delete ada-lang.c::move_bits, sharing and re-using copy_bitwise instead
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An empty array whose type is that of ARR_TYPE (an array type),
3177 with bounds LOW to LOW-1. */
3178
3179 static struct value *
3180 empty_array (struct type *arr_type, int low)
3181 {
3182 struct type *arr_type0 = ada_check_typedef (arr_type);
3183 struct type *index_type
3184 = create_static_range_type
3185 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3186 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3187
3188 return allocate_value (create_array_type (NULL, elt_type, index_type));
3189 }
3190 \f
3191
3192 /* Name resolution */
3193
3194 /* The "decoded" name for the user-definable Ada operator corresponding
3195 to OP. */
3196
3197 static const char *
3198 ada_decoded_op_name (enum exp_opcode op)
3199 {
3200 int i;
3201
3202 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3203 {
3204 if (ada_opname_table[i].op == op)
3205 return ada_opname_table[i].decoded;
3206 }
3207 error (_("Could not find operator name for opcode"));
3208 }
3209
3210
3211 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213 undefined namespace) and converts operators that are
3214 user-defined into appropriate function calls. If CONTEXT_TYPE is
3215 non-null, it provides a preferred result type [at the moment, only
3216 type void has any effect---causing procedures to be preferred over
3217 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3218 return type is preferred. May change (expand) *EXP. */
3219
3220 static void
3221 resolve (expression_up *expp, int void_context_p)
3222 {
3223 struct type *context_type = NULL;
3224 int pc = 0;
3225
3226 if (void_context_p)
3227 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3228
3229 resolve_subexp (expp, &pc, 1, context_type);
3230 }
3231
3232 /* Resolve the operator of the subexpression beginning at
3233 position *POS of *EXPP. "Resolving" consists of replacing
3234 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235 with their resolutions, replacing built-in operators with
3236 function calls to user-defined operators, where appropriate, and,
3237 when DEPROCEDURE_P is non-zero, converting function-valued variables
3238 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3239 are as in ada_resolve, above. */
3240
3241 static struct value *
3242 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3243 struct type *context_type)
3244 {
3245 int pc = *pos;
3246 int i;
3247 struct expression *exp; /* Convenience: == *expp. */
3248 enum exp_opcode op = (*expp)->elts[pc].opcode;
3249 struct value **argvec; /* Vector of operand types (alloca'ed). */
3250 int nargs; /* Number of operands. */
3251 int oplen;
3252
3253 argvec = NULL;
3254 nargs = 0;
3255 exp = expp->get ();
3256
3257 /* Pass one: resolve operands, saving their types and updating *pos,
3258 if needed. */
3259 switch (op)
3260 {
3261 case OP_FUNCALL:
3262 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3264 *pos += 7;
3265 else
3266 {
3267 *pos += 3;
3268 resolve_subexp (expp, pos, 0, NULL);
3269 }
3270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3271 break;
3272
3273 case UNOP_ADDR:
3274 *pos += 1;
3275 resolve_subexp (expp, pos, 0, NULL);
3276 break;
3277
3278 case UNOP_QUAL:
3279 *pos += 3;
3280 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3281 break;
3282
3283 case OP_ATR_MODULUS:
3284 case OP_ATR_SIZE:
3285 case OP_ATR_TAG:
3286 case OP_ATR_FIRST:
3287 case OP_ATR_LAST:
3288 case OP_ATR_LENGTH:
3289 case OP_ATR_POS:
3290 case OP_ATR_VAL:
3291 case OP_ATR_MIN:
3292 case OP_ATR_MAX:
3293 case TERNOP_IN_RANGE:
3294 case BINOP_IN_BOUNDS:
3295 case UNOP_IN_RANGE:
3296 case OP_AGGREGATE:
3297 case OP_OTHERS:
3298 case OP_CHOICES:
3299 case OP_POSITIONAL:
3300 case OP_DISCRETE_RANGE:
3301 case OP_NAME:
3302 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303 *pos += oplen;
3304 break;
3305
3306 case BINOP_ASSIGN:
3307 {
3308 struct value *arg1;
3309
3310 *pos += 1;
3311 arg1 = resolve_subexp (expp, pos, 0, NULL);
3312 if (arg1 == NULL)
3313 resolve_subexp (expp, pos, 1, NULL);
3314 else
3315 resolve_subexp (expp, pos, 1, value_type (arg1));
3316 break;
3317 }
3318
3319 case UNOP_CAST:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
3324 case BINOP_ADD:
3325 case BINOP_SUB:
3326 case BINOP_MUL:
3327 case BINOP_DIV:
3328 case BINOP_REM:
3329 case BINOP_MOD:
3330 case BINOP_EXP:
3331 case BINOP_CONCAT:
3332 case BINOP_LOGICAL_AND:
3333 case BINOP_LOGICAL_OR:
3334 case BINOP_BITWISE_AND:
3335 case BINOP_BITWISE_IOR:
3336 case BINOP_BITWISE_XOR:
3337
3338 case BINOP_EQUAL:
3339 case BINOP_NOTEQUAL:
3340 case BINOP_LESS:
3341 case BINOP_GTR:
3342 case BINOP_LEQ:
3343 case BINOP_GEQ:
3344
3345 case BINOP_REPEAT:
3346 case BINOP_SUBSCRIPT:
3347 case BINOP_COMMA:
3348 *pos += 1;
3349 nargs = 2;
3350 break;
3351
3352 case UNOP_NEG:
3353 case UNOP_PLUS:
3354 case UNOP_LOGICAL_NOT:
3355 case UNOP_ABS:
3356 case UNOP_IND:
3357 *pos += 1;
3358 nargs = 1;
3359 break;
3360
3361 case OP_LONG:
3362 case OP_FLOAT:
3363 case OP_VAR_VALUE:
3364 case OP_VAR_MSYM_VALUE:
3365 *pos += 4;
3366 break;
3367
3368 case OP_TYPE:
3369 case OP_BOOL:
3370 case OP_LAST:
3371 case OP_INTERNALVAR:
3372 *pos += 3;
3373 break;
3374
3375 case UNOP_MEMVAL:
3376 *pos += 3;
3377 nargs = 1;
3378 break;
3379
3380 case OP_REGISTER:
3381 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3382 break;
3383
3384 case STRUCTOP_STRUCT:
3385 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386 nargs = 1;
3387 break;
3388
3389 case TERNOP_SLICE:
3390 *pos += 1;
3391 nargs = 3;
3392 break;
3393
3394 case OP_STRING:
3395 break;
3396
3397 default:
3398 error (_("Unexpected operator during name resolution"));
3399 }
3400
3401 argvec = XALLOCAVEC (struct value *, nargs + 1);
3402 for (i = 0; i < nargs; i += 1)
3403 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3404 argvec[i] = NULL;
3405 exp = expp->get ();
3406
3407 /* Pass two: perform any resolution on principal operator. */
3408 switch (op)
3409 {
3410 default:
3411 break;
3412
3413 case OP_VAR_VALUE:
3414 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3415 {
3416 std::vector<struct block_symbol> candidates;
3417 int n_candidates;
3418
3419 n_candidates =
3420 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421 (exp->elts[pc + 2].symbol),
3422 exp->elts[pc + 1].block, VAR_DOMAIN,
3423 &candidates);
3424
3425 if (n_candidates > 1)
3426 {
3427 /* Types tend to get re-introduced locally, so if there
3428 are any local symbols that are not types, first filter
3429 out all types. */
3430 int j;
3431 for (j = 0; j < n_candidates; j += 1)
3432 switch (SYMBOL_CLASS (candidates[j].symbol))
3433 {
3434 case LOC_REGISTER:
3435 case LOC_ARG:
3436 case LOC_REF_ARG:
3437 case LOC_REGPARM_ADDR:
3438 case LOC_LOCAL:
3439 case LOC_COMPUTED:
3440 goto FoundNonType;
3441 default:
3442 break;
3443 }
3444 FoundNonType:
3445 if (j < n_candidates)
3446 {
3447 j = 0;
3448 while (j < n_candidates)
3449 {
3450 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3451 {
3452 candidates[j] = candidates[n_candidates - 1];
3453 n_candidates -= 1;
3454 }
3455 else
3456 j += 1;
3457 }
3458 }
3459 }
3460
3461 if (n_candidates == 0)
3462 error (_("No definition found for %s"),
3463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464 else if (n_candidates == 1)
3465 i = 0;
3466 else if (deprocedure_p
3467 && !is_nonfunction (candidates.data (), n_candidates))
3468 {
3469 i = ada_resolve_function
3470 (candidates.data (), n_candidates, NULL, 0,
3471 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3472 context_type);
3473 if (i < 0)
3474 error (_("Could not find a match for %s"),
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476 }
3477 else
3478 {
3479 printf_filtered (_("Multiple matches for %s\n"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 user_select_syms (candidates.data (), n_candidates, 1);
3482 i = 0;
3483 }
3484
3485 exp->elts[pc + 1].block = candidates[i].block;
3486 exp->elts[pc + 2].symbol = candidates[i].symbol;
3487 innermost_block.update (candidates[i]);
3488 }
3489
3490 if (deprocedure_p
3491 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3492 == TYPE_CODE_FUNC))
3493 {
3494 replace_operator_with_call (expp, pc, 0, 4,
3495 exp->elts[pc + 2].symbol,
3496 exp->elts[pc + 1].block);
3497 exp = expp->get ();
3498 }
3499 break;
3500
3501 case OP_FUNCALL:
3502 {
3503 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3504 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3505 {
3506 std::vector<struct block_symbol> candidates;
3507 int n_candidates;
3508
3509 n_candidates =
3510 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511 (exp->elts[pc + 5].symbol),
3512 exp->elts[pc + 4].block, VAR_DOMAIN,
3513 &candidates);
3514
3515 if (n_candidates == 1)
3516 i = 0;
3517 else
3518 {
3519 i = ada_resolve_function
3520 (candidates.data (), n_candidates,
3521 argvec, nargs,
3522 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3523 context_type);
3524 if (i < 0)
3525 error (_("Could not find a match for %s"),
3526 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3527 }
3528
3529 exp->elts[pc + 4].block = candidates[i].block;
3530 exp->elts[pc + 5].symbol = candidates[i].symbol;
3531 innermost_block.update (candidates[i]);
3532 }
3533 }
3534 break;
3535 case BINOP_ADD:
3536 case BINOP_SUB:
3537 case BINOP_MUL:
3538 case BINOP_DIV:
3539 case BINOP_REM:
3540 case BINOP_MOD:
3541 case BINOP_CONCAT:
3542 case BINOP_BITWISE_AND:
3543 case BINOP_BITWISE_IOR:
3544 case BINOP_BITWISE_XOR:
3545 case BINOP_EQUAL:
3546 case BINOP_NOTEQUAL:
3547 case BINOP_LESS:
3548 case BINOP_GTR:
3549 case BINOP_LEQ:
3550 case BINOP_GEQ:
3551 case BINOP_EXP:
3552 case UNOP_NEG:
3553 case UNOP_PLUS:
3554 case UNOP_LOGICAL_NOT:
3555 case UNOP_ABS:
3556 if (possible_user_operator_p (op, argvec))
3557 {
3558 std::vector<struct block_symbol> candidates;
3559 int n_candidates;
3560
3561 n_candidates =
3562 ada_lookup_symbol_list (ada_decoded_op_name (op),
3563 (struct block *) NULL, VAR_DOMAIN,
3564 &candidates);
3565
3566 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 nargs, ada_decoded_op_name (op), NULL);
3568 if (i < 0)
3569 break;
3570
3571 replace_operator_with_call (expp, pc, nargs, 1,
3572 candidates[i].symbol,
3573 candidates[i].block);
3574 exp = expp->get ();
3575 }
3576 break;
3577
3578 case OP_TYPE:
3579 case OP_REGISTER:
3580 return NULL;
3581 }
3582
3583 *pos = pc;
3584 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 exp->elts[pc + 1].objfile,
3587 exp->elts[pc + 2].msymbol);
3588 else
3589 return evaluate_subexp_type (exp, pos);
3590 }
3591
3592 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3593 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3594 a non-pointer. */
3595 /* The term "match" here is rather loose. The match is heuristic and
3596 liberal. */
3597
3598 static int
3599 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3600 {
3601 ftype = ada_check_typedef (ftype);
3602 atype = ada_check_typedef (atype);
3603
3604 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605 ftype = TYPE_TARGET_TYPE (ftype);
3606 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607 atype = TYPE_TARGET_TYPE (atype);
3608
3609 switch (TYPE_CODE (ftype))
3610 {
3611 default:
3612 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3613 case TYPE_CODE_PTR:
3614 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3615 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616 TYPE_TARGET_TYPE (atype), 0);
3617 else
3618 return (may_deref
3619 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3620 case TYPE_CODE_INT:
3621 case TYPE_CODE_ENUM:
3622 case TYPE_CODE_RANGE:
3623 switch (TYPE_CODE (atype))
3624 {
3625 case TYPE_CODE_INT:
3626 case TYPE_CODE_ENUM:
3627 case TYPE_CODE_RANGE:
3628 return 1;
3629 default:
3630 return 0;
3631 }
3632
3633 case TYPE_CODE_ARRAY:
3634 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3635 || ada_is_array_descriptor_type (atype));
3636
3637 case TYPE_CODE_STRUCT:
3638 if (ada_is_array_descriptor_type (ftype))
3639 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640 || ada_is_array_descriptor_type (atype));
3641 else
3642 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643 && !ada_is_array_descriptor_type (atype));
3644
3645 case TYPE_CODE_UNION:
3646 case TYPE_CODE_FLT:
3647 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3648 }
3649 }
3650
3651 /* Return non-zero if the formals of FUNC "sufficiently match" the
3652 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3653 may also be an enumeral, in which case it is treated as a 0-
3654 argument function. */
3655
3656 static int
3657 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3658 {
3659 int i;
3660 struct type *func_type = SYMBOL_TYPE (func);
3661
3662 if (SYMBOL_CLASS (func) == LOC_CONST
3663 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3664 return (n_actuals == 0);
3665 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3666 return 0;
3667
3668 if (TYPE_NFIELDS (func_type) != n_actuals)
3669 return 0;
3670
3671 for (i = 0; i < n_actuals; i += 1)
3672 {
3673 if (actuals[i] == NULL)
3674 return 0;
3675 else
3676 {
3677 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3678 i));
3679 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3680
3681 if (!ada_type_match (ftype, atype, 1))
3682 return 0;
3683 }
3684 }
3685 return 1;
3686 }
3687
3688 /* False iff function type FUNC_TYPE definitely does not produce a value
3689 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3690 FUNC_TYPE is not a valid function type with a non-null return type
3691 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3692
3693 static int
3694 return_match (struct type *func_type, struct type *context_type)
3695 {
3696 struct type *return_type;
3697
3698 if (func_type == NULL)
3699 return 1;
3700
3701 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3702 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3703 else
3704 return_type = get_base_type (func_type);
3705 if (return_type == NULL)
3706 return 1;
3707
3708 context_type = get_base_type (context_type);
3709
3710 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711 return context_type == NULL || return_type == context_type;
3712 else if (context_type == NULL)
3713 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3714 else
3715 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3716 }
3717
3718
3719 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3720 function (if any) that matches the types of the NARGS arguments in
3721 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3722 that returns that type, then eliminate matches that don't. If
3723 CONTEXT_TYPE is void and there is at least one match that does not
3724 return void, eliminate all matches that do.
3725
3726 Asks the user if there is more than one match remaining. Returns -1
3727 if there is no such symbol or none is selected. NAME is used
3728 solely for messages. May re-arrange and modify SYMS in
3729 the process; the index returned is for the modified vector. */
3730
3731 static int
3732 ada_resolve_function (struct block_symbol syms[],
3733 int nsyms, struct value **args, int nargs,
3734 const char *name, struct type *context_type)
3735 {
3736 int fallback;
3737 int k;
3738 int m; /* Number of hits */
3739
3740 m = 0;
3741 /* In the first pass of the loop, we only accept functions matching
3742 context_type. If none are found, we add a second pass of the loop
3743 where every function is accepted. */
3744 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3745 {
3746 for (k = 0; k < nsyms; k += 1)
3747 {
3748 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3749
3750 if (ada_args_match (syms[k].symbol, args, nargs)
3751 && (fallback || return_match (type, context_type)))
3752 {
3753 syms[m] = syms[k];
3754 m += 1;
3755 }
3756 }
3757 }
3758
3759 /* If we got multiple matches, ask the user which one to use. Don't do this
3760 interactive thing during completion, though, as the purpose of the
3761 completion is providing a list of all possible matches. Prompting the
3762 user to filter it down would be completely unexpected in this case. */
3763 if (m == 0)
3764 return -1;
3765 else if (m > 1 && !parse_completion)
3766 {
3767 printf_filtered (_("Multiple matches for %s\n"), name);
3768 user_select_syms (syms, m, 1);
3769 return 0;
3770 }
3771 return 0;
3772 }
3773
3774 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3775 in a listing of choices during disambiguation (see sort_choices, below).
3776 The idea is that overloadings of a subprogram name from the
3777 same package should sort in their source order. We settle for ordering
3778 such symbols by their trailing number (__N or $N). */
3779
3780 static int
3781 encoded_ordered_before (const char *N0, const char *N1)
3782 {
3783 if (N1 == NULL)
3784 return 0;
3785 else if (N0 == NULL)
3786 return 1;
3787 else
3788 {
3789 int k0, k1;
3790
3791 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3792 ;
3793 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3794 ;
3795 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3796 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3797 {
3798 int n0, n1;
3799
3800 n0 = k0;
3801 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3802 n0 -= 1;
3803 n1 = k1;
3804 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3805 n1 -= 1;
3806 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3808 }
3809 return (strcmp (N0, N1) < 0);
3810 }
3811 }
3812
3813 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3814 encoded names. */
3815
3816 static void
3817 sort_choices (struct block_symbol syms[], int nsyms)
3818 {
3819 int i;
3820
3821 for (i = 1; i < nsyms; i += 1)
3822 {
3823 struct block_symbol sym = syms[i];
3824 int j;
3825
3826 for (j = i - 1; j >= 0; j -= 1)
3827 {
3828 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829 SYMBOL_LINKAGE_NAME (sym.symbol)))
3830 break;
3831 syms[j + 1] = syms[j];
3832 }
3833 syms[j + 1] = sym;
3834 }
3835 }
3836
3837 /* Whether GDB should display formals and return types for functions in the
3838 overloads selection menu. */
3839 static int print_signatures = 1;
3840
3841 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3842 all but functions, the signature is just the name of the symbol. For
3843 functions, this is the name of the function, the list of types for formals
3844 and the return type (if any). */
3845
3846 static void
3847 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 const struct type_print_options *flags)
3849 {
3850 struct type *type = SYMBOL_TYPE (sym);
3851
3852 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853 if (!print_signatures
3854 || type == NULL
3855 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3856 return;
3857
3858 if (TYPE_NFIELDS (type) > 0)
3859 {
3860 int i;
3861
3862 fprintf_filtered (stream, " (");
3863 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3864 {
3865 if (i > 0)
3866 fprintf_filtered (stream, "; ");
3867 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3868 flags);
3869 }
3870 fprintf_filtered (stream, ")");
3871 }
3872 if (TYPE_TARGET_TYPE (type) != NULL
3873 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3874 {
3875 fprintf_filtered (stream, " return ");
3876 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3877 }
3878 }
3879
3880 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881 by asking the user (if necessary), returning the number selected,
3882 and setting the first elements of SYMS items. Error if no symbols
3883 selected. */
3884
3885 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3886 to be re-integrated one of these days. */
3887
3888 int
3889 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3890 {
3891 int i;
3892 int *chosen = XALLOCAVEC (int , nsyms);
3893 int n_chosen;
3894 int first_choice = (max_results == 1) ? 1 : 2;
3895 const char *select_mode = multiple_symbols_select_mode ();
3896
3897 if (max_results < 1)
3898 error (_("Request to select 0 symbols!"));
3899 if (nsyms <= 1)
3900 return nsyms;
3901
3902 if (select_mode == multiple_symbols_cancel)
3903 error (_("\
3904 canceled because the command is ambiguous\n\
3905 See set/show multiple-symbol."));
3906
3907 /* If select_mode is "all", then return all possible symbols.
3908 Only do that if more than one symbol can be selected, of course.
3909 Otherwise, display the menu as usual. */
3910 if (select_mode == multiple_symbols_all && max_results > 1)
3911 return nsyms;
3912
3913 printf_unfiltered (_("[0] cancel\n"));
3914 if (max_results > 1)
3915 printf_unfiltered (_("[1] all\n"));
3916
3917 sort_choices (syms, nsyms);
3918
3919 for (i = 0; i < nsyms; i += 1)
3920 {
3921 if (syms[i].symbol == NULL)
3922 continue;
3923
3924 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3925 {
3926 struct symtab_and_line sal =
3927 find_function_start_sal (syms[i].symbol, 1);
3928
3929 printf_unfiltered ("[%d] ", i + first_choice);
3930 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 &type_print_raw_options);
3932 if (sal.symtab == NULL)
3933 printf_unfiltered (_(" at <no source file available>:%d\n"),
3934 sal.line);
3935 else
3936 printf_unfiltered (_(" at %s:%d\n"),
3937 symtab_to_filename_for_display (sal.symtab),
3938 sal.line);
3939 continue;
3940 }
3941 else
3942 {
3943 int is_enumeral =
3944 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945 && SYMBOL_TYPE (syms[i].symbol) != NULL
3946 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3947 struct symtab *symtab = NULL;
3948
3949 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 symtab = symbol_symtab (syms[i].symbol);
3951
3952 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3953 {
3954 printf_unfiltered ("[%d] ", i + first_choice);
3955 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 &type_print_raw_options);
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (symtab),
3959 SYMBOL_LINE (syms[i].symbol));
3960 }
3961 else if (is_enumeral
3962 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3963 {
3964 printf_unfiltered (("[%d] "), i + first_choice);
3965 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3966 gdb_stdout, -1, 0, &type_print_raw_options);
3967 printf_unfiltered (_("'(%s) (enumeral)\n"),
3968 SYMBOL_PRINT_NAME (syms[i].symbol));
3969 }
3970 else
3971 {
3972 printf_unfiltered ("[%d] ", i + first_choice);
3973 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 &type_print_raw_options);
3975
3976 if (symtab != NULL)
3977 printf_unfiltered (is_enumeral
3978 ? _(" in %s (enumeral)\n")
3979 : _(" at %s:?\n"),
3980 symtab_to_filename_for_display (symtab));
3981 else
3982 printf_unfiltered (is_enumeral
3983 ? _(" (enumeral)\n")
3984 : _(" at ?\n"));
3985 }
3986 }
3987 }
3988
3989 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3990 "overload-choice");
3991
3992 for (i = 0; i < n_chosen; i += 1)
3993 syms[i] = syms[chosen[i]];
3994
3995 return n_chosen;
3996 }
3997
3998 /* Read and validate a set of numeric choices from the user in the
3999 range 0 .. N_CHOICES-1. Place the results in increasing
4000 order in CHOICES[0 .. N-1], and return N.
4001
4002 The user types choices as a sequence of numbers on one line
4003 separated by blanks, encoding them as follows:
4004
4005 + A choice of 0 means to cancel the selection, throwing an error.
4006 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4008
4009 The user is not allowed to choose more than MAX_RESULTS values.
4010
4011 ANNOTATION_SUFFIX, if present, is used to annotate the input
4012 prompts (for use with the -f switch). */
4013
4014 int
4015 get_selections (int *choices, int n_choices, int max_results,
4016 int is_all_choice, const char *annotation_suffix)
4017 {
4018 char *args;
4019 const char *prompt;
4020 int n_chosen;
4021 int first_choice = is_all_choice ? 2 : 1;
4022
4023 prompt = getenv ("PS2");
4024 if (prompt == NULL)
4025 prompt = "> ";
4026
4027 args = command_line_input (prompt, annotation_suffix);
4028
4029 if (args == NULL)
4030 error_no_arg (_("one or more choice numbers"));
4031
4032 n_chosen = 0;
4033
4034 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035 order, as given in args. Choices are validated. */
4036 while (1)
4037 {
4038 char *args2;
4039 int choice, j;
4040
4041 args = skip_spaces (args);
4042 if (*args == '\0' && n_chosen == 0)
4043 error_no_arg (_("one or more choice numbers"));
4044 else if (*args == '\0')
4045 break;
4046
4047 choice = strtol (args, &args2, 10);
4048 if (args == args2 || choice < 0
4049 || choice > n_choices + first_choice - 1)
4050 error (_("Argument must be choice number"));
4051 args = args2;
4052
4053 if (choice == 0)
4054 error (_("cancelled"));
4055
4056 if (choice < first_choice)
4057 {
4058 n_chosen = n_choices;
4059 for (j = 0; j < n_choices; j += 1)
4060 choices[j] = j;
4061 break;
4062 }
4063 choice -= first_choice;
4064
4065 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4066 {
4067 }
4068
4069 if (j < 0 || choice != choices[j])
4070 {
4071 int k;
4072
4073 for (k = n_chosen - 1; k > j; k -= 1)
4074 choices[k + 1] = choices[k];
4075 choices[j + 1] = choice;
4076 n_chosen += 1;
4077 }
4078 }
4079
4080 if (n_chosen > max_results)
4081 error (_("Select no more than %d of the above"), max_results);
4082
4083 return n_chosen;
4084 }
4085
4086 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087 on the function identified by SYM and BLOCK, and taking NARGS
4088 arguments. Update *EXPP as needed to hold more space. */
4089
4090 static void
4091 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4092 int oplen, struct symbol *sym,
4093 const struct block *block)
4094 {
4095 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4096 symbol, -oplen for operator being replaced). */
4097 struct expression *newexp = (struct expression *)
4098 xzalloc (sizeof (struct expression)
4099 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4100 struct expression *exp = expp->get ();
4101
4102 newexp->nelts = exp->nelts + 7 - oplen;
4103 newexp->language_defn = exp->language_defn;
4104 newexp->gdbarch = exp->gdbarch;
4105 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4106 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4107 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4108
4109 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4111
4112 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113 newexp->elts[pc + 4].block = block;
4114 newexp->elts[pc + 5].symbol = sym;
4115
4116 expp->reset (newexp);
4117 }
4118
4119 /* Type-class predicates */
4120
4121 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4122 or FLOAT). */
4123
4124 static int
4125 numeric_type_p (struct type *type)
4126 {
4127 if (type == NULL)
4128 return 0;
4129 else
4130 {
4131 switch (TYPE_CODE (type))
4132 {
4133 case TYPE_CODE_INT:
4134 case TYPE_CODE_FLT:
4135 return 1;
4136 case TYPE_CODE_RANGE:
4137 return (type == TYPE_TARGET_TYPE (type)
4138 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4139 default:
4140 return 0;
4141 }
4142 }
4143 }
4144
4145 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4146
4147 static int
4148 integer_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 return 1;
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || integer_type_p (TYPE_TARGET_TYPE (type)));
4161 default:
4162 return 0;
4163 }
4164 }
4165 }
4166
4167 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4168
4169 static int
4170 scalar_type_p (struct type *type)
4171 {
4172 if (type == NULL)
4173 return 0;
4174 else
4175 {
4176 switch (TYPE_CODE (type))
4177 {
4178 case TYPE_CODE_INT:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_ENUM:
4181 case TYPE_CODE_FLT:
4182 return 1;
4183 default:
4184 return 0;
4185 }
4186 }
4187 }
4188
4189 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4190
4191 static int
4192 discrete_type_p (struct type *type)
4193 {
4194 if (type == NULL)
4195 return 0;
4196 else
4197 {
4198 switch (TYPE_CODE (type))
4199 {
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_BOOL:
4204 return 1;
4205 default:
4206 return 0;
4207 }
4208 }
4209 }
4210
4211 /* Returns non-zero if OP with operands in the vector ARGS could be
4212 a user-defined function. Errs on the side of pre-defined operators
4213 (i.e., result 0). */
4214
4215 static int
4216 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4217 {
4218 struct type *type0 =
4219 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4220 struct type *type1 =
4221 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4222
4223 if (type0 == NULL)
4224 return 0;
4225
4226 switch (op)
4227 {
4228 default:
4229 return 0;
4230
4231 case BINOP_ADD:
4232 case BINOP_SUB:
4233 case BINOP_MUL:
4234 case BINOP_DIV:
4235 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4236
4237 case BINOP_REM:
4238 case BINOP_MOD:
4239 case BINOP_BITWISE_AND:
4240 case BINOP_BITWISE_IOR:
4241 case BINOP_BITWISE_XOR:
4242 return (!(integer_type_p (type0) && integer_type_p (type1)));
4243
4244 case BINOP_EQUAL:
4245 case BINOP_NOTEQUAL:
4246 case BINOP_LESS:
4247 case BINOP_GTR:
4248 case BINOP_LEQ:
4249 case BINOP_GEQ:
4250 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4251
4252 case BINOP_CONCAT:
4253 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4254
4255 case BINOP_EXP:
4256 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4257
4258 case UNOP_NEG:
4259 case UNOP_PLUS:
4260 case UNOP_LOGICAL_NOT:
4261 case UNOP_ABS:
4262 return (!numeric_type_p (type0));
4263
4264 }
4265 }
4266 \f
4267 /* Renaming */
4268
4269 /* NOTES:
4270
4271 1. In the following, we assume that a renaming type's name may
4272 have an ___XD suffix. It would be nice if this went away at some
4273 point.
4274 2. We handle both the (old) purely type-based representation of
4275 renamings and the (new) variable-based encoding. At some point,
4276 it is devoutly to be hoped that the former goes away
4277 (FIXME: hilfinger-2007-07-09).
4278 3. Subprogram renamings are not implemented, although the XRS
4279 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4280
4281 /* If SYM encodes a renaming,
4282
4283 <renaming> renames <renamed entity>,
4284
4285 sets *LEN to the length of the renamed entity's name,
4286 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287 the string describing the subcomponent selected from the renamed
4288 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4289 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290 are undefined). Otherwise, returns a value indicating the category
4291 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4294 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296 may be NULL, in which case they are not assigned.
4297
4298 [Currently, however, GCC does not generate subprogram renamings.] */
4299
4300 enum ada_renaming_category
4301 ada_parse_renaming (struct symbol *sym,
4302 const char **renamed_entity, int *len,
4303 const char **renaming_expr)
4304 {
4305 enum ada_renaming_category kind;
4306 const char *info;
4307 const char *suffix;
4308
4309 if (sym == NULL)
4310 return ADA_NOT_RENAMING;
4311 switch (SYMBOL_CLASS (sym))
4312 {
4313 default:
4314 return ADA_NOT_RENAMING;
4315 case LOC_TYPEDEF:
4316 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 renamed_entity, len, renaming_expr);
4318 case LOC_LOCAL:
4319 case LOC_STATIC:
4320 case LOC_COMPUTED:
4321 case LOC_OPTIMIZED_OUT:
4322 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4323 if (info == NULL)
4324 return ADA_NOT_RENAMING;
4325 switch (info[5])
4326 {
4327 case '_':
4328 kind = ADA_OBJECT_RENAMING;
4329 info += 6;
4330 break;
4331 case 'E':
4332 kind = ADA_EXCEPTION_RENAMING;
4333 info += 7;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 info += 7;
4338 break;
4339 case 'S':
4340 kind = ADA_SUBPROGRAM_RENAMING;
4341 info += 7;
4342 break;
4343 default:
4344 return ADA_NOT_RENAMING;
4345 }
4346 }
4347
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4353 if (len != NULL)
4354 *len = strlen (info) - strlen (suffix);
4355 suffix += 5;
4356 if (renaming_expr != NULL)
4357 *renaming_expr = suffix;
4358 return kind;
4359 }
4360
4361 /* Assuming TYPE encodes a renaming according to the old encoding in
4362 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4364 ADA_NOT_RENAMING otherwise. */
4365 static enum ada_renaming_category
4366 parse_old_style_renaming (struct type *type,
4367 const char **renamed_entity, int *len,
4368 const char **renaming_expr)
4369 {
4370 enum ada_renaming_category kind;
4371 const char *name;
4372 const char *info;
4373 const char *suffix;
4374
4375 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376 || TYPE_NFIELDS (type) != 1)
4377 return ADA_NOT_RENAMING;
4378
4379 name = TYPE_NAME (type);
4380 if (name == NULL)
4381 return ADA_NOT_RENAMING;
4382
4383 name = strstr (name, "___XR");
4384 if (name == NULL)
4385 return ADA_NOT_RENAMING;
4386 switch (name[5])
4387 {
4388 case '\0':
4389 case '_':
4390 kind = ADA_OBJECT_RENAMING;
4391 break;
4392 case 'E':
4393 kind = ADA_EXCEPTION_RENAMING;
4394 break;
4395 case 'P':
4396 kind = ADA_PACKAGE_RENAMING;
4397 break;
4398 case 'S':
4399 kind = ADA_SUBPROGRAM_RENAMING;
4400 break;
4401 default:
4402 return ADA_NOT_RENAMING;
4403 }
4404
4405 info = TYPE_FIELD_NAME (type, 0);
4406 if (info == NULL)
4407 return ADA_NOT_RENAMING;
4408 if (renamed_entity != NULL)
4409 *renamed_entity = info;
4410 suffix = strstr (info, "___XE");
4411 if (renaming_expr != NULL)
4412 *renaming_expr = suffix + 5;
4413 if (suffix == NULL || suffix == info)
4414 return ADA_NOT_RENAMING;
4415 if (len != NULL)
4416 *len = suffix - info;
4417 return kind;
4418 }
4419
4420 /* Compute the value of the given RENAMING_SYM, which is expected to
4421 be a symbol encoding a renaming expression. BLOCK is the block
4422 used to evaluate the renaming. */
4423
4424 static struct value *
4425 ada_read_renaming_var_value (struct symbol *renaming_sym,
4426 const struct block *block)
4427 {
4428 const char *sym_name;
4429
4430 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4431 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432 return evaluate_expression (expr.get ());
4433 }
4434 \f
4435
4436 /* Evaluation: Function Calls */
4437
4438 /* Return an lvalue containing the value VAL. This is the identity on
4439 lvalues, and otherwise has the side-effect of allocating memory
4440 in the inferior where a copy of the value contents is copied. */
4441
4442 static struct value *
4443 ensure_lval (struct value *val)
4444 {
4445 if (VALUE_LVAL (val) == not_lval
4446 || VALUE_LVAL (val) == lval_internalvar)
4447 {
4448 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4449 const CORE_ADDR addr =
4450 value_as_long (value_allocate_space_in_inferior (len));
4451
4452 VALUE_LVAL (val) = lval_memory;
4453 set_value_address (val, addr);
4454 write_memory (addr, value_contents (val), len);
4455 }
4456
4457 return val;
4458 }
4459
4460 /* Return the value ACTUAL, converted to be an appropriate value for a
4461 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4462 allocating any necessary descriptors (fat pointers), or copies of
4463 values not residing in memory, updating it as needed. */
4464
4465 struct value *
4466 ada_convert_actual (struct value *actual, struct type *formal_type0)
4467 {
4468 struct type *actual_type = ada_check_typedef (value_type (actual));
4469 struct type *formal_type = ada_check_typedef (formal_type0);
4470 struct type *formal_target =
4471 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4473 struct type *actual_target =
4474 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4475 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4476
4477 if (ada_is_array_descriptor_type (formal_target)
4478 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4479 return make_array_descriptor (formal_type, actual);
4480 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4482 {
4483 struct value *result;
4484
4485 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4486 && ada_is_array_descriptor_type (actual_target))
4487 result = desc_data (actual);
4488 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4489 {
4490 if (VALUE_LVAL (actual) != lval_memory)
4491 {
4492 struct value *val;
4493
4494 actual_type = ada_check_typedef (value_type (actual));
4495 val = allocate_value (actual_type);
4496 memcpy ((char *) value_contents_raw (val),
4497 (char *) value_contents (actual),
4498 TYPE_LENGTH (actual_type));
4499 actual = ensure_lval (val);
4500 }
4501 result = value_addr (actual);
4502 }
4503 else
4504 return actual;
4505 return value_cast_pointers (formal_type, result, 0);
4506 }
4507 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508 return ada_value_ind (actual);
4509 else if (ada_is_aligner_type (formal_type))
4510 {
4511 /* We need to turn this parameter into an aligner type
4512 as well. */
4513 struct value *aligner = allocate_value (formal_type);
4514 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4515
4516 value_assign_to_component (aligner, component, actual);
4517 return aligner;
4518 }
4519
4520 return actual;
4521 }
4522
4523 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524 type TYPE. This is usually an inefficient no-op except on some targets
4525 (such as AVR) where the representation of a pointer and an address
4526 differs. */
4527
4528 static CORE_ADDR
4529 value_pointer (struct value *value, struct type *type)
4530 {
4531 struct gdbarch *gdbarch = get_type_arch (type);
4532 unsigned len = TYPE_LENGTH (type);
4533 gdb_byte *buf = (gdb_byte *) alloca (len);
4534 CORE_ADDR addr;
4535
4536 addr = value_address (value);
4537 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539 return addr;
4540 }
4541
4542
4543 /* Push a descriptor of type TYPE for array value ARR on the stack at
4544 *SP, updating *SP to reflect the new descriptor. Return either
4545 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4546 to-descriptor type rather than a descriptor type), a struct value *
4547 representing a pointer to this descriptor. */
4548
4549 static struct value *
4550 make_array_descriptor (struct type *type, struct value *arr)
4551 {
4552 struct type *bounds_type = desc_bounds_type (type);
4553 struct type *desc_type = desc_base_type (type);
4554 struct value *descriptor = allocate_value (desc_type);
4555 struct value *bounds = allocate_value (bounds_type);
4556 int i;
4557
4558 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4559 i > 0; i -= 1)
4560 {
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 0),
4563 desc_bound_bitpos (bounds_type, i, 0),
4564 desc_bound_bitsize (bounds_type, i, 0));
4565 modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 ada_array_bound (arr, i, 1),
4567 desc_bound_bitpos (bounds_type, i, 1),
4568 desc_bound_bitsize (bounds_type, i, 1));
4569 }
4570
4571 bounds = ensure_lval (bounds);
4572
4573 modify_field (value_type (descriptor),
4574 value_contents_writeable (descriptor),
4575 value_pointer (ensure_lval (arr),
4576 TYPE_FIELD_TYPE (desc_type, 0)),
4577 fat_pntr_data_bitpos (desc_type),
4578 fat_pntr_data_bitsize (desc_type));
4579
4580 modify_field (value_type (descriptor),
4581 value_contents_writeable (descriptor),
4582 value_pointer (bounds,
4583 TYPE_FIELD_TYPE (desc_type, 1)),
4584 fat_pntr_bounds_bitpos (desc_type),
4585 fat_pntr_bounds_bitsize (desc_type));
4586
4587 descriptor = ensure_lval (descriptor);
4588
4589 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590 return value_addr (descriptor);
4591 else
4592 return descriptor;
4593 }
4594 \f
4595 /* Symbol Cache Module */
4596
4597 /* Performance measurements made as of 2010-01-15 indicate that
4598 this cache does bring some noticeable improvements. Depending
4599 on the type of entity being printed, the cache can make it as much
4600 as an order of magnitude faster than without it.
4601
4602 The descriptive type DWARF extension has significantly reduced
4603 the need for this cache, at least when DWARF is being used. However,
4604 even in this case, some expensive name-based symbol searches are still
4605 sometimes necessary - to find an XVZ variable, mostly. */
4606
4607 /* Initialize the contents of SYM_CACHE. */
4608
4609 static void
4610 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4611 {
4612 obstack_init (&sym_cache->cache_space);
4613 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4614 }
4615
4616 /* Free the memory used by SYM_CACHE. */
4617
4618 static void
4619 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 xfree (sym_cache);
4623 }
4624
4625 /* Return the symbol cache associated to the given program space PSPACE.
4626 If not allocated for this PSPACE yet, allocate and initialize one. */
4627
4628 static struct ada_symbol_cache *
4629 ada_get_symbol_cache (struct program_space *pspace)
4630 {
4631 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4632
4633 if (pspace_data->sym_cache == NULL)
4634 {
4635 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636 ada_init_symbol_cache (pspace_data->sym_cache);
4637 }
4638
4639 return pspace_data->sym_cache;
4640 }
4641
4642 /* Clear all entries from the symbol cache. */
4643
4644 static void
4645 ada_clear_symbol_cache (void)
4646 {
4647 struct ada_symbol_cache *sym_cache
4648 = ada_get_symbol_cache (current_program_space);
4649
4650 obstack_free (&sym_cache->cache_space, NULL);
4651 ada_init_symbol_cache (sym_cache);
4652 }
4653
4654 /* Search our cache for an entry matching NAME and DOMAIN.
4655 Return it if found, or NULL otherwise. */
4656
4657 static struct cache_entry **
4658 find_entry (const char *name, domain_enum domain)
4659 {
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662 int h = msymbol_hash (name) % HASH_SIZE;
4663 struct cache_entry **e;
4664
4665 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4666 {
4667 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4668 return e;
4669 }
4670 return NULL;
4671 }
4672
4673 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4674 Return 1 if found, 0 otherwise.
