prepare the result to return. */
6369
6370 if (!match)
6371 return false;
6372
6373 if (comp_match_res != NULL)
6374 {
6375 std::string &match_str = comp_match_res->match.storage ();
6376
6377 if (!m_encoded_p)
6378 match_str = ada_decode (sym_name);
6379 else
6380 {
6381 if (m_verbatim_p)
6382 match_str = add_angle_brackets (sym_name);
6383 else
6384 match_str = sym_name;
6385
6386 }
6387
6388 comp_match_res->set_match (match_str.c_str ());
6389 }
6390
6391 return true;
6392 }
6393
6394 /* Add the list of possible symbol names completing TEXT to TRACKER.
6395 WORD is the entire command on which completion is made. */
6396
6397 static void
6398 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6399 complete_symbol_mode mode,
6400 symbol_name_match_type name_match_type,
6401 const char *text, const char *word,
6402 enum type_code code)
6403 {
6404 struct symbol *sym;
6405 const struct block *b, *surrounding_static_block = 0;
6406 struct block_iterator iter;
6407
6408 gdb_assert (code == TYPE_CODE_UNDEF);
6409
6410 lookup_name_info lookup_name (text, name_match_type, true);
6411
6412 /* First, look at the partial symtab symbols. */
6413 expand_symtabs_matching (NULL,
6414 lookup_name,
6415 NULL,
6416 NULL,
6417 ALL_DOMAIN);
6418
6419 /* At this point scan through the misc symbol vectors and add each
6420 symbol you find to the list. Eventually we want to ignore
6421 anything that isn't a text symbol (everything else will be
6422 handled by the psymtab code above). */
6423
6424 for (objfile *objfile : current_program_space->objfiles ())
6425 {
6426 for (minimal_symbol *msymbol : objfile->msymbols ())
6427 {
6428 QUIT;
6429
6430 if (completion_skip_symbol (mode, msymbol))
6431 continue;
6432
6433 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6434
6435 /* Ada minimal symbols won't have their language set to Ada. If
6436 we let completion_list_add_name compare using the
6437 default/C-like matcher, then when completing e.g., symbols in a
6438 package named "pck", we'd match internal Ada symbols like
6439 "pckS", which are invalid in an Ada expression, unless you wrap
6440 them in '<' '>' to request a verbatim match.
6441
6442 Unfortunately, some Ada encoded names successfully demangle as
6443 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6444 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6445 with the wrong language set. Paper over that issue here. */
6446 if (symbol_language == language_auto
6447 || symbol_language == language_cplus)
6448 symbol_language = language_ada;
6449
6450 completion_list_add_name (tracker,
6451 symbol_language,
6452 MSYMBOL_LINKAGE_NAME (msymbol),
6453 lookup_name, text, word);
6454 }
6455 }
6456
6457 /* Search upwards from currently selected frame (so that we can
6458 complete on local vars. */
6459
6460 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6461 {
6462 if (!BLOCK_SUPERBLOCK (b))
6463 surrounding_static_block = b; /* For elmin of dups */
6464
6465 ALL_BLOCK_SYMBOLS (b, iter, sym)
6466 {
6467 if (completion_skip_symbol (mode, sym))
6468 continue;
6469
6470 completion_list_add_name (tracker,
6471 SYMBOL_LANGUAGE (sym),
6472 SYMBOL_LINKAGE_NAME (sym),
6473 lookup_name, text, word);
6474 }
6475 }
6476
6477 /* Go through the symtabs and check the externs and statics for
6478 symbols which match. */
6479
6480 for (objfile *objfile : current_program_space->objfiles ())
6481 {
6482 for (compunit_symtab *s : objfile->compunits ())
6483 {
6484 QUIT;
6485 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6486 ALL_BLOCK_SYMBOLS (b, iter, sym)
6487 {
6488 if (completion_skip_symbol (mode, sym))
6489 continue;
6490
6491 completion_list_add_name (tracker,
6492 SYMBOL_LANGUAGE (sym),
6493 SYMBOL_LINKAGE_NAME (sym),
6494 lookup_name, text, word);
6495 }
6496 }
6497 }
6498
6499 for (objfile *objfile : current_program_space->objfiles ())
6500 {
6501 for (compunit_symtab *s : objfile->compunits ())
6502 {
6503 QUIT;
6504 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6505 /* Don't do this block twice. */
6506 if (b == surrounding_static_block)
6507 continue;
6508 ALL_BLOCK_SYMBOLS (b, iter, sym)
6509 {
6510 if (completion_skip_symbol (mode, sym))
6511 continue;
6512
6513 completion_list_add_name (tracker,
6514 SYMBOL_LANGUAGE (sym),
6515 SYMBOL_LINKAGE_NAME (sym),
6516 lookup_name, text, word);
6517 }
6518 }
6519 }
6520 }
6521
6522 /* Field Access */
6523
6524 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6525 for tagged types. */
6526
6527 static int
6528 ada_is_dispatch_table_ptr_type (struct type *type)
6529 {
6530 const char *name;
6531
6532 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6533 return 0;
6534
6535 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6536 if (name == NULL)
6537 return 0;
6538
6539 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6540 }
6541
6542 /* Return non-zero if TYPE is an interface tag. */
6543
6544 static int
6545 ada_is_interface_tag (struct type *type)
6546 {
6547 const char *name = TYPE_NAME (type);
6548
6549 if (name == NULL)
6550 return 0;
6551
6552 return (strcmp (name, "ada__tags__interface_tag") == 0);
6553 }
6554
6555 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6556 to be invisible to users. */
6557
6558 int
6559 ada_is_ignored_field (struct type *type, int field_num)
6560 {
6561 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6562 return 1;
6563
6564 /* Check the name of that field. */
6565 {
6566 const char *name = TYPE_FIELD_NAME (type, field_num);
6567
6568 /* Anonymous field names should not be printed.
6569 brobecker/2007-02-20: I don't think this can actually happen
6570 but we don't want to print the value of anonymous fields anyway. */
6571 if (name == NULL)
6572 return 1;
6573
6574 /* Normally, fields whose name start with an underscore ("_")
6575 are fields that have been internally generated by the compiler,
6576 and thus should not be printed. The "_parent" field is special,
6577 however: This is a field internally generated by the compiler
6578 for tagged types, and it contains the components inherited from
6579 the parent type. This field should not be printed as is, but
6580 should not be ignored either. */
6581 if (name[0] == '_' && !startswith (name, "_parent"))
6582 return 1;
6583 }
6584
6585 /* If this is the dispatch table of a tagged type or an interface tag,
6586 then ignore. */
6587 if (ada_is_tagged_type (type, 1)
6588 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6589 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6590 return 1;
6591
6592 /* Not a special field, so it should not be ignored. */
6593 return 0;
6594 }
6595
6596 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6597 pointer or reference type whose ultimate target has a tag field. */
6598
6599 int
6600 ada_is_tagged_type (struct type *type, int refok)
6601 {
6602 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6603 }
6604
6605 /* True iff TYPE represents the type of X'Tag */
6606
6607 int
6608 ada_is_tag_type (struct type *type)
6609 {
6610 type = ada_check_typedef (type);
6611
6612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6613 return 0;
6614 else
6615 {
6616 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6617
6618 return (name != NULL
6619 && strcmp (name, "ada__tags__dispatch_table") == 0);
6620 }
6621 }
6622
6623 /* The type of the tag on VAL. */
6624
6625 static struct type *
6626 ada_tag_type (struct value *val)
6627 {
6628 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6629 }
6630
6631 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6632 retired at Ada 05). */
6633
6634 static int
6635 is_ada95_tag (struct value *tag)
6636 {
6637 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6638 }
6639
6640 /* The value of the tag on VAL. */
6641
6642 static struct value *
6643 ada_value_tag (struct value *val)
6644 {
6645 return ada_value_struct_elt (val, "_tag", 0);
6646 }
6647
6648 /* The value of the tag on the object of type TYPE whose contents are
6649 saved at VALADDR, if it is non-null, or is at memory address
6650 ADDRESS. */
6651
6652 static struct value *
6653 value_tag_from_contents_and_address (struct type *type,
6654 const gdb_byte *valaddr,
6655 CORE_ADDR address)
6656 {
6657 int tag_byte_offset;
6658 struct type *tag_type;
6659
6660 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6661 NULL, NULL, NULL))
6662 {
6663 const gdb_byte *valaddr1 = ((valaddr == NULL)
6664 ? NULL
6665 : valaddr + tag_byte_offset);
6666 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6667
6668 return value_from_contents_and_address (tag_type, valaddr1, address1);
6669 }
6670 return NULL;
6671 }
6672
6673 static struct type *
6674 type_from_tag (struct value *tag)
6675 {
6676 const char *type_name = ada_tag_name (tag);
6677
6678 if (type_name != NULL)
6679 return ada_find_any_type (ada_encode (type_name));
6680 return NULL;
6681 }
6682
6683 /* Given a value OBJ of a tagged type, return a value of this
6684 type at the base address of the object. The base address, as
6685 defined in Ada.Tags, it is the address of the primary tag of
6686 the object, and therefore where the field values of its full
6687 view can be fetched. */
6688
6689 struct value *
6690 ada_tag_value_at_base_address (struct value *obj)
6691 {
6692 struct value *val;
6693 LONGEST offset_to_top = 0;
6694 struct type *ptr_type, *obj_type;
6695 struct value *tag;
6696 CORE_ADDR base_address;
6697
6698 obj_type = value_type (obj);
6699
6700 /* It is the responsability of the caller to deref pointers. */
6701
6702 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6703 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6704 return obj;
6705
6706 tag = ada_value_tag (obj);
6707 if (!tag)
6708 return obj;
6709
6710 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6711
6712 if (is_ada95_tag (tag))
6713 return obj;
6714
6715 ptr_type = language_lookup_primitive_type
6716 (language_def (language_ada), target_gdbarch(), "storage_offset");
6717 ptr_type = lookup_pointer_type (ptr_type);
6718 val = value_cast (ptr_type, tag);
6719 if (!val)
6720 return obj;
6721
6722 /* It is perfectly possible that an exception be raised while
6723 trying to determine the base address, just like for the tag;
6724 see ada_tag_name for more details. We do not print the error
6725 message for the same reason. */
6726
6727 try
6728 {
6729 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6730 }
6731
6732 catch (const gdb_exception_error &e)
6733 {
6734 return obj;
6735 }
6736
6737 /* If offset is null, nothing to do. */
6738
6739 if (offset_to_top == 0)
6740 return obj;
6741
6742 /* -1 is a special case in Ada.Tags; however, what should be done
6743 is not quite clear from the documentation. So do nothing for
6744 now. */
6745
6746 if (offset_to_top == -1)
6747 return obj;
6748
6749 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6750 from the base address. This was however incompatible with
6751 C++ dispatch table: C++ uses a *negative* value to *add*
6752 to the base address. Ada's convention has therefore been
6753 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6754 use the same convention. Here, we support both cases by
6755 checking the sign of OFFSET_TO_TOP. */
6756
6757 if (offset_to_top > 0)
6758 offset_to_top = -offset_to_top;
6759
6760 base_address = value_address (obj) + offset_to_top;
6761 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6762
6763 /* Make sure that we have a proper tag at the new address.
6764 Otherwise, offset_to_top is bogus (which can happen when
6765 the object is not initialized yet). */
6766
6767 if (!tag)
6768 return obj;
6769
6770 obj_type = type_from_tag (tag);
6771
6772 if (!obj_type)
6773 return obj;
6774
6775 return value_from_contents_and_address (obj_type, NULL, base_address);
6776 }
6777
6778 /* Return the "ada__tags__type_specific_data" type. */
6779
6780 static struct type *
6781 ada_get_tsd_type (struct inferior *inf)
6782 {
6783 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6784
6785 if (data->tsd_type == 0)
6786 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6787 return data->tsd_type;
6788 }
6789
6790 /* Return the TSD (type-specific data) associated to the given TAG.
6791 TAG is assumed to be the tag of a tagged-type entity.
6792
6793 May return NULL if we are unable to get the TSD. */
6794
6795 static struct value *
6796 ada_get_tsd_from_tag (struct value *tag)
6797 {
6798 struct value *val;
6799 struct type *type;
6800
6801 /* First option: The TSD is simply stored as a field of our TAG.
6802 Only older versions of GNAT would use this format, but we have
6803 to test it first, because there are no visible markers for
6804 the current approach except the absence of that field. */
6805
6806 val = ada_value_struct_elt (tag, "tsd", 1);
6807 if (val)
6808 return val;
6809
6810 /* Try the second representation for the dispatch table (in which
6811 there is no explicit 'tsd' field in the referent of the tag pointer,
6812 and instead the tsd pointer is stored just before the dispatch
6813 table. */
6814
6815 type = ada_get_tsd_type (current_inferior());
6816 if (type == NULL)
6817 return NULL;
6818 type = lookup_pointer_type (lookup_pointer_type (type));
6819 val = value_cast (type, tag);
6820 if (val == NULL)
6821 return NULL;
6822 return value_ind (value_ptradd (val, -1));
6823 }
6824
6825 /* Given the TSD of a tag (type-specific data), return a string
6826 containing the name of the associated type.
6827
6828 The returned value is good until the next call. May return NULL
6829 if we are unable to determine the tag name. */
6830
6831 static char *
6832 ada_tag_name_from_tsd (struct value *tsd)
6833 {
6834 static char name[1024];
6835 char *p;
6836 struct value *val;
6837
6838 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6839 if (val == NULL)
6840 return NULL;
6841 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6842 for (p = name; *p != '\0'; p += 1)
6843 if (isalpha (*p))
6844 *p = tolower (*p);
6845 return name;
6846 }
6847
6848 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6849 a C string.
6850
6851 Return NULL if the TAG is not an Ada tag, or if we were unable to
6852 determine the name of that tag. The result is good until the next
6853 call. */
6854
6855 const char *
6856 ada_tag_name (struct value *tag)
6857 {
6858 char *name = NULL;
6859
6860 if (!ada_is_tag_type (value_type (tag)))
6861 return NULL;
6862
6863 /* It is perfectly possible that an exception be raised while trying
6864 to determine the TAG's name, even under normal circumstances:
6865 The associated variable may be uninitialized or corrupted, for
6866 instance. We do not let any exception propagate past this point.
6867 instead we return NULL.
6868
6869 We also do not print the error message either (which often is very
6870 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6871 the caller print a more meaningful message if necessary. */
6872 try
6873 {
6874 struct value *tsd = ada_get_tsd_from_tag (tag);
6875
6876 if (tsd != NULL)
6877 name = ada_tag_name_from_tsd (tsd);
6878 }
6879 catch (const gdb_exception_error &e)
6880 {
6881 }
6882
6883 return name;
6884 }
6885
6886 /* The parent type of TYPE, or NULL if none. */
6887
6888 struct type *
6889 ada_parent_type (struct type *type)
6890 {
6891 int i;
6892
6893 type = ada_check_typedef (type);
6894
6895 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6896 return NULL;
6897
6898 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6899 if (ada_is_parent_field (type, i))
6900 {
6901 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6902
6903 /* If the _parent field is a pointer, then dereference it. */
6904 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6905 parent_type = TYPE_TARGET_TYPE (parent_type);
6906 /* If there is a parallel XVS type, get the actual base type. */
6907 parent_type = ada_get_base_type (parent_type);
6908
6909 return ada_check_typedef (parent_type);
6910 }
6911
6912 return NULL;
6913 }
6914
6915 /* True iff field number FIELD_NUM of structure type TYPE contains the
6916 parent-type (inherited) fields of a derived type. Assumes TYPE is
6917 a structure type with at least FIELD_NUM+1 fields. */
6918
6919 int
6920 ada_is_parent_field (struct type *type, int field_num)
6921 {
6922 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6923
6924 return (name != NULL
6925 && (startswith (name, "PARENT")
6926 || startswith (name, "_parent")));
6927 }
6928
6929 /* True iff field number FIELD_NUM of structure type TYPE is a
6930 transparent wrapper field (which should be silently traversed when doing
6931 field selection and flattened when printing). Assumes TYPE is a
6932 structure type with at least FIELD_NUM+1 fields. Such fields are always
6933 structures. */
6934
6935 int
6936 ada_is_wrapper_field (struct type *type, int field_num)
6937 {
6938 const char *name = TYPE_FIELD_NAME (type, field_num);
6939
6940 if (name != NULL && strcmp (name, "RETVAL") == 0)
6941 {
6942 /* This happens in functions with "out" or "in out" parameters
6943 which are passed by copy. For such functions, GNAT describes
6944 the function's return type as being a struct where the return
6945 value is in a field called RETVAL, and where the other "out"
6946 or "in out" parameters are fields of that struct. This is not
6947 a wrapper. */
6948 return 0;
6949 }
6950
6951 return (name != NULL
6952 && (startswith (name, "PARENT")
6953 || strcmp (name, "REP") == 0
6954 || startswith (name, "_parent")
6955 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6956 }
6957
6958 /* True iff field number FIELD_NUM of structure or union type TYPE
6959 is a variant wrapper. Assumes TYPE is a structure type with at least
6960 FIELD_NUM+1 fields. */
6961
6962 int
6963 ada_is_variant_part (struct type *type, int field_num)
6964 {
6965 /* Only Ada types are eligible. */
6966 if (!ADA_TYPE_P (type))
6967 return 0;
6968
6969 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6970
6971 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6972 || (is_dynamic_field (type, field_num)
6973 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6974 == TYPE_CODE_UNION)));
6975 }
6976
6977 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6978 whose discriminants are contained in the record type OUTER_TYPE,
6979 returns the type of the controlling discriminant for the variant.
6980 May return NULL if the type could not be found. */
6981
6982 struct type *
6983 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6984 {
6985 const char *name = ada_variant_discrim_name (var_type);
6986
6987 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6988 }
6989
6990 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6991 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6992 represents a 'when others' clause; otherwise 0. */
6993
6994 static int
6995 ada_is_others_clause (struct type *type, int field_num)
6996 {
6997 const char *name = TYPE_FIELD_NAME (type, field_num);
6998
6999 return (name != NULL && name[0] == 'O');
7000 }
7001
7002 /* Assuming that TYPE0 is the type of the variant part of a record,
7003 returns the name of the discriminant controlling the variant.
7004 The value is valid until the next call to ada_variant_discrim_name. */
7005
7006 const char *
7007 ada_variant_discrim_name (struct type *type0)
7008 {
7009 static char *result = NULL;
7010 static size_t result_len = 0;
7011 struct type *type;
7012 const char *name;
7013 const char *discrim_end;
7014 const char *discrim_start;
7015
7016 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7017 type = TYPE_TARGET_TYPE (type0);
7018 else
7019 type = type0;
7020
7021 name = ada_type_name (type);
7022
7023 if (name == NULL || name[0] == '\000')
7024 return "";
7025
7026 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7027 discrim_end -= 1)
7028 {
7029 if (startswith (discrim_end, "___XVN"))
7030 break;
7031 }
7032 if (discrim_end == name)
7033 return "";
7034
7035 for (discrim_start = discrim_end; discrim_start != name + 3;
7036 discrim_start -= 1)
7037 {
7038 if (discrim_start == name + 1)
7039 return "";
7040 if ((discrim_start > name + 3
7041 && startswith (discrim_start - 3, "___"))
7042 || discrim_start[-1] == '.')
7043 break;
7044 }
7045
7046 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7047 strncpy (result, discrim_start, discrim_end - discrim_start);
7048 result[discrim_end - discrim_start] = '\0';
7049 return result;
7050 }
7051
7052 /* Scan STR for a subtype-encoded number, beginning at position K.
7053 Put the position of the character just past the number scanned in
7054 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7055 Return 1 if there was a valid number at the given position, and 0
7056 otherwise. A "subtype-encoded" number consists of the absolute value
7057 in decimal, followed by the letter 'm' to indicate a negative number.
7058 Assumes 0m does not occur. */
7059
7060 int
7061 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7062 {
7063 ULONGEST RU;
7064
7065 if (!isdigit (str[k]))
7066 return 0;
7067
7068 /* Do it the hard way so as not to make any assumption about
7069 the relationship of unsigned long (%lu scan format code) and
7070 LONGEST. */
7071 RU = 0;
7072 while (isdigit (str[k]))
7073 {
7074 RU = RU * 10 + (str[k] - '0');
7075 k += 1;
7076 }
7077
7078 if (str[k] == 'm')
7079 {
7080 if (R != NULL)
7081 *R = (-(LONGEST) (RU - 1)) - 1;
7082 k += 1;
7083 }
7084 else if (R != NULL)
7085 *R = (LONGEST) RU;
7086
7087 /* NOTE on the above: Technically, C does not say what the results of
7088 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7089 number representable as a LONGEST (although either would probably work
7090 in most implementations). When RU>0, the locution in the then branch
7091 above is always equivalent to the negative of RU. */
7092
7093 if (new_k != NULL)
7094 *new_k = k;
7095 return 1;
7096 }
7097
7098 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7099 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7100 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7101
7102 static int
7103 ada_in_variant (LONGEST val, struct type *type, int field_num)
7104 {
7105 const char *name = TYPE_FIELD_NAME (type, field_num);
7106 int p;
7107
7108 p = 0;
7109 while (1)
7110 {
7111 switch (name[p])
7112 {
7113 case '\0':
7114 return 0;
7115 case 'S':
7116 {
7117 LONGEST W;
7118
7119 if (!ada_scan_number (name, p + 1, &W, &p))
7120 return 0;
7121 if (val == W)
7122 return 1;
7123 break;
7124 }
7125 case 'R':
7126 {
7127 LONGEST L, U;
7128
7129 if (!ada_scan_number (name, p + 1, &L, &p)
7130 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7131 return 0;
7132 if (val >= L && val <= U)
7133 return 1;
7134 break;
7135 }
7136 case 'O':
7137 return 1;
7138 default:
7139 return 0;
7140 }
7141 }
7142 }
7143
7144 /* FIXME: Lots of redundancy below. Try to consolidate. */
7145
7146 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7147 ARG_TYPE, extract and return the value of one of its (non-static)
7148 fields. FIELDNO says which field. Differs from value_primitive_field
7149 only in that it can handle packed values of arbitrary type. */
7150
7151 static struct value *
7152 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7153 struct type *arg_type)
7154 {
7155 struct type *type;
7156
7157 arg_type = ada_check_typedef (arg_type);
7158 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7159
7160 /* Handle packed fields. It might be that the field is not packed
7161 relative to its containing structure, but the structure itself is
7162 packed; in this case we must take the bit-field path. */
7163 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7164 {
7165 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7166 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7167
7168 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7169 offset + bit_pos / 8,
7170 bit_pos % 8, bit_size, type);
7171 }
7172 else
7173 return value_primitive_field (arg1, offset, fieldno, arg_type);
7174 }
7175
7176 /* Find field with name NAME in object of type TYPE. If found,
7177 set the following for each argument that is non-null:
7178 - *FIELD_TYPE_P to the field's type;
7179 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7180 an object of that type;
7181 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7182 - *BIT_SIZE_P to its size in bits if the field is packed, and
7183 0 otherwise;
7184 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7185 fields up to but not including the desired field, or by the total
7186 number of fields if not found. A NULL value of NAME never
7187 matches; the function just counts visible fields in this case.
7188
7189 Notice that we need to handle when a tagged record hierarchy
7190 has some components with the same name, like in this scenario:
7191
7192 type Top_T is tagged record
7193 N : Integer := 1;
7194 U : Integer := 974;
7195 A : Integer := 48;
7196 end record;
7197
7198 type Middle_T is new Top.Top_T with record
7199 N : Character := 'a';
7200 C : Integer := 3;
7201 end record;
7202
7203 type Bottom_T is new Middle.Middle_T with record
7204 N : Float := 4.0;
7205 C : Character := '5';
7206 X : Integer := 6;
7207 A : Character := 'J';
7208 end record;
7209
7210 Let's say we now have a variable declared and initialized as follow:
7211
7212 TC : Top_A := new Bottom_T;
7213
7214 And then we use this variable to call this function
7215
7216 procedure Assign (Obj: in out Top_T; TV : Integer);
7217
7218 as follow:
7219
7220 Assign (Top_T (B), 12);
7221
7222 Now, we're in the debugger, and we're inside that procedure
7223 then and we want to print the value of obj.c:
7224
7225 Usually, the tagged record or one of the parent type owns the
7226 component to print and there's no issue but in this particular
7227 case, what does it mean to ask for Obj.C? Since the actual
7228 type for object is type Bottom_T, it could mean two things: type
7229 component C from the Middle_T view, but also component C from
7230 Bottom_T. So in that "undefined" case, when the component is
7231 not found in the non-resolved type (which includes all the
7232 components of the parent type), then resolve it and see if we
7233 get better luck once expanded.
7234
7235 In the case of homonyms in the derived tagged type, we don't
7236 guaranty anything, and pick the one that's easiest for us
7237 to program.
7238
7239 Returns 1 if found, 0 otherwise. */
7240
7241 static int
7242 find_struct_field (const char *name, struct type *type, int offset,
7243 struct type **field_type_p,
7244 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7245 int *index_p)
7246 {
7247 int i;
7248 int parent_offset = -1;
7249
7250 type = ada_check_typedef (type);
7251
7252 if (field_type_p != NULL)
7253 *field_type_p = NULL;
7254 if (byte_offset_p != NULL)
7255 *byte_offset_p = 0;
7256 if (bit_offset_p != NULL)
7257 *bit_offset_p = 0;
7258 if (bit_size_p != NULL)
7259 *bit_size_p = 0;
7260
7261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7262 {
7263 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7264 int fld_offset = offset + bit_pos / 8;
7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7266
7267 if (t_field_name == NULL)
7268 continue;
7269
7270 else if (ada_is_parent_field (type, i))
7271 {
7272 /* This is a field pointing us to the parent type of a tagged
7273 type. As hinted in this function's documentation, we give
7274 preference to fields in the current record first, so what
7275 we do here is just record the index of this field before
7276 we skip it. If it turns out we couldn't find our field
7277 in the current record, then we'll get back to it and search
7278 inside it whether the field might exist in the parent. */
7279
7280 parent_offset = i;
7281 continue;
7282 }
7283
7284 else if (name != NULL && field_name_match (t_field_name, name))
7285 {
7286 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7287
7288 if (field_type_p != NULL)
7289 *field_type_p = TYPE_FIELD_TYPE (type, i);
7290 if (byte_offset_p != NULL)
7291 *byte_offset_p = fld_offset;
7292 if (bit_offset_p != NULL)
7293 *bit_offset_p = bit_pos % 8;
7294 if (bit_size_p != NULL)
7295 *bit_size_p = bit_size;
7296 return 1;
7297 }
7298 else if (ada_is_wrapper_field (type, i))
7299 {
7300 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7301 field_type_p, byte_offset_p, bit_offset_p,
7302 bit_size_p, index_p))
7303 return 1;
7304 }
7305 else if (ada_is_variant_part (type, i))
7306 {
7307 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7308 fixed type?? */
7309 int j;
7310 struct type *field_type
7311 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7312
7313 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7314 {
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7316 fld_offset
7317 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7318 field_type_p, byte_offset_p,
7319 bit_offset_p, bit_size_p, index_p))
7320 return 1;
7321 }
7322 }
7323 else if (index_p != NULL)
7324 *index_p += 1;
7325 }
7326
7327 /* Field not found so far. If this is a tagged type which
7328 has a parent, try finding that field in the parent now. */
7329
7330 if (parent_offset != -1)
7331 {
7332 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7333 int fld_offset = offset + bit_pos / 8;
7334
7335 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7336 fld_offset, field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7338 return 1;
7339 }
7340
7341 return 0;
7342 }
7343
7344 /* Number of user-visible fields in record type TYPE. */
7345
7346 static int
7347 num_visible_fields (struct type *type)
7348 {
7349 int n;
7350
7351 n = 0;
7352 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7353 return n;
7354 }
7355
7356 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7357 and search in it assuming it has (class) type TYPE.
7358 If found, return value, else return NULL.
7359
7360 Searches recursively through wrapper fields (e.g., '_parent').
7361
7362 In the case of homonyms in the tagged types, please refer to the
7363 long explanation in find_struct_field's function documentation. */
7364
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 int i;
7370 int parent_offset = -1;
7371
7372 type = ada_check_typedef (type);
7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 {
7375 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7376
7377 if (t_field_name == NULL)
7378 continue;
7379
7380 else if (ada_is_parent_field (type, i))
7381 {
7382 /* This is a field pointing us to the parent type of a tagged
7383 type. As hinted in this function's documentation, we give
7384 preference to fields in the current record first, so what
7385 we do here is just record the index of this field before
7386 we skip it. If it turns out we couldn't find our field
7387 in the current record, then we'll get back to it and search
7388 inside it whether the field might exist in the parent. */
7389
7390 parent_offset = i;
7391 continue;
7392 }
7393
7394 else if (field_name_match (t_field_name, name))
7395 return ada_value_primitive_field (arg, offset, i, type);
7396
7397 else if (ada_is_wrapper_field (type, i))
7398 {
7399 struct value *v = /* Do not let indent join lines here. */
7400 ada_search_struct_field (name, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
7403
7404 if (v != NULL)
7405 return v;
7406 }
7407
7408 else if (ada_is_variant_part (type, i))
7409 {
7410 /* PNH: Do we ever get here? See find_struct_field. */
7411 int j;
7412 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7413 i));
7414 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7415
7416 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7417 {
7418 struct value *v = ada_search_struct_field /* Force line
7419 break. */
7420 (name, arg,
7421 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7422 TYPE_FIELD_TYPE (field_type, j));
7423
7424 if (v != NULL)
7425 return v;
7426 }
7427 }
7428 }
7429
7430 /* Field not found so far. If this is a tagged type which
7431 has a parent, try finding that field in the parent now. */
7432
7433 if (parent_offset != -1)
7434 {
7435 struct value *v = ada_search_struct_field (
7436 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7437 TYPE_FIELD_TYPE (type, parent_offset));
7438
7439 if (v != NULL)
7440 return v;
7441 }
7442
7443 return NULL;
7444 }
7445
7446 static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450 /* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7453 * If found, return value, else return NULL. */
7454
7455 static struct value *
7456 ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458 {
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460 }
7461
7462
7463 /* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7465 * *INDEX_P. */
7466
7467 static struct value *
7468 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470 {
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
7480 struct value *v = /* Do not let indent join lines here. */
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
7492 find_struct_field. */
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501 }
7502
7503 /* Return a string representation of type TYPE. */
7504
7505 static std::string
7506 type_as_string (struct type *type)
7507 {
7508 string_file tmp_stream;
7509
7510 type_print (type, "", &tmp_stream, -1);
7511
7512 return std::move (tmp_stream.string ());
7513 }
7514
7515 /* Given a type TYPE, look up the type of the component of type named NAME.