4675
4676 If an entry was found and SYM is not NULL, set *SYM to the entry's
4677 SYM. Same principle for BLOCK if not NULL. */
4678
4679 static int
4680 lookup_cached_symbol (const char *name, domain_enum domain,
4681 struct symbol **sym, const struct block **block)
4682 {
4683 struct cache_entry **e = find_entry (name, domain);
4684
4685 if (e == NULL)
4686 return 0;
4687 if (sym != NULL)
4688 *sym = (*e)->sym;
4689 if (block != NULL)
4690 *block = (*e)->block;
4691 return 1;
4692 }
4693
4694 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4695 in domain DOMAIN, save this result in our symbol cache. */
4696
4697 static void
4698 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4699 const struct block *block)
4700 {
4701 struct ada_symbol_cache *sym_cache
4702 = ada_get_symbol_cache (current_program_space);
4703 int h;
4704 char *copy;
4705 struct cache_entry *e;
4706
4707 /* Symbols for builtin types don't have a block.
4708 For now don't cache such symbols. */
4709 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4710 return;
4711
4712 /* If the symbol is a local symbol, then do not cache it, as a search
4713 for that symbol depends on the context. To determine whether
4714 the symbol is local or not, we check the block where we found it
4715 against the global and static blocks of its associated symtab. */
4716 if (sym
4717 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4718 GLOBAL_BLOCK) != block
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 STATIC_BLOCK) != block)
4721 return;
4722
4723 h = msymbol_hash (name) % HASH_SIZE;
4724 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4725 e->next = sym_cache->root[h];
4726 sym_cache->root[h] = e;
4727 e->name = copy
4728 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4729 strcpy (copy, name);
4730 e->sym = sym;
4731 e->domain = domain;
4732 e->block = block;
4733 }
4734 \f
4735 /* Symbol Lookup */
4736
4737 /* Return the symbol name match type that should be used used when
4738 searching for all symbols matching LOOKUP_NAME.
4739
4740 LOOKUP_NAME is expected to be a symbol name after transformation
4741 for Ada lookups. */
4742
4743 static symbol_name_match_type
4744 name_match_type_from_name (const char *lookup_name)
4745 {
4746 return (strstr (lookup_name, "__") == NULL
4747 ? symbol_name_match_type::WILD
4748 : symbol_name_match_type::FULL);
4749 }
4750
4751 /* Return the result of a standard (literal, C-like) lookup of NAME in
4752 given DOMAIN, visible from lexical block BLOCK. */
4753
4754 static struct symbol *
4755 standard_lookup (const char *name, const struct block *block,
4756 domain_enum domain)
4757 {
4758 /* Initialize it just to avoid a GCC false warning. */
4759 struct block_symbol sym = {NULL, NULL};
4760
4761 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4762 return sym.symbol;
4763 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4764 cache_symbol (name, domain, sym.symbol, sym.block);
4765 return sym.symbol;
4766 }
4767
4768
4769 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4770 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4771 since they contend in overloading in the same way. */
4772 static int
4773 is_nonfunction (struct block_symbol syms[], int n)
4774 {
4775 int i;
4776
4777 for (i = 0; i < n; i += 1)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4781 return 1;
4782
4783 return 0;
4784 }
4785
4786 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4787 struct types. Otherwise, they may not. */
4788
4789 static int
4790 equiv_types (struct type *type0, struct type *type1)
4791 {
4792 if (type0 == type1)
4793 return 1;
4794 if (type0 == NULL || type1 == NULL
4795 || TYPE_CODE (type0) != TYPE_CODE (type1))
4796 return 0;
4797 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4798 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4800 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4801 return 1;
4802
4803 return 0;
4804 }
4805
4806 /* True iff SYM0 represents the same entity as SYM1, or one that is
4807 no more defined than that of SYM1. */
4808
4809 static int
4810 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4811 {
4812 if (sym0 == sym1)
4813 return 1;
4814 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4815 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4816 return 0;
4817
4818 switch (SYMBOL_CLASS (sym0))
4819 {
4820 case LOC_UNDEF:
4821 return 1;
4822 case LOC_TYPEDEF:
4823 {
4824 struct type *type0 = SYMBOL_TYPE (sym0);
4825 struct type *type1 = SYMBOL_TYPE (sym1);
4826 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4828 int len0 = strlen (name0);
4829
4830 return
4831 TYPE_CODE (type0) == TYPE_CODE (type1)
4832 && (equiv_types (type0, type1)
4833 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4834 && startswith (name1 + len0, "___XV")));
4835 }
4836 case LOC_CONST:
4837 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4838 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4839 default:
4840 return 0;
4841 }
4842 }
4843
4844 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4845 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4846
4847 static void
4848 add_defn_to_vec (struct obstack *obstackp,
4849 struct symbol *sym,
4850 const struct block *block)
4851 {
4852 int i;
4853 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4854
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4863
4864 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4865 {
4866 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4867 return;
4868 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4869 {
4870 prevDefns[i].symbol = sym;
4871 prevDefns[i].block = block;
4872 return;
4873 }
4874 }
4875
4876 {
4877 struct block_symbol info;
4878
4879 info.symbol = sym;
4880 info.block = block;
4881 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4882 }
4883 }
4884
4885 /* Number of block_symbol structures currently collected in current vector in
4886 OBSTACKP. */
4887
4888 static int
4889 num_defns_collected (struct obstack *obstackp)
4890 {
4891 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4892 }
4893
4894 /* Vector of block_symbol structures currently collected in current vector in
4895 OBSTACKP. If FINISH, close off the vector and return its final address. */
4896
4897 static struct block_symbol *
4898 defns_collected (struct obstack *obstackp, int finish)
4899 {
4900 if (finish)
4901 return (struct block_symbol *) obstack_finish (obstackp);
4902 else
4903 return (struct block_symbol *) obstack_base (obstackp);
4904 }
4905
4906 /* Return a bound minimal symbol matching NAME according to Ada
4907 decoding rules. Returns an invalid symbol if there is no such
4908 minimal symbol. Names prefixed with "standard__" are handled
4909 specially: "standard__" is first stripped off, and only static and
4910 global symbols are searched. */
4911
4912 struct bound_minimal_symbol
4913 ada_lookup_simple_minsym (const char *name)
4914 {
4915 struct bound_minimal_symbol result;
4916 struct objfile *objfile;
4917 struct minimal_symbol *msymbol;
4918
4919 memset (&result, 0, sizeof (result));
4920
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4926
4927 ALL_MSYMBOLS (objfile, msymbol)
4928 {
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
4936 }
4937
4938 return result;
4939 }
4940
4941 /* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4946
4947 static void
4948 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4949 const lookup_name_info &lookup_name,
4950 domain_enum domain)
4951 {
4952 }
4953
4954 /* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
4956
4957 static int
4958 is_nondebugging_type (struct type *type)
4959 {
4960 const char *name = ada_type_name (type);
4961
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4963 }
4964
4965 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4967
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4971
4972 static int
4973 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4974 {
4975 int i;
4976
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4981
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4985 return 0;
4986
4987 /* All enumerals should also have the same name (modulo any numerical
4988 suffix). */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 {
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4995
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4998 if (len_1 != len_2
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5001 len_1) != 0)
5002 return 0;
5003 }
5004
5005 return 1;
5006 }
5007
5008 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5012
5013 For instance, consider the following code:
5014
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5017
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5027
5028 static int
5029 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5030 {
5031 int i;
5032
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5039
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < syms.size (); i++)
5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5043 return 0;
5044
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < syms.size (); i++)
5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5048 return 0;
5049
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < syms.size (); i++)
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5054 return 0;
5055
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < syms.size (); i++)
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
5062 return 0;
5063
5064 return 1;
5065 }
5066
5067 /* Remove any non-debugging symbols in SYMS that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
5073
5074 static int
5075 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5076 {
5077 int i, j;
5078
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5082 if (syms->size () < 2)
5083 return syms->size ();
5084
5085 i = 0;
5086 while (i < syms->size ())
5087 {
5088 int remove_p = 0;
5089
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5092
5093 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5094 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5095 {
5096 for (j = 0; j < syms->size (); j++)
5097 {
5098 if (j != i
5099 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5100 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5102 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5103 remove_p = 1;
5104 }
5105 }
5106
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5109
5110 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5111 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5113 {
5114 for (j = 0; j < syms->size (); j += 1)
5115 {
5116 if (i != j
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5120 && SYMBOL_CLASS ((*syms)[i].symbol)
5121 == SYMBOL_CLASS ((*syms)[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5124 remove_p = 1;
5125 }
5126 }
5127
5128 if (remove_p)
5129 syms->erase (syms->begin () + i);
5130
5131 i += 1;
5132 }
5133
5134 /* If all the remaining symbols are identical enumerals, then
5135 just keep the first one and discard the rest.
5136
5137 Unlike what we did previously, we do not discard any entry
5138 unless they are ALL identical. This is because the symbol
5139 comparison is not a strict comparison, but rather a practical
5140 comparison. If all symbols are considered identical, then
5141 we can just go ahead and use the first one and discard the rest.
5142 But if we cannot reduce the list to a single element, we have
5143 to ask the user to disambiguate anyways. And if we have to
5144 present a multiple-choice menu, it's less confusing if the list
5145 isn't missing some choices that were identical and yet distinct. */
5146 if (symbols_are_identical_enums (*syms))
5147 syms->resize (1);
5148
5149 return syms->size ();
5150 }
5151
5152 /* Given a type that corresponds to a renaming entity, use the type name
5153 to extract the scope (package name or function name, fully qualified,
5154 and following the GNAT encoding convention) where this renaming has been
5155 defined. */
5156
5157 static std::string
5158 xget_renaming_scope (struct type *renaming_type)
5159 {
5160 /* The renaming types adhere to the following convention:
5161 <scope>__<rename>___<XR extension>.
5162 So, to extract the scope, we search for the "___XR" extension,
5163 and then backtrack until we find the first "__". */
5164
5165 const char *name = TYPE_NAME (renaming_type);
5166 const char *suffix = strstr (name, "___XR");
5167 const char *last;
5168
5169 /* Now, backtrack a bit until we find the first "__". Start looking
5170 at suffix - 3, as the <rename> part is at least one character long. */
5171
5172 for (last = suffix - 3; last > name; last--)
5173 if (last[0] == '_' && last[1] == '_')
5174 break;
5175
5176 /* Make a copy of scope and return it. */
5177 return std::string (name, last);
5178 }
5179
5180 /* Return nonzero if NAME corresponds to a package name. */
5181
5182 static int
5183 is_package_name (const char *name)
5184 {
5185 /* Here, We take advantage of the fact that no symbols are generated
5186 for packages, while symbols are generated for each function.
5187 So the condition for NAME represent a package becomes equivalent
5188 to NAME not existing in our list of symbols. There is only one
5189 small complication with library-level functions (see below). */
5190
5191 /* If it is a function that has not been defined at library level,
5192 then we should be able to look it up in the symbols. */
5193 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5194 return 0;
5195
5196 /* Library-level function names start with "_ada_". See if function
5197 "_ada_" followed by NAME can be found. */
5198
5199 /* Do a quick check that NAME does not contain "__", since library-level
5200 functions names cannot contain "__" in them. */
5201 if (strstr (name, "__") != NULL)
5202 return 0;
5203
5204 std::string fun_name = string_printf ("_ada_%s", name);
5205
5206 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5207 }
5208
5209 /* Return nonzero if SYM corresponds to a renaming entity that is
5210 not visible from FUNCTION_NAME. */
5211
5212 static int
5213 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5214 {
5215 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5216 return 0;
5217
5218 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5219
5220 /* If the rename has been defined in a package, then it is visible. */
5221 if (is_package_name (scope.c_str ()))
5222 return 0;
5223
5224 /* Check that the rename is in the current function scope by checking
5225 that its name starts with SCOPE. */
5226
5227 /* If the function name starts with "_ada_", it means that it is
5228 a library-level function. Strip this prefix before doing the
5229 comparison, as the encoding for the renaming does not contain
5230 this prefix. */
5231 if (startswith (function_name, "_ada_"))
5232 function_name += 5;
5233
5234 return !startswith (function_name, scope.c_str ());
5235 }
5236
5237 /* Remove entries from SYMS that corresponds to a renaming entity that
5238 is not visible from the function associated with CURRENT_BLOCK or
5239 that is superfluous due to the presence of more specific renaming
5240 information. Places surviving symbols in the initial entries of
5241 SYMS and returns the number of surviving symbols.
5242
5243 Rationale:
5244 First, in cases where an object renaming is implemented as a
5245 reference variable, GNAT may produce both the actual reference
5246 variable and the renaming encoding. In this case, we discard the
5247 latter.
5248
5249 Second, GNAT emits a type following a specified encoding for each renaming
5250 entity. Unfortunately, STABS currently does not support the definition
5251 of types that are local to a given lexical block, so all renamings types
5252 are emitted at library level. As a consequence, if an application
5253 contains two renaming entities using the same name, and a user tries to
5254 print the value of one of these entities, the result of the ada symbol
5255 lookup will also contain the wrong renaming type.
5256
5257 This function partially covers for this limitation by attempting to
5258 remove from the SYMS list renaming symbols that should be visible
5259 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5260 method with the current information available. The implementation
5261 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5262
5263 - When the user tries to print a rename in a function while there
5264 is another rename entity defined in a package: Normally, the
5265 rename in the function has precedence over the rename in the
5266 package, so the latter should be removed from the list. This is
5267 currently not the case.
5268
5269 - This function will incorrectly remove valid renames if
5270 the CURRENT_BLOCK corresponds to a function which symbol name
5271 has been changed by an "Export" pragma. As a consequence,
5272 the user will be unable to print such rename entities. */
5273
5274 static int
5275 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5276 const struct block *current_block)
5277 {
5278 struct symbol *current_function;
5279 const char *current_function_name;
5280 int i;
5281 int is_new_style_renaming;
5282
5283 /* If there is both a renaming foo___XR... encoded as a variable and
5284 a simple variable foo in the same block, discard the latter.
5285 First, zero out such symbols, then compress. */
5286 is_new_style_renaming = 0;
5287 for (i = 0; i < syms->size (); i += 1)
5288 {
5289 struct symbol *sym = (*syms)[i].symbol;
5290 const struct block *block = (*syms)[i].block;
5291 const char *name;
5292 const char *suffix;
5293
5294 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5295 continue;
5296 name = SYMBOL_LINKAGE_NAME (sym);
5297 suffix = strstr (name, "___XR");
5298
5299 if (suffix != NULL)
5300 {
5301 int name_len = suffix - name;
5302 int j;
5303
5304 is_new_style_renaming = 1;
5305 for (j = 0; j < syms->size (); j += 1)
5306 if (i != j && (*syms)[j].symbol != NULL
5307 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5308 name_len) == 0
5309 && block == (*syms)[j].block)
5310 (*syms)[j].symbol = NULL;
5311 }
5312 }
5313 if (is_new_style_renaming)
5314 {
5315 int j, k;
5316
5317 for (j = k = 0; j < syms->size (); j += 1)
5318 if ((*syms)[j].symbol != NULL)
5319 {
5320 (*syms)[k] = (*syms)[j];
5321 k += 1;
5322 }
5323 return k;
5324 }
5325
5326 /* Extract the function name associated to CURRENT_BLOCK.
5327 Abort if unable to do so. */
5328
5329 if (current_block == NULL)
5330 return syms->size ();
5331
5332 current_function = block_linkage_function (current_block);
5333 if (current_function == NULL)
5334 return syms->size ();
5335
5336 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5337 if (current_function_name == NULL)
5338 return syms->size ();
5339
5340 /* Check each of the symbols, and remove it from the list if it is
5341 a type corresponding to a renaming that is out of the scope of
5342 the current block. */
5343
5344 i = 0;
5345 while (i < syms->size ())
5346 {
5347 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5348 == ADA_OBJECT_RENAMING
5349 && old_renaming_is_invisible ((*syms)[i].symbol,
5350 current_function_name))
5351 syms->erase (syms->begin () + i);
5352 else
5353 i += 1;
5354 }
5355
5356 return syms->size ();
5357 }
5358
5359 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5360 whose name and domain match NAME and DOMAIN respectively.
5361 If no match was found, then extend the search to "enclosing"
5362 routines (in other words, if we're inside a nested function,
5363 search the symbols defined inside the enclosing functions).
5364 If WILD_MATCH_P is nonzero, perform the naming matching in
5365 "wild" mode (see function "wild_match" for more info).
5366
5367 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5368
5369 static void
5370 ada_add_local_symbols (struct obstack *obstackp,
5371 const lookup_name_info &lookup_name,
5372 const struct block *block, domain_enum domain)
5373 {
5374 int block_depth = 0;
5375
5376 while (block != NULL)
5377 {
5378 block_depth += 1;
5379 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5380
5381 /* If we found a non-function match, assume that's the one. */
5382 if (is_nonfunction (defns_collected (obstackp, 0),
5383 num_defns_collected (obstackp)))
5384 return;
5385
5386 block = BLOCK_SUPERBLOCK (block);
5387 }
5388
5389 /* If no luck so far, try to find NAME as a local symbol in some lexically
5390 enclosing subprogram. */
5391 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5392 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5393 }
5394
5395 /* An object of this type is used as the user_data argument when
5396 calling the map_matching_symbols method. */
5397
5398 struct match_data
5399 {
5400 struct objfile *objfile;
5401 struct obstack *obstackp;
5402 struct symbol *arg_sym;
5403 int found_sym;
5404 };
5405
5406 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5407 to a list of symbols. DATA0 is a pointer to a struct match_data *
5408 containing the obstack that collects the symbol list, the file that SYM
5409 must come from, a flag indicating whether a non-argument symbol has
5410 been found in the current block, and the last argument symbol
5411 passed in SYM within the current block (if any). When SYM is null,
5412 marking the end of a block, the argument symbol is added if no
5413 other has been found. */
5414
5415 static int
5416 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5417 {
5418 struct match_data *data = (struct match_data *) data0;
5419
5420 if (sym == NULL)
5421 {
5422 if (!data->found_sym && data->arg_sym != NULL)
5423 add_defn_to_vec (data->obstackp,
5424 fixup_symbol_section (data->arg_sym, data->objfile),
5425 block);
5426 data->found_sym = 0;
5427 data->arg_sym = NULL;
5428 }
5429 else
5430 {
5431 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5432 return 0;
5433 else if (SYMBOL_IS_ARGUMENT (sym))
5434 data->arg_sym = sym;
5435 else
5436 {
5437 data->found_sym = 1;
5438 add_defn_to_vec (data->obstackp,
5439 fixup_symbol_section (sym, data->objfile),
5440 block);
5441 }
5442 }
5443 return 0;
5444 }
5445
5446 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5447 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5448 symbols to OBSTACKP. Return whether we found such symbols. */
5449
5450 static int
5451 ada_add_block_renamings (struct obstack *obstackp,
5452 const struct block *block,
5453 const lookup_name_info &lookup_name,
5454 domain_enum domain)
5455 {
5456 struct using_direct *renaming;
5457 int defns_mark = num_defns_collected (obstackp);
5458
5459 symbol_name_matcher_ftype *name_match
5460 = ada_get_symbol_name_matcher (lookup_name);
5461
5462 for (renaming = block_using (block);
5463 renaming != NULL;
5464 renaming = renaming->next)
5465 {
5466 const char *r_name;
5467
5468 /* Avoid infinite recursions: skip this renaming if we are actually
5469 already traversing it.
5470
5471 Currently, symbol lookup in Ada don't use the namespace machinery from
5472 C++/Fortran support: skip namespace imports that use them. */
5473 if (renaming->searched
5474 || (renaming->import_src != NULL
5475 && renaming->import_src[0] != '\0')
5476 || (renaming->import_dest != NULL
5477 && renaming->import_dest[0] != '\0'))
5478 continue;
5479 renaming->searched = 1;
5480
5481 /* TODO: here, we perform another name-based symbol lookup, which can
5482 pull its own multiple overloads. In theory, we should be able to do
5483 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5484 not a simple name. But in order to do this, we would need to enhance
5485 the DWARF reader to associate a symbol to this renaming, instead of a
5486 name. So, for now, we do something simpler: re-use the C++/Fortran
5487 namespace machinery. */
5488 r_name = (renaming->alias != NULL
5489 ? renaming->alias
5490 : renaming->declaration);
5491 if (name_match (r_name, lookup_name, NULL))
5492 {
5493 lookup_name_info decl_lookup_name (renaming->declaration,
5494 lookup_name.match_type ());
5495 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5496 1, NULL);
5497 }
5498 renaming->searched = 0;
5499 }
5500 return num_defns_collected (obstackp) != defns_mark;
5501 }
5502
5503 /* Implements compare_names, but only applying the comparision using
5504 the given CASING. */
5505
5506 static int
5507 compare_names_with_case (const char *string1, const char *string2,
5508 enum case_sensitivity casing)
5509 {
5510 while (*string1 != '\0' && *string2 != '\0')
5511 {
5512 char c1, c2;
5513
5514 if (isspace (*string1) || isspace (*string2))
5515 return strcmp_iw_ordered (string1, string2);
5516
5517 if (casing == case_sensitive_off)
5518 {
5519 c1 = tolower (*string1);
5520 c2 = tolower (*string2);
5521 }
5522 else
5523 {
5524 c1 = *string1;
5525 c2 = *string2;
5526 }
5527 if (c1 != c2)
5528 break;
5529
5530 string1 += 1;
5531 string2 += 1;
5532 }
5533
5534 switch (*string1)
5535 {
5536 case '(':
5537 return strcmp_iw_ordered (string1, string2);
5538 case '_':
5539 if (*string2 == '\0')
5540 {
5541 if (is_name_suffix (string1))
5542 return 0;
5543 else
5544 return 1;
5545 }
5546 /* FALLTHROUGH */
5547 default:
5548 if (*string2 == '(')
5549 return strcmp_iw_ordered (string1, string2);
5550 else
5551 {
5552 if (casing == case_sensitive_off)
5553 return tolower (*string1) - tolower (*string2);
5554 else
5555 return *string1 - *string2;
5556 }
5557 }
5558 }
5559
5560 /* Compare STRING1 to STRING2, with results as for strcmp.
5561 Compatible with strcmp_iw_ordered in that...
5562
5563 strcmp_iw_ordered (STRING1, STRING2) <= 0
5564
5565 ... implies...
5566
5567 compare_names (STRING1, STRING2) <= 0
5568
5569 (they may differ as to what symbols compare equal). */
5570
5571 static int
5572 compare_names (const char *string1, const char *string2)
5573 {
5574 int result;
5575
5576 /* Similar to what strcmp_iw_ordered does, we need to perform
5577 a case-insensitive comparison first, and only resort to
5578 a second, case-sensitive, comparison if the first one was
5579 not sufficient to differentiate the two strings. */
5580
5581 result = compare_names_with_case (string1, string2, case_sensitive_off);
5582 if (result == 0)
5583 result = compare_names_with_case (string1, string2, case_sensitive_on);
5584
5585 return result;
5586 }
5587
5588 /* Convenience function to get at the Ada encoded lookup name for
5589 LOOKUP_NAME, as a C string. */
5590
5591 static const char *
5592 ada_lookup_name (const lookup_name_info &lookup_name)
5593 {
5594 return lookup_name.ada ().lookup_name ().c_str ();
5595 }
5596
5597 /* Add to OBSTACKP all non-local symbols whose name and domain match
5598 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5599 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5600 symbols otherwise. */
5601
5602 static void
5603 add_nonlocal_symbols (struct obstack *obstackp,
5604 const lookup_name_info &lookup_name,
5605 domain_enum domain, int global)
5606 {
5607 struct objfile *objfile;
5608 struct compunit_symtab *cu;
5609 struct match_data data;
5610
5611 memset (&data, 0, sizeof data);
5612 data.obstackp = obstackp;
5613
5614 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5615
5616 ALL_OBJFILES (objfile)
5617 {
5618 data.objfile = objfile;
5619
5620 if (is_wild_match)
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5622 domain, global,
5623 aux_add_nonlocal_symbols, &data,
5624 symbol_name_match_type::WILD,
5625 NULL);
5626 else
5627 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5628 domain, global,
5629 aux_add_nonlocal_symbols, &data,
5630 symbol_name_match_type::FULL,
5631 compare_names);
5632
5633 ALL_OBJFILE_COMPUNITS (objfile, cu)
5634 {
5635 const struct block *global_block
5636 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5637
5638 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5639 domain))
5640 data.found_sym = 1;
5641 }
5642 }
5643
5644 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5645 {
5646 const char *name = ada_lookup_name (lookup_name);
5647 std::string name1 = std::string ("<_ada_") + name + '>';
5648
5649 ALL_OBJFILES (objfile)
5650 {
5651 data.objfile = objfile;
5652 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5653 domain, global,
5654 aux_add_nonlocal_symbols,
5655 &data,
5656 symbol_name_match_type::FULL,
5657 compare_names);
5658 }
5659 }
5660 }
5661
5662 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5663 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5664 returning the number of matches. Add these to OBSTACKP.
5665
5666 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5667 symbol match within the nest of blocks whose innermost member is BLOCK,
5668 is the one match returned (no other matches in that or
5669 enclosing blocks is returned). If there are any matches in or
5670 surrounding BLOCK, then these alone are returned.
5671
5672 Names prefixed with "standard__" are handled specially:
5673 "standard__" is first stripped off (by the lookup_name
5674 constructor), and only static and global symbols are searched.
5675
5676 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5677 to lookup global symbols. */
5678
5679 static void
5680 ada_add_all_symbols (struct obstack *obstackp,
5681 const struct block *block,
5682 const lookup_name_info &lookup_name,
5683 domain_enum domain,
5684 int full_search,
5685 int *made_global_lookup_p)
5686 {
5687 struct symbol *sym;
5688
5689 if (made_global_lookup_p)
5690 *made_global_lookup_p = 0;
5691
5692 /* Special case: If the user specifies a symbol name inside package
5693 Standard, do a non-wild matching of the symbol name without
5694 the "standard__" prefix. This was primarily introduced in order
5695 to allow the user to specifically access the standard exceptions
5696 using, for instance, Standard.Constraint_Error when Constraint_Error
5697 is ambiguous (due to the user defining its own Constraint_Error
5698 entity inside its program). */
5699 if (lookup_name.ada ().standard_p ())
5700 block = NULL;
5701
5702 /* Check the non-global symbols. If we have ANY match, then we're done. */
5703
5704 if (block != NULL)
5705 {
5706 if (full_search)
5707 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5708 else
5709 {
5710 /* In the !full_search case we're are being called by
5711 ada_iterate_over_symbols, and we don't want to search
5712 superblocks. */
5713 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5714 }
5715 if (num_defns_collected (obstackp) > 0 || !full_search)
5716 return;
5717 }
5718
5719 /* No non-global symbols found. Check our cache to see if we have
5720 already performed this search before. If we have, then return
5721 the same result. */
5722
5723 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5724 domain, &sym, &block))
5725 {
5726 if (sym != NULL)
5727 add_defn_to_vec (obstackp, sym, block);
5728 return;
5729 }
5730
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 1;
5733
5734 /* Search symbols from all global blocks. */
5735
5736 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5737
5738 /* Now add symbols from all per-file blocks if we've gotten no hits
5739 (not strictly correct, but perhaps better than an error). */
5740
5741 if (num_defns_collected (obstackp) == 0)
5742 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5743 }
5744
5745 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5746 is non-zero, enclosing scope and in global scopes, returning the number of
5747 matches.
5748 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5749 found and the blocks and symbol tables (if any) in which they were
5750 found.
5751
5752 When full_search is non-zero, any non-function/non-enumeral
5753 symbol match within the nest of blocks whose innermost member is BLOCK,
5754 is the one match returned (no other matches in that or
5755 enclosing blocks is returned). If there are any matches in or
5756 surrounding BLOCK, then these alone are returned.
5757
5758 Names prefixed with "standard__" are handled specially: "standard__"
5759 is first stripped off, and only static and global symbols are searched. */
5760
5761 static int
5762 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5763 const struct block *block,
5764 domain_enum domain,
5765 std::vector<struct block_symbol> *results,
5766 int full_search)
5767 {
5768 int syms_from_global_search;
5769 int ndefns;
5770 auto_obstack obstack;
5771
5772 ada_add_all_symbols (&obstack, block, lookup_name,
5773 domain, full_search, &syms_from_global_search);
5774
5775 ndefns = num_defns_collected (&obstack);
5776
5777 struct block_symbol *base = defns_collected (&obstack, 1);
5778 for (int i = 0; i < ndefns; ++i)
5779 results->push_back (base[i]);
5780
5781 ndefns = remove_extra_symbols (results);
5782
5783 if (ndefns == 0 && full_search && syms_from_global_search)
5784 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5785
5786 if (ndefns == 1 && full_search && syms_from_global_search)
5787 cache_symbol (ada_lookup_name (lookup_name), domain,
5788 (*results)[0].symbol, (*results)[0].block);
5789
5790 ndefns = remove_irrelevant_renamings (results, block);
5791
5792 return ndefns;
5793 }
5794
5795 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5796 in global scopes, returning the number of matches, and filling *RESULTS
5797 with (SYM,BLOCK) tuples.
5798
5799 See ada_lookup_symbol_list_worker for further details. */
5800
5801 int
5802 ada_lookup_symbol_list (const char *name, const struct block *block,
5803 domain_enum domain,
5804 std::vector<struct block_symbol> *results)
5805 {
5806 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5807 lookup_name_info lookup_name (name, name_match_type);
5808
5809 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5810 }
5811
5812 /* Implementation of the la_iterate_over_symbols method. */
5813
5814 static void
5815 ada_iterate_over_symbols
5816 (const struct block *block, const lookup_name_info &name,
5817 domain_enum domain,
5818 gdb::function_view<symbol_found_callback_ftype> callback)
5819 {
5820 int ndefs, i;
5821 std::vector<struct block_symbol> results;
5822
5823 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5824
5825 for (i = 0; i < ndefs; ++i)
5826 {
5827 if (!callback (&results[i]))
5828 break;
5829 }
5830 }
5831
5832 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5833 to 1, but choosing the first symbol found if there are multiple
5834 choices.
5835
5836 The result is stored in *INFO, which must be non-NULL.
5837 If no match is found, INFO->SYM is set to NULL. */
5838
5839 void
5840 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5841 domain_enum domain,
5842 struct block_symbol *info)
5843 {
5844 /* Since we already have an encoded name, wrap it in '<>' to force a
5845 verbatim match. Otherwise, if the name happens to not look like
5846 an encoded name (because it doesn't include a "__"),
5847 ada_lookup_name_info would re-encode/fold it again, and that
5848 would e.g., incorrectly lowercase object renaming names like
5849 "R28b" -> "r28b". */
5850 std::string verbatim = std::string ("<") + name + '>';
5851
5852 gdb_assert (info != NULL);
5853 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5854 }
5855
5856 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5857 scope and in global scopes, or NULL if none. NAME is folded and
5858 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5859 choosing the first symbol if there are multiple choices.
5860 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5861
5862 struct block_symbol
5863 ada_lookup_symbol (const char *name, const struct block *block0,
5864 domain_enum domain, int *is_a_field_of_this)
5865 {
5866 if (is_a_field_of_this != NULL)
5867 *is_a_field_of_this = 0;
5868
5869 std::vector<struct block_symbol> candidates;
5870 int n_candidates;
5871
5872 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5873
5874 if (n_candidates == 0)
5875 return {};
5876
5877 block_symbol info = candidates[0];
5878 info.symbol = fixup_symbol_section (info.symbol, NULL);
5879 return info;
5880 }
5881
5882 static struct block_symbol
5883 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5884 const char *name,
5885 const struct block *block,
5886 const domain_enum domain)
5887 {
5888 struct block_symbol sym;
5889
5890 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5891 if (sym.symbol != NULL)
5892 return sym;
5893
5894 /* If we haven't found a match at this point, try the primitive
5895 types. In other languages, this search is performed before
5896 searching for global symbols in order to short-circuit that
5897 global-symbol search if it happens that the name corresponds
5898 to a primitive type. But we cannot do the same in Ada, because
5899 it is perfectly legitimate for a program to declare a type which
5900 has the same name as a standard type. If looking up a type in
5901 that situation, we have traditionally ignored the primitive type
5902 in favor of user-defined types. This is why, unlike most other
5903 languages, we search the primitive types this late and only after
5904 having searched the global symbols without success. */
5905
5906 if (domain == VAR_DOMAIN)
5907 {
5908 struct gdbarch *gdbarch;
5909
5910 if (block == NULL)
5911 gdbarch = target_gdbarch ();
5912 else
5913 gdbarch = block_gdbarch (block);
5914 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5915 if (sym.symbol != NULL)
5916 return sym;
5917 }
5918
5919 return (struct block_symbol) {NULL, NULL};
5920 }
5921
5922
5923 /* True iff STR is a possible encoded suffix of a normal Ada name
5924 that is to be ignored for matching purposes. Suffixes of parallel
5925 names (e.g., XVE) are not included here. Currently, the possible suffixes
5926 are given by any of the regular expressions:
5927
5928 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5929 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5930 TKB [subprogram suffix for task bodies]
5931 _E[0-9]+[bs]$ [protected object entry suffixes]
5932 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5933
5934 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5935 match is performed. This sequence is used to differentiate homonyms,
5936 is an optional part of a valid name suffix. */
5937
5938 static int
5939 is_name_suffix (const char *str)
5940 {
5941 int k;
5942 const char *matching;
5943 const int len = strlen (str);
5944
5945 /* Skip optional leading __[0-9]+. */
5946
5947 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5948 {
5949 str += 3;
5950 while (isdigit (str[0]))
5951 str += 1;
5952 }
5953
5954 /* [.$][0-9]+ */
5955
5956 if (str[0] == '.' || str[0] == '$')
5957 {
5958 matching = str + 1;
5959 while (isdigit (matching[0]))
5960 matching += 1;
5961 if (matching[0] == '\0')
5962 return 1;
5963 }
5964
5965 /* ___[0-9]+ */
5966
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5968 {
5969 matching = str + 3;
5970 while (isdigit (matching[0]))
5971 matching += 1;
5972 if (matching[0] == '\0')
5973 return 1;
5974 }
5975
5976 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5977
5978 if (strcmp (str, "TKB") == 0)
5979 return 1;
5980
5981 #if 0
5982 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5983 with a N at the end. Unfortunately, the compiler uses the same
5984 convention for other internal types it creates. So treating
5985 all entity names that end with an "N" as a name suffix causes
5986 some regressions. For instance, consider the case of an enumerated
5987 type. To support the 'Image attribute, it creates an array whose
5988 name ends with N.
5989 Having a single character like this as a suffix carrying some
5990 information is a bit risky. Perhaps we should change the encoding
5991 to be something like "_N" instead. In the meantime, do not do
5992 the following check. */
5993 /* Protected Object Subprograms */
5994 if (len == 1 && str [0] == 'N')
5995 return 1;
5996 #endif
5997
5998 /* _E[0-9]+[bs]$ */
5999 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6000 {
6001 matching = str + 3;
6002 while (isdigit (matching[0]))
6003 matching += 1;
6004 if ((matching[0] == 'b' || matching[0] == 's')
6005 && matching [1] == '\0')
6006 return 1;
6007 }
6008
6009 /* ??? We should not modify STR directly, as we are doing below. This
6010 is fine in this case, but may become problematic later if we find
6011 that this alternative did not work, and want to try matching
6012 another one from the begining of STR. Since we modified it, we
6013 won't be able to find the begining of the string anymore! */
6014 if (str[0] == 'X')
6015 {
6016 str += 1;
6017 while (str[0] != '_' && str[0] != '\0')
6018 {
6019 if (str[0] != 'n' && str[0] != 'b')
6020 return 0;
6021 str += 1;
6022 }
6023 }
6024
6025 if (str[0] == '\000')
6026 return 1;
6027
6028 if (str[0] == '_')
6029 {
6030 if (str[1] != '_' || str[2] == '\000')
6031 return 0;
6032 if (str[2] == '_')
6033 {
6034 if (strcmp (str + 3, "JM") == 0)
6035 return 1;
6036 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6037 the LJM suffix in favor of the JM one. But we will
6038 still accept LJM as a valid suffix for a reasonable
6039 amount of time, just to allow ourselves to debug programs
6040 compiled using an older version of GNAT. */
6041 if (strcmp (str + 3, "LJM") == 0)
6042 return 1;
6043 if (str[3] != 'X')
6044 return 0;
6045 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6046 || str[4] == 'U' || str[4] == 'P')
6047 return 1;
6048 if (str[4] == 'R' && str[5] != 'T')
6049 return 1;
6050 return 0;
6051 }
6052 if (!isdigit (str[2]))
6053 return 0;
6054 for (k = 3; str[k] != '\0'; k += 1)
6055 if (!isdigit (str[k]) && str[k] != '_')
6056 return 0;
6057 return 1;
6058 }
6059 if (str[0] == '$' && isdigit (str[1]))
6060 {
6061 for (k = 2; str[k] != '\0'; k += 1)
6062 if (!isdigit (str[k]) && str[k] != '_')
6063 return 0;
6064 return 1;
6065 }
6066 return 0;
6067 }
6068
6069 /* Return non-zero if the string starting at NAME and ending before
6070 NAME_END contains no capital letters. */
6071
6072 static int
6073 is_valid_name_for_wild_match (const char *name0)
6074 {
6075 const char *decoded_name = ada_decode (name0);
6076 int i;
6077
6078 /* If the decoded name starts with an angle bracket, it means that
6079 NAME0 does not follow the GNAT encoding format. It should then
6080 not be allowed as a possible wild match. */
6081 if (decoded_name[0] == '<')
6082 return 0;
6083
6084 for (i=0; decoded_name[i] != '\0'; i++)
6085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6086 return 0;
6087
6088 return 1;
6089 }
6090
6091 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6092 that could start a simple name. Assumes that *NAMEP points into
6093 the string beginning at NAME0. */
6094
6095 static int
6096 advance_wild_match (const char **namep, const char *name0, int target0)
6097 {
6098 const char *name = *namep;
6099
6100 while (1)
6101 {
6102 int t0, t1;
6103
6104 t0 = *name;
6105 if (t0 == '_')
6106 {
6107 t1 = name[1];
6108 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6109 {
6110 name += 1;
6111 if (name == name0 + 5 && startswith (name0, "_ada"))
6112 break;
6113 else
6114 name += 1;
6115 }
6116 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6117 || name[2] == target0))
6118 {
6119 name += 2;
6120 break;
6121 }
6122 else
6123 return 0;
6124 }
6125 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6126 name += 1;
6127 else
6128 return 0;
6129 }
6130
6131 *namep = name;
6132 return 1;
6133 }
6134
6135 /* Return true iff NAME encodes a name of the form prefix.PATN.
6136 Ignores any informational suffixes of NAME (i.e., for which
6137 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6138 simple name. */
6139
6140 static bool
6141 wild_match (const char *name, const char *patn)
6142 {
6143 const char *p;
6144 const char *name0 = name;
6145
6146 while (1)
6147 {
6148 const char *match = name;
6149
6150 if (*name == *patn)
6151 {
6152 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6153 if (*p != *name)
6154 break;
6155 if (*p == '\0' && is_name_suffix (name))
6156 return match == name0 || is_valid_name_for_wild_match (name0);
6157
6158 if (name[-1] == '_')
6159 name -= 1;
6160 }
6161 if (!advance_wild_match (&name, name0, *patn))
6162 return false;
6163 }
6164 }
6165
6166 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6167 any trailing suffixes that encode debugging information or leading
6168 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6169 information that is ignored). */
6170
6171 static bool
6172 full_match (const char *sym_name, const char *search_name)
6173 {
6174 size_t search_name_len = strlen (search_name);
6175
6176 if (strncmp (sym_name, search_name, search_name_len) == 0
6177 && is_name_suffix (sym_name + search_name_len))
6178 return true;
6179
6180 if (startswith (sym_name, "_ada_")
6181 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6182 && is_name_suffix (sym_name + search_name_len + 5))
6183 return true;
6184
6185 return false;
6186 }
6187
6188 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6189 *defn_symbols, updating the list of symbols in OBSTACKP (if
6190 necessary). OBJFILE is the section containing BLOCK. */
6191
6192 static void
6193 ada_add_block_symbols (struct obstack *obstackp,
6194 const struct block *block,
6195 const lookup_name_info &lookup_name,
6196 domain_enum domain, struct objfile *objfile)
6197 {
6198 struct block_iterator iter;
6199 /* A matching argument symbol, if any. */
6200 struct symbol *arg_sym;
6201 /* Set true when we find a matching non-argument symbol. */
6202 int found_sym;
6203 struct symbol *sym;
6204
6205 arg_sym = NULL;
6206 found_sym = 0;
6207 for (sym = block_iter_match_first (block, lookup_name, &iter);
6208 sym != NULL;
6209 sym = block_iter_match_next (lookup_name, &iter))
6210 {
6211 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6212 SYMBOL_DOMAIN (sym), domain))
6213 {
6214 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6215 {
6216 if (SYMBOL_IS_ARGUMENT (sym))
6217 arg_sym = sym;
6218 else
6219 {
6220 found_sym = 1;
6221 add_defn_to_vec (obstackp,
6222 fixup_symbol_section (sym, objfile),
6223 block);
6224 }
6225 }
6226 }
6227 }
6228
6229 /* Handle renamings. */
6230
6231 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6232 found_sym = 1;
6233
6234 if (!found_sym && arg_sym != NULL)
6235 {
6236 add_defn_to_vec (obstackp,
6237 fixup_symbol_section (arg_sym, objfile),
6238 block);
6239 }
6240
6241 if (!lookup_name.ada ().wild_match_p ())
6242 {
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6246 const char *name = ada_lookup_name.c_str ();
6247 size_t name_len = ada_lookup_name.size ();
6248
6249 ALL_BLOCK_SYMBOLS (block, iter, sym)
6250 {
6251 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6252 SYMBOL_DOMAIN (sym), domain))
6253 {
6254 int cmp;
6255
6256 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6257 if (cmp == 0)
6258 {
6259 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6260 if (cmp == 0)
6261 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6262 name_len);
6263 }
6264
6265 if (cmp == 0
6266 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6267 {
6268 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6269 {
6270 if (SYMBOL_IS_ARGUMENT (sym))
6271 arg_sym = sym;
6272 else
6273 {
6274 found_sym = 1;
6275 add_defn_to_vec (obstackp,
6276 fixup_symbol_section (sym, objfile),
6277 block);
6278 }
6279 }
6280 }
6281 }
6282 }
6283
6284 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6285 They aren't parameters, right? */
6286 if (!found_sym && arg_sym != NULL)
6287 {
6288 add_defn_to_vec (obstackp,
6289 fixup_symbol_section (arg_sym, objfile),
6290 block);
6291 }
6292 }
6293 }
6294 \f
6295
6296 /* Symbol Completion */
6297
6298 /* See symtab.h. */
6299
6300 bool
6301 ada_lookup_name_info::matches
6302 (const char *sym_name,
6303 symbol_name_match_type match_type,
6304 completion_match_result *comp_match_res) const
6305 {
6306 bool match = false;
6307 const char *text = m_encoded_name.c_str ();
6308 size_t text_len = m_encoded_name.size ();
6309
6310 /* First, test against the fully qualified name of the symbol. */
6311
6312 if (strncmp (sym_name, text, text_len) == 0)
6313 match = true;
6314
6315 if (match && !m_encoded_p)
6316 {
6317 /* One needed check before declaring a positive match is to verify
6318 that iff we are doing a verbatim match, the decoded version
6319 of the symbol name starts with '<'. Otherwise, this symbol name
6320 is not a suitable completion. */
6321 const char *sym_name_copy = sym_name;
6322 bool has_angle_bracket;
6323
6324 sym_name = ada_decode (sym_name);
6325 has_angle_bracket = (sym_name[0] == '<');
6326 match = (has_angle_bracket == m_verbatim_p);
6327 sym_name = sym_name_copy;
6328 }
6329
6330 if (match && !m_verbatim_p)
6331 {
6332 /* When doing non-verbatim match, another check that needs to
6333 be done is to verify that the potentially matching symbol name
6334 does not include capital letters, because the ada-mode would
6335 not be able to understand these symbol names without the
6336 angle bracket notation. */
6337 const char *tmp;
6338
6339 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6340 if (*tmp != '\0')
6341 match = false;
6342 }
6343
6344 /* Second: Try wild matching... */
6345
6346 if (!match && m_wild_match_p)
6347 {
6348 /* Since we are doing wild matching, this means that TEXT
6349 may represent an unqualified symbol name. We therefore must
6350 also compare TEXT against the unqualified name of the symbol. */
6351 sym_name = ada_unqualified_name (ada_decode (sym_name));
6352
6353 if (strncmp (sym_name, text, text_len) == 0)
6354 match = true;
6355 }
6356
6357 /* Finally: If we found a match, prepare the result to return. */
6358
6359 if (!match)
6360 return false;
6361
6362 if (comp_match_res != NULL)
6363 {
6364 std::string &match_str = comp_match_res->match.storage ();
6365
6366 if (!m_encoded_p)
6367 match_str = ada_decode (sym_name);
6368 else
6369 {
6370 if (m_verbatim_p)
6371 match_str = add_angle_brackets (sym_name);
6372 else
6373 match_str = sym_name;
6374
6375 }
6376
6377 comp_match_res->set_match (match_str.c_str ());
6378 }
6379
6380 return true;
6381 }
6382
6383 /* Add the list of possible symbol names completing TEXT to TRACKER.
6384 WORD is the entire command on which completion is made. */
6385
6386 static void
6387 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6388 complete_symbol_mode mode,
6389 symbol_name_match_type name_match_type,
6390 const char *text, const char *word,
6391 enum type_code code)
6392 {
6393 struct symbol *sym;
6394 struct compunit_symtab *s;
6395 struct minimal_symbol *msymbol;
6396 struct objfile *objfile;
6397 const struct block *b, *surrounding_static_block = 0;
6398 struct block_iterator iter;
6399
6400 gdb_assert (code == TYPE_CODE_UNDEF);
6401
6402 lookup_name_info lookup_name (text, name_match_type, true);
6403
6404 /* First, look at the partial symtab symbols. */
6405 expand_symtabs_matching (NULL,
6406 lookup_name,
6407 NULL,
6408 NULL,
6409 ALL_DOMAIN);
6410
6411 /* At this point scan through the misc symbol vectors and add each
6412 symbol you find to the list. Eventually we want to ignore
6413 anything that isn't a text symbol (everything else will be
6414 handled by the psymtab code above). */
6415
6416 ALL_MSYMBOLS (objfile, msymbol)
6417 {
6418 QUIT;
6419
6420 if (completion_skip_symbol (mode, msymbol))
6421 continue;
6422
6423 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6424
6425 /* Ada minimal symbols won't have their language set to Ada. If
6426 we let completion_list_add_name compare using the
6427 default/C-like matcher, then when completing e.g., symbols in a
6428 package named "pck", we'd match internal Ada symbols like
6429 "pckS", which are invalid in an Ada expression, unless you wrap
6430 them in '<' '>' to request a verbatim match.
6431
6432 Unfortunately, some Ada encoded names successfully demangle as
6433 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6434 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6435 with the wrong language set. Paper over that issue here. */
6436 if (symbol_language == language_auto
6437 || symbol_language == language_cplus)
6438 symbol_language = language_ada;
6439
6440 completion_list_add_name (tracker,
6441 symbol_language,
6442 MSYMBOL_LINKAGE_NAME (msymbol),
6443 lookup_name, text, word);
6444 }
6445
6446 /* Search upwards from currently selected frame (so that we can
6447 complete on local vars. */
6448
6449 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6450 {
6451 if (!BLOCK_SUPERBLOCK (b))
6452 surrounding_static_block = b; /* For elmin of dups */
6453
6454 ALL_BLOCK_SYMBOLS (b, iter, sym)
6455 {
6456 if (completion_skip_symbol (mode, sym))
6457 continue;
6458
6459 completion_list_add_name (tracker,
6460 SYMBOL_LANGUAGE (sym),
6461 SYMBOL_LINKAGE_NAME (sym),
6462 lookup_name, text, word);
6463 }
6464 }
6465
6466 /* Go through the symtabs and check the externs and statics for
6467 symbols which match. */
6468
6469 ALL_COMPUNITS (objfile, s)
6470 {
6471 QUIT;
6472 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6474 {
6475 if (completion_skip_symbol (mode, sym))
6476 continue;
6477
6478 completion_list_add_name (tracker,
6479 SYMBOL_LANGUAGE (sym),
6480 SYMBOL_LINKAGE_NAME (sym),
6481 lookup_name, text, word);
6482 }
6483 }
6484
6485 ALL_COMPUNITS (objfile, s)
6486 {
6487 QUIT;
6488 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6489 /* Don't do this block twice. */
6490 if (b == surrounding_static_block)
6491 continue;
6492 ALL_BLOCK_SYMBOLS (b, iter, sym)
6493 {
6494 if (completion_skip_symbol (mode, sym))
6495 continue;
6496
6497 completion_list_add_name (tracker,
6498 SYMBOL_LANGUAGE (sym),
6499 SYMBOL_LINKAGE_NAME (sym),
6500 lookup_name, text, word);
6501 }
6502 }
6503 }
6504
6505 /* Field Access */
6506
6507 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6508 for tagged types. */
6509
6510 static int
6511 ada_is_dispatch_table_ptr_type (struct type *type)
6512 {
6513 const char *name;
6514
6515 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6516 return 0;
6517
6518 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6519 if (name == NULL)
6520 return 0;
6521
6522 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6523 }
6524
6525 /* Return non-zero if TYPE is an interface tag. */
6526
6527 static int
6528 ada_is_interface_tag (struct type *type)
6529 {
6530 const char *name = TYPE_NAME (type);
6531
6532 if (name == NULL)
6533 return 0;
6534
6535 return (strcmp (name, "ada__tags__interface_tag") == 0);
6536 }
6537
6538 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6539 to be invisible to users. */
6540
6541 int
6542 ada_is_ignored_field (struct type *type, int field_num)
6543 {
6544 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6545 return 1;
6546
6547 /* Check the name of that field. */
6548 {
6549 const char *name = TYPE_FIELD_NAME (type, field_num);
6550
6551 /* Anonymous field names should not be printed.
6552 brobecker/2007-02-20: I don't think this can actually happen
6553 but we don't want to print the value of annonymous fields anyway. */
6554 if (name == NULL)
6555 return 1;
6556
6557 /* Normally, fields whose name start with an underscore ("_")
6558 are fields that have been internally generated by the compiler,
6559 and thus should not be printed. The "_parent" field is special,
6560 however: This is a field internally generated by the compiler
6561 for tagged types, and it contains the components inherited from
6562 the parent type. This field should not be printed as is, but
6563 should not be ignored either. */
6564 if (name[0] == '_' && !startswith (name, "_parent"))
6565 return 1;
6566 }
6567
6568 /* If this is the dispatch table of a tagged type or an interface tag,
6569 then ignore. */
6570 if (ada_is_tagged_type (type, 1)
6571 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6572 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6573 return 1;
6574
6575 /* Not a special field, so it should not be ignored. */
6576 return 0;
6577 }
6578
6579 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6580 pointer or reference type whose ultimate target has a tag field. */
6581
6582 int
6583 ada_is_tagged_type (struct type *type, int refok)
6584 {
6585 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6586 }
6587
6588 /* True iff TYPE represents the type of X'Tag */
6589
6590 int
6591 ada_is_tag_type (struct type *type)
6592 {
6593 type = ada_check_typedef (type);
6594
6595 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6596 return 0;
6597 else
6598 {
6599 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6600
6601 return (name != NULL
6602 && strcmp (name, "ada__tags__dispatch_table") == 0);
6603 }
6604 }
6605
6606 /* The type of the tag on VAL. */
6607
6608 struct type *
6609 ada_tag_type (struct value *val)
6610 {
6611 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6612 }
6613
6614 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6615 retired at Ada 05). */
6616
6617 static int
6618 is_ada95_tag (struct value *tag)
6619 {
6620 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6621 }
6622
6623 /* The value of the tag on VAL. */
6624
6625 struct value *
6626 ada_value_tag (struct value *val)
6627 {
6628 return ada_value_struct_elt (val, "_tag", 0);
6629 }
6630
6631 /* The value of the tag on the object of type TYPE whose contents are
6632 saved at VALADDR, if it is non-null, or is at memory address
6633 ADDRESS. */
6634
6635 static struct value *
6636 value_tag_from_contents_and_address (struct type *type,
6637 const gdb_byte *valaddr,
6638 CORE_ADDR address)
6639 {
6640 int tag_byte_offset;
6641 struct type *tag_type;
6642
6643 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6644 NULL, NULL, NULL))
6645 {
6646 const gdb_byte *valaddr1 = ((valaddr == NULL)
6647 ? NULL
6648 : valaddr + tag_byte_offset);
6649 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6650
6651 return value_from_contents_and_address (tag_type, valaddr1, address1);
6652 }
6653 return NULL;
6654 }
6655
6656 static struct type *
6657 type_from_tag (struct value *tag)
6658 {
6659 const char *type_name = ada_tag_name (tag);
6660
6661 if (type_name != NULL)
6662 return ada_find_any_type (ada_encode (type_name));
6663 return NULL;
6664 }
6665
6666 /* Given a value OBJ of a tagged type, return a value of this
6667 type at the base address of the object. The base address, as
6668 defined in Ada.Tags, it is the address of the primary tag of
6669 the object, and therefore where the field values of its full
6670 view can be fetched. */
6671
6672 struct value *
6673 ada_tag_value_at_base_address (struct value *obj)
6674 {
6675 struct value *val;
6676 LONGEST offset_to_top = 0;
6677 struct type *ptr_type, *obj_type;
6678 struct value *tag;
6679 CORE_ADDR base_address;
6680
6681 obj_type = value_type (obj);
6682
6683 /* It is the responsability of the caller to deref pointers. */
6684
6685 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6686 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6687 return obj;
6688
6689 tag = ada_value_tag (obj);
6690 if (!tag)
6691 return obj;
6692
6693 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6694
6695 if (is_ada95_tag (tag))
6696 return obj;
6697
6698 ptr_type = language_lookup_primitive_type
6699 (language_def (language_ada), target_gdbarch(), "storage_offset");
6700 ptr_type = lookup_pointer_type (ptr_type);
6701 val = value_cast (ptr_type, tag);
6702 if (!val)
6703 return obj;
6704
6705 /* It is perfectly possible that an exception be raised while
6706 trying to determine the base address, just like for the tag;
6707 see ada_tag_name for more details. We do not print the error
6708 message for the same reason. */
6709
6710 TRY
6711 {
6712 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6713 }
6714
6715 CATCH (e, RETURN_MASK_ERROR)
6716 {
6717 return obj;
6718 }
6719 END_CATCH
6720
6721 /* If offset is null, nothing to do. */
6722
6723 if (offset_to_top == 0)
6724 return obj;
6725
6726 /* -1 is a special case in Ada.Tags; however, what should be done
6727 is not quite clear from the documentation. So do nothing for
6728 now. */
6729
6730 if (offset_to_top == -1)
6731 return obj;
6732
6733 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6734 from the base address. This was however incompatible with
6735 C++ dispatch table: C++ uses a *negative* value to *add*
6736 to the base address. Ada's convention has therefore been
6737 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6738 use the same convention. Here, we support both cases by
6739 checking the sign of OFFSET_TO_TOP. */
6740
6741 if (offset_to_top > 0)
6742 offset_to_top = -offset_to_top;
6743
6744 base_address = value_address (obj) + offset_to_top;
6745 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6746
6747 /* Make sure that we have a proper tag at the new address.
6748 Otherwise, offset_to_top is bogus (which can happen when
6749 the object is not initialized yet). */
6750
6751 if (!tag)
6752 return obj;
6753
6754 obj_type = type_from_tag (tag);
6755
6756 if (!obj_type)
6757 return obj;
6758
6759 return value_from_contents_and_address (obj_type, NULL, base_address);
6760 }
6761
6762 /* Return the "ada__tags__type_specific_data" type. */
6763
6764 static struct type *
6765 ada_get_tsd_type (struct inferior *inf)
6766 {
6767 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6768
6769 if (data->tsd_type == 0)
6770 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6771 return data->tsd_type;
6772 }
6773
6774 /* Return the TSD (type-specific data) associated to the given TAG.
6775 TAG is assumed to be the tag of a tagged-type entity.
6776
6777 May return NULL if we are unable to get the TSD. */
6778
6779 static struct value *
6780 ada_get_tsd_from_tag (struct value *tag)
6781 {
6782 struct value *val;
6783 struct type *type;
6784
6785 /* First option: The TSD is simply stored as a field of our TAG.
6786 Only older versions of GNAT would use this format, but we have
6787 to test it first, because there are no visible markers for
6788 the current approach except the absence of that field. */
6789
6790 val = ada_value_struct_elt (tag, "tsd", 1);
6791 if (val)
6792 return val;
6793
6794 /* Try the second representation for the dispatch table (in which
6795 there is no explicit 'tsd' field in the referent of the tag pointer,
6796 and instead the tsd pointer is stored just before the dispatch
6797 table. */
6798
6799 type = ada_get_tsd_type (current_inferior());
6800 if (type == NULL)
6801 return NULL;
6802 type = lookup_pointer_type (lookup_pointer_type (type));
6803 val = value_cast (type, tag);
6804 if (val == NULL)
6805 return NULL;
6806 return value_ind (value_ptradd (val, -1));
6807 }
6808
6809 /* Given the TSD of a tag (type-specific data), return a string
6810 containing the name of the associated type.
6811
6812 The returned value is good until the next call. May return NULL
6813 if we are unable to determine the tag name. */
6814
6815 static char *
6816 ada_tag_name_from_tsd (struct value *tsd)
6817 {
6818 static char name[1024];
6819 char *p;
6820 struct value *val;
6821
6822 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6823 if (val == NULL)
6824 return NULL;
6825 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6826 for (p = name; *p != '\0'; p += 1)
6827 if (isalpha (*p))
6828 *p = tolower (*p);
6829 return name;
6830 }
6831
6832 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6833 a C string.
6834
6835 Return NULL if the TAG is not an Ada tag, or if we were unable to
6836 determine the name of that tag. The result is good until the next
6837 call. */
6838
6839 const char *
6840 ada_tag_name (struct value *tag)
6841 {
6842 char *name = NULL;
6843
6844 if (!ada_is_tag_type (value_type (tag)))
6845 return NULL;
6846
6847 /* It is perfectly possible that an exception be raised while trying
6848 to determine the TAG's name, even under normal circumstances:
6849 The associated variable may be uninitialized or corrupted, for
6850 instance. We do not let any exception propagate past this point.
6851 instead we return NULL.
6852
6853 We also do not print the error message either (which often is very
6854 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6855 the caller print a more meaningful message if necessary. */
6856 TRY
6857 {
6858 struct value *tsd = ada_get_tsd_from_tag (tag);
6859
6860 if (tsd != NULL)
6861 name = ada_tag_name_from_tsd (tsd);
6862 }
6863 CATCH (e, RETURN_MASK_ERROR)
6864 {
6865 }
6866 END_CATCH
6867
6868 return name;
6869 }
6870
6871 /* The parent type of TYPE, or NULL if none. */
6872
6873 struct type *
6874 ada_parent_type (struct type *type)
6875 {
6876 int i;
6877
6878 type = ada_check_typedef (type);
6879
6880 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6881 return NULL;
6882
6883 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6884 if (ada_is_parent_field (type, i))
6885 {
6886 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6887
6888 /* If the _parent field is a pointer, then dereference it. */
6889 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6890 parent_type = TYPE_TARGET_TYPE (parent_type);
6891 /* If there is a parallel XVS type, get the actual base type. */
6892 parent_type = ada_get_base_type (parent_type);
6893
6894 return ada_check_typedef (parent_type);
6895 }
6896
6897 return NULL;
6898 }
6899
6900 /* True iff field number FIELD_NUM of structure type TYPE contains the
6901 parent-type (inherited) fields of a derived type. Assumes TYPE is
6902 a structure type with at least FIELD_NUM+1 fields. */
6903
6904 int
6905 ada_is_parent_field (struct type *type, int field_num)
6906 {
6907 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6908
6909 return (name != NULL
6910 && (startswith (name, "PARENT")
6911 || startswith (name, "_parent")));
6912 }
6913
6914 /* True iff field number FIELD_NUM of structure type TYPE is a
6915 transparent wrapper field (which should be silently traversed when doing
6916 field selection and flattened when printing). Assumes TYPE is a
6917 structure type with at least FIELD_NUM+1 fields. Such fields are always
6918 structures. */
6919
6920 int
6921 ada_is_wrapper_field (struct type *type, int field_num)
6922 {
6923 const char *name = TYPE_FIELD_NAME (type, field_num);
6924
6925 if (name != NULL && strcmp (name, "RETVAL") == 0)
6926 {
6927 /* This happens in functions with "out" or "in out" parameters
6928 which are passed by copy. For such functions, GNAT describes
6929 the function's return type as being a struct where the return
6930 value is in a field called RETVAL, and where the other "out"
6931 or "in out" parameters are fields of that struct. This is not
6932 a wrapper. */
6933 return 0;
6934 }
6935
6936 return (name != NULL
6937 && (startswith (name, "PARENT")
6938 || strcmp (name, "REP") == 0
6939 || startswith (name, "_parent")
6940 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6941 }
6942
6943 /* True iff field number FIELD_NUM of structure or union type TYPE
6944 is a variant wrapper. Assumes TYPE is a structure type with at least
6945 FIELD_NUM+1 fields. */
6946
6947 int
6948 ada_is_variant_part (struct type *type, int field_num)
6949 {
6950 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6951
6952 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6953 || (is_dynamic_field (type, field_num)
6954 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6955 == TYPE_CODE_UNION)));
6956 }
6957
6958 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6959 whose discriminants are contained in the record type OUTER_TYPE,
6960 returns the type of the controlling discriminant for the variant.
6961 May return NULL if the type could not be found. */
6962
6963 struct type *
6964 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6965 {
6966 const char *name = ada_variant_discrim_name (var_type);
6967
6968 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6969 }
6970
6971 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6972 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6973 represents a 'when others' clause; otherwise 0. */
6974
6975 int
6976 ada_is_others_clause (struct type *type, int field_num)
6977 {
6978 const char *name = TYPE_FIELD_NAME (type, field_num);
6979
6980 return (name != NULL && name[0] == 'O');
6981 }
6982
6983 /* Assuming that TYPE0 is the type of the variant part of a record,
6984 returns the name of the discriminant controlling the variant.
6985 The value is valid until the next call to ada_variant_discrim_name. */
6986
6987 const char *
6988 ada_variant_discrim_name (struct type *type0)
6989 {
6990 static char *result = NULL;
6991 static size_t result_len = 0;
6992 struct type *type;
6993 const char *name;
6994 const char *discrim_end;
6995 const char *discrim_start;
6996
6997 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6998 type = TYPE_TARGET_TYPE (type0);
6999 else
7000 type = type0;
7001
7002 name = ada_type_name (type);
7003
7004 if (name == NULL || name[0] == '\000')
7005 return "";
7006
7007 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7008 discrim_end -= 1)
7009 {
7010 if (startswith (discrim_end, "___XVN"))
7011 break;
7012 }
7013 if (discrim_end == name)
7014 return "";
7015
7016 for (discrim_start = discrim_end; discrim_start != name + 3;
7017 discrim_start -= 1)
7018 {
7019 if (discrim_start == name + 1)
7020 return "";
7021 if ((discrim_start > name + 3
7022 && startswith (discrim_start - 3, "___"))
7023 || discrim_start[-1] == '.')
7024 break;
7025 }
7026
7027 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7028 strncpy (result, discrim_start, discrim_end - discrim_start);
7029 result[discrim_end - discrim_start] = '\0';
7030 return result;
7031 }
7032
7033 /* Scan STR for a subtype-encoded number, beginning at position K.
7034 Put the position of the character just past the number scanned in
7035 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7036 Return 1 if there was a valid number at the given position, and 0
7037 otherwise. A "subtype-encoded" number consists of the absolute value
7038 in decimal, followed by the letter 'm' to indicate a negative number.
7039 Assumes 0m does not occur. */
7040
7041 int
7042 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7043 {
7044 ULONGEST RU;
7045
7046 if (!isdigit (str[k]))
7047 return 0;
7048
7049 /* Do it the hard way so as not to make any assumption about
7050 the relationship of unsigned long (%lu scan format code) and
7051 LONGEST. */
7052 RU = 0;
7053 while (isdigit (str[k]))
7054 {
7055 RU = RU * 10 + (str[k] - '0');
7056 k += 1;
7057 }
7058
7059 if (str[k] == 'm')
7060 {
7061 if (R != NULL)
7062 *R = (-(LONGEST) (RU - 1)) - 1;
7063 k += 1;
7064 }
7065 else if (R != NULL)
7066 *R = (LONGEST) RU;
7067
7068 /* NOTE on the above: Technically, C does not say what the results of
7069 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7070 number representable as a LONGEST (although either would probably work
7071 in most implementations). When RU>0, the locution in the then branch
7072 above is always equivalent to the negative of RU. */
7073
7074 if (new_k != NULL)
7075 *new_k = k;
7076 return 1;
7077 }
7078
7079 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7080 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7081 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7082
7083 int
7084 ada_in_variant (LONGEST val, struct type *type, int field_num)
7085 {
7086 const char *name = TYPE_FIELD_NAME (type, field_num);
7087 int p;
7088
7089 p = 0;
7090 while (1)
7091 {
7092 switch (name[p])
7093 {
7094 case '\0':
7095 return 0;
7096 case 'S':
7097 {
7098 LONGEST W;
7099
7100 if (!ada_scan_number (name, p + 1, &W, &p))
7101 return 0;
7102 if (val == W)
7103 return 1;
7104 break;
7105 }
7106 case 'R':
7107 {
7108 LONGEST L, U;
7109
7110 if (!ada_scan_number (name, p + 1, &L, &p)
7111 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7112 return 0;
7113 if (val >= L && val <= U)
7114 return 1;
7115 break;
7116 }
7117 case 'O':
7118 return 1;
7119 default:
7120 return 0;
7121 }
7122 }
7123 }
7124
7125 /* FIXME: Lots of redundancy below. Try to consolidate. */
7126
7127 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7128 ARG_TYPE, extract and return the value of one of its (non-static)
7129 fields. FIELDNO says which field. Differs from value_primitive_field
7130 only in that it can handle packed values of arbitrary type. */
7131
7132 static struct value *
7133 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7134 struct type *arg_type)
7135 {
7136 struct type *type;
7137
7138 arg_type = ada_check_typedef (arg_type);
7139 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7140
7141 /* Handle packed fields. */
7142
7143 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7144 {
7145 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7146 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7147
7148 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7149 offset + bit_pos / 8,
7150 bit_pos % 8, bit_size, type);
7151 }
7152 else
7153 return value_primitive_field (arg1, offset, fieldno, arg_type);
7154 }
7155
7156 /* Find field with name NAME in object of type TYPE. If found,
7157 set the following for each argument that is non-null:
7158 - *FIELD_TYPE_P to the field's type;
7159 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7160 an object of that type;
7161 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7162 - *BIT_SIZE_P to its size in bits if the field is packed, and
7163 0 otherwise;
7164 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7165 fields up to but not including the desired field, or by the total
7166 number of fields if not found. A NULL value of NAME never
7167 matches; the function just counts visible fields in this case.
7168
7169 Notice that we need to handle when a tagged record hierarchy
7170 has some components with the same name, like in this scenario:
7171
7172 type Top_T is tagged record
7173 N : Integer := 1;
7174 U : Integer := 974;
7175 A : Integer := 48;
7176 end record;
7177
7178 type Middle_T is new Top.Top_T with record
7179 N : Character := 'a';
7180 C : Integer := 3;
7181 end record;
7182
7183 type Bottom_T is new Middle.Middle_T with record
7184 N : Float := 4.0;
7185 C : Character := '5';
7186 X : Integer := 6;
7187 A : Character := 'J';
7188 end record;
7189
7190 Let's say we now have a variable declared and initialized as follow:
7191
7192 TC : Top_A := new Bottom_T;
7193
7194 And then we use this variable to call this function
7195
7196 procedure Assign (Obj: in out Top_T; TV : Integer);
7197
7198 as follow:
7199
7200 Assign (Top_T (B), 12);
7201
7202 Now, we're in the debugger, and we're inside that procedure
7203 then and we want to print the value of obj.c:
7204
7205 Usually, the tagged record or one of the parent type owns the
7206 component to print and there's no issue but in this particular
7207 case, what does it mean to ask for Obj.C? Since the actual
7208 type for object is type Bottom_T, it could mean two things: type
7209 component C from the Middle_T view, but also component C from
7210 Bottom_T. So in that "undefined" case, when the component is
7211 not found in the non-resolved type (which includes all the
7212 components of the parent type), then resolve it and see if we
7213 get better luck once expanded.
7214
7215 In the case of homonyms in the derived tagged type, we don't
7216 guaranty anything, and pick the one that's easiest for us
7217 to program.
7218
7219 Returns 1 if found, 0 otherwise. */
7220
7221 static int
7222 find_struct_field (const char *name, struct type *type, int offset,
7223 struct type **field_type_p,
7224 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7225 int *index_p)
7226 {
7227 int i;
7228 int parent_offset = -1;
7229
7230 type = ada_check_typedef (type);
7231
7232 if (field_type_p != NULL)
7233 *field_type_p = NULL;
7234 if (byte_offset_p != NULL)
7235 *byte_offset_p = 0;
7236 if (bit_offset_p != NULL)
7237 *bit_offset_p = 0;
7238 if (bit_size_p != NULL)
7239 *bit_size_p = 0;
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7242 {
7243 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7244 int fld_offset = offset + bit_pos / 8;
7245 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7246
7247 if (t_field_name == NULL)
7248 continue;
7249
7250 else if (ada_is_parent_field (type, i))
7251 {
7252 /* This is a field pointing us to the parent type of a tagged
7253 type. As hinted in this function's documentation, we give
7254 preference to fields in the current record first, so what
7255 we do here is just record the index of this field before
7256 we skip it. If it turns out we couldn't find our field
7257 in the current record, then we'll get back to it and search
7258 inside it whether the field might exist in the parent. */
7259
7260 parent_offset = i;
7261 continue;
7262 }
7263
7264 else if (name != NULL && field_name_match (t_field_name, name))
7265 {
7266 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7267
7268 if (field_type_p != NULL)
7269 *field_type_p = TYPE_FIELD_TYPE (type, i);
7270 if (byte_offset_p != NULL)
7271 *byte_offset_p = fld_offset;
7272 if (bit_offset_p != NULL)
7273 *bit_offset_p = bit_pos % 8;
7274 if (bit_size_p != NULL)
7275 *bit_size_p = bit_size;
7276 return 1;
7277 }
7278 else if (ada_is_wrapper_field (type, i))
7279 {
7280 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7281 field_type_p, byte_offset_p, bit_offset_p,
7282 bit_size_p, index_p))
7283 return 1;
7284 }
7285 else if (ada_is_variant_part (type, i))
7286 {
7287 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7288 fixed type?? */
7289 int j;
7290 struct type *field_type
7291 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7292
7293 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7294 {
7295 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7296 fld_offset
7297 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7298 field_type_p, byte_offset_p,
7299 bit_offset_p, bit_size_p, index_p))
7300 return 1;
7301 }
7302 }
7303 else if (index_p != NULL)
7304 *index_p += 1;
7305 }
7306
7307 /* Field not found so far. If this is a tagged type which
7308 has a parent, try finding that field in the parent now. */
7309
7310 if (parent_offset != -1)
7311 {
7312 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7313 int fld_offset = offset + bit_pos / 8;
7314
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7316 fld_offset, field_type_p, byte_offset_p,
7317 bit_offset_p, bit_size_p, index_p))
7318 return 1;
7319 }
7320
7321 return 0;
7322 }
7323
7324 /* Number of user-visible fields in record type TYPE. */
7325
7326 static int
7327 num_visible_fields (struct type *type)
7328 {
7329 int n;
7330
7331 n = 0;
7332 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7333 return n;
7334 }
7335
7336 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7337 and search in it assuming it has (class) type TYPE.
7338 If found, return value, else return NULL.
7339
7340 Searches recursively through wrapper fields (e.g., '_parent').
7341
7342 In the case of homonyms in the tagged types, please refer to the
7343 long explanation in find_struct_field's function documentation. */
7344
7345 static struct value *
7346 ada_search_struct_field (const char *name, struct value *arg, int offset,
7347 struct type *type)
7348 {
7349 int i;
7350 int parent_offset = -1;
7351
7352 type = ada_check_typedef (type);
7353 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7354 {
7355 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7356
7357 if (t_field_name == NULL)
7358 continue;
7359
7360 else if (ada_is_parent_field (type, i))
7361 {
7362 /* This is a field pointing us to the parent type of a tagged
7363 type. As hinted in this function's documentation, we give
7364 preference to fields in the current record first, so what
7365 we do here is just record the index of this field before
7366 we skip it. If it turns out we couldn't find our field
7367 in the current record, then we'll get back to it and search
7368 inside it whether the field might exist in the parent. */
7369
7370 parent_offset = i;
7371 continue;
7372 }
7373
7374 else if (field_name_match (t_field_name, name))
7375 return ada_value_primitive_field (arg, offset, i, type);
7376
7377 else if (ada_is_wrapper_field (type, i))
7378 {
7379 struct value *v = /* Do not let indent join lines here. */
7380 ada_search_struct_field (name, arg,
7381 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7382 TYPE_FIELD_TYPE (type, i));
7383
7384 if (v != NULL)
7385 return v;
7386 }
7387
7388 else if (ada_is_variant_part (type, i))
7389 {
7390 /* PNH: Do we ever get here? See find_struct_field. */
7391 int j;
7392 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7393 i));
7394 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7395
7396 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7397 {
7398 struct value *v = ada_search_struct_field /* Force line
7399 break. */
7400 (name, arg,
7401 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7402 TYPE_FIELD_TYPE (field_type, j));
7403
7404 if (v != NULL)
7405 return v;
7406 }
7407 }
7408 }
7409
7410 /* Field not found so far. If this is a tagged type which
7411 has a parent, try finding that field in the parent now. */
7412
7413 if (parent_offset != -1)
7414 {
7415 struct value *v = ada_search_struct_field (
7416 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7417 TYPE_FIELD_TYPE (type, parent_offset));
7418
7419 if (v != NULL)
7420 return v;
7421 }
7422
7423 return NULL;
7424 }
7425
7426 static struct value *ada_index_struct_field_1 (int *, struct value *,
7427 int, struct type *);
7428
7429
7430 /* Return field #INDEX in ARG, where the index is that returned by
7431 * find_struct_field through its INDEX_P argument. Adjust the address
7432 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7433 * If found, return value, else return NULL. */
7434
7435 static struct value *
7436 ada_index_struct_field (int index, struct value *arg, int offset,
7437 struct type *type)
7438 {
7439 return ada_index_struct_field_1 (&index, arg, offset, type);
7440 }
7441
7442
7443 /* Auxiliary function for ada_index_struct_field. Like
7444 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7445 * *INDEX_P. */
7446
7447 static struct value *
7448 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7449 struct type *type)
7450 {
7451 int i;
7452 type = ada_check_typedef (type);
7453
7454 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7455 {
7456 if (TYPE_FIELD_NAME (type, i) == NULL)
7457 continue;
7458 else if (ada_is_wrapper_field (type, i))
7459 {
7460 struct value *v = /* Do not let indent join lines here. */
7461 ada_index_struct_field_1 (index_p, arg,
7462 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7463 TYPE_FIELD_TYPE (type, i));
7464
7465 if (v != NULL)
7466 return v;
7467 }
7468
7469 else if (ada_is_variant_part (type, i))
7470 {
7471 /* PNH: Do we ever get here? See ada_search_struct_field,
7472 find_struct_field. */
7473 error (_("Cannot assign this kind of variant record"));
7474 }
7475 else if (*index_p == 0)
7476 return ada_value_primitive_field (arg, offset, i, type);
7477 else
7478 *index_p -= 1;
7479 }
7480 return NULL;
7481 }
7482
7483 /* Given ARG, a value of type (pointer or reference to a)*
7484 structure/union, extract the component named NAME from the ultimate
7485 target structure/union and return it as a value with its
7486 appropriate type.
7487
7488 The routine searches for NAME among all members of the structure itself
7489 and (recursively) among all members of any wrapper members
7490 (e.g., '_parent').
7491
7492 If NO_ERR, then simply return NULL in case of error, rather than
7493 calling error. */
7494
7495 struct value *
7496 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7497 {
7498 struct type *t, *t1;
7499 struct value *v;
7500 int check_tag;
7501
7502 v = NULL;
7503 t1 = t = ada_check_typedef (value_type (arg));
7504 if (TYPE_CODE (t) == TYPE_CODE_REF)
7505 {
7506 t1 = TYPE_TARGET_TYPE (t);
7507 if (t1 == NULL)
7508 goto BadValue;
7509 t1 = ada_check_typedef (t1);
7510 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7511 {
7512 arg = coerce_ref (arg);
7513 t = t1;
7514 }
7515 }
7516
7517 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7518 {
7519 t1 = TYPE_TARGET_TYPE (t);
7520 if (t1 == NULL)
7521 goto BadValue;
7522 t1 = ada_check_typedef (t1);
7523 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7524 {
7525 arg = value_ind (arg);
7526 t = t1;
7527 }
7528 else
7529 break;
7530 }
7531
7532 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7533 goto BadValue;
7534
7535 if (t1 == t)
7536 v = ada_search_struct_field (name, arg, 0, t);
7537 else
7538 {
7539 int bit_offset, bit_size, byte_offset;
7540 struct type *field_type;
7541 CORE_ADDR address;
7542
7543 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7544 address = value_address (ada_value_ind (arg));
7545 else
7546 address = value_address (ada_coerce_ref (arg));
7547
7548 /* Check to see if this is a tagged type. We also need to handle
7549 the case where the type is a reference to a tagged type, but
7550 we have to be careful to exclude pointers to tagged types.
7551 The latter should be shown as usual (as a pointer), whereas
7552 a reference should mostly be transparent to the user. */
7553
7554 if (ada_is_tagged_type (t1, 0)
7555 || (TYPE_CODE (t1) == TYPE_CODE_REF
7556 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7557 {
7558 /* We first try to find the searched field in the current type.
7559 If not found then let's look in the fixed type. */
7560
7561 if (!find_struct_field (name, t1, 0,
7562 &field_type, &byte_offset, &bit_offset,
7563 &bit_size, NULL))
7564 check_tag = 1;
7565 else
7566 check_tag = 0;
7567 }
7568 else
7569 check_tag = 0;
7570
7571 /* Convert to fixed type in all cases, so that we have proper
7572 offsets to each field in unconstrained record types. */
7573 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7574 address, NULL, check_tag);
7575
7576 if (find_struct_field (name, t1, 0,
7577 &field_type, &byte_offset, &bit_offset,
7578 &bit_size, NULL))
7579 {
7580 if (bit_size != 0)
7581 {
7582 if (TYPE_CODE (t) == TYPE_CODE_REF)
7583 arg = ada_coerce_ref (arg);
7584 else
7585 arg = ada_value_ind (arg);
7586 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7587 bit_offset, bit_size,
7588 field_type);
7589 }
7590 else
7591 v = value_at_lazy (field_type, address + byte_offset);
7592 }
7593 }
7594
7595 if (v != NULL || no_err)
7596 return v;
7597 else
7598 error (_("There is no member named %s."), name);
7599
7600 BadValue:
7601 if (no_err)
7602 return NULL;
7603 else
7604 error (_("Attempt to extract a component of "
7605 "a value that is not a record."));
7606 }
7607
7608 /* Return a string representation of type TYPE. */
7609
7610 static std::string
7611 type_as_string (struct type *type)
7612 {
7613 string_file tmp_stream;
7614
7615 type_print (type, "", &tmp_stream, -1);
7616
7617 return std::move (tmp_stream.string ());
7618 }
7619
7620 /* Given a type TYPE, look up the type of the component of type named NAME.
7621 If DISPP is non-null, add its byte displacement from the beginning of a
7622 structure (pointed to by a value) of type TYPE to *DISPP (does not
7623 work for packed fields).
7624
7625 Matches any field whose name has NAME as a prefix, possibly
7626 followed by "___".
7627
7628 TYPE can be either a struct or union. If REFOK, TYPE may also
7629 be a (pointer or reference)+ to a struct or union, and the
7630 ultimate target type will be searched.
7631
7632 Looks recursively into variant clauses and parent types.
7633
7634 In the case of homonyms in the tagged types, please refer to the
7635 long explanation in find_struct_field's function documentation.