7516 If DISPP is non-null, add its byte displacement from the beginning of a
7517 structure (pointed to by a value) of type TYPE to *DISPP (does not
7518 work for packed fields).
7519
7520 Matches any field whose name has NAME as a prefix, possibly
7521 followed by "___".
7522
7523 TYPE can be either a struct or union. If REFOK, TYPE may also
7524 be a (pointer or reference)+ to a struct or union, and the
7525 ultimate target type will be searched.
7526
7527 Looks recursively into variant clauses and parent types.
7528
7529 In the case of homonyms in the tagged types, please refer to the
7530 long explanation in find_struct_field's function documentation.
7531
7532 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7533 TYPE is not a type of the right kind. */
7534
7535 static struct type *
7536 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7537 int noerr)
7538 {
7539 int i;
7540 int parent_offset = -1;
7541
7542 if (name == NULL)
7543 goto BadName;
7544
7545 if (refok && type != NULL)
7546 while (1)
7547 {
7548 type = ada_check_typedef (type);
7549 if (TYPE_CODE (type) != TYPE_CODE_PTR
7550 && TYPE_CODE (type) != TYPE_CODE_REF)
7551 break;
7552 type = TYPE_TARGET_TYPE (type);
7553 }
7554
7555 if (type == NULL
7556 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7557 && TYPE_CODE (type) != TYPE_CODE_UNION))
7558 {
7559 if (noerr)
7560 return NULL;
7561
7562 error (_("Type %s is not a structure or union type"),
7563 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7564 }
7565
7566 type = to_static_fixed_type (type);
7567
7568 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7569 {
7570 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7571 struct type *t;
7572
7573 if (t_field_name == NULL)
7574 continue;
7575
7576 else if (ada_is_parent_field (type, i))
7577 {
7578 /* This is a field pointing us to the parent type of a tagged
7579 type. As hinted in this function's documentation, we give
7580 preference to fields in the current record first, so what
7581 we do here is just record the index of this field before
7582 we skip it. If it turns out we couldn't find our field
7583 in the current record, then we'll get back to it and search
7584 inside it whether the field might exist in the parent. */
7585
7586 parent_offset = i;
7587 continue;
7588 }
7589
7590 else if (field_name_match (t_field_name, name))
7591 return TYPE_FIELD_TYPE (type, i);
7592
7593 else if (ada_is_wrapper_field (type, i))
7594 {
7595 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7596 0, 1);
7597 if (t != NULL)
7598 return t;
7599 }
7600
7601 else if (ada_is_variant_part (type, i))
7602 {
7603 int j;
7604 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7605 i));
7606
7607 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7608 {
7609 /* FIXME pnh 2008/01/26: We check for a field that is
7610 NOT wrapped in a struct, since the compiler sometimes
7611 generates these for unchecked variant types. Revisit
7612 if the compiler changes this practice. */
7613 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7614
7615 if (v_field_name != NULL
7616 && field_name_match (v_field_name, name))
7617 t = TYPE_FIELD_TYPE (field_type, j);
7618 else
7619 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7620 j),
7621 name, 0, 1);
7622
7623 if (t != NULL)
7624 return t;
7625 }
7626 }
7627
7628 }
7629
7630 /* Field not found so far. If this is a tagged type which
7631 has a parent, try finding that field in the parent now. */
7632
7633 if (parent_offset != -1)
7634 {
7635 struct type *t;
7636
7637 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7638 name, 0, 1);
7639 if (t != NULL)
7640 return t;
7641 }
7642
7643 BadName:
7644 if (!noerr)
7645 {
7646 const char *name_str = name != NULL ? name : _("<null>");
7647
7648 error (_("Type %s has no component named %s"),
7649 type_as_string (type).c_str (), name_str);
7650 }
7651
7652 return NULL;
7653 }
7654
7655 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7656 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7657 represents an unchecked union (that is, the variant part of a
7658 record that is named in an Unchecked_Union pragma). */
7659
7660 static int
7661 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7662 {
7663 const char *discrim_name = ada_variant_discrim_name (var_type);
7664
7665 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7666 }
7667
7668
7669 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7670 within a value of type OUTER_TYPE that is stored in GDB at
7671 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7672 numbering from 0) is applicable. Returns -1 if none are. */
7673
7674 int
7675 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7676 const gdb_byte *outer_valaddr)
7677 {
7678 int others_clause;
7679 int i;
7680 const char *discrim_name = ada_variant_discrim_name (var_type);
7681 struct value *outer;
7682 struct value *discrim;
7683 LONGEST discrim_val;
7684
7685 /* Using plain value_from_contents_and_address here causes problems
7686 because we will end up trying to resolve a type that is currently
7687 being constructed. */
7688 outer = value_from_contents_and_address_unresolved (outer_type,
7689 outer_valaddr, 0);
7690 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7691 if (discrim == NULL)
7692 return -1;
7693 discrim_val = value_as_long (discrim);
7694
7695 others_clause = -1;
7696 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7697 {
7698 if (ada_is_others_clause (var_type, i))
7699 others_clause = i;
7700 else if (ada_in_variant (discrim_val, var_type, i))
7701 return i;
7702 }
7703
7704 return others_clause;
7705 }
7706 \f
7707
7708
7709 /* Dynamic-Sized Records */
7710
7711 /* Strategy: The type ostensibly attached to a value with dynamic size
7712 (i.e., a size that is not statically recorded in the debugging
7713 data) does not accurately reflect the size or layout of the value.
7714 Our strategy is to convert these values to values with accurate,
7715 conventional types that are constructed on the fly. */
7716
7717 /* There is a subtle and tricky problem here. In general, we cannot
7718 determine the size of dynamic records without its data. However,
7719 the 'struct value' data structure, which GDB uses to represent
7720 quantities in the inferior process (the target), requires the size
7721 of the type at the time of its allocation in order to reserve space
7722 for GDB's internal copy of the data. That's why the
7723 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7724 rather than struct value*s.
7725
7726 However, GDB's internal history variables ($1, $2, etc.) are
7727 struct value*s containing internal copies of the data that are not, in
7728 general, the same as the data at their corresponding addresses in
7729 the target. Fortunately, the types we give to these values are all
7730 conventional, fixed-size types (as per the strategy described
7731 above), so that we don't usually have to perform the
7732 'to_fixed_xxx_type' conversions to look at their values.
7733 Unfortunately, there is one exception: if one of the internal
7734 history variables is an array whose elements are unconstrained
7735 records, then we will need to create distinct fixed types for each
7736 element selected. */
7737
7738 /* The upshot of all of this is that many routines take a (type, host
7739 address, target address) triple as arguments to represent a value.
7740 The host address, if non-null, is supposed to contain an internal
7741 copy of the relevant data; otherwise, the program is to consult the
7742 target at the target address. */
7743
7744 /* Assuming that VAL0 represents a pointer value, the result of
7745 dereferencing it. Differs from value_ind in its treatment of
7746 dynamic-sized types. */
7747
7748 struct value *
7749 ada_value_ind (struct value *val0)
7750 {
7751 struct value *val = value_ind (val0);
7752
7753 if (ada_is_tagged_type (value_type (val), 0))
7754 val = ada_tag_value_at_base_address (val);
7755
7756 return ada_to_fixed_value (val);
7757 }
7758
7759 /* The value resulting from dereferencing any "reference to"
7760 qualifiers on VAL0. */
7761
7762 static struct value *
7763 ada_coerce_ref (struct value *val0)
7764 {
7765 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7766 {
7767 struct value *val = val0;
7768
7769 val = coerce_ref (val);
7770
7771 if (ada_is_tagged_type (value_type (val), 0))
7772 val = ada_tag_value_at_base_address (val);
7773
7774 return ada_to_fixed_value (val);
7775 }
7776 else
7777 return val0;
7778 }
7779
7780 /* Return OFF rounded upward if necessary to a multiple of
7781 ALIGNMENT (a power of 2). */
7782
7783 static unsigned int
7784 align_value (unsigned int off, unsigned int alignment)
7785 {
7786 return (off + alignment - 1) & ~(alignment - 1);
7787 }
7788
7789 /* Return the bit alignment required for field #F of template type TYPE. */
7790
7791 static unsigned int
7792 field_alignment (struct type *type, int f)
7793 {
7794 const char *name = TYPE_FIELD_NAME (type, f);
7795 int len;
7796 int align_offset;
7797
7798 /* The field name should never be null, unless the debugging information
7799 is somehow malformed. In this case, we assume the field does not
7800 require any alignment. */
7801 if (name == NULL)
7802 return 1;
7803
7804 len = strlen (name);
7805
7806 if (!isdigit (name[len - 1]))
7807 return 1;
7808
7809 if (isdigit (name[len - 2]))
7810 align_offset = len - 2;
7811 else
7812 align_offset = len - 1;
7813
7814 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7815 return TARGET_CHAR_BIT;
7816
7817 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7818 }
7819
7820 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7821
7822 static struct symbol *
7823 ada_find_any_type_symbol (const char *name)
7824 {
7825 struct symbol *sym;
7826
7827 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7828 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7829 return sym;
7830
7831 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7832 return sym;
7833 }
7834
7835 /* Find a type named NAME. Ignores ambiguity. This routine will look
7836 solely for types defined by debug info, it will not search the GDB
7837 primitive types. */
7838
7839 static struct type *
7840 ada_find_any_type (const char *name)
7841 {
7842 struct symbol *sym = ada_find_any_type_symbol (name);
7843
7844 if (sym != NULL)
7845 return SYMBOL_TYPE (sym);
7846
7847 return NULL;
7848 }
7849
7850 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7851 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7852 symbol, in which case it is returned. Otherwise, this looks for
7853 symbols whose name is that of NAME_SYM suffixed with "___XR".
7854 Return symbol if found, and NULL otherwise. */
7855
7856 static bool
7857 ada_is_renaming_symbol (struct symbol *name_sym)
7858 {
7859 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7860 return strstr (name, "___XR") != NULL;
7861 }
7862
7863 /* Because of GNAT encoding conventions, several GDB symbols may match a
7864 given type name. If the type denoted by TYPE0 is to be preferred to
7865 that of TYPE1 for purposes of type printing, return non-zero;
7866 otherwise return 0. */
7867
7868 int
7869 ada_prefer_type (struct type *type0, struct type *type1)
7870 {
7871 if (type1 == NULL)
7872 return 1;
7873 else if (type0 == NULL)
7874 return 0;
7875 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7876 return 1;
7877 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7878 return 0;
7879 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7880 return 1;
7881 else if (ada_is_constrained_packed_array_type (type0))
7882 return 1;
7883 else if (ada_is_array_descriptor_type (type0)
7884 && !ada_is_array_descriptor_type (type1))
7885 return 1;
7886 else
7887 {
7888 const char *type0_name = TYPE_NAME (type0);
7889 const char *type1_name = TYPE_NAME (type1);
7890
7891 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7892 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7893 return 1;
7894 }
7895 return 0;
7896 }
7897
7898 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7899 null. */
7900
7901 const char *
7902 ada_type_name (struct type *type)
7903 {
7904 if (type == NULL)
7905 return NULL;
7906 return TYPE_NAME (type);
7907 }
7908
7909 /* Search the list of "descriptive" types associated to TYPE for a type
7910 whose name is NAME. */
7911
7912 static struct type *
7913 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7914 {
7915 struct type *result, *tmp;
7916
7917 if (ada_ignore_descriptive_types_p)
7918 return NULL;
7919
7920 /* If there no descriptive-type info, then there is no parallel type
7921 to be found. */
7922 if (!HAVE_GNAT_AUX_INFO (type))
7923 return NULL;
7924
7925 result = TYPE_DESCRIPTIVE_TYPE (type);
7926 while (result != NULL)
7927 {
7928 const char *result_name = ada_type_name (result);
7929
7930 if (result_name == NULL)
7931 {
7932 warning (_("unexpected null name on descriptive type"));
7933 return NULL;
7934 }
7935
7936 /* If the names match, stop. */
7937 if (strcmp (result_name, name) == 0)
7938 break;
7939
7940 /* Otherwise, look at the next item on the list, if any. */
7941 if (HAVE_GNAT_AUX_INFO (result))
7942 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7943 else
7944 tmp = NULL;
7945
7946 /* If not found either, try after having resolved the typedef. */
7947 if (tmp != NULL)
7948 result = tmp;
7949 else
7950 {
7951 result = check_typedef (result);
7952 if (HAVE_GNAT_AUX_INFO (result))
7953 result = TYPE_DESCRIPTIVE_TYPE (result);
7954 else
7955 result = NULL;
7956 }
7957 }
7958
7959 /* If we didn't find a match, see whether this is a packed array. With
7960 older compilers, the descriptive type information is either absent or
7961 irrelevant when it comes to packed arrays so the above lookup fails.
7962 Fall back to using a parallel lookup by name in this case. */
7963 if (result == NULL && ada_is_constrained_packed_array_type (type))
7964 return ada_find_any_type (name);
7965
7966 return result;
7967 }
7968
7969 /* Find a parallel type to TYPE with the specified NAME, using the
7970 descriptive type taken from the debugging information, if available,
7971 and otherwise using the (slower) name-based method. */
7972
7973 static struct type *
7974 ada_find_parallel_type_with_name (struct type *type, const char *name)
7975 {
7976 struct type *result = NULL;
7977
7978 if (HAVE_GNAT_AUX_INFO (type))
7979 result = find_parallel_type_by_descriptive_type (type, name);
7980 else
7981 result = ada_find_any_type (name);
7982
7983 return result;
7984 }
7985
7986 /* Same as above, but specify the name of the parallel type by appending
7987 SUFFIX to the name of TYPE. */
7988
7989 struct type *
7990 ada_find_parallel_type (struct type *type, const char *suffix)
7991 {
7992 char *name;
7993 const char *type_name = ada_type_name (type);
7994 int len;
7995
7996 if (type_name == NULL)
7997 return NULL;
7998
7999 len = strlen (type_name);
8000
8001 name = (char *) alloca (len + strlen (suffix) + 1);
8002
8003 strcpy (name, type_name);
8004 strcpy (name + len, suffix);
8005
8006 return ada_find_parallel_type_with_name (type, name);
8007 }
8008
8009 /* If TYPE is a variable-size record type, return the corresponding template
8010 type describing its fields. Otherwise, return NULL. */
8011
8012 static struct type *
8013 dynamic_template_type (struct type *type)
8014 {
8015 type = ada_check_typedef (type);
8016
8017 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8018 || ada_type_name (type) == NULL)
8019 return NULL;
8020 else
8021 {
8022 int len = strlen (ada_type_name (type));
8023
8024 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8025 return type;
8026 else
8027 return ada_find_parallel_type (type, "___XVE");
8028 }
8029 }
8030
8031 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8032 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8033
8034 static int
8035 is_dynamic_field (struct type *templ_type, int field_num)
8036 {
8037 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8038
8039 return name != NULL
8040 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8041 && strstr (name, "___XVL") != NULL;
8042 }
8043
8044 /* The index of the variant field of TYPE, or -1 if TYPE does not
8045 represent a variant record type. */
8046
8047 static int
8048 variant_field_index (struct type *type)
8049 {
8050 int f;
8051
8052 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8053 return -1;
8054
8055 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8056 {
8057 if (ada_is_variant_part (type, f))
8058 return f;
8059 }
8060 return -1;
8061 }
8062
8063 /* A record type with no fields. */
8064
8065 static struct type *
8066 empty_record (struct type *templ)
8067 {
8068 struct type *type = alloc_type_copy (templ);
8069
8070 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8071 TYPE_NFIELDS (type) = 0;
8072 TYPE_FIELDS (type) = NULL;
8073 INIT_NONE_SPECIFIC (type);
8074 TYPE_NAME (type) = "<empty>";
8075 TYPE_LENGTH (type) = 0;
8076 return type;
8077 }
8078
8079 /* An ordinary record type (with fixed-length fields) that describes
8080 the value of type TYPE at VALADDR or ADDRESS (see comments at
8081 the beginning of this section) VAL according to GNAT conventions.
8082 DVAL0 should describe the (portion of a) record that contains any
8083 necessary discriminants. It should be NULL if value_type (VAL) is
8084 an outer-level type (i.e., as opposed to a branch of a variant.) A
8085 variant field (unless unchecked) is replaced by a particular branch
8086 of the variant.
8087
8088 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8089 length are not statically known are discarded. As a consequence,
8090 VALADDR, ADDRESS and DVAL0 are ignored.
8091
8092 NOTE: Limitations: For now, we assume that dynamic fields and
8093 variants occupy whole numbers of bytes. However, they need not be
8094 byte-aligned. */
8095
8096 struct type *
8097 ada_template_to_fixed_record_type_1 (struct type *type,
8098 const gdb_byte *valaddr,
8099 CORE_ADDR address, struct value *dval0,
8100 int keep_dynamic_fields)
8101 {
8102 struct value *mark = value_mark ();
8103 struct value *dval;
8104 struct type *rtype;
8105 int nfields, bit_len;
8106 int variant_field;
8107 long off;
8108 int fld_bit_len;
8109 int f;
8110
8111 /* Compute the number of fields in this record type that are going
8112 to be processed: unless keep_dynamic_fields, this includes only
8113 fields whose position and length are static will be processed. */
8114 if (keep_dynamic_fields)
8115 nfields = TYPE_NFIELDS (type);
8116 else
8117 {
8118 nfields = 0;
8119 while (nfields < TYPE_NFIELDS (type)
8120 && !ada_is_variant_part (type, nfields)
8121 && !is_dynamic_field (type, nfields))
8122 nfields++;
8123 }
8124
8125 rtype = alloc_type_copy (type);
8126 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8127 INIT_NONE_SPECIFIC (rtype);
8128 TYPE_NFIELDS (rtype) = nfields;
8129 TYPE_FIELDS (rtype) = (struct field *)
8130 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8131 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8132 TYPE_NAME (rtype) = ada_type_name (type);
8133 TYPE_FIXED_INSTANCE (rtype) = 1;
8134
8135 off = 0;
8136 bit_len = 0;
8137 variant_field = -1;
8138
8139 for (f = 0; f < nfields; f += 1)
8140 {
8141 off = align_value (off, field_alignment (type, f))
8142 + TYPE_FIELD_BITPOS (type, f);
8143 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8144 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8145
8146 if (ada_is_variant_part (type, f))
8147 {
8148 variant_field = f;
8149 fld_bit_len = 0;
8150 }
8151 else if (is_dynamic_field (type, f))
8152 {
8153 const gdb_byte *field_valaddr = valaddr;
8154 CORE_ADDR field_address = address;
8155 struct type *field_type =
8156 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8157
8158 if (dval0 == NULL)
8159 {
8160 /* rtype's length is computed based on the run-time
8161 value of discriminants. If the discriminants are not
8162 initialized, the type size may be completely bogus and
8163 GDB may fail to allocate a value for it. So check the
8164 size first before creating the value. */
8165 ada_ensure_varsize_limit (rtype);
8166 /* Using plain value_from_contents_and_address here
8167 causes problems because we will end up trying to
8168 resolve a type that is currently being
8169 constructed. */
8170 dval = value_from_contents_and_address_unresolved (rtype,
8171 valaddr,
8172 address);
8173 rtype = value_type (dval);
8174 }
8175 else
8176 dval = dval0;
8177
8178 /* If the type referenced by this field is an aligner type, we need
8179 to unwrap that aligner type, because its size might not be set.
8180 Keeping the aligner type would cause us to compute the wrong
8181 size for this field, impacting the offset of the all the fields
8182 that follow this one. */
8183 if (ada_is_aligner_type (field_type))
8184 {
8185 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8186
8187 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8188 field_address = cond_offset_target (field_address, field_offset);
8189 field_type = ada_aligned_type (field_type);
8190 }
8191
8192 field_valaddr = cond_offset_host (field_valaddr,
8193 off / TARGET_CHAR_BIT);
8194 field_address = cond_offset_target (field_address,
8195 off / TARGET_CHAR_BIT);
8196
8197 /* Get the fixed type of the field. Note that, in this case,
8198 we do not want to get the real type out of the tag: if
8199 the current field is the parent part of a tagged record,
8200 we will get the tag of the object. Clearly wrong: the real
8201 type of the parent is not the real type of the child. We
8202 would end up in an infinite loop. */
8203 field_type = ada_get_base_type (field_type);
8204 field_type = ada_to_fixed_type (field_type, field_valaddr,
8205 field_address, dval, 0);
8206 /* If the field size is already larger than the maximum
8207 object size, then the record itself will necessarily
8208 be larger than the maximum object size. We need to make
8209 this check now, because the size might be so ridiculously
8210 large (due to an uninitialized variable in the inferior)
8211 that it would cause an overflow when adding it to the
8212 record size. */
8213 ada_ensure_varsize_limit (field_type);
8214
8215 TYPE_FIELD_TYPE (rtype, f) = field_type;
8216 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8217 /* The multiplication can potentially overflow. But because
8218 the field length has been size-checked just above, and
8219 assuming that the maximum size is a reasonable value,
8220 an overflow should not happen in practice. So rather than
8221 adding overflow recovery code to this already complex code,
8222 we just assume that it's not going to happen. */
8223 fld_bit_len =
8224 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8225 }
8226 else
8227 {
8228 /* Note: If this field's type is a typedef, it is important
8229 to preserve the typedef layer.
8230
8231 Otherwise, we might be transforming a typedef to a fat
8232 pointer (encoding a pointer to an unconstrained array),
8233 into a basic fat pointer (encoding an unconstrained
8234 array). As both types are implemented using the same
8235 structure, the typedef is the only clue which allows us
8236 to distinguish between the two options. Stripping it
8237 would prevent us from printing this field appropriately. */
8238 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8239 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8240 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8241 fld_bit_len =
8242 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8243 else
8244 {
8245 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8246
8247 /* We need to be careful of typedefs when computing
8248 the length of our field. If this is a typedef,
8249 get the length of the target type, not the length
8250 of the typedef. */
8251 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8252 field_type = ada_typedef_target_type (field_type);
8253
8254 fld_bit_len =
8255 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8256 }
8257 }
8258 if (off + fld_bit_len > bit_len)
8259 bit_len = off + fld_bit_len;
8260 off += fld_bit_len;
8261 TYPE_LENGTH (rtype) =
8262 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8263 }
8264
8265 /* We handle the variant part, if any, at the end because of certain
8266 odd cases in which it is re-ordered so as NOT to be the last field of
8267 the record. This can happen in the presence of representation
8268 clauses. */
8269 if (variant_field >= 0)
8270 {
8271 struct type *branch_type;
8272
8273 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8274
8275 if (dval0 == NULL)
8276 {
8277 /* Using plain value_from_contents_and_address here causes
8278 problems because we will end up trying to resolve a type
8279 that is currently being constructed. */
8280 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8281 address);
8282 rtype = value_type (dval);
8283 }
8284 else
8285 dval = dval0;
8286
8287 branch_type =
8288 to_fixed_variant_branch_type
8289 (TYPE_FIELD_TYPE (type, variant_field),
8290 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8291 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8292 if (branch_type == NULL)
8293 {
8294 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8295 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8296 TYPE_NFIELDS (rtype) -= 1;
8297 }
8298 else
8299 {
8300 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8301 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8302 fld_bit_len =
8303 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8304 TARGET_CHAR_BIT;
8305 if (off + fld_bit_len > bit_len)
8306 bit_len = off + fld_bit_len;
8307 TYPE_LENGTH (rtype) =
8308 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8309 }
8310 }
8311
8312 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8313 should contain the alignment of that record, which should be a strictly
8314 positive value. If null or negative, then something is wrong, most
8315 probably in the debug info. In that case, we don't round up the size
8316 of the resulting type. If this record is not part of another structure,
8317 the current RTYPE length might be good enough for our purposes. */
8318 if (TYPE_LENGTH (type) <= 0)
8319 {
8320 if (TYPE_NAME (rtype))
8321 warning (_("Invalid type size for `%s' detected: %s."),
8322 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8323 else
8324 warning (_("Invalid type size for <unnamed> detected: %s."),
8325 pulongest (TYPE_LENGTH (type)));
8326 }
8327 else
8328 {
8329 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8330 TYPE_LENGTH (type));
8331 }
8332
8333 value_free_to_mark (mark);
8334 if (TYPE_LENGTH (rtype) > varsize_limit)
8335 error (_("record type with dynamic size is larger than varsize-limit"));
8336 return rtype;
8337 }
8338
8339 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8340 of 1. */
8341
8342 static struct type *
8343 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8344 CORE_ADDR address, struct value *dval0)
8345 {
8346 return ada_template_to_fixed_record_type_1 (type, valaddr,
8347 address, dval0, 1);
8348 }
8349
8350 /* An ordinary record type in which ___XVL-convention fields and
8351 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8352 static approximations, containing all possible fields. Uses
8353 no runtime values. Useless for use in values, but that's OK,
8354 since the results are used only for type determinations. Works on both
8355 structs and unions. Representation note: to save space, we memorize
8356 the result of this function in the TYPE_TARGET_TYPE of the
8357 template type. */
8358
8359 static struct type *
8360 template_to_static_fixed_type (struct type *type0)
8361 {
8362 struct type *type;
8363 int nfields;
8364 int f;
8365
8366 /* No need no do anything if the input type is already fixed. */
8367 if (TYPE_FIXED_INSTANCE (type0))
8368 return type0;
8369
8370 /* Likewise if we already have computed the static approximation. */
8371 if (TYPE_TARGET_TYPE (type0) != NULL)
8372 return TYPE_TARGET_TYPE (type0);
8373
8374 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8375 type = type0;
8376 nfields = TYPE_NFIELDS (type0);
8377
8378 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8379 recompute all over next time. */
8380 TYPE_TARGET_TYPE (type0) = type;
8381
8382 for (f = 0; f < nfields; f += 1)
8383 {
8384 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8385 struct type *new_type;
8386
8387 if (is_dynamic_field (type0, f))
8388 {
8389 field_type = ada_check_typedef (field_type);
8390 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8391 }
8392 else
8393 new_type = static_unwrap_type (field_type);
8394
8395 if (new_type != field_type)
8396 {
8397 /* Clone TYPE0 only the first time we get a new field type. */
8398 if (type == type0)
8399 {
8400 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8401 TYPE_CODE (type) = TYPE_CODE (type0);
8402 INIT_NONE_SPECIFIC (type);
8403 TYPE_NFIELDS (type) = nfields;
8404 TYPE_FIELDS (type) = (struct field *)
8405 TYPE_ALLOC (type, nfields * sizeof (struct field));
8406 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8407 sizeof (struct field) * nfields);
8408 TYPE_NAME (type) = ada_type_name (type0);
8409 TYPE_FIXED_INSTANCE (type) = 1;
8410 TYPE_LENGTH (type) = 0;
8411 }
8412 TYPE_FIELD_TYPE (type, f) = new_type;
8413 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8414 }
8415 }
8416
8417 return type;
8418 }
8419
8420 /* Given an object of type TYPE whose contents are at VALADDR and
8421 whose address in memory is ADDRESS, returns a revision of TYPE,
8422 which should be a non-dynamic-sized record, in which the variant
8423 part, if any, is replaced with the appropriate branch. Looks
8424 for discriminant values in DVAL0, which can be NULL if the record
8425 contains the necessary discriminant values. */
8426
8427 static struct type *
8428 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8429 CORE_ADDR address, struct value *dval0)
8430 {
8431 struct value *mark = value_mark ();
8432 struct value *dval;
8433 struct type *rtype;
8434 struct type *branch_type;
8435 int nfields = TYPE_NFIELDS (type);
8436 int variant_field = variant_field_index (type);
8437
8438 if (variant_field == -1)
8439 return type;
8440
8441 if (dval0 == NULL)
8442 {
8443 dval = value_from_contents_and_address (type, valaddr, address);
8444 type = value_type (dval);
8445 }
8446 else
8447 dval = dval0;
8448
8449 rtype = alloc_type_copy (type);
8450 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8451 INIT_NONE_SPECIFIC (rtype);
8452 TYPE_NFIELDS (rtype) = nfields;
8453 TYPE_FIELDS (rtype) =
8454 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8455 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8456 sizeof (struct field) * nfields);
8457 TYPE_NAME (rtype) = ada_type_name (type);
8458 TYPE_FIXED_INSTANCE (rtype) = 1;
8459 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8460
8461 branch_type = to_fixed_variant_branch_type
8462 (TYPE_FIELD_TYPE (type, variant_field),
8463 cond_offset_host (valaddr,
8464 TYPE_FIELD_BITPOS (type, variant_field)
8465 / TARGET_CHAR_BIT),
8466 cond_offset_target (address,
8467 TYPE_FIELD_BITPOS (type, variant_field)
8468 / TARGET_CHAR_BIT), dval);
8469 if (branch_type == NULL)
8470 {
8471 int f;
8472
8473 for (f = variant_field + 1; f < nfields; f += 1)
8474 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8475 TYPE_NFIELDS (rtype) -= 1;
8476 }
8477 else
8478 {
8479 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8480 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8481 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8482 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8483 }
8484 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8485
8486 value_free_to_mark (mark);
8487 return rtype;
8488 }
8489
8490 /* An ordinary record type (with fixed-length fields) that describes
8491 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8492 beginning of this section]. Any necessary discriminants' values
8493 should be in DVAL, a record value; it may be NULL if the object
8494 at ADDR itself contains any necessary discriminant values.