7636
7637 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7638 TYPE is not a type of the right kind. */
7639
7640 static struct type *
7641 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7642 int noerr)
7643 {
7644 int i;
7645 int parent_offset = -1;
7646
7647 if (name == NULL)
7648 goto BadName;
7649
7650 if (refok && type != NULL)
7651 while (1)
7652 {
7653 type = ada_check_typedef (type);
7654 if (TYPE_CODE (type) != TYPE_CODE_PTR
7655 && TYPE_CODE (type) != TYPE_CODE_REF)
7656 break;
7657 type = TYPE_TARGET_TYPE (type);
7658 }
7659
7660 if (type == NULL
7661 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7662 && TYPE_CODE (type) != TYPE_CODE_UNION))
7663 {
7664 if (noerr)
7665 return NULL;
7666
7667 error (_("Type %s is not a structure or union type"),
7668 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7669 }
7670
7671 type = to_static_fixed_type (type);
7672
7673 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7674 {
7675 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7676 struct type *t;
7677
7678 if (t_field_name == NULL)
7679 continue;
7680
7681 else if (ada_is_parent_field (type, i))
7682 {
7683 /* This is a field pointing us to the parent type of a tagged
7684 type. As hinted in this function's documentation, we give
7685 preference to fields in the current record first, so what
7686 we do here is just record the index of this field before
7687 we skip it. If it turns out we couldn't find our field
7688 in the current record, then we'll get back to it and search
7689 inside it whether the field might exist in the parent. */
7690
7691 parent_offset = i;
7692 continue;
7693 }
7694
7695 else if (field_name_match (t_field_name, name))
7696 return TYPE_FIELD_TYPE (type, i);
7697
7698 else if (ada_is_wrapper_field (type, i))
7699 {
7700 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7701 0, 1);
7702 if (t != NULL)
7703 return t;
7704 }
7705
7706 else if (ada_is_variant_part (type, i))
7707 {
7708 int j;
7709 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7710 i));
7711
7712 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7713 {
7714 /* FIXME pnh 2008/01/26: We check for a field that is
7715 NOT wrapped in a struct, since the compiler sometimes
7716 generates these for unchecked variant types. Revisit
7717 if the compiler changes this practice. */
7718 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7719
7720 if (v_field_name != NULL
7721 && field_name_match (v_field_name, name))
7722 t = TYPE_FIELD_TYPE (field_type, j);
7723 else
7724 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7725 j),
7726 name, 0, 1);
7727
7728 if (t != NULL)
7729 return t;
7730 }
7731 }
7732
7733 }
7734
7735 /* Field not found so far. If this is a tagged type which
7736 has a parent, try finding that field in the parent now. */
7737
7738 if (parent_offset != -1)
7739 {
7740 struct type *t;
7741
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7743 name, 0, 1);
7744 if (t != NULL)
7745 return t;
7746 }
7747
7748 BadName:
7749 if (!noerr)
7750 {
7751 const char *name_str = name != NULL ? name : _("<null>");
7752
7753 error (_("Type %s has no component named %s"),
7754 type_as_string (type).c_str (), name_str);
7755 }
7756
7757 return NULL;
7758 }
7759
7760 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7761 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7762 represents an unchecked union (that is, the variant part of a
7763 record that is named in an Unchecked_Union pragma). */
7764
7765 static int
7766 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7767 {
7768 const char *discrim_name = ada_variant_discrim_name (var_type);
7769
7770 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7771 }
7772
7773
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE that is stored in GDB at
7776 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7777 numbering from 0) is applicable. Returns -1 if none are. */
7778
7779 int
7780 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7781 const gdb_byte *outer_valaddr)
7782 {
7783 int others_clause;
7784 int i;
7785 const char *discrim_name = ada_variant_discrim_name (var_type);
7786 struct value *outer;
7787 struct value *discrim;
7788 LONGEST discrim_val;
7789
7790 /* Using plain value_from_contents_and_address here causes problems
7791 because we will end up trying to resolve a type that is currently
7792 being constructed. */
7793 outer = value_from_contents_and_address_unresolved (outer_type,
7794 outer_valaddr, 0);
7795 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7796 if (discrim == NULL)
7797 return -1;
7798 discrim_val = value_as_long (discrim);
7799
7800 others_clause = -1;
7801 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7802 {
7803 if (ada_is_others_clause (var_type, i))
7804 others_clause = i;
7805 else if (ada_in_variant (discrim_val, var_type, i))
7806 return i;
7807 }
7808
7809 return others_clause;
7810 }
7811 \f
7812
7813
7814 /* Dynamic-Sized Records */
7815
7816 /* Strategy: The type ostensibly attached to a value with dynamic size
7817 (i.e., a size that is not statically recorded in the debugging
7818 data) does not accurately reflect the size or layout of the value.
7819 Our strategy is to convert these values to values with accurate,
7820 conventional types that are constructed on the fly. */
7821
7822 /* There is a subtle and tricky problem here. In general, we cannot
7823 determine the size of dynamic records without its data. However,
7824 the 'struct value' data structure, which GDB uses to represent
7825 quantities in the inferior process (the target), requires the size
7826 of the type at the time of its allocation in order to reserve space
7827 for GDB's internal copy of the data. That's why the
7828 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7829 rather than struct value*s.
7830
7831 However, GDB's internal history variables ($1, $2, etc.) are
7832 struct value*s containing internal copies of the data that are not, in
7833 general, the same as the data at their corresponding addresses in
7834 the target. Fortunately, the types we give to these values are all
7835 conventional, fixed-size types (as per the strategy described
7836 above), so that we don't usually have to perform the
7837 'to_fixed_xxx_type' conversions to look at their values.
7838 Unfortunately, there is one exception: if one of the internal
7839 history variables is an array whose elements are unconstrained
7840 records, then we will need to create distinct fixed types for each
7841 element selected. */
7842
7843 /* The upshot of all of this is that many routines take a (type, host
7844 address, target address) triple as arguments to represent a value.
7845 The host address, if non-null, is supposed to contain an internal
7846 copy of the relevant data; otherwise, the program is to consult the
7847 target at the target address. */
7848
7849 /* Assuming that VAL0 represents a pointer value, the result of
7850 dereferencing it. Differs from value_ind in its treatment of
7851 dynamic-sized types. */
7852
7853 struct value *
7854 ada_value_ind (struct value *val0)
7855 {
7856 struct value *val = value_ind (val0);
7857
7858 if (ada_is_tagged_type (value_type (val), 0))
7859 val = ada_tag_value_at_base_address (val);
7860
7861 return ada_to_fixed_value (val);
7862 }
7863
7864 /* The value resulting from dereferencing any "reference to"
7865 qualifiers on VAL0. */
7866
7867 static struct value *
7868 ada_coerce_ref (struct value *val0)
7869 {
7870 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7871 {
7872 struct value *val = val0;
7873
7874 val = coerce_ref (val);
7875
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7878
7879 return ada_to_fixed_value (val);
7880 }
7881 else
7882 return val0;
7883 }
7884
7885 /* Return OFF rounded upward if necessary to a multiple of
7886 ALIGNMENT (a power of 2). */
7887
7888 static unsigned int
7889 align_value (unsigned int off, unsigned int alignment)
7890 {
7891 return (off + alignment - 1) & ~(alignment - 1);
7892 }
7893
7894 /* Return the bit alignment required for field #F of template type TYPE. */
7895
7896 static unsigned int
7897 field_alignment (struct type *type, int f)
7898 {
7899 const char *name = TYPE_FIELD_NAME (type, f);
7900 int len;
7901 int align_offset;
7902
7903 /* The field name should never be null, unless the debugging information
7904 is somehow malformed. In this case, we assume the field does not
7905 require any alignment. */
7906 if (name == NULL)
7907 return 1;
7908
7909 len = strlen (name);
7910
7911 if (!isdigit (name[len - 1]))
7912 return 1;
7913
7914 if (isdigit (name[len - 2]))
7915 align_offset = len - 2;
7916 else
7917 align_offset = len - 1;
7918
7919 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7920 return TARGET_CHAR_BIT;
7921
7922 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7923 }
7924
7925 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7926
7927 static struct symbol *
7928 ada_find_any_type_symbol (const char *name)
7929 {
7930 struct symbol *sym;
7931
7932 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7933 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7934 return sym;
7935
7936 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7937 return sym;
7938 }
7939
7940 /* Find a type named NAME. Ignores ambiguity. This routine will look
7941 solely for types defined by debug info, it will not search the GDB
7942 primitive types. */
7943
7944 static struct type *
7945 ada_find_any_type (const char *name)
7946 {
7947 struct symbol *sym = ada_find_any_type_symbol (name);
7948
7949 if (sym != NULL)
7950 return SYMBOL_TYPE (sym);
7951
7952 return NULL;
7953 }
7954
7955 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7956 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7957 symbol, in which case it is returned. Otherwise, this looks for
7958 symbols whose name is that of NAME_SYM suffixed with "___XR".
7959 Return symbol if found, and NULL otherwise. */
7960
7961 struct symbol *
7962 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7963 {
7964 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7965 struct symbol *sym;
7966
7967 if (strstr (name, "___XR") != NULL)
7968 return name_sym;
7969
7970 sym = find_old_style_renaming_symbol (name, block);
7971
7972 if (sym != NULL)
7973 return sym;
7974
7975 /* Not right yet. FIXME pnh 7/20/2007. */
7976 sym = ada_find_any_type_symbol (name);
7977 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7978 return sym;
7979 else
7980 return NULL;
7981 }
7982
7983 static struct symbol *
7984 find_old_style_renaming_symbol (const char *name, const struct block *block)
7985 {
7986 const struct symbol *function_sym = block_linkage_function (block);
7987 char *rename;
7988
7989 if (function_sym != NULL)
7990 {
7991 /* If the symbol is defined inside a function, NAME is not fully
7992 qualified. This means we need to prepend the function name
7993 as well as adding the ``___XR'' suffix to build the name of
7994 the associated renaming symbol. */
7995 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7996 /* Function names sometimes contain suffixes used
7997 for instance to qualify nested subprograms. When building
7998 the XR type name, we need to make sure that this suffix is
7999 not included. So do not include any suffix in the function
8000 name length below. */
8001 int function_name_len = ada_name_prefix_len (function_name);
8002 const int rename_len = function_name_len + 2 /* "__" */
8003 + strlen (name) + 6 /* "___XR\0" */ ;
8004
8005 /* Strip the suffix if necessary. */
8006 ada_remove_trailing_digits (function_name, &function_name_len);
8007 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8008 ada_remove_Xbn_suffix (function_name, &function_name_len);
8009
8010 /* Library-level functions are a special case, as GNAT adds
8011 a ``_ada_'' prefix to the function name to avoid namespace
8012 pollution. However, the renaming symbols themselves do not
8013 have this prefix, so we need to skip this prefix if present. */
8014 if (function_name_len > 5 /* "_ada_" */
8015 && strstr (function_name, "_ada_") == function_name)
8016 {
8017 function_name += 5;
8018 function_name_len -= 5;
8019 }
8020
8021 rename = (char *) alloca (rename_len * sizeof (char));
8022 strncpy (rename, function_name, function_name_len);
8023 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8024 "__%s___XR", name);
8025 }
8026 else
8027 {
8028 const int rename_len = strlen (name) + 6;
8029
8030 rename = (char *) alloca (rename_len * sizeof (char));
8031 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8032 }
8033
8034 return ada_find_any_type_symbol (rename);
8035 }
8036
8037 /* Because of GNAT encoding conventions, several GDB symbols may match a
8038 given type name. If the type denoted by TYPE0 is to be preferred to
8039 that of TYPE1 for purposes of type printing, return non-zero;
8040 otherwise return 0. */
8041
8042 int
8043 ada_prefer_type (struct type *type0, struct type *type1)
8044 {
8045 if (type1 == NULL)
8046 return 1;
8047 else if (type0 == NULL)
8048 return 0;
8049 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8050 return 1;
8051 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8052 return 0;
8053 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8054 return 1;
8055 else if (ada_is_constrained_packed_array_type (type0))
8056 return 1;
8057 else if (ada_is_array_descriptor_type (type0)
8058 && !ada_is_array_descriptor_type (type1))
8059 return 1;
8060 else
8061 {
8062 const char *type0_name = TYPE_NAME (type0);
8063 const char *type1_name = TYPE_NAME (type1);
8064
8065 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8066 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8067 return 1;
8068 }
8069 return 0;
8070 }
8071
8072 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8073 null. */
8074
8075 const char *
8076 ada_type_name (struct type *type)
8077 {
8078 if (type == NULL)
8079 return NULL;
8080 return TYPE_NAME (type);
8081 }
8082
8083 /* Search the list of "descriptive" types associated to TYPE for a type
8084 whose name is NAME. */
8085
8086 static struct type *
8087 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8088 {
8089 struct type *result, *tmp;
8090
8091 if (ada_ignore_descriptive_types_p)
8092 return NULL;
8093
8094 /* If there no descriptive-type info, then there is no parallel type
8095 to be found. */
8096 if (!HAVE_GNAT_AUX_INFO (type))
8097 return NULL;
8098
8099 result = TYPE_DESCRIPTIVE_TYPE (type);
8100 while (result != NULL)
8101 {
8102 const char *result_name = ada_type_name (result);
8103
8104 if (result_name == NULL)
8105 {
8106 warning (_("unexpected null name on descriptive type"));
8107 return NULL;
8108 }
8109
8110 /* If the names match, stop. */
8111 if (strcmp (result_name, name) == 0)
8112 break;
8113
8114 /* Otherwise, look at the next item on the list, if any. */
8115 if (HAVE_GNAT_AUX_INFO (result))
8116 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8117 else
8118 tmp = NULL;
8119
8120 /* If not found either, try after having resolved the typedef. */
8121 if (tmp != NULL)
8122 result = tmp;
8123 else
8124 {
8125 result = check_typedef (result);
8126 if (HAVE_GNAT_AUX_INFO (result))
8127 result = TYPE_DESCRIPTIVE_TYPE (result);
8128 else
8129 result = NULL;
8130 }
8131 }
8132
8133 /* If we didn't find a match, see whether this is a packed array. With
8134 older compilers, the descriptive type information is either absent or
8135 irrelevant when it comes to packed arrays so the above lookup fails.
8136 Fall back to using a parallel lookup by name in this case. */
8137 if (result == NULL && ada_is_constrained_packed_array_type (type))
8138 return ada_find_any_type (name);
8139
8140 return result;
8141 }
8142
8143 /* Find a parallel type to TYPE with the specified NAME, using the
8144 descriptive type taken from the debugging information, if available,
8145 and otherwise using the (slower) name-based method. */
8146
8147 static struct type *
8148 ada_find_parallel_type_with_name (struct type *type, const char *name)
8149 {
8150 struct type *result = NULL;
8151
8152 if (HAVE_GNAT_AUX_INFO (type))
8153 result = find_parallel_type_by_descriptive_type (type, name);
8154 else
8155 result = ada_find_any_type (name);
8156
8157 return result;
8158 }
8159
8160 /* Same as above, but specify the name of the parallel type by appending
8161 SUFFIX to the name of TYPE. */
8162
8163 struct type *
8164 ada_find_parallel_type (struct type *type, const char *suffix)
8165 {
8166 char *name;
8167 const char *type_name = ada_type_name (type);
8168 int len;
8169
8170 if (type_name == NULL)
8171 return NULL;
8172
8173 len = strlen (type_name);
8174
8175 name = (char *) alloca (len + strlen (suffix) + 1);
8176
8177 strcpy (name, type_name);
8178 strcpy (name + len, suffix);
8179
8180 return ada_find_parallel_type_with_name (type, name);
8181 }
8182
8183 /* If TYPE is a variable-size record type, return the corresponding template
8184 type describing its fields. Otherwise, return NULL. */
8185
8186 static struct type *
8187 dynamic_template_type (struct type *type)
8188 {
8189 type = ada_check_typedef (type);
8190
8191 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8192 || ada_type_name (type) == NULL)
8193 return NULL;
8194 else
8195 {
8196 int len = strlen (ada_type_name (type));
8197
8198 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8199 return type;
8200 else
8201 return ada_find_parallel_type (type, "___XVE");
8202 }
8203 }
8204
8205 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8206 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8207
8208 static int
8209 is_dynamic_field (struct type *templ_type, int field_num)
8210 {
8211 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8212
8213 return name != NULL
8214 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8215 && strstr (name, "___XVL") != NULL;
8216 }
8217
8218 /* The index of the variant field of TYPE, or -1 if TYPE does not
8219 represent a variant record type. */
8220
8221 static int
8222 variant_field_index (struct type *type)
8223 {
8224 int f;
8225
8226 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8227 return -1;
8228
8229 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8230 {
8231 if (ada_is_variant_part (type, f))
8232 return f;
8233 }
8234 return -1;
8235 }
8236
8237 /* A record type with no fields. */
8238
8239 static struct type *
8240 empty_record (struct type *templ)
8241 {
8242 struct type *type = alloc_type_copy (templ);
8243
8244 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8245 TYPE_NFIELDS (type) = 0;
8246 TYPE_FIELDS (type) = NULL;
8247 INIT_CPLUS_SPECIFIC (type);
8248 TYPE_NAME (type) = "<empty>";
8249 TYPE_LENGTH (type) = 0;
8250 return type;
8251 }
8252
8253 /* An ordinary record type (with fixed-length fields) that describes
8254 the value of type TYPE at VALADDR or ADDRESS (see comments at
8255 the beginning of this section) VAL according to GNAT conventions.
8256 DVAL0 should describe the (portion of a) record that contains any
8257 necessary discriminants. It should be NULL if value_type (VAL) is
8258 an outer-level type (i.e., as opposed to a branch of a variant.) A
8259 variant field (unless unchecked) is replaced by a particular branch
8260 of the variant.
8261
8262 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8263 length are not statically known are discarded. As a consequence,
8264 VALADDR, ADDRESS and DVAL0 are ignored.
8265
8266 NOTE: Limitations: For now, we assume that dynamic fields and
8267 variants occupy whole numbers of bytes. However, they need not be
8268 byte-aligned. */
8269
8270 struct type *
8271 ada_template_to_fixed_record_type_1 (struct type *type,
8272 const gdb_byte *valaddr,
8273 CORE_ADDR address, struct value *dval0,
8274 int keep_dynamic_fields)
8275 {
8276 struct value *mark = value_mark ();
8277 struct value *dval;
8278 struct type *rtype;
8279 int nfields, bit_len;
8280 int variant_field;
8281 long off;
8282 int fld_bit_len;
8283 int f;
8284
8285 /* Compute the number of fields in this record type that are going
8286 to be processed: unless keep_dynamic_fields, this includes only
8287 fields whose position and length are static will be processed. */
8288 if (keep_dynamic_fields)
8289 nfields = TYPE_NFIELDS (type);
8290 else
8291 {
8292 nfields = 0;
8293 while (nfields < TYPE_NFIELDS (type)
8294 && !ada_is_variant_part (type, nfields)
8295 && !is_dynamic_field (type, nfields))
8296 nfields++;
8297 }
8298
8299 rtype = alloc_type_copy (type);
8300 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8301 INIT_CPLUS_SPECIFIC (rtype);
8302 TYPE_NFIELDS (rtype) = nfields;
8303 TYPE_FIELDS (rtype) = (struct field *)
8304 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8305 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8306 TYPE_NAME (rtype) = ada_type_name (type);
8307 TYPE_FIXED_INSTANCE (rtype) = 1;
8308
8309 off = 0;
8310 bit_len = 0;
8311 variant_field = -1;
8312
8313 for (f = 0; f < nfields; f += 1)
8314 {
8315 off = align_value (off, field_alignment (type, f))
8316 + TYPE_FIELD_BITPOS (type, f);
8317 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8318 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8319
8320 if (ada_is_variant_part (type, f))
8321 {
8322 variant_field = f;
8323 fld_bit_len = 0;
8324 }
8325 else if (is_dynamic_field (type, f))
8326 {
8327 const gdb_byte *field_valaddr = valaddr;
8328 CORE_ADDR field_address = address;
8329 struct type *field_type =
8330 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8331
8332 if (dval0 == NULL)
8333 {
8334 /* rtype's length is computed based on the run-time
8335 value of discriminants. If the discriminants are not
8336 initialized, the type size may be completely bogus and
8337 GDB may fail to allocate a value for it. So check the
8338 size first before creating the value. */
8339 ada_ensure_varsize_limit (rtype);
8340 /* Using plain value_from_contents_and_address here
8341 causes problems because we will end up trying to
8342 resolve a type that is currently being
8343 constructed. */
8344 dval = value_from_contents_and_address_unresolved (rtype,
8345 valaddr,
8346 address);
8347 rtype = value_type (dval);
8348 }
8349 else
8350 dval = dval0;
8351
8352 /* If the type referenced by this field is an aligner type, we need
8353 to unwrap that aligner type, because its size might not be set.
8354 Keeping the aligner type would cause us to compute the wrong
8355 size for this field, impacting the offset of the all the fields
8356 that follow this one. */
8357 if (ada_is_aligner_type (field_type))
8358 {
8359 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8360
8361 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8362 field_address = cond_offset_target (field_address, field_offset);
8363 field_type = ada_aligned_type (field_type);
8364 }
8365
8366 field_valaddr = cond_offset_host (field_valaddr,
8367 off / TARGET_CHAR_BIT);
8368 field_address = cond_offset_target (field_address,
8369 off / TARGET_CHAR_BIT);
8370
8371 /* Get the fixed type of the field. Note that, in this case,
8372 we do not want to get the real type out of the tag: if
8373 the current field is the parent part of a tagged record,
8374 we will get the tag of the object. Clearly wrong: the real
8375 type of the parent is not the real type of the child. We
8376 would end up in an infinite loop. */
8377 field_type = ada_get_base_type (field_type);
8378 field_type = ada_to_fixed_type (field_type, field_valaddr,
8379 field_address, dval, 0);
8380 /* If the field size is already larger than the maximum
8381 object size, then the record itself will necessarily
8382 be larger than the maximum object size. We need to make
8383 this check now, because the size might be so ridiculously
8384 large (due to an uninitialized variable in the inferior)
8385 that it would cause an overflow when adding it to the
8386 record size. */
8387 ada_ensure_varsize_limit (field_type);
8388
8389 TYPE_FIELD_TYPE (rtype, f) = field_type;
8390 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8391 /* The multiplication can potentially overflow. But because
8392 the field length has been size-checked just above, and
8393 assuming that the maximum size is a reasonable value,
8394 an overflow should not happen in practice. So rather than
8395 adding overflow recovery code to this already complex code,
8396 we just assume that it's not going to happen. */
8397 fld_bit_len =
8398 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8399 }
8400 else
8401 {
8402 /* Note: If this field's type is a typedef, it is important
8403 to preserve the typedef layer.
8404
8405 Otherwise, we might be transforming a typedef to a fat
8406 pointer (encoding a pointer to an unconstrained array),
8407 into a basic fat pointer (encoding an unconstrained
8408 array). As both types are implemented using the same
8409 structure, the typedef is the only clue which allows us
8410 to distinguish between the two options. Stripping it
8411 would prevent us from printing this field appropriately. */
8412 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8413 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8414 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8415 fld_bit_len =
8416 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8417 else
8418 {
8419 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8420
8421 /* We need to be careful of typedefs when computing
8422 the length of our field. If this is a typedef,
8423 get the length of the target type, not the length
8424 of the typedef. */
8425 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8426 field_type = ada_typedef_target_type (field_type);
8427
8428 fld_bit_len =
8429 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8430 }
8431 }
8432 if (off + fld_bit_len > bit_len)
8433 bit_len = off + fld_bit_len;
8434 off += fld_bit_len;
8435 TYPE_LENGTH (rtype) =
8436 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8437 }
8438
8439 /* We handle the variant part, if any, at the end because of certain
8440 odd cases in which it is re-ordered so as NOT to be the last field of
8441 the record. This can happen in the presence of representation
8442 clauses. */
8443 if (variant_field >= 0)
8444 {
8445 struct type *branch_type;
8446
8447 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8448
8449 if (dval0 == NULL)
8450 {
8451 /* Using plain value_from_contents_and_address here causes
8452 problems because we will end up trying to resolve a type
8453 that is currently being constructed. */
8454 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8455 address);
8456 rtype = value_type (dval);
8457 }
8458 else
8459 dval = dval0;
8460
8461 branch_type =
8462 to_fixed_variant_branch_type
8463 (TYPE_FIELD_TYPE (type, variant_field),
8464 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8465 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8466 if (branch_type == NULL)
8467 {
8468 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8469 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8470 TYPE_NFIELDS (rtype) -= 1;
8471 }
8472 else
8473 {
8474 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8475 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8476 fld_bit_len =
8477 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8478 TARGET_CHAR_BIT;
8479 if (off + fld_bit_len > bit_len)
8480 bit_len = off + fld_bit_len;
8481 TYPE_LENGTH (rtype) =
8482 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8483 }
8484 }
8485
8486 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8487 should contain the alignment of that record, which should be a strictly
8488 positive value. If null or negative, then something is wrong, most
8489 probably in the debug info. In that case, we don't round up the size
8490 of the resulting type. If this record is not part of another structure,
8491 the current RTYPE length might be good enough for our purposes. */
8492 if (TYPE_LENGTH (type) <= 0)
8493 {
8494 if (TYPE_NAME (rtype))
8495 warning (_("Invalid type size for `%s' detected: %d."),
8496 TYPE_NAME (rtype), TYPE_LENGTH (type));
8497 else
8498 warning (_("Invalid type size for <unnamed> detected: %d."),
8499 TYPE_LENGTH (type));
8500 }
8501 else
8502 {
8503 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8504 TYPE_LENGTH (type));
8505 }
8506
8507 value_free_to_mark (mark);
8508 if (TYPE_LENGTH (rtype) > varsize_limit)
8509 error (_("record type with dynamic size is larger than varsize-limit"));
8510 return rtype;
8511 }
8512
8513 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8514 of 1. */
8515
8516 static struct type *
8517 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8518 CORE_ADDR address, struct value *dval0)
8519 {
8520 return ada_template_to_fixed_record_type_1 (type, valaddr,
8521 address, dval0, 1);
8522 }
8523
8524 /* An ordinary record type in which ___XVL-convention fields and
8525 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8526 static approximations, containing all possible fields. Uses
8527 no runtime values. Useless for use in values, but that's OK,
8528 since the results are used only for type determinations. Works on both
8529 structs and unions. Representation note: to save space, we memorize
8530 the result of this function in the TYPE_TARGET_TYPE of the
8531 template type. */
8532
8533 static struct type *
8534 template_to_static_fixed_type (struct type *type0)
8535 {
8536 struct type *type;
8537 int nfields;
8538 int f;
8539
8540 /* No need no do anything if the input type is already fixed. */
8541 if (TYPE_FIXED_INSTANCE (type0))
8542 return type0;
8543
8544 /* Likewise if we already have computed the static approximation. */
8545 if (TYPE_TARGET_TYPE (type0) != NULL)
8546 return TYPE_TARGET_TYPE (type0);
8547
8548 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8549 type = type0;
8550 nfields = TYPE_NFIELDS (type0);
8551
8552 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8553 recompute all over next time. */
8554 TYPE_TARGET_TYPE (type0) = type;
8555
8556 for (f = 0; f < nfields; f += 1)
8557 {
8558 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8559 struct type *new_type;
8560
8561 if (is_dynamic_field (type0, f))
8562 {
8563 field_type = ada_check_typedef (field_type);
8564 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8565 }
8566 else
8567 new_type = static_unwrap_type (field_type);
8568
8569 if (new_type != field_type)
8570 {
8571 /* Clone TYPE0 only the first time we get a new field type. */
8572 if (type == type0)
8573 {
8574 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8575 TYPE_CODE (type) = TYPE_CODE (type0);
8576 INIT_CPLUS_SPECIFIC (type);
8577 TYPE_NFIELDS (type) = nfields;
8578 TYPE_FIELDS (type) = (struct field *)
8579 TYPE_ALLOC (type, nfields * sizeof (struct field));
8580 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8581 sizeof (struct field) * nfields);
8582 TYPE_NAME (type) = ada_type_name (type0);
8583 TYPE_FIXED_INSTANCE (type) = 1;
8584 TYPE_LENGTH (type) = 0;
8585 }
8586 TYPE_FIELD_TYPE (type, f) = new_type;
8587 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8588 }
8589 }
8590
8591 return type;
8592 }
8593
8594 /* Given an object of type TYPE whose contents are at VALADDR and
8595 whose address in memory is ADDRESS, returns a revision of TYPE,
8596 which should be a non-dynamic-sized record, in which the variant
8597 part, if any, is replaced with the appropriate branch. Looks
8598 for discriminant values in DVAL0, which can be NULL if the record
8599 contains the necessary discriminant values. */
8600
8601 static struct type *
8602 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8603 CORE_ADDR address, struct value *dval0)
8604 {
8605 struct value *mark = value_mark ();
8606 struct value *dval;
8607 struct type *rtype;
8608 struct type *branch_type;
8609 int nfields = TYPE_NFIELDS (type);
8610 int variant_field = variant_field_index (type);
8611
8612 if (variant_field == -1)
8613 return type;
8614
8615 if (dval0 == NULL)
8616 {
8617 dval = value_from_contents_and_address (type, valaddr, address);
8618 type = value_type (dval);
8619 }
8620 else
8621 dval = dval0;
8622
8623 rtype = alloc_type_copy (type);
8624 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8625 INIT_CPLUS_SPECIFIC (rtype);
8626 TYPE_NFIELDS (rtype) = nfields;
8627 TYPE_FIELDS (rtype) =
8628 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8629 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8630 sizeof (struct field) * nfields);
8631 TYPE_NAME (rtype) = ada_type_name (type);
8632 TYPE_FIXED_INSTANCE (rtype) = 1;
8633 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8634
8635 branch_type = to_fixed_variant_branch_type
8636 (TYPE_FIELD_TYPE (type, variant_field),
8637 cond_offset_host (valaddr,
8638 TYPE_FIELD_BITPOS (type, variant_field)
8639 / TARGET_CHAR_BIT),
8640 cond_offset_target (address,
8641 TYPE_FIELD_BITPOS (type, variant_field)
8642 / TARGET_CHAR_BIT), dval);
8643 if (branch_type == NULL)
8644 {
8645 int f;
8646
8647 for (f = variant_field + 1; f < nfields; f += 1)
8648 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8649 TYPE_NFIELDS (rtype) -= 1;
8650 }
8651 else
8652 {
8653 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8654 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8655 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8656 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8657 }
8658 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8659
8660 value_free_to_mark (mark);
8661 return rtype;
8662 }
8663
8664 /* An ordinary record type (with fixed-length fields) that describes
8665 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8666 beginning of this section]. Any necessary discriminants' values
8667 should be in DVAL, a record value; it may be NULL if the object
8668 at ADDR itself contains any necessary discriminant values.
8669 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8670 values from the record are needed. Except in the case that DVAL,
8671 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8672 unchecked) is replaced by a particular branch of the variant.
8673
8674 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8675 is questionable and may be removed. It can arise during the
8676 processing of an unconstrained-array-of-record type where all the
8677 variant branches have exactly the same size. This is because in
8678 such cases, the compiler does not bother to use the XVS convention
8679 when encoding the record. I am currently dubious of this
8680 shortcut and suspect the compiler should be altered. FIXME. */
8681
8682 static struct type *
8683 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8684 CORE_ADDR address, struct value *dval)
8685 {
8686 struct type *templ_type;
8687
8688 if (TYPE_FIXED_INSTANCE (type0))
8689 return type0;
8690
8691 templ_type = dynamic_template_type (type0);
8692
8693 if (templ_type != NULL)
8694 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8695 else if (variant_field_index (type0) >= 0)
8696 {
8697 if (dval == NULL && valaddr == NULL && address == 0)
8698 return type0;
8699 return to_record_with_fixed_variant_part (type0, valaddr, address,
8700 dval);
8701 }
8702 else
8703 {
8704 TYPE_FIXED_INSTANCE (type0) = 1;
8705 return type0;
8706 }
8707
8708 }
8709
8710 /* An ordinary record type (with fixed-length fields) that describes
8711 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8712 union type. Any necessary discriminants' values should be in DVAL,
8713 a record value. That is, this routine selects the appropriate
8714 branch of the union at ADDR according to the discriminant value
8715 indicated in the union's type name. Returns VAR_TYPE0 itself if
8716 it represents a variant subject to a pragma Unchecked_Union. */
8717
8718 static struct type *
8719 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8720 CORE_ADDR address, struct value *dval)
8721 {
8722 int which;
8723 struct type *templ_type;
8724 struct type *var_type;
8725
8726 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8727 var_type = TYPE_TARGET_TYPE (var_type0);
8728 else
8729 var_type = var_type0;
8730
8731 templ_type = ada_find_parallel_type (var_type, "___XVU");
8732
8733 if (templ_type != NULL)
8734 var_type = templ_type;
8735
8736 if (is_unchecked_variant (var_type, value_type (dval)))
8737 return var_type0;
8738 which =
8739 ada_which_variant_applies (var_type,
8740 value_type (dval), value_contents (dval));
8741
8742 if (which < 0)
8743 return empty_record (var_type);
8744 else if (is_dynamic_field (var_type, which))
8745 return to_fixed_record_type
8746 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8747 valaddr, address, dval);
8748 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8749 return
8750 to_fixed_record_type
8751 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8752 else
8753 return TYPE_FIELD_TYPE (var_type, which);
8754 }
8755
8756 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8757 ENCODING_TYPE, a type following the GNAT conventions for discrete
8758 type encodings, only carries redundant information. */
8759
8760 static int
8761 ada_is_redundant_range_encoding (struct type *range_type,
8762 struct type *encoding_type)
8763 {
8764 const char *bounds_str;
8765 int n;
8766 LONGEST lo, hi;
8767
8768 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8769
8770 if (TYPE_CODE (get_base_type (range_type))
8771 != TYPE_CODE (get_base_type (encoding_type)))
8772 {
8773 /* The compiler probably used a simple base type to describe
8774 the range type instead of the range's actual base type,
8775 expecting us to get the real base type from the encoding
8776 anyway. In this situation, the encoding cannot be ignored
8777 as redundant. */
8778 return 0;
8779 }
8780
8781 if (is_dynamic_type (range_type))
8782 return 0;
8783
8784 if (TYPE_NAME (encoding_type) == NULL)
8785 return 0;
8786
8787 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8788 if (bounds_str == NULL)
8789 return 0;
8790
8791 n = 8; /* Skip "___XDLU_". */
8792 if (!ada_scan_number (bounds_str, n, &lo, &n))
8793 return 0;
8794 if (TYPE_LOW_BOUND (range_type) != lo)
8795 return 0;
8796
8797 n += 2; /* Skip the "__" separator between the two bounds. */
8798 if (!ada_scan_number (bounds_str, n, &hi, &n))
8799 return 0;
8800 if (TYPE_HIGH_BOUND (range_type) != hi)
8801 return 0;
8802
8803 return 1;
8804 }
8805
8806 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8807 a type following the GNAT encoding for describing array type
8808 indices, only carries redundant information. */
8809
8810 static int
8811 ada_is_redundant_index_type_desc (struct type *array_type,
8812 struct type *desc_type)
8813 {
8814 struct type *this_layer = check_typedef (array_type);
8815 int i;
8816
8817 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8818 {
8819 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8820 TYPE_FIELD_TYPE (desc_type, i)))
8821 return 0;
8822 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8823 }
8824
8825 return 1;
8826 }
8827
8828 /* Assuming that TYPE0 is an array type describing the type of a value
8829 at ADDR, and that DVAL describes a record containing any
8830 discriminants used in TYPE0, returns a type for the value that
8831 contains no dynamic components (that is, no components whose sizes
8832 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8833 true, gives an error message if the resulting type's size is over
8834 varsize_limit. */
8835
8836 static struct type *
8837 to_fixed_array_type (struct type *type0, struct value *dval,
8838 int ignore_too_big)
8839 {
8840 struct type *index_type_desc;
8841 struct type *result;
8842 int constrained_packed_array_p;
8843 static const char *xa_suffix = "___XA";
8844
8845 type0 = ada_check_typedef (type0);
8846 if (TYPE_FIXED_INSTANCE (type0))
8847 return type0;
8848
8849 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8850 if (constrained_packed_array_p)
8851 type0 = decode_constrained_packed_array_type (type0);
8852
8853 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8854
8855 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8856 encoding suffixed with 'P' may still be generated. If so,
8857 it should be used to find the XA type. */
8858
8859 if (index_type_desc == NULL)
8860 {
8861 const char *type_name = ada_type_name (type0);
8862
8863 if (type_name != NULL)
8864 {
8865 const int len = strlen (type_name);
8866 char *name = (char *) alloca (len + strlen (xa_suffix));
8867
8868 if (type_name[len - 1] == 'P')
8869 {
8870 strcpy (name, type_name);
8871 strcpy (name + len - 1, xa_suffix);
8872 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8873 }
8874 }
8875 }
8876
8877 ada_fixup_array_indexes_type (index_type_desc);
8878 if (index_type_desc != NULL
8879 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8880 {
8881 /* Ignore this ___XA parallel type, as it does not bring any
8882 useful information. This allows us to avoid creating fixed
8883 versions of the array's index types, which would be identical
8884 to the original ones. This, in turn, can also help avoid
8885 the creation of fixed versions of the array itself. */
8886 index_type_desc = NULL;
8887 }
8888
8889 if (index_type_desc == NULL)
8890 {
8891 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8892
8893 /* NOTE: elt_type---the fixed version of elt_type0---should never
8894 depend on the contents of the array in properly constructed
8895 debugging data. */
8896 /* Create a fixed version of the array element type.
8897 We're not providing the address of an element here,
8898 and thus the actual object value cannot be inspected to do
8899 the conversion. This should not be a problem, since arrays of
8900 unconstrained objects are not allowed. In particular, all
8901 the elements of an array of a tagged type should all be of
8902 the same type specified in the debugging info. No need to
8903 consult the object tag. */
8904 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8905
8906 /* Make sure we always create a new array type when dealing with
8907 packed array types, since we're going to fix-up the array
8908 type length and element bitsize a little further down. */
8909 if (elt_type0 == elt_type && !constrained_packed_array_p)
8910 result = type0;
8911 else
8912 result = create_array_type (alloc_type_copy (type0),
8913 elt_type, TYPE_INDEX_TYPE (type0));
8914 }
8915 else
8916 {
8917 int i;
8918 struct type *elt_type0;
8919
8920 elt_type0 = type0;
8921 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8922 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8923
8924 /* NOTE: result---the fixed version of elt_type0---should never
8925 depend on the contents of the array in properly constructed
8926 debugging data. */
8927 /* Create a fixed version of the array element type.
8928 We're not providing the address of an element here,
8929 and thus the actual object value cannot be inspected to do
8930 the conversion. This should not be a problem, since arrays of
8931 unconstrained objects are not allowed. In particular, all
8932 the elements of an array of a tagged type should all be of
8933 the same type specified in the debugging info. No need to
8934 consult the object tag. */
8935 result =
8936 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8937
8938 elt_type0 = type0;
8939 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8940 {
8941 struct type *range_type =
8942 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8943
8944 result = create_array_type (alloc_type_copy (elt_type0),
8945 result, range_type);
8946 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8947 }
8948 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8949 error (_("array type with dynamic size is larger than varsize-limit"));
8950 }
8951
8952 /* We want to preserve the type name. This can be useful when
8953 trying to get the type name of a value that has already been
8954 printed (for instance, if the user did "print VAR; whatis $". */
8955 TYPE_NAME (result) = TYPE_NAME (type0);
8956
8957 if (constrained_packed_array_p)
8958 {
8959 /* So far, the resulting type has been created as if the original
8960 type was a regular (non-packed) array type. As a result, the
8961 bitsize of the array elements needs to be set again, and the array
8962 length needs to be recomputed based on that bitsize. */
8963 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8964 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8965
8966 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8967 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8968 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8969 TYPE_LENGTH (result)++;
8970 }
8971
8972 TYPE_FIXED_INSTANCE (result) = 1;
8973 return result;
8974 }
8975
8976
8977 /* A standard type (containing no dynamically sized components)
8978 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8979 DVAL describes a record containing any discriminants used in TYPE0,
8980 and may be NULL if there are none, or if the object of type TYPE at
8981 ADDRESS or in VALADDR contains these discriminants.
8982
8983 If CHECK_TAG is not null, in the case of tagged types, this function
8984 attempts to locate the object's tag and use it to compute the actual
8985 type. However, when ADDRESS is null, we cannot use it to determine the
8986 location of the tag, and therefore compute the tagged type's actual type.
8987 So we return the tagged type without consulting the tag. */
8988
8989 static struct type *
8990 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8991 CORE_ADDR address, struct value *dval, int check_tag)
8992 {
8993 type = ada_check_typedef (type);
8994 switch (TYPE_CODE (type))
8995 {
8996 default:
8997 return type;
8998 case TYPE_CODE_STRUCT:
8999 {
9000 struct type *static_type = to_static_fixed_type (type);
9001 struct type *fixed_record_type =
9002 to_fixed_record_type (type, valaddr, address, NULL);
9003
9004 /* If STATIC_TYPE is a tagged type and we know the object's address,
9005 then we can determine its tag, and compute the object's actual
9006 type from there. Note that we have to use the fixed record
9007 type (the parent part of the record may have dynamic fields
9008 and the way the location of _tag is expressed may depend on
9009 them). */
9010
9011 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9012 {
9013 struct value *tag =
9014 value_tag_from_contents_and_address
9015 (fixed_record_type,
9016 valaddr,
9017 address);
9018 struct type *real_type = type_from_tag (tag);
9019 struct value *obj =
9020 value_from_contents_and_address (fixed_record_type,
9021 valaddr,
9022 address);
9023 fixed_record_type = value_type (obj);
9024 if (real_type != NULL)
9025 return to_fixed_record_type
9026 (real_type, NULL,
9027 value_address (ada_tag_value_at_base_address (obj)), NULL);
9028 }
9029
9030 /* Check to see if there is a parallel ___XVZ variable.
9031 If there is, then it provides the actual size of our type. */
9032 else if (ada_type_name (fixed_record_type) != NULL)
9033 {
9034 const char *name = ada_type_name (fixed_record_type);
9035 char *xvz_name
9036 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9037 bool xvz_found = false;
9038 LONGEST size;
9039
9040 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9041 TRY
9042 {
9043 xvz_found = get_int_var_value (xvz_name, size);
9044 }
9045 CATCH (except, RETURN_MASK_ERROR)
9046 {
9047 /* We found the variable, but somehow failed to read
9048 its value. Rethrow the same error, but with a little
9049 bit more information, to help the user understand
9050 what went wrong (Eg: the variable might have been
9051 optimized out). */
9052 throw_error (except.error,
9053 _("unable to read value of %s (%s)"),
9054 xvz_name, except.message);
9055 }
9056 END_CATCH
9057
9058 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9059 {
9060 fixed_record_type = copy_type (fixed_record_type);
9061 TYPE_LENGTH (fixed_record_type) = size;
9062
9063 /* The FIXED_RECORD_TYPE may have be a stub. We have
9064 observed this when the debugging info is STABS, and
9065 apparently it is something that is hard to fix.
9066
9067 In practice, we don't need the actual type definition
9068 at all, because the presence of the XVZ variable allows us
9069 to assume that there must be a XVS type as well, which we
9070 should be able to use later, when we need the actual type
9071 definition.
9072
9073 In the meantime, pretend that the "fixed" type we are
9074 returning is NOT a stub, because this can cause trouble
9075 when using this type to create new types targeting it.
9076 Indeed, the associated creation routines often check
9077 whether the target type is a stub and will try to replace
9078 it, thus using a type with the wrong size. This, in turn,
9079 might cause the new type to have the wrong size too.
9080 Consider the case of an array, for instance, where the size
9081 of the array is computed from the number of elements in
9082 our array multiplied by the size of its element. */
9083 TYPE_STUB (fixed_record_type) = 0;
9084 }
9085 }
9086 return fixed_record_type;
9087 }
9088 case TYPE_CODE_ARRAY:
9089 return to_fixed_array_type (type, dval, 1);
9090 case TYPE_CODE_UNION:
9091 if (dval == NULL)
9092 return type;
9093 else
9094 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9095 }
9096 }
9097
9098 /* The same as ada_to_fixed_type_1, except that it preserves the type
9099 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9100
9101 The typedef layer needs be preserved in order to differentiate between
9102 arrays and array pointers when both types are implemented using the same
9103 fat pointer. In the array pointer case, the pointer is encoded as
9104 a typedef of the pointer type. For instance, considering:
9105
9106 type String_Access is access String;
9107 S1 : String_Access := null;
9108
9109 To the debugger, S1 is defined as a typedef of type String. But
9110 to the user, it is a pointer. So if the user tries to print S1,
9111 we should not dereference the array, but print the array address
9112 instead.
9113
9114 If we didn't preserve the typedef layer, we would lose the fact that
9115 the type is to be presented as a pointer (needs de-reference before
9116 being printed). And we would also use the source-level type name. */
9117
9118 struct type *
9119 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9120 CORE_ADDR address, struct value *dval, int check_tag)
9121
9122 {
9123 struct type *fixed_type =
9124 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9125
9126 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9127 then preserve the typedef layer.
9128
9129 Implementation note: We can only check the main-type portion of
9130 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9131 from TYPE now returns a type that has the same instance flags
9132 as TYPE. For instance, if TYPE is a "typedef const", and its
9133 target type is a "struct", then the typedef elimination will return
9134 a "const" version of the target type. See check_typedef for more
9135 details about how the typedef layer elimination is done.
9136
9137 brobecker/2010-11-19: It seems to me that the only case where it is
9138 useful to preserve the typedef layer is when dealing with fat pointers.
9139 Perhaps, we could add a check for that and preserve the typedef layer
9140 only in that situation. But this seems unecessary so far, probably
9141 because we call check_typedef/ada_check_typedef pretty much everywhere.
9142 */
9143 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9144 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9145 == TYPE_MAIN_TYPE (fixed_type)))
9146 return type;
9147
9148 return fixed_type;
9149 }
9150
9151 /* A standard (static-sized) type corresponding as well as possible to
9152 TYPE0, but based on no runtime data. */
9153
9154 static struct type *
9155 to_static_fixed_type (struct type *type0)
9156 {
9157 struct type *type;
9158
9159 if (type0 == NULL)
9160 return NULL;
9161
9162 if (TYPE_FIXED_INSTANCE (type0))
9163 return type0;
9164
9165 type0 = ada_check_typedef (type0);
9166
9167 switch (TYPE_CODE (type0))
9168 {
9169 default:
9170 return type0;
9171 case TYPE_CODE_STRUCT:
9172 type = dynamic_template_type (type0);
9173 if (type != NULL)
9174 return template_to_static_fixed_type (type);
9175 else
9176 return template_to_static_fixed_type (type0);
9177 case TYPE_CODE_UNION:
9178 type = ada_find_parallel_type (type0, "___XVU");
9179 if (type != NULL)
9180 return template_to_static_fixed_type (type);
9181 else
9182 return template_to_static_fixed_type (type0);
9183 }
9184 }
9185
9186 /* A static approximation of TYPE with all type wrappers removed. */
9187
9188 static struct type *
9189 static_unwrap_type (struct type *type)
9190 {
9191 if (ada_is_aligner_type (type))
9192 {
9193 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9194 if (ada_type_name (type1) == NULL)
9195 TYPE_NAME (type1) = ada_type_name (type);
9196
9197 return static_unwrap_type (type1);
9198 }
9199 else
9200 {
9201 struct type *raw_real_type = ada_get_base_type (type);
9202
9203 if (raw_real_type == type)
9204 return type;
9205 else
9206 return to_static_fixed_type (raw_real_type);
9207 }
9208 }
9209
9210 /* In some cases, incomplete and private types require
9211 cross-references that are not resolved as records (for example,
9212 type Foo;
9213 type FooP is access Foo;
9214 V: FooP;
9215 type Foo is array ...;
9216 ). In these cases, since there is no mechanism for producing
9217 cross-references to such types, we instead substitute for FooP a
9218 stub enumeration type that is nowhere resolved, and whose tag is
9219 the name of the actual type. Call these types "non-record stubs". */
9220
9221 /* A type equivalent to TYPE that is not a non-record stub, if one
9222 exists, otherwise TYPE. */
9223
9224 struct type *
9225 ada_check_typedef (struct type *type)
9226 {
9227 if (type == NULL)
9228 return NULL;
9229
9230 /* If our type is an access to an unconstrained array, which is encoded
9231 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9232 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9233 what allows us to distinguish between fat pointers that represent
9234 array types, and fat pointers that represent array access types
9235 (in both cases, the compiler implements them as fat pointers). */
9236 if (ada_is_access_to_unconstrained_array (type))
9237 return type;
9238
9239 type = check_typedef (type);
9240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9241 || !TYPE_STUB (type)
9242 || TYPE_NAME (type) == NULL)
9243 return type;
9244 else
9245 {
9246 const char *name = TYPE_NAME (type);
9247 struct type *type1 = ada_find_any_type (name);
9248
9249 if (type1 == NULL)
9250 return type;
9251
9252 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9253 stubs pointing to arrays, as we don't create symbols for array
9254 types, only for the typedef-to-array types). If that's the case,
9255 strip the typedef layer. */
9256 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9257 type1 = ada_check_typedef (type1);
9258
9259 return type1;
9260 }
9261 }
9262
9263 /* A value representing the data at VALADDR/ADDRESS as described by
9264 type TYPE0, but with a standard (static-sized) type that correctly
9265 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9266 type, then return VAL0 [this feature is simply to avoid redundant
9267 creation of struct values]. */
9268
9269 static struct value *
9270 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9271 struct value *val0)
9272 {
9273 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9274
9275 if (type == type0 && val0 != NULL)
9276 return val0;
9277
9278 if (VALUE_LVAL (val0) != lval_memory)
9279 {
9280 /* Our value does not live in memory; it could be a convenience
9281 variable, for instance. Create a not_lval value using val0's
9282 contents. */
9283 return value_from_contents (type, value_contents (val0));
9284 }
9285
9286 return value_from_contents_and_address (type, 0, address);
9287 }
9288
9289 /* A value representing VAL, but with a standard (static-sized) type
9290 that correctly describes it. Does not necessarily create a new
9291 value. */
9292
9293 struct value *
9294 ada_to_fixed_value (struct value *val)
9295 {
9296 val = unwrap_value (val);
9297 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9298 return val;
9299 }
9300 \f
9301
9302 /* Attributes */
9303
9304 /* Table mapping attribute numbers to names.
9305 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9306
9307 static const char *attribute_names[] = {
9308 "<?>",
9309
9310 "first",
9311 "last",
9312 "length",
9313 "image",
9314 "max",
9315 "min",
9316 "modulus",
9317 "pos",
9318 "size",
9319 "tag",
9320 "val",
9321 0
9322 };
9323
9324 const char *
9325 ada_attribute_name (enum exp_opcode n)
9326 {
9327 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9328 return attribute_names[n - OP_ATR_FIRST + 1];
9329 else
9330 return attribute_names[0];
9331 }
9332
9333 /* Evaluate the 'POS attribute applied to ARG. */
9334
9335 static LONGEST
9336 pos_atr (struct value *arg)
9337 {
9338 struct value *val = coerce_ref (arg);
9339 struct type *type = value_type (val);
9340 LONGEST result;
9341
9342 if (!discrete_type_p (type))
9343 error (_("'POS only defined on discrete types"));
9344
9345 if (!discrete_position (type, value_as_long (val), &result))
9346 error (_("enumeration value is invalid: can't find 'POS"));
9347
9348 return result;
9349 }
9350
9351 static struct value *
9352 value_pos_atr (struct type *type, struct value *arg)
9353 {
9354 return value_from_longest (type, pos_atr (arg));
9355 }
9356
9357 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9358
9359 static struct value *
9360 value_val_atr (struct type *type, struct value *arg)
9361 {
9362 if (!discrete_type_p (type))
9363 error (_("'VAL only defined on discrete types"));
9364 if (!integer_type_p (value_type (arg)))
9365 error (_("'VAL requires integral argument"));
9366
9367 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9368 {
9369 long pos = value_as_long (arg);
9370
9371 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9372 error (_("argument to 'VAL out of range"));
9373 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9374 }
9375 else
9376 return value_from_longest (type, value_as_long (arg));
9377 }
9378 \f
9379
9380 /* Evaluation */
9381
9382 /* True if TYPE appears to be an Ada character type.
9383 [At the moment, this is true only for Character and Wide_Character;
9384 It is a heuristic test that could stand improvement]. */
9385
9386 int
9387 ada_is_character_type (struct type *type)
9388 {
9389 const char *name;
9390
9391 /* If the type code says it's a character, then assume it really is,
9392 and don't check any further. */
9393 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9394 return 1;
9395
9396 /* Otherwise, assume it's a character type iff it is a discrete type
9397 with a known character type name. */
9398 name = ada_type_name (type);
9399 return (name != NULL
9400 && (TYPE_CODE (type) == TYPE_CODE_INT
9401 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9402 && (strcmp (name, "character") == 0
9403 || strcmp (name, "wide_character") == 0
9404 || strcmp (name, "wide_wide_character") == 0
9405 || strcmp (name, "unsigned char") == 0));
9406 }
9407
9408 /* True if TYPE appears to be an Ada string type. */
9409
9410 int
9411 ada_is_string_type (struct type *type)
9412 {
9413 type = ada_check_typedef (type);
9414 if (type != NULL
9415 && TYPE_CODE (type) != TYPE_CODE_PTR
9416 && (ada_is_simple_array_type (type)
9417 || ada_is_array_descriptor_type (type))
9418 && ada_array_arity (type) == 1)
9419 {
9420 struct type *elttype = ada_array_element_type (type, 1);
9421
9422 return ada_is_character_type (elttype);
9423 }
9424 else
9425 return 0;
9426 }
9427
9428 /* The compiler sometimes provides a parallel XVS type for a given
9429 PAD type. Normally, it is safe to follow the PAD type directly,
9430 but older versions of the compiler have a bug that causes the offset
9431 of its "F" field to be wrong. Following that field in that case
9432 would lead to incorrect results, but this can be worked around
9433 by ignoring the PAD type and using the associated XVS type instead.
9434
9435 Set to True if the debugger should trust the contents of PAD types.
9436 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9437 static int trust_pad_over_xvs = 1;
9438
9439 /* True if TYPE is a struct type introduced by the compiler to force the
9440 alignment of a value. Such types have a single field with a
9441 distinctive name. */
9442
9443 int
9444 ada_is_aligner_type (struct type *type)
9445 {
9446 type = ada_check_typedef (type);
9447
9448 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9449 return 0;
9450
9451 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9452 && TYPE_NFIELDS (type) == 1
9453 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9454 }
9455
9456 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9457 the parallel type. */
9458
9459 struct type *
9460 ada_get_base_type (struct type *raw_type)
9461 {
9462 struct type *real_type_namer;
9463 struct type *raw_real_type;
9464
9465 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9466 return raw_type;
9467
9468 if (ada_is_aligner_type (raw_type))
9469 /* The encoding specifies that we should always use the aligner type.
9470 So, even if this aligner type has an associated XVS type, we should
9471 simply ignore it.
9472
9473 According to the compiler gurus, an XVS type parallel to an aligner
9474 type may exist because of a stabs limitation. In stabs, aligner
9475 types are empty because the field has a variable-sized type, and
9476 thus cannot actually be used as an aligner type. As a result,
9477 we need the associated parallel XVS type to decode the type.
9478 Since the policy in the compiler is to not change the internal
9479 representation based on the debugging info format, we sometimes
9480 end up having a redundant XVS type parallel to the aligner type. */
9481 return raw_type;
9482
9483 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9484 if (real_type_namer == NULL
9485 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9486 || TYPE_NFIELDS (real_type_namer) != 1)
9487 return raw_type;
9488
9489 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9490 {
9491 /* This is an older encoding form where the base type needs to be
9492 looked up by name. We prefer the newer enconding because it is
9493 more efficient. */
9494 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9495 if (raw_real_type == NULL)
9496 return raw_type;
9497 else
9498 return raw_real_type;
9499 }
9500
9501 /* The field in our XVS type is a reference to the base type. */
9502 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9503 }
9504
9505 /* The type of value designated by TYPE, with all aligners removed. */
9506
9507 struct type *
9508 ada_aligned_type (struct type *type)
9509 {
9510 if (ada_is_aligner_type (type))
9511 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9512 else
9513 return ada_get_base_type (type);
9514 }
9515
9516
9517 /* The address of the aligned value in an object at address VALADDR
9518 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9519
9520 const gdb_byte *
9521 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9522 {
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9525 valaddr +
9526 TYPE_FIELD_BITPOS (type,
9527 0) / TARGET_CHAR_BIT);
9528 else
9529 return valaddr;
9530 }
9531
9532
9533
9534 /* The printed representation of an enumeration literal with encoded
9535 name NAME. The value is good to the next call of ada_enum_name. */
9536 const char *
9537 ada_enum_name (const char *name)
9538 {
9539 static char *result;
9540 static size_t result_len = 0;
9541 const char *tmp;
9542
9543 /* First, unqualify the enumeration name:
9544 1. Search for the last '.' character. If we find one, then skip
9545 all the preceding characters, the unqualified name starts
9546 right after that dot.
9547 2. Otherwise, we may be debugging on a target where the compiler
9548 translates dots into "__". Search forward for double underscores,
9549 but stop searching when we hit an overloading suffix, which is
9550 of the form "__" followed by digits. */
9551
9552 tmp = strrchr (name, '.');
9553 if (tmp != NULL)
9554 name = tmp + 1;
9555 else
9556 {
9557 while ((tmp = strstr (name, "__")) != NULL)
9558 {
9559 if (isdigit (tmp[2]))
9560 break;
9561 else
9562 name = tmp + 2;
9563 }
9564 }
9565
9566 if (name[0] == 'Q')
9567 {
9568 int v;
9569
9570 if (name[1] == 'U' || name[1] == 'W')
9571 {
9572 if (sscanf (name + 2, "%x", &v) != 1)
9573 return name;
9574 }
9575 else
9576 return name;
9577
9578 GROW_VECT (result, result_len, 16);
9579 if (isascii (v) && isprint (v))
9580 xsnprintf (result, result_len, "'%c'", v);
9581 else if (name[1] == 'U')
9582 xsnprintf (result, result_len, "[\"%02x\"]", v);
9583 else
9584 xsnprintf (result, result_len, "[\"%04x\"]", v);
9585
9586 return result;
9587 }
9588 else
9589 {
9590 tmp = strstr (name, "__");
9591 if (tmp == NULL)
9592 tmp = strstr (name, "$");
9593 if (tmp != NULL)
9594 {
9595 GROW_VECT (result, result_len, tmp - name + 1);
9596 strncpy (result, name, tmp - name);
9597 result[tmp - name] = '\0';
9598 return result;
9599 }
9600
9601 return name;
9602 }
9603 }
9604
9605 /* Evaluate the subexpression of EXP starting at *POS as for
9606 evaluate_type, updating *POS to point just past the evaluated
9607 expression. */
9608
9609 static struct value *
9610 evaluate_subexp_type (struct expression *exp, int *pos)
9611 {
9612 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9613 }
9614
9615 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9616 value it wraps. */
9617
9618 static struct value *
9619 unwrap_value (struct value *val)
9620 {
9621 struct type *type = ada_check_typedef (value_type (val));
9622
9623 if (ada_is_aligner_type (type))
9624 {
9625 struct value *v = ada_value_struct_elt (val, "F", 0);
9626 struct type *val_type = ada_check_typedef (value_type (v));
9627
9628 if (ada_type_name (val_type) == NULL)
9629 TYPE_NAME (val_type) = ada_type_name (type);
9630
9631 return unwrap_value (v);
9632 }
9633 else
9634 {
9635 struct type *raw_real_type =
9636 ada_check_typedef (ada_get_base_type (type));
9637
9638 /* If there is no parallel XVS or XVE type, then the value is
9639 already unwrapped. Return it without further modification. */
9640 if ((type == raw_real_type)
9641 && ada_find_parallel_type (type, "___XVE") == NULL)
9642 return val;
9643
9644 return
9645 coerce_unspec_val_to_type
9646 (val, ada_to_fixed_type (raw_real_type, 0,
9647 value_address (val),
9648 NULL, 1));
9649 }
9650 }
9651
9652 static struct value *
9653 cast_from_fixed (struct type *type, struct value *arg)
9654 {
9655 struct value *scale = ada_scaling_factor (value_type (arg));
9656 arg = value_cast (value_type (scale), arg);
9657
9658 arg = value_binop (arg, scale, BINOP_MUL);
9659 return value_cast (type, arg);
9660 }
9661
9662 static struct value *
9663 cast_to_fixed (struct type *type, struct value *arg)
9664 {
9665 if (type == value_type (arg))
9666 return arg;
9667
9668 struct value *scale = ada_scaling_factor (type);
9669 if (ada_is_fixed_point_type (value_type (arg)))
9670 arg = cast_from_fixed (value_type (scale), arg);
9671 else
9672 arg = value_cast (value_type (scale), arg);
9673
9674 arg = value_binop (arg, scale, BINOP_DIV);
9675 return value_cast (type, arg);
9676 }
9677
9678 /* Given two array types T1 and T2, return nonzero iff both arrays
9679 contain the same number of elements. */
9680
9681 static int
9682 ada_same_array_size_p (struct type *t1, struct type *t2)
9683 {
9684 LONGEST lo1, hi1, lo2, hi2;
9685
9686 /* Get the array bounds in order to verify that the size of
9687 the two arrays match. */
9688 if (!get_array_bounds (t1, &lo1, &hi1)
9689 || !get_array_bounds (t2, &lo2, &hi2))
9690 error (_("unable to determine array bounds"));
9691
9692 /* To make things easier for size comparison, normalize a bit
9693 the case of empty arrays by making sure that the difference
9694 between upper bound and lower bound is always -1. */
9695 if (lo1 > hi1)
9696 hi1 = lo1 - 1;
9697 if (lo2 > hi2)
9698 hi2 = lo2 - 1;
9699
9700 return (hi1 - lo1 == hi2 - lo2);
9701 }
9702
9703 /* Assuming that VAL is an array of integrals, and TYPE represents
9704 an array with the same number of elements, but with wider integral
9705 elements, return an array "casted" to TYPE. In practice, this
9706 means that the returned array is built by casting each element
9707 of the original array into TYPE's (wider) element type. */
9708
9709 static struct value *
9710 ada_promote_array_of_integrals (struct type *type, struct value *val)
9711 {
9712 struct type *elt_type = TYPE_TARGET_TYPE (type);
9713 LONGEST lo, hi;
9714 struct value *res;
9715 LONGEST i;
9716
9717 /* Verify that both val and type are arrays of scalars, and
9718 that the size of val's elements is smaller than the size
9719 of type's element. */
9720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9721 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9722 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9723 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9724 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9725 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9726
9727 if (!get_array_bounds (type, &lo, &hi))
9728 error (_("unable to determine array bounds"));
9729
9730 res = allocate_value (type);
9731
9732 /* Promote each array element. */
9733 for (i = 0; i < hi - lo + 1; i++)
9734 {
9735 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9736
9737 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9738 value_contents_all (elt), TYPE_LENGTH (elt_type));
9739 }
9740
9741 return res;
9742 }
9743
9744 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9745 return the converted value. */
9746
9747 static struct value *
9748 coerce_for_assign (struct type *type, struct value *val)
9749 {
9750 struct type *type2 = value_type (val);
9751
9752 if (type == type2)
9753 return val;
9754
9755 type2 = ada_check_typedef (type2);
9756 type = ada_check_typedef (type);
9757
9758 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9759 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9760 {
9761 val = ada_value_ind (val);
9762 type2 = value_type (val);
9763 }
9764
9765 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9766 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9767 {
9768 if (!ada_same_array_size_p (type, type2))
9769 error (_("cannot assign arrays of different length"));
9770
9771 if (is_integral_type (TYPE_TARGET_TYPE (type))
9772 && is_integral_type (TYPE_TARGET_TYPE (type2))
9773 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9774 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9775 {
9776 /* Allow implicit promotion of the array elements to
9777 a wider type. */
9778 return ada_promote_array_of_integrals (type, val);
9779 }
9780
9781 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9783 error (_("Incompatible types in assignment"));
9784 deprecated_set_value_type (val, type);
9785 }
9786 return val;
9787 }
9788
9789 static struct value *
9790 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9791 {
9792 struct value *val;
9793 struct type *type1, *type2;
9794 LONGEST v, v1, v2;
9795
9796 arg1 = coerce_ref (arg1);
9797 arg2 = coerce_ref (arg2);
9798 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9799 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9800
9801 if (TYPE_CODE (type1) != TYPE_CODE_INT
9802 || TYPE_CODE (type2) != TYPE_CODE_INT)
9803 return value_binop (arg1, arg2, op);
9804
9805 switch (op)
9806 {
9807 case BINOP_MOD:
9808 case BINOP_DIV:
9809 case BINOP_REM:
9810 break;
9811 default:
9812 return value_binop (arg1, arg2, op);
9813 }
9814
9815 v2 = value_as_long (arg2);
9816 if (v2 == 0)
9817 error (_("second operand of %s must not be zero."), op_string (op));
9818
9819 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9820 return value_binop (arg1, arg2, op);
9821
9822 v1 = value_as_long (arg1);
9823 switch (op)
9824 {
9825 case BINOP_DIV:
9826 v = v1 / v2;
9827 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9828 v += v > 0 ? -1 : 1;
9829 break;
9830 case BINOP_REM:
9831 v = v1 % v2;
9832 if (v * v1 < 0)
9833 v -= v2;
9834 break;
9835 default:
9836 /* Should not reach this point. */
9837 v = 0;
9838 }
9839
9840 val = allocate_value (type1);
9841 store_unsigned_integer (value_contents_raw (val),
9842 TYPE_LENGTH (value_type (val)),
9843 gdbarch_byte_order (get_type_arch (type1)), v);
9844 return val;
9845 }
9846
9847 static int
9848 ada_value_equal (struct value *arg1, struct value *arg2)
9849 {
9850 if (ada_is_direct_array_type (value_type (arg1))
9851 || ada_is_direct_array_type (value_type (arg2)))
9852 {
9853 struct type *arg1_type, *arg2_type;
9854
9855 /* Automatically dereference any array reference before
9856 we attempt to perform the comparison. */
9857 arg1 = ada_coerce_ref (arg1);
9858 arg2 = ada_coerce_ref (arg2);
9859
9860 arg1 = ada_coerce_to_simple_array (arg1);
9861 arg2 = ada_coerce_to_simple_array (arg2);
9862
9863 arg1_type = ada_check_typedef (value_type (arg1));
9864 arg2_type = ada_check_typedef (value_type (arg2));
9865
9866 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9867 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9868 error (_("Attempt to compare array with non-array"));
9869 /* FIXME: The following works only for types whose
9870 representations use all bits (no padding or undefined bits)
9871 and do not have user-defined equality. */
9872 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9873 && memcmp (value_contents (arg1), value_contents (arg2),
9874 TYPE_LENGTH (arg1_type)) == 0);
9875 }
9876 return value_equal (arg1, arg2);
9877 }
9878
9879 /* Total number of component associations in the aggregate starting at
9880 index PC in EXP. Assumes that index PC is the start of an
9881 OP_AGGREGATE. */
9882
9883 static int
9884 num_component_specs (struct expression *exp, int pc)
9885 {
9886 int n, m, i;
9887
9888 m = exp->elts[pc + 1].longconst;
9889 pc += 3;
9890 n = 0;
9891 for (i = 0; i < m; i += 1)
9892 {
9893 switch (exp->elts[pc].opcode)
9894 {
9895 default:
9896 n += 1;
9897 break;
9898 case OP_CHOICES:
9899 n += exp->elts[pc + 1].longconst;
9900 break;
9901 }
9902 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9903 }
9904 return n;
9905 }
9906
9907 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9908 component of LHS (a simple array or a record), updating *POS past
9909 the expression, assuming that LHS is contained in CONTAINER. Does
9910 not modify the inferior's memory, nor does it modify LHS (unless
9911 LHS == CONTAINER). */
9912
9913 static void
9914 assign_component (struct value *container, struct value *lhs, LONGEST index,
9915 struct expression *exp, int *pos)
9916 {
9917 struct value *mark = value_mark ();
9918 struct value *elt;
9919 struct type *lhs_type = check_typedef (value_type (lhs));
9920
9921 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9922 {
9923 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9924 struct value *index_val = value_from_longest (index_type, index);
9925
9926 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9927 }
9928 else
9929 {
9930 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9931 elt = ada_to_fixed_value (elt);
9932 }
9933
9934 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9935 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9936 else
9937 value_assign_to_component (container, elt,
9938 ada_evaluate_subexp (NULL, exp, pos,
9939 EVAL_NORMAL));
9940
9941 value_free_to_mark (mark);
9942 }
9943
9944 /* Assuming that LHS represents an lvalue having a record or array
9945 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9946 of that aggregate's value to LHS, advancing *POS past the
9947 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9948 lvalue containing LHS (possibly LHS itself). Does not modify
9949 the inferior's memory, nor does it modify the contents of
9950 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9951
9952 static struct value *
9953 assign_aggregate (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, enum noside noside)
9956 {
9957 struct type *lhs_type;
9958 int n = exp->elts[*pos+1].longconst;
9959 LONGEST low_index, high_index;
9960 int num_specs;
9961 LONGEST *indices;
9962 int max_indices, num_indices;
9963 int i;
9964
9965 *pos += 3;
9966 if (noside != EVAL_NORMAL)
9967 {
9968 for (i = 0; i < n; i += 1)
9969 ada_evaluate_subexp (NULL, exp, pos, noside);
9970 return container;
9971 }
9972
9973 container = ada_coerce_ref (container);
9974 if (ada_is_direct_array_type (value_type (container)))
9975 container = ada_coerce_to_simple_array (container);
9976 lhs = ada_coerce_ref (lhs);
9977 if (!deprecated_value_modifiable (lhs))
9978 error (_("Left operand of assignment is not a modifiable lvalue."));
9979
9980 lhs_type = check_typedef (value_type (lhs));
9981 if (ada_is_direct_array_type (lhs_type))
9982 {
9983 lhs = ada_coerce_to_simple_array (lhs);
9984 lhs_type = check_typedef (value_type (lhs));
9985 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9986 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9987 }
9988 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9989 {
9990 low_index = 0;
9991 high_index = num_visible_fields (lhs_type) - 1;
9992 }
9993 else
9994 error (_("Left-hand side must be array or record."));
9995
9996 num_specs = num_component_specs (exp, *pos - 3);
9997 max_indices = 4 * num_specs + 4;
9998 indices = XALLOCAVEC (LONGEST, max_indices);
9999 indices[0] = indices[1] = low_index - 1;
10000 indices[2] = indices[3] = high_index + 1;
10001 num_indices = 4;
10002
10003 for (i = 0; i < n; i += 1)
10004 {
10005 switch (exp->elts[*pos].opcode)
10006 {
10007 case OP_CHOICES:
10008 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10009 &num_indices, max_indices,
10010 low_index, high_index);
10011 break;
10012 case OP_POSITIONAL:
10013 aggregate_assign_positional (container, lhs, exp, pos, indices,
10014 &num_indices, max_indices,
10015 low_index, high_index);
10016 break;
10017 case OP_OTHERS:
10018 if (i != n-1)
10019 error (_("Misplaced 'others' clause"));
10020 aggregate_assign_others (container, lhs, exp, pos, indices,
10021 num_indices, low_index, high_index);
10022 break;
10023 default:
10024 error (_("Internal error: bad aggregate clause"));
10025 }
10026 }
10027
10028 return container;
10029 }
10030
10031 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10032 construct at *POS, updating *POS past the construct, given that
10033 the positions are relative to lower bound LOW, where HIGH is the
10034 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10035 updating *NUM_INDICES as needed. CONTAINER is as for
10036 assign_aggregate. */
10037 static void
10038 aggregate_assign_positional (struct value *container,
10039 struct value *lhs, struct expression *exp,
10040 int *pos, LONGEST *indices, int *num_indices,
10041 int max_indices, LONGEST low, LONGEST high)
10042 {
10043 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10044
10045 if (ind - 1 == high)
10046 warning (_("Extra components in aggregate ignored."));
10047 if (ind <= high)
10048 {
10049 add_component_interval (ind, ind, indices, num_indices, max_indices);
10050 *pos += 3;
10051 assign_component (container, lhs, ind, exp, pos);
10052 }
10053 else
10054 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10055 }
10056
10057 /* Assign into the components of LHS indexed by the OP_CHOICES
10058 construct at *POS, updating *POS past the construct, given that
10059 the allowable indices are LOW..HIGH. Record the indices assigned
10060 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10061 needed. CONTAINER is as for assign_aggregate. */
10062 static void
10063 aggregate_assign_from_choices (struct value *container,
10064 struct value *lhs, struct expression *exp,
10065 int *pos, LONGEST *indices, int *num_indices,
10066 int max_indices, LONGEST low, LONGEST high)
10067 {
10068 int j;
10069 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10070 int choice_pos, expr_pc;
10071 int is_array = ada_is_direct_array_type (value_type (lhs));
10072
10073 choice_pos = *pos += 3;
10074
10075 for (j = 0; j < n_choices; j += 1)
10076 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10077 expr_pc = *pos;
10078 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10079
10080 for (j = 0; j < n_choices; j += 1)
10081 {
10082 LONGEST lower, upper;
10083 enum exp_opcode op = exp->elts[choice_pos].opcode;
10084
10085 if (op == OP_DISCRETE_RANGE)
10086 {
10087 choice_pos += 1;
10088 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10089 EVAL_NORMAL));
10090 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10091 EVAL_NORMAL));
10092 }
10093 else if (is_array)
10094 {
10095 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10096 EVAL_NORMAL));
10097 upper = lower;
10098 }
10099 else
10100 {
10101 int ind;
10102 const char *name;
10103
10104 switch (op)
10105 {
10106 case OP_NAME:
10107 name = &exp->elts[choice_pos + 2].string;
10108 break;
10109 case OP_VAR_VALUE:
10110 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10111 break;
10112 default:
10113 error (_("Invalid record component association."));
10114 }
10115 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10116 ind = 0;
10117 if (! find_struct_field (name, value_type (lhs), 0,
10118 NULL, NULL, NULL, NULL, &ind))
10119 error (_("Unknown component name: %s."), name);
10120 lower = upper = ind;
10121 }
10122
10123 if (lower <= upper && (lower < low || upper > high))
10124 error (_("Index in component association out of bounds."));
10125
10126 add_component_interval (lower, upper, indices, num_indices,
10127 max_indices);
10128 while (lower <= upper)
10129 {
10130 int pos1;
10131
10132 pos1 = expr_pc;
10133 assign_component (container, lhs, lower, exp, &pos1);
10134 lower += 1;
10135 }
10136 }
10137 }
10138
10139 /* Assign the value of the expression in the OP_OTHERS construct in
10140 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10141 have not been previously assigned. The index intervals already assigned
10142 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10143 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10144 static void
10145 aggregate_assign_others (struct value *container,
10146 struct value *lhs, struct expression *exp,
10147 int *pos, LONGEST *indices, int num_indices,
10148 LONGEST low, LONGEST high)
10149 {
10150 int i;
10151 int expr_pc = *pos + 1;
10152
10153 for (i = 0; i < num_indices - 2; i += 2)
10154 {
10155 LONGEST ind;
10156
10157 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10158 {
10159 int localpos;
10160
10161 localpos = expr_pc;
10162 assign_component (container, lhs, ind, exp, &localpos);
10163 }
10164 }
10165 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10166 }
10167
10168 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10169 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10170 modifying *SIZE as needed. It is an error if *SIZE exceeds
10171 MAX_SIZE. The resulting intervals do not overlap. */
10172 static void
10173 add_component_interval (LONGEST low, LONGEST high,
10174 LONGEST* indices, int *size, int max_size)
10175 {
10176 int i, j;
10177
10178 for (i = 0; i < *size; i += 2) {
10179 if (high >= indices[i] && low <= indices[i + 1])
10180 {
10181 int kh;
10182
10183 for (kh = i + 2; kh < *size; kh += 2)
10184 if (high < indices[kh])
10185 break;
10186 if (low < indices[i])
10187 indices[i] = low;
10188 indices[i + 1] = indices[kh - 1];
10189 if (high > indices[i + 1])
10190 indices[i + 1] = high;
10191 memcpy (indices + i + 2, indices + kh, *size - kh);
10192 *size -= kh - i - 2;
10193 return;
10194 }
10195 else if (high < indices[i])
10196 break;
10197 }
10198
10199 if (*size == max_size)
10200 error (_("Internal error: miscounted aggregate components."));
10201 *size += 2;
10202 for (j = *size-1; j >= i+2; j -= 1)
10203 indices[j] = indices[j - 2];
10204 indices[i] = low;
10205 indices[i + 1] = high;
10206 }
10207
10208 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10209 is different. */
10210
10211 static struct value *
10212 ada_value_cast (struct type *type, struct value *arg2)
10213 {
10214 if (type == ada_check_typedef (value_type (arg2)))
10215 return arg2;
10216
10217 if (ada_is_fixed_point_type (type))
10218 return cast_to_fixed (type, arg2);
10219
10220 if (ada_is_fixed_point_type (value_type (arg2)))
10221 return cast_from_fixed (type, arg2);
10222
10223 return value_cast (type, arg2);
10224 }
10225
10226 /* Evaluating Ada expressions, and printing their result.
10227 ------------------------------------------------------
10228
10229 1. Introduction:
10230 ----------------
10231
10232 We usually evaluate an Ada expression in order to print its value.
10233 We also evaluate an expression in order to print its type, which
10234 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10235 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10236 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10237 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10238 similar.
10239
10240 Evaluating expressions is a little more complicated for Ada entities
10241 than it is for entities in languages such as C. The main reason for
10242 this is that Ada provides types whose definition might be dynamic.
10243 One example of such types is variant records. Or another example
10244 would be an array whose bounds can only be known at run time.
10245
10246 The following description is a general guide as to what should be
10247 done (and what should NOT be done) in order to evaluate an expression
10248 involving such types, and when. This does not cover how the semantic
10249 information is encoded by GNAT as this is covered separatly. For the
10250 document used as the reference for the GNAT encoding, see exp_dbug.ads
10251 in the GNAT sources.
10252
10253 Ideally, we should embed each part of this description next to its
10254 associated code. Unfortunately, the amount of code is so vast right
10255 now that it's hard to see whether the code handling a particular
10256 situation might be duplicated or not. One day, when the code is
10257 cleaned up, this guide might become redundant with the comments
10258 inserted in the code, and we might want to remove it.
10259
10260 2. ``Fixing'' an Entity, the Simple Case:
10261 -----------------------------------------
10262
10263 When evaluating Ada expressions, the tricky issue is that they may
10264 reference entities whose type contents and size are not statically
10265 known. Consider for instance a variant record:
10266
10267 type Rec (Empty : Boolean := True) is record
10268 case Empty is
10269 when True => null;
10270 when False => Value : Integer;
10271 end case;
10272 end record;
10273 Yes : Rec := (Empty => False, Value => 1);
10274 No : Rec := (empty => True);
10275
10276 The size and contents of that record depends on the value of the
10277 descriminant (Rec.Empty). At this point, neither the debugging
10278 information nor the associated type structure in GDB are able to
10279 express such dynamic types. So what the debugger does is to create
10280 "fixed" versions of the type that applies to the specific object.
10281 We also informally refer to this opperation as "fixing" an object,
10282 which means creating its associated fixed type.
10283
10284 Example: when printing the value of variable "Yes" above, its fixed
10285 type would look like this:
10286
10287 type Rec is record
10288 Empty : Boolean;
10289 Value : Integer;
10290 end record;
10291
10292 On the other hand, if we printed the value of "No", its fixed type
10293 would become:
10294
10295 type Rec is record
10296 Empty : Boolean;
10297 end record;
10298
10299 Things become a little more complicated when trying to fix an entity
10300 with a dynamic type that directly contains another dynamic type,
10301 such as an array of variant records, for instance. There are
10302 two possible cases: Arrays, and records.
10303
10304 3. ``Fixing'' Arrays:
10305 ---------------------
10306
10307 The type structure in GDB describes an array in terms of its bounds,
10308 and the type of its elements. By design, all elements in the array
10309 have the same type and we cannot represent an array of variant elements
10310 using the current type structure in GDB. When fixing an array,
10311 we cannot fix the array element, as we would potentially need one
10312 fixed type per element of the array. As a result, the best we can do
10313 when fixing an array is to produce an array whose bounds and size
10314 are correct (allowing us to read it from memory), but without having
10315 touched its element type. Fixing each element will be done later,
10316 when (if) necessary.
10317
10318 Arrays are a little simpler to handle than records, because the same
10319 amount of memory is allocated for each element of the array, even if
10320 the amount of space actually used by each element differs from element
10321 to element. Consider for instance the following array of type Rec:
10322
10323 type Rec_Array is array (1 .. 2) of Rec;
10324
10325 The actual amount of memory occupied by each element might be different
10326 from element to element, depending on the value of their discriminant.
10327 But the amount of space reserved for each element in the array remains
10328 fixed regardless. So we simply need to compute that size using
10329 the debugging information available, from which we can then determine
10330 the array size (we multiply the number of elements of the array by
10331 the size of each element).
10332
10333 The simplest case is when we have an array of a constrained element
10334 type. For instance, consider the following type declarations:
10335
10336 type Bounded_String (Max_Size : Integer) is
10337 Length : Integer;
10338 Buffer : String (1 .. Max_Size);
10339 end record;
10340 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10341
10342 In this case, the compiler describes the array as an array of
10343 variable-size elements (identified by its XVS suffix) for which
10344 the size can be read in the parallel XVZ variable.
10345
10346 In the case of an array of an unconstrained element type, the compiler
10347 wraps the array element inside a private PAD type. This type should not
10348 be shown to the user, and must be "unwrap"'ed before printing. Note
10349 that we also use the adjective "aligner" in our code to designate
10350 these wrapper types.
10351
10352 In some cases, the size allocated for each element is statically
10353 known. In that case, the PAD type already has the correct size,
10354 and the array element should remain unfixed.
10355
10356 But there are cases when this size is not statically known.
10357 For instance, assuming that "Five" is an integer variable:
10358
10359 type Dynamic is array (1 .. Five) of Integer;
10360 type Wrapper (Has_Length : Boolean := False) is record
10361 Data : Dynamic;
10362 case Has_Length is
10363 when True => Length : Integer;
10364 when False => null;
10365 end case;
10366 end record;
10367 type Wrapper_Array is array (1 .. 2) of Wrapper;
10368
10369 Hello : Wrapper_Array := (others => (Has_Length => True,
10370 Data => (others => 17),
10371 Length => 1));
10372
10373
10374 The debugging info would describe variable Hello as being an
10375 array of a PAD type. The size of that PAD type is not statically
10376 known, but can be determined using a parallel XVZ variable.
10377 In that case, a copy of the PAD type with the correct size should
10378 be used for the fixed array.
10379
10380 3. ``Fixing'' record type objects:
10381 ----------------------------------
10382
10383 Things are slightly different from arrays in the case of dynamic
10384 record types. In this case, in order to compute the associated
10385 fixed type, we need to determine the size and offset of each of
10386 its components. This, in turn, requires us to compute the fixed
10387 type of each of these components.
10388
10389 Consider for instance the example:
10390
10391 type Bounded_String (Max_Size : Natural) is record
10392 Str : String (1 .. Max_Size);
10393 Length : Natural;
10394 end record;
10395 My_String : Bounded_String (Max_Size => 10);
10396
10397 In that case, the position of field "Length" depends on the size
10398 of field Str, which itself depends on the value of the Max_Size
10399 discriminant. In order to fix the type of variable My_String,
10400 we need to fix the type of field Str. Therefore, fixing a variant
10401 record requires us to fix each of its components.
10402
10403 However, if a component does not have a dynamic size, the component
10404 should not be fixed. In particular, fields that use a PAD type
10405 should not fixed. Here is an example where this might happen
10406 (assuming type Rec above):
10407
10408 type Container (Big : Boolean) is record
10409 First : Rec;
10410 After : Integer;
10411 case Big is
10412 when True => Another : Integer;
10413 when False => null;
10414 end case;
10415 end record;
10416 My_Container : Container := (Big => False,
10417 First => (Empty => True),
10418 After => 42);
10419
10420 In that example, the compiler creates a PAD type for component First,
10421 whose size is constant, and then positions the component After just
10422 right after it. The offset of component After is therefore constant
10423 in this case.