8495 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8496 values from the record are needed. Except in the case that DVAL,
8497 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8498 unchecked) is replaced by a particular branch of the variant.
8499
8500 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8501 is questionable and may be removed. It can arise during the
8502 processing of an unconstrained-array-of-record type where all the
8503 variant branches have exactly the same size. This is because in
8504 such cases, the compiler does not bother to use the XVS convention
8505 when encoding the record. I am currently dubious of this
8506 shortcut and suspect the compiler should be altered. FIXME. */
8507
8508 static struct type *
8509 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8510 CORE_ADDR address, struct value *dval)
8511 {
8512 struct type *templ_type;
8513
8514 if (TYPE_FIXED_INSTANCE (type0))
8515 return type0;
8516
8517 templ_type = dynamic_template_type (type0);
8518
8519 if (templ_type != NULL)
8520 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8521 else if (variant_field_index (type0) >= 0)
8522 {
8523 if (dval == NULL && valaddr == NULL && address == 0)
8524 return type0;
8525 return to_record_with_fixed_variant_part (type0, valaddr, address,
8526 dval);
8527 }
8528 else
8529 {
8530 TYPE_FIXED_INSTANCE (type0) = 1;
8531 return type0;
8532 }
8533
8534 }
8535
8536 /* An ordinary record type (with fixed-length fields) that describes
8537 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8538 union type. Any necessary discriminants' values should be in DVAL,
8539 a record value. That is, this routine selects the appropriate
8540 branch of the union at ADDR according to the discriminant value
8541 indicated in the union's type name. Returns VAR_TYPE0 itself if
8542 it represents a variant subject to a pragma Unchecked_Union. */
8543
8544 static struct type *
8545 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8546 CORE_ADDR address, struct value *dval)
8547 {
8548 int which;
8549 struct type *templ_type;
8550 struct type *var_type;
8551
8552 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8553 var_type = TYPE_TARGET_TYPE (var_type0);
8554 else
8555 var_type = var_type0;
8556
8557 templ_type = ada_find_parallel_type (var_type, "___XVU");
8558
8559 if (templ_type != NULL)
8560 var_type = templ_type;
8561
8562 if (is_unchecked_variant (var_type, value_type (dval)))
8563 return var_type0;
8564 which =
8565 ada_which_variant_applies (var_type,
8566 value_type (dval), value_contents (dval));
8567
8568 if (which < 0)
8569 return empty_record (var_type);
8570 else if (is_dynamic_field (var_type, which))
8571 return to_fixed_record_type
8572 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8573 valaddr, address, dval);
8574 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8575 return
8576 to_fixed_record_type
8577 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8578 else
8579 return TYPE_FIELD_TYPE (var_type, which);
8580 }
8581
8582 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8583 ENCODING_TYPE, a type following the GNAT conventions for discrete
8584 type encodings, only carries redundant information. */
8585
8586 static int
8587 ada_is_redundant_range_encoding (struct type *range_type,
8588 struct type *encoding_type)
8589 {
8590 const char *bounds_str;
8591 int n;
8592 LONGEST lo, hi;
8593
8594 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8595
8596 if (TYPE_CODE (get_base_type (range_type))
8597 != TYPE_CODE (get_base_type (encoding_type)))
8598 {
8599 /* The compiler probably used a simple base type to describe
8600 the range type instead of the range's actual base type,
8601 expecting us to get the real base type from the encoding
8602 anyway. In this situation, the encoding cannot be ignored
8603 as redundant. */
8604 return 0;
8605 }
8606
8607 if (is_dynamic_type (range_type))
8608 return 0;
8609
8610 if (TYPE_NAME (encoding_type) == NULL)
8611 return 0;
8612
8613 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8614 if (bounds_str == NULL)
8615 return 0;
8616
8617 n = 8; /* Skip "___XDLU_". */
8618 if (!ada_scan_number (bounds_str, n, &lo, &n))
8619 return 0;
8620 if (TYPE_LOW_BOUND (range_type) != lo)
8621 return 0;
8622
8623 n += 2; /* Skip the "__" separator between the two bounds. */
8624 if (!ada_scan_number (bounds_str, n, &hi, &n))
8625 return 0;
8626 if (TYPE_HIGH_BOUND (range_type) != hi)
8627 return 0;
8628
8629 return 1;
8630 }
8631
8632 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8633 a type following the GNAT encoding for describing array type
8634 indices, only carries redundant information. */
8635
8636 static int
8637 ada_is_redundant_index_type_desc (struct type *array_type,
8638 struct type *desc_type)
8639 {
8640 struct type *this_layer = check_typedef (array_type);
8641 int i;
8642
8643 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8644 {
8645 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8646 TYPE_FIELD_TYPE (desc_type, i)))
8647 return 0;
8648 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8649 }
8650
8651 return 1;
8652 }
8653
8654 /* Assuming that TYPE0 is an array type describing the type of a value
8655 at ADDR, and that DVAL describes a record containing any
8656 discriminants used in TYPE0, returns a type for the value that
8657 contains no dynamic components (that is, no components whose sizes
8658 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8659 true, gives an error message if the resulting type's size is over
8660 varsize_limit. */
8661
8662 static struct type *
8663 to_fixed_array_type (struct type *type0, struct value *dval,
8664 int ignore_too_big)
8665 {
8666 struct type *index_type_desc;
8667 struct type *result;
8668 int constrained_packed_array_p;
8669 static const char *xa_suffix = "___XA";
8670
8671 type0 = ada_check_typedef (type0);
8672 if (TYPE_FIXED_INSTANCE (type0))
8673 return type0;
8674
8675 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8676 if (constrained_packed_array_p)
8677 type0 = decode_constrained_packed_array_type (type0);
8678
8679 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8680
8681 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8682 encoding suffixed with 'P' may still be generated. If so,
8683 it should be used to find the XA type. */
8684
8685 if (index_type_desc == NULL)
8686 {
8687 const char *type_name = ada_type_name (type0);
8688
8689 if (type_name != NULL)
8690 {
8691 const int len = strlen (type_name);
8692 char *name = (char *) alloca (len + strlen (xa_suffix));
8693
8694 if (type_name[len - 1] == 'P')
8695 {
8696 strcpy (name, type_name);
8697 strcpy (name + len - 1, xa_suffix);
8698 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8699 }
8700 }
8701 }
8702
8703 ada_fixup_array_indexes_type (index_type_desc);
8704 if (index_type_desc != NULL
8705 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8706 {
8707 /* Ignore this ___XA parallel type, as it does not bring any
8708 useful information. This allows us to avoid creating fixed
8709 versions of the array's index types, which would be identical
8710 to the original ones. This, in turn, can also help avoid
8711 the creation of fixed versions of the array itself. */
8712 index_type_desc = NULL;
8713 }
8714
8715 if (index_type_desc == NULL)
8716 {
8717 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8718
8719 /* NOTE: elt_type---the fixed version of elt_type0---should never
8720 depend on the contents of the array in properly constructed
8721 debugging data. */
8722 /* Create a fixed version of the array element type.
8723 We're not providing the address of an element here,
8724 and thus the actual object value cannot be inspected to do
8725 the conversion. This should not be a problem, since arrays of
8726 unconstrained objects are not allowed. In particular, all
8727 the elements of an array of a tagged type should all be of
8728 the same type specified in the debugging info. No need to
8729 consult the object tag. */
8730 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8731
8732 /* Make sure we always create a new array type when dealing with
8733 packed array types, since we're going to fix-up the array
8734 type length and element bitsize a little further down. */
8735 if (elt_type0 == elt_type && !constrained_packed_array_p)
8736 result = type0;
8737 else
8738 result = create_array_type (alloc_type_copy (type0),
8739 elt_type, TYPE_INDEX_TYPE (type0));
8740 }
8741 else
8742 {
8743 int i;
8744 struct type *elt_type0;
8745
8746 elt_type0 = type0;
8747 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8748 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8749
8750 /* NOTE: result---the fixed version of elt_type0---should never
8751 depend on the contents of the array in properly constructed
8752 debugging data. */
8753 /* Create a fixed version of the array element type.
8754 We're not providing the address of an element here,
8755 and thus the actual object value cannot be inspected to do
8756 the conversion. This should not be a problem, since arrays of
8757 unconstrained objects are not allowed. In particular, all
8758 the elements of an array of a tagged type should all be of
8759 the same type specified in the debugging info. No need to
8760 consult the object tag. */
8761 result =
8762 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8763
8764 elt_type0 = type0;
8765 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8766 {
8767 struct type *range_type =
8768 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8769
8770 result = create_array_type (alloc_type_copy (elt_type0),
8771 result, range_type);
8772 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8773 }
8774 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8775 error (_("array type with dynamic size is larger than varsize-limit"));
8776 }
8777
8778 /* We want to preserve the type name. This can be useful when
8779 trying to get the type name of a value that has already been
8780 printed (for instance, if the user did "print VAR; whatis $". */
8781 TYPE_NAME (result) = TYPE_NAME (type0);
8782
8783 if (constrained_packed_array_p)
8784 {
8785 /* So far, the resulting type has been created as if the original
8786 type was a regular (non-packed) array type. As a result, the
8787 bitsize of the array elements needs to be set again, and the array
8788 length needs to be recomputed based on that bitsize. */
8789 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8790 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8791
8792 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8793 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8794 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8795 TYPE_LENGTH (result)++;
8796 }
8797
8798 TYPE_FIXED_INSTANCE (result) = 1;
8799 return result;
8800 }
8801
8802
8803 /* A standard type (containing no dynamically sized components)
8804 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8805 DVAL describes a record containing any discriminants used in TYPE0,
8806 and may be NULL if there are none, or if the object of type TYPE at
8807 ADDRESS or in VALADDR contains these discriminants.
8808
8809 If CHECK_TAG is not null, in the case of tagged types, this function
8810 attempts to locate the object's tag and use it to compute the actual
8811 type. However, when ADDRESS is null, we cannot use it to determine the
8812 location of the tag, and therefore compute the tagged type's actual type.
8813 So we return the tagged type without consulting the tag. */
8814
8815 static struct type *
8816 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8817 CORE_ADDR address, struct value *dval, int check_tag)
8818 {
8819 type = ada_check_typedef (type);
8820
8821 /* Only un-fixed types need to be handled here. */
8822 if (!HAVE_GNAT_AUX_INFO (type))
8823 return type;
8824
8825 switch (TYPE_CODE (type))
8826 {
8827 default:
8828 return type;
8829 case TYPE_CODE_STRUCT:
8830 {
8831 struct type *static_type = to_static_fixed_type (type);
8832 struct type *fixed_record_type =
8833 to_fixed_record_type (type, valaddr, address, NULL);
8834
8835 /* If STATIC_TYPE is a tagged type and we know the object's address,
8836 then we can determine its tag, and compute the object's actual
8837 type from there. Note that we have to use the fixed record
8838 type (the parent part of the record may have dynamic fields
8839 and the way the location of _tag is expressed may depend on
8840 them). */
8841
8842 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8843 {
8844 struct value *tag =
8845 value_tag_from_contents_and_address
8846 (fixed_record_type,
8847 valaddr,
8848 address);
8849 struct type *real_type = type_from_tag (tag);
8850 struct value *obj =
8851 value_from_contents_and_address (fixed_record_type,
8852 valaddr,
8853 address);
8854 fixed_record_type = value_type (obj);
8855 if (real_type != NULL)
8856 return to_fixed_record_type
8857 (real_type, NULL,
8858 value_address (ada_tag_value_at_base_address (obj)), NULL);
8859 }
8860
8861 /* Check to see if there is a parallel ___XVZ variable.
8862 If there is, then it provides the actual size of our type. */
8863 else if (ada_type_name (fixed_record_type) != NULL)
8864 {
8865 const char *name = ada_type_name (fixed_record_type);
8866 char *xvz_name
8867 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8868 bool xvz_found = false;
8869 LONGEST size;
8870
8871 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8872 try
8873 {
8874 xvz_found = get_int_var_value (xvz_name, size);
8875 }
8876 catch (const gdb_exception_error &except)
8877 {
8878 /* We found the variable, but somehow failed to read
8879 its value. Rethrow the same error, but with a little
8880 bit more information, to help the user understand
8881 what went wrong (Eg: the variable might have been
8882 optimized out). */
8883 throw_error (except.error,
8884 _("unable to read value of %s (%s)"),
8885 xvz_name, except.what ());
8886 }
8887
8888 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8889 {
8890 fixed_record_type = copy_type (fixed_record_type);
8891 TYPE_LENGTH (fixed_record_type) = size;
8892
8893 /* The FIXED_RECORD_TYPE may have be a stub. We have
8894 observed this when the debugging info is STABS, and
8895 apparently it is something that is hard to fix.
8896
8897 In practice, we don't need the actual type definition
8898 at all, because the presence of the XVZ variable allows us
8899 to assume that there must be a XVS type as well, which we
8900 should be able to use later, when we need the actual type
8901 definition.
8902
8903 In the meantime, pretend that the "fixed" type we are
8904 returning is NOT a stub, because this can cause trouble
8905 when using this type to create new types targeting it.
8906 Indeed, the associated creation routines often check
8907 whether the target type is a stub and will try to replace
8908 it, thus using a type with the wrong size. This, in turn,
8909 might cause the new type to have the wrong size too.
8910 Consider the case of an array, for instance, where the size
8911 of the array is computed from the number of elements in
8912 our array multiplied by the size of its element. */
8913 TYPE_STUB (fixed_record_type) = 0;
8914 }
8915 }
8916 return fixed_record_type;
8917 }
8918 case TYPE_CODE_ARRAY:
8919 return to_fixed_array_type (type, dval, 1);
8920 case TYPE_CODE_UNION:
8921 if (dval == NULL)
8922 return type;
8923 else
8924 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8925 }
8926 }
8927
8928 /* The same as ada_to_fixed_type_1, except that it preserves the type
8929 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8930
8931 The typedef layer needs be preserved in order to differentiate between
8932 arrays and array pointers when both types are implemented using the same
8933 fat pointer. In the array pointer case, the pointer is encoded as
8934 a typedef of the pointer type. For instance, considering:
8935
8936 type String_Access is access String;
8937 S1 : String_Access := null;
8938
8939 To the debugger, S1 is defined as a typedef of type String. But
8940 to the user, it is a pointer. So if the user tries to print S1,
8941 we should not dereference the array, but print the array address
8942 instead.
8943
8944 If we didn't preserve the typedef layer, we would lose the fact that
8945 the type is to be presented as a pointer (needs de-reference before
8946 being printed). And we would also use the source-level type name. */
8947
8948 struct type *
8949 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8950 CORE_ADDR address, struct value *dval, int check_tag)
8951
8952 {
8953 struct type *fixed_type =
8954 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8955
8956 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8957 then preserve the typedef layer.
8958
8959 Implementation note: We can only check the main-type portion of
8960 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8961 from TYPE now returns a type that has the same instance flags
8962 as TYPE. For instance, if TYPE is a "typedef const", and its
8963 target type is a "struct", then the typedef elimination will return
8964 a "const" version of the target type. See check_typedef for more
8965 details about how the typedef layer elimination is done.
8966
8967 brobecker/2010-11-19: It seems to me that the only case where it is
8968 useful to preserve the typedef layer is when dealing with fat pointers.
8969 Perhaps, we could add a check for that and preserve the typedef layer
8970 only in that situation. But this seems unnecessary so far, probably
8971 because we call check_typedef/ada_check_typedef pretty much everywhere.
8972 */
8973 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8974 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8975 == TYPE_MAIN_TYPE (fixed_type)))
8976 return type;
8977
8978 return fixed_type;
8979 }
8980
8981 /* A standard (static-sized) type corresponding as well as possible to
8982 TYPE0, but based on no runtime data. */
8983
8984 static struct type *
8985 to_static_fixed_type (struct type *type0)
8986 {
8987 struct type *type;
8988
8989 if (type0 == NULL)
8990 return NULL;
8991
8992 if (TYPE_FIXED_INSTANCE (type0))
8993 return type0;
8994
8995 type0 = ada_check_typedef (type0);
8996
8997 switch (TYPE_CODE (type0))
8998 {
8999 default:
9000 return type0;
9001 case TYPE_CODE_STRUCT:
9002 type = dynamic_template_type (type0);
9003 if (type != NULL)
9004 return template_to_static_fixed_type (type);
9005 else
9006 return template_to_static_fixed_type (type0);
9007 case TYPE_CODE_UNION:
9008 type = ada_find_parallel_type (type0, "___XVU");
9009 if (type != NULL)
9010 return template_to_static_fixed_type (type);
9011 else
9012 return template_to_static_fixed_type (type0);
9013 }
9014 }
9015
9016 /* A static approximation of TYPE with all type wrappers removed. */
9017
9018 static struct type *
9019 static_unwrap_type (struct type *type)
9020 {
9021 if (ada_is_aligner_type (type))
9022 {
9023 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9024 if (ada_type_name (type1) == NULL)
9025 TYPE_NAME (type1) = ada_type_name (type);
9026
9027 return static_unwrap_type (type1);
9028 }
9029 else
9030 {
9031 struct type *raw_real_type = ada_get_base_type (type);
9032
9033 if (raw_real_type == type)
9034 return type;
9035 else
9036 return to_static_fixed_type (raw_real_type);
9037 }
9038 }
9039
9040 /* In some cases, incomplete and private types require
9041 cross-references that are not resolved as records (for example,
9042 type Foo;
9043 type FooP is access Foo;
9044 V: FooP;
9045 type Foo is array ...;
9046 ). In these cases, since there is no mechanism for producing
9047 cross-references to such types, we instead substitute for FooP a
9048 stub enumeration type that is nowhere resolved, and whose tag is
9049 the name of the actual type. Call these types "non-record stubs". */
9050
9051 /* A type equivalent to TYPE that is not a non-record stub, if one
9052 exists, otherwise TYPE. */
9053
9054 struct type *
9055 ada_check_typedef (struct type *type)
9056 {
9057 if (type == NULL)
9058 return NULL;
9059
9060 /* If our type is an access to an unconstrained array, which is encoded
9061 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9062 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9063 what allows us to distinguish between fat pointers that represent
9064 array types, and fat pointers that represent array access types
9065 (in both cases, the compiler implements them as fat pointers). */
9066 if (ada_is_access_to_unconstrained_array (type))
9067 return type;
9068
9069 type = check_typedef (type);
9070 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9071 || !TYPE_STUB (type)
9072 || TYPE_NAME (type) == NULL)
9073 return type;
9074 else
9075 {
9076 const char *name = TYPE_NAME (type);
9077 struct type *type1 = ada_find_any_type (name);
9078
9079 if (type1 == NULL)
9080 return type;
9081
9082 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9083 stubs pointing to arrays, as we don't create symbols for array
9084 types, only for the typedef-to-array types). If that's the case,
9085 strip the typedef layer. */
9086 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9087 type1 = ada_check_typedef (type1);
9088
9089 return type1;
9090 }
9091 }
9092
9093 /* A value representing the data at VALADDR/ADDRESS as described by
9094 type TYPE0, but with a standard (static-sized) type that correctly
9095 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9096 type, then return VAL0 [this feature is simply to avoid redundant
9097 creation of struct values]. */
9098
9099 static struct value *
9100 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9101 struct value *val0)
9102 {
9103 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9104
9105 if (type == type0 && val0 != NULL)
9106 return val0;
9107
9108 if (VALUE_LVAL (val0) != lval_memory)
9109 {
9110 /* Our value does not live in memory; it could be a convenience
9111 variable, for instance. Create a not_lval value using val0's
9112 contents. */
9113 return value_from_contents (type, value_contents (val0));
9114 }
9115
9116 return value_from_contents_and_address (type, 0, address);
9117 }
9118
9119 /* A value representing VAL, but with a standard (static-sized) type
9120 that correctly describes it. Does not necessarily create a new
9121 value. */
9122
9123 struct value *
9124 ada_to_fixed_value (struct value *val)
9125 {
9126 val = unwrap_value (val);
9127 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9128 return val;
9129 }
9130 \f
9131
9132 /* Attributes */
9133
9134 /* Table mapping attribute numbers to names.
9135 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9136
9137 static const char *attribute_names[] = {
9138 "<?>",
9139
9140 "first",
9141 "last",
9142 "length",
9143 "image",
9144 "max",
9145 "min",
9146 "modulus",
9147 "pos",
9148 "size",
9149 "tag",
9150 "val",
9151 0
9152 };
9153
9154 static const char *
9155 ada_attribute_name (enum exp_opcode n)
9156 {
9157 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9158 return attribute_names[n - OP_ATR_FIRST + 1];
9159 else
9160 return attribute_names[0];
9161 }
9162
9163 /* Evaluate the 'POS attribute applied to ARG. */
9164
9165 static LONGEST
9166 pos_atr (struct value *arg)
9167 {
9168 struct value *val = coerce_ref (arg);
9169 struct type *type = value_type (val);
9170 LONGEST result;
9171
9172 if (!discrete_type_p (type))
9173 error (_("'POS only defined on discrete types"));
9174
9175 if (!discrete_position (type, value_as_long (val), &result))
9176 error (_("enumeration value is invalid: can't find 'POS"));
9177
9178 return result;
9179 }
9180
9181 static struct value *
9182 value_pos_atr (struct type *type, struct value *arg)
9183 {
9184 return value_from_longest (type, pos_atr (arg));
9185 }
9186
9187 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9188
9189 static struct value *
9190 value_val_atr (struct type *type, struct value *arg)
9191 {
9192 if (!discrete_type_p (type))
9193 error (_("'VAL only defined on discrete types"));
9194 if (!integer_type_p (value_type (arg)))
9195 error (_("'VAL requires integral argument"));
9196
9197 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9198 {
9199 long pos = value_as_long (arg);
9200
9201 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9202 error (_("argument to 'VAL out of range"));
9203 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9204 }
9205 else
9206 return value_from_longest (type, value_as_long (arg));
9207 }
9208 \f
9209
9210 /* Evaluation */
9211
9212 /* True if TYPE appears to be an Ada character type.
9213 [At the moment, this is true only for Character and Wide_Character;
9214 It is a heuristic test that could stand improvement]. */
9215
9216 bool
9217 ada_is_character_type (struct type *type)
9218 {
9219 const char *name;
9220
9221 /* If the type code says it's a character, then assume it really is,
9222 and don't check any further. */
9223 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9224 return true;
9225
9226 /* Otherwise, assume it's a character type iff it is a discrete type
9227 with a known character type name. */
9228 name = ada_type_name (type);
9229 return (name != NULL
9230 && (TYPE_CODE (type) == TYPE_CODE_INT
9231 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9232 && (strcmp (name, "character") == 0
9233 || strcmp (name, "wide_character") == 0
9234 || strcmp (name, "wide_wide_character") == 0
9235 || strcmp (name, "unsigned char") == 0));
9236 }
9237
9238 /* True if TYPE appears to be an Ada string type. */
9239
9240 bool
9241 ada_is_string_type (struct type *type)
9242 {
9243 type = ada_check_typedef (type);
9244 if (type != NULL
9245 && TYPE_CODE (type) != TYPE_CODE_PTR
9246 && (ada_is_simple_array_type (type)
9247 || ada_is_array_descriptor_type (type))
9248 && ada_array_arity (type) == 1)
9249 {
9250 struct type *elttype = ada_array_element_type (type, 1);
9251
9252 return ada_is_character_type (elttype);
9253 }
9254 else
9255 return false;
9256 }
9257
9258 /* The compiler sometimes provides a parallel XVS type for a given
9259 PAD type. Normally, it is safe to follow the PAD type directly,
9260 but older versions of the compiler have a bug that causes the offset
9261 of its "F" field to be wrong. Following that field in that case
9262 would lead to incorrect results, but this can be worked around
9263 by ignoring the PAD type and using the associated XVS type instead.
9264
9265 Set to True if the debugger should trust the contents of PAD types.
9266 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9267 static bool trust_pad_over_xvs = true;
9268
9269 /* True if TYPE is a struct type introduced by the compiler to force the
9270 alignment of a value. Such types have a single field with a
9271 distinctive name. */
9272
9273 int
9274 ada_is_aligner_type (struct type *type)
9275 {
9276 type = ada_check_typedef (type);
9277
9278 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9279 return 0;
9280
9281 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9282 && TYPE_NFIELDS (type) == 1
9283 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9284 }
9285
9286 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9287 the parallel type. */
9288
9289 struct type *
9290 ada_get_base_type (struct type *raw_type)
9291 {
9292 struct type *real_type_namer;
9293 struct type *raw_real_type;
9294
9295 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9296 return raw_type;
9297
9298 if (ada_is_aligner_type (raw_type))
9299 /* The encoding specifies that we should always use the aligner type.
9300 So, even if this aligner type has an associated XVS type, we should
9301 simply ignore it.
9302
9303 According to the compiler gurus, an XVS type parallel to an aligner
9304 type may exist because of a stabs limitation. In stabs, aligner
9305 types are empty because the field has a variable-sized type, and
9306 thus cannot actually be used as an aligner type. As a result,
9307 we need the associated parallel XVS type to decode the type.
9308 Since the policy in the compiler is to not change the internal
9309 representation based on the debugging info format, we sometimes
9310 end up having a redundant XVS type parallel to the aligner type. */
9311 return raw_type;
9312
9313 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9314 if (real_type_namer == NULL
9315 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9316 || TYPE_NFIELDS (real_type_namer) != 1)
9317 return raw_type;
9318
9319 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9320 {
9321 /* This is an older encoding form where the base type needs to be
9322 looked up by name. We prefer the newer encoding because it is
9323 more efficient. */
9324 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9325 if (raw_real_type == NULL)
9326 return raw_type;
9327 else
9328 return raw_real_type;
9329 }
9330
9331 /* The field in our XVS type is a reference to the base type. */
9332 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9333 }
9334
9335 /* The type of value designated by TYPE, with all aligners removed. */
9336
9337 struct type *
9338 ada_aligned_type (struct type *type)
9339 {
9340 if (ada_is_aligner_type (type))
9341 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9342 else
9343 return ada_get_base_type (type);
9344 }
9345
9346
9347 /* The address of the aligned value in an object at address VALADDR
9348 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9349
9350 const gdb_byte *
9351 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9352 {
9353 if (ada_is_aligner_type (type))
9354 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9355 valaddr +
9356 TYPE_FIELD_BITPOS (type,
9357 0) / TARGET_CHAR_BIT);
9358 else
9359 return valaddr;
9360 }
9361
9362
9363
9364 /* The printed representation of an enumeration literal with encoded
9365 name NAME. The value is good to the next call of ada_enum_name. */
9366 const char *
9367 ada_enum_name (const char *name)
9368 {
9369 static char *result;
9370 static size_t result_len = 0;
9371 const char *tmp;
9372
9373 /* First, unqualify the enumeration name:
9374 1. Search for the last '.' character. If we find one, then skip
9375 all the preceding characters, the unqualified name starts
9376 right after that dot.
9377 2. Otherwise, we may be debugging on a target where the compiler
9378 translates dots into "__". Search forward for double underscores,
9379 but stop searching when we hit an overloading suffix, which is
9380 of the form "__" followed by digits. */
9381
9382 tmp = strrchr (name, '.');
9383 if (tmp != NULL)
9384 name = tmp + 1;
9385 else
9386 {
9387 while ((tmp = strstr (name, "__")) != NULL)
9388 {
9389 if (isdigit (tmp[2]))
9390 break;
9391 else
9392 name = tmp + 2;
9393 }
9394 }
9395
9396 if (name[0] == 'Q')
9397 {
9398 int v;
9399
9400 if (name[1] == 'U' || name[1] == 'W')
9401 {
9402 if (sscanf (name + 2, "%x", &v) != 1)
9403 return name;
9404 }
9405 else if (((name[1] >= '0' && name[1] <= '9')
9406 || (name[1] >= 'a' && name[1] <= 'z'))
9407 && name[2] == '\0')
9408 {
9409 GROW_VECT (result, result_len, 4);
9410 xsnprintf (result, result_len, "'%c'", name[1]);
9411 return result;
9412 }
9413 else
9414 return name;
9415
9416 GROW_VECT (result, result_len, 16);
9417 if (isascii (v) && isprint (v))
9418 xsnprintf (result, result_len, "'%c'", v);
9419 else if (name[1] == 'U')
9420 xsnprintf (result, result_len, "[\"%02x\"]", v);
9421 else
9422 xsnprintf (result, result_len, "[\"%04x\"]", v);
9423
9424 return result;
9425 }
9426 else
9427 {
9428 tmp = strstr (name, "__");
9429 if (tmp == NULL)
9430 tmp = strstr (name, "$");
9431 if (tmp != NULL)
9432 {
9433 GROW_VECT (result, result_len, tmp - name + 1);
9434 strncpy (result, name, tmp - name);
9435 result[tmp - name] = '\0';
9436 return result;
9437 }
9438
9439 return name;
9440 }
9441 }
9442
9443 /* Evaluate the subexpression of EXP starting at *POS as for
9444 evaluate_type, updating *POS to point just past the evaluated
9445 expression. */
9446
9447 static struct value *
9448 evaluate_subexp_type (struct expression *exp, int *pos)
9449 {
9450 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9451 }
9452
9453 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9454 value it wraps. */
9455
9456 static struct value *
9457 unwrap_value (struct value *val)
9458 {
9459 struct type *type = ada_check_typedef (value_type (val));
9460
9461 if (ada_is_aligner_type (type))
9462 {
9463 struct value *v = ada_value_struct_elt (val, "F", 0);
9464 struct type *val_type = ada_check_typedef (value_type (v));
9465
9466 if (ada_type_name (val_type) == NULL)
9467 TYPE_NAME (val_type) = ada_type_name (type);
9468
9469 return unwrap_value (v);
9470 }
9471 else
9472 {
9473 struct type *raw_real_type =
9474 ada_check_typedef (ada_get_base_type (type));
9475
9476 /* If there is no parallel XVS or XVE type, then the value is
9477 already unwrapped. Return it without further modification. */
9478 if ((type == raw_real_type)
9479 && ada_find_parallel_type (type, "___XVE") == NULL)
9480 return val;
9481
9482 return
9483 coerce_unspec_val_to_type
9484 (val, ada_to_fixed_type (raw_real_type, 0,
9485 value_address (val),
9486 NULL, 1));
9487 }
9488 }
9489
9490 static struct value *
9491 cast_from_fixed (struct type *type, struct value *arg)
9492 {
9493 struct value *scale = ada_scaling_factor (value_type (arg));
9494 arg = value_cast (value_type (scale), arg);
9495
9496 arg = value_binop (arg, scale, BINOP_MUL);
9497 return value_cast (type, arg);
9498 }
9499
9500 static struct value *
9501 cast_to_fixed (struct type *type, struct value *arg)
9502 {
9503 if (type == value_type (arg))
9504 return arg;
9505
9506 struct value *scale = ada_scaling_factor (type);
9507 if (ada_is_fixed_point_type (value_type (arg)))
9508 arg = cast_from_fixed (value_type (scale), arg);
9509 else
9510 arg = value_cast (value_type (scale), arg);
9511
9512 arg = value_binop (arg, scale, BINOP_DIV);
9513 return value_cast (type, arg);
9514 }
9515
9516 /* Given two array types T1 and T2, return nonzero iff both arrays
9517 contain the same number of elements. */
9518
9519 static int
9520 ada_same_array_size_p (struct type *t1, struct type *t2)
9521 {
9522 LONGEST lo1, hi1, lo2, hi2;
9523
9524 /* Get the array bounds in order to verify that the size of
9525 the two arrays match. */
9526 if (!get_array_bounds (t1, &lo1, &hi1)
9527 || !get_array_bounds (t2, &lo2, &hi2))
9528 error (_("unable to determine array bounds"));
9529
9530 /* To make things easier for size comparison, normalize a bit
9531 the case of empty arrays by making sure that the difference
9532 between upper bound and lower bound is always -1. */
9533 if (lo1 > hi1)
9534 hi1 = lo1 - 1;
9535 if (lo2 > hi2)
9536 hi2 = lo2 - 1;
9537
9538 return (hi1 - lo1 == hi2 - lo2);
9539 }
9540
9541 /* Assuming that VAL is an array of integrals, and TYPE represents
9542 an array with the same number of elements, but with wider integral
9543 elements, return an array "casted" to TYPE. In practice, this
9544 means that the returned array is built by casting each element
9545 of the original array into TYPE's (wider) element type. */
9546
9547 static struct value *
9548 ada_promote_array_of_integrals (struct type *type, struct value *val)
9549 {
9550 struct type *elt_type = TYPE_TARGET_TYPE (type);
9551 LONGEST lo, hi;
9552 struct value *res;
9553 LONGEST i;
9554
9555 /* Verify that both val and type are arrays of scalars, and
9556 that the size of val's elements is smaller than the size
9557 of type's element. */
9558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9559 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9560 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9561 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9562 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9563 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9564
9565 if (!get_array_bounds (type, &lo, &hi))
9566 error (_("unable to determine array bounds"));
9567
9568 res = allocate_value (type);
9569
9570 /* Promote each array element. */
9571 for (i = 0; i < hi - lo + 1; i++)
9572 {
9573 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9574
9575 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9576 value_contents_all (elt), TYPE_LENGTH (elt_type));
9577 }
9578
9579 return res;
9580 }
9581
9582 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9583 return the converted value. */
9584
9585 static struct value *
9586 coerce_for_assign (struct type *type, struct value *val)
9587 {
9588 struct type *type2 = value_type (val);
9589
9590 if (type == type2)
9591 return val;
9592
9593 type2 = ada_check_typedef (type2);
9594 type = ada_check_typedef (type);
9595
9596 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9597 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9598 {
9599 val = ada_value_ind (val);
9600 type2 = value_type (val);
9601 }
9602
9603 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9604 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9605 {
9606 if (!ada_same_array_size_p (type, type2))
9607 error (_("cannot assign arrays of different length"));
9608
9609 if (is_integral_type (TYPE_TARGET_TYPE (type))
9610 && is_integral_type (TYPE_TARGET_TYPE (type2))
9611 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9612 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9613 {
9614 /* Allow implicit promotion of the array elements to
9615 a wider type. */
9616 return ada_promote_array_of_integrals (type, val);
9617 }
9618
9619 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9620 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9621 error (_("Incompatible types in assignment"));
9622 deprecated_set_value_type (val, type);
9623 }
9624 return val;
9625 }
9626
9627 static struct value *
9628 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9629 {
9630 struct value *val;
9631 struct type *type1, *type2;
9632 LONGEST v, v1, v2;
9633
9634 arg1 = coerce_ref (arg1);
9635 arg2 = coerce_ref (arg2);
9636 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9637 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9638
9639 if (TYPE_CODE (type1) != TYPE_CODE_INT
9640 || TYPE_CODE (type2) != TYPE_CODE_INT)
9641 return value_binop (arg1, arg2, op);
9642
9643 switch (op)
9644 {
9645 case BINOP_MOD:
9646 case BINOP_DIV:
9647 case BINOP_REM:
9648 break;
9649 default:
9650 return value_binop (arg1, arg2, op);
9651 }
9652
9653 v2 = value_as_long (arg2);
9654 if (v2 == 0)
9655 error (_("second operand of %s must not be zero."), op_string (op));
9656
9657 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9658 return value_binop (arg1, arg2, op);
9659
9660 v1 = value_as_long (arg1);
9661 switch (op)
9662 {
9663 case BINOP_DIV:
9664 v = v1 / v2;
9665 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9666 v += v > 0 ? -1 : 1;
9667 break;
9668 case BINOP_REM:
9669 v = v1 % v2;
9670 if (v * v1 < 0)
9671 v -= v2;
9672 break;
9673 default:
9674 /* Should not reach this point. */
9675 v = 0;
9676 }
9677
9678 val = allocate_value (type1);
9679 store_unsigned_integer (value_contents_raw (val),
9680 TYPE_LENGTH (value_type (val)),
9681 gdbarch_byte_order (get_type_arch (type1)), v);
9682 return val;
9683 }
9684
9685 static int
9686 ada_value_equal (struct value *arg1, struct value *arg2)
9687 {
9688 if (ada_is_direct_array_type (value_type (arg1))
9689 || ada_is_direct_array_type (value_type (arg2)))
9690 {
9691 struct type *arg1_type, *arg2_type;
9692
9693 /* Automatically dereference any array reference before
9694 we attempt to perform the comparison. */
9695 arg1 = ada_coerce_ref (arg1);
9696 arg2 = ada_coerce_ref (arg2);
9697
9698 arg1 = ada_coerce_to_simple_array (arg1);
9699 arg2 = ada_coerce_to_simple_array (arg2);
9700
9701 arg1_type = ada_check_typedef (value_type (arg1));
9702 arg2_type = ada_check_typedef (value_type (arg2));
9703
9704 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9705 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9706 error (_("Attempt to compare array with non-array"));
9707 /* FIXME: The following works only for types whose
9708 representations use all bits (no padding or undefined bits)
9709 and do not have user-defined equality. */
9710 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9711 && memcmp (value_contents (arg1), value_contents (arg2),
9712 TYPE_LENGTH (arg1_type)) == 0);
9713 }
9714 return value_equal (arg1, arg2);
9715 }
9716
9717 /* Total number of component associations in the aggregate starting at
9718 index PC in EXP. Assumes that index PC is the start of an
9719 OP_AGGREGATE. */
9720
9721 static int
9722 num_component_specs (struct expression *exp, int pc)
9723 {
9724 int n, m, i;
9725
9726 m = exp->elts[pc + 1].longconst;
9727 pc += 3;
9728 n = 0;
9729 for (i = 0; i < m; i += 1)
9730 {
9731 switch (exp->elts[pc].opcode)
9732 {
9733 default:
9734 n += 1;
9735 break;
9736 case OP_CHOICES:
9737 n += exp->elts[pc + 1].longconst;
9738 break;
9739 }
9740 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9741 }
9742 return n;
9743 }
9744
9745 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9746 component of LHS (a simple array or a record), updating *POS past
9747 the expression, assuming that LHS is contained in CONTAINER. Does
9748 not modify the inferior's memory, nor does it modify LHS (unless
9749 LHS == CONTAINER). */
9750
9751 static void
9752 assign_component (struct value *container, struct value *lhs, LONGEST index,
9753 struct expression *exp, int *pos)
9754 {
9755 struct value *mark = value_mark ();
9756 struct value *elt;
9757 struct type *lhs_type = check_typedef (value_type (lhs));
9758
9759 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9760 {
9761 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9762 struct value *index_val = value_from_longest (index_type, index);
9763
9764 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9765 }
9766 else
9767 {
9768 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9769 elt = ada_to_fixed_value (elt);
9770 }
9771
9772 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9773 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9774 else
9775 value_assign_to_component (container, elt,
9776 ada_evaluate_subexp (NULL, exp, pos,
9777 EVAL_NORMAL));
9778
9779 value_free_to_mark (mark);
9780 }
9781
9782 /* Assuming that LHS represents an lvalue having a record or array
9783 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9784 of that aggregate's value to LHS, advancing *POS past the
9785 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9786 lvalue containing LHS (possibly LHS itself). Does not modify
9787 the inferior's memory, nor does it modify the contents of
9788 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9789
9790 static struct value *
9791 assign_aggregate (struct value *container,
9792 struct value *lhs, struct expression *exp,
9793 int *pos, enum noside noside)
9794 {
9795 struct type *lhs_type;
9796 int n = exp->elts[*pos+1].longconst;
9797 LONGEST low_index, high_index;
9798 int num_specs;
9799 LONGEST *indices;
9800 int max_indices, num_indices;
9801 int i;
9802
9803 *pos += 3;
9804 if (noside != EVAL_NORMAL)
9805 {
9806 for (i = 0; i < n; i += 1)
9807 ada_evaluate_subexp (NULL, exp, pos, noside);
9808 return container;
9809 }
9810
9811 container = ada_coerce_ref (container);
9812 if (ada_is_direct_array_type (value_type (container)))
9813 container = ada_coerce_to_simple_array (container);
9814 lhs = ada_coerce_ref (lhs);
9815 if (!deprecated_value_modifiable (lhs))
9816 error (_("Left operand of assignment is not a modifiable lvalue."));
9817
9818 lhs_type = check_typedef (value_type (lhs));
9819 if (ada_is_direct_array_type (lhs_type))
9820 {
9821 lhs = ada_coerce_to_simple_array (lhs);
9822 lhs_type = check_typedef (value_type (lhs));
9823 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9824 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9825 }
9826 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9827 {
9828 low_index = 0;
9829 high_index = num_visible_fields (lhs_type) - 1;
9830 }
9831 else
9832 error (_("Left-hand side must be array or record."));
9833
9834 num_specs = num_component_specs (exp, *pos - 3);
9835 max_indices = 4 * num_specs + 4;
9836 indices = XALLOCAVEC (LONGEST, max_indices);
9837 indices[0] = indices[1] = low_index - 1;
9838 indices[2] = indices[3] = high_index + 1;
9839 num_indices = 4;
9840
9841 for (i = 0; i < n; i += 1)
9842 {
9843 switch (exp->elts[*pos].opcode)
9844 {
9845 case OP_CHOICES:
9846 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9847 &num_indices, max_indices,
9848 low_index, high_index);
9849 break;
9850 case OP_POSITIONAL:
9851 aggregate_assign_positional (container, lhs, exp, pos, indices,
9852 &num_indices, max_indices,
9853 low_index, high_index);
9854 break;
9855 case OP_OTHERS:
9856 if (i != n-1)
9857 error (_("Misplaced 'others' clause"));
9858 aggregate_assign_others (container, lhs, exp, pos, indices,
9859 num_indices, low_index, high_index);
9860 break;
9861 default:
9862 error (_("Internal error: bad aggregate clause"));
9863 }
9864 }
9865
9866 return container;
9867 }
9868
9869 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9870 construct at *POS, updating *POS past the construct, given that
9871 the positions are relative to lower bound LOW, where HIGH is the
9872 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9873 updating *NUM_INDICES as needed. CONTAINER is as for
9874 assign_aggregate. */
9875 static void
9876 aggregate_assign_positional (struct value *container,
9877 struct value *lhs, struct expression *exp,
9878 int *pos, LONGEST *indices, int *num_indices,
9879 int max_indices, LONGEST low, LONGEST high)
9880 {
9881 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9882
9883 if (ind - 1 == high)
9884 warning (_("Extra components in aggregate ignored."));
9885 if (ind <= high)
9886 {
9887 add_component_interval (ind, ind, indices, num_indices, max_indices);
9888 *pos += 3;
9889 assign_component (container, lhs, ind, exp, pos);
9890 }
9891 else
9892 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9893 }
9894
9895 /* Assign into the components of LHS indexed by the OP_CHOICES
9896 construct at *POS, updating *POS past the construct, given that
9897 the allowable indices are LOW..HIGH. Record the indices assigned
9898 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9899 needed. CONTAINER is as for assign_aggregate. */
9900 static void
9901 aggregate_assign_from_choices (struct value *container,
9902 struct value *lhs, struct expression *exp,
9903 int *pos, LONGEST *indices, int *num_indices,
9904 int max_indices, LONGEST low, LONGEST high)
9905 {
9906 int j;
9907 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9908 int choice_pos, expr_pc;
9909 int is_array = ada_is_direct_array_type (value_type (lhs));
9910
9911 choice_pos = *pos += 3;
9912
9913 for (j = 0; j < n_choices; j += 1)
9914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9915 expr_pc = *pos;
9916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9917
9918 for (j = 0; j < n_choices; j += 1)
9919 {
9920 LONGEST lower, upper;
9921 enum exp_opcode op = exp->elts[choice_pos].opcode;
9922
9923 if (op == OP_DISCRETE_RANGE)
9924 {
9925 choice_pos += 1;
9926 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9927 EVAL_NORMAL));
9928 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9929 EVAL_NORMAL));
9930 }
9931 else if (is_array)
9932 {
9933 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9934 EVAL_NORMAL));
9935 upper = lower;
9936 }
9937 else
9938 {
9939 int ind;
9940 const char *name;
9941
9942 switch (op)
9943 {
9944 case OP_NAME:
9945 name = &exp->elts[choice_pos + 2].string;
9946 break;
9947 case OP_VAR_VALUE:
9948 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9949 break;
9950 default:
9951 error (_("Invalid record component association."));
9952 }
9953 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9954 ind = 0;
9955 if (! find_struct_field (name, value_type (lhs), 0,
9956 NULL, NULL, NULL, NULL, &ind))
9957 error (_("Unknown component name: %s."), name);
9958 lower = upper = ind;
9959 }
9960
9961 if (lower <= upper && (lower < low || upper > high))
9962 error (_("Index in component association out of bounds."));
9963
9964 add_component_interval (lower, upper, indices, num_indices,
9965 max_indices);
9966 while (lower <= upper)
9967 {
9968 int pos1;
9969
9970 pos1 = expr_pc;
9971 assign_component (container, lhs, lower, exp, &pos1);
9972 lower += 1;
9973 }
9974 }
9975 }
9976
9977 /* Assign the value of the expression in the OP_OTHERS construct in
9978 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9979 have not been previously assigned. The index intervals already assigned
9980 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9981 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9982 static void
9983 aggregate_assign_others (struct value *container,
9984 struct value *lhs, struct expression *exp,
9985 int *pos, LONGEST *indices, int num_indices,
9986 LONGEST low, LONGEST high)
9987 {
9988 int i;
9989 int expr_pc = *pos + 1;
9990
9991 for (i = 0; i < num_indices - 2; i += 2)
9992 {
9993 LONGEST ind;
9994
9995 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9996 {
9997 int localpos;
9998
9999 localpos = expr_pc;
10000 assign_component (container, lhs, ind, exp, &localpos);
10001 }
10002 }
10003 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10004 }
10005
10006 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10007 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10008 modifying *SIZE as needed. It is an error if *SIZE exceeds
10009 MAX_SIZE. The resulting intervals do not overlap. */
10010 static void
10011 add_component_interval (LONGEST low, LONGEST high,
10012 LONGEST* indices, int *size, int max_size)
10013 {
10014 int i, j;
10015
10016 for (i = 0; i < *size; i += 2) {
10017 if (high >= indices[i] && low <= indices[i + 1])
10018 {
10019 int kh;
10020
10021 for (kh = i + 2; kh < *size; kh += 2)
10022 if (high < indices[kh])
10023 break;
10024 if (low < indices[i])
10025 indices[i] = low;
10026 indices[i + 1] = indices[kh - 1];
10027 if (high > indices[i + 1])
10028 indices[i + 1] = high;
10029 memcpy (indices + i + 2, indices + kh, *size - kh);
10030 *size -= kh - i - 2;
10031 return;
10032 }
10033 else if (high < indices[i])
10034 break;
10035 }
10036
10037 if (*size == max_size)
10038 error (_("Internal error: miscounted aggregate components."));
10039 *size += 2;
10040 for (j = *size-1; j >= i+2; j -= 1)
10041 indices[j] = indices[j - 2];
10042 indices[i] = low;
10043 indices[i + 1] = high;
10044 }
10045
10046 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10047 is different. */
10048
10049 static struct value *
10050 ada_value_cast (struct type *type, struct value *arg2)
10051 {
10052 if (type == ada_check_typedef (value_type (arg2)))
10053 return arg2;
10054
10055 if (ada_is_fixed_point_type (type))
10056 return cast_to_fixed (type, arg2);
10057
10058 if (ada_is_fixed_point_type (value_type (arg2)))
10059 return cast_from_fixed (type, arg2);
10060
10061 return value_cast (type, arg2);
10062 }
10063
10064 /* Evaluating Ada expressions, and printing their result.
10065 ------------------------------------------------------
10066
10067 1. Introduction:
10068 ----------------
10069
10070 We usually evaluate an Ada expression in order to print its value.
10071 We also evaluate an expression in order to print its type, which
10072 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10073 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10074 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10075 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10076 similar.
10077
10078 Evaluating expressions is a little more complicated for Ada entities
10079 than it is for entities in languages such as C. The main reason for
10080 this is that Ada provides types whose definition might be dynamic.
10081 One example of such types is variant records. Or another example
10082 would be an array whose bounds can only be known at run time.
10083
10084 The following description is a general guide as to what should be
10085 done (and what should NOT be done) in order to evaluate an expression
10086 involving such types, and when. This does not cover how the semantic
10087 information is encoded by GNAT as this is covered separatly. For the
10088 document used as the reference for the GNAT encoding, see exp_dbug.ads
10089 in the GNAT sources.
10090
10091 Ideally, we should embed each part of this description next to its
10092 associated code. Unfortunately, the amount of code is so vast right
10093 now that it's hard to see whether the code handling a particular
10094 situation might be duplicated or not. One day, when the code is
10095 cleaned up, this guide might become redundant with the comments
10096 inserted in the code, and we might want to remove it.
10097
10098 2. ``Fixing'' an Entity, the Simple Case:
10099 -----------------------------------------
10100
10101 When evaluating Ada expressions, the tricky issue is that they may
10102 reference entities whose type contents and size are not statically
10103 known. Consider for instance a variant record:
10104
10105 type Rec (Empty : Boolean := True) is record
10106 case Empty is
10107 when True => null;
10108 when False => Value : Integer;
10109 end case;
10110 end record;
10111 Yes : Rec := (Empty => False, Value => 1);
10112 No : Rec := (empty => True);
10113
10114 The size and contents of that record depends on the value of the
10115 descriminant (Rec.Empty). At this point, neither the debugging
10116 information nor the associated type structure in GDB are able to
10117 express such dynamic types. So what the debugger does is to create
10118 "fixed" versions of the type that applies to the specific object.
10119 We also informally refer to this operation as "fixing" an object,
10120 which means creating its associated fixed type.
10121
10122 Example: when printing the value of variable "Yes" above, its fixed
10123 type would look like this:
10124
10125 type Rec is record
10126 Empty : Boolean;
10127 Value : Integer;
10128 end record;
10129
10130 On the other hand, if we printed the value of "No", its fixed type
10131 would become:
10132
10133 type Rec is record
10134 Empty : Boolean;
10135 end record;
10136
10137 Things become a little more complicated when trying to fix an entity
10138 with a dynamic type that directly contains another dynamic type,
10139 such as an array of variant records, for instance. There are
10140 two possible cases: Arrays, and records.
10141
10142 3. ``Fixing'' Arrays:
10143 ---------------------
10144
10145 The type structure in GDB describes an array in terms of its bounds,
10146 and the type of its elements. By design, all elements in the array
10147 have the same type and we cannot represent an array of variant elements
10148 using the current type structure in GDB. When fixing an array,
10149 we cannot fix the array element, as we would potentially need one
10150 fixed type per element of the array. As a result, the best we can do
10151 when fixing an array is to produce an array whose bounds and size
10152 are correct (allowing us to read it from memory), but without having
10153 touched its element type. Fixing each element will be done later,
10154 when (if) necessary.
10155
10156 Arrays are a little simpler to handle than records, because the same
10157 amount of memory is allocated for each element of the array, even if
10158 the amount of space actually used by each element differs from element
10159 to element. Consider for instance the following array of type Rec:
10160
10161 type Rec_Array is array (1 .. 2) of Rec;
10162
10163 The actual amount of memory occupied by each element might be different
10164 from element to element, depending on the value of their discriminant.
10165 But the amount of space reserved for each element in the array remains
10166 fixed regardless. So we simply need to compute that size using
10167 the debugging information available, from which we can then determine
10168 the array size (we multiply the number of elements of the array by
10169 the size of each element).
10170
10171 The simplest case is when we have an array of a constrained element
10172 type. For instance, consider the following type declarations:
10173
10174 type Bounded_String (Max_Size : Integer) is
10175 Length : Integer;
10176 Buffer : String (1 .. Max_Size);
10177 end record;
10178 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10179
10180 In this case, the compiler describes the array as an array of
10181 variable-size elements (identified by its XVS suffix) for which
10182 the size can be read in the parallel XVZ variable.
10183
10184 In the case of an array of an unconstrained element type, the compiler
10185 wraps the array element inside a private PAD type. This type should not
10186 be shown to the user, and must be "unwrap"'ed before printing. Note
10187 that we also use the adjective "aligner" in our code to designate
10188 these wrapper types.
10189
10190 In some cases, the size allocated for each element is statically
10191 known. In that case, the PAD type already has the correct size,
10192 and the array element should remain unfixed.
10193
10194 But there are cases when this size is not statically known.
10195 For instance, assuming that "Five" is an integer variable:
10196
10197 type Dynamic is array (1 .. Five) of Integer;
10198 type Wrapper (Has_Length : Boolean := False) is record
10199 Data : Dynamic;
10200 case Has_Length is
10201 when True => Length : Integer;
10202 when False => null;
10203 end case;
10204 end record;
10205 type Wrapper_Array is array (1 .. 2) of Wrapper;
10206
10207 Hello : Wrapper_Array := (others => (Has_Length => True,
10208 Data => (others => 17),
10209 Length => 1));
10210
10211
10212 The debugging info would describe variable Hello as being an
10213 array of a PAD type. The size of that PAD type is not statically
10214 known, but can be determined using a parallel XVZ variable.
10215 In that case, a copy of the PAD type with the correct size should
10216 be used for the fixed array.
10217
10218 3. ``Fixing'' record type objects:
10219 ----------------------------------
10220
10221 Things are slightly different from arrays in the case of dynamic
10222 record types. In this case, in order to compute the associated
10223 fixed type, we need to determine the size and offset of each of
10224 its components. This, in turn, requires us to compute the fixed
10225 type of each of these components.
10226
10227 Consider for instance the example:
10228
10229 type Bounded_String (Max_Size : Natural) is record
10230 Str : String (1 .. Max_Size);
10231 Length : Natural;
10232 end record;
10233 My_String : Bounded_String (Max_Size => 10);
10234
10235 In that case, the position of field "Length" depends on the size
10236 of field Str, which itself depends on the value of the Max_Size
10237 discriminant. In order to fix the type of variable My_String,
10238 we need to fix the type of field Str. Therefore, fixing a variant
10239 record requires us to fix each of its components.
10240
10241 However, if a component does not have a dynamic size, the component
10242 should not be fixed. In particular, fields that use a PAD type
10243 should not fixed. Here is an example where this might happen
10244 (assuming type Rec above):
10245
10246 type Container (Big : Boolean) is record
10247 First : Rec;
10248 After : Integer;
10249 case Big is
10250 when True => Another : Integer;
10251 when False => null;
10252 end case;
10253 end record;
10254 My_Container : Container := (Big => False,
10255 First => (Empty => True),
10256 After => 42);
10257
10258 In that example, the compiler creates a PAD type for component First,
10259 whose size is constant, and then positions the component After just
10260 right after it. The offset of component After is therefore constant
10261 in this case.
10262
10263 The debugger computes the position of each field based on an algorithm
10264 that uses, among other things, the actual position and size of the field
10265 preceding it. Let's now imagine that the user is trying to print
10266 the value of My_Container. If the type fixing was recursive, we would
10267 end up computing the offset of field After based on the size of the
10268 fixed version of field First. And since in our example First has
10269 only one actual field, the size of the fixed type is actually smaller
10270 than the amount of space allocated to that field, and thus we would
10271 compute the wrong offset of field After.
10272
10273 To make things more complicated, we need to watch out for dynamic
10274 components of variant records (identified by the ___XVL suffix in
10275 the component name). Even if the target type is a PAD type, the size
10276 of that type might not be statically known. So the PAD type needs
10277 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10278 we might end up with the wrong size for our component. This can be
10279 observed with the following type declarations:
10280
10281 type Octal is new Integer range 0 .. 7;
10282 type Octal_Array is array (Positive range <>) of Octal;
10283 pragma Pack (Octal_Array);
10284
10285 type Octal_Buffer (Size : Positive) is record
10286 Buffer : Octal_Array (1 .. Size);
10287 Length : Integer;
10288 end record;
10289
10290 In that case, Buffer is a PAD type whose size is unset and needs
10291 to be computed by fixing the unwrapped type.
10292
10293 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10294 ----------------------------------------------------------
10295
10296 Lastly, when should the sub-elements of an entity that remained unfixed
10297 thus far, be actually fixed?
10298
10299 The answer is: Only when referencing that element. For instance
10300 when selecting one component of a record, this specific component
10301 should be fixed at that point in time. Or when printing the value
10302 of a record, each component should be fixed before its value gets
10303 printed. Similarly for arrays, the element of the array should be
10304 fixed when printing each element of the array, or when extracting
10305 one element out of that array. On the other hand, fixing should
10306 not be performed on the elements when taking a slice of an array!
10307
10308 Note that one of the side effects of miscomputing the offset and
10309 size of each field is that we end up also miscomputing the size
10310 of the containing type. This can have adverse results when computing
10311 the value of an entity. GDB fetches the value of an entity based
10312 on the size of its type, and thus a wrong size causes GDB to fetch
10313 the wrong amount of memory. In the case where the computed size is
10314 too small, GDB fetches too little data to print the value of our
10315 entity. Results in this case are unpredictable, as we usually read
10316 past the buffer containing the data =:-o. */
10317
10318 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10319 for that subexpression cast to TO_TYPE. Advance *POS over the
10320 subexpression. */
10321
10322 static value *
10323 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10324 enum noside noside, struct type *to_type)
10325 {
10326 int pc = *pos;
10327
10328 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10329 || exp->elts[pc].opcode == OP_VAR_VALUE)
10330 {
10331 (*pos) += 4;
10332
10333 value *val;
10334 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10335 {
10336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10337 return value_zero (to_type, not_lval);
10338
10339 val = evaluate_var_msym_value (noside,
10340 exp->elts[pc + 1].objfile,
10341 exp->elts[pc + 2].msymbol);
10342 }
10343 else
10344 val = evaluate_var_value (noside,
10345 exp->elts[pc + 1].block,
10346 exp->elts[pc + 2].symbol);
10347
10348 if (noside == EVAL_SKIP)
10349 return eval_skip_value (exp);
10350
10351 val = ada_value_cast (to_type, val);
10352
10353 /* Follow the Ada language semantics that do not allow taking
10354 an address of the result of a cast (view conversion in Ada). */
10355 if (VALUE_LVAL (val) == lval_memory)
10356 {
10357 if (value_lazy (val))
10358 value_fetch_lazy (val);
10359 VALUE_LVAL (val) = not_lval;
10360 }
10361 return val;
10362 }
10363
10364 value *val = evaluate_subexp (to_type, exp, pos, noside);
10365 if (noside == EVAL_SKIP)
10366 return eval_skip_value (exp);
10367 return ada_value_cast (to_type, val);
10368 }
10369
10370 /* Implement the evaluate_exp routine in the exp_descriptor structure
10371 for the Ada language. */
10372
10373 static struct value *
10374 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10375 int *pos, enum noside noside)
10376 {
10377 enum exp_opcode op;
10378 int tem;
10379 int pc;
10380 int preeval_pos;
10381 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10382 struct type *type;
10383 int nargs, oplen;
10384 struct value **argvec;
10385
10386 pc = *pos;
10387 *pos += 1;
10388 op = exp->elts[pc].opcode;
10389
10390 switch (op)
10391 {
10392 default:
10393 *pos -= 1;
10394 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10395
10396 if (noside == EVAL_NORMAL)
10397 arg1 = unwrap_value (arg1);
10398
10399 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10400 then we need to perform the conversion manually, because
10401 evaluate_subexp_standard doesn't do it. This conversion is
10402 necessary in Ada because the different kinds of float/fixed
10403 types in Ada have different representations.