10424
10425 The debugger computes the position of each field based on an algorithm
10426 that uses, among other things, the actual position and size of the field
10427 preceding it. Let's now imagine that the user is trying to print
10428 the value of My_Container. If the type fixing was recursive, we would
10429 end up computing the offset of field After based on the size of the
10430 fixed version of field First. And since in our example First has
10431 only one actual field, the size of the fixed type is actually smaller
10432 than the amount of space allocated to that field, and thus we would
10433 compute the wrong offset of field After.
10434
10435 To make things more complicated, we need to watch out for dynamic
10436 components of variant records (identified by the ___XVL suffix in
10437 the component name). Even if the target type is a PAD type, the size
10438 of that type might not be statically known. So the PAD type needs
10439 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10440 we might end up with the wrong size for our component. This can be
10441 observed with the following type declarations:
10442
10443 type Octal is new Integer range 0 .. 7;
10444 type Octal_Array is array (Positive range <>) of Octal;
10445 pragma Pack (Octal_Array);
10446
10447 type Octal_Buffer (Size : Positive) is record
10448 Buffer : Octal_Array (1 .. Size);
10449 Length : Integer;
10450 end record;
10451
10452 In that case, Buffer is a PAD type whose size is unset and needs
10453 to be computed by fixing the unwrapped type.
10454
10455 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10456 ----------------------------------------------------------
10457
10458 Lastly, when should the sub-elements of an entity that remained unfixed
10459 thus far, be actually fixed?
10460
10461 The answer is: Only when referencing that element. For instance
10462 when selecting one component of a record, this specific component
10463 should be fixed at that point in time. Or when printing the value
10464 of a record, each component should be fixed before its value gets
10465 printed. Similarly for arrays, the element of the array should be
10466 fixed when printing each element of the array, or when extracting
10467 one element out of that array. On the other hand, fixing should
10468 not be performed on the elements when taking a slice of an array!
10469
10470 Note that one of the side effects of miscomputing the offset and
10471 size of each field is that we end up also miscomputing the size
10472 of the containing type. This can have adverse results when computing
10473 the value of an entity. GDB fetches the value of an entity based
10474 on the size of its type, and thus a wrong size causes GDB to fetch
10475 the wrong amount of memory. In the case where the computed size is
10476 too small, GDB fetches too little data to print the value of our
10477 entity. Results in this case are unpredictable, as we usually read
10478 past the buffer containing the data =:-o. */
10479
10480 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10481 for that subexpression cast to TO_TYPE. Advance *POS over the
10482 subexpression. */
10483
10484 static value *
10485 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10486 enum noside noside, struct type *to_type)
10487 {
10488 int pc = *pos;
10489
10490 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10491 || exp->elts[pc].opcode == OP_VAR_VALUE)
10492 {
10493 (*pos) += 4;
10494
10495 value *val;
10496 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10497 {
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10499 return value_zero (to_type, not_lval);
10500
10501 val = evaluate_var_msym_value (noside,
10502 exp->elts[pc + 1].objfile,
10503 exp->elts[pc + 2].msymbol);
10504 }
10505 else
10506 val = evaluate_var_value (noside,
10507 exp->elts[pc + 1].block,
10508 exp->elts[pc + 2].symbol);
10509
10510 if (noside == EVAL_SKIP)
10511 return eval_skip_value (exp);
10512
10513 val = ada_value_cast (to_type, val);
10514
10515 /* Follow the Ada language semantics that do not allow taking
10516 an address of the result of a cast (view conversion in Ada). */
10517 if (VALUE_LVAL (val) == lval_memory)
10518 {
10519 if (value_lazy (val))
10520 value_fetch_lazy (val);
10521 VALUE_LVAL (val) = not_lval;
10522 }
10523 return val;
10524 }
10525
10526 value *val = evaluate_subexp (to_type, exp, pos, noside);
10527 if (noside == EVAL_SKIP)
10528 return eval_skip_value (exp);
10529 return ada_value_cast (to_type, val);
10530 }
10531
10532 /* Implement the evaluate_exp routine in the exp_descriptor structure
10533 for the Ada language. */
10534
10535 static struct value *
10536 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10537 int *pos, enum noside noside)
10538 {
10539 enum exp_opcode op;
10540 int tem;
10541 int pc;
10542 int preeval_pos;
10543 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10544 struct type *type;
10545 int nargs, oplen;
10546 struct value **argvec;
10547
10548 pc = *pos;
10549 *pos += 1;
10550 op = exp->elts[pc].opcode;
10551
10552 switch (op)
10553 {
10554 default:
10555 *pos -= 1;
10556 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10557
10558 if (noside == EVAL_NORMAL)
10559 arg1 = unwrap_value (arg1);
10560
10561 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10562 then we need to perform the conversion manually, because
10563 evaluate_subexp_standard doesn't do it. This conversion is
10564 necessary in Ada because the different kinds of float/fixed
10565 types in Ada have different representations.
10566
10567 Similarly, we need to perform the conversion from OP_LONG
10568 ourselves. */
10569 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10570 arg1 = ada_value_cast (expect_type, arg1);
10571
10572 return arg1;
10573
10574 case OP_STRING:
10575 {
10576 struct value *result;
10577
10578 *pos -= 1;
10579 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10580 /* The result type will have code OP_STRING, bashed there from
10581 OP_ARRAY. Bash it back. */
10582 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10583 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10584 return result;
10585 }
10586
10587 case UNOP_CAST:
10588 (*pos) += 2;
10589 type = exp->elts[pc + 1].type;
10590 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10591
10592 case UNOP_QUAL:
10593 (*pos) += 2;
10594 type = exp->elts[pc + 1].type;
10595 return ada_evaluate_subexp (type, exp, pos, noside);
10596
10597 case BINOP_ASSIGN:
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10600 {
10601 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10602 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10603 return arg1;
10604 return ada_value_assign (arg1, arg1);
10605 }
10606 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10607 except if the lhs of our assignment is a convenience variable.
10608 In the case of assigning to a convenience variable, the lhs
10609 should be exactly the result of the evaluation of the rhs. */
10610 type = value_type (arg1);
10611 if (VALUE_LVAL (arg1) == lval_internalvar)
10612 type = NULL;
10613 arg2 = evaluate_subexp (type, exp, pos, noside);
10614 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10615 return arg1;
10616 if (ada_is_fixed_point_type (value_type (arg1)))
10617 arg2 = cast_to_fixed (value_type (arg1), arg2);
10618 else if (ada_is_fixed_point_type (value_type (arg2)))
10619 error
10620 (_("Fixed-point values must be assigned to fixed-point variables"));
10621 else
10622 arg2 = coerce_for_assign (value_type (arg1), arg2);
10623 return ada_value_assign (arg1, arg2);
10624
10625 case BINOP_ADD:
10626 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10627 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10628 if (noside == EVAL_SKIP)
10629 goto nosideret;
10630 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10631 return (value_from_longest
10632 (value_type (arg1),
10633 value_as_long (arg1) + value_as_long (arg2)));
10634 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10635 return (value_from_longest
10636 (value_type (arg2),
10637 value_as_long (arg1) + value_as_long (arg2)));
10638 if ((ada_is_fixed_point_type (value_type (arg1))
10639 || ada_is_fixed_point_type (value_type (arg2)))
10640 && value_type (arg1) != value_type (arg2))
10641 error (_("Operands of fixed-point addition must have the same type"));
10642 /* Do the addition, and cast the result to the type of the first
10643 argument. We cannot cast the result to a reference type, so if
10644 ARG1 is a reference type, find its underlying type. */
10645 type = value_type (arg1);
10646 while (TYPE_CODE (type) == TYPE_CODE_REF)
10647 type = TYPE_TARGET_TYPE (type);
10648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10649 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10650
10651 case BINOP_SUB:
10652 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10653 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10654 if (noside == EVAL_SKIP)
10655 goto nosideret;
10656 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10657 return (value_from_longest
10658 (value_type (arg1),
10659 value_as_long (arg1) - value_as_long (arg2)));
10660 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10661 return (value_from_longest
10662 (value_type (arg2),
10663 value_as_long (arg1) - value_as_long (arg2)));
10664 if ((ada_is_fixed_point_type (value_type (arg1))
10665 || ada_is_fixed_point_type (value_type (arg2)))
10666 && value_type (arg1) != value_type (arg2))
10667 error (_("Operands of fixed-point subtraction "
10668 "must have the same type"));
10669 /* Do the substraction, and cast the result to the type of the first
10670 argument. We cannot cast the result to a reference type, so if
10671 ARG1 is a reference type, find its underlying type. */
10672 type = value_type (arg1);
10673 while (TYPE_CODE (type) == TYPE_CODE_REF)
10674 type = TYPE_TARGET_TYPE (type);
10675 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10676 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10677
10678 case BINOP_MUL:
10679 case BINOP_DIV:
10680 case BINOP_REM:
10681 case BINOP_MOD:
10682 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10683 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10684 if (noside == EVAL_SKIP)
10685 goto nosideret;
10686 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10687 {
10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10689 return value_zero (value_type (arg1), not_lval);
10690 }
10691 else
10692 {
10693 type = builtin_type (exp->gdbarch)->builtin_double;
10694 if (ada_is_fixed_point_type (value_type (arg1)))
10695 arg1 = cast_from_fixed (type, arg1);
10696 if (ada_is_fixed_point_type (value_type (arg2)))
10697 arg2 = cast_from_fixed (type, arg2);
10698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10699 return ada_value_binop (arg1, arg2, op);
10700 }
10701
10702 case BINOP_EQUAL:
10703 case BINOP_NOTEQUAL:
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 tem = 0;
10710 else
10711 {
10712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10713 tem = ada_value_equal (arg1, arg2);
10714 }
10715 if (op == BINOP_NOTEQUAL)
10716 tem = !tem;
10717 type = language_bool_type (exp->language_defn, exp->gdbarch);
10718 return value_from_longest (type, (LONGEST) tem);
10719
10720 case UNOP_NEG:
10721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 else if (ada_is_fixed_point_type (value_type (arg1)))
10725 return value_cast (value_type (arg1), value_neg (arg1));
10726 else
10727 {
10728 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10729 return value_neg (arg1);
10730 }
10731
10732 case BINOP_LOGICAL_AND:
10733 case BINOP_LOGICAL_OR:
10734 case UNOP_LOGICAL_NOT:
10735 {
10736 struct value *val;
10737
10738 *pos -= 1;
10739 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10740 type = language_bool_type (exp->language_defn, exp->gdbarch);
10741 return value_cast (type, val);
10742 }
10743
10744 case BINOP_BITWISE_AND:
10745 case BINOP_BITWISE_IOR:
10746 case BINOP_BITWISE_XOR:
10747 {
10748 struct value *val;
10749
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10751 *pos = pc;
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10753
10754 return value_cast (value_type (arg1), val);
10755 }
10756
10757 case OP_VAR_VALUE:
10758 *pos -= 1;
10759
10760 if (noside == EVAL_SKIP)
10761 {
10762 *pos += 4;
10763 goto nosideret;
10764 }
10765
10766 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10767 /* Only encountered when an unresolved symbol occurs in a
10768 context other than a function call, in which case, it is
10769 invalid. */
10770 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10771 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10772
10773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10774 {
10775 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10776 /* Check to see if this is a tagged type. We also need to handle
10777 the case where the type is a reference to a tagged type, but
10778 we have to be careful to exclude pointers to tagged types.
10779 The latter should be shown as usual (as a pointer), whereas
10780 a reference should mostly be transparent to the user. */
10781 if (ada_is_tagged_type (type, 0)
10782 || (TYPE_CODE (type) == TYPE_CODE_REF
10783 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10784 {
10785 /* Tagged types are a little special in the fact that the real
10786 type is dynamic and can only be determined by inspecting the
10787 object's tag. This means that we need to get the object's
10788 value first (EVAL_NORMAL) and then extract the actual object
10789 type from its tag.
10790
10791 Note that we cannot skip the final step where we extract
10792 the object type from its tag, because the EVAL_NORMAL phase
10793 results in dynamic components being resolved into fixed ones.
10794 This can cause problems when trying to print the type
10795 description of tagged types whose parent has a dynamic size:
10796 We use the type name of the "_parent" component in order
10797 to print the name of the ancestor type in the type description.
10798 If that component had a dynamic size, the resolution into
10799 a fixed type would result in the loss of that type name,
10800 thus preventing us from printing the name of the ancestor
10801 type in the type description. */
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10803
10804 if (TYPE_CODE (type) != TYPE_CODE_REF)
10805 {
10806 struct type *actual_type;
10807
10808 actual_type = type_from_tag (ada_value_tag (arg1));
10809 if (actual_type == NULL)
10810 /* If, for some reason, we were unable to determine
10811 the actual type from the tag, then use the static
10812 approximation that we just computed as a fallback.
10813 This can happen if the debugging information is
10814 incomplete, for instance. */
10815 actual_type = type;
10816 return value_zero (actual_type, not_lval);
10817 }
10818 else
10819 {
10820 /* In the case of a ref, ada_coerce_ref takes care
10821 of determining the actual type. But the evaluation
10822 should return a ref as it should be valid to ask
10823 for its address; so rebuild a ref after coerce. */
10824 arg1 = ada_coerce_ref (arg1);
10825 return value_ref (arg1, TYPE_CODE_REF);
10826 }
10827 }
10828
10829 /* Records and unions for which GNAT encodings have been
10830 generated need to be statically fixed as well.
10831 Otherwise, non-static fixing produces a type where
10832 all dynamic properties are removed, which prevents "ptype"
10833 from being able to completely describe the type.
10834 For instance, a case statement in a variant record would be
10835 replaced by the relevant components based on the actual
10836 value of the discriminants. */
10837 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10838 && dynamic_template_type (type) != NULL)
10839 || (TYPE_CODE (type) == TYPE_CODE_UNION
10840 && ada_find_parallel_type (type, "___XVU") != NULL))
10841 {
10842 *pos += 4;
10843 return value_zero (to_static_fixed_type (type), not_lval);
10844 }
10845 }
10846
10847 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10848 return ada_to_fixed_value (arg1);
10849
10850 case OP_FUNCALL:
10851 (*pos) += 2;
10852
10853 /* Allocate arg vector, including space for the function to be
10854 called in argvec[0] and a terminating NULL. */
10855 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10856 argvec = XALLOCAVEC (struct value *, nargs + 2);
10857
10858 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10859 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10860 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10861 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10862 else
10863 {
10864 for (tem = 0; tem <= nargs; tem += 1)
10865 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10866 argvec[tem] = 0;
10867
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
10870 }
10871
10872 if (ada_is_constrained_packed_array_type
10873 (desc_base_type (value_type (argvec[0]))))
10874 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10875 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10876 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10877 /* This is a packed array that has already been fixed, and
10878 therefore already coerced to a simple array. Nothing further
10879 to do. */
10880 ;
10881 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10882 {
10883 /* Make sure we dereference references so that all the code below
10884 feels like it's really handling the referenced value. Wrapping
10885 types (for alignment) may be there, so make sure we strip them as
10886 well. */
10887 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10888 }
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10890 && VALUE_LVAL (argvec[0]) == lval_memory)
10891 argvec[0] = value_addr (argvec[0]);
10892
10893 type = ada_check_typedef (value_type (argvec[0]));
10894
10895 /* Ada allows us to implicitly dereference arrays when subscripting
10896 them. So, if this is an array typedef (encoding use for array
10897 access types encoded as fat pointers), strip it now. */
10898 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10899 type = ada_typedef_target_type (type);
10900
10901 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10902 {
10903 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10904 {
10905 case TYPE_CODE_FUNC:
10906 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10907 break;
10908 case TYPE_CODE_ARRAY:
10909 break;
10910 case TYPE_CODE_STRUCT:
10911 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10912 argvec[0] = ada_value_ind (argvec[0]);
10913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10914 break;
10915 default:
10916 error (_("cannot subscript or call something of type `%s'"),
10917 ada_type_name (value_type (argvec[0])));
10918 break;
10919 }
10920 }
10921
10922 switch (TYPE_CODE (type))
10923 {
10924 case TYPE_CODE_FUNC:
10925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 {
10927 if (TYPE_TARGET_TYPE (type) == NULL)
10928 error_call_unknown_return_type (NULL);
10929 return allocate_value (TYPE_TARGET_TYPE (type));
10930 }
10931 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10932 case TYPE_CODE_INTERNAL_FUNCTION:
10933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10934 /* We don't know anything about what the internal
10935 function might return, but we have to return
10936 something. */
10937 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10938 not_lval);
10939 else
10940 return call_internal_function (exp->gdbarch, exp->language_defn,
10941 argvec[0], nargs, argvec + 1);
10942
10943 case TYPE_CODE_STRUCT:
10944 {
10945 int arity;
10946
10947 arity = ada_array_arity (type);
10948 type = ada_array_element_type (type, nargs);
10949 if (type == NULL)
10950 error (_("cannot subscript or call a record"));
10951 if (arity != nargs)
10952 error (_("wrong number of subscripts; expecting %d"), arity);
10953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10954 return value_zero (ada_aligned_type (type), lval_memory);
10955 return
10956 unwrap_value (ada_value_subscript
10957 (argvec[0], nargs, argvec + 1));
10958 }
10959 case TYPE_CODE_ARRAY:
10960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10961 {
10962 type = ada_array_element_type (type, nargs);
10963 if (type == NULL)
10964 error (_("element type of array unknown"));
10965 else
10966 return value_zero (ada_aligned_type (type), lval_memory);
10967 }
10968 return
10969 unwrap_value (ada_value_subscript
10970 (ada_coerce_to_simple_array (argvec[0]),
10971 nargs, argvec + 1));
10972 case TYPE_CODE_PTR: /* Pointer to array */
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 {
10975 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10976 type = ada_array_element_type (type, nargs);
10977 if (type == NULL)
10978 error (_("element type of array unknown"));
10979 else
10980 return value_zero (ada_aligned_type (type), lval_memory);
10981 }
10982 return
10983 unwrap_value (ada_value_ptr_subscript (argvec[0],
10984 nargs, argvec + 1));
10985
10986 default:
10987 error (_("Attempt to index or call something other than an "
10988 "array or function"));
10989 }
10990
10991 case TERNOP_SLICE:
10992 {
10993 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994 struct value *low_bound_val =
10995 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10996 struct value *high_bound_val =
10997 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 LONGEST low_bound;
10999 LONGEST high_bound;
11000
11001 low_bound_val = coerce_ref (low_bound_val);
11002 high_bound_val = coerce_ref (high_bound_val);
11003 low_bound = value_as_long (low_bound_val);
11004 high_bound = value_as_long (high_bound_val);
11005
11006 if (noside == EVAL_SKIP)
11007 goto nosideret;
11008
11009 /* If this is a reference to an aligner type, then remove all
11010 the aligners. */
11011 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11012 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11013 TYPE_TARGET_TYPE (value_type (array)) =
11014 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11015
11016 if (ada_is_constrained_packed_array_type (value_type (array)))
11017 error (_("cannot slice a packed array"));
11018
11019 /* If this is a reference to an array or an array lvalue,
11020 convert to a pointer. */
11021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11022 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11023 && VALUE_LVAL (array) == lval_memory))
11024 array = value_addr (array);
11025
11026 if (noside == EVAL_AVOID_SIDE_EFFECTS
11027 && ada_is_array_descriptor_type (ada_check_typedef
11028 (value_type (array))))
11029 return empty_array (ada_type_of_array (array, 0), low_bound);
11030
11031 array = ada_coerce_to_simple_array_ptr (array);
11032
11033 /* If we have more than one level of pointer indirection,
11034 dereference the value until we get only one level. */
11035 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11036 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11037 == TYPE_CODE_PTR))
11038 array = value_ind (array);
11039
11040 /* Make sure we really do have an array type before going further,
11041 to avoid a SEGV when trying to get the index type or the target
11042 type later down the road if the debug info generated by
11043 the compiler is incorrect or incomplete. */
11044 if (!ada_is_simple_array_type (value_type (array)))
11045 error (_("cannot take slice of non-array"));
11046
11047 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11048 == TYPE_CODE_PTR)
11049 {
11050 struct type *type0 = ada_check_typedef (value_type (array));
11051
11052 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11053 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11054 else
11055 {
11056 struct type *arr_type0 =
11057 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11058
11059 return ada_value_slice_from_ptr (array, arr_type0,
11060 longest_to_int (low_bound),
11061 longest_to_int (high_bound));
11062 }
11063 }
11064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11065 return array;
11066 else if (high_bound < low_bound)
11067 return empty_array (value_type (array), low_bound);
11068 else
11069 return ada_value_slice (array, longest_to_int (low_bound),
11070 longest_to_int (high_bound));
11071 }
11072
11073 case UNOP_IN_RANGE:
11074 (*pos) += 2;
11075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 type = check_typedef (exp->elts[pc + 1].type);
11077
11078 if (noside == EVAL_SKIP)
11079 goto nosideret;
11080
11081 switch (TYPE_CODE (type))
11082 {
11083 default:
11084 lim_warning (_("Membership test incompletely implemented; "
11085 "always returns true"));
11086 type = language_bool_type (exp->language_defn, exp->gdbarch);
11087 return value_from_longest (type, (LONGEST) 1);
11088
11089 case TYPE_CODE_RANGE:
11090 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11091 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11094 type = language_bool_type (exp->language_defn, exp->gdbarch);
11095 return
11096 value_from_longest (type,
11097 (value_less (arg1, arg3)
11098 || value_equal (arg1, arg3))
11099 && (value_less (arg2, arg1)
11100 || value_equal (arg2, arg1)));
11101 }
11102
11103 case BINOP_IN_BOUNDS:
11104 (*pos) += 2;
11105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11107
11108 if (noside == EVAL_SKIP)
11109 goto nosideret;
11110
11111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11112 {
11113 type = language_bool_type (exp->language_defn, exp->gdbarch);
11114 return value_zero (type, not_lval);
11115 }
11116
11117 tem = longest_to_int (exp->elts[pc + 1].longconst);
11118
11119 type = ada_index_type (value_type (arg2), tem, "range");
11120 if (!type)
11121 type = value_type (arg1);
11122
11123 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11124 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11125
11126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11128 type = language_bool_type (exp->language_defn, exp->gdbarch);
11129 return
11130 value_from_longest (type,
11131 (value_less (arg1, arg3)
11132 || value_equal (arg1, arg3))
11133 && (value_less (arg2, arg1)
11134 || value_equal (arg2, arg1)));
11135
11136 case TERNOP_IN_RANGE:
11137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11138 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140
11141 if (noside == EVAL_SKIP)
11142 goto nosideret;
11143
11144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11146 type = language_bool_type (exp->language_defn, exp->gdbarch);
11147 return
11148 value_from_longest (type,
11149 (value_less (arg1, arg3)
11150 || value_equal (arg1, arg3))
11151 && (value_less (arg2, arg1)
11152 || value_equal (arg2, arg1)));
11153
11154 case OP_ATR_FIRST:
11155 case OP_ATR_LAST:
11156 case OP_ATR_LENGTH:
11157 {
11158 struct type *type_arg;
11159
11160 if (exp->elts[*pos].opcode == OP_TYPE)
11161 {
11162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11163 arg1 = NULL;
11164 type_arg = check_typedef (exp->elts[pc + 2].type);
11165 }
11166 else
11167 {
11168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11169 type_arg = NULL;
11170 }
11171
11172 if (exp->elts[*pos].opcode != OP_LONG)
11173 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11174 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11175 *pos += 4;
11176
11177 if (noside == EVAL_SKIP)
11178 goto nosideret;
11179
11180 if (type_arg == NULL)
11181 {
11182 arg1 = ada_coerce_ref (arg1);
11183
11184 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11185 arg1 = ada_coerce_to_simple_array (arg1);
11186
11187 if (op == OP_ATR_LENGTH)
11188 type = builtin_type (exp->gdbarch)->builtin_int;
11189 else
11190 {
11191 type = ada_index_type (value_type (arg1), tem,
11192 ada_attribute_name (op));
11193 if (type == NULL)
11194 type = builtin_type (exp->gdbarch)->builtin_int;
11195 }
11196
11197 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 return allocate_value (type);
11199
11200 switch (op)
11201 {
11202 default: /* Should never happen. */
11203 error (_("unexpected attribute encountered"));
11204 case OP_ATR_FIRST:
11205 return value_from_longest
11206 (type, ada_array_bound (arg1, tem, 0));
11207 case OP_ATR_LAST:
11208 return value_from_longest
11209 (type, ada_array_bound (arg1, tem, 1));
11210 case OP_ATR_LENGTH:
11211 return value_from_longest
11212 (type, ada_array_length (arg1, tem));
11213 }
11214 }
11215 else if (discrete_type_p (type_arg))
11216 {
11217 struct type *range_type;
11218 const char *name = ada_type_name (type_arg);
11219
11220 range_type = NULL;
11221 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11222 range_type = to_fixed_range_type (type_arg, NULL);
11223 if (range_type == NULL)
11224 range_type = type_arg;
11225 switch (op)
11226 {
11227 default:
11228 error (_("unexpected attribute encountered"));
11229 case OP_ATR_FIRST:
11230 return value_from_longest
11231 (range_type, ada_discrete_type_low_bound (range_type));
11232 case OP_ATR_LAST:
11233 return value_from_longest
11234 (range_type, ada_discrete_type_high_bound (range_type));
11235 case OP_ATR_LENGTH:
11236 error (_("the 'length attribute applies only to array types"));
11237 }
11238 }
11239 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11240 error (_("unimplemented type attribute"));
11241 else
11242 {
11243 LONGEST low, high;
11244
11245 if (ada_is_constrained_packed_array_type (type_arg))
11246 type_arg = decode_constrained_packed_array_type (type_arg);
11247
11248 if (op == OP_ATR_LENGTH)
11249 type = builtin_type (exp->gdbarch)->builtin_int;
11250 else
11251 {
11252 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11253 if (type == NULL)
11254 type = builtin_type (exp->gdbarch)->builtin_int;
11255 }
11256
11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 return allocate_value (type);
11259
11260 switch (op)
11261 {
11262 default:
11263 error (_("unexpected attribute encountered"));
11264 case OP_ATR_FIRST:
11265 low = ada_array_bound_from_type (type_arg, tem, 0);
11266 return value_from_longest (type, low);
11267 case OP_ATR_LAST:
11268 high = ada_array_bound_from_type (type_arg, tem, 1);
11269 return value_from_longest (type, high);
11270 case OP_ATR_LENGTH:
11271 low = ada_array_bound_from_type (type_arg, tem, 0);
11272 high = ada_array_bound_from_type (type_arg, tem, 1);
11273 return value_from_longest (type, high - low + 1);
11274 }
11275 }
11276 }
11277
11278 case OP_ATR_TAG:
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280 if (noside == EVAL_SKIP)
11281 goto nosideret;
11282
11283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11284 return value_zero (ada_tag_type (arg1), not_lval);
11285
11286 return ada_value_tag (arg1);
11287
11288 case OP_ATR_MIN:
11289 case OP_ATR_MAX:
11290 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11292 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11293 if (noside == EVAL_SKIP)
11294 goto nosideret;
11295 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11296 return value_zero (value_type (arg1), not_lval);
11297 else
11298 {
11299 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11300 return value_binop (arg1, arg2,
11301 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11302 }
11303
11304 case OP_ATR_MODULUS:
11305 {
11306 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11307
11308 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11309 if (noside == EVAL_SKIP)
11310 goto nosideret;
11311
11312 if (!ada_is_modular_type (type_arg))
11313 error (_("'modulus must be applied to modular type"));
11314
11315 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11316 ada_modulus (type_arg));
11317 }
11318
11319
11320 case OP_ATR_POS:
11321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11323 if (noside == EVAL_SKIP)
11324 goto nosideret;
11325 type = builtin_type (exp->gdbarch)->builtin_int;
11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11327 return value_zero (type, not_lval);
11328 else
11329 return value_pos_atr (type, arg1);
11330
11331 case OP_ATR_SIZE:
11332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11333 type = value_type (arg1);
11334
11335 /* If the argument is a reference, then dereference its type, since
11336 the user is really asking for the size of the actual object,
11337 not the size of the pointer. */
11338 if (TYPE_CODE (type) == TYPE_CODE_REF)
11339 type = TYPE_TARGET_TYPE (type);
11340
11341 if (noside == EVAL_SKIP)
11342 goto nosideret;
11343 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11344 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11345 else
11346 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11347 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11348
11349 case OP_ATR_VAL:
11350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 type = exp->elts[pc + 2].type;
11353 if (noside == EVAL_SKIP)
11354 goto nosideret;
11355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11356 return value_zero (type, not_lval);
11357 else
11358 return value_val_atr (type, arg1);
11359
11360 case BINOP_EXP:
11361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11362 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11363 if (noside == EVAL_SKIP)
11364 goto nosideret;
11365 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11366 return value_zero (value_type (arg1), not_lval);
11367 else
11368 {
11369 /* For integer exponentiation operations,
11370 only promote the first argument. */
11371 if (is_integral_type (value_type (arg2)))
11372 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11373 else
11374 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11375
11376 return value_binop (arg1, arg2, op);
11377 }
11378
11379 case UNOP_PLUS:
11380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11381 if (noside == EVAL_SKIP)
11382 goto nosideret;
11383 else
11384 return arg1;
11385
11386 case UNOP_ABS:
11387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11388 if (noside == EVAL_SKIP)
11389 goto nosideret;
11390 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11391 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11392 return value_neg (arg1);
11393 else
11394 return arg1;
11395
11396 case UNOP_IND:
11397 preeval_pos = *pos;
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11399 if (noside == EVAL_SKIP)
11400 goto nosideret;
11401 type = ada_check_typedef (value_type (arg1));
11402 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11403 {
11404 if (ada_is_array_descriptor_type (type))
11405 /* GDB allows dereferencing GNAT array descriptors. */
11406 {
11407 struct type *arrType = ada_type_of_array (arg1, 0);
11408
11409 if (arrType == NULL)
11410 error (_("Attempt to dereference null array pointer."));
11411 return value_at_lazy (arrType, 0);
11412 }
11413 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11414 || TYPE_CODE (type) == TYPE_CODE_REF
11415 /* In C you can dereference an array to get the 1st elt. */
11416 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11417 {
11418 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11419 only be determined by inspecting the object's tag.
11420 This means that we need to evaluate completely the
11421 expression in order to get its type. */
11422
11423 if ((TYPE_CODE (type) == TYPE_CODE_REF
11424 || TYPE_CODE (type) == TYPE_CODE_PTR)
11425 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11426 {
11427 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11428 EVAL_NORMAL);
11429 type = value_type (ada_value_ind (arg1));
11430 }
11431 else
11432 {
11433 type = to_static_fixed_type
11434 (ada_aligned_type
11435 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11436 }
11437 ada_ensure_varsize_limit (type);
11438 return value_zero (type, lval_memory);
11439 }
11440 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11441 {
11442 /* GDB allows dereferencing an int. */
11443 if (expect_type == NULL)
11444 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11445 lval_memory);
11446 else
11447 {
11448 expect_type =
11449 to_static_fixed_type (ada_aligned_type (expect_type));
11450 return value_zero (expect_type, lval_memory);
11451 }
11452 }
11453 else
11454 error (_("Attempt to take contents of a non-pointer value."));
11455 }
11456 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11457 type = ada_check_typedef (value_type (arg1));
11458
11459 if (TYPE_CODE (type) == TYPE_CODE_INT)
11460 /* GDB allows dereferencing an int. If we were given
11461 the expect_type, then use that as the target type.
11462 Otherwise, assume that the target type is an int. */
11463 {
11464 if (expect_type != NULL)
11465 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11466 arg1));
11467 else
11468 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11469 (CORE_ADDR) value_as_address (arg1));
11470 }
11471
11472 if (ada_is_array_descriptor_type (type))
11473 /* GDB allows dereferencing GNAT array descriptors. */
11474 return ada_coerce_to_simple_array (arg1);
11475 else
11476 return ada_value_ind (arg1);
11477
11478 case STRUCTOP_STRUCT:
11479 tem = longest_to_int (exp->elts[pc + 1].longconst);
11480 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11481 preeval_pos = *pos;
11482 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11483 if (noside == EVAL_SKIP)
11484 goto nosideret;
11485 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11486 {
11487 struct type *type1 = value_type (arg1);
11488
11489 if (ada_is_tagged_type (type1, 1))
11490 {
11491 type = ada_lookup_struct_elt_type (type1,
11492 &exp->elts[pc + 2].string,
11493 1, 1);
11494
11495 /* If the field is not found, check if it exists in the
11496 extension of this object's type. This means that we
11497 need to evaluate completely the expression. */
11498
11499 if (type == NULL)
11500 {
11501 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11502 EVAL_NORMAL);
11503 arg1 = ada_value_struct_elt (arg1,
11504 &exp->elts[pc + 2].string,
11505 0);
11506 arg1 = unwrap_value (arg1);
11507 type = value_type (ada_to_fixed_value (arg1));
11508 }
11509 }
11510 else
11511 type =
11512 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11513 0);
11514
11515 return value_zero (ada_aligned_type (type), lval_memory);
11516 }
11517 else
11518 {
11519 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11520 arg1 = unwrap_value (arg1);
11521 return ada_to_fixed_value (arg1);
11522 }
11523
11524 case OP_TYPE:
11525 /* The value is not supposed to be used. This is here to make it
11526 easier to accommodate expressions that contain types. */
11527 (*pos) += 2;
11528 if (noside == EVAL_SKIP)
11529 goto nosideret;
11530 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11531 return allocate_value (exp->elts[pc + 1].type);
11532 else
11533 error (_("Attempt to use a type name as an expression"));
11534
11535 case OP_AGGREGATE:
11536 case OP_CHOICES:
11537 case OP_OTHERS:
11538 case OP_DISCRETE_RANGE:
11539 case OP_POSITIONAL:
11540 case OP_NAME:
11541 if (noside == EVAL_NORMAL)
11542 switch (op)
11543 {
11544 case OP_NAME:
11545 error (_("Undefined name, ambiguous name, or renaming used in "
11546 "component association: %s."), &exp->elts[pc+2].string);
11547 case OP_AGGREGATE:
11548 error (_("Aggregates only allowed on the right of an assignment"));
11549 default:
11550 internal_error (__FILE__, __LINE__,
11551 _("aggregate apparently mangled"));
11552 }
11553
11554 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11555 *pos += oplen - 1;
11556 for (tem = 0; tem < nargs; tem += 1)
11557 ada_evaluate_subexp (NULL, exp, pos, noside);
11558 goto nosideret;
11559 }
11560
11561 nosideret:
11562 return eval_skip_value (exp);
11563 }
11564 \f
11565
11566 /* Fixed point */
11567
11568 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11569 type name that encodes the 'small and 'delta information.
11570 Otherwise, return NULL. */
11571
11572 static const char *
11573 fixed_type_info (struct type *type)
11574 {
11575 const char *name = ada_type_name (type);
11576 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11577
11578 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11579 {
11580 const char *tail = strstr (name, "___XF_");
11581
11582 if (tail == NULL)
11583 return NULL;
11584 else
11585 return tail + 5;
11586 }
11587 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11588 return fixed_type_info (TYPE_TARGET_TYPE (type));
11589 else
11590 return NULL;
11591 }
11592
11593 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11594
11595 int
11596 ada_is_fixed_point_type (struct type *type)
11597 {
11598 return fixed_type_info (type) != NULL;
11599 }
11600
11601 /* Return non-zero iff TYPE represents a System.Address type. */
11602
11603 int
11604 ada_is_system_address_type (struct type *type)
11605 {
11606 return (TYPE_NAME (type)
11607 && strcmp (TYPE_NAME (type), "system__address") == 0);
11608 }
11609
11610 /* Assuming that TYPE is the representation of an Ada fixed-point
11611 type, return the target floating-point type to be used to represent
11612 of this type during internal computation. */
11613
11614 static struct type *
11615 ada_scaling_type (struct type *type)
11616 {
11617 return builtin_type (get_type_arch (type))->builtin_long_double;
11618 }
11619
11620 /* Assuming that TYPE is the representation of an Ada fixed-point
11621 type, return its delta, or NULL if the type is malformed and the
11622 delta cannot be determined. */
11623
11624 struct value *
11625 ada_delta (struct type *type)
11626 {
11627 const char *encoding = fixed_type_info (type);
11628 struct type *scale_type = ada_scaling_type (type);
11629
11630 long long num, den;
11631
11632 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11633 return nullptr;
11634 else
11635 return value_binop (value_from_longest (scale_type, num),
11636 value_from_longest (scale_type, den), BINOP_DIV);
11637 }
11638
11639 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11640 factor ('SMALL value) associated with the type. */
11641
11642 struct value *
11643 ada_scaling_factor (struct type *type)
11644 {
11645 const char *encoding = fixed_type_info (type);
11646 struct type *scale_type = ada_scaling_type (type);
11647
11648 long long num0, den0, num1, den1;
11649 int n;
11650
11651 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11652 &num0, &den0, &num1, &den1);
11653
11654 if (n < 2)
11655 return value_from_longest (scale_type, 1);
11656 else if (n == 4)
11657 return value_binop (value_from_longest (scale_type, num1),
11658 value_from_longest (scale_type, den1), BINOP_DIV);
11659 else
11660 return value_binop (value_from_longest (scale_type, num0),
11661 value_from_longest (scale_type, den0), BINOP_DIV);
11662 }
11663
11664 \f
11665
11666 /* Range types */
11667
11668 /* Scan STR beginning at position K for a discriminant name, and
11669 return the value of that discriminant field of DVAL in *PX. If
11670 PNEW_K is not null, put the position of the character beyond the
11671 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11672 not alter *PX and *PNEW_K if unsuccessful. */
11673
11674 static int
11675 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11676 int *pnew_k)
11677 {
11678 static char *bound_buffer = NULL;
11679 static size_t bound_buffer_len = 0;
11680 const char *pstart, *pend, *bound;
11681 struct value *bound_val;
11682
11683 if (dval == NULL || str == NULL || str[k] == '\0')
11684 return 0;
11685
11686 pstart = str + k;
11687 pend = strstr (pstart, "__");
11688 if (pend == NULL)
11689 {
11690 bound = pstart;
11691 k += strlen (bound);
11692 }
11693 else
11694 {
11695 int len = pend - pstart;
11696
11697 /* Strip __ and beyond. */
11698 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11699 strncpy (bound_buffer, pstart, len);
11700 bound_buffer[len] = '\0';
11701
11702 bound = bound_buffer;
11703 k = pend - str;
11704 }
11705
11706 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11707 if (bound_val == NULL)
11708 return 0;
11709
11710 *px = value_as_long (bound_val);
11711 if (pnew_k != NULL)
11712 *pnew_k = k;
11713 return 1;
11714 }
11715
11716 /* Value of variable named NAME in the current environment. If
11717 no such variable found, then if ERR_MSG is null, returns 0, and
11718 otherwise causes an error with message ERR_MSG. */
11719
11720 static struct value *
11721 get_var_value (const char *name, const char *err_msg)
11722 {
11723 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11724
11725 std::vector<struct block_symbol> syms;
11726 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11727 get_selected_block (0),
11728 VAR_DOMAIN, &syms, 1);
11729
11730 if (nsyms != 1)
11731 {
11732 if (err_msg == NULL)
11733 return 0;
11734 else
11735 error (("%s"), err_msg);
11736 }
11737
11738 return value_of_variable (syms[0].symbol, syms[0].block);
11739 }
11740
11741 /* Value of integer variable named NAME in the current environment.
11742 If no such variable is found, returns false. Otherwise, sets VALUE
11743 to the variable's value and returns true. */
11744
11745 bool
11746 get_int_var_value (const char *name, LONGEST &value)
11747 {
11748 struct value *var_val = get_var_value (name, 0);
11749
11750 if (var_val == 0)
11751 return false;
11752
11753 value = value_as_long (var_val);
11754 return true;
11755 }
11756
11757
11758 /* Return a range type whose base type is that of the range type named
11759 NAME in the current environment, and whose bounds are calculated
11760 from NAME according to the GNAT range encoding conventions.
11761 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11762 corresponding range type from debug information; fall back to using it
11763 if symbol lookup fails. If a new type must be created, allocate it
11764 like ORIG_TYPE was. The bounds information, in general, is encoded
11765 in NAME, the base type given in the named range type. */
11766
11767 static struct type *
11768 to_fixed_range_type (struct type *raw_type, struct value *dval)
11769 {
11770 const char *name;
11771 struct type *base_type;
11772 const char *subtype_info;
11773
11774 gdb_assert (raw_type != NULL);
11775 gdb_assert (TYPE_NAME (raw_type) != NULL);
11776
11777 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11778 base_type = TYPE_TARGET_TYPE (raw_type);
11779 else
11780 base_type = raw_type;
11781
11782 name = TYPE_NAME (raw_type);
11783 subtype_info = strstr (name, "___XD");
11784 if (subtype_info == NULL)
11785 {
11786 LONGEST L = ada_discrete_type_low_bound (raw_type);
11787 LONGEST U = ada_discrete_type_high_bound (raw_type);
11788
11789 if (L < INT_MIN || U > INT_MAX)
11790 return raw_type;
11791 else
11792 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11793 L, U);
11794 }
11795 else
11796 {
11797 static char *name_buf = NULL;
11798 static size_t name_len = 0;
11799 int prefix_len = subtype_info - name;
11800 LONGEST L, U;
11801 struct type *type;
11802 const char *bounds_str;
11803 int n;
11804
11805 GROW_VECT (name_buf, name_len, prefix_len + 5);
11806 strncpy (name_buf, name, prefix_len);
11807 name_buf[prefix_len] = '\0';
11808
11809 subtype_info += 5;
11810 bounds_str = strchr (subtype_info, '_');
11811 n = 1;
11812
11813 if (*subtype_info == 'L')
11814 {
11815 if (!ada_scan_number (bounds_str, n, &L, &n)
11816 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11817 return raw_type;
11818 if (bounds_str[n] == '_')
11819 n += 2;
11820 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11821 n += 1;
11822 subtype_info += 1;
11823 }
11824 else
11825 {
11826 strcpy (name_buf + prefix_len, "___L");
11827 if (!get_int_var_value (name_buf, L))
11828 {
11829 lim_warning (_("Unknown lower bound, using 1."));
11830 L = 1;
11831 }
11832 }
11833
11834 if (*subtype_info == 'U')
11835 {
11836 if (!ada_scan_number (bounds_str, n, &U, &n)
11837 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11838 return raw_type;
11839 }
11840 else
11841 {
11842 strcpy (name_buf + prefix_len, "___U");
11843 if (!get_int_var_value (name_buf, U))
11844 {
11845 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11846 U = L;
11847 }
11848 }
11849
11850 type = create_static_range_type (alloc_type_copy (raw_type),
11851 base_type, L, U);
11852 /* create_static_range_type alters the resulting type's length
11853 to match the size of the base_type, which is not what we want.