10404
10405 Similarly, we need to perform the conversion from OP_LONG
10406 ourselves. */
10407 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10408 arg1 = ada_value_cast (expect_type, arg1);
10409
10410 return arg1;
10411
10412 case OP_STRING:
10413 {
10414 struct value *result;
10415
10416 *pos -= 1;
10417 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10418 /* The result type will have code OP_STRING, bashed there from
10419 OP_ARRAY. Bash it back. */
10420 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10421 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10422 return result;
10423 }
10424
10425 case UNOP_CAST:
10426 (*pos) += 2;
10427 type = exp->elts[pc + 1].type;
10428 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10429
10430 case UNOP_QUAL:
10431 (*pos) += 2;
10432 type = exp->elts[pc + 1].type;
10433 return ada_evaluate_subexp (type, exp, pos, noside);
10434
10435 case BINOP_ASSIGN:
10436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10437 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10438 {
10439 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10440 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10441 return arg1;
10442 return ada_value_assign (arg1, arg1);
10443 }
10444 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10445 except if the lhs of our assignment is a convenience variable.
10446 In the case of assigning to a convenience variable, the lhs
10447 should be exactly the result of the evaluation of the rhs. */
10448 type = value_type (arg1);
10449 if (VALUE_LVAL (arg1) == lval_internalvar)
10450 type = NULL;
10451 arg2 = evaluate_subexp (type, exp, pos, noside);
10452 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10453 return arg1;
10454 if (VALUE_LVAL (arg1) == lval_internalvar)
10455 {
10456 /* Nothing. */
10457 }
10458 else if (ada_is_fixed_point_type (value_type (arg1)))
10459 arg2 = cast_to_fixed (value_type (arg1), arg2);
10460 else if (ada_is_fixed_point_type (value_type (arg2)))
10461 error
10462 (_("Fixed-point values must be assigned to fixed-point variables"));
10463 else
10464 arg2 = coerce_for_assign (value_type (arg1), arg2);
10465 return ada_value_assign (arg1, arg2);
10466
10467 case BINOP_ADD:
10468 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10469 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10473 return (value_from_longest
10474 (value_type (arg1),
10475 value_as_long (arg1) + value_as_long (arg2)));
10476 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10477 return (value_from_longest
10478 (value_type (arg2),
10479 value_as_long (arg1) + value_as_long (arg2)));
10480 if ((ada_is_fixed_point_type (value_type (arg1))
10481 || ada_is_fixed_point_type (value_type (arg2)))
10482 && value_type (arg1) != value_type (arg2))
10483 error (_("Operands of fixed-point addition must have the same type"));
10484 /* Do the addition, and cast the result to the type of the first
10485 argument. We cannot cast the result to a reference type, so if
10486 ARG1 is a reference type, find its underlying type. */
10487 type = value_type (arg1);
10488 while (TYPE_CODE (type) == TYPE_CODE_REF)
10489 type = TYPE_TARGET_TYPE (type);
10490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10491 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10492
10493 case BINOP_SUB:
10494 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10496 if (noside == EVAL_SKIP)
10497 goto nosideret;
10498 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10499 return (value_from_longest
10500 (value_type (arg1),
10501 value_as_long (arg1) - value_as_long (arg2)));
10502 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10503 return (value_from_longest
10504 (value_type (arg2),
10505 value_as_long (arg1) - value_as_long (arg2)));
10506 if ((ada_is_fixed_point_type (value_type (arg1))
10507 || ada_is_fixed_point_type (value_type (arg2)))
10508 && value_type (arg1) != value_type (arg2))
10509 error (_("Operands of fixed-point subtraction "
10510 "must have the same type"));
10511 /* Do the substraction, and cast the result to the type of the first
10512 argument. We cannot cast the result to a reference type, so if
10513 ARG1 is a reference type, find its underlying type. */
10514 type = value_type (arg1);
10515 while (TYPE_CODE (type) == TYPE_CODE_REF)
10516 type = TYPE_TARGET_TYPE (type);
10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10518 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10519
10520 case BINOP_MUL:
10521 case BINOP_DIV:
10522 case BINOP_REM:
10523 case BINOP_MOD:
10524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10526 if (noside == EVAL_SKIP)
10527 goto nosideret;
10528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10529 {
10530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10531 return value_zero (value_type (arg1), not_lval);
10532 }
10533 else
10534 {
10535 type = builtin_type (exp->gdbarch)->builtin_double;
10536 if (ada_is_fixed_point_type (value_type (arg1)))
10537 arg1 = cast_from_fixed (type, arg1);
10538 if (ada_is_fixed_point_type (value_type (arg2)))
10539 arg2 = cast_from_fixed (type, arg2);
10540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10541 return ada_value_binop (arg1, arg2, op);
10542 }
10543
10544 case BINOP_EQUAL:
10545 case BINOP_NOTEQUAL:
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10548 if (noside == EVAL_SKIP)
10549 goto nosideret;
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10551 tem = 0;
10552 else
10553 {
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 tem = ada_value_equal (arg1, arg2);
10556 }
10557 if (op == BINOP_NOTEQUAL)
10558 tem = !tem;
10559 type = language_bool_type (exp->language_defn, exp->gdbarch);
10560 return value_from_longest (type, (LONGEST) tem);
10561
10562 case UNOP_NEG:
10563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10564 if (noside == EVAL_SKIP)
10565 goto nosideret;
10566 else if (ada_is_fixed_point_type (value_type (arg1)))
10567 return value_cast (value_type (arg1), value_neg (arg1));
10568 else
10569 {
10570 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10571 return value_neg (arg1);
10572 }
10573
10574 case BINOP_LOGICAL_AND:
10575 case BINOP_LOGICAL_OR:
10576 case UNOP_LOGICAL_NOT:
10577 {
10578 struct value *val;
10579
10580 *pos -= 1;
10581 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10582 type = language_bool_type (exp->language_defn, exp->gdbarch);
10583 return value_cast (type, val);
10584 }
10585
10586 case BINOP_BITWISE_AND:
10587 case BINOP_BITWISE_IOR:
10588 case BINOP_BITWISE_XOR:
10589 {
10590 struct value *val;
10591
10592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10593 *pos = pc;
10594 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595
10596 return value_cast (value_type (arg1), val);
10597 }
10598
10599 case OP_VAR_VALUE:
10600 *pos -= 1;
10601
10602 if (noside == EVAL_SKIP)
10603 {
10604 *pos += 4;
10605 goto nosideret;
10606 }
10607
10608 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10609 /* Only encountered when an unresolved symbol occurs in a
10610 context other than a function call, in which case, it is
10611 invalid. */
10612 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10613 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10614
10615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10616 {
10617 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10618 /* Check to see if this is a tagged type. We also need to handle
10619 the case where the type is a reference to a tagged type, but
10620 we have to be careful to exclude pointers to tagged types.
10621 The latter should be shown as usual (as a pointer), whereas
10622 a reference should mostly be transparent to the user. */
10623 if (ada_is_tagged_type (type, 0)
10624 || (TYPE_CODE (type) == TYPE_CODE_REF
10625 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10626 {
10627 /* Tagged types are a little special in the fact that the real
10628 type is dynamic and can only be determined by inspecting the
10629 object's tag. This means that we need to get the object's
10630 value first (EVAL_NORMAL) and then extract the actual object
10631 type from its tag.
10632
10633 Note that we cannot skip the final step where we extract
10634 the object type from its tag, because the EVAL_NORMAL phase
10635 results in dynamic components being resolved into fixed ones.
10636 This can cause problems when trying to print the type
10637 description of tagged types whose parent has a dynamic size:
10638 We use the type name of the "_parent" component in order
10639 to print the name of the ancestor type in the type description.
10640 If that component had a dynamic size, the resolution into
10641 a fixed type would result in the loss of that type name,
10642 thus preventing us from printing the name of the ancestor
10643 type in the type description. */
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10645
10646 if (TYPE_CODE (type) != TYPE_CODE_REF)
10647 {
10648 struct type *actual_type;
10649
10650 actual_type = type_from_tag (ada_value_tag (arg1));
10651 if (actual_type == NULL)
10652 /* If, for some reason, we were unable to determine
10653 the actual type from the tag, then use the static
10654 approximation that we just computed as a fallback.
10655 This can happen if the debugging information is
10656 incomplete, for instance. */
10657 actual_type = type;
10658 return value_zero (actual_type, not_lval);
10659 }
10660 else
10661 {
10662 /* In the case of a ref, ada_coerce_ref takes care
10663 of determining the actual type. But the evaluation
10664 should return a ref as it should be valid to ask
10665 for its address; so rebuild a ref after coerce. */
10666 arg1 = ada_coerce_ref (arg1);
10667 return value_ref (arg1, TYPE_CODE_REF);
10668 }
10669 }
10670
10671 /* Records and unions for which GNAT encodings have been
10672 generated need to be statically fixed as well.
10673 Otherwise, non-static fixing produces a type where
10674 all dynamic properties are removed, which prevents "ptype"
10675 from being able to completely describe the type.
10676 For instance, a case statement in a variant record would be
10677 replaced by the relevant components based on the actual
10678 value of the discriminants. */
10679 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10680 && dynamic_template_type (type) != NULL)
10681 || (TYPE_CODE (type) == TYPE_CODE_UNION
10682 && ada_find_parallel_type (type, "___XVU") != NULL))
10683 {
10684 *pos += 4;
10685 return value_zero (to_static_fixed_type (type), not_lval);
10686 }
10687 }
10688
10689 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10690 return ada_to_fixed_value (arg1);
10691
10692 case OP_FUNCALL:
10693 (*pos) += 2;
10694
10695 /* Allocate arg vector, including space for the function to be
10696 called in argvec[0] and a terminating NULL. */
10697 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10698 argvec = XALLOCAVEC (struct value *, nargs + 2);
10699
10700 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10701 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10702 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10703 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10704 else
10705 {
10706 for (tem = 0; tem <= nargs; tem += 1)
10707 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10708 argvec[tem] = 0;
10709
10710 if (noside == EVAL_SKIP)
10711 goto nosideret;
10712 }
10713
10714 if (ada_is_constrained_packed_array_type
10715 (desc_base_type (value_type (argvec[0]))))
10716 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10718 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10719 /* This is a packed array that has already been fixed, and
10720 therefore already coerced to a simple array. Nothing further
10721 to do. */
10722 ;
10723 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10724 {
10725 /* Make sure we dereference references so that all the code below
10726 feels like it's really handling the referenced value. Wrapping
10727 types (for alignment) may be there, so make sure we strip them as
10728 well. */
10729 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10730 }
10731 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10732 && VALUE_LVAL (argvec[0]) == lval_memory)
10733 argvec[0] = value_addr (argvec[0]);
10734
10735 type = ada_check_typedef (value_type (argvec[0]));
10736
10737 /* Ada allows us to implicitly dereference arrays when subscripting
10738 them. So, if this is an array typedef (encoding use for array
10739 access types encoded as fat pointers), strip it now. */
10740 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10741 type = ada_typedef_target_type (type);
10742
10743 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10744 {
10745 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10746 {
10747 case TYPE_CODE_FUNC:
10748 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10749 break;
10750 case TYPE_CODE_ARRAY:
10751 break;
10752 case TYPE_CODE_STRUCT:
10753 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10754 argvec[0] = ada_value_ind (argvec[0]);
10755 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10756 break;
10757 default:
10758 error (_("cannot subscript or call something of type `%s'"),
10759 ada_type_name (value_type (argvec[0])));
10760 break;
10761 }
10762 }
10763
10764 switch (TYPE_CODE (type))
10765 {
10766 case TYPE_CODE_FUNC:
10767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10768 {
10769 if (TYPE_TARGET_TYPE (type) == NULL)
10770 error_call_unknown_return_type (NULL);
10771 return allocate_value (TYPE_TARGET_TYPE (type));
10772 }
10773 return call_function_by_hand (argvec[0], NULL,
10774 gdb::make_array_view (argvec + 1,
10775 nargs));
10776 case TYPE_CODE_INTERNAL_FUNCTION:
10777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10778 /* We don't know anything about what the internal
10779 function might return, but we have to return
10780 something. */
10781 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10782 not_lval);
10783 else
10784 return call_internal_function (exp->gdbarch, exp->language_defn,
10785 argvec[0], nargs, argvec + 1);
10786
10787 case TYPE_CODE_STRUCT:
10788 {
10789 int arity;
10790
10791 arity = ada_array_arity (type);
10792 type = ada_array_element_type (type, nargs);
10793 if (type == NULL)
10794 error (_("cannot subscript or call a record"));
10795 if (arity != nargs)
10796 error (_("wrong number of subscripts; expecting %d"), arity);
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 return value_zero (ada_aligned_type (type), lval_memory);
10799 return
10800 unwrap_value (ada_value_subscript
10801 (argvec[0], nargs, argvec + 1));
10802 }
10803 case TYPE_CODE_ARRAY:
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 {
10806 type = ada_array_element_type (type, nargs);
10807 if (type == NULL)
10808 error (_("element type of array unknown"));
10809 else
10810 return value_zero (ada_aligned_type (type), lval_memory);
10811 }
10812 return
10813 unwrap_value (ada_value_subscript
10814 (ada_coerce_to_simple_array (argvec[0]),
10815 nargs, argvec + 1));
10816 case TYPE_CODE_PTR: /* Pointer to array */
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 {
10819 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10820 type = ada_array_element_type (type, nargs);
10821 if (type == NULL)
10822 error (_("element type of array unknown"));
10823 else
10824 return value_zero (ada_aligned_type (type), lval_memory);
10825 }
10826 return
10827 unwrap_value (ada_value_ptr_subscript (argvec[0],
10828 nargs, argvec + 1));
10829
10830 default:
10831 error (_("Attempt to index or call something other than an "
10832 "array or function"));
10833 }
10834
10835 case TERNOP_SLICE:
10836 {
10837 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 struct value *low_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 struct value *high_bound_val =
10841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 LONGEST low_bound;
10843 LONGEST high_bound;
10844
10845 low_bound_val = coerce_ref (low_bound_val);
10846 high_bound_val = coerce_ref (high_bound_val);
10847 low_bound = value_as_long (low_bound_val);
10848 high_bound = value_as_long (high_bound_val);
10849
10850 if (noside == EVAL_SKIP)
10851 goto nosideret;
10852
10853 /* If this is a reference to an aligner type, then remove all
10854 the aligners. */
10855 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10856 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10857 TYPE_TARGET_TYPE (value_type (array)) =
10858 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10859
10860 if (ada_is_constrained_packed_array_type (value_type (array)))
10861 error (_("cannot slice a packed array"));
10862
10863 /* If this is a reference to an array or an array lvalue,
10864 convert to a pointer. */
10865 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10866 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10867 && VALUE_LVAL (array) == lval_memory))
10868 array = value_addr (array);
10869
10870 if (noside == EVAL_AVOID_SIDE_EFFECTS
10871 && ada_is_array_descriptor_type (ada_check_typedef
10872 (value_type (array))))
10873 return empty_array (ada_type_of_array (array, 0), low_bound,
10874 high_bound);
10875
10876 array = ada_coerce_to_simple_array_ptr (array);
10877
10878 /* If we have more than one level of pointer indirection,
10879 dereference the value until we get only one level. */
10880 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10881 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10882 == TYPE_CODE_PTR))
10883 array = value_ind (array);
10884
10885 /* Make sure we really do have an array type before going further,
10886 to avoid a SEGV when trying to get the index type or the target
10887 type later down the road if the debug info generated by
10888 the compiler is incorrect or incomplete. */
10889 if (!ada_is_simple_array_type (value_type (array)))
10890 error (_("cannot take slice of non-array"));
10891
10892 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10893 == TYPE_CODE_PTR)
10894 {
10895 struct type *type0 = ada_check_typedef (value_type (array));
10896
10897 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10898 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10899 else
10900 {
10901 struct type *arr_type0 =
10902 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10903
10904 return ada_value_slice_from_ptr (array, arr_type0,
10905 longest_to_int (low_bound),
10906 longest_to_int (high_bound));
10907 }
10908 }
10909 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10910 return array;
10911 else if (high_bound < low_bound)
10912 return empty_array (value_type (array), low_bound, high_bound);
10913 else
10914 return ada_value_slice (array, longest_to_int (low_bound),
10915 longest_to_int (high_bound));
10916 }
10917
10918 case UNOP_IN_RANGE:
10919 (*pos) += 2;
10920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10921 type = check_typedef (exp->elts[pc + 1].type);
10922
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925
10926 switch (TYPE_CODE (type))
10927 {
10928 default:
10929 lim_warning (_("Membership test incompletely implemented; "
10930 "always returns true"));
10931 type = language_bool_type (exp->language_defn, exp->gdbarch);
10932 return value_from_longest (type, (LONGEST) 1);
10933
10934 case TYPE_CODE_RANGE:
10935 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10936 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10938 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10939 type = language_bool_type (exp->language_defn, exp->gdbarch);
10940 return
10941 value_from_longest (type,
10942 (value_less (arg1, arg3)
10943 || value_equal (arg1, arg3))
10944 && (value_less (arg2, arg1)
10945 || value_equal (arg2, arg1)));
10946 }
10947
10948 case BINOP_IN_BOUNDS:
10949 (*pos) += 2;
10950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10952
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955
10956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10957 {
10958 type = language_bool_type (exp->language_defn, exp->gdbarch);
10959 return value_zero (type, not_lval);
10960 }
10961
10962 tem = longest_to_int (exp->elts[pc + 1].longconst);
10963
10964 type = ada_index_type (value_type (arg2), tem, "range");
10965 if (!type)
10966 type = value_type (arg1);
10967
10968 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10969 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10970
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10973 type = language_bool_type (exp->language_defn, exp->gdbarch);
10974 return
10975 value_from_longest (type,
10976 (value_less (arg1, arg3)
10977 || value_equal (arg1, arg3))
10978 && (value_less (arg2, arg1)
10979 || value_equal (arg2, arg1)));
10980
10981 case TERNOP_IN_RANGE:
10982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985
10986 if (noside == EVAL_SKIP)
10987 goto nosideret;
10988
10989 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10990 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10991 type = language_bool_type (exp->language_defn, exp->gdbarch);
10992 return
10993 value_from_longest (type,
10994 (value_less (arg1, arg3)
10995 || value_equal (arg1, arg3))
10996 && (value_less (arg2, arg1)
10997 || value_equal (arg2, arg1)));
10998
10999 case OP_ATR_FIRST:
11000 case OP_ATR_LAST:
11001 case OP_ATR_LENGTH:
11002 {
11003 struct type *type_arg;
11004
11005 if (exp->elts[*pos].opcode == OP_TYPE)
11006 {
11007 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11008 arg1 = NULL;
11009 type_arg = check_typedef (exp->elts[pc + 2].type);
11010 }
11011 else
11012 {
11013 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 type_arg = NULL;
11015 }
11016
11017 if (exp->elts[*pos].opcode != OP_LONG)
11018 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11019 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11020 *pos += 4;
11021
11022 if (noside == EVAL_SKIP)
11023 goto nosideret;
11024 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11025 {
11026 if (type_arg == NULL)
11027 type_arg = value_type (arg1);
11028
11029 if (ada_is_constrained_packed_array_type (type_arg))
11030 type_arg = decode_constrained_packed_array_type (type_arg);
11031
11032 if (!discrete_type_p (type_arg))
11033 {
11034 switch (op)
11035 {
11036 default: /* Should never happen. */
11037 error (_("unexpected attribute encountered"));
11038 case OP_ATR_FIRST:
11039 case OP_ATR_LAST:
11040 type_arg = ada_index_type (type_arg, tem,
11041 ada_attribute_name (op));
11042 break;
11043 case OP_ATR_LENGTH:
11044 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11045 break;
11046 }
11047 }
11048
11049 return value_zero (type_arg, not_lval);
11050 }
11051 else if (type_arg == NULL)
11052 {
11053 arg1 = ada_coerce_ref (arg1);
11054
11055 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11056 arg1 = ada_coerce_to_simple_array (arg1);
11057
11058 if (op == OP_ATR_LENGTH)
11059 type = builtin_type (exp->gdbarch)->builtin_int;
11060 else
11061 {
11062 type = ada_index_type (value_type (arg1), tem,
11063 ada_attribute_name (op));
11064 if (type == NULL)
11065 type = builtin_type (exp->gdbarch)->builtin_int;
11066 }
11067
11068 switch (op)
11069 {
11070 default: /* Should never happen. */
11071 error (_("unexpected attribute encountered"));
11072 case OP_ATR_FIRST:
11073 return value_from_longest
11074 (type, ada_array_bound (arg1, tem, 0));
11075 case OP_ATR_LAST:
11076 return value_from_longest
11077 (type, ada_array_bound (arg1, tem, 1));
11078 case OP_ATR_LENGTH:
11079 return value_from_longest
11080 (type, ada_array_length (arg1, tem));
11081 }
11082 }
11083 else if (discrete_type_p (type_arg))
11084 {
11085 struct type *range_type;
11086 const char *name = ada_type_name (type_arg);
11087
11088 range_type = NULL;
11089 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11090 range_type = to_fixed_range_type (type_arg, NULL);
11091 if (range_type == NULL)
11092 range_type = type_arg;
11093 switch (op)
11094 {
11095 default:
11096 error (_("unexpected attribute encountered"));
11097 case OP_ATR_FIRST:
11098 return value_from_longest
11099 (range_type, ada_discrete_type_low_bound (range_type));
11100 case OP_ATR_LAST:
11101 return value_from_longest
11102 (range_type, ada_discrete_type_high_bound (range_type));
11103 case OP_ATR_LENGTH:
11104 error (_("the 'length attribute applies only to array types"));
11105 }
11106 }
11107 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11108 error (_("unimplemented type attribute"));
11109 else
11110 {
11111 LONGEST low, high;
11112
11113 if (ada_is_constrained_packed_array_type (type_arg))
11114 type_arg = decode_constrained_packed_array_type (type_arg);
11115
11116 if (op == OP_ATR_LENGTH)
11117 type = builtin_type (exp->gdbarch)->builtin_int;
11118 else
11119 {
11120 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11121 if (type == NULL)
11122 type = builtin_type (exp->gdbarch)->builtin_int;
11123 }
11124
11125 switch (op)
11126 {
11127 default:
11128 error (_("unexpected attribute encountered"));
11129 case OP_ATR_FIRST:
11130 low = ada_array_bound_from_type (type_arg, tem, 0);
11131 return value_from_longest (type, low);
11132 case OP_ATR_LAST:
11133 high = ada_array_bound_from_type (type_arg, tem, 1);
11134 return value_from_longest (type, high);
11135 case OP_ATR_LENGTH:
11136 low = ada_array_bound_from_type (type_arg, tem, 0);
11137 high = ada_array_bound_from_type (type_arg, tem, 1);
11138 return value_from_longest (type, high - low + 1);
11139 }
11140 }
11141 }
11142
11143 case OP_ATR_TAG:
11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145 if (noside == EVAL_SKIP)
11146 goto nosideret;
11147
11148 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11149 return value_zero (ada_tag_type (arg1), not_lval);
11150
11151 return ada_value_tag (arg1);
11152
11153 case OP_ATR_MIN:
11154 case OP_ATR_MAX:
11155 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 if (noside == EVAL_SKIP)
11159 goto nosideret;
11160 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11161 return value_zero (value_type (arg1), not_lval);
11162 else
11163 {
11164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11165 return value_binop (arg1, arg2,
11166 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11167 }
11168
11169 case OP_ATR_MODULUS:
11170 {
11171 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11172
11173 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11174 if (noside == EVAL_SKIP)
11175 goto nosideret;
11176
11177 if (!ada_is_modular_type (type_arg))
11178 error (_("'modulus must be applied to modular type"));
11179
11180 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11181 ada_modulus (type_arg));
11182 }
11183
11184
11185 case OP_ATR_POS:
11186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
11190 type = builtin_type (exp->gdbarch)->builtin_int;
11191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11192 return value_zero (type, not_lval);
11193 else
11194 return value_pos_atr (type, arg1);
11195
11196 case OP_ATR_SIZE:
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 type = value_type (arg1);
11199
11200 /* If the argument is a reference, then dereference its type, since
11201 the user is really asking for the size of the actual object,
11202 not the size of the pointer. */
11203 if (TYPE_CODE (type) == TYPE_CODE_REF)
11204 type = TYPE_TARGET_TYPE (type);
11205
11206 if (noside == EVAL_SKIP)
11207 goto nosideret;
11208 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11209 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11210 else
11211 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11212 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11213
11214 case OP_ATR_VAL:
11215 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 type = exp->elts[pc + 2].type;
11218 if (noside == EVAL_SKIP)
11219 goto nosideret;
11220 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11221 return value_zero (type, not_lval);
11222 else
11223 return value_val_atr (type, arg1);
11224
11225 case BINOP_EXP:
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 if (noside == EVAL_SKIP)
11229 goto nosideret;
11230 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11231 return value_zero (value_type (arg1), not_lval);
11232 else
11233 {
11234 /* For integer exponentiation operations,
11235 only promote the first argument. */
11236 if (is_integral_type (value_type (arg2)))
11237 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11238 else
11239 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11240
11241 return value_binop (arg1, arg2, op);
11242 }
11243
11244 case UNOP_PLUS:
11245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11246 if (noside == EVAL_SKIP)
11247 goto nosideret;
11248 else
11249 return arg1;
11250
11251 case UNOP_ABS:
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11253 if (noside == EVAL_SKIP)
11254 goto nosideret;
11255 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11256 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11257 return value_neg (arg1);
11258 else
11259 return arg1;
11260
11261 case UNOP_IND:
11262 preeval_pos = *pos;
11263 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11264 if (noside == EVAL_SKIP)
11265 goto nosideret;
11266 type = ada_check_typedef (value_type (arg1));
11267 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11268 {
11269 if (ada_is_array_descriptor_type (type))
11270 /* GDB allows dereferencing GNAT array descriptors. */
11271 {
11272 struct type *arrType = ada_type_of_array (arg1, 0);
11273
11274 if (arrType == NULL)
11275 error (_("Attempt to dereference null array pointer."));
11276 return value_at_lazy (arrType, 0);
11277 }
11278 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11279 || TYPE_CODE (type) == TYPE_CODE_REF
11280 /* In C you can dereference an array to get the 1st elt. */
11281 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11282 {
11283 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11284 only be determined by inspecting the object's tag.
11285 This means that we need to evaluate completely the
11286 expression in order to get its type. */
11287
11288 if ((TYPE_CODE (type) == TYPE_CODE_REF
11289 || TYPE_CODE (type) == TYPE_CODE_PTR)
11290 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11291 {
11292 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11293 EVAL_NORMAL);
11294 type = value_type (ada_value_ind (arg1));
11295 }
11296 else
11297 {
11298 type = to_static_fixed_type
11299 (ada_aligned_type
11300 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11301 }
11302 ada_ensure_varsize_limit (type);
11303 return value_zero (type, lval_memory);
11304 }
11305 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11306 {
11307 /* GDB allows dereferencing an int. */
11308 if (expect_type == NULL)
11309 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11310 lval_memory);
11311 else
11312 {
11313 expect_type =
11314 to_static_fixed_type (ada_aligned_type (expect_type));
11315 return value_zero (expect_type, lval_memory);
11316 }
11317 }
11318 else
11319 error (_("Attempt to take contents of a non-pointer value."));
11320 }
11321 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11322 type = ada_check_typedef (value_type (arg1));
11323
11324 if (TYPE_CODE (type) == TYPE_CODE_INT)
11325 /* GDB allows dereferencing an int. If we were given
11326 the expect_type, then use that as the target type.
11327 Otherwise, assume that the target type is an int. */
11328 {
11329 if (expect_type != NULL)
11330 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11331 arg1));
11332 else
11333 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11334 (CORE_ADDR) value_as_address (arg1));
11335 }
11336
11337 if (ada_is_array_descriptor_type (type))
11338 /* GDB allows dereferencing GNAT array descriptors. */
11339 return ada_coerce_to_simple_array (arg1);
11340 else
11341 return ada_value_ind (arg1);
11342
11343 case STRUCTOP_STRUCT:
11344 tem = longest_to_int (exp->elts[pc + 1].longconst);
11345 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11346 preeval_pos = *pos;
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 if (noside == EVAL_SKIP)
11349 goto nosideret;
11350 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11351 {
11352 struct type *type1 = value_type (arg1);
11353
11354 if (ada_is_tagged_type (type1, 1))
11355 {
11356 type = ada_lookup_struct_elt_type (type1,
11357 &exp->elts[pc + 2].string,
11358 1, 1);
11359
11360 /* If the field is not found, check if it exists in the
11361 extension of this object's type. This means that we
11362 need to evaluate completely the expression. */
11363
11364 if (type == NULL)
11365 {
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11367 EVAL_NORMAL);
11368 arg1 = ada_value_struct_elt (arg1,
11369 &exp->elts[pc + 2].string,
11370 0);
11371 arg1 = unwrap_value (arg1);
11372 type = value_type (ada_to_fixed_value (arg1));
11373 }
11374 }
11375 else
11376 type =
11377 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11378 0);
11379
11380 return value_zero (ada_aligned_type (type), lval_memory);
11381 }
11382 else
11383 {
11384 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11385 arg1 = unwrap_value (arg1);
11386 return ada_to_fixed_value (arg1);
11387 }
11388
11389 case OP_TYPE:
11390 /* The value is not supposed to be used. This is here to make it
11391 easier to accommodate expressions that contain types. */
11392 (*pos) += 2;
11393 if (noside == EVAL_SKIP)
11394 goto nosideret;
11395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11396 return allocate_value (exp->elts[pc + 1].type);
11397 else
11398 error (_("Attempt to use a type name as an expression"));
11399
11400 case OP_AGGREGATE:
11401 case OP_CHOICES:
11402 case OP_OTHERS:
11403 case OP_DISCRETE_RANGE:
11404 case OP_POSITIONAL:
11405 case OP_NAME:
11406 if (noside == EVAL_NORMAL)
11407 switch (op)
11408 {
11409 case OP_NAME:
11410 error (_("Undefined name, ambiguous name, or renaming used in "
11411 "component association: %s."), &exp->elts[pc+2].string);
11412 case OP_AGGREGATE:
11413 error (_("Aggregates only allowed on the right of an assignment"));
11414 default:
11415 internal_error (__FILE__, __LINE__,
11416 _("aggregate apparently mangled"));
11417 }
11418
11419 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11420 *pos += oplen - 1;
11421 for (tem = 0; tem < nargs; tem += 1)
11422 ada_evaluate_subexp (NULL, exp, pos, noside);
11423 goto nosideret;
11424 }
11425
11426 nosideret:
11427 return eval_skip_value (exp);
11428 }
11429 \f
11430
11431 /* Fixed point */
11432
11433 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11434 type name that encodes the 'small and 'delta information.
11435 Otherwise, return NULL. */
11436
11437 static const char *
11438 fixed_type_info (struct type *type)
11439 {
11440 const char *name = ada_type_name (type);
11441 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11442
11443 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11444 {
11445 const char *tail = strstr (name, "___XF_");
11446
11447 if (tail == NULL)
11448 return NULL;
11449 else
11450 return tail + 5;
11451 }
11452 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11453 return fixed_type_info (TYPE_TARGET_TYPE (type));
11454 else
11455 return NULL;
11456 }
11457
11458 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11459
11460 int
11461 ada_is_fixed_point_type (struct type *type)
11462 {
11463 return fixed_type_info (type) != NULL;
11464 }
11465
11466 /* Return non-zero iff TYPE represents a System.Address type. */
11467
11468 int
11469 ada_is_system_address_type (struct type *type)
11470 {
11471 return (TYPE_NAME (type)
11472 && strcmp (TYPE_NAME (type), "system__address") == 0);
11473 }
11474
11475 /* Assuming that TYPE is the representation of an Ada fixed-point
11476 type, return the target floating-point type to be used to represent
11477 of this type during internal computation. */
11478
11479 static struct type *
11480 ada_scaling_type (struct type *type)
11481 {
11482 return builtin_type (get_type_arch (type))->builtin_long_double;
11483 }
11484
11485 /* Assuming that TYPE is the representation of an Ada fixed-point
11486 type, return its delta, or NULL if the type is malformed and the
11487 delta cannot be determined. */
11488
11489 struct value *
11490 ada_delta (struct type *type)
11491 {
11492 const char *encoding = fixed_type_info (type);
11493 struct type *scale_type = ada_scaling_type (type);
11494
11495 long long num, den;
11496
11497 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11498 return nullptr;
11499 else
11500 return value_binop (value_from_longest (scale_type, num),
11501 value_from_longest (scale_type, den), BINOP_DIV);
11502 }
11503
11504 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11505 factor ('SMALL value) associated with the type. */
11506
11507 struct value *
11508 ada_scaling_factor (struct type *type)
11509 {
11510 const char *encoding = fixed_type_info (type);
11511 struct type *scale_type = ada_scaling_type (type);
11512
11513 long long num0, den0, num1, den1;
11514 int n;
11515
11516 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11517 &num0, &den0, &num1, &den1);
11518
11519 if (n < 2)
11520 return value_from_longest (scale_type, 1);
11521 else if (n == 4)
11522 return value_binop (value_from_longest (scale_type, num1),
11523 value_from_longest (scale_type, den1), BINOP_DIV);
11524 else
11525 return value_binop (value_from_longest (scale_type, num0),
11526 value_from_longest (scale_type, den0), BINOP_DIV);
11527 }
11528
11529 \f
11530
11531 /* Range types */
11532
11533 /* Scan STR beginning at position K for a discriminant name, and
11534 return the value of that discriminant field of DVAL in *PX. If
11535 PNEW_K is not null, put the position of the character beyond the
11536 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11537 not alter *PX and *PNEW_K if unsuccessful. */
11538
11539 static int
11540 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11541 int *pnew_k)
11542 {
11543 static char *bound_buffer = NULL;
11544 static size_t bound_buffer_len = 0;
11545 const char *pstart, *pend, *bound;
11546 struct value *bound_val;
11547
11548 if (dval == NULL || str == NULL || str[k] == '\0')
11549 return 0;
11550
11551 pstart = str + k;
11552 pend = strstr (pstart, "__");
11553 if (pend == NULL)
11554 {
11555 bound = pstart;
11556 k += strlen (bound);
11557 }
11558 else
11559 {
11560 int len = pend - pstart;
11561
11562 /* Strip __ and beyond. */
11563 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11564 strncpy (bound_buffer, pstart, len);
11565 bound_buffer[len] = '\0';
11566
11567 bound = bound_buffer;
11568 k = pend - str;
11569 }
11570
11571 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11572 if (bound_val == NULL)
11573 return 0;
11574
11575 *px = value_as_long (bound_val);
11576 if (pnew_k != NULL)
11577 *pnew_k = k;
11578 return 1;
11579 }
11580
11581 /* Value of variable named NAME in the current environment. If
11582 no such variable found, then if ERR_MSG is null, returns 0, and
11583 otherwise causes an error with message ERR_MSG. */
11584
11585 static struct value *
11586 get_var_value (const char *name, const char *err_msg)
11587 {
11588 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11589
11590 std::vector<struct block_symbol> syms;
11591 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11592 get_selected_block (0),
11593 VAR_DOMAIN, &syms, 1);
11594
11595 if (nsyms != 1)
11596 {
11597 if (err_msg == NULL)
11598 return 0;
11599 else
11600 error (("%s"), err_msg);
11601 }
11602
11603 return value_of_variable (syms[0].symbol, syms[0].block);
11604 }
11605
11606 /* Value of integer variable named NAME in the current environment.
11607 If no such variable is found, returns false. Otherwise, sets VALUE
11608 to the variable's value and returns true. */
11609
11610 bool
11611 get_int_var_value (const char *name, LONGEST &value)
11612 {
11613 struct value *var_val = get_var_value (name, 0);
11614
11615 if (var_val == 0)
11616 return false;
11617
11618 value = value_as_long (var_val);
11619 return true;
11620 }
11621
11622
11623 /* Return a range type whose base type is that of the range type named
11624 NAME in the current environment, and whose bounds are calculated
11625 from NAME according to the GNAT range encoding conventions.
11626 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11627 corresponding range type from debug information; fall back to using it
11628 if symbol lookup fails. If a new type must be created, allocate it
11629 like ORIG_TYPE was. The bounds information, in general, is encoded
11630 in NAME, the base type given in the named range type. */
11631
11632 static struct type *
11633 to_fixed_range_type (struct type *raw_type, struct value *dval)
11634 {
11635 const char *name;
11636 struct type *base_type;
11637 const char *subtype_info;
11638
11639 gdb_assert (raw_type != NULL);
11640 gdb_assert (TYPE_NAME (raw_type) != NULL);
11641
11642 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11643 base_type = TYPE_TARGET_TYPE (raw_type);
11644 else
11645 base_type = raw_type;
11646
11647 name = TYPE_NAME (raw_type);
11648 subtype_info = strstr (name, "___XD");
11649 if (subtype_info == NULL)
11650 {
11651 LONGEST L = ada_discrete_type_low_bound (raw_type);
11652 LONGEST U = ada_discrete_type_high_bound (raw_type);
11653
11654 if (L < INT_MIN || U > INT_MAX)
11655 return raw_type;
11656 else
11657 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11658 L, U);
11659 }
11660 else
11661 {
11662 static char *name_buf = NULL;
11663 static size_t name_len = 0;
11664 int prefix_len = subtype_info - name;
11665 LONGEST L, U;
11666 struct type *type;
11667 const char *bounds_str;
11668 int n;
11669
11670 GROW_VECT (name_buf, name_len, prefix_len + 5);
11671 strncpy (name_buf, name, prefix_len);
11672 name_buf[prefix_len] = '\0';
11673
11674 subtype_info += 5;
11675 bounds_str = strchr (subtype_info, '_');
11676 n = 1;
11677
11678 if (*subtype_info == 'L')
11679 {
11680 if (!ada_scan_number (bounds_str, n, &L, &n)
11681 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11682 return raw_type;
11683 if (bounds_str[n] == '_')
11684 n += 2;
11685 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11686 n += 1;
11687 subtype_info += 1;
11688 }
11689 else
11690 {
11691 strcpy (name_buf + prefix_len, "___L");
11692 if (!get_int_var_value (name_buf, L))
11693 {
11694 lim_warning (_("Unknown lower bound, using 1."));
11695 L = 1;
11696 }
11697 }
11698
11699 if (*subtype_info == 'U')
11700 {
11701 if (!ada_scan_number (bounds_str, n, &U, &n)
11702 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11703 return raw_type;
11704 }
11705 else
11706 {
11707 strcpy (name_buf + prefix_len, "___U");
11708 if (!get_int_var_value (name_buf, U))
11709 {
11710 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11711 U = L;
11712 }
11713 }
11714
11715 type = create_static_range_type (alloc_type_copy (raw_type),
11716 base_type, L, U);
11717 /* create_static_range_type alters the resulting type's length
11718 to match the size of the base_type, which is not what we want.
11719 Set it back to the original range type's length. */
11720 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11721 TYPE_NAME (type) = name;
11722 return type;
11723 }
11724 }
11725
11726 /* True iff NAME is the name of a range type. */
11727
11728 int
11729 ada_is_range_type_name (const char *name)
11730 {
11731 return (name != NULL && strstr (name, "___XD"));
11732 }
11733 \f
11734
11735 /* Modular types */
11736
11737 /* True iff TYPE is an Ada modular type. */
11738
11739 int
11740 ada_is_modular_type (struct type *type)
11741 {
11742 struct type *subranged_type = get_base_type (type);
11743
11744 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11745 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11746 && TYPE_UNSIGNED (subranged_type));
11747 }
11748
11749 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11750
11751 ULONGEST
11752 ada_modulus (struct type *type)
11753 {
11754 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11755 }
11756 \f
11757
11758 /* Ada exception catchpoint support:
11759 ---------------------------------
11760
11761 We support 3 kinds of exception catchpoints:
11762 . catchpoints on Ada exceptions
11763 . catchpoints on unhandled Ada exceptions
11764 . catchpoints on failed assertions
11765
11766 Exceptions raised during failed assertions, or unhandled exceptions
11767 could perfectly be caught with the general catchpoint on Ada exceptions.
11768 However, we can easily differentiate these two special cases, and having
11769 the option to distinguish these two cases from the rest can be useful
11770 to zero-in on certain situations.
11771
11772 Exception catchpoints are a specialized form of breakpoint,
11773 since they rely on inserting breakpoints inside known routines
11774 of the GNAT runtime. The implementation therefore uses a standard
11775 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11776 of breakpoint_ops.
11777
11778 Support in the runtime for exception catchpoints have been changed
11779 a few times already, and these changes affect the implementation
11780 of these catchpoints. In order to be able to support several
11781 variants of the runtime, we use a sniffer that will determine
11782 the runtime variant used by the program being debugged. */
11783
11784 /* Ada's standard exceptions.
11785
11786 The Ada 83 standard also defined Numeric_Error. But there so many
11787 situations where it was unclear from the Ada 83 Reference Manual
11788 (RM) whether Constraint_Error or Numeric_Error should be raised,
11789 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11790 Interpretation saying that anytime the RM says that Numeric_Error
11791 should be raised, the implementation may raise Constraint_Error.
11792 Ada 95 went one step further and pretty much removed Numeric_Error
11793 from the list of standard exceptions (it made it a renaming of
11794 Constraint_Error, to help preserve compatibility when compiling
11795 an Ada83 compiler). As such, we do not include Numeric_Error from
11796 this list of standard exceptions. */
11797
11798 static const char *standard_exc[] = {
11799 "constraint_error",
11800 "program_error",
11801 "storage_error",
11802 "tasking_error"
11803 };
11804
11805 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11806
11807 /* A structure that describes how to support exception catchpoints
11808 for a given executable. */
11809
11810 struct exception_support_info
11811 {
11812 /* The name of the symbol to break on in order to insert
11813 a catchpoint on exceptions. */
11814 const char *catch_exception_sym;
11815
11816 /* The name of the symbol to break on in order to insert
11817 a catchpoint on unhandled exceptions. */
11818 const char *catch_exception_unhandled_sym;
11819
11820 /* The name of the symbol to break on in order to insert
11821 a catchpoint on failed assertions. */
11822 const char *catch_assert_sym;
11823
11824 /* The name of the symbol to break on in order to insert
11825 a catchpoint on exception handling. */
11826 const char *catch_handlers_sym;
11827
11828 /* Assuming that the inferior just triggered an unhandled exception
11829 catchpoint, this function is responsible for returning the address
11830 in inferior memory where the name of that exception is stored.
11831 Return zero if the address could not be computed. */
11832 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11833 };
11834
11835 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11836 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11837
11838 /* The following exception support info structure describes how to
11839 implement exception catchpoints with the latest version of the
11840 Ada runtime (as of 2019-08-??). */
11841
11842 static const struct exception_support_info default_exception_support_info =
11843 {
11844 "__gnat_debug_raise_exception", /* catch_exception_sym */
11845 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11846 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11847 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11848 ada_unhandled_exception_name_addr
11849 };
11850
11851 /* The following exception support info structure describes how to
11852 implement exception catchpoints with an earlier version of the
11853 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11854
11855 static const struct exception_support_info exception_support_info_v0 =
11856 {
11857 "__gnat_debug_raise_exception", /* catch_exception_sym */
11858 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11859 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11860 "__gnat_begin_handler", /* catch_handlers_sym */
11861 ada_unhandled_exception_name_addr
11862 };
11863
11864 /* The following exception support info structure describes how to
11865 implement exception catchpoints with a slightly older version
11866 of the Ada runtime. */
11867
11868 static const struct exception_support_info exception_support_info_fallback =
11869 {
11870 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11871 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11872 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11873 "__gnat_begin_handler", /* catch_handlers_sym */
11874 ada_unhandled_exception_name_addr_from_raise
11875 };
11876
11877 /* Return nonzero if we can detect the exception support routines
11878 described in EINFO.
11879
11880 This function errors out if an abnormal situation is detected
11881 (for instance, if we find the exception support routines, but
11882 that support is found to be incomplete). */
11883
11884 static int
11885 ada_has_this_exception_support (const struct exception_support_info *einfo)
11886 {
11887 struct symbol *sym;
11888
11889 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11890 that should be compiled with debugging information. As a result, we
11891 expect to find that symbol in the symtabs. */
11892
11893 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11894 if (sym == NULL)
11895 {
11896 /* Perhaps we did not find our symbol because the Ada runtime was
11897 compiled without debugging info, or simply stripped of it.
11898 It happens on some GNU/Linux distributions for instance, where
11899 users have to install a separate debug package in order to get
11900 the runtime's debugging info. In that situation, let the user
11901 know why we cannot insert an Ada exception catchpoint.
11902
11903 Note: Just for the purpose of inserting our Ada exception
11904 catchpoint, we could rely purely on the associated minimal symbol.
11905 But we would be operating in degraded mode anyway, since we are
11906 still lacking the debugging info needed later on to extract
11907 the name of the exception being raised (this name is printed in
11908 the catchpoint message, and is also used when trying to catch
11909 a specific exception). We do not handle this case for now. */
11910 struct bound_minimal_symbol msym
11911 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11912
11913 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11914 error (_("Your Ada runtime appears to be missing some debugging "
11915 "information.\nCannot insert Ada exception catchpoint "
11916 "in this configuration."));
11917
11918 return 0;
11919 }
11920
11921 /* Make sure that the symbol we found corresponds to a function. */
11922
11923 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11924 {
11925 error (_("Symbol \"%s\" is not a function (class = %d)"),
11926 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11927 return 0;
11928 }
11929
11930 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11931 if (sym == NULL)
11932 {
11933 struct bound_minimal_symbol msym
11934 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11935
11936 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11937 error (_("Your Ada runtime appears to be missing some debugging "
11938 "information.\nCannot insert Ada exception catchpoint "
11939 "in this configuration."));
11940
11941 return 0;
11942 }
11943
11944 /* Make sure that the symbol we found corresponds to a function. */
11945
11946 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11947 {
11948 error (_("Symbol \"%s\" is not a function (class = %d)"),
11949 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11950 return 0;
11951 }
11952
11953 return 1;
11954 }
11955
11956 /* Inspect the Ada runtime and determine which exception info structure
11957 should be used to provide support for exception catchpoints.
11958
11959 This function will always set the per-inferior exception_info,
11960 or raise an error. */
11961
11962 static void
11963 ada_exception_support_info_sniffer (void)
11964 {
11965 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11966
11967 /* If the exception info is already known, then no need to recompute it. */
11968 if (data->exception_info != NULL)
11969 return;
11970
11971 /* Check the latest (default) exception support info. */
11972 if (ada_has_this_exception_support (&default_exception_support_info))
11973 {
11974 data->exception_info = &default_exception_support_info;
11975 return;
11976 }
11977
11978 /* Try the v0 exception suport info. */
11979 if (ada_has_this_exception_support (&exception_support_info_v0))
11980 {
11981 data->exception_info = &exception_support_info_v0;
11982 return;
11983 }
11984
11985 /* Try our fallback exception suport info. */
11986 if (ada_has_this_exception_support (&exception_support_info_fallback))
11987 {
11988 data->exception_info = &exception_support_info_fallback;
11989 return;
11990 }
11991
11992 /* Sometimes, it is normal for us to not be able to find the routine
11993 we are looking for. This happens when the program is linked with
11994 the shared version of the GNAT runtime, and the program has not been
11995 started yet. Inform the user of these two possible causes if
11996 applicable. */
11997
11998 if (ada_update_initial_language (language_unknown) != language_ada)
11999 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12000
12001 /* If the symbol does not exist, then check that the program is
12002 already started, to make sure that shared libraries have been
12003 loaded. If it is not started, this may mean that the symbol is
12004 in a shared library. */
12005
12006 if (inferior_ptid.pid () == 0)
12007 error (_("Unable to insert catchpoint. Try to start the program first."));
12008
12009 /* At this point, we know that we are debugging an Ada program and
12010 that the inferior has been started, but we still are not able to
12011 find the run-time symbols. That can mean that we are in
12012 configurable run time mode, or that a-except as been optimized
12013 out by the linker... In any case, at this point it is not worth
12014 supporting this feature. */
12015
12016 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12017 }
12018
12019 /* True iff FRAME is very likely to be that of a function that is
12020 part of the runtime system. This is all very heuristic, but is
12021 intended to be used as advice as to what frames are uninteresting
12022 to most users. */
12023
12024 static int
12025 is_known_support_routine (struct frame_info *frame)
12026 {
12027 enum language func_lang;
12028 int i;
12029 const char *fullname;
12030
12031 /* If this code does not have any debugging information (no symtab),
12032 This cannot be any user code. */
12033
12034 symtab_and_line sal = find_frame_sal (frame);
12035 if (sal.symtab == NULL)
12036 return 1;
12037
12038 /* If there is a symtab, but the associated source file cannot be
12039 located, then assume this is not user code: Selecting a frame
12040 for which we cannot display the code would not be very helpful
12041 for the user. This should also take care of case such as VxWorks
12042 where the kernel has some debugging info provided for a few units. */
12043
12044 fullname = symtab_to_fullname (sal.symtab);
12045 if (access (fullname, R_OK) != 0)
12046 return 1;
12047
12048 /* Check the unit filename against the Ada runtime file naming.
12049 We also check the name of the objfile against the name of some
12050 known system libraries that sometimes come with debugging info
12051 too. */
12052
12053 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12054 {
12055 re_comp (known_runtime_file_name_patterns[i]);
12056 if (re_exec (lbasename (sal.symtab->filename)))
12057 return 1;
12058 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12059 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12060 return 1;
12061 }
12062
12063 /* Check whether the function is a GNAT-generated entity. */
12064
12065 gdb::unique_xmalloc_ptr<char> func_name
12066 = find_frame_funname (frame, &func_lang, NULL);
12067 if (func_name == NULL)
12068 return 1;
12069
12070 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12071 {
12072 re_comp (known_auxiliary_function_name_patterns[i]);
12073 if (re_exec (func_name.get ()))
12074 return 1;
12075 }
12076
12077 return 0;
12078 }
12079
12080 /* Find the first frame that contains debugging information and that is not
12081 part of the Ada run-time, starting from FI and moving upward. */
12082
12083 void
12084 ada_find_printable_frame (struct frame_info *fi)
12085 {
12086 for (; fi != NULL; fi = get_prev_frame (fi))
12087 {
12088 if (!is_known_support_routine (fi))
12089 {
12090 select_frame (fi);
12091 break;
12092 }
12093 }
12094
12095 }
12096
12097 /* Assuming that the inferior just triggered an unhandled exception
12098 catchpoint, return the address in inferior memory where the name
12099 of the exception is stored.
12100
12101 Return zero if the address could not be computed. */
12102
12103 static CORE_ADDR
12104 ada_unhandled_exception_name_addr (void)
12105 {
12106 return parse_and_eval_address ("e.full_name");
12107 }
12108
12109 /* Same as ada_unhandled_exception_name_addr, except that this function
12110 should be used when the inferior uses an older version of the runtime,
12111 where the exception name needs to be extracted from a specific frame
12112 several frames up in the callstack. */
12113
12114 static CORE_ADDR
12115 ada_unhandled_exception_name_addr_from_raise (void)
12116 {
12117 int frame_level;
12118 struct frame_info *fi;
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12120
12121 /* To determine the name of this exception, we need to select
12122 the frame corresponding to RAISE_SYM_NAME. This frame is
12123 at least 3 levels up, so we simply skip the first 3 frames
12124 without checking the name of their associated function. */
12125 fi = get_current_frame ();
12126 for (frame_level = 0; frame_level < 3; frame_level += 1)
12127 if (fi != NULL)
12128 fi = get_prev_frame (fi);
12129
12130 while (fi != NULL)
12131 {
12132 enum language func_lang;
12133
12134 gdb::unique_xmalloc_ptr<char> func_name
12135 = find_frame_funname (fi, &func_lang, NULL);
12136 if (func_name != NULL)
12137 {
12138 if (strcmp (func_name.get (),
12139 data->exception_info->catch_exception_sym) == 0)
12140 break; /* We found the frame we were looking for... */
12141 }
12142 fi = get_prev_frame (fi);
12143 }
12144
12145 if (fi == NULL)
12146 return 0;
12147
12148 select_frame (fi);
12149 return parse_and_eval_address ("id.full_name");
12150 }
12151
12152 /* Assuming the inferior just triggered an Ada exception catchpoint
12153 (of any type), return the address in inferior memory where the name
12154 of the exception is stored, if applicable.
12155
12156 Assumes the selected frame is the current frame.
12157
12158 Return zero if the address could not be computed, or if not relevant. */
12159
12160 static CORE_ADDR
12161 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12162 struct breakpoint *b)
12163 {
12164 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12165
12166 switch (ex)
12167 {
12168 case ada_catch_exception:
12169 return (parse_and_eval_address ("e.full_name"));
12170 break;
12171
12172 case ada_catch_exception_unhandled:
12173 return data->exception_info->unhandled_exception_name_addr ();
12174 break;
12175
12176 case ada_catch_handlers:
12177 return 0; /* The runtimes does not provide access to the exception
12178 name. */
12179 break;
12180
12181 case ada_catch_assert:
12182 return 0; /* Exception name is not relevant in this case. */
12183 break;
12184
12185 default:
12186 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12187 break;
12188 }
12189
12190 return 0; /* Should never be reached. */
12191 }
12192
12193 /* Assuming the inferior is stopped at an exception catchpoint,
12194 return the message which was associated to the exception, if
12195 available. Return NULL if the message could not be retrieved.
12196
12197 Note: The exception message can be associated to an exception
12198 either through the use of the Raise_Exception function, or
12199 more simply (Ada 2005 and later), via:
12200
12201 raise Exception_Name with "exception message";
12202
12203 */
12204
12205 static gdb::unique_xmalloc_ptr<char>
12206 ada_exception_message_1 (void)
12207 {
12208 struct value *e_msg_val;
12209 int e_msg_len;
12210
12211 /* For runtimes that support this feature, the exception message
12212 is passed as an unbounded string argument called "message". */
12213 e_msg_val = parse_and_eval ("message");
12214 if (e_msg_val == NULL)
12215 return NULL; /* Exception message not supported. */
12216
12217 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12218 gdb_assert (e_msg_val != NULL);
12219 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12220
12221 /* If the message string is empty, then treat it as if there was
12222 no exception message. */
12223 if (e_msg_len <= 0)
12224 return NULL;
12225
12226 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12227 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12228 e_msg.get ()[e_msg_len] = '\0';
12229
12230 return e_msg;
12231 }
12232
12233 /* Same as ada_exception_message_1, except that all exceptions are
12234 contained here (returning NULL instead). */
12235
12236 static gdb::unique_xmalloc_ptr<char>
12237 ada_exception_message (void)
12238 {
12239 gdb::unique_xmalloc_ptr<char> e_msg;
12240
12241 try
12242 {
12243 e_msg = ada_exception_message_1 ();
12244 }
12245 catch (const gdb_exception_error &e)
12246 {
12247 e_msg.reset (nullptr);
12248 }
12249
12250 return e_msg;
12251 }
12252
12253 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12254 any error that ada_exception_name_addr_1 might cause to be thrown.
12255 When an error is intercepted, a warning with the error message is printed,
12256 and zero is returned. */
12257
12258 static CORE_ADDR
12259 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12260 struct breakpoint *b)
12261 {
12262 CORE_ADDR result = 0;
12263
12264 try
12265 {
12266 result = ada_exception_name_addr_1 (ex, b);
12267 }
12268
12269 catch (const gdb_exception_error &e)
12270 {
12271 warning (_("failed to get exception name: %s"), e.what ());
12272 return 0;
12273 }
12274
12275 return result;
12276 }
12277
12278 static std::string ada_exception_catchpoint_cond_string
12279 (const char *excep_string,
12280 enum ada_exception_catchpoint_kind ex);
12281
12282 /* Ada catchpoints.
12283
12284 In the case of catchpoints on Ada exceptions, the catchpoint will
12285 stop the target on every exception the program throws. When a user
12286 specifies the name of a specific exception, we translate this
12287 request into a condition expression (in text form), and then parse
12288 it into an expression stored in each of the catchpoint's locations.