11854 Set it back to the original range type's length. */
11855 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11856 TYPE_NAME (type) = name;
11857 return type;
11858 }
11859 }
11860
11861 /* True iff NAME is the name of a range type. */
11862
11863 int
11864 ada_is_range_type_name (const char *name)
11865 {
11866 return (name != NULL && strstr (name, "___XD"));
11867 }
11868 \f
11869
11870 /* Modular types */
11871
11872 /* True iff TYPE is an Ada modular type. */
11873
11874 int
11875 ada_is_modular_type (struct type *type)
11876 {
11877 struct type *subranged_type = get_base_type (type);
11878
11879 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11880 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11881 && TYPE_UNSIGNED (subranged_type));
11882 }
11883
11884 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11885
11886 ULONGEST
11887 ada_modulus (struct type *type)
11888 {
11889 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11890 }
11891 \f
11892
11893 /* Ada exception catchpoint support:
11894 ---------------------------------
11895
11896 We support 3 kinds of exception catchpoints:
11897 . catchpoints on Ada exceptions
11898 . catchpoints on unhandled Ada exceptions
11899 . catchpoints on failed assertions
11900
11901 Exceptions raised during failed assertions, or unhandled exceptions
11902 could perfectly be caught with the general catchpoint on Ada exceptions.
11903 However, we can easily differentiate these two special cases, and having
11904 the option to distinguish these two cases from the rest can be useful
11905 to zero-in on certain situations.
11906
11907 Exception catchpoints are a specialized form of breakpoint,
11908 since they rely on inserting breakpoints inside known routines
11909 of the GNAT runtime. The implementation therefore uses a standard
11910 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11911 of breakpoint_ops.
11912
11913 Support in the runtime for exception catchpoints have been changed
11914 a few times already, and these changes affect the implementation
11915 of these catchpoints. In order to be able to support several
11916 variants of the runtime, we use a sniffer that will determine
11917 the runtime variant used by the program being debugged. */
11918
11919 /* Ada's standard exceptions.
11920
11921 The Ada 83 standard also defined Numeric_Error. But there so many
11922 situations where it was unclear from the Ada 83 Reference Manual
11923 (RM) whether Constraint_Error or Numeric_Error should be raised,
11924 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11925 Interpretation saying that anytime the RM says that Numeric_Error
11926 should be raised, the implementation may raise Constraint_Error.
11927 Ada 95 went one step further and pretty much removed Numeric_Error
11928 from the list of standard exceptions (it made it a renaming of
11929 Constraint_Error, to help preserve compatibility when compiling
11930 an Ada83 compiler). As such, we do not include Numeric_Error from
11931 this list of standard exceptions. */
11932
11933 static const char *standard_exc[] = {
11934 "constraint_error",
11935 "program_error",
11936 "storage_error",
11937 "tasking_error"
11938 };
11939
11940 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11941
11942 /* A structure that describes how to support exception catchpoints
11943 for a given executable. */
11944
11945 struct exception_support_info
11946 {
11947 /* The name of the symbol to break on in order to insert
11948 a catchpoint on exceptions. */
11949 const char *catch_exception_sym;
11950
11951 /* The name of the symbol to break on in order to insert
11952 a catchpoint on unhandled exceptions. */
11953 const char *catch_exception_unhandled_sym;
11954
11955 /* The name of the symbol to break on in order to insert
11956 a catchpoint on failed assertions. */
11957 const char *catch_assert_sym;
11958
11959 /* The name of the symbol to break on in order to insert
11960 a catchpoint on exception handling. */
11961 const char *catch_handlers_sym;
11962
11963 /* Assuming that the inferior just triggered an unhandled exception
11964 catchpoint, this function is responsible for returning the address
11965 in inferior memory where the name of that exception is stored.
11966 Return zero if the address could not be computed. */
11967 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11968 };
11969
11970 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11971 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11972
11973 /* The following exception support info structure describes how to
11974 implement exception catchpoints with the latest version of the
11975 Ada runtime (as of 2007-03-06). */
11976
11977 static const struct exception_support_info default_exception_support_info =
11978 {
11979 "__gnat_debug_raise_exception", /* catch_exception_sym */
11980 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11981 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11982 "__gnat_begin_handler", /* catch_handlers_sym */
11983 ada_unhandled_exception_name_addr
11984 };
11985
11986 /* The following exception support info structure describes how to
11987 implement exception catchpoints with a slightly older version
11988 of the Ada runtime. */
11989
11990 static const struct exception_support_info exception_support_info_fallback =
11991 {
11992 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11993 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11994 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11995 "__gnat_begin_handler", /* catch_handlers_sym */
11996 ada_unhandled_exception_name_addr_from_raise
11997 };
11998
11999 /* Return nonzero if we can detect the exception support routines
12000 described in EINFO.
12001
12002 This function errors out if an abnormal situation is detected
12003 (for instance, if we find the exception support routines, but
12004 that support is found to be incomplete). */
12005
12006 static int
12007 ada_has_this_exception_support (const struct exception_support_info *einfo)
12008 {
12009 struct symbol *sym;
12010
12011 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12012 that should be compiled with debugging information. As a result, we
12013 expect to find that symbol in the symtabs. */
12014
12015 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12016 if (sym == NULL)
12017 {
12018 /* Perhaps we did not find our symbol because the Ada runtime was
12019 compiled without debugging info, or simply stripped of it.
12020 It happens on some GNU/Linux distributions for instance, where
12021 users have to install a separate debug package in order to get
12022 the runtime's debugging info. In that situation, let the user
12023 know why we cannot insert an Ada exception catchpoint.
12024
12025 Note: Just for the purpose of inserting our Ada exception
12026 catchpoint, we could rely purely on the associated minimal symbol.
12027 But we would be operating in degraded mode anyway, since we are
12028 still lacking the debugging info needed later on to extract
12029 the name of the exception being raised (this name is printed in
12030 the catchpoint message, and is also used when trying to catch
12031 a specific exception). We do not handle this case for now. */
12032 struct bound_minimal_symbol msym
12033 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12034
12035 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12036 error (_("Your Ada runtime appears to be missing some debugging "
12037 "information.\nCannot insert Ada exception catchpoint "
12038 "in this configuration."));
12039
12040 return 0;
12041 }
12042
12043 /* Make sure that the symbol we found corresponds to a function. */
12044
12045 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12046 error (_("Symbol \"%s\" is not a function (class = %d)"),
12047 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12048
12049 return 1;
12050 }
12051
12052 /* Inspect the Ada runtime and determine which exception info structure
12053 should be used to provide support for exception catchpoints.
12054
12055 This function will always set the per-inferior exception_info,
12056 or raise an error. */
12057
12058 static void
12059 ada_exception_support_info_sniffer (void)
12060 {
12061 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12062
12063 /* If the exception info is already known, then no need to recompute it. */
12064 if (data->exception_info != NULL)
12065 return;
12066
12067 /* Check the latest (default) exception support info. */
12068 if (ada_has_this_exception_support (&default_exception_support_info))
12069 {
12070 data->exception_info = &default_exception_support_info;
12071 return;
12072 }
12073
12074 /* Try our fallback exception suport info. */
12075 if (ada_has_this_exception_support (&exception_support_info_fallback))
12076 {
12077 data->exception_info = &exception_support_info_fallback;
12078 return;
12079 }
12080
12081 /* Sometimes, it is normal for us to not be able to find the routine
12082 we are looking for. This happens when the program is linked with
12083 the shared version of the GNAT runtime, and the program has not been
12084 started yet. Inform the user of these two possible causes if
12085 applicable. */
12086
12087 if (ada_update_initial_language (language_unknown) != language_ada)
12088 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12089
12090 /* If the symbol does not exist, then check that the program is
12091 already started, to make sure that shared libraries have been
12092 loaded. If it is not started, this may mean that the symbol is
12093 in a shared library. */
12094
12095 if (inferior_ptid.pid () == 0)
12096 error (_("Unable to insert catchpoint. Try to start the program first."));
12097
12098 /* At this point, we know that we are debugging an Ada program and
12099 that the inferior has been started, but we still are not able to
12100 find the run-time symbols. That can mean that we are in
12101 configurable run time mode, or that a-except as been optimized
12102 out by the linker... In any case, at this point it is not worth
12103 supporting this feature. */
12104
12105 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12106 }
12107
12108 /* True iff FRAME is very likely to be that of a function that is
12109 part of the runtime system. This is all very heuristic, but is
12110 intended to be used as advice as to what frames are uninteresting
12111 to most users. */
12112
12113 static int
12114 is_known_support_routine (struct frame_info *frame)
12115 {
12116 enum language func_lang;
12117 int i;
12118 const char *fullname;
12119
12120 /* If this code does not have any debugging information (no symtab),
12121 This cannot be any user code. */
12122
12123 symtab_and_line sal = find_frame_sal (frame);
12124 if (sal.symtab == NULL)
12125 return 1;
12126
12127 /* If there is a symtab, but the associated source file cannot be
12128 located, then assume this is not user code: Selecting a frame
12129 for which we cannot display the code would not be very helpful
12130 for the user. This should also take care of case such as VxWorks
12131 where the kernel has some debugging info provided for a few units. */
12132
12133 fullname = symtab_to_fullname (sal.symtab);
12134 if (access (fullname, R_OK) != 0)
12135 return 1;
12136
12137 /* Check the unit filename againt the Ada runtime file naming.
12138 We also check the name of the objfile against the name of some
12139 known system libraries that sometimes come with debugging info
12140 too. */
12141
12142 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12143 {
12144 re_comp (known_runtime_file_name_patterns[i]);
12145 if (re_exec (lbasename (sal.symtab->filename)))
12146 return 1;
12147 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12148 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12149 return 1;
12150 }
12151
12152 /* Check whether the function is a GNAT-generated entity. */
12153
12154 gdb::unique_xmalloc_ptr<char> func_name
12155 = find_frame_funname (frame, &func_lang, NULL);
12156 if (func_name == NULL)
12157 return 1;
12158
12159 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12160 {
12161 re_comp (known_auxiliary_function_name_patterns[i]);
12162 if (re_exec (func_name.get ()))
12163 return 1;
12164 }
12165
12166 return 0;
12167 }
12168
12169 /* Find the first frame that contains debugging information and that is not
12170 part of the Ada run-time, starting from FI and moving upward. */
12171
12172 void
12173 ada_find_printable_frame (struct frame_info *fi)
12174 {
12175 for (; fi != NULL; fi = get_prev_frame (fi))
12176 {
12177 if (!is_known_support_routine (fi))
12178 {
12179 select_frame (fi);
12180 break;
12181 }
12182 }
12183
12184 }
12185
12186 /* Assuming that the inferior just triggered an unhandled exception
12187 catchpoint, return the address in inferior memory where the name
12188 of the exception is stored.
12189
12190 Return zero if the address could not be computed. */
12191
12192 static CORE_ADDR
12193 ada_unhandled_exception_name_addr (void)
12194 {
12195 return parse_and_eval_address ("e.full_name");
12196 }
12197
12198 /* Same as ada_unhandled_exception_name_addr, except that this function
12199 should be used when the inferior uses an older version of the runtime,
12200 where the exception name needs to be extracted from a specific frame
12201 several frames up in the callstack. */
12202
12203 static CORE_ADDR
12204 ada_unhandled_exception_name_addr_from_raise (void)
12205 {
12206 int frame_level;
12207 struct frame_info *fi;
12208 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12209
12210 /* To determine the name of this exception, we need to select
12211 the frame corresponding to RAISE_SYM_NAME. This frame is
12212 at least 3 levels up, so we simply skip the first 3 frames
12213 without checking the name of their associated function. */
12214 fi = get_current_frame ();
12215 for (frame_level = 0; frame_level < 3; frame_level += 1)
12216 if (fi != NULL)
12217 fi = get_prev_frame (fi);
12218
12219 while (fi != NULL)
12220 {
12221 enum language func_lang;
12222
12223 gdb::unique_xmalloc_ptr<char> func_name
12224 = find_frame_funname (fi, &func_lang, NULL);
12225 if (func_name != NULL)
12226 {
12227 if (strcmp (func_name.get (),
12228 data->exception_info->catch_exception_sym) == 0)
12229 break; /* We found the frame we were looking for... */
12230 }
12231 fi = get_prev_frame (fi);
12232 }
12233
12234 if (fi == NULL)
12235 return 0;
12236
12237 select_frame (fi);
12238 return parse_and_eval_address ("id.full_name");
12239 }
12240
12241 /* Assuming the inferior just triggered an Ada exception catchpoint
12242 (of any type), return the address in inferior memory where the name
12243 of the exception is stored, if applicable.
12244
12245 Assumes the selected frame is the current frame.
12246
12247 Return zero if the address could not be computed, or if not relevant. */
12248
12249 static CORE_ADDR
12250 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12251 struct breakpoint *b)
12252 {
12253 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12254
12255 switch (ex)
12256 {
12257 case ada_catch_exception:
12258 return (parse_and_eval_address ("e.full_name"));
12259 break;
12260
12261 case ada_catch_exception_unhandled:
12262 return data->exception_info->unhandled_exception_name_addr ();
12263 break;
12264
12265 case ada_catch_handlers:
12266 return 0; /* The runtimes does not provide access to the exception
12267 name. */
12268 break;
12269
12270 case ada_catch_assert:
12271 return 0; /* Exception name is not relevant in this case. */
12272 break;
12273
12274 default:
12275 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12276 break;
12277 }
12278
12279 return 0; /* Should never be reached. */
12280 }
12281
12282 /* Assuming the inferior is stopped at an exception catchpoint,
12283 return the message which was associated to the exception, if
12284 available. Return NULL if the message could not be retrieved.
12285
12286 Note: The exception message can be associated to an exception
12287 either through the use of the Raise_Exception function, or
12288 more simply (Ada 2005 and later), via:
12289
12290 raise Exception_Name with "exception message";
12291
12292 */
12293
12294 static gdb::unique_xmalloc_ptr<char>
12295 ada_exception_message_1 (void)
12296 {
12297 struct value *e_msg_val;
12298 int e_msg_len;
12299
12300 /* For runtimes that support this feature, the exception message
12301 is passed as an unbounded string argument called "message". */
12302 e_msg_val = parse_and_eval ("message");
12303 if (e_msg_val == NULL)
12304 return NULL; /* Exception message not supported. */
12305
12306 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12307 gdb_assert (e_msg_val != NULL);
12308 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12309
12310 /* If the message string is empty, then treat it as if there was
12311 no exception message. */
12312 if (e_msg_len <= 0)
12313 return NULL;
12314
12315 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12316 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12317 e_msg.get ()[e_msg_len] = '\0';
12318
12319 return e_msg;
12320 }
12321
12322 /* Same as ada_exception_message_1, except that all exceptions are
12323 contained here (returning NULL instead). */
12324
12325 static gdb::unique_xmalloc_ptr<char>
12326 ada_exception_message (void)
12327 {
12328 gdb::unique_xmalloc_ptr<char> e_msg;
12329
12330 TRY
12331 {
12332 e_msg = ada_exception_message_1 ();
12333 }
12334 CATCH (e, RETURN_MASK_ERROR)
12335 {
12336 e_msg.reset (nullptr);
12337 }
12338 END_CATCH
12339
12340 return e_msg;
12341 }
12342
12343 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12344 any error that ada_exception_name_addr_1 might cause to be thrown.
12345 When an error is intercepted, a warning with the error message is printed,
12346 and zero is returned. */
12347
12348 static CORE_ADDR
12349 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12350 struct breakpoint *b)
12351 {
12352 CORE_ADDR result = 0;
12353
12354 TRY
12355 {
12356 result = ada_exception_name_addr_1 (ex, b);
12357 }
12358
12359 CATCH (e, RETURN_MASK_ERROR)
12360 {
12361 warning (_("failed to get exception name: %s"), e.message);
12362 return 0;
12363 }
12364 END_CATCH
12365
12366 return result;
12367 }
12368
12369 static std::string ada_exception_catchpoint_cond_string
12370 (const char *excep_string,
12371 enum ada_exception_catchpoint_kind ex);
12372
12373 /* Ada catchpoints.
12374
12375 In the case of catchpoints on Ada exceptions, the catchpoint will
12376 stop the target on every exception the program throws. When a user
12377 specifies the name of a specific exception, we translate this
12378 request into a condition expression (in text form), and then parse
12379 it into an expression stored in each of the catchpoint's locations.
12380 We then use this condition to check whether the exception that was
12381 raised is the one the user is interested in. If not, then the
12382 target is resumed again. We store the name of the requested
12383 exception, in order to be able to re-set the condition expression
12384 when symbols change. */
12385
12386 /* An instance of this type is used to represent an Ada catchpoint
12387 breakpoint location. */
12388
12389 class ada_catchpoint_location : public bp_location
12390 {
12391 public:
12392 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12393 : bp_location (ops, owner)
12394 {}
12395
12396 /* The condition that checks whether the exception that was raised
12397 is the specific exception the user specified on catchpoint
12398 creation. */
12399 expression_up excep_cond_expr;
12400 };
12401
12402 /* Implement the DTOR method in the bp_location_ops structure for all
12403 Ada exception catchpoint kinds. */
12404
12405 static void
12406 ada_catchpoint_location_dtor (struct bp_location *bl)
12407 {
12408 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12409
12410 al->excep_cond_expr.reset ();
12411 }
12412
12413 /* The vtable to be used in Ada catchpoint locations. */
12414
12415 static const struct bp_location_ops ada_catchpoint_location_ops =
12416 {
12417 ada_catchpoint_location_dtor
12418 };
12419
12420 /* An instance of this type is used to represent an Ada catchpoint. */
12421
12422 struct ada_catchpoint : public breakpoint
12423 {
12424 /* The name of the specific exception the user specified. */
12425 std::string excep_string;
12426 };
12427
12428 /* Parse the exception condition string in the context of each of the
12429 catchpoint's locations, and store them for later evaluation. */
12430
12431 static void
12432 create_excep_cond_exprs (struct ada_catchpoint *c,
12433 enum ada_exception_catchpoint_kind ex)
12434 {
12435 struct bp_location *bl;
12436
12437 /* Nothing to do if there's no specific exception to catch. */
12438 if (c->excep_string.empty ())
12439 return;
12440
12441 /* Same if there are no locations... */
12442 if (c->loc == NULL)
12443 return;
12444
12445 /* Compute the condition expression in text form, from the specific
12446 expection we want to catch. */
12447 std::string cond_string
12448 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12449
12450 /* Iterate over all the catchpoint's locations, and parse an
12451 expression for each. */
12452 for (bl = c->loc; bl != NULL; bl = bl->next)
12453 {
12454 struct ada_catchpoint_location *ada_loc
12455 = (struct ada_catchpoint_location *) bl;
12456 expression_up exp;
12457
12458 if (!bl->shlib_disabled)
12459 {
12460 const char *s;
12461
12462 s = cond_string.c_str ();
12463 TRY
12464 {
12465 exp = parse_exp_1 (&s, bl->address,
12466 block_for_pc (bl->address),
12467 0);
12468 }
12469 CATCH (e, RETURN_MASK_ERROR)
12470 {
12471 warning (_("failed to reevaluate internal exception condition "
12472 "for catchpoint %d: %s"),
12473 c->number, e.message);
12474 }
12475 END_CATCH
12476 }
12477
12478 ada_loc->excep_cond_expr = std::move (exp);
12479 }
12480 }
12481
12482 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12483 structure for all exception catchpoint kinds. */
12484
12485 static struct bp_location *
12486 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12487 struct breakpoint *self)
12488 {
12489 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12490 }
12491
12492 /* Implement the RE_SET method in the breakpoint_ops structure for all
12493 exception catchpoint kinds. */
12494
12495 static void
12496 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12497 {
12498 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12499
12500 /* Call the base class's method. This updates the catchpoint's
12501 locations. */
12502 bkpt_breakpoint_ops.re_set (b);
12503
12504 /* Reparse the exception conditional expressions. One for each
12505 location. */
12506 create_excep_cond_exprs (c, ex);
12507 }
12508
12509 /* Returns true if we should stop for this breakpoint hit. If the
12510 user specified a specific exception, we only want to cause a stop
12511 if the program thrown that exception. */
12512
12513 static int
12514 should_stop_exception (const struct bp_location *bl)
12515 {
12516 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12517 const struct ada_catchpoint_location *ada_loc
12518 = (const struct ada_catchpoint_location *) bl;
12519 int stop;
12520
12521 /* With no specific exception, should always stop. */
12522 if (c->excep_string.empty ())
12523 return 1;
12524
12525 if (ada_loc->excep_cond_expr == NULL)
12526 {
12527 /* We will have a NULL expression if back when we were creating
12528 the expressions, this location's had failed to parse. */
12529 return 1;
12530 }
12531
12532 stop = 1;
12533 TRY
12534 {
12535 struct value *mark;
12536
12537 mark = value_mark ();
12538 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12539 value_free_to_mark (mark);
12540 }
12541 CATCH (ex, RETURN_MASK_ALL)
12542 {
12543 exception_fprintf (gdb_stderr, ex,
12544 _("Error in testing exception condition:\n"));
12545 }
12546 END_CATCH
12547
12548 return stop;
12549 }
12550
12551 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12552 for all exception catchpoint kinds. */
12553
12554 static void
12555 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12556 {
12557 bs->stop = should_stop_exception (bs->bp_location_at);
12558 }
12559
12560 /* Implement the PRINT_IT method in the breakpoint_ops structure
12561 for all exception catchpoint kinds. */
12562
12563 static enum print_stop_action
12564 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12565 {
12566 struct ui_out *uiout = current_uiout;
12567 struct breakpoint *b = bs->breakpoint_at;
12568
12569 annotate_catchpoint (b->number);
12570
12571 if (uiout->is_mi_like_p ())
12572 {
12573 uiout->field_string ("reason",
12574 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12575 uiout->field_string ("disp", bpdisp_text (b->disposition));
12576 }
12577
12578 uiout->text (b->disposition == disp_del
12579 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12580 uiout->field_int ("bkptno", b->number);
12581 uiout->text (", ");
12582
12583 /* ada_exception_name_addr relies on the selected frame being the
12584 current frame. Need to do this here because this function may be
12585 called more than once when printing a stop, and below, we'll
12586 select the first frame past the Ada run-time (see
12587 ada_find_printable_frame). */
12588 select_frame (get_current_frame ());
12589
12590 switch (ex)
12591 {
12592 case ada_catch_exception:
12593 case ada_catch_exception_unhandled:
12594 case ada_catch_handlers:
12595 {
12596 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12597 char exception_name[256];
12598
12599 if (addr != 0)
12600 {
12601 read_memory (addr, (gdb_byte *) exception_name,
12602 sizeof (exception_name) - 1);
12603 exception_name [sizeof (exception_name) - 1] = '\0';
12604 }
12605 else
12606 {
12607 /* For some reason, we were unable to read the exception
12608 name. This could happen if the Runtime was compiled
12609 without debugging info, for instance. In that case,
12610 just replace the exception name by the generic string
12611 "exception" - it will read as "an exception" in the
12612 notification we are about to print. */
12613 memcpy (exception_name, "exception", sizeof ("exception"));
12614 }
12615 /* In the case of unhandled exception breakpoints, we print
12616 the exception name as "unhandled EXCEPTION_NAME", to make
12617 it clearer to the user which kind of catchpoint just got
12618 hit. We used ui_out_text to make sure that this extra
12619 info does not pollute the exception name in the MI case. */
12620 if (ex == ada_catch_exception_unhandled)
12621 uiout->text ("unhandled ");
12622 uiout->field_string ("exception-name", exception_name);
12623 }
12624 break;
12625 case ada_catch_assert:
12626 /* In this case, the name of the exception is not really
12627 important. Just print "failed assertion" to make it clearer
12628 that his program just hit an assertion-failure catchpoint.
12629 We used ui_out_text because this info does not belong in
12630 the MI output. */
12631 uiout->text ("failed assertion");
12632 break;
12633 }
12634
12635 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12636 if (exception_message != NULL)
12637 {
12638 uiout->text (" (");
12639 uiout->field_string ("exception-message", exception_message.get ());
12640 uiout->text (")");
12641 }
12642
12643 uiout->text (" at ");
12644 ada_find_printable_frame (get_current_frame ());
12645
12646 return PRINT_SRC_AND_LOC;
12647 }
12648
12649 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12650 for all exception catchpoint kinds. */
12651
12652 static void
12653 print_one_exception (enum ada_exception_catchpoint_kind ex,
12654 struct breakpoint *b, struct bp_location **last_loc)
12655 {
12656 struct ui_out *uiout = current_uiout;
12657 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12658 struct value_print_options opts;
12659
12660 get_user_print_options (&opts);
12661 if (opts.addressprint)
12662 {
12663 annotate_field (4);
12664 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12665 }
12666
12667 annotate_field (5);
12668 *last_loc = b->loc;
12669 switch (ex)
12670 {
12671 case ada_catch_exception:
12672 if (!c->excep_string.empty ())
12673 {
12674 std::string msg = string_printf (_("`%s' Ada exception"),
12675 c->excep_string.c_str ());
12676
12677 uiout->field_string ("what", msg);
12678 }
12679 else
12680 uiout->field_string ("what", "all Ada exceptions");
12681
12682 break;
12683
12684 case ada_catch_exception_unhandled:
12685 uiout->field_string ("what", "unhandled Ada exceptions");
12686 break;
12687
12688 case ada_catch_handlers:
12689 if (!c->excep_string.empty ())
12690 {
12691 uiout->field_fmt ("what",
12692 _("`%s' Ada exception handlers"),
12693 c->excep_string.c_str ());
12694 }
12695 else
12696 uiout->field_string ("what", "all Ada exceptions handlers");
12697 break;
12698
12699 case ada_catch_assert:
12700 uiout->field_string ("what", "failed Ada assertions");
12701 break;
12702
12703 default:
12704 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12705 break;
12706 }
12707 }
12708
12709 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12710 for all exception catchpoint kinds. */
12711
12712 static void
12713 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12714 struct breakpoint *b)
12715 {
12716 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12717 struct ui_out *uiout = current_uiout;
12718
12719 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12720 : _("Catchpoint "));
12721 uiout->field_int ("bkptno", b->number);
12722 uiout->text (": ");
12723
12724 switch (ex)
12725 {
12726 case ada_catch_exception:
12727 if (!c->excep_string.empty ())
12728 {
12729 std::string info = string_printf (_("`%s' Ada exception"),
12730 c->excep_string.c_str ());
12731 uiout->text (info.c_str ());
12732 }
12733 else
12734 uiout->text (_("all Ada exceptions"));
12735 break;
12736
12737 case ada_catch_exception_unhandled:
12738 uiout->text (_("unhandled Ada exceptions"));
12739 break;
12740
12741 case ada_catch_handlers:
12742 if (!c->excep_string.empty ())
12743 {
12744 std::string info
12745 = string_printf (_("`%s' Ada exception handlers"),
12746 c->excep_string.c_str ());
12747 uiout->text (info.c_str ());
12748 }
12749 else
12750 uiout->text (_("all Ada exceptions handlers"));
12751 break;
12752
12753 case ada_catch_assert:
12754 uiout->text (_("failed Ada assertions"));
12755 break;
12756
12757 default:
12758 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12759 break;
12760 }
12761 }
12762
12763 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12764 for all exception catchpoint kinds. */
12765
12766 static void
12767 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12768 struct breakpoint *b, struct ui_file *fp)
12769 {
12770 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12771
12772 switch (ex)
12773 {
12774 case ada_catch_exception:
12775 fprintf_filtered (fp, "catch exception");
12776 if (!c->excep_string.empty ())
12777 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12778 break;
12779
12780 case ada_catch_exception_unhandled:
12781 fprintf_filtered (fp, "catch exception unhandled");
12782 break;
12783
12784 case ada_catch_handlers:
12785 fprintf_filtered (fp, "catch handlers");
12786 break;
12787
12788 case ada_catch_assert:
12789 fprintf_filtered (fp, "catch assert");
12790 break;
12791
12792 default:
12793 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12794 }
12795 print_recreate_thread (b, fp);
12796 }
12797
12798 /* Virtual table for "catch exception" breakpoints. */
12799
12800 static struct bp_location *
12801 allocate_location_catch_exception (struct breakpoint *self)
12802 {
12803 return allocate_location_exception (ada_catch_exception, self);
12804 }
12805
12806 static void
12807 re_set_catch_exception (struct breakpoint *b)
12808 {
12809 re_set_exception (ada_catch_exception, b);
12810 }
12811
12812 static void
12813 check_status_catch_exception (bpstat bs)
12814 {
12815 check_status_exception (ada_catch_exception, bs);
12816 }
12817
12818 static enum print_stop_action
12819 print_it_catch_exception (bpstat bs)
12820 {
12821 return print_it_exception (ada_catch_exception, bs);
12822 }
12823
12824 static void
12825 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12826 {
12827 print_one_exception (ada_catch_exception, b, last_loc);
12828 }
12829
12830 static void
12831 print_mention_catch_exception (struct breakpoint *b)
12832 {
12833 print_mention_exception (ada_catch_exception, b);
12834 }
12835
12836 static void
12837 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12838 {
12839 print_recreate_exception (ada_catch_exception, b, fp);
12840 }
12841
12842 static struct breakpoint_ops catch_exception_breakpoint_ops;
12843
12844 /* Virtual table for "catch exception unhandled" breakpoints. */
12845
12846 static struct bp_location *
12847 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12848 {
12849 return allocate_location_exception (ada_catch_exception_unhandled, self);
12850 }
12851
12852 static void
12853 re_set_catch_exception_unhandled (struct breakpoint *b)
12854 {
12855 re_set_exception (ada_catch_exception_unhandled, b);
12856 }
12857
12858 static void
12859 check_status_catch_exception_unhandled (bpstat bs)
12860 {
12861 check_status_exception (ada_catch_exception_unhandled, bs);
12862 }
12863
12864 static enum print_stop_action
12865 print_it_catch_exception_unhandled (bpstat bs)
12866 {
12867 return print_it_exception (ada_catch_exception_unhandled, bs);
12868 }
12869
12870 static void
12871 print_one_catch_exception_unhandled (struct breakpoint *b,
12872 struct bp_location **last_loc)
12873 {
12874 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12875 }
12876
12877 static void
12878 print_mention_catch_exception_unhandled (struct breakpoint *b)
12879 {
12880 print_mention_exception (ada_catch_exception_unhandled, b);
12881 }
12882
12883 static void
12884 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12885 struct ui_file *fp)
12886 {
12887 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12888 }
12889
12890 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12891
12892 /* Virtual table for "catch assert" breakpoints. */
12893
12894 static struct bp_location *
12895 allocate_location_catch_assert (struct breakpoint *self)
12896 {
12897 return allocate_location_exception (ada_catch_assert, self);
12898 }
12899
12900 static void
12901 re_set_catch_assert (struct breakpoint *b)
12902 {
12903 re_set_exception (ada_catch_assert, b);
12904 }
12905
12906 static void
12907 check_status_catch_assert (bpstat bs)
12908 {
12909 check_status_exception (ada_catch_assert, bs);
12910 }
12911
12912 static enum print_stop_action
12913 print_it_catch_assert (bpstat bs)
12914 {
12915 return print_it_exception (ada_catch_assert, bs);
12916 }
12917
12918 static void
12919 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12920 {
12921 print_one_exception (ada_catch_assert, b, last_loc);
12922 }
12923
12924 static void
12925 print_mention_catch_assert (struct breakpoint *b)
12926 {
12927 print_mention_exception (ada_catch_assert, b);
12928 }
12929
12930 static void
12931 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12932 {
12933 print_recreate_exception (ada_catch_assert, b, fp);
12934 }
12935
12936 static struct breakpoint_ops catch_assert_breakpoint_ops;
12937
12938 /* Virtual table for "catch handlers" breakpoints. */
12939
12940 static struct bp_location *
12941 allocate_location_catch_handlers (struct breakpoint *self)
12942 {
12943 return allocate_location_exception (ada_catch_handlers, self);
12944 }
12945
12946 static void
12947 re_set_catch_handlers (struct breakpoint *b)
12948 {
12949 re_set_exception (ada_catch_handlers, b);
12950 }
12951
12952 static void
12953 check_status_catch_handlers (bpstat bs)
12954 {
12955 check_status_exception (ada_catch_handlers, bs);
12956 }
12957
12958 static enum print_stop_action
12959 print_it_catch_handlers (bpstat bs)
12960 {
12961 return print_it_exception (ada_catch_handlers, bs);
12962 }
12963
12964 static void
12965 print_one_catch_handlers (struct breakpoint *b,
12966 struct bp_location **last_loc)
12967 {
12968 print_one_exception (ada_catch_handlers, b, last_loc);
12969 }
12970
12971 static void
12972 print_mention_catch_handlers (struct breakpoint *b)
12973 {
12974 print_mention_exception (ada_catch_handlers, b);
12975 }
12976
12977 static void
12978 print_recreate_catch_handlers (struct breakpoint *b,
12979 struct ui_file *fp)
12980 {
12981 print_recreate_exception (ada_catch_handlers, b, fp);
12982 }
12983
12984 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12985
12986 /* Split the arguments specified in a "catch exception" command.
12987 Set EX to the appropriate catchpoint type.
12988 Set EXCEP_STRING to the name of the specific exception if
12989 specified by the user.
12990 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12991 "catch handlers" command. False otherwise.
12992 If a condition is found at the end of the arguments, the condition
12993 expression is stored in COND_STRING (memory must be deallocated
12994 after use). Otherwise COND_STRING is set to NULL. */
12995
12996 static void
12997 catch_ada_exception_command_split (const char *args,
12998 bool is_catch_handlers_cmd,
12999 enum ada_exception_catchpoint_kind *ex,
13000 std::string *excep_string,
13001 std::string *cond_string)
13002 {
13003 std::string exception_name;
13004
13005 exception_name = extract_arg (&args);
13006 if (exception_name == "if")
13007 {
13008 /* This is not an exception name; this is the start of a condition
13009 expression for a catchpoint on all exceptions. So, "un-get"
13010 this token, and set exception_name to NULL. */
13011 exception_name.clear ();
13012 args -= 2;
13013 }
13014
13015 /* Check to see if we have a condition. */
13016
13017 args = skip_spaces (args);
13018 if (startswith (args, "if")
13019 && (isspace (args[2]) || args[2] == '\0'))
13020 {
13021 args += 2;
13022 args = skip_spaces (args);
13023
13024 if (args[0] == '\0')
13025 error (_("Condition missing after `if' keyword"));
13026 *cond_string = args;
13027
13028 args += strlen (args);
13029 }
13030
13031 /* Check that we do not have any more arguments. Anything else
13032 is unexpected. */
13033
13034 if (args[0] != '\0')
13035 error (_("Junk at end of expression"));
13036
13037 if (is_catch_handlers_cmd)
13038 {
13039 /* Catch handling of exceptions. */
13040 *ex = ada_catch_handlers;
13041 *excep_string = exception_name;
13042 }
13043 else if (exception_name.empty ())
13044 {
13045 /* Catch all exceptions. */
13046 *ex = ada_catch_exception;
13047 excep_string->clear ();
13048 }
13049 else if (exception_name == "unhandled")
13050 {
13051 /* Catch unhandled exceptions. */
13052 *ex = ada_catch_exception_unhandled;
13053 excep_string->clear ();
13054 }
13055 else
13056 {
13057 /* Catch a specific exception. */
13058 *ex = ada_catch_exception;
13059 *excep_string = exception_name;
13060 }
13061 }
13062
13063 /* Return the name of the symbol on which we should break in order to
13064 implement a catchpoint of the EX kind. */
13065
13066 static const char *
13067 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13068 {
13069 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13070
13071 gdb_assert (data->exception_info != NULL);
13072
13073 switch (ex)
13074 {
13075 case ada_catch_exception:
13076 return (data->exception_info->catch_exception_sym);
13077 break;
13078 case ada_catch_exception_unhandled:
13079 return (data->exception_info->catch_exception_unhandled_sym);
13080 break;
13081 case ada_catch_assert:
13082 return (data->exception_info->catch_assert_sym);
13083 break;
13084 case ada_catch_handlers:
13085 return (data->exception_info->catch_handlers_sym);
13086 break;
13087 default:
13088 internal_error (__FILE__, __LINE__,
13089 _("unexpected catchpoint kind (%d)"), ex);
13090 }
13091 }
13092
13093 /* Return the breakpoint ops "virtual table" used for catchpoints
13094 of the EX kind. */
13095
13096 static const struct breakpoint_ops *
13097 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13098 {
13099 switch (ex)
13100 {
13101 case ada_catch_exception:
13102 return (&catch_exception_breakpoint_ops);
13103 break;
13104 case ada_catch_exception_unhandled:
13105 return (&catch_exception_unhandled_breakpoint_ops);
13106 break;
13107 case ada_catch_assert:
13108 return (&catch_assert_breakpoint_ops);
13109 break;
13110 case ada_catch_handlers:
13111 return (&catch_handlers_breakpoint_ops);
13112 break;
13113 default:
13114 internal_error (__FILE__, __LINE__,
13115 _("unexpected catchpoint kind (%d)"), ex);
13116 }
13117 }
13118
13119 /* Return the condition that will be used to match the current exception
13120 being raised with the exception that the user wants to catch. This
13121 assumes that this condition is used when the inferior just triggered
13122 an exception catchpoint.
13123 EX: the type of catchpoints used for catching Ada exceptions. */
13124
13125 static std::string
13126 ada_exception_catchpoint_cond_string (const char *excep_string,
13127 enum ada_exception_catchpoint_kind ex)
13128 {
13129 int i;
13130 bool is_standard_exc = false;
13131 std::string result;
13132
13133 if (ex == ada_catch_handlers)
13134 {
13135 /* For exception handlers catchpoints, the condition string does
13136 not use the same parameter as for the other exceptions. */
13137 result = ("long_integer (GNAT_GCC_exception_Access"
13138 "(gcc_exception).all.occurrence.id)");
13139 }
13140 else
13141 result = "long_integer (e)";
13142
13143 /* The standard exceptions are a special case. They are defined in
13144 runtime units that have been compiled without debugging info; if
13145 EXCEP_STRING is the not-fully-qualified name of a standard
13146 exception (e.g. "constraint_error") then, during the evaluation
13147 of the condition expression, the symbol lookup on this name would
13148 *not* return this standard exception. The catchpoint condition
13149 may then be set only on user-defined exceptions which have the
13150 same not-fully-qualified name (e.g. my_package.constraint_error).
13151
13152 To avoid this unexcepted behavior, these standard exceptions are
13153 systematically prefixed by "standard". This means that "catch
13154 exception constraint_error" is rewritten into "catch exception
13155 standard.constraint_error".
13156
13157 If an exception named contraint_error is defined in another package of
13158 the inferior program, then the only way to specify this exception as a
13159 breakpoint condition is to use its fully-qualified named:
13160 e.g. my_package.constraint_error. */
13161
13162 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13163 {
13164 if (strcmp (standard_exc [i], excep_string) == 0)
13165 {
13166 is_standard_exc = true;
13167 break;
13168 }
13169 }
13170
13171 result += " = ";
13172
13173 if (is_standard_exc)
13174 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13175 else
13176 string_appendf (result, "long_integer (&%s)", excep_string);
13177
13178 return result;
13179 }
13180
13181 /* Return the symtab_and_line that should be used to insert an exception
13182 catchpoint of the TYPE kind.
13183
13184 ADDR_STRING returns the name of the function where the real
13185 breakpoint that implements the catchpoints is set, depending on the
13186 type of catchpoint we need to create. */
13187
13188 static struct symtab_and_line
13189 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13190 const char **addr_string, const struct breakpoint_ops **ops)
13191 {
13192 const char *sym_name;
13193 struct symbol *sym;
13194
13195 /* First, find out which exception support info to use. */
13196 ada_exception_support_info_sniffer ();
13197
13198 /* Then lookup the function on which we will break in order to catch
13199 the Ada exceptions requested by the user. */
13200 sym_name = ada_exception_sym_name (ex);
13201 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13202
13203 if (sym == NULL)
13204 error (_("Catchpoint symbol not found: %s"), sym_name);
13205
13206 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13207 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13208
13209 /* Set ADDR_STRING. */
13210 *addr_string = xstrdup (sym_name);
13211
13212 /* Set OPS. */
13213 *ops = ada_exception_breakpoint_ops (ex);
13214
13215 return find_function_start_sal (sym, 1);
13216 }
13217
13218 /* Create an Ada exception catchpoint.