12289 We then use this condition to check whether the exception that was
12290 raised is the one the user is interested in. If not, then the
12291 target is resumed again. We store the name of the requested
12292 exception, in order to be able to re-set the condition expression
12293 when symbols change. */
12294
12295 /* An instance of this type is used to represent an Ada catchpoint
12296 breakpoint location. */
12297
12298 class ada_catchpoint_location : public bp_location
12299 {
12300 public:
12301 ada_catchpoint_location (breakpoint *owner)
12302 : bp_location (owner, bp_loc_software_breakpoint)
12303 {}
12304
12305 /* The condition that checks whether the exception that was raised
12306 is the specific exception the user specified on catchpoint
12307 creation. */
12308 expression_up excep_cond_expr;
12309 };
12310
12311 /* An instance of this type is used to represent an Ada catchpoint. */
12312
12313 struct ada_catchpoint : public breakpoint
12314 {
12315 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12316 : m_kind (kind)
12317 {
12318 }
12319
12320 /* The name of the specific exception the user specified. */
12321 std::string excep_string;
12322
12323 /* What kind of catchpoint this is. */
12324 enum ada_exception_catchpoint_kind m_kind;
12325 };
12326
12327 /* Parse the exception condition string in the context of each of the
12328 catchpoint's locations, and store them for later evaluation. */
12329
12330 static void
12331 create_excep_cond_exprs (struct ada_catchpoint *c,
12332 enum ada_exception_catchpoint_kind ex)
12333 {
12334 struct bp_location *bl;
12335
12336 /* Nothing to do if there's no specific exception to catch. */
12337 if (c->excep_string.empty ())
12338 return;
12339
12340 /* Same if there are no locations... */
12341 if (c->loc == NULL)
12342 return;
12343
12344 /* Compute the condition expression in text form, from the specific
12345 expection we want to catch. */
12346 std::string cond_string
12347 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12348
12349 /* Iterate over all the catchpoint's locations, and parse an
12350 expression for each. */
12351 for (bl = c->loc; bl != NULL; bl = bl->next)
12352 {
12353 struct ada_catchpoint_location *ada_loc
12354 = (struct ada_catchpoint_location *) bl;
12355 expression_up exp;
12356
12357 if (!bl->shlib_disabled)
12358 {
12359 const char *s;
12360
12361 s = cond_string.c_str ();
12362 try
12363 {
12364 exp = parse_exp_1 (&s, bl->address,
12365 block_for_pc (bl->address),
12366 0);
12367 }
12368 catch (const gdb_exception_error &e)
12369 {
12370 warning (_("failed to reevaluate internal exception condition "
12371 "for catchpoint %d: %s"),
12372 c->number, e.what ());
12373 }
12374 }
12375
12376 ada_loc->excep_cond_expr = std::move (exp);
12377 }
12378 }
12379
12380 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12381 structure for all exception catchpoint kinds. */
12382
12383 static struct bp_location *
12384 allocate_location_exception (struct breakpoint *self)
12385 {
12386 return new ada_catchpoint_location (self);
12387 }
12388
12389 /* Implement the RE_SET method in the breakpoint_ops structure for all
12390 exception catchpoint kinds. */
12391
12392 static void
12393 re_set_exception (struct breakpoint *b)
12394 {
12395 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12396
12397 /* Call the base class's method. This updates the catchpoint's
12398 locations. */
12399 bkpt_breakpoint_ops.re_set (b);
12400
12401 /* Reparse the exception conditional expressions. One for each
12402 location. */
12403 create_excep_cond_exprs (c, c->m_kind);
12404 }
12405
12406 /* Returns true if we should stop for this breakpoint hit. If the
12407 user specified a specific exception, we only want to cause a stop
12408 if the program thrown that exception. */
12409
12410 static int
12411 should_stop_exception (const struct bp_location *bl)
12412 {
12413 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12414 const struct ada_catchpoint_location *ada_loc
12415 = (const struct ada_catchpoint_location *) bl;
12416 int stop;
12417
12418 struct internalvar *var = lookup_internalvar ("_ada_exception");
12419 if (c->m_kind == ada_catch_assert)
12420 clear_internalvar (var);
12421 else
12422 {
12423 try
12424 {
12425 const char *expr;
12426
12427 if (c->m_kind == ada_catch_handlers)
12428 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12429 ".all.occurrence.id");
12430 else
12431 expr = "e";
12432
12433 struct value *exc = parse_and_eval (expr);
12434 set_internalvar (var, exc);
12435 }
12436 catch (const gdb_exception_error &ex)
12437 {
12438 clear_internalvar (var);
12439 }
12440 }
12441
12442 /* With no specific exception, should always stop. */
12443 if (c->excep_string.empty ())
12444 return 1;
12445
12446 if (ada_loc->excep_cond_expr == NULL)
12447 {
12448 /* We will have a NULL expression if back when we were creating
12449 the expressions, this location's had failed to parse. */
12450 return 1;
12451 }
12452
12453 stop = 1;
12454 try
12455 {
12456 struct value *mark;
12457
12458 mark = value_mark ();
12459 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12460 value_free_to_mark (mark);
12461 }
12462 catch (const gdb_exception &ex)
12463 {
12464 exception_fprintf (gdb_stderr, ex,
12465 _("Error in testing exception condition:\n"));
12466 }
12467
12468 return stop;
12469 }
12470
12471 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12472 for all exception catchpoint kinds. */
12473
12474 static void
12475 check_status_exception (bpstat bs)
12476 {
12477 bs->stop = should_stop_exception (bs->bp_location_at);
12478 }
12479
12480 /* Implement the PRINT_IT method in the breakpoint_ops structure
12481 for all exception catchpoint kinds. */
12482
12483 static enum print_stop_action
12484 print_it_exception (bpstat bs)
12485 {
12486 struct ui_out *uiout = current_uiout;
12487 struct breakpoint *b = bs->breakpoint_at;
12488
12489 annotate_catchpoint (b->number);
12490
12491 if (uiout->is_mi_like_p ())
12492 {
12493 uiout->field_string ("reason",
12494 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12495 uiout->field_string ("disp", bpdisp_text (b->disposition));
12496 }
12497
12498 uiout->text (b->disposition == disp_del
12499 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12500 uiout->field_signed ("bkptno", b->number);
12501 uiout->text (", ");
12502
12503 /* ada_exception_name_addr relies on the selected frame being the
12504 current frame. Need to do this here because this function may be
12505 called more than once when printing a stop, and below, we'll
12506 select the first frame past the Ada run-time (see
12507 ada_find_printable_frame). */
12508 select_frame (get_current_frame ());
12509
12510 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12511 switch (c->m_kind)
12512 {
12513 case ada_catch_exception:
12514 case ada_catch_exception_unhandled:
12515 case ada_catch_handlers:
12516 {
12517 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12518 char exception_name[256];
12519
12520 if (addr != 0)
12521 {
12522 read_memory (addr, (gdb_byte *) exception_name,
12523 sizeof (exception_name) - 1);
12524 exception_name [sizeof (exception_name) - 1] = '\0';
12525 }
12526 else
12527 {
12528 /* For some reason, we were unable to read the exception
12529 name. This could happen if the Runtime was compiled
12530 without debugging info, for instance. In that case,
12531 just replace the exception name by the generic string
12532 "exception" - it will read as "an exception" in the
12533 notification we are about to print. */
12534 memcpy (exception_name, "exception", sizeof ("exception"));
12535 }
12536 /* In the case of unhandled exception breakpoints, we print
12537 the exception name as "unhandled EXCEPTION_NAME", to make
12538 it clearer to the user which kind of catchpoint just got
12539 hit. We used ui_out_text to make sure that this extra
12540 info does not pollute the exception name in the MI case. */
12541 if (c->m_kind == ada_catch_exception_unhandled)
12542 uiout->text ("unhandled ");
12543 uiout->field_string ("exception-name", exception_name);
12544 }
12545 break;
12546 case ada_catch_assert:
12547 /* In this case, the name of the exception is not really
12548 important. Just print "failed assertion" to make it clearer
12549 that his program just hit an assertion-failure catchpoint.
12550 We used ui_out_text because this info does not belong in
12551 the MI output. */
12552 uiout->text ("failed assertion");
12553 break;
12554 }
12555
12556 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12557 if (exception_message != NULL)
12558 {
12559 uiout->text (" (");
12560 uiout->field_string ("exception-message", exception_message.get ());
12561 uiout->text (")");
12562 }
12563
12564 uiout->text (" at ");
12565 ada_find_printable_frame (get_current_frame ());
12566
12567 return PRINT_SRC_AND_LOC;
12568 }
12569
12570 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12571 for all exception catchpoint kinds. */
12572
12573 static void
12574 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12575 {
12576 struct ui_out *uiout = current_uiout;
12577 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12578 struct value_print_options opts;
12579
12580 get_user_print_options (&opts);
12581
12582 if (opts.addressprint)
12583 uiout->field_skip ("addr");
12584
12585 annotate_field (5);
12586 switch (c->m_kind)
12587 {
12588 case ada_catch_exception:
12589 if (!c->excep_string.empty ())
12590 {
12591 std::string msg = string_printf (_("`%s' Ada exception"),
12592 c->excep_string.c_str ());
12593
12594 uiout->field_string ("what", msg);
12595 }
12596 else
12597 uiout->field_string ("what", "all Ada exceptions");
12598
12599 break;
12600
12601 case ada_catch_exception_unhandled:
12602 uiout->field_string ("what", "unhandled Ada exceptions");
12603 break;
12604
12605 case ada_catch_handlers:
12606 if (!c->excep_string.empty ())
12607 {
12608 uiout->field_fmt ("what",
12609 _("`%s' Ada exception handlers"),
12610 c->excep_string.c_str ());
12611 }
12612 else
12613 uiout->field_string ("what", "all Ada exceptions handlers");
12614 break;
12615
12616 case ada_catch_assert:
12617 uiout->field_string ("what", "failed Ada assertions");
12618 break;
12619
12620 default:
12621 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12622 break;
12623 }
12624 }
12625
12626 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12627 for all exception catchpoint kinds. */
12628
12629 static void
12630 print_mention_exception (struct breakpoint *b)
12631 {
12632 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12633 struct ui_out *uiout = current_uiout;
12634
12635 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12636 : _("Catchpoint "));
12637 uiout->field_signed ("bkptno", b->number);
12638 uiout->text (": ");
12639
12640 switch (c->m_kind)
12641 {
12642 case ada_catch_exception:
12643 if (!c->excep_string.empty ())
12644 {
12645 std::string info = string_printf (_("`%s' Ada exception"),
12646 c->excep_string.c_str ());
12647 uiout->text (info.c_str ());
12648 }
12649 else
12650 uiout->text (_("all Ada exceptions"));
12651 break;
12652
12653 case ada_catch_exception_unhandled:
12654 uiout->text (_("unhandled Ada exceptions"));
12655 break;
12656
12657 case ada_catch_handlers:
12658 if (!c->excep_string.empty ())
12659 {
12660 std::string info
12661 = string_printf (_("`%s' Ada exception handlers"),
12662 c->excep_string.c_str ());
12663 uiout->text (info.c_str ());
12664 }
12665 else
12666 uiout->text (_("all Ada exceptions handlers"));
12667 break;
12668
12669 case ada_catch_assert:
12670 uiout->text (_("failed Ada assertions"));
12671 break;
12672
12673 default:
12674 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12675 break;
12676 }
12677 }
12678
12679 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12680 for all exception catchpoint kinds. */
12681
12682 static void
12683 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12684 {
12685 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12686
12687 switch (c->m_kind)
12688 {
12689 case ada_catch_exception:
12690 fprintf_filtered (fp, "catch exception");
12691 if (!c->excep_string.empty ())
12692 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12693 break;
12694
12695 case ada_catch_exception_unhandled:
12696 fprintf_filtered (fp, "catch exception unhandled");
12697 break;
12698
12699 case ada_catch_handlers:
12700 fprintf_filtered (fp, "catch handlers");
12701 break;
12702
12703 case ada_catch_assert:
12704 fprintf_filtered (fp, "catch assert");
12705 break;
12706
12707 default:
12708 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12709 }
12710 print_recreate_thread (b, fp);
12711 }
12712
12713 /* Virtual tables for various breakpoint types. */
12714 static struct breakpoint_ops catch_exception_breakpoint_ops;
12715 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12716 static struct breakpoint_ops catch_assert_breakpoint_ops;
12717 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12718
12719 /* See ada-lang.h. */
12720
12721 bool
12722 is_ada_exception_catchpoint (breakpoint *bp)
12723 {
12724 return (bp->ops == &catch_exception_breakpoint_ops
12725 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12726 || bp->ops == &catch_assert_breakpoint_ops
12727 || bp->ops == &catch_handlers_breakpoint_ops);
12728 }
12729
12730 /* Split the arguments specified in a "catch exception" command.
12731 Set EX to the appropriate catchpoint type.
12732 Set EXCEP_STRING to the name of the specific exception if
12733 specified by the user.
12734 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12735 "catch handlers" command. False otherwise.
12736 If a condition is found at the end of the arguments, the condition
12737 expression is stored in COND_STRING (memory must be deallocated
12738 after use). Otherwise COND_STRING is set to NULL. */
12739
12740 static void
12741 catch_ada_exception_command_split (const char *args,
12742 bool is_catch_handlers_cmd,
12743 enum ada_exception_catchpoint_kind *ex,
12744 std::string *excep_string,
12745 std::string *cond_string)
12746 {
12747 std::string exception_name;
12748
12749 exception_name = extract_arg (&args);
12750 if (exception_name == "if")
12751 {
12752 /* This is not an exception name; this is the start of a condition
12753 expression for a catchpoint on all exceptions. So, "un-get"
12754 this token, and set exception_name to NULL. */
12755 exception_name.clear ();
12756 args -= 2;
12757 }
12758
12759 /* Check to see if we have a condition. */
12760
12761 args = skip_spaces (args);
12762 if (startswith (args, "if")
12763 && (isspace (args[2]) || args[2] == '\0'))
12764 {
12765 args += 2;
12766 args = skip_spaces (args);
12767
12768 if (args[0] == '\0')
12769 error (_("Condition missing after `if' keyword"));
12770 *cond_string = args;
12771
12772 args += strlen (args);
12773 }
12774
12775 /* Check that we do not have any more arguments. Anything else
12776 is unexpected. */
12777
12778 if (args[0] != '\0')
12779 error (_("Junk at end of expression"));
12780
12781 if (is_catch_handlers_cmd)
12782 {
12783 /* Catch handling of exceptions. */
12784 *ex = ada_catch_handlers;
12785 *excep_string = exception_name;
12786 }
12787 else if (exception_name.empty ())
12788 {
12789 /* Catch all exceptions. */
12790 *ex = ada_catch_exception;
12791 excep_string->clear ();
12792 }
12793 else if (exception_name == "unhandled")
12794 {
12795 /* Catch unhandled exceptions. */
12796 *ex = ada_catch_exception_unhandled;
12797 excep_string->clear ();
12798 }
12799 else
12800 {
12801 /* Catch a specific exception. */
12802 *ex = ada_catch_exception;
12803 *excep_string = exception_name;
12804 }
12805 }
12806
12807 /* Return the name of the symbol on which we should break in order to
12808 implement a catchpoint of the EX kind. */
12809
12810 static const char *
12811 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12812 {
12813 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12814
12815 gdb_assert (data->exception_info != NULL);
12816
12817 switch (ex)
12818 {
12819 case ada_catch_exception:
12820 return (data->exception_info->catch_exception_sym);
12821 break;
12822 case ada_catch_exception_unhandled:
12823 return (data->exception_info->catch_exception_unhandled_sym);
12824 break;
12825 case ada_catch_assert:
12826 return (data->exception_info->catch_assert_sym);
12827 break;
12828 case ada_catch_handlers:
12829 return (data->exception_info->catch_handlers_sym);
12830 break;
12831 default:
12832 internal_error (__FILE__, __LINE__,
12833 _("unexpected catchpoint kind (%d)"), ex);
12834 }
12835 }
12836
12837 /* Return the breakpoint ops "virtual table" used for catchpoints
12838 of the EX kind. */
12839
12840 static const struct breakpoint_ops *
12841 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12842 {
12843 switch (ex)
12844 {
12845 case ada_catch_exception:
12846 return (&catch_exception_breakpoint_ops);
12847 break;
12848 case ada_catch_exception_unhandled:
12849 return (&catch_exception_unhandled_breakpoint_ops);
12850 break;
12851 case ada_catch_assert:
12852 return (&catch_assert_breakpoint_ops);
12853 break;
12854 case ada_catch_handlers:
12855 return (&catch_handlers_breakpoint_ops);
12856 break;
12857 default:
12858 internal_error (__FILE__, __LINE__,
12859 _("unexpected catchpoint kind (%d)"), ex);
12860 }
12861 }
12862
12863 /* Return the condition that will be used to match the current exception
12864 being raised with the exception that the user wants to catch. This
12865 assumes that this condition is used when the inferior just triggered
12866 an exception catchpoint.
12867 EX: the type of catchpoints used for catching Ada exceptions. */
12868
12869 static std::string
12870 ada_exception_catchpoint_cond_string (const char *excep_string,
12871 enum ada_exception_catchpoint_kind ex)
12872 {
12873 int i;
12874 bool is_standard_exc = false;
12875 std::string result;
12876
12877 if (ex == ada_catch_handlers)
12878 {
12879 /* For exception handlers catchpoints, the condition string does
12880 not use the same parameter as for the other exceptions. */
12881 result = ("long_integer (GNAT_GCC_exception_Access"
12882 "(gcc_exception).all.occurrence.id)");
12883 }
12884 else
12885 result = "long_integer (e)";
12886
12887 /* The standard exceptions are a special case. They are defined in
12888 runtime units that have been compiled without debugging info; if
12889 EXCEP_STRING is the not-fully-qualified name of a standard
12890 exception (e.g. "constraint_error") then, during the evaluation
12891 of the condition expression, the symbol lookup on this name would
12892 *not* return this standard exception. The catchpoint condition
12893 may then be set only on user-defined exceptions which have the
12894 same not-fully-qualified name (e.g. my_package.constraint_error).
12895
12896 To avoid this unexcepted behavior, these standard exceptions are
12897 systematically prefixed by "standard". This means that "catch
12898 exception constraint_error" is rewritten into "catch exception
12899 standard.constraint_error".
12900
12901 If an exception named constraint_error is defined in another package of
12902 the inferior program, then the only way to specify this exception as a
12903 breakpoint condition is to use its fully-qualified named:
12904 e.g. my_package.constraint_error. */
12905
12906 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12907 {
12908 if (strcmp (standard_exc [i], excep_string) == 0)
12909 {
12910 is_standard_exc = true;
12911 break;
12912 }
12913 }
12914
12915 result += " = ";
12916
12917 if (is_standard_exc)
12918 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12919 else
12920 string_appendf (result, "long_integer (&%s)", excep_string);
12921
12922 return result;
12923 }
12924
12925 /* Return the symtab_and_line that should be used to insert an exception
12926 catchpoint of the TYPE kind.
12927
12928 ADDR_STRING returns the name of the function where the real
12929 breakpoint that implements the catchpoints is set, depending on the
12930 type of catchpoint we need to create. */
12931
12932 static struct symtab_and_line
12933 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12934 std::string *addr_string, const struct breakpoint_ops **ops)
12935 {
12936 const char *sym_name;
12937 struct symbol *sym;
12938
12939 /* First, find out which exception support info to use. */
12940 ada_exception_support_info_sniffer ();
12941
12942 /* Then lookup the function on which we will break in order to catch
12943 the Ada exceptions requested by the user. */
12944 sym_name = ada_exception_sym_name (ex);
12945 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12946
12947 if (sym == NULL)
12948 error (_("Catchpoint symbol not found: %s"), sym_name);
12949
12950 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12951 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12952
12953 /* Set ADDR_STRING. */
12954 *addr_string = sym_name;
12955
12956 /* Set OPS. */
12957 *ops = ada_exception_breakpoint_ops (ex);
12958
12959 return find_function_start_sal (sym, 1);
12960 }
12961
12962 /* Create an Ada exception catchpoint.
12963
12964 EX_KIND is the kind of exception catchpoint to be created.
12965
12966 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12967 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12968 of the exception to which this catchpoint applies.
12969
12970 COND_STRING, if not empty, is the catchpoint condition.
12971
12972 TEMPFLAG, if nonzero, means that the underlying breakpoint
12973 should be temporary.
12974
12975 FROM_TTY is the usual argument passed to all commands implementations. */
12976
12977 void
12978 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12979 enum ada_exception_catchpoint_kind ex_kind,
12980 const std::string &excep_string,
12981 const std::string &cond_string,
12982 int tempflag,
12983 int disabled,
12984 int from_tty)
12985 {
12986 std::string addr_string;
12987 const struct breakpoint_ops *ops = NULL;
12988 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12989
12990 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12991 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12992 ops, tempflag, disabled, from_tty);
12993 c->excep_string = excep_string;
12994 create_excep_cond_exprs (c.get (), ex_kind);
12995 if (!cond_string.empty ())
12996 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12997 install_breakpoint (0, std::move (c), 1);
12998 }
12999
13000 /* Implement the "catch exception" command. */
13001
13002 static void
13003 catch_ada_exception_command (const char *arg_entry, int from_tty,
13004 struct cmd_list_element *command)
13005 {
13006 const char *arg = arg_entry;
13007 struct gdbarch *gdbarch = get_current_arch ();
13008 int tempflag;
13009 enum ada_exception_catchpoint_kind ex_kind;
13010 std::string excep_string;
13011 std::string cond_string;
13012
13013 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13014
13015 if (!arg)
13016 arg = "";
13017 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13018 &cond_string);
13019 create_ada_exception_catchpoint (gdbarch, ex_kind,
13020 excep_string, cond_string,
13021 tempflag, 1 /* enabled */,
13022 from_tty);
13023 }
13024
13025 /* Implement the "catch handlers" command. */
13026
13027 static void
13028 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13029 struct cmd_list_element *command)
13030 {
13031 const char *arg = arg_entry;
13032 struct gdbarch *gdbarch = get_current_arch ();
13033 int tempflag;
13034 enum ada_exception_catchpoint_kind ex_kind;
13035 std::string excep_string;
13036 std::string cond_string;
13037
13038 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13039
13040 if (!arg)
13041 arg = "";
13042 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13043 &cond_string);
13044 create_ada_exception_catchpoint (gdbarch, ex_kind,
13045 excep_string, cond_string,
13046 tempflag, 1 /* enabled */,
13047 from_tty);
13048 }
13049
13050 /* Completion function for the Ada "catch" commands. */
13051
13052 static void
13053 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13054 const char *text, const char *word)
13055 {
13056 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13057
13058 for (const ada_exc_info &info : exceptions)
13059 {
13060 if (startswith (info.name, word))
13061 tracker.add_completion (make_unique_xstrdup (info.name));
13062 }
13063 }
13064
13065 /* Split the arguments specified in a "catch assert" command.
13066
13067 ARGS contains the command's arguments (or the empty string if
13068 no arguments were passed).
13069
13070 If ARGS contains a condition, set COND_STRING to that condition
13071 (the memory needs to be deallocated after use). */
13072
13073 static void
13074 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13075 {
13076 args = skip_spaces (args);
13077
13078 /* Check whether a condition was provided. */
13079 if (startswith (args, "if")
13080 && (isspace (args[2]) || args[2] == '\0'))
13081 {
13082 args += 2;
13083 args = skip_spaces (args);
13084 if (args[0] == '\0')
13085 error (_("condition missing after `if' keyword"));
13086 cond_string.assign (args);
13087 }
13088
13089 /* Otherwise, there should be no other argument at the end of
13090 the command. */
13091 else if (args[0] != '\0')
13092 error (_("Junk at end of arguments."));
13093 }
13094
13095 /* Implement the "catch assert" command. */
13096
13097 static void
13098 catch_assert_command (const char *arg_entry, int from_tty,
13099 struct cmd_list_element *command)
13100 {
13101 const char *arg = arg_entry;
13102 struct gdbarch *gdbarch = get_current_arch ();
13103 int tempflag;
13104 std::string cond_string;
13105
13106 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13107
13108 if (!arg)
13109 arg = "";
13110 catch_ada_assert_command_split (arg, cond_string);
13111 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13112 "", cond_string,
13113 tempflag, 1 /* enabled */,
13114 from_tty);
13115 }
13116
13117 /* Return non-zero if the symbol SYM is an Ada exception object. */
13118
13119 static int
13120 ada_is_exception_sym (struct symbol *sym)
13121 {
13122 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13123
13124 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13125 && SYMBOL_CLASS (sym) != LOC_BLOCK
13126 && SYMBOL_CLASS (sym) != LOC_CONST
13127 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13128 && type_name != NULL && strcmp (type_name, "exception") == 0);
13129 }
13130
13131 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13132 Ada exception object. This matches all exceptions except the ones
13133 defined by the Ada language. */
13134
13135 static int
13136 ada_is_non_standard_exception_sym (struct symbol *sym)
13137 {
13138 int i;
13139
13140 if (!ada_is_exception_sym (sym))
13141 return 0;
13142
13143 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13144 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13145 return 0; /* A standard exception. */
13146
13147 /* Numeric_Error is also a standard exception, so exclude it.
13148 See the STANDARD_EXC description for more details as to why
13149 this exception is not listed in that array. */
13150 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13151 return 0;
13152
13153 return 1;
13154 }
13155
13156 /* A helper function for std::sort, comparing two struct ada_exc_info
13157 objects.
13158
13159 The comparison is determined first by exception name, and then
13160 by exception address. */
13161
13162 bool
13163 ada_exc_info::operator< (const ada_exc_info &other) const
13164 {
13165 int result;
13166
13167 result = strcmp (name, other.name);
13168 if (result < 0)
13169 return true;
13170 if (result == 0 && addr < other.addr)
13171 return true;
13172 return false;
13173 }
13174
13175 bool
13176 ada_exc_info::operator== (const ada_exc_info &other) const
13177 {
13178 return addr == other.addr && strcmp (name, other.name) == 0;
13179 }
13180
13181 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13182 routine, but keeping the first SKIP elements untouched.
13183
13184 All duplicates are also removed. */
13185
13186 static void
13187 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13188 int skip)
13189 {
13190 std::sort (exceptions->begin () + skip, exceptions->end ());
13191 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13192 exceptions->end ());
13193 }
13194
13195 /* Add all exceptions defined by the Ada standard whose name match
13196 a regular expression.
13197
13198 If PREG is not NULL, then this regexp_t object is used to
13199 perform the symbol name matching. Otherwise, no name-based
13200 filtering is performed.
13201
13202 EXCEPTIONS is a vector of exceptions to which matching exceptions
13203 gets pushed. */
13204
13205 static void
13206 ada_add_standard_exceptions (compiled_regex *preg,
13207 std::vector<ada_exc_info> *exceptions)
13208 {
13209 int i;
13210
13211 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13212 {
13213 if (preg == NULL
13214 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13215 {
13216 struct bound_minimal_symbol msymbol
13217 = ada_lookup_simple_minsym (standard_exc[i]);
13218
13219 if (msymbol.minsym != NULL)
13220 {
13221 struct ada_exc_info info
13222 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13223
13224 exceptions->push_back (info);
13225 }
13226 }
13227 }
13228 }
13229
13230 /* Add all Ada exceptions defined locally and accessible from the given
13231 FRAME.
13232
13233 If PREG is not NULL, then this regexp_t object is used to
13234 perform the symbol name matching. Otherwise, no name-based
13235 filtering is performed.
13236
13237 EXCEPTIONS is a vector of exceptions to which matching exceptions
13238 gets pushed. */
13239
13240 static void
13241 ada_add_exceptions_from_frame (compiled_regex *preg,
13242 struct frame_info *frame,
13243 std::vector<ada_exc_info> *exceptions)
13244 {
13245 const struct block *block = get_frame_block (frame, 0);
13246
13247 while (block != 0)
13248 {
13249 struct block_iterator iter;
13250 struct symbol *sym;
13251
13252 ALL_BLOCK_SYMBOLS (block, iter, sym)
13253 {
13254 switch (SYMBOL_CLASS (sym))
13255 {
13256 case LOC_TYPEDEF:
13257 case LOC_BLOCK:
13258 case LOC_CONST:
13259 break;
13260 default:
13261 if (ada_is_exception_sym (sym))
13262 {
13263 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13264 SYMBOL_VALUE_ADDRESS (sym)};
13265
13266 exceptions->push_back (info);
13267 }
13268 }
13269 }
13270 if (BLOCK_FUNCTION (block) != NULL)
13271 break;
13272 block = BLOCK_SUPERBLOCK (block);
13273 }
13274 }
13275
13276 /* Return true if NAME matches PREG or if PREG is NULL. */
13277
13278 static bool
13279 name_matches_regex (const char *name, compiled_regex *preg)
13280 {
13281 return (preg == NULL
13282 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13283 }
13284
13285 /* Add all exceptions defined globally whose name name match
13286 a regular expression, excluding standard exceptions.
13287
13288 The reason we exclude standard exceptions is that they need
13289 to be handled separately: Standard exceptions are defined inside
13290 a runtime unit which is normally not compiled with debugging info,
13291 and thus usually do not show up in our symbol search. However,
13292 if the unit was in fact built with debugging info, we need to
13293 exclude them because they would duplicate the entry we found
13294 during the special loop that specifically searches for those
13295 standard exceptions.
13296
13297 If PREG is not NULL, then this regexp_t object is used to
13298 perform the symbol name matching. Otherwise, no name-based
13299 filtering is performed.
13300
13301 EXCEPTIONS is a vector of exceptions to which matching exceptions
13302 gets pushed. */
13303
13304 static void
13305 ada_add_global_exceptions (compiled_regex *preg,
13306 std::vector<ada_exc_info> *exceptions)
13307 {
13308 /* In Ada, the symbol "search name" is a linkage name, whereas the
13309 regular expression used to do the matching refers to the natural
13310 name. So match against the decoded name. */
13311 expand_symtabs_matching (NULL,
13312 lookup_name_info::match_any (),
13313 [&] (const char *search_name)
13314 {
13315 std::string decoded = ada_decode (search_name);
13316 return name_matches_regex (decoded.c_str (), preg);
13317 },
13318 NULL,
13319 VARIABLES_DOMAIN);
13320
13321 for (objfile *objfile : current_program_space->objfiles ())
13322 {
13323 for (compunit_symtab *s : objfile->compunits ())
13324 {
13325 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13326 int i;
13327
13328 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13329 {
13330 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13331 struct block_iterator iter;
13332 struct symbol *sym;
13333
13334 ALL_BLOCK_SYMBOLS (b, iter, sym)
13335 if (ada_is_non_standard_exception_sym (sym)
13336 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13337 {
13338 struct ada_exc_info info
13339 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13340
13341 exceptions->push_back (info);
13342 }
13343 }
13344 }
13345 }
13346 }
13347
13348 /* Implements ada_exceptions_list with the regular expression passed
13349 as a regex_t, rather than a string.
13350
13351 If not NULL, PREG is used to filter out exceptions whose names
13352 do not match. Otherwise, all exceptions are listed. */
13353
13354 static std::vector<ada_exc_info>
13355 ada_exceptions_list_1 (compiled_regex *preg)
13356 {
13357 std::vector<ada_exc_info> result;
13358 int prev_len;
13359
13360 /* First, list the known standard exceptions. These exceptions
13361 need to be handled separately, as they are usually defined in
13362 runtime units that have been compiled without debugging info. */
13363
13364 ada_add_standard_exceptions (preg, &result);
13365
13366 /* Next, find all exceptions whose scope is local and accessible
13367 from the currently selected frame. */
13368
13369 if (has_stack_frames ())
13370 {
13371 prev_len = result.size ();
13372 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13373 &result);
13374 if (result.size () > prev_len)
13375 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13376 }
13377
13378 /* Add all exceptions whose scope is global. */
13379
13380 prev_len = result.size ();
13381 ada_add_global_exceptions (preg, &result);
13382 if (result.size () > prev_len)
13383 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13384
13385 return result;
13386 }
13387
13388 /* Return a vector of ada_exc_info.
13389
13390 If REGEXP is NULL, all exceptions are included in the result.
13391 Otherwise, it should contain a valid regular expression,
13392 and only the exceptions whose names match that regular expression
13393 are included in the result.
13394
13395 The exceptions are sorted in the following order:
13396 - Standard exceptions (defined by the Ada language), in
13397 alphabetical order;
13398 - Exceptions only visible from the current frame, in
13399 alphabetical order;
13400 - Exceptions whose scope is global, in alphabetical order. */
13401
13402 std::vector<ada_exc_info>
13403 ada_exceptions_list (const char *regexp)
13404 {
13405 if (regexp == NULL)
13406 return ada_exceptions_list_1 (NULL);
13407
13408 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13409 return ada_exceptions_list_1 (&reg);
13410 }
13411
13412 /* Implement the "info exceptions" command. */
13413
13414 static void
13415 info_exceptions_command (const char *regexp, int from_tty)
13416 {
13417 struct gdbarch *gdbarch = get_current_arch ();
13418
13419 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13420
13421 if (regexp != NULL)
13422 printf_filtered
13423 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13424 else
13425 printf_filtered (_("All defined Ada exceptions:\n"));
13426
13427 for (const ada_exc_info &info : exceptions)
13428 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13429 }
13430
13431 /* Operators */
13432 /* Information about operators given special treatment in functions
13433 below. */
13434 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13435
13436 #define ADA_OPERATORS \
13437 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13438 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13439 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13440 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13441 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13443 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13444 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13445 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13446 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13447 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13448 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13449 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13450 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13451 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13452 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13453 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13454 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13455 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13456
13457 static void
13458 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13459 int *argsp)
13460 {
13461 switch (exp->elts[pc - 1].opcode)
13462 {
13463 default:
13464 operator_length_standard (exp, pc, oplenp, argsp);
13465 break;
13466
13467 #define OP_DEFN(op, len, args, binop) \
13468 case op: *oplenp = len; *argsp = args; break;
13469 ADA_OPERATORS;
13470 #undef OP_DEFN
13471
13472 case OP_AGGREGATE:
13473 *oplenp = 3;
13474 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13475 break;
13476
13477 case OP_CHOICES:
13478 *oplenp = 3;
13479 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13480 break;
13481 }
13482 }
13483
13484 /* Implementation of the exp_descriptor method operator_check. */
13485
13486 static int
13487 ada_operator_check (struct expression *exp, int pos,
13488 int (*objfile_func) (struct objfile *objfile, void *data),
13489 void *data)
13490 {
13491 const union exp_element *const elts = exp->elts;
13492 struct type *type = NULL;
13493
13494 switch (elts[pos].opcode)
13495 {
13496 case UNOP_IN_RANGE:
13497 case UNOP_QUAL:
13498 type = elts[pos + 1].type;
13499 break;
13500
13501 default:
13502 return operator_check_standard (exp, pos, objfile_func, data);
13503 }
13504
13505 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13506
13507 if (type && TYPE_OBJFILE (type)
13508 && (*objfile_func) (TYPE_OBJFILE (type), data))
13509 return 1;
13510
13511 return 0;
13512 }
13513
13514 static const char *
13515 ada_op_name (enum exp_opcode opcode)
13516 {
13517 switch (opcode)
13518 {
13519 default:
13520 return op_name_standard (opcode);
13521
13522 #define OP_DEFN(op, len, args, binop) case op: return #op;
13523 ADA_OPERATORS;
13524 #undef OP_DEFN
13525
13526 case OP_AGGREGATE:
13527 return "OP_AGGREGATE";
13528 case OP_CHOICES:
13529 return "OP_CHOICES";
13530 case OP_NAME:
13531 return "OP_NAME";
13532 }
13533 }
13534
13535 /* As for operator_length, but assumes PC is pointing at the first
13536 element of the operator, and gives meaningful results only for the
13537 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13538
13539 static void
13540 ada_forward_operator_length (struct expression *exp, int pc,
13541 int *oplenp, int *argsp)
13542 {
13543 switch (exp->elts[pc].opcode)
13544 {
13545 default:
13546 *oplenp = *argsp = 0;
13547 break;
13548
13549 #define OP_DEFN(op, len, args, binop) \
13550 case op: *oplenp = len; *argsp = args; break;
13551 ADA_OPERATORS;
13552 #undef OP_DEFN
13553
13554 case OP_AGGREGATE:
13555 *oplenp = 3;
13556 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13557 break;
13558
13559 case OP_CHOICES:
13560 *oplenp = 3;
13561 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13562 break;
13563
13564 case OP_STRING:
13565 case OP_NAME:
13566 {
13567 int len = longest_to_int (exp->elts[pc + 1].longconst);
13568
13569 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13570 *argsp = 0;
13571 break;
13572 }
13573 }
13574 }
13575
13576 static int
13577 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13578 {
13579 enum exp_opcode op = exp->elts[elt].opcode;
13580 int oplen, nargs;
13581 int pc = elt;
13582 int i;
13583
13584 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13585
13586 switch (op)
13587 {
13588 /* Ada attributes ('Foo). */
13589 case OP_ATR_FIRST:
13590 case OP_ATR_LAST:
13591 case OP_ATR_LENGTH:
13592 case OP_ATR_IMAGE:
13593 case OP_ATR_MAX:
13594 case OP_ATR_MIN:
13595 case OP_ATR_MODULUS:
13596 case OP_ATR_POS:
13597 case OP_ATR_SIZE:
13598 case OP_ATR_TAG:
13599 case OP_ATR_VAL:
13600 break;
13601
13602 case UNOP_IN_RANGE:
13603 case UNOP_QUAL:
13604 /* XXX: gdb_sprint_host_address, type_sprint */
13605 fprintf_filtered (stream, _("Type @"));
13606 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13607 fprintf_filtered (stream, " (");
13608 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13609 fprintf_filtered (stream, ")");
13610 break;
13611 case BINOP_IN_BOUNDS:
13612 fprintf_filtered (stream, " (%d)",
13613 longest_to_int (exp->elts[pc + 2].longconst));
13614 break;
13615 case TERNOP_IN_RANGE:
13616 break;
13617
13618 case OP_AGGREGATE:
13619 case OP_OTHERS:
13620 case OP_DISCRETE_RANGE:
13621 case OP_POSITIONAL:
13622 case OP_CHOICES:
13623 break;
13624
13625 case OP_NAME:
13626 case OP_STRING:
13627 {
13628 char *name = &exp->elts[elt + 2].string;
13629 int len = longest_to_int (exp->elts[elt + 1].longconst);
13630
13631 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13632 break;
13633 }
13634
13635 default:
13636 return dump_subexp_body_standard (exp, stream, elt);
13637 }
13638
13639 elt += oplen;
13640 for (i = 0; i < nargs; i += 1)
13641 elt = dump_subexp (exp, stream, elt);
13642
13643 return elt;
13644 }
13645
13646 /* The Ada extension of print_subexp (q.v.). */
13647
13648 static void
13649 ada_print_subexp (struct expression *exp, int *pos,
13650 struct ui_file *stream, enum precedence prec)
13651 {
13652 int oplen, nargs, i;
13653 int pc = *pos;
13654 enum exp_opcode op = exp->elts[pc].opcode;
13655
13656 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13657
13658 *pos += oplen;
13659 switch (op)
13660 {
13661 default:
13662 *pos -= oplen;
13663 print_subexp_standard (exp, pos, stream, prec);
13664 return;
13665
13666 case OP_VAR_VALUE:
13667 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13668 return;
13669
13670 case BINOP_IN_BOUNDS:
13671 /* XXX: sprint_subexp */
13672 print_subexp (exp, pos, stream, PREC_SUFFIX);
13673 fputs_filtered (" in ", stream);
13674 print_subexp (exp, pos, stream, PREC_SUFFIX);
13675 fputs_filtered ("'range", stream);
13676 if (exp->elts[pc + 1].longconst > 1)
13677 fprintf_filtered (stream, "(%ld)",
13678 (long) exp->elts[pc + 1].longconst);
13679 return;
13680
13681 case TERNOP_IN_RANGE:
13682 if (prec >= PREC_EQUAL)
13683 fputs_filtered ("(", stream);
13684 /* XXX: sprint_subexp */
13685 print_subexp (exp, pos, stream, PREC_SUFFIX);
13686 fputs_filtered (" in ", stream);
13687 print_subexp (exp, pos, stream, PREC_EQUAL);
13688 fputs_filtered (" .. ", stream);
13689 print_subexp (exp, pos, stream, PREC_EQUAL);
13690 if (prec >= PREC_EQUAL)
13691 fputs_filtered (")", stream);
13692 return;
13693
13694 case OP_ATR_FIRST:
13695 case OP_ATR_LAST:
13696 case OP_ATR_LENGTH:
13697 case OP_ATR_IMAGE:
13698 case OP_ATR_MAX:
13699 case OP_ATR_MIN:
13700 case OP_ATR_MODULUS:
13701 case OP_ATR_POS:
13702 case OP_ATR_SIZE:
13703 case OP_ATR_TAG:
13704 case OP_ATR_VAL:
13705 if (exp->elts[*pos].opcode == OP_TYPE)
13706 {
13707 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13708 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13709 &type_print_raw_options);
13710 *pos += 3;
13711 }
13712 else
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13714 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13715 if (nargs > 1)
13716 {
13717 int tem;
13718
13719 for (tem = 1; tem < nargs; tem += 1)
13720 {
13721 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13722 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13723 }
13724 fputs_filtered (")", stream);
13725 }
13726 return;
13727
13728 case UNOP_QUAL:
13729 type_print (exp->elts[pc + 1].type, "", stream, 0);
13730 fputs_filtered ("'(", stream);
13731 print_subexp (exp, pos, stream, PREC_PREFIX);
13732 fputs_filtered (")", stream);
13733 return;
13734
13735 case UNOP_IN_RANGE:
13736 /* XXX: sprint_subexp */
13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
13738 fputs_filtered (" in ", stream);
13739 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13740 &type_print_raw_options);
13741 return;
13742
13743 case OP_DISCRETE_RANGE:
13744 print_subexp (exp, pos, stream, PREC_SUFFIX);
13745 fputs_filtered ("..", stream);
13746 print_subexp (exp, pos, stream, PREC_SUFFIX);
13747 return;
13748
13749 case OP_OTHERS:
13750 fputs_filtered ("others => ", stream);
13751 print_subexp (exp, pos, stream, PREC_SUFFIX);
13752 return;
13753
13754 case OP_CHOICES:
13755 for (i = 0; i < nargs-1; i += 1)
13756 {
13757 if (i > 0)
13758 fputs_filtered ("|", stream);
13759 print_subexp (exp, pos, stream, PREC_SUFFIX);
13760 }
13761 fputs_filtered (" => ", stream);
13762 print_subexp (exp, pos, stream, PREC_SUFFIX);
13763 return;
13764
13765 case OP_POSITIONAL:
13766 print_subexp (exp, pos, stream, PREC_SUFFIX);
13767 return;
13768
13769 case OP_AGGREGATE:
13770 fputs_filtered ("(", stream);
13771 for (i = 0; i < nargs; i += 1)
13772 {
13773 if (i > 0)
13774 fputs_filtered (", ", stream);
13775 print_subexp (exp, pos, stream, PREC_SUFFIX);
13776 }
13777 fputs_filtered (")", stream);
13778 return;
13779 }
13780 }
13781
13782 /* Table mapping opcodes into strings for printing operators
13783 and precedences of the operators. */
13784
13785 static const struct op_print ada_op_print_tab[] = {
13786 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13787 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13788 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13789 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13790 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13791 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13792 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13793 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13794 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13795 {">=", BINOP_GEQ, PREC_ORDER, 0},
13796 {">", BINOP_GTR, PREC_ORDER, 0},
13797 {"<", BINOP_LESS, PREC_ORDER, 0},
13798 {">>", BINOP_RSH, PREC_SHIFT, 0},
13799 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13800 {"+", BINOP_ADD, PREC_ADD, 0},
13801 {"-", BINOP_SUB, PREC_ADD, 0},
13802 {"&", BINOP_CONCAT, PREC_ADD, 0},
13803 {"*", BINOP_MUL, PREC_MUL, 0},
13804 {"/", BINOP_DIV, PREC_MUL, 0},
13805 {"rem", BINOP_REM, PREC_MUL, 0},
13806 {"mod", BINOP_MOD, PREC_MUL, 0},
13807 {"**", BINOP_EXP, PREC_REPEAT, 0},
13808 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13809 {"-", UNOP_NEG, PREC_PREFIX, 0},
13810 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13811 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13812 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13813 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13814 {".all", UNOP_IND, PREC_SUFFIX, 1},
13815 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13816 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13817 {NULL, OP_NULL, PREC_SUFFIX, 0}
13818 };
13819 \f
13820 enum ada_primitive_types {
13821 ada_primitive_type_int,
13822 ada_primitive_type_long,
13823 ada_primitive_type_short,
13824 ada_primitive_type_char,
13825 ada_primitive_type_float,
13826 ada_primitive_type_double,
13827 ada_primitive_type_void,
13828 ada_primitive_type_long_long,
13829 ada_primitive_type_long_double,
13830 ada_primitive_type_natural,
13831 ada_primitive_type_positive,
13832 ada_primitive_type_system_address,
13833 ada_primitive_type_storage_offset,
13834 nr_ada_primitive_types
13835 };
13836
13837 static void
13838 ada_language_arch_info (struct gdbarch *gdbarch,
13839 struct language_arch_info *lai)
13840 {
13841 const struct builtin_type *builtin = builtin_type (gdbarch);
13842
13843 lai->primitive_type_vector
13844 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13845 struct type *);
13846
13847 lai->primitive_type_vector [ada_primitive_type_int]
13848 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13849 0, "integer");
13850 lai->primitive_type_vector [ada_primitive_type_long]
13851 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13852 0, "long_integer");
13853 lai->primitive_type_vector [ada_primitive_type_short]
13854 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13855 0, "short_integer");
13856 lai->string_char_type
13857 = lai->primitive_type_vector [ada_primitive_type_char]
13858 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13859 lai->primitive_type_vector [ada_primitive_type_float]
13860 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13861 "float", gdbarch_float_format (gdbarch));
13862 lai->primitive_type_vector [ada_primitive_type_double]
13863 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13864 "long_float", gdbarch_double_format (gdbarch));
13865 lai->primitive_type_vector [ada_primitive_type_long_long]
13866 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13867 0, "long_long_integer");
13868 lai->primitive_type_vector [ada_primitive_type_long_double]
13869 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13870 "long_long_float", gdbarch_long_double_format (gdbarch));
13871 lai->primitive_type_vector [ada_primitive_type_natural]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13873 0, "natural");
13874 lai->primitive_type_vector [ada_primitive_type_positive]
13875 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13876 0, "positive");
13877 lai->primitive_type_vector [ada_primitive_type_void]
13878 = builtin->builtin_void;
13879
13880 lai->primitive_type_vector [ada_primitive_type_system_address]
13881 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13882 "void"));
13883 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13884 = "system__address";
13885
13886 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13887 type. This is a signed integral type whose size is the same as
13888 the size of addresses. */
13889 {
13890 unsigned int addr_length = TYPE_LENGTH
13891 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13892
13893 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13894 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13895 "storage_offset");
13896 }
13897
13898 lai->bool_type_symbol = NULL;
13899 lai->bool_type_default = builtin->builtin_bool;
13900 }
13901 \f
13902 /* Language vector */
13903
13904 /* Not really used, but needed in the ada_language_defn. */
13905
13906 static void
13907 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13908 {
13909 ada_emit_char (c, type, stream, quoter, 1);
13910 }
13911
13912 static int
13913 parse (struct parser_state *ps)
13914 {
13915 warnings_issued = 0;
13916 return ada_parse (ps);
13917 }
13918
13919 static const struct exp_descriptor ada_exp_descriptor = {
13920 ada_print_subexp,
13921 ada_operator_length,
13922 ada_operator_check,
13923 ada_op_name,
13924 ada_dump_subexp_body,
13925 ada_evaluate_subexp
13926 };
13927
13928 /* symbol_name_matcher_ftype adapter for wild_match. */
13929
13930 static bool
13931 do_wild_match (const char *symbol_search_name,
13932 const lookup_name_info &lookup_name,
13933 completion_match_result *comp_match_res)
13934 {
13935 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13936 }
13937
13938 /* symbol_name_matcher_ftype adapter for full_match. */
13939
13940 static bool
13941 do_full_match (const char *symbol_search_name,
13942 const lookup_name_info &lookup_name,
13943 completion_match_result *comp_match_res)
13944 {
13945 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13946 }
13947
13948 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13949
13950 static bool
13951 do_exact_match (const char *symbol_search_name,
13952 const lookup_name_info &lookup_name,
13953 completion_match_result *comp_match_res)
13954 {
13955 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13956 }
13957
13958 /* Build the Ada lookup name for LOOKUP_NAME. */
13959
13960 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13961 {
13962 const std::string &user_name = lookup_name.name ();
13963
13964 if (user_name[0] == '<')
13965 {
13966 if (user_name.back () == '>')
13967 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13968 else
13969 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13970 m_encoded_p = true;
13971 m_verbatim_p = true;
13972 m_wild_match_p = false;
13973 m_standard_p = false;
13974 }
13975 else
13976 {
13977 m_verbatim_p = false;
13978
13979 m_encoded_p = user_name.find ("__") != std::string::npos;
13980
13981 if (!m_encoded_p)
13982 {
13983 const char *folded = ada_fold_name (user_name.c_str ());
13984 const char *encoded = ada_encode_1 (folded, false);
13985 if (encoded != NULL)
13986 m_encoded_name = encoded;
13987 else
13988 m_encoded_name = user_name;
13989 }
13990 else
13991 m_encoded_name = user_name;
13992
13993 /* Handle the 'package Standard' special case. See description
13994 of m_standard_p. */
13995 if (startswith (m_encoded_name.c_str (), "standard__"))
13996 {
13997 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13998 m_standard_p = true;
13999 }
14000 else
14001 m_standard_p = false;
14002
14003 /* If the name contains a ".", then the user is entering a fully
14004 qualified entity name, and the match must not be done in wild
14005 mode. Similarly, if the user wants to complete what looks
14006 like an encoded name, the match must not be done in wild
14007 mode. Also, in the standard__ special case always do
14008 non-wild matching. */
14009 m_wild_match_p
14010 = (lookup_name.match_type () != symbol_name_match_type::FULL
14011 && !m_encoded_p
14012 && !m_standard_p
14013 && user_name.find ('.') == std::string::npos);
14014 }
14015 }
14016
14017 /* symbol_name_matcher_ftype method for Ada. This only handles
14018 completion mode. */
14019
14020 static bool
14021 ada_symbol_name_matches (const char *symbol_search_name,
14022 const lookup_name_info &lookup_name,
14023 completion_match_result *comp_match_res)
14024 {
14025 return lookup_name.ada ().matches (symbol_search_name,
14026 lookup_name.match_type (),
14027 comp_match_res);
14028 }
14029
14030 /* A name matcher that matches the symbol name exactly, with
14031 strcmp. */
14032
14033 static bool
14034 literal_symbol_name_matcher (const char *symbol_search_name,
14035 const lookup_name_info &lookup_name,
14036 completion_match_result *comp_match_res)
14037 {
14038 const std::string &name = lookup_name.name ();
14039
14040 int cmp = (lookup_name.completion_mode ()
14041 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14042 : strcmp (symbol_search_name, name.c_str ()));
14043 if (cmp == 0)
14044 {
14045 if (comp_match_res != NULL)
14046 comp_match_res->set_match (symbol_search_name);
14047 return true;
14048 }
14049 else
14050 return false;
14051 }
14052
14053 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14054 Ada. */
14055
14056 static symbol_name_matcher_ftype *
14057 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14058 {
14059 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14060 return literal_symbol_name_matcher;
14061
14062 if (lookup_name.completion_mode ())
14063 return ada_symbol_name_matches;
14064 else
14065 {
14066 if (lookup_name.ada ().wild_match_p ())
14067 return do_wild_match;
14068 else if (lookup_name.ada ().verbatim_p ())
14069 return do_exact_match;
14070 else
14071 return do_full_match;
14072 }
14073 }
14074
14075 /* Implement the "la_read_var_value" language_defn method for Ada. */
14076
14077 static struct value *
14078 ada_read_var_value (struct symbol *var, const struct block *var_block,
14079 struct frame_info *frame)
14080 {
14081 /* The only case where default_read_var_value is not sufficient
14082 is when VAR is a renaming... */
14083 if (frame != nullptr)
14084 {
14085 const struct block *frame_block = get_frame_block (frame, NULL);
14086 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14087 return ada_read_renaming_var_value (var, frame_block);
14088 }
14089
14090 /* This is a typical case where we expect the default_read_var_value
14091 function to work. */
14092 return default_read_var_value (var, var_block, frame);
14093 }
14094
14095 static const char *ada_extensions[] =
14096 {
14097 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14098 };
14099
14100 extern const struct language_defn ada_language_defn = {
14101 "ada", /* Language name */
14102 "Ada",
14103 language_ada,
14104 range_check_off,
14105 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14106 that's not quite what this means. */
14107 array_row_major,
14108 macro_expansion_no,
14109 ada_extensions,
14110 &ada_exp_descriptor,
14111 parse,
14112 resolve,
14113 ada_printchar, /* Print a character constant */
14114 ada_printstr, /* Function to print string constant */
14115 emit_char, /* Function to print single char (not used) */
14116 ada_print_type, /* Print a type using appropriate syntax */
14117 ada_print_typedef, /* Print a typedef using appropriate syntax */
14118 ada_val_print, /* Print a value using appropriate syntax */
14119 ada_value_print, /* Print a top-level value */
14120 ada_read_var_value, /* la_read_var_value */
14121 NULL, /* Language specific skip_trampoline */
14122 NULL, /* name_of_this */
14123 true, /* la_store_sym_names_in_linkage_form_p */
14124 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14125 basic_lookup_transparent_type, /* lookup_transparent_type */
14126 ada_la_decode, /* Language specific symbol demangler */
14127 ada_sniff_from_mangled_name,
14128 NULL, /* Language specific
14129 class_name_from_physname */
14130 ada_op_print_tab, /* expression operators for printing */
14131 0, /* c-style arrays */
14132 1, /* String lower bound */
14133 ada_get_gdb_completer_word_break_characters,
14134 ada_collect_symbol_completion_matches,
14135 ada_language_arch_info,
14136 ada_print_array_index,
14137 default_pass_by_reference,
14138 ada_watch_location_expression,
14139 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14140 ada_iterate_over_symbols,
14141 default_search_name_hash,
14142 &ada_varobj_ops,
14143 NULL,
14144 NULL,
14145 ada_is_string_type,
14146 "(...)" /* la_struct_too_deep_ellipsis */
14147 };
14148
14149 /* Command-list for the "set/show ada" prefix command. */
14150 static struct cmd_list_element *set_ada_list;
14151 static struct cmd_list_element *show_ada_list;
14152
14153 /* Implement the "set ada" prefix command. */
14154
14155 static void
14156 set_ada_command (const char *arg, int from_tty)
14157 {
14158 printf_unfiltered (_(\
14159 "\"set ada\" must be followed by the name of a setting.\n"));
14160 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14161 }
14162
14163 /* Implement the "show ada" prefix command. */
14164
14165 static void
14166 show_ada_command (const char *args, int from_tty)
14167 {
14168 cmd_show_list (show_ada_list, from_tty, "");
14169 }
14170
14171 static void
14172 initialize_ada_catchpoint_ops (void)
14173 {
14174 struct breakpoint_ops *ops;
14175
14176 initialize_breakpoint_ops ();
14177
14178 ops = &catch_exception_breakpoint_ops;
14179 *ops = bkpt_breakpoint_ops;
14180 ops->allocate_location = allocate_location_exception;
14181 ops->re_set = re_set_exception;
14182 ops->check_status = check_status_exception;
14183 ops->print_it = print_it_exception;
14184 ops->print_one = print_one_exception;
14185 ops->print_mention = print_mention_exception;
14186 ops->print_recreate = print_recreate_exception;
14187
14188 ops = &catch_exception_unhandled_breakpoint_ops;
14189 *ops = bkpt_breakpoint_ops;
14190 ops->allocate_location = allocate_location_exception;
14191 ops->re_set = re_set_exception;
14192 ops->check_status = check_status_exception;
14193 ops->print_it = print_it_exception;
14194 ops->print_one = print_one_exception;
14195 ops->print_mention = print_mention_exception;
14196 ops->print_recreate = print_recreate_exception;
14197
14198 ops = &catch_assert_breakpoint_ops;
14199 *ops = bkpt_breakpoint_ops;
14200 ops->allocate_location = allocate_location_exception;
14201 ops->re_set = re_set_exception;
14202 ops->check_status = check_status_exception;
14203 ops->print_it = print_it_exception;
14204 ops->print_one = print_one_exception;
14205 ops->print_mention = print_mention_exception;
14206 ops->print_recreate = print_recreate_exception;
14207
14208 ops = &catch_handlers_breakpoint_ops;
14209 *ops = bkpt_breakpoint_ops;
14210 ops->allocate_location = allocate_location_exception;
14211 ops->re_set = re_set_exception;
14212 ops->check_status = check_status_exception;
14213 ops->print_it = print_it_exception;
14214 ops->print_one = print_one_exception;
14215 ops->print_mention = print_mention_exception;
14216 ops->print_recreate = print_recreate_exception;
14217 }
14218
14219 /* This module's 'new_objfile' observer. */
14220
14221 static void
14222 ada_new_objfile_observer (struct objfile *objfile)
14223 {
14224 ada_clear_symbol_cache ();
14225 }
14226
14227 /* This module's 'free_objfile' observer. */
14228
14229 static void
14230 ada_free_objfile_observer (struct objfile *objfile)
14231 {
14232 ada_clear_symbol_cache ();
14233 }
14234
14235 void
14236 _initialize_ada_language (void)
14237 {
14238 initialize_ada_catchpoint_ops ();
14239
14240 add_prefix_cmd ("ada", no_class, set_ada_command,
14241 _("Prefix command for changing Ada-specific settings."),
14242 &set_ada_list, "set ada ", 0, &setlist);
14243
14244 add_prefix_cmd ("ada", no_class, show_ada_command,
14245 _("Generic command for showing Ada-specific settings."),
14246 &show_ada_list, "show ada ", 0, &showlist);
14247
14248 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14249 &trust_pad_over_xvs, _("\
14250 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14251 Show whether an optimization trusting PAD types over XVS types is activated."),
14252 _("\
14253 This is related to the encoding used by the GNAT compiler. The debugger\n\
14254 should normally trust the contents of PAD types, but certain older versions\n\
14255 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14256 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14257 work around this bug. It is always safe to turn this option \"off\", but\n\
14258 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14259 this option to \"off\" unless necessary."),
14260 NULL, NULL, &set_ada_list, &show_ada_list);
14261
14262 add_setshow_boolean_cmd ("print-signatures", class_vars,
14263 &print_signatures, _("\
14264 Enable or disable the output of formal and return types for functions in the \
14265 overloads selection menu."), _("\
14266 Show whether the output of formal and return types for functions in the \
14267 overloads selection menu is activated."),
14268 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14269
14270 add_catch_command ("exception", _("\
14271 Catch Ada exceptions, when raised.\n\
14272 Usage: catch exception [ARG] [if CONDITION]\n\
14273 Without any argument, stop when any Ada exception is raised.\n\
14274 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14275 being raised does not have a handler (and will therefore lead to the task's\n\
14276 termination).\n\
14277 Otherwise, the catchpoint only stops when the name of the exception being\n\
14278 raised is the same as ARG.\n\
14279 CONDITION is a boolean expression that is evaluated to see whether the\n\
14280 exception should cause a stop."),
14281 catch_ada_exception_command,
14282 catch_ada_completer,
14283 CATCH_PERMANENT,
14284 CATCH_TEMPORARY);
14285
14286 add_catch_command ("handlers", _("\
14287 Catch Ada exceptions, when handled.\n\
14288 Usage: catch handlers [ARG] [if CONDITION]\n\
14289 Without any argument, stop when any Ada exception is handled.\n\
14290 With an argument, catch only exceptions with the given name.\n\
14291 CONDITION is a boolean expression that is evaluated to see whether the\n\
14292 exception should cause a stop."),
14293 catch_ada_handlers_command,
14294 catch_ada_completer,
14295 CATCH_PERMANENT,
14296 CATCH_TEMPORARY);
14297 add_catch_command ("assert", _("\
14298 Catch failed Ada assertions, when raised.\n\
14299 Usage: catch assert [if CONDITION]\n\
14300 CONDITION is a boolean expression that is evaluated to see whether the\n\
14301 exception should cause a stop."),
14302 catch_assert_command,
14303 NULL,
14304 CATCH_PERMANENT,
14305 CATCH_TEMPORARY);
14306
14307 varsize_limit = 65536;
14308 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14309 &varsize_limit, _("\
14310 Set the maximum number of bytes allowed in a variable-size object."), _("\
14311 Show the maximum number of bytes allowed in a variable-size object."), _("\
14312 Attempts to access an object whose size is not a compile-time constant\n\
14313 and exceeds this limit will cause an error."),
14314 NULL, NULL, &setlist, &showlist);
14315
14316 add_info ("exceptions", info_exceptions_command,
14317 _("\
14318 List all Ada exception names.\n\
14319 Usage: info exceptions [REGEXP]\n\
14320 If a regular expression is passed as an argument, only those matching\n\
14321 the regular expression are listed."));
14322
14323 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14324 _("Set Ada maintenance-related variables."),
14325 &maint_set_ada_cmdlist, "maintenance set ada ",
14326 0/*allow-unknown*/, &maintenance_set_cmdlist);
14327
14328 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14329 _("Show Ada maintenance-related variables."),
14330 &maint_show_ada_cmdlist, "maintenance show ada ",
14331 0/*allow-unknown*/, &maintenance_show_cmdlist);
14332
14333 add_setshow_boolean_cmd
14334 ("ignore-descriptive-types", class_maintenance,
14335 &ada_ignore_descriptive_types_p,
14336 _("Set whether descriptive types generated by GNAT should be ignored."),
14337 _("Show whether descriptive types generated by GNAT should be ignored."),
14338 _("\
14339 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14340 DWARF attribute."),
14341 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14342
14343 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14344 NULL, xcalloc, xfree);
14345
14346 /* The ada-lang observers. */
14347 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14348 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14349 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14350 }
This page took 0.602006 seconds and 5 git commands to generate.