13219
13220 EX_KIND is the kind of exception catchpoint to be created.
13221
13222 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13223 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13224 of the exception to which this catchpoint applies.
13225
13226 COND_STRING, if not empty, is the catchpoint condition.
13227
13228 TEMPFLAG, if nonzero, means that the underlying breakpoint
13229 should be temporary.
13230
13231 FROM_TTY is the usual argument passed to all commands implementations. */
13232
13233 void
13234 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13235 enum ada_exception_catchpoint_kind ex_kind,
13236 const std::string &excep_string,
13237 const std::string &cond_string,
13238 int tempflag,
13239 int disabled,
13240 int from_tty)
13241 {
13242 const char *addr_string = NULL;
13243 const struct breakpoint_ops *ops = NULL;
13244 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13245
13246 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13247 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13248 ops, tempflag, disabled, from_tty);
13249 c->excep_string = excep_string;
13250 create_excep_cond_exprs (c.get (), ex_kind);
13251 if (!cond_string.empty ())
13252 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13253 install_breakpoint (0, std::move (c), 1);
13254 }
13255
13256 /* Implement the "catch exception" command. */
13257
13258 static void
13259 catch_ada_exception_command (const char *arg_entry, int from_tty,
13260 struct cmd_list_element *command)
13261 {
13262 const char *arg = arg_entry;
13263 struct gdbarch *gdbarch = get_current_arch ();
13264 int tempflag;
13265 enum ada_exception_catchpoint_kind ex_kind;
13266 std::string excep_string;
13267 std::string cond_string;
13268
13269 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13270
13271 if (!arg)
13272 arg = "";
13273 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13274 &cond_string);
13275 create_ada_exception_catchpoint (gdbarch, ex_kind,
13276 excep_string, cond_string,
13277 tempflag, 1 /* enabled */,
13278 from_tty);
13279 }
13280
13281 /* Implement the "catch handlers" command. */
13282
13283 static void
13284 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13285 struct cmd_list_element *command)
13286 {
13287 const char *arg = arg_entry;
13288 struct gdbarch *gdbarch = get_current_arch ();
13289 int tempflag;
13290 enum ada_exception_catchpoint_kind ex_kind;
13291 std::string excep_string;
13292 std::string cond_string;
13293
13294 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13295
13296 if (!arg)
13297 arg = "";
13298 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13299 &cond_string);
13300 create_ada_exception_catchpoint (gdbarch, ex_kind,
13301 excep_string, cond_string,
13302 tempflag, 1 /* enabled */,
13303 from_tty);
13304 }
13305
13306 /* Split the arguments specified in a "catch assert" command.
13307
13308 ARGS contains the command's arguments (or the empty string if
13309 no arguments were passed).
13310
13311 If ARGS contains a condition, set COND_STRING to that condition
13312 (the memory needs to be deallocated after use). */
13313
13314 static void
13315 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13316 {
13317 args = skip_spaces (args);
13318
13319 /* Check whether a condition was provided. */
13320 if (startswith (args, "if")
13321 && (isspace (args[2]) || args[2] == '\0'))
13322 {
13323 args += 2;
13324 args = skip_spaces (args);
13325 if (args[0] == '\0')
13326 error (_("condition missing after `if' keyword"));
13327 cond_string.assign (args);
13328 }
13329
13330 /* Otherwise, there should be no other argument at the end of
13331 the command. */
13332 else if (args[0] != '\0')
13333 error (_("Junk at end of arguments."));
13334 }
13335
13336 /* Implement the "catch assert" command. */
13337
13338 static void
13339 catch_assert_command (const char *arg_entry, int from_tty,
13340 struct cmd_list_element *command)
13341 {
13342 const char *arg = arg_entry;
13343 struct gdbarch *gdbarch = get_current_arch ();
13344 int tempflag;
13345 std::string cond_string;
13346
13347 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13348
13349 if (!arg)
13350 arg = "";
13351 catch_ada_assert_command_split (arg, cond_string);
13352 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13353 "", cond_string,
13354 tempflag, 1 /* enabled */,
13355 from_tty);
13356 }
13357
13358 /* Return non-zero if the symbol SYM is an Ada exception object. */
13359
13360 static int
13361 ada_is_exception_sym (struct symbol *sym)
13362 {
13363 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13364
13365 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13366 && SYMBOL_CLASS (sym) != LOC_BLOCK
13367 && SYMBOL_CLASS (sym) != LOC_CONST
13368 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13369 && type_name != NULL && strcmp (type_name, "exception") == 0);
13370 }
13371
13372 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13373 Ada exception object. This matches all exceptions except the ones
13374 defined by the Ada language. */
13375
13376 static int
13377 ada_is_non_standard_exception_sym (struct symbol *sym)
13378 {
13379 int i;
13380
13381 if (!ada_is_exception_sym (sym))
13382 return 0;
13383
13384 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13386 return 0; /* A standard exception. */
13387
13388 /* Numeric_Error is also a standard exception, so exclude it.
13389 See the STANDARD_EXC description for more details as to why
13390 this exception is not listed in that array. */
13391 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13392 return 0;
13393
13394 return 1;
13395 }
13396
13397 /* A helper function for std::sort, comparing two struct ada_exc_info
13398 objects.
13399
13400 The comparison is determined first by exception name, and then
13401 by exception address. */
13402
13403 bool
13404 ada_exc_info::operator< (const ada_exc_info &other) const
13405 {
13406 int result;
13407
13408 result = strcmp (name, other.name);
13409 if (result < 0)
13410 return true;
13411 if (result == 0 && addr < other.addr)
13412 return true;
13413 return false;
13414 }
13415
13416 bool
13417 ada_exc_info::operator== (const ada_exc_info &other) const
13418 {
13419 return addr == other.addr && strcmp (name, other.name) == 0;
13420 }
13421
13422 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13423 routine, but keeping the first SKIP elements untouched.
13424
13425 All duplicates are also removed. */
13426
13427 static void
13428 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13429 int skip)
13430 {
13431 std::sort (exceptions->begin () + skip, exceptions->end ());
13432 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13433 exceptions->end ());
13434 }
13435
13436 /* Add all exceptions defined by the Ada standard whose name match
13437 a regular expression.
13438
13439 If PREG is not NULL, then this regexp_t object is used to
13440 perform the symbol name matching. Otherwise, no name-based
13441 filtering is performed.
13442
13443 EXCEPTIONS is a vector of exceptions to which matching exceptions
13444 gets pushed. */
13445
13446 static void
13447 ada_add_standard_exceptions (compiled_regex *preg,
13448 std::vector<ada_exc_info> *exceptions)
13449 {
13450 int i;
13451
13452 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13453 {
13454 if (preg == NULL
13455 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13456 {
13457 struct bound_minimal_symbol msymbol
13458 = ada_lookup_simple_minsym (standard_exc[i]);
13459
13460 if (msymbol.minsym != NULL)
13461 {
13462 struct ada_exc_info info
13463 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13464
13465 exceptions->push_back (info);
13466 }
13467 }
13468 }
13469 }
13470
13471 /* Add all Ada exceptions defined locally and accessible from the given
13472 FRAME.
13473
13474 If PREG is not NULL, then this regexp_t object is used to
13475 perform the symbol name matching. Otherwise, no name-based
13476 filtering is performed.
13477
13478 EXCEPTIONS is a vector of exceptions to which matching exceptions
13479 gets pushed. */
13480
13481 static void
13482 ada_add_exceptions_from_frame (compiled_regex *preg,
13483 struct frame_info *frame,
13484 std::vector<ada_exc_info> *exceptions)
13485 {
13486 const struct block *block = get_frame_block (frame, 0);
13487
13488 while (block != 0)
13489 {
13490 struct block_iterator iter;
13491 struct symbol *sym;
13492
13493 ALL_BLOCK_SYMBOLS (block, iter, sym)
13494 {
13495 switch (SYMBOL_CLASS (sym))
13496 {
13497 case LOC_TYPEDEF:
13498 case LOC_BLOCK:
13499 case LOC_CONST:
13500 break;
13501 default:
13502 if (ada_is_exception_sym (sym))
13503 {
13504 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13505 SYMBOL_VALUE_ADDRESS (sym)};
13506
13507 exceptions->push_back (info);
13508 }
13509 }
13510 }
13511 if (BLOCK_FUNCTION (block) != NULL)
13512 break;
13513 block = BLOCK_SUPERBLOCK (block);
13514 }
13515 }
13516
13517 /* Return true if NAME matches PREG or if PREG is NULL. */
13518
13519 static bool
13520 name_matches_regex (const char *name, compiled_regex *preg)
13521 {
13522 return (preg == NULL
13523 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13524 }
13525
13526 /* Add all exceptions defined globally whose name name match
13527 a regular expression, excluding standard exceptions.
13528
13529 The reason we exclude standard exceptions is that they need
13530 to be handled separately: Standard exceptions are defined inside
13531 a runtime unit which is normally not compiled with debugging info,
13532 and thus usually do not show up in our symbol search. However,
13533 if the unit was in fact built with debugging info, we need to
13534 exclude them because they would duplicate the entry we found
13535 during the special loop that specifically searches for those
13536 standard exceptions.
13537
13538 If PREG is not NULL, then this regexp_t object is used to
13539 perform the symbol name matching. Otherwise, no name-based
13540 filtering is performed.
13541
13542 EXCEPTIONS is a vector of exceptions to which matching exceptions
13543 gets pushed. */
13544
13545 static void
13546 ada_add_global_exceptions (compiled_regex *preg,
13547 std::vector<ada_exc_info> *exceptions)
13548 {
13549 struct objfile *objfile;
13550 struct compunit_symtab *s;
13551
13552 /* In Ada, the symbol "search name" is a linkage name, whereas the
13553 regular expression used to do the matching refers to the natural
13554 name. So match against the decoded name. */
13555 expand_symtabs_matching (NULL,
13556 lookup_name_info::match_any (),
13557 [&] (const char *search_name)
13558 {
13559 const char *decoded = ada_decode (search_name);
13560 return name_matches_regex (decoded, preg);
13561 },
13562 NULL,
13563 VARIABLES_DOMAIN);
13564
13565 ALL_COMPUNITS (objfile, s)
13566 {
13567 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13568 int i;
13569
13570 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13571 {
13572 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13573 struct block_iterator iter;
13574 struct symbol *sym;
13575
13576 ALL_BLOCK_SYMBOLS (b, iter, sym)
13577 if (ada_is_non_standard_exception_sym (sym)
13578 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13579 {
13580 struct ada_exc_info info
13581 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13582
13583 exceptions->push_back (info);
13584 }
13585 }
13586 }
13587 }
13588
13589 /* Implements ada_exceptions_list with the regular expression passed
13590 as a regex_t, rather than a string.
13591
13592 If not NULL, PREG is used to filter out exceptions whose names
13593 do not match. Otherwise, all exceptions are listed. */
13594
13595 static std::vector<ada_exc_info>
13596 ada_exceptions_list_1 (compiled_regex *preg)
13597 {
13598 std::vector<ada_exc_info> result;
13599 int prev_len;
13600
13601 /* First, list the known standard exceptions. These exceptions
13602 need to be handled separately, as they are usually defined in
13603 runtime units that have been compiled without debugging info. */
13604
13605 ada_add_standard_exceptions (preg, &result);
13606
13607 /* Next, find all exceptions whose scope is local and accessible
13608 from the currently selected frame. */
13609
13610 if (has_stack_frames ())
13611 {
13612 prev_len = result.size ();
13613 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13614 &result);
13615 if (result.size () > prev_len)
13616 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13617 }
13618
13619 /* Add all exceptions whose scope is global. */
13620
13621 prev_len = result.size ();
13622 ada_add_global_exceptions (preg, &result);
13623 if (result.size () > prev_len)
13624 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13625
13626 return result;
13627 }
13628
13629 /* Return a vector of ada_exc_info.
13630
13631 If REGEXP is NULL, all exceptions are included in the result.
13632 Otherwise, it should contain a valid regular expression,
13633 and only the exceptions whose names match that regular expression
13634 are included in the result.
13635
13636 The exceptions are sorted in the following order:
13637 - Standard exceptions (defined by the Ada language), in
13638 alphabetical order;
13639 - Exceptions only visible from the current frame, in
13640 alphabetical order;
13641 - Exceptions whose scope is global, in alphabetical order. */
13642
13643 std::vector<ada_exc_info>
13644 ada_exceptions_list (const char *regexp)
13645 {
13646 if (regexp == NULL)
13647 return ada_exceptions_list_1 (NULL);
13648
13649 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13650 return ada_exceptions_list_1 (&reg);
13651 }
13652
13653 /* Implement the "info exceptions" command. */
13654
13655 static void
13656 info_exceptions_command (const char *regexp, int from_tty)
13657 {
13658 struct gdbarch *gdbarch = get_current_arch ();
13659
13660 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13661
13662 if (regexp != NULL)
13663 printf_filtered
13664 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13665 else
13666 printf_filtered (_("All defined Ada exceptions:\n"));
13667
13668 for (const ada_exc_info &info : exceptions)
13669 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13670 }
13671
13672 /* Operators */
13673 /* Information about operators given special treatment in functions
13674 below. */
13675 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13676
13677 #define ADA_OPERATORS \
13678 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13679 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13680 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13682 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13686 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13687 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13688 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13689 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13690 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13692 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13693 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13694 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13695 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13696 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13697
13698 static void
13699 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13700 int *argsp)
13701 {
13702 switch (exp->elts[pc - 1].opcode)
13703 {
13704 default:
13705 operator_length_standard (exp, pc, oplenp, argsp);
13706 break;
13707
13708 #define OP_DEFN(op, len, args, binop) \
13709 case op: *oplenp = len; *argsp = args; break;
13710 ADA_OPERATORS;
13711 #undef OP_DEFN
13712
13713 case OP_AGGREGATE:
13714 *oplenp = 3;
13715 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13716 break;
13717
13718 case OP_CHOICES:
13719 *oplenp = 3;
13720 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13721 break;
13722 }
13723 }
13724
13725 /* Implementation of the exp_descriptor method operator_check. */
13726
13727 static int
13728 ada_operator_check (struct expression *exp, int pos,
13729 int (*objfile_func) (struct objfile *objfile, void *data),
13730 void *data)
13731 {
13732 const union exp_element *const elts = exp->elts;
13733 struct type *type = NULL;
13734
13735 switch (elts[pos].opcode)
13736 {
13737 case UNOP_IN_RANGE:
13738 case UNOP_QUAL:
13739 type = elts[pos + 1].type;
13740 break;
13741
13742 default:
13743 return operator_check_standard (exp, pos, objfile_func, data);
13744 }
13745
13746 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13747
13748 if (type && TYPE_OBJFILE (type)
13749 && (*objfile_func) (TYPE_OBJFILE (type), data))
13750 return 1;
13751
13752 return 0;
13753 }
13754
13755 static const char *
13756 ada_op_name (enum exp_opcode opcode)
13757 {
13758 switch (opcode)
13759 {
13760 default:
13761 return op_name_standard (opcode);
13762
13763 #define OP_DEFN(op, len, args, binop) case op: return #op;
13764 ADA_OPERATORS;
13765 #undef OP_DEFN
13766
13767 case OP_AGGREGATE:
13768 return "OP_AGGREGATE";
13769 case OP_CHOICES:
13770 return "OP_CHOICES";
13771 case OP_NAME:
13772 return "OP_NAME";
13773 }
13774 }
13775
13776 /* As for operator_length, but assumes PC is pointing at the first
13777 element of the operator, and gives meaningful results only for the
13778 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13779
13780 static void
13781 ada_forward_operator_length (struct expression *exp, int pc,
13782 int *oplenp, int *argsp)
13783 {
13784 switch (exp->elts[pc].opcode)
13785 {
13786 default:
13787 *oplenp = *argsp = 0;
13788 break;
13789
13790 #define OP_DEFN(op, len, args, binop) \
13791 case op: *oplenp = len; *argsp = args; break;
13792 ADA_OPERATORS;
13793 #undef OP_DEFN
13794
13795 case OP_AGGREGATE:
13796 *oplenp = 3;
13797 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13798 break;
13799
13800 case OP_CHOICES:
13801 *oplenp = 3;
13802 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13803 break;
13804
13805 case OP_STRING:
13806 case OP_NAME:
13807 {
13808 int len = longest_to_int (exp->elts[pc + 1].longconst);
13809
13810 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13811 *argsp = 0;
13812 break;
13813 }
13814 }
13815 }
13816
13817 static int
13818 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13819 {
13820 enum exp_opcode op = exp->elts[elt].opcode;
13821 int oplen, nargs;
13822 int pc = elt;
13823 int i;
13824
13825 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13826
13827 switch (op)
13828 {
13829 /* Ada attributes ('Foo). */
13830 case OP_ATR_FIRST:
13831 case OP_ATR_LAST:
13832 case OP_ATR_LENGTH:
13833 case OP_ATR_IMAGE:
13834 case OP_ATR_MAX:
13835 case OP_ATR_MIN:
13836 case OP_ATR_MODULUS:
13837 case OP_ATR_POS:
13838 case OP_ATR_SIZE:
13839 case OP_ATR_TAG:
13840 case OP_ATR_VAL:
13841 break;
13842
13843 case UNOP_IN_RANGE:
13844 case UNOP_QUAL:
13845 /* XXX: gdb_sprint_host_address, type_sprint */
13846 fprintf_filtered (stream, _("Type @"));
13847 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13848 fprintf_filtered (stream, " (");
13849 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13850 fprintf_filtered (stream, ")");
13851 break;
13852 case BINOP_IN_BOUNDS:
13853 fprintf_filtered (stream, " (%d)",
13854 longest_to_int (exp->elts[pc + 2].longconst));
13855 break;
13856 case TERNOP_IN_RANGE:
13857 break;
13858
13859 case OP_AGGREGATE:
13860 case OP_OTHERS:
13861 case OP_DISCRETE_RANGE:
13862 case OP_POSITIONAL:
13863 case OP_CHOICES:
13864 break;
13865
13866 case OP_NAME:
13867 case OP_STRING:
13868 {
13869 char *name = &exp->elts[elt + 2].string;
13870 int len = longest_to_int (exp->elts[elt + 1].longconst);
13871
13872 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13873 break;
13874 }
13875
13876 default:
13877 return dump_subexp_body_standard (exp, stream, elt);
13878 }
13879
13880 elt += oplen;
13881 for (i = 0; i < nargs; i += 1)
13882 elt = dump_subexp (exp, stream, elt);
13883
13884 return elt;
13885 }
13886
13887 /* The Ada extension of print_subexp (q.v.). */
13888
13889 static void
13890 ada_print_subexp (struct expression *exp, int *pos,
13891 struct ui_file *stream, enum precedence prec)
13892 {
13893 int oplen, nargs, i;
13894 int pc = *pos;
13895 enum exp_opcode op = exp->elts[pc].opcode;
13896
13897 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13898
13899 *pos += oplen;
13900 switch (op)
13901 {
13902 default:
13903 *pos -= oplen;
13904 print_subexp_standard (exp, pos, stream, prec);
13905 return;
13906
13907 case OP_VAR_VALUE:
13908 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13909 return;
13910
13911 case BINOP_IN_BOUNDS:
13912 /* XXX: sprint_subexp */
13913 print_subexp (exp, pos, stream, PREC_SUFFIX);
13914 fputs_filtered (" in ", stream);
13915 print_subexp (exp, pos, stream, PREC_SUFFIX);
13916 fputs_filtered ("'range", stream);
13917 if (exp->elts[pc + 1].longconst > 1)
13918 fprintf_filtered (stream, "(%ld)",
13919 (long) exp->elts[pc + 1].longconst);
13920 return;
13921
13922 case TERNOP_IN_RANGE:
13923 if (prec >= PREC_EQUAL)
13924 fputs_filtered ("(", stream);
13925 /* XXX: sprint_subexp */
13926 print_subexp (exp, pos, stream, PREC_SUFFIX);
13927 fputs_filtered (" in ", stream);
13928 print_subexp (exp, pos, stream, PREC_EQUAL);
13929 fputs_filtered (" .. ", stream);
13930 print_subexp (exp, pos, stream, PREC_EQUAL);
13931 if (prec >= PREC_EQUAL)
13932 fputs_filtered (")", stream);
13933 return;
13934
13935 case OP_ATR_FIRST:
13936 case OP_ATR_LAST:
13937 case OP_ATR_LENGTH:
13938 case OP_ATR_IMAGE:
13939 case OP_ATR_MAX:
13940 case OP_ATR_MIN:
13941 case OP_ATR_MODULUS:
13942 case OP_ATR_POS:
13943 case OP_ATR_SIZE:
13944 case OP_ATR_TAG:
13945 case OP_ATR_VAL:
13946 if (exp->elts[*pos].opcode == OP_TYPE)
13947 {
13948 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13949 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13950 &type_print_raw_options);
13951 *pos += 3;
13952 }
13953 else
13954 print_subexp (exp, pos, stream, PREC_SUFFIX);
13955 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13956 if (nargs > 1)
13957 {
13958 int tem;
13959
13960 for (tem = 1; tem < nargs; tem += 1)
13961 {
13962 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13963 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13964 }
13965 fputs_filtered (")", stream);
13966 }
13967 return;
13968
13969 case UNOP_QUAL:
13970 type_print (exp->elts[pc + 1].type, "", stream, 0);
13971 fputs_filtered ("'(", stream);
13972 print_subexp (exp, pos, stream, PREC_PREFIX);
13973 fputs_filtered (")", stream);
13974 return;
13975
13976 case UNOP_IN_RANGE:
13977 /* XXX: sprint_subexp */
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 fputs_filtered (" in ", stream);
13980 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13981 &type_print_raw_options);
13982 return;
13983
13984 case OP_DISCRETE_RANGE:
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13986 fputs_filtered ("..", stream);
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 return;
13989
13990 case OP_OTHERS:
13991 fputs_filtered ("others => ", stream);
13992 print_subexp (exp, pos, stream, PREC_SUFFIX);
13993 return;
13994
13995 case OP_CHOICES:
13996 for (i = 0; i < nargs-1; i += 1)
13997 {
13998 if (i > 0)
13999 fputs_filtered ("|", stream);
14000 print_subexp (exp, pos, stream, PREC_SUFFIX);
14001 }
14002 fputs_filtered (" => ", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 return;
14005
14006 case OP_POSITIONAL:
14007 print_subexp (exp, pos, stream, PREC_SUFFIX);
14008 return;
14009
14010 case OP_AGGREGATE:
14011 fputs_filtered ("(", stream);
14012 for (i = 0; i < nargs; i += 1)
14013 {
14014 if (i > 0)
14015 fputs_filtered (", ", stream);
14016 print_subexp (exp, pos, stream, PREC_SUFFIX);
14017 }
14018 fputs_filtered (")", stream);
14019 return;
14020 }
14021 }
14022
14023 /* Table mapping opcodes into strings for printing operators
14024 and precedences of the operators. */
14025
14026 static const struct op_print ada_op_print_tab[] = {
14027 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14028 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14029 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14030 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14031 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14032 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14033 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14034 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14035 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14036 {">=", BINOP_GEQ, PREC_ORDER, 0},
14037 {">", BINOP_GTR, PREC_ORDER, 0},
14038 {"<", BINOP_LESS, PREC_ORDER, 0},
14039 {">>", BINOP_RSH, PREC_SHIFT, 0},
14040 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14041 {"+", BINOP_ADD, PREC_ADD, 0},
14042 {"-", BINOP_SUB, PREC_ADD, 0},
14043 {"&", BINOP_CONCAT, PREC_ADD, 0},
14044 {"*", BINOP_MUL, PREC_MUL, 0},
14045 {"/", BINOP_DIV, PREC_MUL, 0},
14046 {"rem", BINOP_REM, PREC_MUL, 0},
14047 {"mod", BINOP_MOD, PREC_MUL, 0},
14048 {"**", BINOP_EXP, PREC_REPEAT, 0},
14049 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14050 {"-", UNOP_NEG, PREC_PREFIX, 0},
14051 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14052 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14053 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14054 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14055 {".all", UNOP_IND, PREC_SUFFIX, 1},
14056 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14057 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14058 {NULL, OP_NULL, PREC_SUFFIX, 0}
14059 };
14060 \f
14061 enum ada_primitive_types {
14062 ada_primitive_type_int,
14063 ada_primitive_type_long,
14064 ada_primitive_type_short,
14065 ada_primitive_type_char,
14066 ada_primitive_type_float,
14067 ada_primitive_type_double,
14068 ada_primitive_type_void,
14069 ada_primitive_type_long_long,
14070 ada_primitive_type_long_double,
14071 ada_primitive_type_natural,
14072 ada_primitive_type_positive,
14073 ada_primitive_type_system_address,
14074 ada_primitive_type_storage_offset,
14075 nr_ada_primitive_types
14076 };
14077
14078 static void
14079 ada_language_arch_info (struct gdbarch *gdbarch,
14080 struct language_arch_info *lai)
14081 {
14082 const struct builtin_type *builtin = builtin_type (gdbarch);
14083
14084 lai->primitive_type_vector
14085 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14086 struct type *);
14087
14088 lai->primitive_type_vector [ada_primitive_type_int]
14089 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14090 0, "integer");
14091 lai->primitive_type_vector [ada_primitive_type_long]
14092 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14093 0, "long_integer");
14094 lai->primitive_type_vector [ada_primitive_type_short]
14095 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14096 0, "short_integer");
14097 lai->string_char_type
14098 = lai->primitive_type_vector [ada_primitive_type_char]
14099 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14100 lai->primitive_type_vector [ada_primitive_type_float]
14101 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14102 "float", gdbarch_float_format (gdbarch));
14103 lai->primitive_type_vector [ada_primitive_type_double]
14104 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14105 "long_float", gdbarch_double_format (gdbarch));
14106 lai->primitive_type_vector [ada_primitive_type_long_long]
14107 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14108 0, "long_long_integer");
14109 lai->primitive_type_vector [ada_primitive_type_long_double]
14110 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14111 "long_long_float", gdbarch_long_double_format (gdbarch));
14112 lai->primitive_type_vector [ada_primitive_type_natural]
14113 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14114 0, "natural");
14115 lai->primitive_type_vector [ada_primitive_type_positive]
14116 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14117 0, "positive");
14118 lai->primitive_type_vector [ada_primitive_type_void]
14119 = builtin->builtin_void;
14120
14121 lai->primitive_type_vector [ada_primitive_type_system_address]
14122 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14123 "void"));
14124 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14125 = "system__address";
14126
14127 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14128 type. This is a signed integral type whose size is the same as
14129 the size of addresses. */
14130 {
14131 unsigned int addr_length = TYPE_LENGTH
14132 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14133
14134 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14135 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14136 "storage_offset");
14137 }
14138
14139 lai->bool_type_symbol = NULL;
14140 lai->bool_type_default = builtin->builtin_bool;
14141 }
14142 \f
14143 /* Language vector */
14144
14145 /* Not really used, but needed in the ada_language_defn. */
14146
14147 static void
14148 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14149 {
14150 ada_emit_char (c, type, stream, quoter, 1);
14151 }
14152
14153 static int
14154 parse (struct parser_state *ps)
14155 {
14156 warnings_issued = 0;
14157 return ada_parse (ps);
14158 }
14159
14160 static const struct exp_descriptor ada_exp_descriptor = {
14161 ada_print_subexp,
14162 ada_operator_length,
14163 ada_operator_check,
14164 ada_op_name,
14165 ada_dump_subexp_body,
14166 ada_evaluate_subexp
14167 };
14168
14169 /* symbol_name_matcher_ftype adapter for wild_match. */
14170
14171 static bool
14172 do_wild_match (const char *symbol_search_name,
14173 const lookup_name_info &lookup_name,
14174 completion_match_result *comp_match_res)
14175 {
14176 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14177 }
14178
14179 /* symbol_name_matcher_ftype adapter for full_match. */
14180
14181 static bool
14182 do_full_match (const char *symbol_search_name,
14183 const lookup_name_info &lookup_name,
14184 completion_match_result *comp_match_res)
14185 {
14186 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14187 }
14188
14189 /* Build the Ada lookup name for LOOKUP_NAME. */
14190
14191 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14192 {
14193 const std::string &user_name = lookup_name.name ();
14194
14195 if (user_name[0] == '<')
14196 {
14197 if (user_name.back () == '>')
14198 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14199 else
14200 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14201 m_encoded_p = true;
14202 m_verbatim_p = true;
14203 m_wild_match_p = false;
14204 m_standard_p = false;
14205 }
14206 else
14207 {
14208 m_verbatim_p = false;
14209
14210 m_encoded_p = user_name.find ("__") != std::string::npos;
14211
14212 if (!m_encoded_p)
14213 {
14214 const char *folded = ada_fold_name (user_name.c_str ());
14215 const char *encoded = ada_encode_1 (folded, false);
14216 if (encoded != NULL)
14217 m_encoded_name = encoded;
14218 else
14219 m_encoded_name = user_name;
14220 }
14221 else
14222 m_encoded_name = user_name;
14223
14224 /* Handle the 'package Standard' special case. See description
14225 of m_standard_p. */
14226 if (startswith (m_encoded_name.c_str (), "standard__"))
14227 {
14228 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14229 m_standard_p = true;
14230 }
14231 else
14232 m_standard_p = false;
14233
14234 /* If the name contains a ".", then the user is entering a fully
14235 qualified entity name, and the match must not be done in wild
14236 mode. Similarly, if the user wants to complete what looks
14237 like an encoded name, the match must not be done in wild
14238 mode. Also, in the standard__ special case always do
14239 non-wild matching. */
14240 m_wild_match_p
14241 = (lookup_name.match_type () != symbol_name_match_type::FULL
14242 && !m_encoded_p
14243 && !m_standard_p
14244 && user_name.find ('.') == std::string::npos);
14245 }
14246 }
14247
14248 /* symbol_name_matcher_ftype method for Ada. This only handles
14249 completion mode. */
14250
14251 static bool
14252 ada_symbol_name_matches (const char *symbol_search_name,
14253 const lookup_name_info &lookup_name,
14254 completion_match_result *comp_match_res)
14255 {
14256 return lookup_name.ada ().matches (symbol_search_name,
14257 lookup_name.match_type (),
14258 comp_match_res);
14259 }
14260
14261 /* A name matcher that matches the symbol name exactly, with
14262 strcmp. */
14263
14264 static bool
14265 literal_symbol_name_matcher (const char *symbol_search_name,
14266 const lookup_name_info &lookup_name,
14267 completion_match_result *comp_match_res)
14268 {
14269 const std::string &name = lookup_name.name ();
14270
14271 int cmp = (lookup_name.completion_mode ()
14272 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14273 : strcmp (symbol_search_name, name.c_str ()));
14274 if (cmp == 0)
14275 {
14276 if (comp_match_res != NULL)
14277 comp_match_res->set_match (symbol_search_name);
14278 return true;
14279 }
14280 else
14281 return false;
14282 }
14283
14284 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14285 Ada. */
14286
14287 static symbol_name_matcher_ftype *
14288 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14289 {
14290 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14291 return literal_symbol_name_matcher;
14292
14293 if (lookup_name.completion_mode ())
14294 return ada_symbol_name_matches;
14295 else
14296 {
14297 if (lookup_name.ada ().wild_match_p ())
14298 return do_wild_match;
14299 else
14300 return do_full_match;
14301 }
14302 }
14303
14304 /* Implement the "la_read_var_value" language_defn method for Ada. */
14305
14306 static struct value *
14307 ada_read_var_value (struct symbol *var, const struct block *var_block,
14308 struct frame_info *frame)
14309 {
14310 const struct block *frame_block = NULL;
14311 struct symbol *renaming_sym = NULL;
14312
14313 /* The only case where default_read_var_value is not sufficient
14314 is when VAR is a renaming... */
14315 if (frame)
14316 frame_block = get_frame_block (frame, NULL);
14317 if (frame_block)
14318 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14319 if (renaming_sym != NULL)
14320 return ada_read_renaming_var_value (renaming_sym, frame_block);
14321
14322 /* This is a typical case where we expect the default_read_var_value
14323 function to work. */
14324 return default_read_var_value (var, var_block, frame);
14325 }
14326
14327 static const char *ada_extensions[] =
14328 {
14329 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14330 };
14331
14332 extern const struct language_defn ada_language_defn = {
14333 "ada", /* Language name */
14334 "Ada",
14335 language_ada,
14336 range_check_off,
14337 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14338 that's not quite what this means. */
14339 array_row_major,
14340 macro_expansion_no,
14341 ada_extensions,
14342 &ada_exp_descriptor,
14343 parse,
14344 resolve,
14345 ada_printchar, /* Print a character constant */
14346 ada_printstr, /* Function to print string constant */
14347 emit_char, /* Function to print single char (not used) */
14348 ada_print_type, /* Print a type using appropriate syntax */
14349 ada_print_typedef, /* Print a typedef using appropriate syntax */
14350 ada_val_print, /* Print a value using appropriate syntax */
14351 ada_value_print, /* Print a top-level value */
14352 ada_read_var_value, /* la_read_var_value */
14353 NULL, /* Language specific skip_trampoline */
14354 NULL, /* name_of_this */
14355 true, /* la_store_sym_names_in_linkage_form_p */
14356 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14357 basic_lookup_transparent_type, /* lookup_transparent_type */
14358 ada_la_decode, /* Language specific symbol demangler */
14359 ada_sniff_from_mangled_name,
14360 NULL, /* Language specific
14361 class_name_from_physname */
14362 ada_op_print_tab, /* expression operators for printing */
14363 0, /* c-style arrays */
14364 1, /* String lower bound */
14365 ada_get_gdb_completer_word_break_characters,
14366 ada_collect_symbol_completion_matches,
14367 ada_language_arch_info,
14368 ada_print_array_index,
14369 default_pass_by_reference,
14370 c_get_string,
14371 ada_watch_location_expression,
14372 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14373 ada_iterate_over_symbols,
14374 default_search_name_hash,
14375 &ada_varobj_ops,
14376 NULL,
14377 NULL,
14378 LANG_MAGIC
14379 };
14380
14381 /* Command-list for the "set/show ada" prefix command. */
14382 static struct cmd_list_element *set_ada_list;
14383 static struct cmd_list_element *show_ada_list;
14384
14385 /* Implement the "set ada" prefix command. */
14386
14387 static void
14388 set_ada_command (const char *arg, int from_tty)
14389 {
14390 printf_unfiltered (_(\
14391 "\"set ada\" must be followed by the name of a setting.\n"));
14392 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14393 }
14394
14395 /* Implement the "show ada" prefix command. */
14396
14397 static void
14398 show_ada_command (const char *args, int from_tty)
14399 {
14400 cmd_show_list (show_ada_list, from_tty, "");
14401 }
14402
14403 static void
14404 initialize_ada_catchpoint_ops (void)
14405 {
14406 struct breakpoint_ops *ops;
14407
14408 initialize_breakpoint_ops ();
14409
14410 ops = &catch_exception_breakpoint_ops;
14411 *ops = bkpt_breakpoint_ops;
14412 ops->allocate_location = allocate_location_catch_exception;
14413 ops->re_set = re_set_catch_exception;
14414 ops->check_status = check_status_catch_exception;
14415 ops->print_it = print_it_catch_exception;
14416 ops->print_one = print_one_catch_exception;
14417 ops->print_mention = print_mention_catch_exception;
14418 ops->print_recreate = print_recreate_catch_exception;
14419
14420 ops = &catch_exception_unhandled_breakpoint_ops;
14421 *ops = bkpt_breakpoint_ops;
14422 ops->allocate_location = allocate_location_catch_exception_unhandled;
14423 ops->re_set = re_set_catch_exception_unhandled;
14424 ops->check_status = check_status_catch_exception_unhandled;
14425 ops->print_it = print_it_catch_exception_unhandled;
14426 ops->print_one = print_one_catch_exception_unhandled;
14427 ops->print_mention = print_mention_catch_exception_unhandled;
14428 ops->print_recreate = print_recreate_catch_exception_unhandled;
14429
14430 ops = &catch_assert_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
14432 ops->allocate_location = allocate_location_catch_assert;
14433 ops->re_set = re_set_catch_assert;
14434 ops->check_status = check_status_catch_assert;
14435 ops->print_it = print_it_catch_assert;
14436 ops->print_one = print_one_catch_assert;
14437 ops->print_mention = print_mention_catch_assert;
14438 ops->print_recreate = print_recreate_catch_assert;
14439
14440 ops = &catch_handlers_breakpoint_ops;
14441 *ops = bkpt_breakpoint_ops;
14442 ops->allocate_location = allocate_location_catch_handlers;
14443 ops->re_set = re_set_catch_handlers;
14444 ops->check_status = check_status_catch_handlers;
14445 ops->print_it = print_it_catch_handlers;
14446 ops->print_one = print_one_catch_handlers;
14447 ops->print_mention = print_mention_catch_handlers;
14448 ops->print_recreate = print_recreate_catch_handlers;
14449 }
14450
14451 /* This module's 'new_objfile' observer. */
14452
14453 static void
14454 ada_new_objfile_observer (struct objfile *objfile)
14455 {
14456 ada_clear_symbol_cache ();
14457 }
14458
14459 /* This module's 'free_objfile' observer. */
14460
14461 static void
14462 ada_free_objfile_observer (struct objfile *objfile)
14463 {
14464 ada_clear_symbol_cache ();
14465 }
14466
14467 void
14468 _initialize_ada_language (void)
14469 {
14470 initialize_ada_catchpoint_ops ();
14471
14472 add_prefix_cmd ("ada", no_class, set_ada_command,
14473 _("Prefix command for changing Ada-specific settings"),
14474 &set_ada_list, "set ada ", 0, &setlist);
14475
14476 add_prefix_cmd ("ada", no_class, show_ada_command,
14477 _("Generic command for showing Ada-specific settings."),
14478 &show_ada_list, "show ada ", 0, &showlist);
14479
14480 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14481 &trust_pad_over_xvs, _("\
14482 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14483 Show whether an optimization trusting PAD types over XVS types is activated"),
14484 _("\
14485 This is related to the encoding used by the GNAT compiler. The debugger\n\
14486 should normally trust the contents of PAD types, but certain older versions\n\
14487 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14488 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14489 work around this bug. It is always safe to turn this option \"off\", but\n\
14490 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14491 this option to \"off\" unless necessary."),
14492 NULL, NULL, &set_ada_list, &show_ada_list);
14493
14494 add_setshow_boolean_cmd ("print-signatures", class_vars,
14495 &print_signatures, _("\
14496 Enable or disable the output of formal and return types for functions in the \
14497 overloads selection menu"), _("\
14498 Show whether the output of formal and return types for functions in the \
14499 overloads selection menu is activated"),
14500 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14501
14502 add_catch_command ("exception", _("\
14503 Catch Ada exceptions, when raised.\n\
14504 With an argument, catch only exceptions with the given name."),
14505 catch_ada_exception_command,
14506 NULL,
14507 CATCH_PERMANENT,
14508 CATCH_TEMPORARY);
14509
14510 add_catch_command ("handlers", _("\
14511 Catch Ada exceptions, when handled.\n\
14512 With an argument, catch only exceptions with the given name."),
14513 catch_ada_handlers_command,
14514 NULL,
14515 CATCH_PERMANENT,
14516 CATCH_TEMPORARY);
14517 add_catch_command ("assert", _("\
14518 Catch failed Ada assertions, when raised.\n\
14519 With an argument, catch only exceptions with the given name."),
14520 catch_assert_command,
14521 NULL,
14522 CATCH_PERMANENT,
14523 CATCH_TEMPORARY);
14524
14525 varsize_limit = 65536;
14526 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14527 &varsize_limit, _("\
14528 Set the maximum number of bytes allowed in a variable-size object."), _("\
14529 Show the maximum number of bytes allowed in a variable-size object."), _("\
14530 Attempts to access an object whose size is not a compile-time constant\n\
14531 and exceeds this limit will cause an error."),
14532 NULL, NULL, &setlist, &showlist);
14533
14534 add_info ("exceptions", info_exceptions_command,
14535 _("\
14536 List all Ada exception names.\n\
14537 If a regular expression is passed as an argument, only those matching\n\
14538 the regular expression are listed."));
14539
14540 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14541 _("Set Ada maintenance-related variables."),
14542 &maint_set_ada_cmdlist, "maintenance set ada ",
14543 0/*allow-unknown*/, &maintenance_set_cmdlist);
14544
14545 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14546 _("Show Ada maintenance-related variables"),
14547 &maint_show_ada_cmdlist, "maintenance show ada ",
14548 0/*allow-unknown*/, &maintenance_show_cmdlist);
14549
14550 add_setshow_boolean_cmd
14551 ("ignore-descriptive-types", class_maintenance,
14552 &ada_ignore_descriptive_types_p,
14553 _("Set whether descriptive types generated by GNAT should be ignored."),
14554 _("Show whether descriptive types generated by GNAT should be ignored."),
14555 _("\
14556 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14557 DWARF attribute."),
14558 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14559
14560 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14561 NULL, xcalloc, xfree);
14562
14563 /* The ada-lang observers. */
14564 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14565 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14566 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14567
14568 /* Setup various context-specific data. */
14569 ada_inferior_data
14570 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14571 ada_pspace_data_handle
14572 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14573 }
This page took 0.341565 seconds and 5 git commands to generate.